1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2016 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 	IXGBE_MVALS_INIT(8259X)
63 };
64 
65 /**
66  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67  *  control
68  *  @hw: pointer to hardware structure
69  *
70  *  There are several phys that do not support autoneg flow control. This
71  *  function check the device id to see if the associated phy supports
72  *  autoneg flow control.
73  **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 	bool supported = false;
77 	ixgbe_link_speed speed;
78 	bool link_up;
79 
80 	switch (hw->phy.media_type) {
81 	case ixgbe_media_type_fiber:
82 		/* flow control autoneg black list */
83 		switch (hw->device_id) {
84 		case IXGBE_DEV_ID_X550EM_A_SFP:
85 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
86 			supported = false;
87 			break;
88 		default:
89 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
90 			/* if link is down, assume supported */
91 			if (link_up)
92 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
93 				true : false;
94 			else
95 				supported = true;
96 		}
97 
98 		break;
99 	case ixgbe_media_type_backplane:
100 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
101 			supported = false;
102 		else
103 			supported = true;
104 		break;
105 	case ixgbe_media_type_copper:
106 		/* only some copper devices support flow control autoneg */
107 		switch (hw->device_id) {
108 		case IXGBE_DEV_ID_82599_T3_LOM:
109 		case IXGBE_DEV_ID_X540T:
110 		case IXGBE_DEV_ID_X540T1:
111 		case IXGBE_DEV_ID_X550T:
112 		case IXGBE_DEV_ID_X550T1:
113 		case IXGBE_DEV_ID_X550EM_X_10G_T:
114 		case IXGBE_DEV_ID_X550EM_A_10G_T:
115 		case IXGBE_DEV_ID_X550EM_A_1G_T:
116 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
117 			supported = true;
118 			break;
119 		default:
120 			break;
121 		}
122 	default:
123 		break;
124 	}
125 
126 	if (!supported)
127 		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
128 		       hw->device_id);
129 
130 	return supported;
131 }
132 
133 /**
134  *  ixgbe_setup_fc_generic - Set up flow control
135  *  @hw: pointer to hardware structure
136  *
137  *  Called at init time to set up flow control.
138  **/
139 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
140 {
141 	s32 ret_val = 0;
142 	u32 reg = 0, reg_bp = 0;
143 	u16 reg_cu = 0;
144 	bool locked = false;
145 
146 	/*
147 	 * Validate the requested mode.  Strict IEEE mode does not allow
148 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
149 	 */
150 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
151 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
152 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
153 	}
154 
155 	/*
156 	 * 10gig parts do not have a word in the EEPROM to determine the
157 	 * default flow control setting, so we explicitly set it to full.
158 	 */
159 	if (hw->fc.requested_mode == ixgbe_fc_default)
160 		hw->fc.requested_mode = ixgbe_fc_full;
161 
162 	/*
163 	 * Set up the 1G and 10G flow control advertisement registers so the
164 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
165 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
166 	 */
167 	switch (hw->phy.media_type) {
168 	case ixgbe_media_type_backplane:
169 		/* some MAC's need RMW protection on AUTOC */
170 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
171 		if (ret_val)
172 			return ret_val;
173 
174 		/* fall through - only backplane uses autoc */
175 	case ixgbe_media_type_fiber:
176 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
177 
178 		break;
179 	case ixgbe_media_type_copper:
180 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
181 					MDIO_MMD_AN, &reg_cu);
182 		break;
183 	default:
184 		break;
185 	}
186 
187 	/*
188 	 * The possible values of fc.requested_mode are:
189 	 * 0: Flow control is completely disabled
190 	 * 1: Rx flow control is enabled (we can receive pause frames,
191 	 *    but not send pause frames).
192 	 * 2: Tx flow control is enabled (we can send pause frames but
193 	 *    we do not support receiving pause frames).
194 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
195 	 * other: Invalid.
196 	 */
197 	switch (hw->fc.requested_mode) {
198 	case ixgbe_fc_none:
199 		/* Flow control completely disabled by software override. */
200 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
201 		if (hw->phy.media_type == ixgbe_media_type_backplane)
202 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
203 				    IXGBE_AUTOC_ASM_PAUSE);
204 		else if (hw->phy.media_type == ixgbe_media_type_copper)
205 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
206 		break;
207 	case ixgbe_fc_tx_pause:
208 		/*
209 		 * Tx Flow control is enabled, and Rx Flow control is
210 		 * disabled by software override.
211 		 */
212 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
213 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
214 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
215 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
216 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
217 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
218 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
219 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
220 		}
221 		break;
222 	case ixgbe_fc_rx_pause:
223 		/*
224 		 * Rx Flow control is enabled and Tx Flow control is
225 		 * disabled by software override. Since there really
226 		 * isn't a way to advertise that we are capable of RX
227 		 * Pause ONLY, we will advertise that we support both
228 		 * symmetric and asymmetric Rx PAUSE, as such we fall
229 		 * through to the fc_full statement.  Later, we will
230 		 * disable the adapter's ability to send PAUSE frames.
231 		 */
232 	case ixgbe_fc_full:
233 		/* Flow control (both Rx and Tx) is enabled by SW override. */
234 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
235 		if (hw->phy.media_type == ixgbe_media_type_backplane)
236 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
237 				  IXGBE_AUTOC_ASM_PAUSE;
238 		else if (hw->phy.media_type == ixgbe_media_type_copper)
239 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
240 		break;
241 	default:
242 		hw_dbg(hw, "Flow control param set incorrectly\n");
243 		return IXGBE_ERR_CONFIG;
244 	}
245 
246 	if (hw->mac.type != ixgbe_mac_X540) {
247 		/*
248 		 * Enable auto-negotiation between the MAC & PHY;
249 		 * the MAC will advertise clause 37 flow control.
250 		 */
251 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
252 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
253 
254 		/* Disable AN timeout */
255 		if (hw->fc.strict_ieee)
256 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
257 
258 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
259 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
260 	}
261 
262 	/*
263 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
264 	 * and copper. There is no need to set the PCS1GCTL register.
265 	 *
266 	 */
267 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
268 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
269 		 * LESM is on, likewise reset_pipeline requries the lock as
270 		 * it also writes AUTOC.
271 		 */
272 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
273 		if (ret_val)
274 			return ret_val;
275 
276 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
277 		   ixgbe_device_supports_autoneg_fc(hw)) {
278 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
279 				      MDIO_MMD_AN, reg_cu);
280 	}
281 
282 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
283 	return ret_val;
284 }
285 
286 /**
287  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
288  *  @hw: pointer to hardware structure
289  *
290  *  Starts the hardware by filling the bus info structure and media type, clears
291  *  all on chip counters, initializes receive address registers, multicast
292  *  table, VLAN filter table, calls routine to set up link and flow control
293  *  settings, and leaves transmit and receive units disabled and uninitialized
294  **/
295 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
296 {
297 	s32 ret_val;
298 	u32 ctrl_ext;
299 	u16 device_caps;
300 
301 	/* Set the media type */
302 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
303 
304 	/* Identify the PHY */
305 	hw->phy.ops.identify(hw);
306 
307 	/* Clear the VLAN filter table */
308 	hw->mac.ops.clear_vfta(hw);
309 
310 	/* Clear statistics registers */
311 	hw->mac.ops.clear_hw_cntrs(hw);
312 
313 	/* Set No Snoop Disable */
314 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
315 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
316 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
317 	IXGBE_WRITE_FLUSH(hw);
318 
319 	/* Setup flow control if method for doing so */
320 	if (hw->mac.ops.setup_fc) {
321 		ret_val = hw->mac.ops.setup_fc(hw);
322 		if (ret_val)
323 			return ret_val;
324 	}
325 
326 	/* Cashe bit indicating need for crosstalk fix */
327 	switch (hw->mac.type) {
328 	case ixgbe_mac_82599EB:
329 	case ixgbe_mac_X550EM_x:
330 	case ixgbe_mac_x550em_a:
331 		hw->mac.ops.get_device_caps(hw, &device_caps);
332 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
333 			hw->need_crosstalk_fix = false;
334 		else
335 			hw->need_crosstalk_fix = true;
336 		break;
337 	default:
338 		hw->need_crosstalk_fix = false;
339 		break;
340 	}
341 
342 	/* Clear adapter stopped flag */
343 	hw->adapter_stopped = false;
344 
345 	return 0;
346 }
347 
348 /**
349  *  ixgbe_start_hw_gen2 - Init sequence for common device family
350  *  @hw: pointer to hw structure
351  *
352  * Performs the init sequence common to the second generation
353  * of 10 GbE devices.
354  * Devices in the second generation:
355  *     82599
356  *     X540
357  **/
358 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
359 {
360 	u32 i;
361 
362 	/* Clear the rate limiters */
363 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
364 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
365 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
366 	}
367 	IXGBE_WRITE_FLUSH(hw);
368 
369 #ifndef CONFIG_ARCH_WANT_RELAX_ORDER
370 	/* Disable relaxed ordering */
371 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
372 		u32 regval;
373 
374 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
375 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
376 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
377 	}
378 
379 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
380 		u32 regval;
381 
382 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
383 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
384 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
385 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
386 	}
387 #endif
388 	return 0;
389 }
390 
391 /**
392  *  ixgbe_init_hw_generic - Generic hardware initialization
393  *  @hw: pointer to hardware structure
394  *
395  *  Initialize the hardware by resetting the hardware, filling the bus info
396  *  structure and media type, clears all on chip counters, initializes receive
397  *  address registers, multicast table, VLAN filter table, calls routine to set
398  *  up link and flow control settings, and leaves transmit and receive units
399  *  disabled and uninitialized
400  **/
401 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
402 {
403 	s32 status;
404 
405 	/* Reset the hardware */
406 	status = hw->mac.ops.reset_hw(hw);
407 
408 	if (status == 0) {
409 		/* Start the HW */
410 		status = hw->mac.ops.start_hw(hw);
411 	}
412 
413 	/* Initialize the LED link active for LED blink support */
414 	if (hw->mac.ops.init_led_link_act)
415 		hw->mac.ops.init_led_link_act(hw);
416 
417 	return status;
418 }
419 
420 /**
421  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
422  *  @hw: pointer to hardware structure
423  *
424  *  Clears all hardware statistics counters by reading them from the hardware
425  *  Statistics counters are clear on read.
426  **/
427 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
428 {
429 	u16 i = 0;
430 
431 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
432 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
433 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
434 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
435 	for (i = 0; i < 8; i++)
436 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
437 
438 	IXGBE_READ_REG(hw, IXGBE_MLFC);
439 	IXGBE_READ_REG(hw, IXGBE_MRFC);
440 	IXGBE_READ_REG(hw, IXGBE_RLEC);
441 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
442 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
443 	if (hw->mac.type >= ixgbe_mac_82599EB) {
444 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
445 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
446 	} else {
447 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
448 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
449 	}
450 
451 	for (i = 0; i < 8; i++) {
452 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
453 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
454 		if (hw->mac.type >= ixgbe_mac_82599EB) {
455 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
456 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
457 		} else {
458 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
459 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
460 		}
461 	}
462 	if (hw->mac.type >= ixgbe_mac_82599EB)
463 		for (i = 0; i < 8; i++)
464 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
465 	IXGBE_READ_REG(hw, IXGBE_PRC64);
466 	IXGBE_READ_REG(hw, IXGBE_PRC127);
467 	IXGBE_READ_REG(hw, IXGBE_PRC255);
468 	IXGBE_READ_REG(hw, IXGBE_PRC511);
469 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
470 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
471 	IXGBE_READ_REG(hw, IXGBE_GPRC);
472 	IXGBE_READ_REG(hw, IXGBE_BPRC);
473 	IXGBE_READ_REG(hw, IXGBE_MPRC);
474 	IXGBE_READ_REG(hw, IXGBE_GPTC);
475 	IXGBE_READ_REG(hw, IXGBE_GORCL);
476 	IXGBE_READ_REG(hw, IXGBE_GORCH);
477 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
478 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
479 	if (hw->mac.type == ixgbe_mac_82598EB)
480 		for (i = 0; i < 8; i++)
481 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
482 	IXGBE_READ_REG(hw, IXGBE_RUC);
483 	IXGBE_READ_REG(hw, IXGBE_RFC);
484 	IXGBE_READ_REG(hw, IXGBE_ROC);
485 	IXGBE_READ_REG(hw, IXGBE_RJC);
486 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
487 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
488 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
489 	IXGBE_READ_REG(hw, IXGBE_TORL);
490 	IXGBE_READ_REG(hw, IXGBE_TORH);
491 	IXGBE_READ_REG(hw, IXGBE_TPR);
492 	IXGBE_READ_REG(hw, IXGBE_TPT);
493 	IXGBE_READ_REG(hw, IXGBE_PTC64);
494 	IXGBE_READ_REG(hw, IXGBE_PTC127);
495 	IXGBE_READ_REG(hw, IXGBE_PTC255);
496 	IXGBE_READ_REG(hw, IXGBE_PTC511);
497 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
498 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
499 	IXGBE_READ_REG(hw, IXGBE_MPTC);
500 	IXGBE_READ_REG(hw, IXGBE_BPTC);
501 	for (i = 0; i < 16; i++) {
502 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
503 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
504 		if (hw->mac.type >= ixgbe_mac_82599EB) {
505 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
506 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
507 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
508 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
509 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
510 		} else {
511 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
512 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
513 		}
514 	}
515 
516 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
517 		if (hw->phy.id == 0)
518 			hw->phy.ops.identify(hw);
519 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
520 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
521 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
522 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
523 	}
524 
525 	return 0;
526 }
527 
528 /**
529  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
530  *  @hw: pointer to hardware structure
531  *  @pba_num: stores the part number string from the EEPROM
532  *  @pba_num_size: part number string buffer length
533  *
534  *  Reads the part number string from the EEPROM.
