1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44                                         u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /**
61  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
62  *  control
63  *  @hw: pointer to hardware structure
64  *
65  *  There are several phys that do not support autoneg flow control. This
66  *  function check the device id to see if the associated phy supports
67  *  autoneg flow control.
68  **/
69 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
70 {
71 	bool supported = false;
72 	ixgbe_link_speed speed;
73 	bool link_up;
74 
75 	switch (hw->phy.media_type) {
76 	case ixgbe_media_type_fiber:
77 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
78 		/* if link is down, assume supported */
79 		if (link_up)
80 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81 				true : false;
82 		else
83 			supported = true;
84 		break;
85 	case ixgbe_media_type_backplane:
86 		supported = true;
87 		break;
88 	case ixgbe_media_type_copper:
89 		/* only some copper devices support flow control autoneg */
90 		switch (hw->device_id) {
91 		case IXGBE_DEV_ID_82599_T3_LOM:
92 		case IXGBE_DEV_ID_X540T:
93 		case IXGBE_DEV_ID_X540T1:
94 			supported = true;
95 			break;
96 		default:
97 			break;
98 		}
99 	default:
100 		break;
101 	}
102 
103 	return supported;
104 }
105 
106 /**
107  *  ixgbe_setup_fc - Set up flow control
108  *  @hw: pointer to hardware structure
109  *
110  *  Called at init time to set up flow control.
111  **/
112 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
113 {
114 	s32 ret_val = 0;
115 	u32 reg = 0, reg_bp = 0;
116 	u16 reg_cu = 0;
117 	bool locked = false;
118 
119 	/*
120 	 * Validate the requested mode.  Strict IEEE mode does not allow
121 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122 	 */
123 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
126 		goto out;
127 	}
128 
129 	/*
130 	 * 10gig parts do not have a word in the EEPROM to determine the
131 	 * default flow control setting, so we explicitly set it to full.
132 	 */
133 	if (hw->fc.requested_mode == ixgbe_fc_default)
134 		hw->fc.requested_mode = ixgbe_fc_full;
135 
136 	/*
137 	 * Set up the 1G and 10G flow control advertisement registers so the
138 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
139 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
140 	 */
141 	switch (hw->phy.media_type) {
142 	case ixgbe_media_type_backplane:
143 		/* some MAC's need RMW protection on AUTOC */
144 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
145 		if (ret_val)
146 			goto out;
147 
148 		/* only backplane uses autoc so fall though */
149 	case ixgbe_media_type_fiber:
150 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
151 
152 		break;
153 	case ixgbe_media_type_copper:
154 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
155 					MDIO_MMD_AN, &reg_cu);
156 		break;
157 	default:
158 		break;
159 	}
160 
161 	/*
162 	 * The possible values of fc.requested_mode are:
163 	 * 0: Flow control is completely disabled
164 	 * 1: Rx flow control is enabled (we can receive pause frames,
165 	 *    but not send pause frames).
166 	 * 2: Tx flow control is enabled (we can send pause frames but
167 	 *    we do not support receiving pause frames).
168 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
169 	 * other: Invalid.
170 	 */
171 	switch (hw->fc.requested_mode) {
172 	case ixgbe_fc_none:
173 		/* Flow control completely disabled by software override. */
174 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
175 		if (hw->phy.media_type == ixgbe_media_type_backplane)
176 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
177 				    IXGBE_AUTOC_ASM_PAUSE);
178 		else if (hw->phy.media_type == ixgbe_media_type_copper)
179 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
180 		break;
181 	case ixgbe_fc_tx_pause:
182 		/*
183 		 * Tx Flow control is enabled, and Rx Flow control is
184 		 * disabled by software override.
185 		 */
186 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
187 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
188 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
189 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
190 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
191 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
192 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
193 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
194 		}
195 		break;
196 	case ixgbe_fc_rx_pause:
197 		/*
198 		 * Rx Flow control is enabled and Tx Flow control is
199 		 * disabled by software override. Since there really
200 		 * isn't a way to advertise that we are capable of RX
201 		 * Pause ONLY, we will advertise that we support both
202 		 * symmetric and asymmetric Rx PAUSE, as such we fall
203 		 * through to the fc_full statement.  Later, we will
204 		 * disable the adapter's ability to send PAUSE frames.
205 		 */
206 	case ixgbe_fc_full:
207 		/* Flow control (both Rx and Tx) is enabled by SW override. */
208 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
209 		if (hw->phy.media_type == ixgbe_media_type_backplane)
210 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
211 				  IXGBE_AUTOC_ASM_PAUSE;
212 		else if (hw->phy.media_type == ixgbe_media_type_copper)
213 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
214 		break;
215 	default:
216 		hw_dbg(hw, "Flow control param set incorrectly\n");
217 		ret_val = IXGBE_ERR_CONFIG;
218 		goto out;
219 		break;
220 	}
221 
222 	if (hw->mac.type != ixgbe_mac_X540) {
223 		/*
224 		 * Enable auto-negotiation between the MAC & PHY;
225 		 * the MAC will advertise clause 37 flow control.
226 		 */
227 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
228 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
229 
230 		/* Disable AN timeout */
231 		if (hw->fc.strict_ieee)
232 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
233 
234 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
235 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
236 	}
237 
238 	/*
239 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
240 	 * and copper. There is no need to set the PCS1GCTL register.
241 	 *
242 	 */
243 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
244 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
245 		 * LESM is on, likewise reset_pipeline requries the lock as
246 		 * it also writes AUTOC.
247 		 */
248 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
249 		if (ret_val)
250 			goto out;
251 
252 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
253 		   ixgbe_device_supports_autoneg_fc(hw)) {
254 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
255 				      MDIO_MMD_AN, reg_cu);
256 	}
257 
258 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
259 out:
260 	return ret_val;
261 }
262 
263 /**
264  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
265  *  @hw: pointer to hardware structure
266  *
267  *  Starts the hardware by filling the bus info structure and media type, clears
268  *  all on chip counters, initializes receive address registers, multicast
269  *  table, VLAN filter table, calls routine to set up link and flow control
270  *  settings, and leaves transmit and receive units disabled and uninitialized
271  **/
272 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
273 {
274 	u32 ctrl_ext;
275 
276 	/* Set the media type */
277 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
278 
279 	/* Identify the PHY */
280 	hw->phy.ops.identify(hw);
281 
282 	/* Clear the VLAN filter table */
283 	hw->mac.ops.clear_vfta(hw);
284 
285 	/* Clear statistics registers */
286 	hw->mac.ops.clear_hw_cntrs(hw);
287 
288 	/* Set No Snoop Disable */
289 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
290 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
291 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
292 	IXGBE_WRITE_FLUSH(hw);
293 
294 	/* Setup flow control */
295 	ixgbe_setup_fc(hw);
296 
297 	/* Clear adapter stopped flag */
298 	hw->adapter_stopped = false;
299 
300 	return 0;
301 }
302 
303 /**
304  *  ixgbe_start_hw_gen2 - Init sequence for common device family
305  *  @hw: pointer to hw structure
306  *
307  * Performs the init sequence common to the second generation
308  * of 10 GbE devices.
309  * Devices in the second generation:
310  *     82599
311  *     X540
312  **/
313 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
314 {
315 	u32 i;
316 	u32 regval;
317 
318 	/* Clear the rate limiters */
319 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
320 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
321 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
322 	}
323 	IXGBE_WRITE_FLUSH(hw);
324 
325 	/* Disable relaxed ordering */
326 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
327 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
328 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
329 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
330 	}
331 
332 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
333 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
334 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
335 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
336 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
337 	}
338 
339 	return 0;
340 }
341 
342 /**
343  *  ixgbe_init_hw_generic - Generic hardware initialization
344  *  @hw: pointer to hardware structure
345  *
346  *  Initialize the hardware by resetting the hardware, filling the bus info
347  *  structure and media type, clears all on chip counters, initializes receive
348  *  address registers, multicast table, VLAN filter table, calls routine to set
349  *  up link and flow control settings, and leaves transmit and receive units
350  *  disabled and uninitialized
351  **/
352 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
353 {
354 	s32 status;
355 
356 	/* Reset the hardware */
357 	status = hw->mac.ops.reset_hw(hw);
358 
359 	if (status == 0) {
360 		/* Start the HW */
361 		status = hw->mac.ops.start_hw(hw);
362 	}
363 
364 	return status;
365 }
366 
367 /**
368  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
369  *  @hw: pointer to hardware structure
370  *
371  *  Clears all hardware statistics counters by reading them from the hardware
372  *  Statistics counters are clear on read.
373  **/
374 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
375 {
376 	u16 i = 0;
377 
378 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
379 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
380 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
381 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
382 	for (i = 0; i < 8; i++)
383 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
384 
385 	IXGBE_READ_REG(hw, IXGBE_MLFC);
386 	IXGBE_READ_REG(hw, IXGBE_MRFC);
387 	IXGBE_READ_REG(hw, IXGBE_RLEC);
388 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
389 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
390 	if (hw->mac.type >= ixgbe_mac_82599EB) {
391 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
392 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
393 	} else {
394 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
395 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
396 	}
397 
398 	for (i = 0; i < 8; i++) {
399 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
400 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
401 		if (hw->mac.type >= ixgbe_mac_82599EB) {
402 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
403 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
404 		} else {
405 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
406 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
407 		}
408 	}
409 	if (hw->mac.type >= ixgbe_mac_82599EB)
410 		for (i = 0; i < 8; i++)
411 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
412 	IXGBE_READ_REG(hw, IXGBE_PRC64);
413 	IXGBE_READ_REG(hw, IXGBE_PRC127);
414 	IXGBE_READ_REG(hw, IXGBE_PRC255);
415 	IXGBE_READ_REG(hw, IXGBE_PRC511);
416 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
417 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
418 	IXGBE_READ_REG(hw, IXGBE_GPRC);
419 	IXGBE_READ_REG(hw, IXGBE_BPRC);
420 	IXGBE_READ_REG(hw, IXGBE_MPRC);
421 	IXGBE_READ_REG(hw, IXGBE_GPTC);
422 	IXGBE_READ_REG(hw, IXGBE_GORCL);
423 	IXGBE_READ_REG(hw, IXGBE_GORCH);
424 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
425 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
426 	if (hw->mac.type == ixgbe_mac_82598EB)
427 		for (i = 0; i < 8; i++)
428 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
429 	IXGBE_READ_REG(hw, IXGBE_RUC);
430 	IXGBE_READ_REG(hw, IXGBE_RFC);
431 	IXGBE_READ_REG(hw, IXGBE_ROC);
432 	IXGBE_READ_REG(hw, IXGBE_RJC);
433 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
434 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
435 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
436 	IXGBE_READ_REG(hw, IXGBE_TORL);
437 	IXGBE_READ_REG(hw, IXGBE_TORH);
438 	IXGBE_READ_REG(hw, IXGBE_TPR);
439 	IXGBE_READ_REG(hw, IXGBE_TPT);
440 	IXGBE_READ_REG(hw, IXGBE_PTC64);
441 	IXGBE_READ_REG(hw, IXGBE_PTC127);
442 	IXGBE_READ_REG(hw, IXGBE_PTC255);
443 	IXGBE_READ_REG(hw, IXGBE_PTC511);
444 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
445 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
446 	IXGBE_READ_REG(hw, IXGBE_MPTC);
447 	IXGBE_READ_REG(hw, IXGBE_BPTC);
448 	for (i = 0; i < 16; i++) {
449 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
450 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
451 		if (hw->mac.type >= ixgbe_mac_82599EB) {
452 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
453 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
454 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
455 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
456 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
457 		} else {
458 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
459 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
460 		}
461 	}
462 
463 	if (hw->mac.type == ixgbe_mac_X540) {
464 		if (hw->phy.id == 0)
465 			hw->phy.ops.identify(hw);
466 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
467 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
468 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
469 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
470 	}
471 
472 	return 0;
473 }
474 
475 /**
476  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
477  *  @hw: pointer to hardware structure
478  *  @pba_num: stores the part number string from the EEPROM
479  *  @pba_num_size: part number string buffer length
480  *
481  *  Reads the part number string from the EEPROM.
