1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/sched.h>
7 #include <linux/netdevice.h>
8 
9 #include "ixgbe.h"
10 #include "ixgbe_common.h"
11 #include "ixgbe_phy.h"
12 
13 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19 					u16 count);
20 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24 
25 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28 					     u16 words, u16 *data);
29 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30 					     u16 words, u16 *data);
31 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32 						 u16 offset);
33 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
34 
35 /* Base table for registers values that change by MAC */
36 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37 	IXGBE_MVALS_INIT(8259X)
38 };
39 
40 /**
41  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42  *  control
43  *  @hw: pointer to hardware structure
44  *
45  *  There are several phys that do not support autoneg flow control. This
46  *  function check the device id to see if the associated phy supports
47  *  autoneg flow control.
48  **/
49 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50 {
51 	bool supported = false;
52 	ixgbe_link_speed speed;
53 	bool link_up;
54 
55 	switch (hw->phy.media_type) {
56 	case ixgbe_media_type_fiber:
57 		/* flow control autoneg black list */
58 		switch (hw->device_id) {
59 		case IXGBE_DEV_ID_X550EM_A_SFP:
60 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
61 			supported = false;
62 			break;
63 		default:
64 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
65 			/* if link is down, assume supported */
66 			if (link_up)
67 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
68 			else
69 				supported = true;
70 		}
71 
72 		break;
73 	case ixgbe_media_type_backplane:
74 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
75 			supported = false;
76 		else
77 			supported = true;
78 		break;
79 	case ixgbe_media_type_copper:
80 		/* only some copper devices support flow control autoneg */
81 		switch (hw->device_id) {
82 		case IXGBE_DEV_ID_82599_T3_LOM:
83 		case IXGBE_DEV_ID_X540T:
84 		case IXGBE_DEV_ID_X540T1:
85 		case IXGBE_DEV_ID_X550T:
86 		case IXGBE_DEV_ID_X550T1:
87 		case IXGBE_DEV_ID_X550EM_X_10G_T:
88 		case IXGBE_DEV_ID_X550EM_A_10G_T:
89 		case IXGBE_DEV_ID_X550EM_A_1G_T:
90 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
91 			supported = true;
92 			break;
93 		default:
94 			break;
95 		}
96 	default:
97 		break;
98 	}
99 
100 	if (!supported)
101 		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
102 		       hw->device_id);
103 
104 	return supported;
105 }
106 
107 /**
108  *  ixgbe_setup_fc_generic - Set up flow control
109  *  @hw: pointer to hardware structure
110  *
111  *  Called at init time to set up flow control.
112  **/
113 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
114 {
115 	s32 ret_val = 0;
116 	u32 reg = 0, reg_bp = 0;
117 	u16 reg_cu = 0;
118 	bool locked = false;
119 
120 	/*
121 	 * Validate the requested mode.  Strict IEEE mode does not allow
122 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
123 	 */
124 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
125 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
126 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
127 	}
128 
129 	/*
130 	 * 10gig parts do not have a word in the EEPROM to determine the
131 	 * default flow control setting, so we explicitly set it to full.
132 	 */
133 	if (hw->fc.requested_mode == ixgbe_fc_default)
134 		hw->fc.requested_mode = ixgbe_fc_full;
135 
136 	/*
137 	 * Set up the 1G and 10G flow control advertisement registers so the
138 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
139 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
140 	 */
141 	switch (hw->phy.media_type) {
142 	case ixgbe_media_type_backplane:
143 		/* some MAC's need RMW protection on AUTOC */
144 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
145 		if (ret_val)
146 			return ret_val;
147 
148 		/* fall through - only backplane uses autoc */
149 	case ixgbe_media_type_fiber:
150 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
151 
152 		break;
153 	case ixgbe_media_type_copper:
154 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
155 					MDIO_MMD_AN, &reg_cu);
156 		break;
157 	default:
158 		break;
159 	}
160 
161 	/*
162 	 * The possible values of fc.requested_mode are:
163 	 * 0: Flow control is completely disabled
164 	 * 1: Rx flow control is enabled (we can receive pause frames,
165 	 *    but not send pause frames).