535  **/
536 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
537 				  u32 pba_num_size)
538 {
539 	s32 ret_val;
540 	u16 data;
541 	u16 pba_ptr;
542 	u16 offset;
543 	u16 length;
544 
545 	if (pba_num == NULL) {
546 		hw_dbg(hw, "PBA string buffer was null\n");
547 		return IXGBE_ERR_INVALID_ARGUMENT;
548 	}
549 
550 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
551 	if (ret_val) {
552 		hw_dbg(hw, "NVM Read Error\n");
553 		return ret_val;
554 	}
555 
556 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
557 	if (ret_val) {
558 		hw_dbg(hw, "NVM Read Error\n");
559 		return ret_val;
560 	}
561 
562 	/*
563 	 * if data is not ptr guard the PBA must be in legacy format which
564 	 * means pba_ptr is actually our second data word for the PBA number
565 	 * and we can decode it into an ascii string
566 	 */
567 	if (data != IXGBE_PBANUM_PTR_GUARD) {
568 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
569 
570 		/* we will need 11 characters to store the PBA */
571 		if (pba_num_size < 11) {
572 			hw_dbg(hw, "PBA string buffer too small\n");
573 			return IXGBE_ERR_NO_SPACE;
574 		}
575 
576 		/* extract hex string from data and pba_ptr */
577 		pba_num[0] = (data >> 12) & 0xF;
578 		pba_num[1] = (data >> 8) & 0xF;
579 		pba_num[2] = (data >> 4) & 0xF;
580 		pba_num[3] = data & 0xF;
581 		pba_num[4] = (pba_ptr >> 12) & 0xF;
582 		pba_num[5] = (pba_ptr >> 8) & 0xF;
583 		pba_num[6] = '-';
584 		pba_num[7] = 0;
585 		pba_num[8] = (pba_ptr >> 4) & 0xF;
586 		pba_num[9] = pba_ptr & 0xF;
587 
588 		/* put a null character on the end of our string */
589 		pba_num[10] = '\0';
590 
591 		/* switch all the data but the '-' to hex char */
592 		for (offset = 0; offset < 10; offset++) {
593 			if (pba_num[offset] < 0xA)
594 				pba_num[offset] += '0';
595 			else if (pba_num[offset] < 0x10)
596 				pba_num[offset] += 'A' - 0xA;
597 		}
598 
599 		return 0;
600 	}
601 
602 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
603 	if (ret_val) {
604 		hw_dbg(hw, "NVM Read Error\n");
605 		return ret_val;
606 	}
607 
608 	if (length == 0xFFFF || length == 0) {
609 		hw_dbg(hw, "NVM PBA number section invalid length\n");
610 		return IXGBE_ERR_PBA_SECTION;
611 	}
612 
613 	/* check if pba_num buffer is big enough */
614 	if (pba_num_size  < (((u32)length * 2) - 1)) {
615 		hw_dbg(hw, "PBA string buffer too small\n");
616 		return IXGBE_ERR_NO_SPACE;
617 	}
618 
619 	/* trim pba length from start of string */
620 	pba_ptr++;
621 	length--;
622 
623 	for (offset = 0; offset < length; offset++) {
624 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
625 		if (ret_val) {
626 			hw_dbg(hw, "NVM Read Error\n");
627 			return ret_val;
628 		}
629 		pba_num[offset * 2] = (u8)(data >> 8);
630 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
631 	}
632 	pba_num[offset * 2] = '\0';
633 
634 	return 0;
635 }
636 
637 /**
638  *  ixgbe_get_mac_addr_generic - Generic get MAC address
639  *  @hw: pointer to hardware structure
640  *  @mac_addr: Adapter MAC address
641  *
642  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
643  *  A reset of the adapter must be performed prior to calling this function
644  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
645  **/
646 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
647 {
648 	u32 rar_high;
649 	u32 rar_low;
650 	u16 i;
651 
652 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
653 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
654 
655 	for (i = 0; i < 4; i++)
656 		mac_addr[i] = (u8)(rar_low >> (i*8));
657 
658 	for (i = 0; i < 2; i++)
659 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
660 
661 	return 0;
662 }
663 
664 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
665 {
666 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
667 	case IXGBE_PCI_LINK_WIDTH_1:
668 		return ixgbe_bus_width_pcie_x1;
669 	case IXGBE_PCI_LINK_WIDTH_2:
670 		return ixgbe_bus_width_pcie_x2;
671 	case IXGBE_PCI_LINK_WIDTH_4:
672 		return ixgbe_bus_width_pcie_x4;
673 	case IXGBE_PCI_LINK_WIDTH_8:
674 		return ixgbe_bus_width_pcie_x8;
675 	default:
676 		return ixgbe_bus_width_unknown;
677 	}
678 }
679 
680 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
681 {
682 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
683 	case IXGBE_PCI_LINK_SPEED_2500:
684 		return ixgbe_bus_speed_2500;
685 	case IXGBE_PCI_LINK_SPEED_5000:
686 		return ixgbe_bus_speed_5000;
687 	case IXGBE_PCI_LINK_SPEED_8000:
688 		return ixgbe_bus_speed_8000;
689 	default:
690 		return ixgbe_bus_speed_unknown;
691 	}
692 }
693 
694 /**
695  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
696  *  @hw: pointer to hardware structure
697  *
698  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
699  **/
700 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
701 {
702 	u16 link_status;
703 
704 	hw->bus.type = ixgbe_bus_type_pci_express;
705 
706 	/* Get the negotiated link width and speed from PCI config space */
707 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
708 
709 	hw->bus.width = ixgbe_convert_bus_width(link_status);
710 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
711 
712 	hw->mac.ops.set_lan_id(hw);
713 
714 	return 0;
715 }
716 
717 /**
718  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
719  *  @hw: pointer to the HW structure
720  *
721  *  Determines the LAN function id by reading memory-mapped registers
722  *  and swaps the port value if requested.
723  **/
724 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
725 {
726 	struct ixgbe_bus_info *bus = &hw->bus;
727 	u16 ee_ctrl_4;
728 	u32 reg;
729 
730 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
731 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
732 	bus->lan_id = bus->func;
733 
734 	/* check for a port swap */
735 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
736 	if (reg & IXGBE_FACTPS_LFS)
737 		bus->func ^= 0x1;
738 
739 	/* Get MAC instance from EEPROM for configuring CS4227 */
740 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
741 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
742 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
743 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
744 	}
745 }
746 
747 /**
748  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
749  *  @hw: pointer to hardware structure
750  *
751  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
752  *  disables transmit and receive units. The adapter_stopped flag is used by
753  *  the shared code and drivers to determine if the adapter is in a stopped
754  *  state and should not touch the hardware.
755  **/
756 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
757 {
758 	u32 reg_val;
759 	u16 i;
760 
761 	/*
762 	 * Set the adapter_stopped flag so other driver functions stop touching
763 	 * the hardware
764 	 */
765 	hw->adapter_stopped = true;
766 
767 	/* Disable the receive unit */
768 	hw->mac.ops.disable_rx(hw);
769 
770 	/* Clear interrupt mask to stop interrupts from being generated */
771 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
772 
773 	/* Clear any pending interrupts, flush previous writes */
774 	IXGBE_READ_REG(hw, IXGBE_EICR);
775 
776 	/* Disable the transmit unit.  Each queue must be disabled. */
777 	for (i = 0; i < hw->mac.max_tx_queues; i++)
778 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
779 
780 	/* Disable the receive unit by stopping each queue */
781 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
782 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
783 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
784 		reg_val |= IXGBE_RXDCTL_SWFLSH;
785 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
786 	}
787 
788 	/* flush all queues disables */
789 	IXGBE_WRITE_FLUSH(hw);
790 	usleep_range(1000, 2000);
791 
792 	/*
793 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
794 	 * access and verify no pending requests
795 	 */
796 	return ixgbe_disable_pcie_master(hw);
797 }
798 
799 /**
800  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
801  *  @hw: pointer to hardware structure
802  *
803  *  Store the index for the link active LED. This will be used to support
804  *  blinking the LED.
805  **/
806 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
807 {
808 	struct ixgbe_mac_info *mac = &hw->mac;
809 	u32 led_reg, led_mode;
810 	u16 i;
811 
812 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
813 
814 	/* Get LED link active from the LEDCTL register */
815 	for (i = 0; i < 4; i++) {
816 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
817 
818 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
819 		    IXGBE_LED_LINK_ACTIVE) {
820 			mac->led_link_act = i;
821 			return 0;
822 		}
823 	}
824 
825 	/* If LEDCTL register does not have the LED link active set, then use
826 	 * known MAC defaults.
827 	 */
828 	switch (hw->mac.type) {
829 	case ixgbe_mac_x550em_a:
830 		mac->led_link_act = 0;
831 		break;
832 	case ixgbe_mac_X550EM_x:
833 		mac->led_link_act = 1;
834 		break;
835 	default:
836 		mac->led_link_act = 2;
837 	}
838 
839 	return 0;
840 }
841 
842 /**
843  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
844  *  @hw: pointer to hardware structure
845  *  @index: led number to turn on
846  **/
847 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
848 {
849 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
850 
851 	if (index > 3)
852 		return IXGBE_ERR_PARAM;
853 
854 	/* To turn on the LED, set mode to ON. */
855 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
856 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
857 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
858 	IXGBE_WRITE_FLUSH(hw);
859 
860 	return 0;
861 }
862 
863 /**
864  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
865  *  @hw: pointer to hardware structure
866  *  @index: led number to turn off
867  **/
868 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
869 {
870 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
871 
872 	if (index > 3)
873 		return IXGBE_ERR_PARAM;
874 
875 	/* To turn off the LED, set mode to OFF. */
876 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
877 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
878 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
879 	IXGBE_WRITE_FLUSH(hw);
880 
881 	return 0;
882 }
883 
884 /**
885  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
886  *  @hw: pointer to hardware structure
887  *
888  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
889  *  ixgbe_hw struct in order to set up EEPROM access.
890  **/
891 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
892 {
893 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
894 	u32 eec;
895 	u16 eeprom_size;
896 
897 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
898 		eeprom->type = ixgbe_eeprom_none;
899 		/* Set default semaphore delay to 10ms which is a well
900 		 * tested value */
901 		eeprom->semaphore_delay = 10;
902 		/* Clear EEPROM page size, it will be initialized as needed */
903 		eeprom->word_page_size = 0;
904 
905 		/*
906 		 * Check for EEPROM present first.
907 		 * If not present leave as none
908 		 */
909 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
910 		if (eec & IXGBE_EEC_PRES) {
911 			eeprom->type = ixgbe_eeprom_spi;
912 
913 			/*
914 			 * SPI EEPROM is assumed here.  This code would need to
915 			 * change if a future EEPROM is not SPI.
916 			 */
917 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
918 					    IXGBE_EEC_SIZE_SHIFT);
919 			eeprom->word_size = BIT(eeprom_size +
920 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
921 		}
922 
923 		if (eec & IXGBE_EEC_ADDR_SIZE)
924 			eeprom->address_bits = 16;
925 		else
926 			eeprom->address_bits = 8;
927 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
928 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
929 	}
930 
931 	return 0;
932 }
933 
934 /**
935  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
936  *  @hw: pointer to hardware structure
937  *  @offset: offset within the EEPROM to write
938  *  @words: number of words
939  *  @data: 16 bit word(s) to write to EEPROM
940  *
941  *  Reads 16 bit word(s) from EEPROM through bit-bang method
942  **/
943 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
944 					       u16 words, u16 *data)
945 {
946 	s32 status;
947 	u16 i, count;
948 
949 	hw->eeprom.ops.init_params(hw);
950 
951 	if (words == 0)
952 		return IXGBE_ERR_INVALID_ARGUMENT;
953 
954 	if (offset + words > hw->eeprom.word_size)
955 		return IXGBE_ERR_EEPROM;
956 
957 	/*
958 	 * The EEPROM page size cannot be queried from the chip. We do lazy
959 	 * initialization. It is worth to do that when we write large buffer.
960 	 */
961 	if ((hw->eeprom.word_page_size == 0) &&
962 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
963 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
964 
965 	/*
966 	 * We cannot hold synchronization semaphores for too long
967 	 * to avoid other entity starvation. However it is more efficient
968 	 * to read in bursts than synchronizing access for each word.
969 	 */
970 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
971 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
972 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
973 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
974 							    count, &data[i]);
975 
976 		if (status != 0)
977 			break;
978 	}
979 
980 	return status;
981 }
982 
983 /**
984  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
985  *  @hw: pointer to hardware structure
986  *  @offset: offset within the EEPROM to be written to
987  *  @words: number of word(s)
988  *  @data: 16 bit word(s) to be written to the EEPROM
989  *
990  *  If ixgbe_eeprom_update_checksum is not called after this function, the
991  *  EEPROM will most likely contain an invalid checksum.
992  **/
993 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
994 					      u16 words, u16 *data)
995 {
996 	s32 status;
997 	u16 word;
998 	u16 page_size;
999 	u16 i;
1000 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1001 
1002 	/* Prepare the EEPROM for writing  */
1003 	status = ixgbe_acquire_eeprom(hw);
1004 	if (status)
1005 		return status;
1006 
1007 	if (ixgbe_ready_eeprom(hw) != 0) {
1008 		ixgbe_release_eeprom(hw);
1009 		return IXGBE_ERR_EEPROM;
1010 	}
1011 
1012 	for (i = 0; i < words; i++) {
1013 		ixgbe_standby_eeprom(hw);
1014 
1015 		/* Send the WRITE ENABLE command (8 bit opcode) */
1016 		ixgbe_shift_out_eeprom_bits(hw,
1017 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
1018 					    IXGBE_EEPROM_OPCODE_BITS);
1019 
1020 		ixgbe_standby_eeprom(hw);
1021 
1022 		/* Some SPI eeproms use the 8th address bit embedded
1023 		 * in the opcode
1024 		 */
1025 		if ((hw->eeprom.address_bits == 8) &&
1026 		    ((offset + i) >= 128))
1027 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1028 
1029 		/* Send the Write command (8-bit opcode + addr) */
1030 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1031 					    IXGBE_EEPROM_OPCODE_BITS);
1032 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1033 					    hw->eeprom.address_bits);
1034 
1035 		page_size = hw->eeprom.word_page_size;
1036 
1037 		/* Send the data in burst via SPI */
1038 		do {
1039 			word = data[i];
1040 			word = (word >> 8) | (word << 8);
1041 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
1042 
1043 			if (page_size == 0)
1044 				break;
1045 
1046 			/* do not wrap around page */
1047 			if (((offset + i) & (page_size - 1)) ==
1048 			    (page_size - 1))
1049 				break;
1050 		} while (++i < words);
1051 
1052 		ixgbe_standby_eeprom(hw);
1053 		usleep_range(10000, 20000);
1054 	}
1055 	/* Done with writing - release the EEPROM */
1056 	ixgbe_release_eeprom(hw);
1057 
1058 	return 0;
1059 }
1060 
1061 /**
1062  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1063  *  @hw: pointer to hardware structure
1064  *  @offset: offset within the EEPROM to be written to
1065  *  @data: 16 bit word to be written to the EEPROM
1066  *
1067  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1068  *  EEPROM will most likely contain an invalid checksum.