482  **/
483 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
484                                   u32 pba_num_size)
485 {
486 	s32 ret_val;
487 	u16 data;
488 	u16 pba_ptr;
489 	u16 offset;
490 	u16 length;
491 
492 	if (pba_num == NULL) {
493 		hw_dbg(hw, "PBA string buffer was null\n");
494 		return IXGBE_ERR_INVALID_ARGUMENT;
495 	}
496 
497 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
498 	if (ret_val) {
499 		hw_dbg(hw, "NVM Read Error\n");
500 		return ret_val;
501 	}
502 
503 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
504 	if (ret_val) {
505 		hw_dbg(hw, "NVM Read Error\n");
506 		return ret_val;
507 	}
508 
509 	/*
510 	 * if data is not ptr guard the PBA must be in legacy format which
511 	 * means pba_ptr is actually our second data word for the PBA number
512 	 * and we can decode it into an ascii string
513 	 */
514 	if (data != IXGBE_PBANUM_PTR_GUARD) {
515 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
516 
517 		/* we will need 11 characters to store the PBA */
518 		if (pba_num_size < 11) {
519 			hw_dbg(hw, "PBA string buffer too small\n");
520 			return IXGBE_ERR_NO_SPACE;
521 		}
522 
523 		/* extract hex string from data and pba_ptr */
524 		pba_num[0] = (data >> 12) & 0xF;
525 		pba_num[1] = (data >> 8) & 0xF;
526 		pba_num[2] = (data >> 4) & 0xF;
527 		pba_num[3] = data & 0xF;
528 		pba_num[4] = (pba_ptr >> 12) & 0xF;
529 		pba_num[5] = (pba_ptr >> 8) & 0xF;
530 		pba_num[6] = '-';
531 		pba_num[7] = 0;
532 		pba_num[8] = (pba_ptr >> 4) & 0xF;
533 		pba_num[9] = pba_ptr & 0xF;
534 
535 		/* put a null character on the end of our string */
536 		pba_num[10] = '\0';
537 
538 		/* switch all the data but the '-' to hex char */
539 		for (offset = 0; offset < 10; offset++) {
540 			if (pba_num[offset] < 0xA)
541 				pba_num[offset] += '0';
542 			else if (pba_num[offset] < 0x10)
543 				pba_num[offset] += 'A' - 0xA;
544 		}
545 
546 		return 0;
547 	}
548 
549 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
550 	if (ret_val) {
551 		hw_dbg(hw, "NVM Read Error\n");
552 		return ret_val;
553 	}
554 
555 	if (length == 0xFFFF || length == 0) {
556 		hw_dbg(hw, "NVM PBA number section invalid length\n");
557 		return IXGBE_ERR_PBA_SECTION;
558 	}
559 
560 	/* check if pba_num buffer is big enough */
561 	if (pba_num_size  < (((u32)length * 2) - 1)) {
562 		hw_dbg(hw, "PBA string buffer too small\n");
563 		return IXGBE_ERR_NO_SPACE;
564 	}
565 
566 	/* trim pba length from start of string */
567 	pba_ptr++;
568 	length--;
569 
570 	for (offset = 0; offset < length; offset++) {
571 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
572 		if (ret_val) {
573 			hw_dbg(hw, "NVM Read Error\n");
574 			return ret_val;
575 		}
576 		pba_num[offset * 2] = (u8)(data >> 8);
577 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
578 	}
579 	pba_num[offset * 2] = '\0';
580 
581 	return 0;
582 }
583 
584 /**
585  *  ixgbe_get_mac_addr_generic - Generic get MAC address
586  *  @hw: pointer to hardware structure
587  *  @mac_addr: Adapter MAC address
588  *
589  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
590  *  A reset of the adapter must be performed prior to calling this function
591  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
592  **/
593 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
594 {
595 	u32 rar_high;
596 	u32 rar_low;
597 	u16 i;
598 
599 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
600 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
601 
602 	for (i = 0; i < 4; i++)
603 		mac_addr[i] = (u8)(rar_low >> (i*8));
604 
605 	for (i = 0; i < 2; i++)
606 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
607 
608 	return 0;
609 }
610 
611 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
612 {
613 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
614 	case IXGBE_PCI_LINK_WIDTH_1:
615 		return ixgbe_bus_width_pcie_x1;
616 	case IXGBE_PCI_LINK_WIDTH_2:
617 		return ixgbe_bus_width_pcie_x2;
618 	case IXGBE_PCI_LINK_WIDTH_4:
619 		return ixgbe_bus_width_pcie_x4;
620 	case IXGBE_PCI_LINK_WIDTH_8:
621 		return ixgbe_bus_width_pcie_x8;
622 	default:
623 		return ixgbe_bus_width_unknown;
624 	}
625 }
626 
627 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
628 {
629 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
630 	case IXGBE_PCI_LINK_SPEED_2500:
631 		return ixgbe_bus_speed_2500;
632 	case IXGBE_PCI_LINK_SPEED_5000:
633 		return ixgbe_bus_speed_5000;
634 	case IXGBE_PCI_LINK_SPEED_8000:
635 		return ixgbe_bus_speed_8000;
636 	default:
637 		return ixgbe_bus_speed_unknown;
638 	}
639 }
640 
641 /**
642  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
643  *  @hw: pointer to hardware structure
644  *
645  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
646  **/
647 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
648 {
649 	u16 link_status;
650 
651 	hw->bus.type = ixgbe_bus_type_pci_express;
652 
653 	/* Get the negotiated link width and speed from PCI config space */
654 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
655 
656 	hw->bus.width = ixgbe_convert_bus_width(link_status);
657 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
658 
659 	hw->mac.ops.set_lan_id(hw);
660 
661 	return 0;
662 }
663 
664 /**
665  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
666  *  @hw: pointer to the HW structure
667  *
668  *  Determines the LAN function id by reading memory-mapped registers
669  *  and swaps the port value if requested.
670  **/
671 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
672 {
673 	struct ixgbe_bus_info *bus = &hw->bus;
674 	u32 reg;
675 
676 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
677 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
678 	bus->lan_id = bus->func;
679 
680 	/* check for a port swap */
681 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
682 	if (reg & IXGBE_FACTPS_LFS)
683 		bus->func ^= 0x1;
684 }
685 
686 /**
687  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
688  *  @hw: pointer to hardware structure
689  *
690  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
691  *  disables transmit and receive units. The adapter_stopped flag is used by
692  *  the shared code and drivers to determine if the adapter is in a stopped
693  *  state and should not touch the hardware.
694  **/
695 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
696 {
697 	u32 reg_val;
698 	u16 i;
699 
700 	/*
701 	 * Set the adapter_stopped flag so other driver functions stop touching
702 	 * the hardware
703 	 */
704 	hw->adapter_stopped = true;
705 
706 	/* Disable the receive unit */
707 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
708 
709 	/* Clear interrupt mask to stop interrupts from being generated */
710 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
711 
712 	/* Clear any pending interrupts, flush previous writes */
713 	IXGBE_READ_REG(hw, IXGBE_EICR);
714 
715 	/* Disable the transmit unit.  Each queue must be disabled. */
716 	for (i = 0; i < hw->mac.max_tx_queues; i++)
717 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
718 
719 	/* Disable the receive unit by stopping each queue */
720 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
721 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
722 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
723 		reg_val |= IXGBE_RXDCTL_SWFLSH;
724 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
725 	}
726 
727 	/* flush all queues disables */
728 	IXGBE_WRITE_FLUSH(hw);
729 	usleep_range(1000, 2000);
730 
731 	/*
732 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
733 	 * access and verify no pending requests
734 	 */
735 	return ixgbe_disable_pcie_master(hw);
736 }
737 
738 /**
739  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
740  *  @hw: pointer to hardware structure
741  *  @index: led number to turn on
742  **/
743 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
744 {
745 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
746 
747 	/* To turn on the LED, set mode to ON. */
748 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
749 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
750 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
751 	IXGBE_WRITE_FLUSH(hw);
752 
753 	return 0;
754 }
755 
756 /**
757  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
758  *  @hw: pointer to hardware structure
759  *  @index: led number to turn off
760  **/
761 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
762 {
763 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
764 
765 	/* To turn off the LED, set mode to OFF. */
766 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
767 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
768 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
769 	IXGBE_WRITE_FLUSH(hw);
770 
771 	return 0;
772 }
773 
774 /**
775  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
776  *  @hw: pointer to hardware structure
777  *
778  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
779  *  ixgbe_hw struct in order to set up EEPROM access.
780  **/
781 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
782 {
783 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
784 	u32 eec;
785 	u16 eeprom_size;
786 
787 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
788 		eeprom->type = ixgbe_eeprom_none;
789 		/* Set default semaphore delay to 10ms which is a well
790 		 * tested value */
791 		eeprom->semaphore_delay = 10;
792 		/* Clear EEPROM page size, it will be initialized as needed */
793 		eeprom->word_page_size = 0;
794 
795 		/*
796 		 * Check for EEPROM present first.
797 		 * If not present leave as none
798 		 */
799 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
800 		if (eec & IXGBE_EEC_PRES) {
801 			eeprom->type = ixgbe_eeprom_spi;
802 
803 			/*
804 			 * SPI EEPROM is assumed here.  This code would need to
805 			 * change if a future EEPROM is not SPI.
806 			 */
807 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
808 					    IXGBE_EEC_SIZE_SHIFT);
809 			eeprom->word_size = 1 << (eeprom_size +
810 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
811 		}
812 
813 		if (eec & IXGBE_EEC_ADDR_SIZE)
814 			eeprom->address_bits = 16;
815 		else
816 			eeprom->address_bits = 8;
817 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
818 			  "%d\n", eeprom->type, eeprom->word_size,
819 			  eeprom->address_bits);
820 	}
821 
822 	return 0;
823 }
824 
825 /**
826  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
827  *  @hw: pointer to hardware structure
828  *  @offset: offset within the EEPROM to write
829  *  @words: number of words
830  *  @data: 16 bit word(s) to write to EEPROM
831  *
832  *  Reads 16 bit word(s) from EEPROM through bit-bang method
833  **/
834 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
835 					       u16 words, u16 *data)
836 {
837 	s32 status = 0;
838 	u16 i, count;
839 
840 	hw->eeprom.ops.init_params(hw);
841 
842 	if (words == 0) {
843 		status = IXGBE_ERR_INVALID_ARGUMENT;
844 		goto out;
845 	}
846 
847 	if (offset + words > hw->eeprom.word_size) {
848 		status = IXGBE_ERR_EEPROM;
849 		goto out;
850 	}
851 
852 	/*
853 	 * The EEPROM page size cannot be queried from the chip. We do lazy
854 	 * initialization. It is worth to do that when we write large buffer.
855 	 */
856 	if ((hw->eeprom.word_page_size == 0) &&
857 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
858 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
859 
860 	/*
861 	 * We cannot hold synchronization semaphores for too long
862 	 * to avoid other entity starvation. However it is more efficient
863 	 * to read in bursts than synchronizing access for each word.
864 	 */
865 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
866 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
867 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
868 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
869 							    count, &data[i]);
870 
871 		if (status != 0)
872 			break;
873 	}
874 
875 out:
876 	return status;
877 }
878 
879 /**
880  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
881  *  @hw: pointer to hardware structure
882  *  @offset: offset within the EEPROM to be written to
883  *  @words: number of word(s)
884  *  @data: 16 bit word(s) to be written to the EEPROM
885  *
886  *  If ixgbe_eeprom_update_checksum is not called after this function, the
887  *  EEPROM will most likely contain an invalid checksum.
888  **/
889 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
890 					      u16 words, u16 *data)
891 {
892 	s32 status;
893 	u16 word;
894 	u16 page_size;
895 	u16 i;
896 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
897 
898 	/* Prepare the EEPROM for writing  */
899 	status = ixgbe_acquire_eeprom(hw);
900 
901 	if (status == 0) {
902 		if (ixgbe_ready_eeprom(hw) != 0) {
903 			ixgbe_release_eeprom(hw);
904 			status = IXGBE_ERR_EEPROM;
905 		}
906 	}
907 
908 	if (status == 0) {
909 		for (i = 0; i < words; i++) {
910 			ixgbe_standby_eeprom(hw);
911 
912 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
913 			ixgbe_shift_out_eeprom_bits(hw,
914 						  IXGBE_EEPROM_WREN_OPCODE_SPI,
915 						  IXGBE_EEPROM_OPCODE_BITS);
916 
917 			ixgbe_standby_eeprom(hw);
918 
919 			/*
920 			 * Some SPI eeproms use the 8th address bit embedded
921 			 * in the opcode
922 			 */
923 			if ((hw->eeprom.address_bits == 8) &&
924 			    ((offset + i) >= 128))
925 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
926 
927 			/* Send the Write command (8-bit opcode + addr) */
928 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
929 						    IXGBE_EEPROM_OPCODE_BITS);
930 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
931 						    hw->eeprom.address_bits);
932 
933 			page_size = hw->eeprom.word_page_size;
934 
935 			/* Send the data in burst via SPI*/
936 			do {
937 				word = data[i];
938 				word = (word >> 8) | (word << 8);
939 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
940 
941 				if (page_size == 0)
942 					break;
943 
944 				/* do not wrap around page */
945 				if (((offset + i) & (page_size - 1)) ==
946 				    (page_size - 1))
947 					break;
948 			} while (++i < words);
949 
950 			ixgbe_standby_eeprom(hw);
951 			usleep_range(10000, 20000);
952 		}
953 		/* Done with writing - release the EEPROM */
954 		ixgbe_release_eeprom(hw);
955 	}
956 
957 	return status;
958 }
959 
960 /**
961  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
962  *  @hw: pointer to hardware structure
963  *  @offset: offset within the EEPROM to be written to
964  *  @data: 16 bit word to be written to the EEPROM
965  *
966  *  If ixgbe_eeprom_update_checksum is not called after this function, the
967  *  EEPROM will most likely contain an invalid checksum.