166 	 * 2: Tx flow control is enabled (we can send pause frames but
167 	 *    we do not support receiving pause frames).
168 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
169 	 * other: Invalid.
170 	 */
171 	switch (hw->fc.requested_mode) {
172 	case ixgbe_fc_none:
173 		/* Flow control completely disabled by software override. */
174 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
175 		if (hw->phy.media_type == ixgbe_media_type_backplane)
176 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
177 				    IXGBE_AUTOC_ASM_PAUSE);
178 		else if (hw->phy.media_type == ixgbe_media_type_copper)
179 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
180 		break;
181 	case ixgbe_fc_tx_pause:
182 		/*
183 		 * Tx Flow control is enabled, and Rx Flow control is
184 		 * disabled by software override.
185 		 */
186 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
187 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
188 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
189 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
190 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
191 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
192 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
193 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
194 		}
195 		break;
196 	case ixgbe_fc_rx_pause:
197 		/*
198 		 * Rx Flow control is enabled and Tx Flow control is
199 		 * disabled by software override. Since there really
200 		 * isn't a way to advertise that we are capable of RX
201 		 * Pause ONLY, we will advertise that we support both
202 		 * symmetric and asymmetric Rx PAUSE, as such we fall
203 		 * through to the fc_full statement.  Later, we will
204 		 * disable the adapter's ability to send PAUSE frames.
205 		 */
206 	case ixgbe_fc_full:
207 		/* Flow control (both Rx and Tx) is enabled by SW override. */
208 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
209 		if (hw->phy.media_type == ixgbe_media_type_backplane)
210 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
211 				  IXGBE_AUTOC_ASM_PAUSE;
212 		else if (hw->phy.media_type == ixgbe_media_type_copper)
213 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
214 		break;
215 	default:
216 		hw_dbg(hw, "Flow control param set incorrectly\n");
217 		return IXGBE_ERR_CONFIG;
218 	}
219 
220 	if (hw->mac.type != ixgbe_mac_X540) {
221 		/*
222 		 * Enable auto-negotiation between the MAC & PHY;
223 		 * the MAC will advertise clause 37 flow control.
224 		 */
225 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
226 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
227 
228 		/* Disable AN timeout */
229 		if (hw->fc.strict_ieee)
230 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
231 
232 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
233 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
234 	}
235 
236 	/*
237 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
238 	 * and copper. There is no need to set the PCS1GCTL register.
239 	 *
240 	 */
241 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
242 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
243 		 * LESM is on, likewise reset_pipeline requries the lock as
244 		 * it also writes AUTOC.
245 		 */
246 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
247 		if (ret_val)
248 			return ret_val;
249 
250 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
251 		   ixgbe_device_supports_autoneg_fc(hw)) {
252 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
253 				      MDIO_MMD_AN, reg_cu);
254 	}
255 
256 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
257 	return ret_val;
258 }
259 
260 /**
261  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
262  *  @hw: pointer to hardware structure
263  *
264  *  Starts the hardware by filling the bus info structure and media type, clears
265  *  all on chip counters, initializes receive address registers, multicast
266  *  table, VLAN filter table, calls routine to set up link and flow control
267  *  settings, and leaves transmit and receive units disabled and uninitialized
268  **/
269 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
270 {
271 	s32 ret_val;
272 	u32 ctrl_ext;
273 	u16 device_caps;
274 
275 	/* Set the media type */
276 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
277 
278 	/* Identify the PHY */
279 	hw->phy.ops.identify(hw);
280 
281 	/* Clear the VLAN filter table */
282 	hw->mac.ops.clear_vfta(hw);
283 
284 	/* Clear statistics registers */
285 	hw->mac.ops.clear_hw_cntrs(hw);
286 
287 	/* Set No Snoop Disable */
288 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
289 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
290 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
291 	IXGBE_WRITE_FLUSH(hw);
292 
293 	/* Setup flow control if method for doing so */
294 	if (hw->mac.ops.setup_fc) {
295 		ret_val = hw->mac.ops.setup_fc(hw);
296 		if (ret_val)
297 			return ret_val;
298 	}
299 
300 	/* Cashe bit indicating need for crosstalk fix */
301 	switch (hw->mac.type) {
302 	case ixgbe_mac_82599EB:
303 	case ixgbe_mac_X550EM_x:
304 	case ixgbe_mac_x550em_a:
305 		hw->mac.ops.get_device_caps(hw, &device_caps);
306 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
307 			hw->need_crosstalk_fix = false;
308 		else
309 			hw->need_crosstalk_fix = true;
310 		break;
311 	default:
312 		hw->need_crosstalk_fix = false;
313 		break;
314 	}
315 
316 	/* Clear adapter stopped flag */
317 	hw->adapter_stopped = false;
318 
319 	return 0;
320 }
321 
322 /**
323  *  ixgbe_start_hw_gen2 - Init sequence for common device family
324  *  @hw: pointer to hw structure
325  *
326  * Performs the init sequence common to the second generation
327  * of 10 GbE devices.