1069  **/
1070 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1071 {
1072 	hw->eeprom.ops.init_params(hw);
1073 
1074 	if (offset >= hw->eeprom.word_size)
1075 		return IXGBE_ERR_EEPROM;
1076 
1077 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1078 }
1079 
1080 /**
1081  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1082  *  @hw: pointer to hardware structure
1083  *  @offset: offset within the EEPROM to be read
1084  *  @words: number of word(s)
1085  *  @data: read 16 bit words(s) from EEPROM
1086  *
1087  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1088  **/
1089 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1090 					      u16 words, u16 *data)
1091 {
1092 	s32 status;
1093 	u16 i, count;
1094 
1095 	hw->eeprom.ops.init_params(hw);
1096 
1097 	if (words == 0)
1098 		return IXGBE_ERR_INVALID_ARGUMENT;
1099 
1100 	if (offset + words > hw->eeprom.word_size)
1101 		return IXGBE_ERR_EEPROM;
1102 
1103 	/*
1104 	 * We cannot hold synchronization semaphores for too long
1105 	 * to avoid other entity starvation. However it is more efficient
1106 	 * to read in bursts than synchronizing access for each word.
1107 	 */
1108 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1109 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1110 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1111 
1112 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1113 							   count, &data[i]);
1114 
1115 		if (status)
1116 			return status;
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 /**
1123  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1124  *  @hw: pointer to hardware structure
1125  *  @offset: offset within the EEPROM to be read
1126  *  @words: number of word(s)
1127  *  @data: read 16 bit word(s) from EEPROM
1128  *
1129  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1130  **/
1131 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1132 					     u16 words, u16 *data)
1133 {
1134 	s32 status;
1135 	u16 word_in;
1136 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1137 	u16 i;
1138 
1139 	/* Prepare the EEPROM for reading  */
1140 	status = ixgbe_acquire_eeprom(hw);
1141 	if (status)
1142 		return status;
1143 
1144 	if (ixgbe_ready_eeprom(hw) != 0) {
1145 		ixgbe_release_eeprom(hw);
1146 		return IXGBE_ERR_EEPROM;
1147 	}
1148 
1149 	for (i = 0; i < words; i++) {
1150 		ixgbe_standby_eeprom(hw);
1151 		/* Some SPI eeproms use the 8th address bit embedded
1152 		 * in the opcode
1153 		 */
1154 		if ((hw->eeprom.address_bits == 8) &&
1155 		    ((offset + i) >= 128))
1156 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1157 
1158 		/* Send the READ command (opcode + addr) */
1159 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1160 					    IXGBE_EEPROM_OPCODE_BITS);
1161 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1162 					    hw->eeprom.address_bits);
1163 
1164 		/* Read the data. */
1165 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1166 		data[i] = (word_in >> 8) | (word_in << 8);
1167 	}
1168 
1169 	/* End this read operation */
1170 	ixgbe_release_eeprom(hw);
1171 
1172 	return 0;
1173 }
1174 
1175 /**
1176  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1177  *  @hw: pointer to hardware structure
1178  *  @offset: offset within the EEPROM to be read
1179  *  @data: read 16 bit value from EEPROM
1180  *
1181  *  Reads 16 bit value from EEPROM through bit-bang method
1182  **/
1183 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1184 				       u16 *data)
1185 {
1186 	hw->eeprom.ops.init_params(hw);
1187 
1188 	if (offset >= hw->eeprom.word_size)
1189 		return IXGBE_ERR_EEPROM;
1190 
1191 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1192 }
1193 
1194 /**
1195  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1196  *  @hw: pointer to hardware structure
1197  *  @offset: offset of word in the EEPROM to read
1198  *  @words: number of word(s)
1199  *  @data: 16 bit word(s) from the EEPROM
1200  *
1201  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1202  **/
1203 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1204 				   u16 words, u16 *data)
1205 {
1206 	u32 eerd;
1207 	s32 status;
1208 	u32 i;
1209 
1210 	hw->eeprom.ops.init_params(hw);
1211 
1212 	if (words == 0)
1213 		return IXGBE_ERR_INVALID_ARGUMENT;
1214 
1215 	if (offset >= hw->eeprom.word_size)
1216 		return IXGBE_ERR_EEPROM;
1217 
1218 	for (i = 0; i < words; i++) {
1219 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1220 		       IXGBE_EEPROM_RW_REG_START;
1221 
1222 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1223 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1224 
1225 		if (status == 0) {
1226 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1227 				   IXGBE_EEPROM_RW_REG_DATA);
1228 		} else {
1229 			hw_dbg(hw, "Eeprom read timed out\n");
1230 			return status;
1231 		}
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 /**
1238  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1239  *  @hw: pointer to hardware structure
1240  *  @offset: offset within the EEPROM to be used as a scratch pad
1241  *
1242  *  Discover EEPROM page size by writing marching data at given offset.
1243  *  This function is called only when we are writing a new large buffer
1244  *  at given offset so the data would be overwritten anyway.
1245  **/
1246 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1247 						 u16 offset)
1248 {
1249 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1250 	s32 status;
1251 	u16 i;
1252 
1253 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1254 		data[i] = i;
1255 
1256 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1257 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1258 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1259 	hw->eeprom.word_page_size = 0;
1260 	if (status)
1261 		return status;
1262 
1263 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1264 	if (status)
1265 		return status;
1266 
1267 	/*
1268 	 * When writing in burst more than the actual page size
1269 	 * EEPROM address wraps around current page.
1270 	 */
1271 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1272 
1273 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1274 	       hw->eeprom.word_page_size);
1275 	return 0;
1276 }
1277 
1278 /**
1279  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1280  *  @hw: pointer to hardware structure
1281  *  @offset: offset of  word in the EEPROM to read
1282  *  @data: word read from the EEPROM
1283  *
1284  *  Reads a 16 bit word from the EEPROM using the EERD register.
1285  **/
1286 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1287 {
1288 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1289 }
1290 
1291 /**
1292  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1293  *  @hw: pointer to hardware structure
1294  *  @offset: offset of  word in the EEPROM to write
1295  *  @words: number of words
1296  *  @data: word(s) write to the EEPROM
1297  *
1298  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1299  **/
1300 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1301 				    u16 words, u16 *data)
1302 {
1303 	u32 eewr;
1304 	s32 status;
1305 	u16 i;
1306 
1307 	hw->eeprom.ops.init_params(hw);
1308 
1309 	if (words == 0)
1310 		return IXGBE_ERR_INVALID_ARGUMENT;
1311 
1312 	if (offset >= hw->eeprom.word_size)
1313 		return IXGBE_ERR_EEPROM;
1314 
1315 	for (i = 0; i < words; i++) {
1316 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1317 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1318 		       IXGBE_EEPROM_RW_REG_START;
1319 
1320 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1321 		if (status) {
1322 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1323 			return status;
1324 		}
1325 
1326 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1327 
1328 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1329 		if (status) {
1330 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1331 			return status;
1332 		}
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 /**
1339  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1340  *  @hw: pointer to hardware structure
1341  *  @offset: offset of  word in the EEPROM to write
1342  *  @data: word write to the EEPROM
1343  *
1344  *  Write a 16 bit word to the EEPROM using the EEWR register.
1345  **/
1346 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1347 {
1348 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1349 }
1350 
1351 /**
1352  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1353  *  @hw: pointer to hardware structure
1354  *  @ee_reg: EEPROM flag for polling
1355  *
1356  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1357  *  read or write is done respectively.
1358  **/
1359 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1360 {
1361 	u32 i;
1362 	u32 reg;
1363 
1364 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1365 		if (ee_reg == IXGBE_NVM_POLL_READ)
1366 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1367 		else
1368 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1369 
1370 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1371 			return 0;
1372 		}
1373 		udelay(5);
1374 	}
1375 	return IXGBE_ERR_EEPROM;
1376 }
1377 
1378 /**
1379  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1380  *  @hw: pointer to hardware structure
1381  *
1382  *  Prepares EEPROM for access using bit-bang method. This function should
1383  *  be called before issuing a command to the EEPROM.
1384  **/
1385 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1386 {
1387 	u32 eec;
1388 	u32 i;
1389 
1390 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1391 		return IXGBE_ERR_SWFW_SYNC;
1392 
1393 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1394 
1395 	/* Request EEPROM Access */
1396 	eec |= IXGBE_EEC_REQ;
1397 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1398 
1399 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1400 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1401 		if (eec & IXGBE_EEC_GNT)
1402 			break;
1403 		udelay(5);
1404 	}
1405 
1406 	/* Release if grant not acquired */
1407 	if (!(eec & IXGBE_EEC_GNT)) {
1408 		eec &= ~IXGBE_EEC_REQ;
1409 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1410 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1411 
1412 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1413 		return IXGBE_ERR_EEPROM;
1414 	}
1415 
1416 	/* Setup EEPROM for Read/Write */
1417 	/* Clear CS and SK */
1418 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1419 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1420 	IXGBE_WRITE_FLUSH(hw);
1421 	udelay(1);
1422 	return 0;
1423 }
1424 
1425 /**
1426  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1427  *  @hw: pointer to hardware structure
1428  *
1429  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1430  **/
1431 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1432 {
1433 	u32 timeout = 2000;
1434 	u32 i;
1435 	u32 swsm;
1436 
1437 	/* Get SMBI software semaphore between device drivers first */
1438 	for (i = 0; i < timeout; i++) {
1439 		/*
1440 		 * If the SMBI bit is 0 when we read it, then the bit will be
1441 		 * set and we have the semaphore
1442 		 */
1443 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1444 		if (!(swsm & IXGBE_SWSM_SMBI))
1445 			break;
1446 		usleep_range(50, 100);
1447 	}
1448 
1449 	if (i == timeout) {
1450 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1451 		/* this release is particularly important because our attempts
1452 		 * above to get the semaphore may have succeeded, and if there
1453 		 * was a timeout, we should unconditionally clear the semaphore
1454 		 * bits to free the driver to make progress
1455 		 */
1456 		ixgbe_release_eeprom_semaphore(hw);
1457 
1458 		usleep_range(50, 100);
1459 		/* one last try
1460 		 * If the SMBI bit is 0 when we read it, then the bit will be
1461 		 * set and we have the semaphore
1462 		 */
1463 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1464 		if (swsm & IXGBE_SWSM_SMBI) {
1465 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1466 			return IXGBE_ERR_EEPROM;
1467 		}
1468 	}
1469 
1470 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1471 	for (i = 0; i < timeout; i++) {
1472 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1473 
1474 		/* Set the SW EEPROM semaphore bit to request access */
1475 		swsm |= IXGBE_SWSM_SWESMBI;
1476 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1477 
1478 		/* If we set the bit successfully then we got the
1479 		 * semaphore.
1480 		 */
1481 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1482 		if (swsm & IXGBE_SWSM_SWESMBI)
1483 			break;
1484 
1485 		usleep_range(50, 100);
1486 	}
1487 
1488 	/* Release semaphores and return error if SW EEPROM semaphore
1489 	 * was not granted because we don't have access to the EEPROM
1490 	 */
1491 	if (i >= timeout) {
1492 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1493 		ixgbe_release_eeprom_semaphore(hw);
1494 		return IXGBE_ERR_EEPROM;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 /**
1501  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1502  *  @hw: pointer to hardware structure
1503  *
1504  *  This function clears hardware semaphore bits.
1505  **/
1506 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1507 {
1508 	u32 swsm;
1509 
1510 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1511 
1512 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1513 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1514 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1515 	IXGBE_WRITE_FLUSH(hw);
1516 }
1517 
1518 /**
1519  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1520  *  @hw: pointer to hardware structure
1521  **/
1522 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1523 {
1524 	u16 i;
1525 	u8 spi_stat_reg;
1526 
1527 	/*
1528 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1529 	 * EEPROM will signal that the command has been completed by clearing
1530 	 * bit 0 of the internal status register.  If it's not cleared within
1531 	 * 5 milliseconds, then error out.
1532 	 */
1533 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1534 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1535 					    IXGBE_EEPROM_OPCODE_BITS);
1536 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1537 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1538 			break;
1539 
1540 		udelay(5);
1541 		ixgbe_standby_eeprom(hw);
1542 	}
1543 
1544 	/*
1545 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1546 	 * devices (and only 0-5mSec on 5V devices)
1547 	 */
1548 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1549 		hw_dbg(hw, "SPI EEPROM Status error\n");
1550 		return IXGBE_ERR_EEPROM;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 /**
1557  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1558  *  @hw: pointer to hardware structure
1559  **/
1560 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1561 {
1562 	u32 eec;
1563 
1564 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1565 
1566 	/* Toggle CS to flush commands */
1567 	eec |= IXGBE_EEC_CS;
1568 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1569 	IXGBE_WRITE_FLUSH(hw);
1570 	udelay(1);
1571 	eec &= ~IXGBE_EEC_CS;
1572 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1573 	IXGBE_WRITE_FLUSH(hw);
1574 	udelay(1);
1575 }
1576 
1577 /**
1578  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1579  *  @hw: pointer to hardware structure
1580  *  @data: data to send to the EEPROM
1581  *  @count: number of bits to shift out
1582  **/
1583 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1584 					u16 count)
1585 {
1586 	u32 eec;
1587 	u32 mask;
1588 	u32 i;
1589 
1590 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1591 
1592 	/*
1593 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1594 	 * one bit at a time.  Determine the starting bit based on count
1595 	 */
1596 	mask = BIT(count - 1);
1597 
1598 	for (i = 0; i < count; i++) {
1599 		/*
1600 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1601 		 * "1", and then raising and then lowering the clock (the SK
1602 		 * bit controls the clock input to the EEPROM).  A "0" is
1603 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1604 		 * raising and then lowering the clock.
1605 		 */
1606 		if (data & mask)
1607 			eec |= IXGBE_EEC_DI;
1608 		else
1609 			eec &= ~IXGBE_EEC_DI;
1610 
1611 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1612 		IXGBE_WRITE_FLUSH(hw);
1613 
1614 		udelay(1);
1615 
1616 		ixgbe_raise_eeprom_clk(hw, &eec);
1617 		ixgbe_lower_eeprom_clk(hw, &eec);
1618 
1619 		/*
1620 		 * Shift mask to signify next bit of data to shift in to the
1621 		 * EEPROM
1622 		 */
1623 		mask = mask >> 1;
1624 	}
1625 
1626 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1627 	eec &= ~IXGBE_EEC_DI;
1628 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1629 	IXGBE_WRITE_FLUSH(hw);
1630 }
1631 
1632 /**
1633  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1634  *  @hw: pointer to hardware structure
1635  **/
1636 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1637 {
1638 	u32 eec;
1639 	u32 i;
1640 	u16 data = 0;
1641 
1642 	/*
1643 	 * In order to read a register from the EEPROM, we need to shift
1644 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1645 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1646 	 * the value of the "DO" bit.  During this "shifting in" process the
1647 	 * "DI" bit should always be clear.