968  **/
969 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
970 {
971 	s32 status;
972 
973 	hw->eeprom.ops.init_params(hw);
974 
975 	if (offset >= hw->eeprom.word_size) {
976 		status = IXGBE_ERR_EEPROM;
977 		goto out;
978 	}
979 
980 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
981 
982 out:
983 	return status;
984 }
985 
986 /**
987  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
988  *  @hw: pointer to hardware structure
989  *  @offset: offset within the EEPROM to be read
990  *  @words: number of word(s)
991  *  @data: read 16 bit words(s) from EEPROM
992  *
993  *  Reads 16 bit word(s) from EEPROM through bit-bang method
994  **/
995 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
996 					      u16 words, u16 *data)
997 {
998 	s32 status = 0;
999 	u16 i, count;
1000 
1001 	hw->eeprom.ops.init_params(hw);
1002 
1003 	if (words == 0) {
1004 		status = IXGBE_ERR_INVALID_ARGUMENT;
1005 		goto out;
1006 	}
1007 
1008 	if (offset + words > hw->eeprom.word_size) {
1009 		status = IXGBE_ERR_EEPROM;
1010 		goto out;
1011 	}
1012 
1013 	/*
1014 	 * We cannot hold synchronization semaphores for too long
1015 	 * to avoid other entity starvation. However it is more efficient
1016 	 * to read in bursts than synchronizing access for each word.
1017 	 */
1018 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1019 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1020 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1021 
1022 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1023 							   count, &data[i]);
1024 
1025 		if (status != 0)
1026 			break;
1027 	}
1028 
1029 out:
1030 	return status;
1031 }
1032 
1033 /**
1034  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1035  *  @hw: pointer to hardware structure
1036  *  @offset: offset within the EEPROM to be read
1037  *  @words: number of word(s)
1038  *  @data: read 16 bit word(s) from EEPROM
1039  *
1040  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1041  **/
1042 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1043 					     u16 words, u16 *data)
1044 {
1045 	s32 status;
1046 	u16 word_in;
1047 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1048 	u16 i;
1049 
1050 	/* Prepare the EEPROM for reading  */
1051 	status = ixgbe_acquire_eeprom(hw);
1052 
1053 	if (status == 0) {
1054 		if (ixgbe_ready_eeprom(hw) != 0) {
1055 			ixgbe_release_eeprom(hw);
1056 			status = IXGBE_ERR_EEPROM;
1057 		}
1058 	}
1059 
1060 	if (status == 0) {
1061 		for (i = 0; i < words; i++) {
1062 			ixgbe_standby_eeprom(hw);
1063 			/*
1064 			 * Some SPI eeproms use the 8th address bit embedded
1065 			 * in the opcode
1066 			 */
1067 			if ((hw->eeprom.address_bits == 8) &&
1068 			    ((offset + i) >= 128))
1069 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1070 
1071 			/* Send the READ command (opcode + addr) */
1072 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1073 						    IXGBE_EEPROM_OPCODE_BITS);
1074 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1075 						    hw->eeprom.address_bits);
1076 
1077 			/* Read the data. */
1078 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1079 			data[i] = (word_in >> 8) | (word_in << 8);
1080 		}
1081 
1082 		/* End this read operation */
1083 		ixgbe_release_eeprom(hw);
1084 	}
1085 
1086 	return status;
1087 }
1088 
1089 /**
1090  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1091  *  @hw: pointer to hardware structure
1092  *  @offset: offset within the EEPROM to be read
1093  *  @data: read 16 bit value from EEPROM
1094  *
1095  *  Reads 16 bit value from EEPROM through bit-bang method
1096  **/
1097 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1098 				       u16 *data)
1099 {
1100 	s32 status;
1101 
1102 	hw->eeprom.ops.init_params(hw);
1103 
1104 	if (offset >= hw->eeprom.word_size) {
1105 		status = IXGBE_ERR_EEPROM;
1106 		goto out;
1107 	}
1108 
1109 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1110 
1111 out:
1112 	return status;
1113 }
1114 
1115 /**
1116  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1117  *  @hw: pointer to hardware structure
1118  *  @offset: offset of word in the EEPROM to read
1119  *  @words: number of word(s)
1120  *  @data: 16 bit word(s) from the EEPROM
1121  *
1122  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1123  **/
1124 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1125 				   u16 words, u16 *data)
1126 {
1127 	u32 eerd;
1128 	s32 status = 0;
1129 	u32 i;
1130 
1131 	hw->eeprom.ops.init_params(hw);
1132 
1133 	if (words == 0) {
1134 		status = IXGBE_ERR_INVALID_ARGUMENT;
1135 		goto out;
1136 	}
1137 
1138 	if (offset >= hw->eeprom.word_size) {
1139 		status = IXGBE_ERR_EEPROM;
1140 		goto out;
1141 	}
1142 
1143 	for (i = 0; i < words; i++) {
1144 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1145 		       IXGBE_EEPROM_RW_REG_START;
1146 
1147 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1148 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1149 
1150 		if (status == 0) {
1151 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1152 				   IXGBE_EEPROM_RW_REG_DATA);
1153 		} else {
1154 			hw_dbg(hw, "Eeprom read timed out\n");
1155 			goto out;
1156 		}
1157 	}
1158 out:
1159 	return status;
1160 }
1161 
1162 /**
1163  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1164  *  @hw: pointer to hardware structure
1165  *  @offset: offset within the EEPROM to be used as a scratch pad
1166  *
1167  *  Discover EEPROM page size by writing marching data at given offset.
1168  *  This function is called only when we are writing a new large buffer
1169  *  at given offset so the data would be overwritten anyway.
1170  **/
1171 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1172 						 u16 offset)
1173 {
1174 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1175 	s32 status = 0;
1176 	u16 i;
1177 
1178 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1179 		data[i] = i;
1180 
1181 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1182 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1183 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1184 	hw->eeprom.word_page_size = 0;
1185 	if (status != 0)
1186 		goto out;
1187 
1188 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1189 	if (status != 0)
1190 		goto out;
1191 
1192 	/*
1193 	 * When writing in burst more than the actual page size
1194 	 * EEPROM address wraps around current page.
1195 	 */
1196 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1197 
1198 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1199 	       hw->eeprom.word_page_size);
1200 out:
1201 	return status;
1202 }
1203 
1204 /**
1205  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1206  *  @hw: pointer to hardware structure
1207  *  @offset: offset of  word in the EEPROM to read
1208  *  @data: word read from the EEPROM
1209  *
1210  *  Reads a 16 bit word from the EEPROM using the EERD register.
1211  **/
1212 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1213 {
1214 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1215 }
1216 
1217 /**
1218  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1219  *  @hw: pointer to hardware structure
1220  *  @offset: offset of  word in the EEPROM to write
1221  *  @words: number of words
1222  *  @data: word(s) write to the EEPROM
1223  *
1224  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1225  **/
1226 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1227 				    u16 words, u16 *data)
1228 {
1229 	u32 eewr;
1230 	s32 status = 0;
1231 	u16 i;
1232 
1233 	hw->eeprom.ops.init_params(hw);
1234 
1235 	if (words == 0) {
1236 		status = IXGBE_ERR_INVALID_ARGUMENT;
1237 		goto out;
1238 	}
1239 
1240 	if (offset >= hw->eeprom.word_size) {
1241 		status = IXGBE_ERR_EEPROM;
1242 		goto out;
1243 	}
1244 
1245 	for (i = 0; i < words; i++) {
1246 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1247 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1248 		       IXGBE_EEPROM_RW_REG_START;
1249 
1250 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1251 		if (status != 0) {
1252 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1253 			goto out;
1254 		}
1255 
1256 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1257 
1258 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1259 		if (status != 0) {
1260 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1261 			goto out;
1262 		}
1263 	}
1264 
1265 out:
1266 	return status;
1267 }
1268 
1269 /**
1270  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1271  *  @hw: pointer to hardware structure
1272  *  @offset: offset of  word in the EEPROM to write
1273  *  @data: word write to the EEPROM
1274  *
1275  *  Write a 16 bit word to the EEPROM using the EEWR register.
1276  **/
1277 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1278 {
1279 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1280 }
1281 
1282 /**
1283  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1284  *  @hw: pointer to hardware structure
1285  *  @ee_reg: EEPROM flag for polling
1286  *
1287  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1288  *  read or write is done respectively.
1289  **/
1290 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1291 {
1292 	u32 i;
1293 	u32 reg;
1294 	s32 status = IXGBE_ERR_EEPROM;
1295 
1296 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1297 		if (ee_reg == IXGBE_NVM_POLL_READ)
1298 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1299 		else
1300 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1301 
1302 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1303 			status = 0;
1304 			break;
1305 		}
1306 		udelay(5);
1307 	}
1308 	return status;
1309 }
1310 
1311 /**
1312  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1313  *  @hw: pointer to hardware structure
1314  *
1315  *  Prepares EEPROM for access using bit-bang method. This function should
1316  *  be called before issuing a command to the EEPROM.
1317  **/
1318 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1319 {
1320 	s32 status = 0;
1321 	u32 eec;
1322 	u32 i;
1323 
1324 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1325 		status = IXGBE_ERR_SWFW_SYNC;
1326 
1327 	if (status == 0) {
1328 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1329 
1330 		/* Request EEPROM Access */
1331 		eec |= IXGBE_EEC_REQ;
1332 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1333 
1334 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1335 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1336 			if (eec & IXGBE_EEC_GNT)
1337 				break;
1338 			udelay(5);
1339 		}
1340 
1341 		/* Release if grant not acquired */
1342 		if (!(eec & IXGBE_EEC_GNT)) {
1343 			eec &= ~IXGBE_EEC_REQ;
1344 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1345 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
1346 
1347 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1348 			status = IXGBE_ERR_EEPROM;
1349 		}
1350 
1351 		/* Setup EEPROM for Read/Write */
1352 		if (status == 0) {
1353 			/* Clear CS and SK */
1354 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1355 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1356 			IXGBE_WRITE_FLUSH(hw);
1357 			udelay(1);
1358 		}
1359 	}
1360 	return status;
1361 }
1362 
1363 /**
1364  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1365  *  @hw: pointer to hardware structure
1366  *
1367  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1368  **/
1369 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1370 {
1371 	s32 status = IXGBE_ERR_EEPROM;
1372 	u32 timeout = 2000;
1373 	u32 i;
1374 	u32 swsm;
1375 
1376 	/* Get SMBI software semaphore between device drivers first */
1377 	for (i = 0; i < timeout; i++) {
1378 		/*
1379 		 * If the SMBI bit is 0 when we read it, then the bit will be
1380 		 * set and we have the semaphore
1381 		 */
1382 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1383 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1384 			status = 0;
1385 			break;
1386 		}
1387 		udelay(50);
1388 	}
1389 
1390 	if (i == timeout) {
1391 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1392 		       "not granted.\n");
1393 		/*
1394 		 * this release is particularly important because our attempts
1395 		 * above to get the semaphore may have succeeded, and if there
1396 		 * was a timeout, we should unconditionally clear the semaphore
1397 		 * bits to free the driver to make progress
1398 		 */
1399 		ixgbe_release_eeprom_semaphore(hw);
1400 
1401 		udelay(50);
1402 		/*
1403 		 * one last try
1404 		 * If the SMBI bit is 0 when we read it, then the bit will be
1405 		 * set and we have the semaphore
1406 		 */
1407 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1408 		if (!(swsm & IXGBE_SWSM_SMBI))
1409 			status = 0;
1410 	}
1411 
1412 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1413 	if (status == 0) {
1414 		for (i = 0; i < timeout; i++) {
1415 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1416 
1417 			/* Set the SW EEPROM semaphore bit to request access */
1418 			swsm |= IXGBE_SWSM_SWESMBI;
1419 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1420 
1421 			/*
1422 			 * If we set the bit successfully then we got the
1423 			 * semaphore.
1424 			 */
1425 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1426 			if (swsm & IXGBE_SWSM_SWESMBI)
1427 				break;
1428 
1429 			udelay(50);
1430 		}
1431 
1432 		/*
1433 		 * Release semaphores and return error if SW EEPROM semaphore
1434 		 * was not granted because we don't have access to the EEPROM
1435 		 */
1436 		if (i >= timeout) {
1437 			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1438 			       "not granted.\n");
1439 			ixgbe_release_eeprom_semaphore(hw);
1440 			status = IXGBE_ERR_EEPROM;
1441 		}
1442 	} else {
1443 		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1444 		       "not granted.\n");
1445 	}
1446 
1447 	return status;
1448 }
1449 
1450 /**
1451  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1452  *  @hw: pointer to hardware structure
1453  *
1454  *  This function clears hardware semaphore bits.
1455  **/
1456 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1457 {
1458 	u32 swsm;
1459 
1460 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1461 
1462 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1463 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1464 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1465 	IXGBE_WRITE_FLUSH(hw);
1466 }
1467 
1468 /**
1469  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1470  *  @hw: pointer to hardware structure
1471  **/
1472 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1473 {
1474 	s32 status = 0;
1475 	u16 i;
1476 	u8 spi_stat_reg;
1477 
1478 	/*
1479 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1480 	 * EEPROM will signal that the command has been completed by clearing
1481 	 * bit 0 of the internal status register.  If it's not cleared within
1482 	 * 5 milliseconds, then error out.