1648 	 */
1649 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1650 
1651 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1652 
1653 	for (i = 0; i < count; i++) {
1654 		data = data << 1;
1655 		ixgbe_raise_eeprom_clk(hw, &eec);
1656 
1657 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1658 
1659 		eec &= ~(IXGBE_EEC_DI);
1660 		if (eec & IXGBE_EEC_DO)
1661 			data |= 1;
1662 
1663 		ixgbe_lower_eeprom_clk(hw, &eec);
1664 	}
1665 
1666 	return data;
1667 }
1668 
1669 /**
1670  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1671  *  @hw: pointer to hardware structure
1672  *  @eec: EEC register's current value
1673  **/
1674 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1675 {
1676 	/*
1677 	 * Raise the clock input to the EEPROM
1678 	 * (setting the SK bit), then delay
1679 	 */
1680 	*eec = *eec | IXGBE_EEC_SK;
1681 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1682 	IXGBE_WRITE_FLUSH(hw);
1683 	udelay(1);
1684 }
1685 
1686 /**
1687  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1688  *  @hw: pointer to hardware structure
1689  *  @eecd: EECD's current value
1690  **/
1691 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1692 {
1693 	/*
1694 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1695 	 * delay
1696 	 */
1697 	*eec = *eec & ~IXGBE_EEC_SK;
1698 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1699 	IXGBE_WRITE_FLUSH(hw);
1700 	udelay(1);
1701 }
1702 
1703 /**
1704  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1705  *  @hw: pointer to hardware structure
1706  **/
1707 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1708 {
1709 	u32 eec;
1710 
1711 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1712 
1713 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1714 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1715 
1716 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1717 	IXGBE_WRITE_FLUSH(hw);
1718 
1719 	udelay(1);
1720 
1721 	/* Stop requesting EEPROM access */
1722 	eec &= ~IXGBE_EEC_REQ;
1723 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1724 
1725 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1726 
1727 	/*
1728 	 * Delay before attempt to obtain semaphore again to allow FW
1729 	 * access. semaphore_delay is in ms we need us for usleep_range
1730 	 */
1731 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1732 		     hw->eeprom.semaphore_delay * 2000);
1733 }
1734 
1735 /**
1736  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1737  *  @hw: pointer to hardware structure
1738  **/
1739 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1740 {
1741 	u16 i;
1742 	u16 j;
1743 	u16 checksum = 0;
1744 	u16 length = 0;
1745 	u16 pointer = 0;
1746 	u16 word = 0;
1747 
1748 	/* Include 0x0-0x3F in the checksum */
1749 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1750 		if (hw->eeprom.ops.read(hw, i, &word)) {
1751 			hw_dbg(hw, "EEPROM read failed\n");
1752 			break;
1753 		}
1754 		checksum += word;
1755 	}
1756 
1757 	/* Include all data from pointers except for the fw pointer */
1758 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1759 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1760 			hw_dbg(hw, "EEPROM read failed\n");
1761 			return IXGBE_ERR_EEPROM;
1762 		}
1763 
1764 		/* If the pointer seems invalid */
1765 		if (pointer == 0xFFFF || pointer == 0)
1766 			continue;
1767 
1768 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1769 			hw_dbg(hw, "EEPROM read failed\n");
1770 			return IXGBE_ERR_EEPROM;
1771 		}
1772 
1773 		if (length == 0xFFFF || length == 0)
1774 			continue;
1775 
1776 		for (j = pointer + 1; j <= pointer + length; j++) {
1777 			if (hw->eeprom.ops.read(hw, j, &word)) {
1778 				hw_dbg(hw, "EEPROM read failed\n");
1779 				return IXGBE_ERR_EEPROM;
1780 			}
1781 			checksum += word;
1782 		}
1783 	}
1784 
1785 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1786 
1787 	return (s32)checksum;
1788 }
1789 
1790 /**
1791  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1792  *  @hw: pointer to hardware structure
1793  *  @checksum_val: calculated checksum
1794  *
1795  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1796  *  caller does not need checksum_val, the value can be NULL.
1797  **/
1798 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1799 					   u16 *checksum_val)
1800 {
1801 	s32 status;
1802 	u16 checksum;
1803 	u16 read_checksum = 0;
1804 
1805 	/*
1806 	 * Read the first word from the EEPROM. If this times out or fails, do
1807 	 * not continue or we could be in for a very long wait while every
1808 	 * EEPROM read fails
1809 	 */
1810 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1811 	if (status) {
1812 		hw_dbg(hw, "EEPROM read failed\n");
1813 		return status;
1814 	}
1815 
1816 	status = hw->eeprom.ops.calc_checksum(hw);
1817 	if (status < 0)
1818 		return status;
1819 
1820 	checksum = (u16)(status & 0xffff);
1821 
1822 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1823 	if (status) {
1824 		hw_dbg(hw, "EEPROM read failed\n");
1825 		return status;
1826 	}
1827 
1828 	/* Verify read checksum from EEPROM is the same as
1829 	 * calculated checksum
1830 	 */
1831 	if (read_checksum != checksum)
1832 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1833 
1834 	/* If the user cares, return the calculated checksum */
1835 	if (checksum_val)
1836 		*checksum_val = checksum;
1837 
1838 	return status;
1839 }
1840 
1841 /**
1842  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1843  *  @hw: pointer to hardware structure
1844  **/
1845 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1846 {
1847 	s32 status;
1848 	u16 checksum;
1849 
1850 	/*
1851 	 * Read the first word from the EEPROM. If this times out or fails, do
1852 	 * not continue or we could be in for a very long wait while every
1853 	 * EEPROM read fails
1854 	 */
1855 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1856 	if (status) {
1857 		hw_dbg(hw, "EEPROM read failed\n");
1858 		return status;
1859 	}
1860 
1861 	status = hw->eeprom.ops.calc_checksum(hw);
1862 	if (status < 0)
1863 		return status;
1864 
1865 	checksum = (u16)(status & 0xffff);
1866 
1867 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1868 
1869 	return status;
1870 }
1871 
1872 /**
1873  *  ixgbe_set_rar_generic - Set Rx address register
1874  *  @hw: pointer to hardware structure
1875  *  @index: Receive address register to write
1876  *  @addr: Address to put into receive address register
1877  *  @vmdq: VMDq "set" or "pool" index
1878  *  @enable_addr: set flag that address is active
1879  *
1880  *  Puts an ethernet address into a receive address register.
1881  **/
1882 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1883 			  u32 enable_addr)
1884 {
1885 	u32 rar_low, rar_high;
1886 	u32 rar_entries = hw->mac.num_rar_entries;
1887 
1888 	/* Make sure we are using a valid rar index range */
1889 	if (index >= rar_entries) {
1890 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1891 		return IXGBE_ERR_INVALID_ARGUMENT;
1892 	}
1893 
1894 	/* setup VMDq pool selection before this RAR gets enabled */
1895 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1896 
1897 	/*
1898 	 * HW expects these in little endian so we reverse the byte
1899 	 * order from network order (big endian) to little endian
1900 	 */
1901 	rar_low = ((u32)addr[0] |
1902 		   ((u32)addr[1] << 8) |
1903 		   ((u32)addr[2] << 16) |
1904 		   ((u32)addr[3] << 24));
1905 	/*
1906 	 * Some parts put the VMDq setting in the extra RAH bits,
1907 	 * so save everything except the lower 16 bits that hold part
1908 	 * of the address and the address valid bit.
1909 	 */
1910 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1911 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1912 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1913 
1914 	if (enable_addr != 0)
1915 		rar_high |= IXGBE_RAH_AV;
1916 
1917 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1918 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1919 
1920 	return 0;
1921 }
1922 
1923 /**
1924  *  ixgbe_clear_rar_generic - Remove Rx address register
1925  *  @hw: pointer to hardware structure
1926  *  @index: Receive address register to write
1927  *
1928  *  Clears an ethernet address from a receive address register.
1929  **/
1930 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1931 {
1932 	u32 rar_high;
1933 	u32 rar_entries = hw->mac.num_rar_entries;
1934 
1935 	/* Make sure we are using a valid rar index range */
1936 	if (index >= rar_entries) {
1937 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1938 		return IXGBE_ERR_INVALID_ARGUMENT;
1939 	}
1940 
1941 	/*
1942 	 * Some parts put the VMDq setting in the extra RAH bits,
1943 	 * so save everything except the lower 16 bits that hold part
1944 	 * of the address and the address valid bit.
1945 	 */
1946 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1947 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1948 
1949 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1950 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1951 
1952 	/* clear VMDq pool/queue selection for this RAR */
1953 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1954 
1955 	return 0;
1956 }
1957 
1958 /**
1959  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1960  *  @hw: pointer to hardware structure
1961  *
1962  *  Places the MAC address in receive address register 0 and clears the rest
1963  *  of the receive address registers. Clears the multicast table. Assumes
1964  *  the receiver is in reset when the routine is called.
1965  **/
1966 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1967 {
1968 	u32 i;
1969 	u32 rar_entries = hw->mac.num_rar_entries;
1970 
1971 	/*
1972 	 * If the current mac address is valid, assume it is a software override
1973 	 * to the permanent address.
1974 	 * Otherwise, use the permanent address from the eeprom.
1975 	 */
1976 	if (!is_valid_ether_addr(hw->mac.addr)) {
1977 		/* Get the MAC address from the RAR0 for later reference */
1978 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1979 
1980 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1981 	} else {
1982 		/* Setup the receive address. */
1983 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1984 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1985 
1986 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1987 	}
1988 
1989 	/*  clear VMDq pool/queue selection for RAR 0 */
1990 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1991 
1992 	hw->addr_ctrl.overflow_promisc = 0;
1993 
1994 	hw->addr_ctrl.rar_used_count = 1;
1995 
1996 	/* Zero out the other receive addresses. */
1997 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1998 	for (i = 1; i < rar_entries; i++) {
1999 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2000 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2001 	}
2002 
2003 	/* Clear the MTA */
2004 	hw->addr_ctrl.mta_in_use = 0;
2005 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2006 
2007 	hw_dbg(hw, " Clearing MTA\n");
2008 	for (i = 0; i < hw->mac.mcft_size; i++)
2009 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2010 
2011 	if (hw->mac.ops.init_uta_tables)
2012 		hw->mac.ops.init_uta_tables(hw);
2013 
2014 	return 0;
2015 }
2016 
2017 /**
2018  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2019  *  @hw: pointer to hardware structure
2020  *  @mc_addr: the multicast address
2021  *
2022  *  Extracts the 12 bits, from a multicast address, to determine which
2023  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2024  *  incoming rx multicast addresses, to determine the bit-vector to check in
2025  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2026  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2027  *  to mc_filter_type.
2028  **/
2029 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2030 {
2031 	u32 vector = 0;
2032 
2033 	switch (hw->mac.mc_filter_type) {
2034 	case 0:   /* use bits [47:36] of the address */
2035 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2036 		break;
2037 	case 1:   /* use bits [46:35] of the address */
2038 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2039 		break;
2040 	case 2:   /* use bits [45:34] of the address */
2041 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2042 		break;
2043 	case 3:   /* use bits [43:32] of the address */
2044 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2045 		break;
2046 	default:  /* Invalid mc_filter_type */
2047 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2048 		break;
2049 	}
2050 
2051 	/* vector can only be 12-bits or boundary will be exceeded */
2052 	vector &= 0xFFF;
2053 	return vector;
2054 }
2055 
2056 /**
2057  *  ixgbe_set_mta - Set bit-vector in multicast table
2058  *  @hw: pointer to hardware structure
2059  *  @hash_value: Multicast address hash value
2060  *
2061  *  Sets the bit-vector in the multicast table.
2062  **/
2063 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2064 {
2065 	u32 vector;
2066 	u32 vector_bit;
2067 	u32 vector_reg;
2068 
2069 	hw->addr_ctrl.mta_in_use++;
2070 
2071 	vector = ixgbe_mta_vector(hw, mc_addr);
2072 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2073 
2074 	/*
2075 	 * The MTA is a register array of 128 32-bit registers. It is treated
2076 	 * like an array of 4096 bits.  We want to set bit
2077 	 * BitArray[vector_value]. So we figure out what register the bit is
2078 	 * in, read it, OR in the new bit, then write back the new value.  The
2079 	 * register is determined by the upper 7 bits of the vector value and
2080 	 * the bit within that register are determined by the lower 5 bits of
2081 	 * the value.
2082 	 */
2083 	vector_reg = (vector >> 5) & 0x7F;
2084 	vector_bit = vector & 0x1F;
2085 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2086 }
2087 
2088 /**
2089  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2090  *  @hw: pointer to hardware structure
2091  *  @netdev: pointer to net device structure
2092  *
2093  *  The given list replaces any existing list. Clears the MC addrs from receive
2094  *  address registers and the multicast table. Uses unused receive address
2095  *  registers for the first multicast addresses, and hashes the rest into the
2096  *  multicast table.
2097  **/
2098 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2099 				      struct net_device *netdev)
2100 {
2101 	struct netdev_hw_addr *ha;
2102 	u32 i;
2103 
2104 	/*
2105 	 * Set the new number of MC addresses that we are being requested to
2106 	 * use.
2107 	 */
2108 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2109 	hw->addr_ctrl.mta_in_use = 0;
2110 
2111 	/* Clear mta_shadow */
2112 	hw_dbg(hw, " Clearing MTA\n");
2113 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2114 
2115 	/* Update mta shadow */
2116 	netdev_for_each_mc_addr(ha, netdev) {
2117 		hw_dbg(hw, " Adding the multicast addresses:\n");
2118 		ixgbe_set_mta(hw, ha->addr);
2119 	}
2120 
2121 	/* Enable mta */
2122 	for (i = 0; i < hw->mac.mcft_size; i++)
2123 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2124 				      hw->mac.mta_shadow[i]);
2125 
2126 	if (hw->addr_ctrl.mta_in_use > 0)
2127 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2128 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2129 
2130 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2131 	return 0;
2132 }
2133 
2134 /**
2135  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2136  *  @hw: pointer to hardware structure
2137  *
2138  *  Enables multicast address in RAR and the use of the multicast hash table.
2139  **/
2140 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2141 {
2142 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2143 
2144 	if (a->mta_in_use > 0)
2145 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2146 				hw->mac.mc_filter_type);
2147 
2148 	return 0;
2149 }
2150 
2151 /**
2152  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2153  *  @hw: pointer to hardware structure
2154  *
2155  *  Disables multicast address in RAR and the use of the multicast hash table.
2156  **/
2157 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2158 {
2159 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2160 
2161 	if (a->mta_in_use > 0)
2162 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2163 
2164 	return 0;
2165 }
2166 
2167 /**
2168  *  ixgbe_fc_enable_generic - Enable flow control
2169  *  @hw: pointer to hardware structure
2170  *
2171  *  Enable flow control according to the current settings.
2172  **/
2173 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2174 {
2175 	u32 mflcn_reg, fccfg_reg;
2176 	u32 reg;
2177 	u32 fcrtl, fcrth;
2178 	int i;
2179 
2180 	/* Validate the water mark configuration. */
2181 	if (!hw->fc.pause_time)
2182 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2183 
2184 	/* Low water mark of zero causes XOFF floods */
2185 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2186 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2187 		    hw->fc.high_water[i]) {
2188 			if (!hw->fc.low_water[i] ||
2189 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2190 				hw_dbg(hw, "Invalid water mark configuration\n");
2191 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2192 			}
2193 		}
2194 	}
2195 
2196 	/* Negotiate the fc mode to use */
2197 	hw->mac.ops.fc_autoneg(hw);
2198 
2199 	/* Disable any previous flow control settings */
2200 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2201 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2202 
2203 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2204 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2205 
2206 	/*
2207 	 * The possible values of fc.current_mode are:
2208 	 * 0: Flow control is completely disabled
2209 	 * 1: Rx flow control is enabled (we can receive pause frames,
2210 	 *    but not send pause frames).
2211 	 * 2: Tx flow control is enabled (we can send pause frames but
2212 	 *    we do not support receiving pause frames).
2213 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2214 	 * other: Invalid.
2215 	 */
2216 	switch (hw->fc.current_mode) {
2217 	case ixgbe_fc_none:
2218 		/*
2219 		 * Flow control is disabled by software override or autoneg.
2220 		 * The code below will actually disable it in the HW.
2221 		 */
2222 		break;
2223 	case ixgbe_fc_rx_pause:
2224 		/*
2225 		 * Rx Flow control is enabled and Tx Flow control is
2226 		 * disabled by software override. Since there really
2227 		 * isn't a way to advertise that we are capable of RX
2228 		 * Pause ONLY, we will advertise that we support both
2229 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2230 		 * disable the adapter's ability to send PAUSE frames.
2231 		 */
2232 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2233 		break;
2234 	case ixgbe_fc_tx_pause:
2235 		/*
2236 		 * Tx Flow control is enabled, and Rx Flow control is
2237 		 * disabled by software override.
2238 		 */
2239 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2240 		break;
2241 	case ixgbe_fc_full:
2242 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2243 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2244 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2245 		break;
2246 	default:
2247 		hw_dbg(hw, "Flow control param set incorrectly\n");
2248 		return IXGBE_ERR_CONFIG;
2249 	}
2250 
2251 	/* Set 802.3x based flow control settings. */
2252 	mflcn_reg |= IXGBE_MFLCN_DPF;
2253 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2254 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2255 
2256 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2257 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2258 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2259 		    hw->fc.high_water[i]) {
2260 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2261 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2262 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2263 		} else {
2264 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2265 			/*
2266 			 * In order to prevent Tx hangs when the internal Tx
2267 			 * switch is enabled we must set the high water mark
2268 			 * to the Rx packet buffer size - 24KB.  This allows
2269 			 * the Tx switch to function even under heavy Rx
2270 			 * workloads.
2271 			 */
2272 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2273 		}
2274 
2275 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2276 	}
2277 
2278 	/* Configure pause time (2 TCs per register) */
2279 	reg = hw->fc.pause_time * 0x00010001;
2280 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2281 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2282 
2283 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2284 
2285 	return 0;
2286 }
2287 
2288 /**
2289  *  ixgbe_negotiate_fc - Negotiate flow control
2290  *  @hw: pointer to hardware structure
2291  *  @adv_reg: flow control advertised settings
2292  *  @lp_reg: link partner's flow control settings
2293  *  @adv_sym: symmetric pause bit in advertisement
2294  *  @adv_asm: asymmetric pause bit in advertisement
2295  *  @lp_sym: symmetric pause bit in link partner advertisement
2296  *  @lp_asm: asymmetric pause bit in link partner advertisement
2297  *
2298  *  Find the intersection between advertised settings and link partner's
2299  *  advertised settings
2300  **/
2301 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2302 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2303 {
2304 	if ((!(adv_reg)) ||  (!(lp_reg)))
2305 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2306 
2307 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2308 		/*
2309 		 * Now we need to check if the user selected Rx ONLY
2310 		 * of pause frames.  In this case, we had to advertise
2311 		 * FULL flow control because we could not advertise RX
2312 		 * ONLY. Hence, we must now check to see if we need to
2313 		 * turn OFF the TRANSMISSION of PAUSE frames.
2314 		 */
2315 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2316 			hw->fc.current_mode = ixgbe_fc_full;
2317 			hw_dbg(hw, "Flow Control = FULL.\n");
2318 		} else {
2319 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2320 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2321 		}
2322 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2323 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2324 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2325 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2326 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2327 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2328 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2329 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2330 	} else {
2331 		hw->fc.current_mode = ixgbe_fc_none;
2332 		hw_dbg(hw, "Flow Control = NONE.\n");
2333 	}
2334 	return 0;
2335 }
2336 
2337 /**
2338  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2339  *  @hw: pointer to hardware structure
2340  *
2341  *  Enable flow control according on 1 gig fiber.
2342  **/
2343 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2344 {
2345 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2346 	s32 ret_val;
2347 
2348 	/*
2349 	 * On multispeed fiber at 1g, bail out if
2350 	 * - link is up but AN did not complete, or if
2351 	 * - link is up and AN completed but timed out
2352 	 */
2353 
2354 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2355 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2356 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2357 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2358 
2359 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2360 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2361 
2362 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2363 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2364 			       IXGBE_PCS1GANA_ASM_PAUSE,
2365 			       IXGBE_PCS1GANA_SYM_PAUSE,
2366 			       IXGBE_PCS1GANA_ASM_PAUSE);
2367 
2368 	return ret_val;
2369 }
2370 
2371 /**
2372  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2373  *  @hw: pointer to hardware structure
2374  *
2375  *  Enable flow control according to IEEE clause 37.
2376  **/
2377 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2378 {
2379 	u32 links2, anlp1_reg, autoc_reg, links;
2380 	s32 ret_val;
2381 
2382 	/*
2383 	 * On backplane, bail out if
2384 	 * - backplane autoneg was not completed, or if
2385 	 * - we are 82599 and link partner is not AN enabled
2386 	 */
2387 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2388 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2389 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2390 
2391 	if (hw->mac.type == ixgbe_mac_82599EB) {
2392 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2393 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2394 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2395 	}
2396 	/*
2397 	 * Read the 10g AN autoc and LP ability registers and resolve
2398 	 * local flow control settings accordingly
2399 	 */
2400 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2401 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2402 
2403 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2404 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2405 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2406 
2407 	return ret_val;
2408 }
2409 
2410 /**
2411  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2412  *  @hw: pointer to hardware structure
2413  *
2414  *  Enable flow control according to IEEE clause 37.
2415  **/
2416 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2417 {
2418 	u16 technology_ability_reg = 0;
2419 	u16 lp_technology_ability_reg = 0;
2420 
2421 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2422 			     MDIO_MMD_AN,
2423 			     &technology_ability_reg);
2424 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2425 			     MDIO_MMD_AN,
2426 			     &lp_technology_ability_reg);
2427 
2428 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2429 				  (u32)lp_technology_ability_reg,
2430 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2431 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2432 }
2433 
2434 /**
2435  *  ixgbe_fc_autoneg - Configure flow control
2436  *  @hw: pointer to hardware structure
2437  *
2438  *  Compares our advertised flow control capabilities to those advertised by
2439  *  our link partner, and determines the proper flow control mode to use.
2440  **/
2441 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2442 {
2443 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2444 	ixgbe_link_speed speed;
2445 	bool link_up;
2446 
2447 	/*
2448 	 * AN should have completed when the cable was plugged in.
2449 	 * Look for reasons to bail out.  Bail out if:
2450 	 * - FC autoneg is disabled, or if
2451 	 * - link is not up.
2452 	 *
2453 	 * Since we're being called from an LSC, link is already known to be up.
2454 	 * So use link_up_wait_to_complete=false.
2455 	 */
2456 	if (hw->fc.disable_fc_autoneg)
2457 		goto out;
2458 
2459 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2460 	if (!link_up)
2461 		goto out;
2462 
2463 	switch (hw->phy.media_type) {
2464 	/* Autoneg flow control on fiber adapters */
2465 	case ixgbe_media_type_fiber:
2466 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2467 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2468 		break;
2469 
2470 	/* Autoneg flow control on backplane adapters */
2471 	case ixgbe_media_type_backplane:
2472 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2473 		break;
2474 
2475 	/* Autoneg flow control on copper adapters */
2476 	case ixgbe_media_type_copper:
2477 		if (ixgbe_device_supports_autoneg_fc(hw))
2478 			ret_val = ixgbe_fc_autoneg_copper(hw);
2479 		break;
2480 
2481 	default:
2482 		break;
2483 	}
2484 
2485 out:
2486 	if (ret_val == 0) {
2487 		hw->fc.fc_was_autonegged = true;
2488 	} else {
2489 		hw->fc.fc_was_autonegged = false;
2490 		hw->fc.current_mode = hw->fc.requested_mode;
2491 	}
2492 }
2493 
2494 /**
2495  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2496  * @hw: pointer to hardware structure
2497  *
2498  * System-wide timeout range is encoded in PCIe Device Control2 register.
2499  *
2500  *  Add 10% to specified maximum and return the number of times to poll for
2501  *  completion timeout, in units of 100 microsec.  Never return less than
2502  *  800 = 80 millisec.
2503  **/
2504 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2505 {
2506 	s16 devctl2;
2507 	u32 pollcnt;
2508 
2509 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2510 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2511 
2512 	switch (devctl2) {
2513 	case IXGBE_PCIDEVCTRL2_65_130ms:
2514 		 pollcnt = 1300;         /* 130 millisec */
2515 		break;
2516 	case IXGBE_PCIDEVCTRL2_260_520ms:
2517 		pollcnt = 5200;         /* 520 millisec */
2518 		break;
2519 	case IXGBE_PCIDEVCTRL2_1_2s:
2520 		pollcnt = 20000;        /* 2 sec */
2521 		break;
2522 	case IXGBE_PCIDEVCTRL2_4_8s:
2523 		pollcnt = 80000;        /* 8 sec */
2524 		break;
2525 	case IXGBE_PCIDEVCTRL2_17_34s:
2526 		pollcnt = 34000;        /* 34 sec */
2527 		break;
2528 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2529 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2530 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2531 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2532 	default:
2533 		pollcnt = 800;          /* 80 millisec minimum */
2534 		break;
2535 	}
2536 
2537 	/* add 10% to spec maximum */
2538 	return (pollcnt * 11) / 10;
2539 }
2540 
2541 /**
2542  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2543  *  @hw: pointer to hardware structure
2544  *
2545  *  Disables PCI-Express master access and verifies there are no pending
2546  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2547  *  bit hasn't caused the master requests to be disabled, else 0
2548  *  is returned signifying master requests disabled.
2549  **/
2550 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2551 {
2552 	u32 i, poll;
2553 	u16 value;
2554 
2555 	/* Always set this bit to ensure any future transactions are blocked */
2556 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2557 
2558 	/* Poll for bit to read as set */
2559 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2560 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2561 			break;
2562 		usleep_range(100, 120);
2563 	}
2564 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2565 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2566 		goto gio_disable_fail;
2567 	}
2568 
2569 	/* Exit if master requests are blocked */
2570 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2571 	    ixgbe_removed(hw->hw_addr))
2572 		return 0;
2573 
2574 	/* Poll for master request bit to clear */
2575 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2576 		udelay(100);
2577 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2578 			return 0;
2579 	}
2580 
2581 	/*
2582 	 * Two consecutive resets are required via CTRL.RST per datasheet
2583 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2584 	 * of this need.  The first reset prevents new master requests from
2585 	 * being issued by our device.  We then must wait 1usec or more for any
2586 	 * remaining completions from the PCIe bus to trickle in, and then reset
2587 	 * again to clear out any effects they may have had on our device.
2588 	 */
2589 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2590 gio_disable_fail:
2591 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2592 
2593 	if (hw->mac.type >= ixgbe_mac_X550)
2594 		return 0;
2595 
2596 	/*
2597 	 * Before proceeding, make sure that the PCIe block does not have
2598 	 * transactions pending.
2599 	 */
2600 	poll = ixgbe_pcie_timeout_poll(hw);
2601 	for (i = 0; i < poll; i++) {
2602 		udelay(100);
2603 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2604 		if (ixgbe_removed(hw->hw_addr))
2605 			return 0;
2606 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2607 			return 0;
2608 	}
2609 
2610 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2611 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2612 }
2613 
2614 /**
2615  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2616  *  @hw: pointer to hardware structure
2617  *  @mask: Mask to specify which semaphore to acquire
2618  *
2619  *  Acquires the SWFW semaphore through the GSSR register for the specified
2620  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2621  **/
2622 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2623 {
2624 	u32 gssr = 0;
2625 	u32 swmask = mask;
2626 	u32 fwmask = mask << 5;
2627 	u32 timeout = 200;
2628 	u32 i;
2629 
2630 	for (i = 0; i < timeout; i++) {
2631 		/*
2632 		 * SW NVM semaphore bit is used for access to all
2633 		 * SW_FW_SYNC bits (not just NVM)
2634 		 */
2635 		if (ixgbe_get_eeprom_semaphore(hw))
2636 			return IXGBE_ERR_SWFW_SYNC;
2637 
2638 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2639 		if (!(gssr & (fwmask | swmask))) {
2640 			gssr |= swmask;
2641 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2642 			ixgbe_release_eeprom_semaphore(hw);
2643 			return 0;
2644 		} else {
2645 			/* Resource is currently in use by FW or SW */
2646 			ixgbe_release_eeprom_semaphore(hw);
2647 			usleep_range(5000, 10000);
2648 		}
2649 	}
2650 
2651 	/* If time expired clear the bits holding the lock and retry */
2652 	if (gssr & (fwmask | swmask))
2653 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2654 
2655 	usleep_range(5000, 10000);
2656 	return IXGBE_ERR_SWFW_SYNC;
2657 }
2658 
2659 /**
2660  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2661  *  @hw: pointer to hardware structure
2662  *  @mask: Mask to specify which semaphore to release
2663  *
2664  *  Releases the SWFW semaphore through the GSSR register for the specified
2665  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2666  **/
2667 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2668 {
2669 	u32 gssr;
2670 	u32 swmask = mask;
2671 
2672 	ixgbe_get_eeprom_semaphore(hw);
2673 
2674 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2675 	gssr &= ~swmask;
2676 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2677 
2678 	ixgbe_release_eeprom_semaphore(hw);
2679 }
2680 
2681 /**
2682  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2683  * @hw: pointer to hardware structure
2684  * @reg_val: Value we read from AUTOC
2685  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2686  *	    true in this the generic case.
2687  *
2688  * The default case requires no protection so just to the register read.
2689  **/
2690 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2691 {
2692 	*locked = false;
2693 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2694 	return 0;
2695 }
2696 
2697 /**
2698  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2699  * @hw: pointer to hardware structure
2700  * @reg_val: value to write to AUTOC
2701  * @locked: bool to indicate whether the SW/FW lock was already taken by
2702  *	    previous read.