1483 	 */
1484 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1485 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1486 		                            IXGBE_EEPROM_OPCODE_BITS);
1487 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1488 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1489 			break;
1490 
1491 		udelay(5);
1492 		ixgbe_standby_eeprom(hw);
1493 	}
1494 
1495 	/*
1496 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1497 	 * devices (and only 0-5mSec on 5V devices)
1498 	 */
1499 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1500 		hw_dbg(hw, "SPI EEPROM Status error\n");
1501 		status = IXGBE_ERR_EEPROM;
1502 	}
1503 
1504 	return status;
1505 }
1506 
1507 /**
1508  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1509  *  @hw: pointer to hardware structure
1510  **/
1511 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1512 {
1513 	u32 eec;
1514 
1515 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1516 
1517 	/* Toggle CS to flush commands */
1518 	eec |= IXGBE_EEC_CS;
1519 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1520 	IXGBE_WRITE_FLUSH(hw);
1521 	udelay(1);
1522 	eec &= ~IXGBE_EEC_CS;
1523 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1524 	IXGBE_WRITE_FLUSH(hw);
1525 	udelay(1);
1526 }
1527 
1528 /**
1529  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1530  *  @hw: pointer to hardware structure
1531  *  @data: data to send to the EEPROM
1532  *  @count: number of bits to shift out
1533  **/
1534 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1535                                         u16 count)
1536 {
1537 	u32 eec;
1538 	u32 mask;
1539 	u32 i;
1540 
1541 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1542 
1543 	/*
1544 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1545 	 * one bit at a time.  Determine the starting bit based on count
1546 	 */
1547 	mask = 0x01 << (count - 1);
1548 
1549 	for (i = 0; i < count; i++) {
1550 		/*
1551 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1552 		 * "1", and then raising and then lowering the clock (the SK
1553 		 * bit controls the clock input to the EEPROM).  A "0" is
1554 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1555 		 * raising and then lowering the clock.
1556 		 */
1557 		if (data & mask)
1558 			eec |= IXGBE_EEC_DI;
1559 		else
1560 			eec &= ~IXGBE_EEC_DI;
1561 
1562 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1563 		IXGBE_WRITE_FLUSH(hw);
1564 
1565 		udelay(1);
1566 
1567 		ixgbe_raise_eeprom_clk(hw, &eec);
1568 		ixgbe_lower_eeprom_clk(hw, &eec);
1569 
1570 		/*
1571 		 * Shift mask to signify next bit of data to shift in to the
1572 		 * EEPROM
1573 		 */
1574 		mask = mask >> 1;
1575 	}
1576 
1577 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1578 	eec &= ~IXGBE_EEC_DI;
1579 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1580 	IXGBE_WRITE_FLUSH(hw);
1581 }
1582 
1583 /**
1584  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1585  *  @hw: pointer to hardware structure
1586  **/
1587 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1588 {
1589 	u32 eec;
1590 	u32 i;
1591 	u16 data = 0;
1592 
1593 	/*
1594 	 * In order to read a register from the EEPROM, we need to shift
1595 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1596 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1597 	 * the value of the "DO" bit.  During this "shifting in" process the
1598 	 * "DI" bit should always be clear.
1599 	 */
1600 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1601 
1602 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1603 
1604 	for (i = 0; i < count; i++) {
1605 		data = data << 1;
1606 		ixgbe_raise_eeprom_clk(hw, &eec);
1607 
1608 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1609 
1610 		eec &= ~(IXGBE_EEC_DI);
1611 		if (eec & IXGBE_EEC_DO)
1612 			data |= 1;
1613 
1614 		ixgbe_lower_eeprom_clk(hw, &eec);
1615 	}
1616 
1617 	return data;
1618 }
1619 
1620 /**
1621  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1622  *  @hw: pointer to hardware structure
1623  *  @eec: EEC register's current value
1624  **/
1625 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1626 {
1627 	/*
1628 	 * Raise the clock input to the EEPROM
1629 	 * (setting the SK bit), then delay
1630 	 */
1631 	*eec = *eec | IXGBE_EEC_SK;
1632 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1633 	IXGBE_WRITE_FLUSH(hw);
1634 	udelay(1);
1635 }
1636 
1637 /**
1638  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1639  *  @hw: pointer to hardware structure
1640  *  @eecd: EECD's current value
1641  **/
1642 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1643 {
1644 	/*
1645 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1646 	 * delay
1647 	 */
1648 	*eec = *eec & ~IXGBE_EEC_SK;
1649 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1650 	IXGBE_WRITE_FLUSH(hw);
1651 	udelay(1);
1652 }
1653 
1654 /**
1655  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1656  *  @hw: pointer to hardware structure
1657  **/
1658 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1659 {
1660 	u32 eec;
1661 
1662 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1663 
1664 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1665 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1666 
1667 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1668 	IXGBE_WRITE_FLUSH(hw);
1669 
1670 	udelay(1);
1671 
1672 	/* Stop requesting EEPROM access */
1673 	eec &= ~IXGBE_EEC_REQ;
1674 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1675 
1676 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1677 
1678 	/*
1679 	 * Delay before attempt to obtain semaphore again to allow FW
1680 	 * access. semaphore_delay is in ms we need us for usleep_range
1681 	 */
1682 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1683 		     hw->eeprom.semaphore_delay * 2000);
1684 }
1685 
1686 /**
1687  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1688  *  @hw: pointer to hardware structure
1689  **/
1690 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1691 {
1692 	u16 i;
1693 	u16 j;
1694 	u16 checksum = 0;
1695 	u16 length = 0;
1696 	u16 pointer = 0;
1697 	u16 word = 0;
1698 
1699 	/* Include 0x0-0x3F in the checksum */
1700 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1701 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1702 			hw_dbg(hw, "EEPROM read failed\n");
1703 			break;
1704 		}
1705 		checksum += word;
1706 	}
1707 
1708 	/* Include all data from pointers except for the fw pointer */
1709 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1710 		hw->eeprom.ops.read(hw, i, &pointer);
1711 
1712 		/* Make sure the pointer seems valid */
1713 		if (pointer != 0xFFFF && pointer != 0) {
1714 			hw->eeprom.ops.read(hw, pointer, &length);
1715 
1716 			if (length != 0xFFFF && length != 0) {
1717 				for (j = pointer+1; j <= pointer+length; j++) {
1718 					hw->eeprom.ops.read(hw, j, &word);
1719 					checksum += word;
1720 				}
1721 			}
1722 		}
1723 	}
1724 
1725 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1726 
1727 	return checksum;
1728 }
1729 
1730 /**
1731  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1732  *  @hw: pointer to hardware structure
1733  *  @checksum_val: calculated checksum
1734  *
1735  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1736  *  caller does not need checksum_val, the value can be NULL.
1737  **/
1738 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1739                                            u16 *checksum_val)
1740 {
1741 	s32 status;
1742 	u16 checksum;
1743 	u16 read_checksum = 0;
1744 
1745 	/*
1746 	 * Read the first word from the EEPROM. If this times out or fails, do
1747 	 * not continue or we could be in for a very long wait while every
1748 	 * EEPROM read fails
1749 	 */
1750 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1751 
1752 	if (status == 0) {
1753 		checksum = hw->eeprom.ops.calc_checksum(hw);
1754 
1755 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1756 
1757 		/*
1758 		 * Verify read checksum from EEPROM is the same as
1759 		 * calculated checksum
1760 		 */
1761 		if (read_checksum != checksum)
1762 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1763 
1764 		/* If the user cares, return the calculated checksum */
1765 		if (checksum_val)
1766 			*checksum_val = checksum;
1767 	} else {
1768 		hw_dbg(hw, "EEPROM read failed\n");
1769 	}
1770 
1771 	return status;
1772 }
1773 
1774 /**
1775  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1776  *  @hw: pointer to hardware structure
1777  **/
1778 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1779 {
1780 	s32 status;
1781 	u16 checksum;
1782 
1783 	/*
1784 	 * Read the first word from the EEPROM. If this times out or fails, do
1785 	 * not continue or we could be in for a very long wait while every
1786 	 * EEPROM read fails
1787 	 */
1788 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1789 
1790 	if (status == 0) {
1791 		checksum = hw->eeprom.ops.calc_checksum(hw);
1792 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1793 					      checksum);
1794 	} else {
1795 		hw_dbg(hw, "EEPROM read failed\n");
1796 	}
1797 
1798 	return status;
1799 }
1800 
1801 /**
1802  *  ixgbe_set_rar_generic - Set Rx address register
1803  *  @hw: pointer to hardware structure
1804  *  @index: Receive address register to write
1805  *  @addr: Address to put into receive address register
1806  *  @vmdq: VMDq "set" or "pool" index
1807  *  @enable_addr: set flag that address is active
1808  *
1809  *  Puts an ethernet address into a receive address register.
1810  **/
1811 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1812                           u32 enable_addr)
1813 {
1814 	u32 rar_low, rar_high;
1815 	u32 rar_entries = hw->mac.num_rar_entries;
1816 
1817 	/* Make sure we are using a valid rar index range */
1818 	if (index >= rar_entries) {
1819 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1820 		return IXGBE_ERR_INVALID_ARGUMENT;
1821 	}
1822 
1823 	/* setup VMDq pool selection before this RAR gets enabled */
1824 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1825 
1826 	/*
1827 	 * HW expects these in little endian so we reverse the byte
1828 	 * order from network order (big endian) to little endian
1829 	 */
1830 	rar_low = ((u32)addr[0] |
1831 		   ((u32)addr[1] << 8) |
1832 		   ((u32)addr[2] << 16) |
1833 		   ((u32)addr[3] << 24));
1834 	/*
1835 	 * Some parts put the VMDq setting in the extra RAH bits,
1836 	 * so save everything except the lower 16 bits that hold part
1837 	 * of the address and the address valid bit.
1838 	 */
1839 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1840 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1841 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1842 
1843 	if (enable_addr != 0)
1844 		rar_high |= IXGBE_RAH_AV;
1845 
1846 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1847 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1848 
1849 	return 0;
1850 }
1851 
1852 /**
1853  *  ixgbe_clear_rar_generic - Remove Rx address register
1854  *  @hw: pointer to hardware structure
1855  *  @index: Receive address register to write
1856  *
1857  *  Clears an ethernet address from a receive address register.
1858  **/
1859 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1860 {
1861 	u32 rar_high;
1862 	u32 rar_entries = hw->mac.num_rar_entries;
1863 
1864 	/* Make sure we are using a valid rar index range */
1865 	if (index >= rar_entries) {
1866 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1867 		return IXGBE_ERR_INVALID_ARGUMENT;
1868 	}
1869 
1870 	/*
1871 	 * Some parts put the VMDq setting in the extra RAH bits,
1872 	 * so save everything except the lower 16 bits that hold part
1873 	 * of the address and the address valid bit.
1874 	 */
1875 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1876 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1877 
1878 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1879 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1880 
1881 	/* clear VMDq pool/queue selection for this RAR */
1882 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1889  *  @hw: pointer to hardware structure
1890  *
1891  *  Places the MAC address in receive address register 0 and clears the rest
1892  *  of the receive address registers. Clears the multicast table. Assumes
1893  *  the receiver is in reset when the routine is called.
1894  **/
1895 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1896 {
1897 	u32 i;
1898 	u32 rar_entries = hw->mac.num_rar_entries;
1899 
1900 	/*
1901 	 * If the current mac address is valid, assume it is a software override
1902 	 * to the permanent address.
1903 	 * Otherwise, use the permanent address from the eeprom.
1904 	 */
1905 	if (!is_valid_ether_addr(hw->mac.addr)) {
1906 		/* Get the MAC address from the RAR0 for later reference */
1907 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1908 
1909 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1910 	} else {
1911 		/* Setup the receive address. */
1912 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1913 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1914 
1915 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1916 
1917 		/*  clear VMDq pool/queue selection for RAR 0 */
1918 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1919 	}
1920 	hw->addr_ctrl.overflow_promisc = 0;
1921 
1922 	hw->addr_ctrl.rar_used_count = 1;
1923 
1924 	/* Zero out the other receive addresses. */
1925 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1926 	for (i = 1; i < rar_entries; i++) {
1927 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1928 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1929 	}
1930 
1931 	/* Clear the MTA */
1932 	hw->addr_ctrl.mta_in_use = 0;
1933 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1934 
1935 	hw_dbg(hw, " Clearing MTA\n");
1936 	for (i = 0; i < hw->mac.mcft_size; i++)
1937 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1938 
1939 	if (hw->mac.ops.init_uta_tables)
1940 		hw->mac.ops.init_uta_tables(hw);
1941 
1942 	return 0;
1943 }
1944 
1945 /**
1946  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1947  *  @hw: pointer to hardware structure
1948  *  @mc_addr: the multicast address
1949  *
1950  *  Extracts the 12 bits, from a multicast address, to determine which
1951  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1952  *  incoming rx multicast addresses, to determine the bit-vector to check in
1953  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1954  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1955  *  to mc_filter_type.
1956  **/
1957 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1958 {
1959 	u32 vector = 0;
1960 
1961 	switch (hw->mac.mc_filter_type) {
1962 	case 0:   /* use bits [47:36] of the address */
1963 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1964 		break;
1965 	case 1:   /* use bits [46:35] of the address */
1966 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1967 		break;
1968 	case 2:   /* use bits [45:34] of the address */
1969 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1970 		break;
1971 	case 3:   /* use bits [43:32] of the address */
1972 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1973 		break;
1974 	default:  /* Invalid mc_filter_type */
1975 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1976 		break;
1977 	}
1978 
1979 	/* vector can only be 12-bits or boundary will be exceeded */
1980 	vector &= 0xFFF;
1981 	return vector;
1982 }
1983 
1984 /**
1985  *  ixgbe_set_mta - Set bit-vector in multicast table
1986  *  @hw: pointer to hardware structure
1987  *  @hash_value: Multicast address hash value
1988  *
1989  *  Sets the bit-vector in the multicast table.