2703  **/
2704 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2705 {
2706 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2707 	return 0;
2708 }
2709 
2710 /**
2711  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2712  *  @hw: pointer to hardware structure
2713  *
2714  *  Stops the receive data path and waits for the HW to internally
2715  *  empty the Rx security block.
2716  **/
2717 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2718 {
2719 #define IXGBE_MAX_SECRX_POLL 40
2720 	int i;
2721 	int secrxreg;
2722 
2723 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2724 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2725 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2726 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2727 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2728 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2729 			break;
2730 		else
2731 			/* Use interrupt-safe sleep just in case */
2732 			udelay(1000);
2733 	}
2734 
2735 	/* For informational purposes only */
2736 	if (i >= IXGBE_MAX_SECRX_POLL)
2737 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2738 
2739 	return 0;
2740 
2741 }
2742 
2743 /**
2744  *  ixgbe_enable_rx_buff - Enables the receive data path
2745  *  @hw: pointer to hardware structure
2746  *
2747  *  Enables the receive data path
2748  **/
2749 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2750 {
2751 	u32 secrxreg;
2752 
2753 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2754 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2755 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2756 	IXGBE_WRITE_FLUSH(hw);
2757 
2758 	return 0;
2759 }
2760 
2761 /**
2762  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2763  *  @hw: pointer to hardware structure
2764  *  @regval: register value to write to RXCTRL
2765  *
2766  *  Enables the Rx DMA unit
2767  **/
2768 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2769 {
2770 	if (regval & IXGBE_RXCTRL_RXEN)
2771 		hw->mac.ops.enable_rx(hw);
2772 	else
2773 		hw->mac.ops.disable_rx(hw);
2774 
2775 	return 0;
2776 }
2777 
2778 /**
2779  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2780  *  @hw: pointer to hardware structure
2781  *  @index: led number to blink
2782  **/
2783 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2784 {
2785 	ixgbe_link_speed speed = 0;
2786 	bool link_up = false;
2787 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2788 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2789 	bool locked = false;
2790 	s32 ret_val;
2791 
2792 	if (index > 3)
2793 		return IXGBE_ERR_PARAM;
2794 
2795 	/*
2796 	 * Link must be up to auto-blink the LEDs;
2797 	 * Force it if link is down.
2798 	 */
2799 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2800 
2801 	if (!link_up) {
2802 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2803 		if (ret_val)
2804 			return ret_val;
2805 
2806 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2807 		autoc_reg |= IXGBE_AUTOC_FLU;
2808 
2809 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2810 		if (ret_val)
2811 			return ret_val;
2812 
2813 		IXGBE_WRITE_FLUSH(hw);
2814 
2815 		usleep_range(10000, 20000);
2816 	}
2817 
2818 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2819 	led_reg |= IXGBE_LED_BLINK(index);
2820 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2821 	IXGBE_WRITE_FLUSH(hw);
2822 
2823 	return 0;
2824 }
2825 
2826 /**
2827  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2828  *  @hw: pointer to hardware structure
2829  *  @index: led number to stop blinking
2830  **/
2831 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2832 {
2833 	u32 autoc_reg = 0;
2834 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2835 	bool locked = false;
2836 	s32 ret_val;
2837 
2838 	if (index > 3)
2839 		return IXGBE_ERR_PARAM;
2840 
2841 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2842 	if (ret_val)
2843 		return ret_val;
2844 
2845 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2846 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2847 
2848 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2849 	if (ret_val)
2850 		return ret_val;
2851 
2852 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2853 	led_reg &= ~IXGBE_LED_BLINK(index);
2854 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2855 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2856 	IXGBE_WRITE_FLUSH(hw);
2857 
2858 	return 0;
2859 }
2860 
2861 /**
2862  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2863  *  @hw: pointer to hardware structure
2864  *  @san_mac_offset: SAN MAC address offset
2865  *
2866  *  This function will read the EEPROM location for the SAN MAC address
2867  *  pointer, and returns the value at that location.  This is used in both
2868  *  get and set mac_addr routines.
2869  **/
2870 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2871 					u16 *san_mac_offset)
2872 {
2873 	s32 ret_val;
2874 
2875 	/*
2876 	 * First read the EEPROM pointer to see if the MAC addresses are
2877 	 * available.
2878 	 */
2879 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2880 				      san_mac_offset);
2881 	if (ret_val)
2882 		hw_err(hw, "eeprom read at offset %d failed\n",
2883 		       IXGBE_SAN_MAC_ADDR_PTR);
2884 
2885 	return ret_val;
2886 }
2887 
2888 /**
2889  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2890  *  @hw: pointer to hardware structure
2891  *  @san_mac_addr: SAN MAC address
2892  *
2893  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2894  *  per-port, so set_lan_id() must be called before reading the addresses.
2895  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2896  *  upon for non-SFP connections, so we must call it here.
2897  **/
2898 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2899 {
2900 	u16 san_mac_data, san_mac_offset;
2901 	u8 i;
2902 	s32 ret_val;
2903 
2904 	/*
2905 	 * First read the EEPROM pointer to see if the MAC addresses are
2906 	 * available.  If they're not, no point in calling set_lan_id() here.
2907 	 */
2908 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2909 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2910 
2911 		goto san_mac_addr_clr;
2912 
2913 	/* make sure we know which port we need to program */
2914 	hw->mac.ops.set_lan_id(hw);
2915 	/* apply the port offset to the address offset */
2916 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2917 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2918 	for (i = 0; i < 3; i++) {
2919 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2920 					      &san_mac_data);
2921 		if (ret_val) {
2922 			hw_err(hw, "eeprom read at offset %d failed\n",
2923 			       san_mac_offset);
2924 			goto san_mac_addr_clr;
2925 		}
2926 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2927 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2928 		san_mac_offset++;
2929 	}
2930 	return 0;
2931 
2932 san_mac_addr_clr:
2933 	/* No addresses available in this EEPROM.  It's not necessarily an
2934 	 * error though, so just wipe the local address and return.
2935 	 */
2936 	for (i = 0; i < 6; i++)
2937 		san_mac_addr[i] = 0xFF;
2938 	return ret_val;
2939 }
2940 
2941 /**
2942  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2943  *  @hw: pointer to hardware structure
2944  *
2945  *  Read PCIe configuration space, and get the MSI-X vector count from
2946  *  the capabilities table.
2947  **/
2948 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2949 {
2950 	u16 msix_count;
2951 	u16 max_msix_count;
2952 	u16 pcie_offset;
2953 
2954 	switch (hw->mac.type) {
2955 	case ixgbe_mac_82598EB:
2956 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2957 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2958 		break;
2959 	case ixgbe_mac_82599EB:
2960 	case ixgbe_mac_X540:
2961 	case ixgbe_mac_X550:
2962 	case ixgbe_mac_X550EM_x:
2963 	case ixgbe_mac_x550em_a:
2964 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2965 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2966 		break;
2967 	default:
2968 		return 1;
2969 	}
2970 
2971 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2972 	if (ixgbe_removed(hw->hw_addr))
2973 		msix_count = 0;
2974 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2975 
2976 	/* MSI-X count is zero-based in HW */
2977 	msix_count++;
2978 
2979 	if (msix_count > max_msix_count)
2980 		msix_count = max_msix_count;
2981 
2982 	return msix_count;
2983 }
2984 
2985 /**
2986  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2987  *  @hw: pointer to hardware struct
2988  *  @rar: receive address register index to disassociate
2989  *  @vmdq: VMDq pool index to remove from the rar
2990  **/
2991 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2992 {
2993 	u32 mpsar_lo, mpsar_hi;
2994 	u32 rar_entries = hw->mac.num_rar_entries;
2995 
2996 	/* Make sure we are using a valid rar index range */
2997 	if (rar >= rar_entries) {
2998 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2999 		return IXGBE_ERR_INVALID_ARGUMENT;
3000 	}
3001 
3002 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3003 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3004 
3005 	if (ixgbe_removed(hw->hw_addr))
3006 		return 0;
3007 
3008 	if (!mpsar_lo && !mpsar_hi)
3009 		return 0;
3010 
3011 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3012 		if (mpsar_lo) {
3013 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3014 			mpsar_lo = 0;
3015 		}
3016 		if (mpsar_hi) {
3017 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3018 			mpsar_hi = 0;
3019 		}
3020 	} else if (vmdq < 32) {
3021 		mpsar_lo &= ~BIT(vmdq);
3022 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3023 	} else {
3024 		mpsar_hi &= ~BIT(vmdq - 32);
3025 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3026 	}
3027 
3028 	/* was that the last pool using this rar? */
3029 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3030 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3031 		hw->mac.ops.clear_rar(hw, rar);
3032 
3033 	return 0;
3034 }
3035 
3036 /**
3037  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3038  *  @hw: pointer to hardware struct
3039  *  @rar: receive address register index to associate with a VMDq index
3040  *  @vmdq: VMDq pool index
3041  **/
3042 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3043 {
3044 	u32 mpsar;
3045 	u32 rar_entries = hw->mac.num_rar_entries;
3046 
3047 	/* Make sure we are using a valid rar index range */
3048 	if (rar >= rar_entries) {
3049 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3050 		return IXGBE_ERR_INVALID_ARGUMENT;
3051 	}
3052 
3053 	if (vmdq < 32) {
3054 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3055 		mpsar |= BIT(vmdq);
3056 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3057 	} else {
3058 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3059 		mpsar |= BIT(vmdq - 32);
3060 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3061 	}
3062 	return 0;
3063 }
3064 
3065 /**
3066  *  This function should only be involved in the IOV mode.
3067  *  In IOV mode, Default pool is next pool after the number of
3068  *  VFs advertized and not 0.
3069  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3070  *
3071  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3072  *  @hw: pointer to hardware struct
3073  *  @vmdq: VMDq pool index
3074  **/
3075 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3076 {
3077 	u32 rar = hw->mac.san_mac_rar_index;
3078 
3079 	if (vmdq < 32) {
3080 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3081 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3082 	} else {
3083 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3084 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3085 	}
3086 
3087 	return 0;
3088 }
3089 
3090 /**
3091  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3092  *  @hw: pointer to hardware structure
3093  **/
3094 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3095 {
3096 	int i;
3097 
3098 	for (i = 0; i < 128; i++)
3099 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3100 
3101 	return 0;
3102 }
3103 
3104 /**
3105  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3106  *  @hw: pointer to hardware structure
3107  *  @vlan: VLAN id to write to VLAN filter
3108  *
3109  *  return the VLVF index where this VLAN id should be placed
3110  *
3111  **/
3112 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3113 {
3114 	s32 regindex, first_empty_slot;
3115 	u32 bits;
3116 
3117 	/* short cut the special case */
3118 	if (vlan == 0)
3119 		return 0;
3120 
3121 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3122 	 * will simply bypass the VLVF if there are no entries present in the
3123 	 * VLVF that contain our VLAN
3124 	 */
3125 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3126 
3127 	/* add VLAN enable bit for comparison */
3128 	vlan |= IXGBE_VLVF_VIEN;
3129 
3130 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3131 	 * slot found along the way.
3132 	 *
3133 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3134 	 */
3135 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3136 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3137 		if (bits == vlan)
3138 			return regindex;
3139 		if (!first_empty_slot && !bits)
3140 			first_empty_slot = regindex;
3141 	}
3142 
3143 	/* If we are here then we didn't find the VLAN.  Return first empty
3144 	 * slot we found during our search, else error.
3145 	 */
3146 	if (!first_empty_slot)
3147 		hw_dbg(hw, "No space in VLVF.\n");
3148 
3149 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3150 }
3151 
3152 /**
3153  *  ixgbe_set_vfta_generic - Set VLAN filter table
3154  *  @hw: pointer to hardware structure
3155  *  @vlan: VLAN id to write to VLAN filter
3156  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3157  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3158  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3159  *
3160  *  Turn on/off specified VLAN in the VLAN filter table.
3161  **/
3162 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3163 			   bool vlan_on, bool vlvf_bypass)
3164 {
3165 	u32 regidx, vfta_delta, vfta, bits;
3166 	s32 vlvf_index;
3167 
3168 	if ((vlan > 4095) || (vind > 63))
3169 		return IXGBE_ERR_PARAM;
3170 
3171 	/*
3172 	 * this is a 2 part operation - first the VFTA, then the
3173 	 * VLVF and VLVFB if VT Mode is set
3174 	 * We don't write the VFTA until we know the VLVF part succeeded.
3175 	 */
3176 
3177 	/* Part 1
3178 	 * The VFTA is a bitstring made up of 128 32-bit registers
3179 	 * that enable the particular VLAN id, much like the MTA:
3180 	 *    bits[11-5]: which register
3181 	 *    bits[4-0]:  which bit in the register
3182 	 */
3183 	regidx = vlan / 32;
3184 	vfta_delta = BIT(vlan % 32);
3185 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3186 
3187 	/* vfta_delta represents the difference between the current value
3188 	 * of vfta and the value we want in the register.  Since the diff
3189 	 * is an XOR mask we can just update vfta using an XOR.
3190 	 */
3191 	vfta_delta &= vlan_on ? ~vfta : vfta;
3192 	vfta ^= vfta_delta;
3193 
3194 	/* Part 2
3195 	 * If VT Mode is set
3196 	 *   Either vlan_on
3197 	 *     make sure the vlan is in VLVF
3198 	 *     set the vind bit in the matching VLVFB
3199 	 *   Or !vlan_on
3200 	 *     clear the pool bit and possibly the vind
3201 	 */
3202 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3203 		goto vfta_update;
3204 
3205 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3206 	if (vlvf_index < 0) {
3207 		if (vlvf_bypass)
3208 			goto vfta_update;
3209 		return vlvf_index;
3210 	}
3211 
3212 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3213 
3214 	/* set the pool bit */
3215 	bits |= BIT(vind % 32);
3216 	if (vlan_on)
3217 		goto vlvf_update;
3218 
3219 	/* clear the pool bit */
3220 	bits ^= BIT(vind % 32);
3221 
3222 	if (!bits &&
3223 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3224 		/* Clear VFTA first, then disable VLVF.  Otherwise
3225 		 * we run the risk of stray packets leaking into
3226 		 * the PF via the default pool
3227 		 */
3228 		if (vfta_delta)
3229 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3230 
3231 		/* disable VLVF and clear remaining bit from pool */
3232 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3233 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3234 
3235 		return 0;
3236 	}
3237 
3238 	/* If there are still bits set in the VLVFB registers
3239 	 * for the VLAN ID indicated we need to see if the
3240 	 * caller is requesting that we clear the VFTA entry bit.