1990  **/
1991 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1992 {
1993 	u32 vector;
1994 	u32 vector_bit;
1995 	u32 vector_reg;
1996 
1997 	hw->addr_ctrl.mta_in_use++;
1998 
1999 	vector = ixgbe_mta_vector(hw, mc_addr);
2000 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2001 
2002 	/*
2003 	 * The MTA is a register array of 128 32-bit registers. It is treated
2004 	 * like an array of 4096 bits.  We want to set bit
2005 	 * BitArray[vector_value]. So we figure out what register the bit is
2006 	 * in, read it, OR in the new bit, then write back the new value.  The
2007 	 * register is determined by the upper 7 bits of the vector value and
2008 	 * the bit within that register are determined by the lower 5 bits of
2009 	 * the value.
2010 	 */
2011 	vector_reg = (vector >> 5) & 0x7F;
2012 	vector_bit = vector & 0x1F;
2013 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2014 }
2015 
2016 /**
2017  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2018  *  @hw: pointer to hardware structure
2019  *  @netdev: pointer to net device structure
2020  *
2021  *  The given list replaces any existing list. Clears the MC addrs from receive
2022  *  address registers and the multicast table. Uses unused receive address
2023  *  registers for the first multicast addresses, and hashes the rest into the
2024  *  multicast table.
2025  **/
2026 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2027 				      struct net_device *netdev)
2028 {
2029 	struct netdev_hw_addr *ha;
2030 	u32 i;
2031 
2032 	/*
2033 	 * Set the new number of MC addresses that we are being requested to
2034 	 * use.
2035 	 */
2036 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2037 	hw->addr_ctrl.mta_in_use = 0;
2038 
2039 	/* Clear mta_shadow */
2040 	hw_dbg(hw, " Clearing MTA\n");
2041 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2042 
2043 	/* Update mta shadow */
2044 	netdev_for_each_mc_addr(ha, netdev) {
2045 		hw_dbg(hw, " Adding the multicast addresses:\n");
2046 		ixgbe_set_mta(hw, ha->addr);
2047 	}
2048 
2049 	/* Enable mta */
2050 	for (i = 0; i < hw->mac.mcft_size; i++)
2051 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2052 				      hw->mac.mta_shadow[i]);
2053 
2054 	if (hw->addr_ctrl.mta_in_use > 0)
2055 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2056 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2057 
2058 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2059 	return 0;
2060 }
2061 
2062 /**
2063  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2064  *  @hw: pointer to hardware structure
2065  *
2066  *  Enables multicast address in RAR and the use of the multicast hash table.
2067  **/
2068 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2069 {
2070 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2071 
2072 	if (a->mta_in_use > 0)
2073 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2074 		                hw->mac.mc_filter_type);
2075 
2076 	return 0;
2077 }
2078 
2079 /**
2080  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2081  *  @hw: pointer to hardware structure
2082  *
2083  *  Disables multicast address in RAR and the use of the multicast hash table.
2084  **/
2085 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2086 {
2087 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2088 
2089 	if (a->mta_in_use > 0)
2090 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2091 
2092 	return 0;
2093 }
2094 
2095 /**
2096  *  ixgbe_fc_enable_generic - Enable flow control
2097  *  @hw: pointer to hardware structure
2098  *
2099  *  Enable flow control according to the current settings.
2100  **/
2101 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2102 {
2103 	s32 ret_val = 0;
2104 	u32 mflcn_reg, fccfg_reg;
2105 	u32 reg;
2106 	u32 fcrtl, fcrth;
2107 	int i;
2108 
2109 	/*
2110 	 * Validate the water mark configuration for packet buffer 0.  Zero
2111 	 * water marks indicate that the packet buffer was not configured
2112 	 * and the watermarks for packet buffer 0 should always be configured.
2113 	 */
2114 	if (!hw->fc.low_water ||
2115 	    !hw->fc.high_water[0] ||
2116 	    !hw->fc.pause_time) {
2117 		hw_dbg(hw, "Invalid water mark configuration\n");
2118 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2119 		goto out;
2120 	}
2121 
2122 	/* Negotiate the fc mode to use */
2123 	ixgbe_fc_autoneg(hw);
2124 
2125 	/* Disable any previous flow control settings */
2126 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2127 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2128 
2129 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2130 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2131 
2132 	/*
2133 	 * The possible values of fc.current_mode are:
2134 	 * 0: Flow control is completely disabled
2135 	 * 1: Rx flow control is enabled (we can receive pause frames,
2136 	 *    but not send pause frames).
2137 	 * 2: Tx flow control is enabled (we can send pause frames but
2138 	 *    we do not support receiving pause frames).
2139 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2140 	 * other: Invalid.
2141 	 */
2142 	switch (hw->fc.current_mode) {
2143 	case ixgbe_fc_none:
2144 		/*
2145 		 * Flow control is disabled by software override or autoneg.
2146 		 * The code below will actually disable it in the HW.
2147 		 */
2148 		break;
2149 	case ixgbe_fc_rx_pause:
2150 		/*
2151 		 * Rx Flow control is enabled and Tx Flow control is
2152 		 * disabled by software override. Since there really
2153 		 * isn't a way to advertise that we are capable of RX
2154 		 * Pause ONLY, we will advertise that we support both
2155 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2156 		 * disable the adapter's ability to send PAUSE frames.
2157 		 */
2158 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2159 		break;
2160 	case ixgbe_fc_tx_pause:
2161 		/*
2162 		 * Tx Flow control is enabled, and Rx Flow control is
2163 		 * disabled by software override.
2164 		 */
2165 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2166 		break;
2167 	case ixgbe_fc_full:
2168 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2169 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2170 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2171 		break;
2172 	default:
2173 		hw_dbg(hw, "Flow control param set incorrectly\n");
2174 		ret_val = IXGBE_ERR_CONFIG;
2175 		goto out;
2176 		break;
2177 	}
2178 
2179 	/* Set 802.3x based flow control settings. */
2180 	mflcn_reg |= IXGBE_MFLCN_DPF;
2181 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2182 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2183 
2184 	fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2185 
2186 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2187 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2188 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2189 		    hw->fc.high_water[i]) {
2190 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2191 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2192 		} else {
2193 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2194 			/*
2195 			 * In order to prevent Tx hangs when the internal Tx
2196 			 * switch is enabled we must set the high water mark
2197 			 * to the maximum FCRTH value.  This allows the Tx
2198 			 * switch to function even under heavy Rx workloads.
2199 			 */
2200 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2201 		}
2202 
2203 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2204 	}
2205 
2206 	/* Configure pause time (2 TCs per register) */
2207 	reg = hw->fc.pause_time * 0x00010001;
2208 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2209 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2210 
2211 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2212 
2213 out:
2214 	return ret_val;
2215 }
2216 
2217 /**
2218  *  ixgbe_negotiate_fc - Negotiate flow control
2219  *  @hw: pointer to hardware structure
2220  *  @adv_reg: flow control advertised settings
2221  *  @lp_reg: link partner's flow control settings
2222  *  @adv_sym: symmetric pause bit in advertisement
2223  *  @adv_asm: asymmetric pause bit in advertisement
2224  *  @lp_sym: symmetric pause bit in link partner advertisement
2225  *  @lp_asm: asymmetric pause bit in link partner advertisement
2226  *
2227  *  Find the intersection between advertised settings and link partner's
2228  *  advertised settings
2229  **/
2230 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2231 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2232 {
2233 	if ((!(adv_reg)) ||  (!(lp_reg)))
2234 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2235 
2236 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2237 		/*
2238 		 * Now we need to check if the user selected Rx ONLY
2239 		 * of pause frames.  In this case, we had to advertise
2240 		 * FULL flow control because we could not advertise RX
2241 		 * ONLY. Hence, we must now check to see if we need to
2242 		 * turn OFF the TRANSMISSION of PAUSE frames.
2243 		 */
2244 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2245 			hw->fc.current_mode = ixgbe_fc_full;
2246 			hw_dbg(hw, "Flow Control = FULL.\n");
2247 		} else {
2248 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2249 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2250 		}
2251 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2252 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2253 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2254 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2255 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2256 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2257 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2258 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2259 	} else {
2260 		hw->fc.current_mode = ixgbe_fc_none;
2261 		hw_dbg(hw, "Flow Control = NONE.\n");
2262 	}
2263 	return 0;
2264 }
2265 
2266 /**
2267  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2268  *  @hw: pointer to hardware structure
2269  *
2270  *  Enable flow control according on 1 gig fiber.
2271  **/
2272 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2273 {
2274 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2275 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2276 
2277 	/*
2278 	 * On multispeed fiber at 1g, bail out if
2279 	 * - link is up but AN did not complete, or if
2280 	 * - link is up and AN completed but timed out
2281 	 */
2282 
2283 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2284 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2285 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2286 		goto out;
2287 
2288 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2289 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2290 
2291 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2292 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2293 			       IXGBE_PCS1GANA_ASM_PAUSE,
2294 			       IXGBE_PCS1GANA_SYM_PAUSE,
2295 			       IXGBE_PCS1GANA_ASM_PAUSE);
2296 
2297 out:
2298 	return ret_val;
2299 }
2300 
2301 /**
2302  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2303  *  @hw: pointer to hardware structure
2304  *
2305  *  Enable flow control according to IEEE clause 37.
2306  **/
2307 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2308 {
2309 	u32 links2, anlp1_reg, autoc_reg, links;
2310 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2311 
2312 	/*
2313 	 * On backplane, bail out if
2314 	 * - backplane autoneg was not completed, or if
2315 	 * - we are 82599 and link partner is not AN enabled
2316 	 */
2317 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2318 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2319 		goto out;
2320 
2321 	if (hw->mac.type == ixgbe_mac_82599EB) {
2322 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2323 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2324 			goto out;
2325 	}
2326 	/*
2327 	 * Read the 10g AN autoc and LP ability registers and resolve
2328 	 * local flow control settings accordingly
2329 	 */
2330 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2331 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2332 
2333 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2334 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2335 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2336 
2337 out:
2338 	return ret_val;
2339 }
2340 
2341 /**
2342  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2343  *  @hw: pointer to hardware structure
2344  *
2345  *  Enable flow control according to IEEE clause 37.
2346  **/
2347 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2348 {
2349 	u16 technology_ability_reg = 0;
2350 	u16 lp_technology_ability_reg = 0;
2351 
2352 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2353 			     MDIO_MMD_AN,
2354 			     &technology_ability_reg);
2355 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2356 			     MDIO_MMD_AN,
2357 			     &lp_technology_ability_reg);
2358 
2359 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2360 				  (u32)lp_technology_ability_reg,
2361 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2362 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2363 }
2364 
2365 /**
2366  *  ixgbe_fc_autoneg - Configure flow control
2367  *  @hw: pointer to hardware structure
2368  *
2369  *  Compares our advertised flow control capabilities to those advertised by
2370  *  our link partner, and determines the proper flow control mode to use.
2371  **/
2372 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2373 {
2374 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2375 	ixgbe_link_speed speed;
2376 	bool link_up;
2377 
2378 	/*
2379 	 * AN should have completed when the cable was plugged in.
2380 	 * Look for reasons to bail out.  Bail out if:
2381 	 * - FC autoneg is disabled, or if
2382 	 * - link is not up.
2383 	 *
2384 	 * Since we're being called from an LSC, link is already known to be up.
2385 	 * So use link_up_wait_to_complete=false.
2386 	 */
2387 	if (hw->fc.disable_fc_autoneg)
2388 		goto out;
2389 
2390 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2391 	if (!link_up)
2392 		goto out;
2393 
2394 	switch (hw->phy.media_type) {
2395 	/* Autoneg flow control on fiber adapters */
2396 	case ixgbe_media_type_fiber:
2397 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2398 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2399 		break;
2400 
2401 	/* Autoneg flow control on backplane adapters */
2402 	case ixgbe_media_type_backplane:
2403 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2404 		break;
2405 
2406 	/* Autoneg flow control on copper adapters */
2407 	case ixgbe_media_type_copper:
2408 		if (ixgbe_device_supports_autoneg_fc(hw))
2409 			ret_val = ixgbe_fc_autoneg_copper(hw);
2410 		break;
2411 
2412 	default:
2413 		break;
2414 	}
2415 
2416 out:
2417 	if (ret_val == 0) {
2418 		hw->fc.fc_was_autonegged = true;
2419 	} else {
2420 		hw->fc.fc_was_autonegged = false;
2421 		hw->fc.current_mode = hw->fc.requested_mode;
2422 	}
2423 }
2424 
2425 /**
2426  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2427  * @hw: pointer to hardware structure
2428  *
2429  * System-wide timeout range is encoded in PCIe Device Control2 register.
2430  *
2431  *  Add 10% to specified maximum and return the number of times to poll for
2432  *  completion timeout, in units of 100 microsec.  Never return less than
2433  *  800 = 80 millisec.