3241 	 * If the caller has requested that we clear the VFTA
3242 	 * entry bit but there are still pools/VFs using this VLAN
3243 	 * ID entry then ignore the request.  We're not worried
3244 	 * about the case where we're turning the VFTA VLAN ID
3245 	 * entry bit on, only when requested to turn it off as
3246 	 * there may be multiple pools and/or VFs using the
3247 	 * VLAN ID entry.  In that case we cannot clear the
3248 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3249 	 * been cleared.  This will be indicated by "bits" being
3250 	 * zero.
3251 	 */
3252 	vfta_delta = 0;
3253 
3254 vlvf_update:
3255 	/* record pool change and enable VLAN ID if not already enabled */
3256 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3257 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3258 
3259 vfta_update:
3260 	/* Update VFTA now that we are ready for traffic */
3261 	if (vfta_delta)
3262 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3263 
3264 	return 0;
3265 }
3266 
3267 /**
3268  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3269  *  @hw: pointer to hardware structure
3270  *
3271  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3272  **/
3273 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3274 {
3275 	u32 offset;
3276 
3277 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3278 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3279 
3280 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3281 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3282 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3283 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3284 	}
3285 
3286 	return 0;
3287 }
3288 
3289 /**
3290  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3291  *  @hw: pointer to hardware structure
3292  *
3293  *  Contains the logic to identify if we need to verify link for the
3294  *  crosstalk fix
3295  **/
3296 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3297 {
3298 	/* Does FW say we need the fix */
3299 	if (!hw->need_crosstalk_fix)
3300 		return false;
3301 
3302 	/* Only consider SFP+ PHYs i.e. media type fiber */
3303 	switch (hw->mac.ops.get_media_type(hw)) {
3304 	case ixgbe_media_type_fiber:
3305 	case ixgbe_media_type_fiber_qsfp:
3306 		break;
3307 	default:
3308 		return false;
3309 	}
3310 
3311 	return true;
3312 }
3313 
3314 /**
3315  *  ixgbe_check_mac_link_generic - Determine link and speed status
3316  *  @hw: pointer to hardware structure
3317  *  @speed: pointer to link speed
3318  *  @link_up: true when link is up
3319  *  @link_up_wait_to_complete: bool used to wait for link up or not
3320  *
3321  *  Reads the links register to determine if link is up and the current speed
3322  **/
3323 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3324 				 bool *link_up, bool link_up_wait_to_complete)
3325 {
3326 	u32 links_reg, links_orig;
3327 	u32 i;
3328 
3329 	/* If Crosstalk fix enabled do the sanity check of making sure
3330 	 * the SFP+ cage is full.
3331 	 */
3332 	if (ixgbe_need_crosstalk_fix(hw)) {
3333 		u32 sfp_cage_full;
3334 
3335 		switch (hw->mac.type) {
3336 		case ixgbe_mac_82599EB:
3337 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3338 					IXGBE_ESDP_SDP2;
3339 			break;
3340 		case ixgbe_mac_X550EM_x:
3341 		case ixgbe_mac_x550em_a:
3342 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3343 					IXGBE_ESDP_SDP0;
3344 			break;
3345 		default:
3346 			/* sanity check - No SFP+ devices here */
3347 			sfp_cage_full = false;
3348 			break;
3349 		}
3350 
3351 		if (!sfp_cage_full) {
3352 			*link_up = false;
3353 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3354 			return 0;
3355 		}
3356 	}
3357 
3358 	/* clear the old state */
3359 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3360 
3361 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3362 
3363 	if (links_orig != links_reg) {
3364 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3365 		       links_orig, links_reg);
3366 	}
3367 
3368 	if (link_up_wait_to_complete) {
3369 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3370 			if (links_reg & IXGBE_LINKS_UP) {
3371 				*link_up = true;
3372 				break;
3373 			} else {
3374 				*link_up = false;
3375 			}
3376 			msleep(100);
3377 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3378 		}
3379 	} else {
3380 		if (links_reg & IXGBE_LINKS_UP)
3381 			*link_up = true;
3382 		else
3383 			*link_up = false;
3384 	}
3385 
3386 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3387 	case IXGBE_LINKS_SPEED_10G_82599:
3388 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3389 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3390 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3391 		else
3392 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3393 		break;
3394 	case IXGBE_LINKS_SPEED_1G_82599:
3395 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3396 		break;
3397 	case IXGBE_LINKS_SPEED_100_82599:
3398 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3399 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3400 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3401 		else
3402 			*speed = IXGBE_LINK_SPEED_100_FULL;
3403 		break;
3404 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3405 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3406 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3407 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3408 			*speed = IXGBE_LINK_SPEED_10_FULL;
3409 		}
3410 		break;
3411 	default:
3412 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3413 	}
3414 
3415 	return 0;
3416 }
3417 
3418 /**
3419  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3420  *  the EEPROM
3421  *  @hw: pointer to hardware structure
3422  *  @wwnn_prefix: the alternative WWNN prefix
3423  *  @wwpn_prefix: the alternative WWPN prefix
3424  *
3425  *  This function will read the EEPROM from the alternative SAN MAC address
3426  *  block to check the support for the alternative WWNN/WWPN prefix support.
3427  **/
3428 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3429 					u16 *wwpn_prefix)
3430 {
3431 	u16 offset, caps;
3432 	u16 alt_san_mac_blk_offset;
3433 
3434 	/* clear output first */
3435 	*wwnn_prefix = 0xFFFF;
3436 	*wwpn_prefix = 0xFFFF;
3437 
3438 	/* check if alternative SAN MAC is supported */
3439 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3440 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3441 		goto wwn_prefix_err;
3442 
3443 	if ((alt_san_mac_blk_offset == 0) ||
3444 	    (alt_san_mac_blk_offset == 0xFFFF))
3445 		return 0;
3446 
3447 	/* check capability in alternative san mac address block */
3448 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3449 	if (hw->eeprom.ops.read(hw, offset, &caps))
3450 		goto wwn_prefix_err;
3451 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3452 		return 0;
3453 
3454 	/* get the corresponding prefix for WWNN/WWPN */
3455 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3456 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3457 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3458 
3459 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3460 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3461 		goto wwn_prefix_err;
3462 
3463 	return 0;
3464 
3465 wwn_prefix_err:
3466 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3467 	return 0;
3468 }
3469 
3470 /**
3471  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3472  *  @hw: pointer to hardware structure
3473  *  @enable: enable or disable switch for MAC anti-spoofing
3474  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3475  *
3476  **/
3477 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3478 {
3479 	int vf_target_reg = vf >> 3;
3480 	int vf_target_shift = vf % 8;
3481 	u32 pfvfspoof;
3482 
3483 	if (hw->mac.type == ixgbe_mac_82598EB)
3484 		return;
3485 
3486 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3487 	if (enable)
3488 		pfvfspoof |= BIT(vf_target_shift);
3489 	else
3490 		pfvfspoof &= ~BIT(vf_target_shift);
3491 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3492 }
3493 
3494 /**
3495  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3496  *  @hw: pointer to hardware structure
3497  *  @enable: enable or disable switch for VLAN anti-spoofing
3498  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3499  *
3500  **/
3501 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3502 {
3503 	int vf_target_reg = vf >> 3;
3504 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3505 	u32 pfvfspoof;
3506 
3507 	if (hw->mac.type == ixgbe_mac_82598EB)
3508 		return;
3509 
3510 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3511 	if (enable)
3512 		pfvfspoof |= BIT(vf_target_shift);
3513 	else
3514 		pfvfspoof &= ~BIT(vf_target_shift);
3515 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3516 }
3517 
3518 /**
3519  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3520  *  @hw: pointer to hardware structure
3521  *  @device_caps: the EEPROM word with the extra device capabilities
3522  *
3523  *  This function will read the EEPROM location for the device capabilities,
3524  *  and return the word through device_caps.
3525  **/
3526 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3527 {
3528 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3529 
3530 	return 0;
3531 }
3532 
3533 /**
3534  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3535  * @hw: pointer to hardware structure
3536  * @num_pb: number of packet buffers to allocate
3537  * @headroom: reserve n KB of headroom
3538  * @strategy: packet buffer allocation strategy
3539  **/
3540 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3541 			     int num_pb,
3542 			     u32 headroom,
3543 			     int strategy)
3544 {
3545 	u32 pbsize = hw->mac.rx_pb_size;
3546 	int i = 0;
3547 	u32 rxpktsize, txpktsize, txpbthresh;
3548 
3549 	/* Reserve headroom */
3550 	pbsize -= headroom;
3551 
3552 	if (!num_pb)
3553 		num_pb = 1;
3554 
3555 	/* Divide remaining packet buffer space amongst the number
3556 	 * of packet buffers requested using supplied strategy.
3557 	 */
3558 	switch (strategy) {
3559 	case (PBA_STRATEGY_WEIGHTED):
3560 		/* pba_80_48 strategy weight first half of packet buffer with
3561 		 * 5/8 of the packet buffer space.
3562 		 */
3563 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3564 		pbsize -= rxpktsize * (num_pb / 2);
3565 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3566 		for (; i < (num_pb / 2); i++)
3567 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3568 		/* fall through - configure remaining packet buffers */
3569 	case (PBA_STRATEGY_EQUAL):
3570 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3571 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3572 		for (; i < num_pb; i++)
3573 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3574 		break;
3575 	default:
3576 		break;
3577 	}
3578 
3579 	/*
3580 	 * Setup Tx packet buffer and threshold equally for all TCs
3581 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3582 	 * 10 since the largest packet we support is just over 9K.
3583 	 */
3584 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3585 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3586 	for (i = 0; i < num_pb; i++) {
3587 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3588 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3589 	}
3590 
3591 	/* Clear unused TCs, if any, to zero buffer size*/
3592 	for (; i < IXGBE_MAX_PB; i++) {
3593 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3594 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3595 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3596 	}
3597 }
3598 
3599 /**
3600  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3601  *  @buffer: pointer to EEPROM
3602  *  @length: size of EEPROM to calculate a checksum for
3603  *
3604  *  Calculates the checksum for some buffer on a specified length.  The
3605  *  checksum calculated is returned.
3606  **/
3607 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3608 {
3609 	u32 i;
3610 	u8 sum = 0;
3611 
3612 	if (!buffer)
3613 		return 0;
3614 
3615 	for (i = 0; i < length; i++)
3616 		sum += buffer[i];
3617 
3618 	return (u8) (0 - sum);
3619 }
3620 
3621 /**
3622  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3623  *  @hw: pointer to the HW structure
3624  *  @buffer: command to write and where the return status will be placed
3625  *  @length: length of buffer, must be multiple of 4 bytes
3626  *  @timeout: time in ms to wait for command completion
3627  *
3628  *  Communicates with the manageability block. On success return 0
3629  *  else returns semaphore error when encountering an error acquiring
3630  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3631  *
3632  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3633  *  by the caller.
3634  **/
3635 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3636 		       u32 timeout)
3637 {
3638 	u32 hicr, i, fwsts;
3639 	u16 dword_len;
3640 
3641 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3642 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3643 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3644 	}
3645 
3646 	/* Set bit 9 of FWSTS clearing FW reset indication */
3647 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3648 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3649 
3650 	/* Check that the host interface is enabled. */
3651 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3652 	if (!(hicr & IXGBE_HICR_EN)) {
3653 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3654 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3655 	}
3656 
3657 	/* Calculate length in DWORDs. We must be DWORD aligned */
3658 	if (length % sizeof(u32)) {
3659 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3660 		return IXGBE_ERR_INVALID_ARGUMENT;
3661 	}
3662 
3663 	dword_len = length >> 2;
3664 
3665 	/* The device driver writes the relevant command block
3666 	 * into the ram area.
3667 	 */
3668 	for (i = 0; i < dword_len; i++)
3669 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3670 				      i, cpu_to_le32(buffer[i]));
3671 
3672 	/* Setting this bit tells the ARC that a new command is pending. */
3673 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3674 
3675 	for (i = 0; i < timeout; i++) {
3676 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3677 		if (!(hicr & IXGBE_HICR_C))
3678 			break;
3679 		usleep_range(1000, 2000);
3680 	}
3681 
3682 	/* Check command successful completion. */
3683 	if ((timeout && i == timeout) ||
3684 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3685 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3686 
3687 	return 0;
3688 }
3689 
3690 /**
3691  *  ixgbe_host_interface_command - Issue command to manageability block
3692  *  @hw: pointer to the HW structure
3693  *  @buffer: contains the command to write and where the return status will
3694  *           be placed
3695  *  @length: length of buffer, must be multiple of 4 bytes
3696  *  @timeout: time in ms to wait for command completion
3697  *  @return_data: read and return data from the buffer (true) or not (false)
3698  *  Needed because FW structures are big endian and decoding of
3699  *  these fields can be 8 bit or 16 bit based on command. Decoding
3700  *  is not easily understood without making a table of commands.
3701  *  So we will leave this up to the caller to read back the data
3702  *  in these cases.
3703  *
3704  *  Communicates with the manageability block.  On success return 0
3705  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3706  **/
3707 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3708 				 u32 length, u32 timeout,
3709 				 bool return_data)
3710 {
3711 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3712 	union {
3713 		struct ixgbe_hic_hdr hdr;
3714 		u32 u32arr[1];
3715 	} *bp = buffer;
3716 	u16 buf_len, dword_len;
3717 	s32 status;
3718 	u32 bi;
3719 
3720 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3721 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3722 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3723 	}
3724 	/* Take management host interface semaphore */
3725 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3726 	if (status)
3727 		return status;
3728 
3729 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3730 	if (status)
3731 		goto rel_out;
3732 
3733 	if (!return_data)
3734 		goto rel_out;
3735 
3736 	/* Calculate length in DWORDs */
3737 	dword_len = hdr_size >> 2;
3738 
3739 	/* first pull in the header so we know the buffer length */
3740 	for (bi = 0; bi < dword_len; bi++) {
3741 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3742 		le32_to_cpus(&bp->u32arr[bi]);
3743 	}
3744 
3745 	/* If there is any thing in data position pull it in */
3746 	buf_len = bp->hdr.buf_len;
3747 	if (!buf_len)
3748 		goto rel_out;
3749 
3750 	if (length < round_up(buf_len, 4) + hdr_size) {
3751 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3752 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3753 		goto rel_out;
3754 	}
3755 
3756 	/* Calculate length in DWORDs, add 3 for odd lengths */
3757 	dword_len = (buf_len + 3) >> 2;
3758 
3759 	/* Pull in the rest of the buffer (bi is where we left off) */
3760 	for (; bi <= dword_len; bi++) {
3761 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3762 		le32_to_cpus(&bp->u32arr[bi]);
3763 	}
3764 
3765 rel_out:
3766 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3767 
3768 	return status;
3769 }
3770 
3771 /**
3772  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3773  *  @hw: pointer to the HW structure
3774  *  @maj: driver version major number
3775  *  @min: driver version minor number
3776  *  @build: driver version build number
3777  *  @sub: driver version sub build number
3778  *  @len: length of driver_ver string
3779  *  @driver_ver: driver string
3780  *
3781  *  Sends driver version number to firmware through the manageability
3782  *  block.  On success return 0
3783  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3784  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3785  **/
3786 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3787 				 u8 build, u8 sub, __always_unused u16 len,
3788 				 __always_unused const char *driver_ver)
3789 {
3790 	struct ixgbe_hic_drv_info fw_cmd;
3791 	int i;
3792 	s32 ret_val;
3793 
3794 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3795 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3796 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3797 	fw_cmd.port_num = hw->bus.func;
3798 	fw_cmd.ver_maj = maj;
3799 	fw_cmd.ver_min = min;
3800 	fw_cmd.ver_build = build;
3801 	fw_cmd.ver_sub = sub;
3802 	fw_cmd.hdr.checksum = 0;
3803 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3804 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3805 	fw_cmd.pad = 0;
3806 	fw_cmd.pad2 = 0;
3807 
3808 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3809 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3810 						       sizeof(fw_cmd),
3811 						       IXGBE_HI_COMMAND_TIMEOUT,
3812 						       true);
3813 		if (ret_val != 0)
3814 			continue;
3815 
3816 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3817 		    FW_CEM_RESP_STATUS_SUCCESS)
3818 			ret_val = 0;
3819 		else
3820 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3821 
3822 		break;
3823 	}
3824 
3825 	return ret_val;
3826 }
3827 
3828 /**
3829  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3830  * @hw: pointer to the hardware structure
3831  *
3832  * The 82599 and x540 MACs can experience issues if TX work is still pending
3833  * when a reset occurs.  This function prevents this by flushing the PCIe
3834  * buffers on the system.