2434  **/
2435 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2436 {
2437 	s16 devctl2;
2438 	u32 pollcnt;
2439 
2440 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2441 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2442 
2443 	switch (devctl2) {
2444 	case IXGBE_PCIDEVCTRL2_65_130ms:
2445 		 pollcnt = 1300;         /* 130 millisec */
2446 		break;
2447 	case IXGBE_PCIDEVCTRL2_260_520ms:
2448 		pollcnt = 5200;         /* 520 millisec */
2449 		break;
2450 	case IXGBE_PCIDEVCTRL2_1_2s:
2451 		pollcnt = 20000;        /* 2 sec */
2452 		break;
2453 	case IXGBE_PCIDEVCTRL2_4_8s:
2454 		pollcnt = 80000;        /* 8 sec */
2455 		break;
2456 	case IXGBE_PCIDEVCTRL2_17_34s:
2457 		pollcnt = 34000;        /* 34 sec */
2458 		break;
2459 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2460 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2461 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2462 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2463 	default:
2464 		pollcnt = 800;          /* 80 millisec minimum */
2465 		break;
2466 	}
2467 
2468 	/* add 10% to spec maximum */
2469 	return (pollcnt * 11) / 10;
2470 }
2471 
2472 /**
2473  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2474  *  @hw: pointer to hardware structure
2475  *
2476  *  Disables PCI-Express master access and verifies there are no pending
2477  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2478  *  bit hasn't caused the master requests to be disabled, else 0
2479  *  is returned signifying master requests disabled.
2480  **/
2481 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2482 {
2483 	s32 status = 0;
2484 	u32 i, poll;
2485 	u16 value;
2486 
2487 	/* Always set this bit to ensure any future transactions are blocked */
2488 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2489 
2490 	/* Exit if master requests are blocked */
2491 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2492 	    ixgbe_removed(hw->hw_addr))
2493 		goto out;
2494 
2495 	/* Poll for master request bit to clear */
2496 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2497 		udelay(100);
2498 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2499 			goto out;
2500 	}
2501 
2502 	/*
2503 	 * Two consecutive resets are required via CTRL.RST per datasheet
2504 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2505 	 * of this need.  The first reset prevents new master requests from
2506 	 * being issued by our device.  We then must wait 1usec or more for any
2507 	 * remaining completions from the PCIe bus to trickle in, and then reset
2508 	 * again to clear out any effects they may have had on our device.
2509 	 */
2510 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2511 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2512 
2513 	/*
2514 	 * Before proceeding, make sure that the PCIe block does not have
2515 	 * transactions pending.
2516 	 */
2517 	poll = ixgbe_pcie_timeout_poll(hw);
2518 	for (i = 0; i < poll; i++) {
2519 		udelay(100);
2520 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2521 		if (ixgbe_removed(hw->hw_addr))
2522 			goto out;
2523 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2524 			goto out;
2525 	}
2526 
2527 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2528 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2529 
2530 out:
2531 	return status;
2532 }
2533 
2534 /**
2535  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2536  *  @hw: pointer to hardware structure
2537  *  @mask: Mask to specify which semaphore to acquire
2538  *
2539  *  Acquires the SWFW semaphore through the GSSR register for the specified
2540  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2541  **/
2542 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2543 {
2544 	u32 gssr = 0;
2545 	u32 swmask = mask;
2546 	u32 fwmask = mask << 5;
2547 	u32 timeout = 200;
2548 	u32 i;
2549 
2550 	for (i = 0; i < timeout; i++) {
2551 		/*
2552 		 * SW NVM semaphore bit is used for access to all
2553 		 * SW_FW_SYNC bits (not just NVM)
2554 		 */
2555 		if (ixgbe_get_eeprom_semaphore(hw))
2556 			return IXGBE_ERR_SWFW_SYNC;
2557 
2558 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2559 		if (!(gssr & (fwmask | swmask))) {
2560 			gssr |= swmask;
2561 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2562 			ixgbe_release_eeprom_semaphore(hw);
2563 			return 0;
2564 		} else {
2565 			/* Resource is currently in use by FW or SW */
2566 			ixgbe_release_eeprom_semaphore(hw);
2567 			usleep_range(5000, 10000);
2568 		}
2569 	}
2570 
2571 	/* If time expired clear the bits holding the lock and retry */
2572 	if (gssr & (fwmask | swmask))
2573 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2574 
2575 	usleep_range(5000, 10000);
2576 	return IXGBE_ERR_SWFW_SYNC;
2577 }
2578 
2579 /**
2580  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2581  *  @hw: pointer to hardware structure
2582  *  @mask: Mask to specify which semaphore to release
2583  *
2584  *  Releases the SWFW semaphore through the GSSR register for the specified
2585  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2586  **/
2587 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2588 {
2589 	u32 gssr;
2590 	u32 swmask = mask;
2591 
2592 	ixgbe_get_eeprom_semaphore(hw);
2593 
2594 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2595 	gssr &= ~swmask;
2596 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2597 
2598 	ixgbe_release_eeprom_semaphore(hw);
2599 }
2600 
2601 /**
2602  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2603  * @hw: pointer to hardware structure
2604  * @reg_val: Value we read from AUTOC
2605  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2606  *	    true in this the generic case.
2607  *
2608  * The default case requires no protection so just to the register read.
2609  **/
2610 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2611 {
2612 	*locked = false;
2613 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2614 	return 0;
2615 }
2616 
2617 /**
2618  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2619  * @hw: pointer to hardware structure
2620  * @reg_val: value to write to AUTOC
2621  * @locked: bool to indicate whether the SW/FW lock was already taken by
2622  *	    previous read.
2623  **/
2624 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2625 {
2626 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2627 	return 0;
2628 }
2629 
2630 /**
2631  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2632  *  @hw: pointer to hardware structure
2633  *
2634  *  Stops the receive data path and waits for the HW to internally
2635  *  empty the Rx security block.
2636  **/
2637 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2638 {
2639 #define IXGBE_MAX_SECRX_POLL 40
2640 	int i;
2641 	int secrxreg;
2642 
2643 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2644 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2645 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2646 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2647 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2648 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2649 			break;
2650 		else
2651 			/* Use interrupt-safe sleep just in case */
2652 			udelay(1000);
2653 	}
2654 
2655 	/* For informational purposes only */
2656 	if (i >= IXGBE_MAX_SECRX_POLL)
2657 		hw_dbg(hw, "Rx unit being enabled before security "
2658 		       "path fully disabled.  Continuing with init.\n");
2659 
2660 	return 0;
2661 
2662 }
2663 
2664 /**
2665  *  ixgbe_enable_rx_buff - Enables the receive data path
2666  *  @hw: pointer to hardware structure
2667  *
2668  *  Enables the receive data path
2669  **/
2670 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2671 {
2672 	int secrxreg;
2673 
2674 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2675 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2676 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2677 	IXGBE_WRITE_FLUSH(hw);
2678 
2679 	return 0;
2680 }
2681 
2682 /**
2683  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2684  *  @hw: pointer to hardware structure
2685  *  @regval: register value to write to RXCTRL
2686  *
2687  *  Enables the Rx DMA unit
2688  **/
2689 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2690 {
2691 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2692 
2693 	return 0;
2694 }
2695 
2696 /**
2697  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2698  *  @hw: pointer to hardware structure
2699  *  @index: led number to blink
2700  **/
2701 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2702 {
2703 	ixgbe_link_speed speed = 0;
2704 	bool link_up = false;
2705 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2706 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2707 	s32 ret_val = 0;
2708 	bool locked = false;
2709 
2710 	/*
2711 	 * Link must be up to auto-blink the LEDs;
2712 	 * Force it if link is down.
2713 	 */
2714 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2715 
2716 	if (!link_up) {
2717 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2718 		if (ret_val)
2719 			goto out;
2720 
2721 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2722 		autoc_reg |= IXGBE_AUTOC_FLU;
2723 
2724 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2725 		if (ret_val)
2726 			goto out;
2727 
2728 		IXGBE_WRITE_FLUSH(hw);
2729 
2730 		usleep_range(10000, 20000);
2731 	}
2732 
2733 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2734 	led_reg |= IXGBE_LED_BLINK(index);
2735 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2736 	IXGBE_WRITE_FLUSH(hw);
2737 
2738 out:
2739 	return ret_val;
2740 }
2741 
2742 /**
2743  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2744  *  @hw: pointer to hardware structure
2745  *  @index: led number to stop blinking
2746  **/
2747 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2748 {
2749 	u32 autoc_reg = 0;
2750 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2751 	s32 ret_val = 0;
2752 	bool locked = false;
2753 
2754 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2755 	if (ret_val)
2756 		goto out;
2757 
2758 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2759 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2760 
2761 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2762 	if (ret_val)
2763 		goto out;
2764 
2765 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2766 	led_reg &= ~IXGBE_LED_BLINK(index);
2767 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2768 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2769 	IXGBE_WRITE_FLUSH(hw);
2770 
2771 out:
2772 	return ret_val;
2773 }
2774 
2775 /**
2776  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2777  *  @hw: pointer to hardware structure
2778  *  @san_mac_offset: SAN MAC address offset
2779  *
2780  *  This function will read the EEPROM location for the SAN MAC address
2781  *  pointer, and returns the value at that location.  This is used in both
2782  *  get and set mac_addr routines.
2783  **/
2784 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2785                                         u16 *san_mac_offset)
2786 {
2787 	s32 ret_val;
2788 
2789 	/*
2790 	 * First read the EEPROM pointer to see if the MAC addresses are
2791 	 * available.
2792 	 */
2793 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2794 				      san_mac_offset);
2795 	if (ret_val)
2796 		hw_err(hw, "eeprom read at offset %d failed\n",
2797 		       IXGBE_SAN_MAC_ADDR_PTR);
2798 
2799 	return ret_val;
2800 }
2801 
2802 /**
2803  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2804  *  @hw: pointer to hardware structure
2805  *  @san_mac_addr: SAN MAC address
2806  *
2807  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2808  *  per-port, so set_lan_id() must be called before reading the addresses.
2809  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2810  *  upon for non-SFP connections, so we must call it here.
2811  **/
2812 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2813 {
2814 	u16 san_mac_data, san_mac_offset;
2815 	u8 i;
2816 	s32 ret_val;
2817 
2818 	/*
2819 	 * First read the EEPROM pointer to see if the MAC addresses are
2820 	 * available.  If they're not, no point in calling set_lan_id() here.
2821 	 */
2822 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2823 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2824 
2825 		goto san_mac_addr_clr;
2826 
2827 	/* make sure we know which port we need to program */
2828 	hw->mac.ops.set_lan_id(hw);
2829 	/* apply the port offset to the address offset */
2830 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2831 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2832 	for (i = 0; i < 3; i++) {
2833 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2834 					      &san_mac_data);
2835 		if (ret_val) {
2836 			hw_err(hw, "eeprom read at offset %d failed\n",
2837 			       san_mac_offset);
2838 			goto san_mac_addr_clr;
2839 		}
2840 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2841 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2842 		san_mac_offset++;
2843 	}
2844 	return 0;
2845 
2846 san_mac_addr_clr:
2847 	/* No addresses available in this EEPROM.  It's not necessarily an
2848 	 * error though, so just wipe the local address and return.
2849 	 */
2850 	for (i = 0; i < 6; i++)
2851 		san_mac_addr[i] = 0xFF;
2852 	return ret_val;
2853 }
2854 
2855 /**
2856  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2857  *  @hw: pointer to hardware structure
2858  *
2859  *  Read PCIe configuration space, and get the MSI-X vector count from
2860  *  the capabilities table.
2861  **/
2862 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2863 {
2864 	u16 msix_count = 1;
2865 	u16 max_msix_count;
2866 	u16 pcie_offset;
2867 
2868 	switch (hw->mac.type) {
2869 	case ixgbe_mac_82598EB:
2870 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2871 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2872 		break;
2873 	case ixgbe_mac_82599EB:
2874 	case ixgbe_mac_X540:
2875 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2876 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2877 		break;
2878 	default:
2879 		return msix_count;
2880 	}
2881 
2882 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2883 	if (ixgbe_removed(hw->hw_addr))
2884 		msix_count = 0;
2885 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2886 
2887 	/* MSI-X count is zero-based in HW */
2888 	msix_count++;
2889 
2890 	if (msix_count > max_msix_count)
2891 		msix_count = max_msix_count;
2892 
2893 	return msix_count;
2894 }
2895 
2896 /**
2897  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2898  *  @hw: pointer to hardware struct
2899  *  @rar: receive address register index to disassociate
2900  *  @vmdq: VMDq pool index to remove from the rar
2901  **/
2902 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2903 {
2904 	u32 mpsar_lo, mpsar_hi;
2905 	u32 rar_entries = hw->mac.num_rar_entries;
2906 
2907 	/* Make sure we are using a valid rar index range */
2908 	if (rar >= rar_entries) {
2909 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2910 		return IXGBE_ERR_INVALID_ARGUMENT;
2911 	}
2912 
2913 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2914 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2915 
2916 	if (ixgbe_removed(hw->hw_addr))
2917 		goto done;
2918 
2919 	if (!mpsar_lo && !mpsar_hi)
2920 		goto done;
2921 
2922 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2923 		if (mpsar_lo) {
2924 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2925 			mpsar_lo = 0;
2926 		}
2927 		if (mpsar_hi) {
2928 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2929 			mpsar_hi = 0;
2930 		}
2931 	} else if (vmdq < 32) {
2932 		mpsar_lo &= ~(1 << vmdq);
2933 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2934 	} else {
2935 		mpsar_hi &= ~(1 << (vmdq - 32));
2936 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2937 	}
2938 
2939 	/* was that the last pool using this rar? */
2940 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2941 		hw->mac.ops.clear_rar(hw, rar);
2942 done:
2943 	return 0;
2944 }
2945 
2946 /**
2947  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2948  *  @hw: pointer to hardware struct
2949  *  @rar: receive address register index to associate with a VMDq index
2950  *  @vmdq: VMDq pool index
2951  **/
2952 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2953 {
2954 	u32 mpsar;
2955 	u32 rar_entries = hw->mac.num_rar_entries;
2956 
2957 	/* Make sure we are using a valid rar index range */
2958 	if (rar >= rar_entries) {
2959 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2960 		return IXGBE_ERR_INVALID_ARGUMENT;
2961 	}
2962 
2963 	if (vmdq < 32) {
2964 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2965 		mpsar |= 1 << vmdq;
2966 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2967 	} else {
2968 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2969 		mpsar |= 1 << (vmdq - 32);
2970 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2971 	}
2972 	return 0;
2973 }
2974 
2975 /**
2976  *  This function should only be involved in the IOV mode.
2977  *  In IOV mode, Default pool is next pool after the number of
2978  *  VFs advertized and not 0.
2979  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2980  *
2981  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2982  *  @hw: pointer to hardware struct
2983  *  @vmdq: VMDq pool index
2984  **/
2985 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2986 {
2987 	u32 rar = hw->mac.san_mac_rar_index;
2988 
2989 	if (vmdq < 32) {
2990 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2991 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2992 	} else {
2993 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2994 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2995 	}
2996 
2997 	return 0;
2998 }
2999 
3000 /**
3001  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3002  *  @hw: pointer to hardware structure
3003  **/
3004 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3005 {
3006 	int i;
3007 
3008 	for (i = 0; i < 128; i++)
3009 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3010 
3011 	return 0;
3012 }
3013 
3014 /**
3015  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3016  *  @hw: pointer to hardware structure
3017  *  @vlan: VLAN id to write to VLAN filter
3018  *
3019  *  return the VLVF index where this VLAN id should be placed
3020  *
3021  **/
3022 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3023 {
3024 	u32 bits = 0;
3025 	u32 first_empty_slot = 0;
3026 	s32 regindex;
3027 
3028 	/* short cut the special case */
3029 	if (vlan == 0)
3030 		return 0;
3031 
3032 	/*
3033 	  * Search for the vlan id in the VLVF entries. Save off the first empty
3034 	  * slot found along the way
3035 	  */
3036 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3037 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3038 		if (!bits && !(first_empty_slot))
3039 			first_empty_slot = regindex;
3040 		else if ((bits & 0x0FFF) == vlan)
3041 			break;
3042 	}
3043 
3044 	/*
3045 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3046 	  * in the VLVF. Else use the first empty VLVF register for this
3047 	  * vlan id.
3048 	  */
3049 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3050 		if (first_empty_slot)
3051 			regindex = first_empty_slot;
3052 		else {
3053 			hw_dbg(hw, "No space in VLVF.\n");
3054 			regindex = IXGBE_ERR_NO_SPACE;
3055 		}
3056 	}
3057 
3058 	return regindex;
3059 }
3060 
3061 /**
3062  *  ixgbe_set_vfta_generic - Set VLAN filter table
3063  *  @hw: pointer to hardware structure
3064  *  @vlan: VLAN id to write to VLAN filter
3065  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3066  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3067  *
3068  *  Turn on/off specified VLAN in the VLAN filter table.
3069  **/
3070 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3071                            bool vlan_on)
3072 {
3073 	s32 regindex;
3074 	u32 bitindex;
3075 	u32 vfta;
3076 	u32 bits;
3077 	u32 vt;
3078 	u32 targetbit;
3079 	bool vfta_changed = false;
3080 
3081 	if (vlan > 4095)
3082 		return IXGBE_ERR_PARAM;
3083 
3084 	/*
3085 	 * this is a 2 part operation - first the VFTA, then the
3086 	 * VLVF and VLVFB if VT Mode is set
3087 	 * We don't write the VFTA until we know the VLVF part succeeded.
3088 	 */
3089 
3090 	/* Part 1
3091 	 * The VFTA is a bitstring made up of 128 32-bit registers
3092 	 * that enable the particular VLAN id, much like the MTA:
3093 	 *    bits[11-5]: which register
3094 	 *    bits[4-0]:  which bit in the register
3095 	 */
3096 	regindex = (vlan >> 5) & 0x7F;
3097 	bitindex = vlan & 0x1F;
3098 	targetbit = (1 << bitindex);
3099 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3100 
3101 	if (vlan_on) {
3102 		if (!(vfta & targetbit)) {
3103 			vfta |= targetbit;
3104 			vfta_changed = true;
3105 		}
3106 	} else {
3107 		if ((vfta & targetbit)) {
3108 			vfta &= ~targetbit;
3109 			vfta_changed = true;
3110 		}
3111 	}
3112 
3113 	/* Part 2
3114 	 * If VT Mode is set
3115 	 *   Either vlan_on
3116 	 *     make sure the vlan is in VLVF
3117 	 *     set the vind bit in the matching VLVFB
3118 	 *   Or !vlan_on
3119 	 *     clear the pool bit and possibly the vind
3120 	 */
3121 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3122 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3123 		s32 vlvf_index;
3124 
3125 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3126 		if (vlvf_index < 0)
3127 			return vlvf_index;
3128 
3129 		if (vlan_on) {
3130 			/* set the pool bit */
3131 			if (vind < 32) {
3132 				bits = IXGBE_READ_REG(hw,
3133 						IXGBE_VLVFB(vlvf_index*2));
3134 				bits |= (1 << vind);
3135 				IXGBE_WRITE_REG(hw,
3136 						IXGBE_VLVFB(vlvf_index*2),
3137 						bits);
3138 			} else {
3139 				bits = IXGBE_READ_REG(hw,
3140 						IXGBE_VLVFB((vlvf_index*2)+1));
3141 				bits |= (1 << (vind-32));
3142 				IXGBE_WRITE_REG(hw,
3143 						IXGBE_VLVFB((vlvf_index*2)+1),
3144 						bits);
3145 			}
3146 		} else {
3147 			/* clear the pool bit */
3148 			if (vind < 32) {
3149 				bits = IXGBE_READ_REG(hw,
3150 						IXGBE_VLVFB(vlvf_index*2));
3151 				bits &= ~(1 << vind);
3152 				IXGBE_WRITE_REG(hw,
3153 						IXGBE_VLVFB(vlvf_index*2),
3154 						bits);
3155 				bits |= IXGBE_READ_REG(hw,
3156 						IXGBE_VLVFB((vlvf_index*2)+1));
3157 			} else {
3158 				bits = IXGBE_READ_REG(hw,
3159 						IXGBE_VLVFB((vlvf_index*2)+1));
3160 				bits &= ~(1 << (vind-32));
3161 				IXGBE_WRITE_REG(hw,
3162 						IXGBE_VLVFB((vlvf_index*2)+1),
3163 						bits);
3164 				bits |= IXGBE_READ_REG(hw,
3165 						IXGBE_VLVFB(vlvf_index*2));
3166 			}
3167 		}
3168 
3169 		/*
3170 		 * If there are still bits set in the VLVFB registers
3171 		 * for the VLAN ID indicated we need to see if the
3172 		 * caller is requesting that we clear the VFTA entry bit.
3173 		 * If the caller has requested that we clear the VFTA
3174 		 * entry bit but there are still pools/VFs using this VLAN
3175 		 * ID entry then ignore the request.  We're not worried
3176 		 * about the case where we're turning the VFTA VLAN ID
3177 		 * entry bit on, only when requested to turn it off as
3178 		 * there may be multiple pools and/or VFs using the
3179 		 * VLAN ID entry.  In that case we cannot clear the
3180 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3181 		 * been cleared.  This will be indicated by "bits" being
3182 		 * zero.
3183 		 */
3184 		if (bits) {
3185 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3186 					(IXGBE_VLVF_VIEN | vlan));
3187 			if (!vlan_on) {
3188 				/* someone wants to clear the vfta entry
3189 				 * but some pools/VFs are still using it.
3190 				 * Ignore it. */
3191 				vfta_changed = false;
3192 			}
3193 		}
3194 		else
3195 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3196 	}
3197 
3198 	if (vfta_changed)
3199 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3200 
3201 	return 0;
3202 }
3203 
3204 /**
3205  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3206  *  @hw: pointer to hardware structure
3207  *
3208  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3209  **/
3210 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3211 {
3212 	u32 offset;
3213 
3214 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3215 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3216 
3217 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3218 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3219 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3220 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3221 	}
3222 
3223 	return 0;
3224 }
3225 
3226 /**
3227  *  ixgbe_check_mac_link_generic - Determine link and speed status
3228  *  @hw: pointer to hardware structure
3229  *  @speed: pointer to link speed
3230  *  @link_up: true when link is up
3231  *  @link_up_wait_to_complete: bool used to wait for link up or not
3232  *
3233  *  Reads the links register to determine if link is up and the current speed
3234  **/
3235 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3236 				 bool *link_up, bool link_up_wait_to_complete)
3237 {
3238 	u32 links_reg, links_orig;
3239 	u32 i;
3240 
3241 	/* clear the old state */
3242 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3243 
3244 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3245 
3246 	if (links_orig != links_reg) {
3247 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3248 		       links_orig, links_reg);
3249 	}
3250 
3251 	if (link_up_wait_to_complete) {
3252 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3253 			if (links_reg & IXGBE_LINKS_UP) {
3254 				*link_up = true;
3255 				break;
3256 			} else {
3257 				*link_up = false;
3258 			}
3259 			msleep(100);
3260 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3261 		}
3262 	} else {
3263 		if (links_reg & IXGBE_LINKS_UP)
3264 			*link_up = true;
3265 		else
3266 			*link_up = false;
3267 	}
3268 
3269 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3270 	    IXGBE_LINKS_SPEED_10G_82599)
3271 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3272 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3273 		 IXGBE_LINKS_SPEED_1G_82599)
3274 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3275 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3276 		 IXGBE_LINKS_SPEED_100_82599)
3277 		*speed = IXGBE_LINK_SPEED_100_FULL;
3278 	else
3279 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3280 
3281 	return 0;
3282 }
3283 
3284 /**
3285  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3286  *  the EEPROM
3287  *  @hw: pointer to hardware structure
3288  *  @wwnn_prefix: the alternative WWNN prefix
3289  *  @wwpn_prefix: the alternative WWPN prefix
3290  *
3291  *  This function will read the EEPROM from the alternative SAN MAC address
3292  *  block to check the support for the alternative WWNN/WWPN prefix support.
3293  **/
3294 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3295                                         u16 *wwpn_prefix)
3296 {
3297 	u16 offset, caps;
3298 	u16 alt_san_mac_blk_offset;
3299 
3300 	/* clear output first */
3301 	*wwnn_prefix = 0xFFFF;
3302 	*wwpn_prefix = 0xFFFF;
3303 
3304 	/* check if alternative SAN MAC is supported */
3305 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3306 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3307 		goto wwn_prefix_err;
3308 
3309 	if ((alt_san_mac_blk_offset == 0) ||
3310 	    (alt_san_mac_blk_offset == 0xFFFF))
3311 		goto wwn_prefix_out;
3312 
3313 	/* check capability in alternative san mac address block */
3314 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3315 	if (hw->eeprom.ops.read(hw, offset, &caps))
3316 		goto wwn_prefix_err;
3317 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3318 		goto wwn_prefix_out;
3319 
3320 	/* get the corresponding prefix for WWNN/WWPN */
3321 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3322 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3323 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3324 
3325 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3326 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3327 		goto wwn_prefix_err;
3328 
3329 wwn_prefix_out:
3330 	return 0;
3331 
3332 wwn_prefix_err:
3333 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3334 	return 0;
3335 }
3336 
3337 /**
3338  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3339  *  @hw: pointer to hardware structure
3340  *  @enable: enable or disable switch for anti-spoofing
3341  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3342  *
3343  **/
3344 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3345 {
3346 	int j;
3347 	int pf_target_reg = pf >> 3;
3348 	int pf_target_shift = pf % 8;
3349 	u32 pfvfspoof = 0;
3350 
3351 	if (hw->mac.type == ixgbe_mac_82598EB)
3352 		return;
3353 
3354 	if (enable)
3355 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3356 
3357 	/*
3358 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3359 	 * MAC anti-spoof enables in each register array element.
3360 	 */
3361 	for (j = 0; j < pf_target_reg; j++)
3362 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3363 
3364 	/*
3365 	 * The PF should be allowed to spoof so that it can support
3366 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3367 	 */
3368 	pfvfspoof &= (1 << pf_target_shift) - 1;
3369 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3370 
3371 	/*
3372 	 * Remaining pools belong to the PF so they do not need to have
3373 	 * anti-spoofing enabled.