3835  **/
3836 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3837 {
3838 	u32 gcr_ext, hlreg0, i, poll;
3839 	u16 value;
3840 
3841 	/*
3842 	 * If double reset is not requested then all transactions should
3843 	 * already be clear and as such there is no work to do
3844 	 */
3845 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3846 		return;
3847 
3848 	/*
3849 	 * Set loopback enable to prevent any transmits from being sent
3850 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3851 	 * has already been cleared.
3852 	 */
3853 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3854 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3855 
3856 	/* wait for a last completion before clearing buffers */
3857 	IXGBE_WRITE_FLUSH(hw);
3858 	usleep_range(3000, 6000);
3859 
3860 	/* Before proceeding, make sure that the PCIe block does not have
3861 	 * transactions pending.
3862 	 */
3863 	poll = ixgbe_pcie_timeout_poll(hw);
3864 	for (i = 0; i < poll; i++) {
3865 		usleep_range(100, 200);
3866 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3867 		if (ixgbe_removed(hw->hw_addr))
3868 			break;
3869 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3870 			break;
3871 	}
3872 
3873 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3874 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3875 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3876 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3877 
3878 	/* Flush all writes and allow 20usec for all transactions to clear */
3879 	IXGBE_WRITE_FLUSH(hw);
3880 	udelay(20);
3881 
3882 	/* restore previous register values */
3883 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3884 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3885 }
3886 
3887 static const u8 ixgbe_emc_temp_data[4] = {
3888 	IXGBE_EMC_INTERNAL_DATA,
3889 	IXGBE_EMC_DIODE1_DATA,
3890 	IXGBE_EMC_DIODE2_DATA,
3891 	IXGBE_EMC_DIODE3_DATA
3892 };
3893 static const u8 ixgbe_emc_therm_limit[4] = {
3894 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3895 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3896 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3897 	IXGBE_EMC_DIODE3_THERM_LIMIT
3898 };
3899 
3900 /**
3901  *  ixgbe_get_ets_data - Extracts the ETS bit data
3902  *  @hw: pointer to hardware structure
3903  *  @ets_cfg: extected ETS data
3904  *  @ets_offset: offset of ETS data
3905  *
3906  *  Returns error code.
3907  **/
3908 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3909 			      u16 *ets_offset)
3910 {
3911 	s32 status;
3912 
3913 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3914 	if (status)
3915 		return status;
3916 
3917 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3918 		return IXGBE_NOT_IMPLEMENTED;
3919 
3920 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3921 	if (status)
3922 		return status;
3923 
3924 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3925 		return IXGBE_NOT_IMPLEMENTED;
3926 
3927 	return 0;
3928 }
3929 
3930 /**
3931  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3932  *  @hw: pointer to hardware structure
3933  *
3934  *  Returns the thermal sensor data structure
3935  **/
3936 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3937 {
3938 	s32 status;
3939 	u16 ets_offset;
3940 	u16 ets_cfg;
3941 	u16 ets_sensor;
3942 	u8  num_sensors;
3943 	u8  i;
3944 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3945 
3946 	/* Only support thermal sensors attached to physical port 0 */
3947 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3948 		return IXGBE_NOT_IMPLEMENTED;
3949 
3950 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3951 	if (status)
3952 		return status;
3953 
3954 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3955 	if (num_sensors > IXGBE_MAX_SENSORS)
3956 		num_sensors = IXGBE_MAX_SENSORS;
3957 
3958 	for (i = 0; i < num_sensors; i++) {
3959 		u8  sensor_index;
3960 		u8  sensor_location;
3961 
3962 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3963 					     &ets_sensor);
3964 		if (status)
3965 			return status;
3966 
3967 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3968 				IXGBE_ETS_DATA_INDEX_SHIFT);
3969 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3970 				   IXGBE_ETS_DATA_LOC_SHIFT);
3971 
3972 		if (sensor_location != 0) {
3973 			status = hw->phy.ops.read_i2c_byte(hw,
3974 					ixgbe_emc_temp_data[sensor_index],
3975 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3976 					&data->sensor[i].temp);
3977 			if (status)
3978 				return status;
3979 		}
3980 	}
3981 
3982 	return 0;
3983 }
3984 
3985 /**
3986  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3987  * @hw: pointer to hardware structure
3988  *
3989  * Inits the thermal sensor thresholds according to the NVM map
3990  * and save off the threshold and location values into mac.thermal_sensor_data
3991  **/
3992 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3993 {
3994 	s32 status;
3995 	u16 ets_offset;
3996 	u16 ets_cfg;
3997 	u16 ets_sensor;
3998 	u8  low_thresh_delta;
3999 	u8  num_sensors;
4000 	u8  therm_limit;
4001 	u8  i;
4002 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
4003 
4004 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
4005 
4006 	/* Only support thermal sensors attached to physical port 0 */
4007 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
4008 		return IXGBE_NOT_IMPLEMENTED;
4009 
4010 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
4011 	if (status)
4012 		return status;
4013 
4014 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
4015 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
4016 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4017 	if (num_sensors > IXGBE_MAX_SENSORS)
4018 		num_sensors = IXGBE_MAX_SENSORS;
4019 
4020 	for (i = 0; i < num_sensors; i++) {
4021 		u8  sensor_index;
4022 		u8  sensor_location;
4023 
4024 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4025 			hw_err(hw, "eeprom read at offset %d failed\n",
4026 			       ets_offset + 1 + i);
4027 			continue;
4028 		}
4029 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4030 				IXGBE_ETS_DATA_INDEX_SHIFT);
4031 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4032 				   IXGBE_ETS_DATA_LOC_SHIFT);
4033 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4034 
4035 		hw->phy.ops.write_i2c_byte(hw,
4036 			ixgbe_emc_therm_limit[sensor_index],
4037 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4038 
4039 		if (sensor_location == 0)
4040 			continue;
4041 
4042 		data->sensor[i].location = sensor_location;
4043 		data->sensor[i].caution_thresh = therm_limit;
4044 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4045 	}
4046 
4047 	return 0;
4048 }
4049 
4050 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4051 {
4052 	u32 rxctrl;
4053 
4054 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4055 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4056 		if (hw->mac.type != ixgbe_mac_82598EB) {
4057 			u32 pfdtxgswc;
4058 
4059 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4060 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4061 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4062 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4063 				hw->mac.set_lben = true;
4064 			} else {
4065 				hw->mac.set_lben = false;
4066 			}
4067 		}
4068 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4069 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4070 	}
4071 }
4072 
4073 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4074 {
4075 	u32 rxctrl;
4076 
4077 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4078 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4079 
4080 	if (hw->mac.type != ixgbe_mac_82598EB) {
4081 		if (hw->mac.set_lben) {
4082 			u32 pfdtxgswc;
4083 
4084 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4085 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4086 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4087 			hw->mac.set_lben = false;
4088 		}
4089 	}
4090 }
4091 
4092 /** ixgbe_mng_present - returns true when management capability is present
4093  * @hw: pointer to hardware structure
4094  **/
4095 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4096 {
4097 	u32 fwsm;
4098 
4099 	if (hw->mac.type < ixgbe_mac_82599EB)
4100 		return false;
4101 
4102 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4103 	fwsm &= IXGBE_FWSM_MODE_MASK;
4104 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
4105 }
4106 
4107 /**
4108  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4109  *  @hw: pointer to hardware structure
4110  *  @speed: new link speed
4111  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4112  *
4113  *  Set the link speed in the MAC and/or PHY register and restarts link.
4114  */
4115 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4116 					  ixgbe_link_speed speed,
4117 					  bool autoneg_wait_to_complete)
4118 {
4119 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4120 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4121 	s32 status = 0;
4122 	u32 speedcnt = 0;
4123 	u32 i = 0;
4124 	bool autoneg, link_up = false;
4125 
4126 	/* Mask off requested but non-supported speeds */
4127 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4128 	if (status)
4129 		return status;
4130 
4131 	speed &= link_speed;
4132 
4133 	/* Try each speed one by one, highest priority first.  We do this in
4134 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4135 	 */
4136 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4137 		speedcnt++;
4138 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4139 
4140 		/* Set the module link speed */
4141 		switch (hw->phy.media_type) {
4142 		case ixgbe_media_type_fiber:
4143 			hw->mac.ops.set_rate_select_speed(hw,
4144 						    IXGBE_LINK_SPEED_10GB_FULL);
4145 			break;
4146 		case ixgbe_media_type_fiber_qsfp:
4147 			/* QSFP module automatically detects MAC link speed */
4148 			break;
4149 		default:
4150 			hw_dbg(hw, "Unexpected media type\n");
4151 			break;
4152 		}
4153 
4154 		/* Allow module to change analog characteristics (1G->10G) */
4155 		msleep(40);
4156 
4157 		status = hw->mac.ops.setup_mac_link(hw,
4158 						    IXGBE_LINK_SPEED_10GB_FULL,
4159 						    autoneg_wait_to_complete);
4160 		if (status)
4161 			return status;
4162 
4163 		/* Flap the Tx laser if it has not already been done */
4164 		if (hw->mac.ops.flap_tx_laser)
4165 			hw->mac.ops.flap_tx_laser(hw);
4166 
4167 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4168 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4169 		 * attempted.  82599 uses the same timing for 10g SFI.
4170 		 */
4171 		for (i = 0; i < 5; i++) {
4172 			/* Wait for the link partner to also set speed */
4173 			msleep(100);
4174 
4175 			/* If we have link, just jump out */
4176 			status = hw->mac.ops.check_link(hw, &link_speed,
4177 							&link_up, false);
4178 			if (status)
4179 				return status;
4180 
4181 			if (link_up)
4182 				goto out;
4183 		}
4184 	}
4185 
4186 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4187 		speedcnt++;
4188 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4189 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4190 
4191 		/* Set the module link speed */
4192 		switch (hw->phy.media_type) {
4193 		case ixgbe_media_type_fiber:
4194 			hw->mac.ops.set_rate_select_speed(hw,
4195 						     IXGBE_LINK_SPEED_1GB_FULL);
4196 			break;
4197 		case ixgbe_media_type_fiber_qsfp:
4198 			/* QSFP module automatically detects link speed */
4199 			break;
4200 		default:
4201 			hw_dbg(hw, "Unexpected media type\n");
4202 			break;
4203 		}
4204 
4205 		/* Allow module to change analog characteristics (10G->1G) */
4206 		msleep(40);
4207 
4208 		status = hw->mac.ops.setup_mac_link(hw,
4209 						    IXGBE_LINK_SPEED_1GB_FULL,
4210 						    autoneg_wait_to_complete);
4211 		if (status)
4212 			return status;
4213 
4214 		/* Flap the Tx laser if it has not already been done */
4215 		if (hw->mac.ops.flap_tx_laser)
4216 			hw->mac.ops.flap_tx_laser(hw);
4217 
4218 		/* Wait for the link partner to also set speed */
4219 		msleep(100);
4220 
4221 		/* If we have link, just jump out */
4222 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4223 						false);
4224 		if (status)
4225 			return status;
4226 
4227 		if (link_up)
4228 			goto out;
4229 	}
4230 
4231 	/* We didn't get link.  Configure back to the highest speed we tried,
4232 	 * (if there was more than one).  We call ourselves back with just the
4233 	 * single highest speed that the user requested.
4234 	 */
4235 	if (speedcnt > 1)
4236 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4237 						      highest_link_speed,
4238 						      autoneg_wait_to_complete);
4239 
4240 out:
4241 	/* Set autoneg_advertised value based on input link speed */
4242 	hw->phy.autoneg_advertised = 0;
4243 
4244 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4245 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4246 
4247 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4248 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4249 
4250 	return status;
4251 }
4252 
4253 /**
4254  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4255  *  @hw: pointer to hardware structure
4256  *  @speed: link speed to set
4257  *
4258  *  Set module link speed via the soft rate select.
4259  */
4260 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4261 				      ixgbe_link_speed speed)
4262 {
4263 	s32 status;
4264 	u8 rs, eeprom_data;
4265 
4266 	switch (speed) {
4267 	case IXGBE_LINK_SPEED_10GB_FULL:
4268 		/* one bit mask same as setting on */
4269 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4270 		break;
4271 	case IXGBE_LINK_SPEED_1GB_FULL:
4272 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4273 		break;
4274 	default:
4275 		hw_dbg(hw, "Invalid fixed module speed\n");
4276 		return;
4277 	}
4278 
4279 	/* Set RS0 */
4280 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4281 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4282 					   &eeprom_data);
4283 	if (status) {
4284 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4285 		return;
4286 	}
4287 
4288 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4289 
4290 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4291 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4292 					    eeprom_data);
4293 	if (status) {
4294 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4295 		return;
4296 	}
4297 
4298 	/* Set RS1 */
4299 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4300 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4301 					   &eeprom_data);
4302 	if (status) {
4303 		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4304 		return;
4305 	}
4306 
4307 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4308 
4309 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4310 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4311 					    eeprom_data);
4312 	if (status) {
4313 		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4314 		return;
4315 	}
4316 }
4317