3374 	 */
3375 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3376 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3377 }
3378 
3379 /**
3380  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3381  *  @hw: pointer to hardware structure
3382  *  @enable: enable or disable switch for VLAN anti-spoofing
3383  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3384  *
3385  **/
3386 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3387 {
3388 	int vf_target_reg = vf >> 3;
3389 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3390 	u32 pfvfspoof;
3391 
3392 	if (hw->mac.type == ixgbe_mac_82598EB)
3393 		return;
3394 
3395 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3396 	if (enable)
3397 		pfvfspoof |= (1 << vf_target_shift);
3398 	else
3399 		pfvfspoof &= ~(1 << vf_target_shift);
3400 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3401 }
3402 
3403 /**
3404  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3405  *  @hw: pointer to hardware structure
3406  *  @device_caps: the EEPROM word with the extra device capabilities
3407  *
3408  *  This function will read the EEPROM location for the device capabilities,
3409  *  and return the word through device_caps.
3410  **/
3411 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3412 {
3413 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3414 
3415 	return 0;
3416 }
3417 
3418 /**
3419  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3420  * @hw: pointer to hardware structure
3421  * @num_pb: number of packet buffers to allocate
3422  * @headroom: reserve n KB of headroom
3423  * @strategy: packet buffer allocation strategy
3424  **/
3425 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3426 			     int num_pb,
3427 			     u32 headroom,
3428 			     int strategy)
3429 {
3430 	u32 pbsize = hw->mac.rx_pb_size;
3431 	int i = 0;
3432 	u32 rxpktsize, txpktsize, txpbthresh;
3433 
3434 	/* Reserve headroom */
3435 	pbsize -= headroom;
3436 
3437 	if (!num_pb)
3438 		num_pb = 1;
3439 
3440 	/* Divide remaining packet buffer space amongst the number
3441 	 * of packet buffers requested using supplied strategy.
3442 	 */
3443 	switch (strategy) {
3444 	case (PBA_STRATEGY_WEIGHTED):
3445 		/* pba_80_48 strategy weight first half of packet buffer with
3446 		 * 5/8 of the packet buffer space.
3447 		 */
3448 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3449 		pbsize -= rxpktsize * (num_pb / 2);
3450 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3451 		for (; i < (num_pb / 2); i++)
3452 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3453 		/* Fall through to configure remaining packet buffers */
3454 	case (PBA_STRATEGY_EQUAL):
3455 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3456 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3457 		for (; i < num_pb; i++)
3458 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3459 		break;
3460 	default:
3461 		break;
3462 	}
3463 
3464 	/*
3465 	 * Setup Tx packet buffer and threshold equally for all TCs
3466 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3467 	 * 10 since the largest packet we support is just over 9K.
3468 	 */
3469 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3470 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3471 	for (i = 0; i < num_pb; i++) {
3472 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3473 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3474 	}
3475 
3476 	/* Clear unused TCs, if any, to zero buffer size*/
3477 	for (; i < IXGBE_MAX_PB; i++) {
3478 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3479 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3480 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3481 	}
3482 }
3483 
3484 /**
3485  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3486  *  @buffer: pointer to EEPROM
3487  *  @length: size of EEPROM to calculate a checksum for
3488  *
3489  *  Calculates the checksum for some buffer on a specified length.  The
3490  *  checksum calculated is returned.
3491  **/
3492 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3493 {
3494 	u32 i;
3495 	u8 sum = 0;
3496 
3497 	if (!buffer)
3498 		return 0;
3499 
3500 	for (i = 0; i < length; i++)
3501 		sum += buffer[i];
3502 
3503 	return (u8) (0 - sum);
3504 }
3505 
3506 /**
3507  *  ixgbe_host_interface_command - Issue command to manageability block
3508  *  @hw: pointer to the HW structure
3509  *  @buffer: contains the command to write and where the return status will
3510  *           be placed
3511  *  @length: length of buffer, must be multiple of 4 bytes
3512  *
3513  *  Communicates with the manageability block.  On success return 0
3514  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3515  **/
3516 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3517 					u32 length)
3518 {
3519 	u32 hicr, i, bi;
3520 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3521 	u8 buf_len, dword_len;
3522 
3523 	s32 ret_val = 0;
3524 
3525 	if (length == 0 || length & 0x3 ||
3526 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3527 		hw_dbg(hw, "Buffer length failure.\n");
3528 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3529 		goto out;
3530 	}
3531 
3532 	/* Check that the host interface is enabled. */
3533 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3534 	if ((hicr & IXGBE_HICR_EN) == 0) {
3535 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3536 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3537 		goto out;
3538 	}
3539 
3540 	/* Calculate length in DWORDs */
3541 	dword_len = length >> 2;
3542 
3543 	/*
3544 	 * The device driver writes the relevant command block
3545 	 * into the ram area.
3546 	 */
3547 	for (i = 0; i < dword_len; i++)
3548 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3549 				      i, cpu_to_le32(buffer[i]));
3550 
3551 	/* Setting this bit tells the ARC that a new command is pending. */
3552 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3553 
3554 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3555 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3556 		if (!(hicr & IXGBE_HICR_C))
3557 			break;
3558 		usleep_range(1000, 2000);
3559 	}
3560 
3561 	/* Check command successful completion. */
3562 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3563 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3564 		hw_dbg(hw, "Command has failed with no status valid.\n");
3565 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3566 		goto out;
3567 	}
3568 
3569 	/* Calculate length in DWORDs */
3570 	dword_len = hdr_size >> 2;
3571 
3572 	/* first pull in the header so we know the buffer length */
3573 	for (bi = 0; bi < dword_len; bi++) {
3574 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3575 		le32_to_cpus(&buffer[bi]);
3576 	}
3577 
3578 	/* If there is any thing in data position pull it in */
3579 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3580 	if (buf_len == 0)
3581 		goto out;
3582 
3583 	if (length < (buf_len + hdr_size)) {
3584 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3585 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3586 		goto out;
3587 	}
3588 
3589 	/* Calculate length in DWORDs, add 3 for odd lengths */
3590 	dword_len = (buf_len + 3) >> 2;
3591 
3592 	/* Pull in the rest of the buffer (bi is where we left off)*/
3593 	for (; bi <= dword_len; bi++) {
3594 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3595 		le32_to_cpus(&buffer[bi]);
3596 	}
3597 
3598 out:
3599 	return ret_val;
3600 }
3601 
3602 /**
3603  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3604  *  @hw: pointer to the HW structure
3605  *  @maj: driver version major number
3606  *  @min: driver version minor number
3607  *  @build: driver version build number
3608  *  @sub: driver version sub build number
3609  *
3610  *  Sends driver version number to firmware through the manageability
3611  *  block.  On success return 0
3612  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3613  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3614  **/
3615 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3616 				 u8 build, u8 sub)
3617 {
3618 	struct ixgbe_hic_drv_info fw_cmd;
3619 	int i;
3620 	s32 ret_val = 0;
3621 
3622 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3623 		ret_val = IXGBE_ERR_SWFW_SYNC;
3624 		goto out;
3625 	}
3626 
3627 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3628 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3629 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3630 	fw_cmd.port_num = (u8)hw->bus.func;
3631 	fw_cmd.ver_maj = maj;
3632 	fw_cmd.ver_min = min;
3633 	fw_cmd.ver_build = build;
3634 	fw_cmd.ver_sub = sub;
3635 	fw_cmd.hdr.checksum = 0;
3636 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3637 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3638 	fw_cmd.pad = 0;
3639 	fw_cmd.pad2 = 0;
3640 
3641 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3642 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3643 						       sizeof(fw_cmd));
3644 		if (ret_val != 0)
3645 			continue;
3646 
3647 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3648 		    FW_CEM_RESP_STATUS_SUCCESS)
3649 			ret_val = 0;
3650 		else
3651 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3652 
3653 		break;
3654 	}
3655 
3656 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3657 out:
3658 	return ret_val;
3659 }
3660 
3661 /**
3662  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3663  * @hw: pointer to the hardware structure
3664  *
3665  * The 82599 and x540 MACs can experience issues if TX work is still pending
3666  * when a reset occurs.  This function prevents this by flushing the PCIe
3667  * buffers on the system.
3668  **/
3669 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3670 {
3671 	u32 gcr_ext, hlreg0;
3672 
3673 	/*
3674 	 * If double reset is not requested then all transactions should
3675 	 * already be clear and as such there is no work to do
3676 	 */
3677 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3678 		return;
3679 
3680 	/*
3681 	 * Set loopback enable to prevent any transmits from being sent
3682 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3683 	 * has already been cleared.
3684 	 */
3685 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3686 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3687 
3688 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3689 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3690 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3691 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3692 
3693 	/* Flush all writes and allow 20usec for all transactions to clear */
3694 	IXGBE_WRITE_FLUSH(hw);
3695 	udelay(20);
3696 
3697 	/* restore previous register values */
3698 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3699 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3700 }
3701 
3702 static const u8 ixgbe_emc_temp_data[4] = {
3703 	IXGBE_EMC_INTERNAL_DATA,
3704 	IXGBE_EMC_DIODE1_DATA,
3705 	IXGBE_EMC_DIODE2_DATA,
3706 	IXGBE_EMC_DIODE3_DATA
3707 };
3708 static const u8 ixgbe_emc_therm_limit[4] = {
3709 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3710 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3711 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3712 	IXGBE_EMC_DIODE3_THERM_LIMIT
3713 };
3714 
3715 /**
3716  *  ixgbe_get_ets_data - Extracts the ETS bit data
3717  *  @hw: pointer to hardware structure
3718  *  @ets_cfg: extected ETS data
3719  *  @ets_offset: offset of ETS data
3720  *
3721  *  Returns error code.
3722  **/
3723 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3724 			      u16 *ets_offset)
3725 {
3726 	s32 status = 0;
3727 
3728 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3729 	if (status)
3730 		goto out;
3731 
3732 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3733 		status = IXGBE_NOT_IMPLEMENTED;
3734 		goto out;
3735 	}
3736 
3737 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3738 	if (status)
3739 		goto out;
3740 
3741 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3742 		status = IXGBE_NOT_IMPLEMENTED;
3743 		goto out;
3744 	}
3745 
3746 out:
3747 	return status;
3748 }
3749 
3750 /**
3751  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3752  *  @hw: pointer to hardware structure
3753  *
3754  *  Returns the thermal sensor data structure
3755  **/
3756 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3757 {
3758 	s32 status = 0;
3759 	u16 ets_offset;
3760 	u16 ets_cfg;
3761 	u16 ets_sensor;
3762 	u8  num_sensors;
3763 	u8  i;
3764 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3765 
3766 	/* Only support thermal sensors attached to physical port 0 */
3767 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3768 		status = IXGBE_NOT_IMPLEMENTED;
3769 		goto out;
3770 	}
3771 
3772 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3773 	if (status)
3774 		goto out;
3775 
3776 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3777 	if (num_sensors > IXGBE_MAX_SENSORS)
3778 		num_sensors = IXGBE_MAX_SENSORS;
3779 
3780 	for (i = 0; i < num_sensors; i++) {
3781 		u8  sensor_index;
3782 		u8  sensor_location;
3783 
3784 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3785 					     &ets_sensor);
3786 		if (status)
3787 			goto out;
3788 
3789 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3790 				IXGBE_ETS_DATA_INDEX_SHIFT);
3791 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3792 				   IXGBE_ETS_DATA_LOC_SHIFT);
3793 
3794 		if (sensor_location != 0) {
3795 			status = hw->phy.ops.read_i2c_byte(hw,
3796 					ixgbe_emc_temp_data[sensor_index],
3797 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3798 					&data->sensor[i].temp);
3799 			if (status)
3800 				goto out;
3801 		}
3802 	}
3803 out:
3804 	return status;
3805 }
3806 
3807 /**
3808  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3809  * @hw: pointer to hardware structure
3810  *
3811  * Inits the thermal sensor thresholds according to the NVM map
3812  * and save off the threshold and location values into mac.thermal_sensor_data
3813  **/
3814 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3815 {
3816 	s32 status = 0;
3817 	u16 ets_offset;
3818 	u16 ets_cfg;
3819 	u16 ets_sensor;
3820 	u8  low_thresh_delta;
3821 	u8  num_sensors;
3822 	u8  therm_limit;
3823 	u8  i;
3824 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3825 
3826 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3827 
3828 	/* Only support thermal sensors attached to physical port 0 */
3829 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3830 		status = IXGBE_NOT_IMPLEMENTED;
3831 		goto out;
3832 	}
3833 
3834 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3835 	if (status)
3836 		goto out;
3837 
3838 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3839 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3840 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3841 	if (num_sensors > IXGBE_MAX_SENSORS)
3842 		num_sensors = IXGBE_MAX_SENSORS;
3843 
3844 	for (i = 0; i < num_sensors; i++) {
3845 		u8  sensor_index;
3846 		u8  sensor_location;
3847 
3848 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3849 			hw_err(hw, "eeprom read at offset %d failed\n",
3850 			       ets_offset + 1 + i);
3851 			continue;
3852 		}
3853 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3854 				IXGBE_ETS_DATA_INDEX_SHIFT);
3855 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3856 				   IXGBE_ETS_DATA_LOC_SHIFT);
3857 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3858 
3859 		hw->phy.ops.write_i2c_byte(hw,
3860 			ixgbe_emc_therm_limit[sensor_index],
3861 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3862 
3863 		if (sensor_location == 0)
3864 			continue;
3865 
3866 		data->sensor[i].location = sensor_location;
3867 		data->sensor[i].caution_thresh = therm_limit;
3868 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3869 	}
3870 out:
3871 	return status;
3872 }
3873 
3874