328  * Devices in the second generation:
329  *     82599
330  *     X540
331  **/
332 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
333 {
334 	u32 i;
335 
336 	/* Clear the rate limiters */
337 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
338 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
339 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
340 	}
341 	IXGBE_WRITE_FLUSH(hw);
342 
343 	return 0;
344 }
345 
346 /**
347  *  ixgbe_init_hw_generic - Generic hardware initialization
348  *  @hw: pointer to hardware structure
349  *
350  *  Initialize the hardware by resetting the hardware, filling the bus info
351  *  structure and media type, clears all on chip counters, initializes receive
352  *  address registers, multicast table, VLAN filter table, calls routine to set
353  *  up link and flow control settings, and leaves transmit and receive units
354  *  disabled and uninitialized
355  **/
356 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
357 {
358 	s32 status;
359 
360 	/* Reset the hardware */
361 	status = hw->mac.ops.reset_hw(hw);
362 
363 	if (status == 0) {
364 		/* Start the HW */
365 		status = hw->mac.ops.start_hw(hw);
366 	}
367 
368 	/* Initialize the LED link active for LED blink support */
369 	if (hw->mac.ops.init_led_link_act)
370 		hw->mac.ops.init_led_link_act(hw);
371 
372 	return status;
373 }
374 
375 /**
376  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
377  *  @hw: pointer to hardware structure
378  *
379  *  Clears all hardware statistics counters by reading them from the hardware
380  *  Statistics counters are clear on read.
381  **/
382 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
383 {
384 	u16 i = 0;
385 
386 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
387 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
388 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
389 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
390 	for (i = 0; i < 8; i++)
391 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
392 
393 	IXGBE_READ_REG(hw, IXGBE_MLFC);
394 	IXGBE_READ_REG(hw, IXGBE_MRFC);
395 	IXGBE_READ_REG(hw, IXGBE_RLEC);
396 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
397 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
398 	if (hw->mac.type >= ixgbe_mac_82599EB) {
399 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
400 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
401 	} else {
402 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
403 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
404 	}
405 
406 	for (i = 0; i < 8; i++) {
407 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
408 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
409 		if (hw->mac.type >= ixgbe_mac_82599EB) {
410 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
411 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
412 		} else {
413 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
414 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
415 		}
416 	}
417 	if (hw->mac.type >= ixgbe_mac_82599EB)
418 		for (i = 0; i < 8; i++)
419 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
420 	IXGBE_READ_REG(hw, IXGBE_PRC64);
421 	IXGBE_READ_REG(hw, IXGBE_PRC127);
422 	IXGBE_READ_REG(hw, IXGBE_PRC255);
423 	IXGBE_READ_REG(hw, IXGBE_PRC511);
424 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
425 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
426 	IXGBE_READ_REG(hw, IXGBE_GPRC);
427 	IXGBE_READ_REG(hw, IXGBE_BPRC);
428 	IXGBE_READ_REG(hw, IXGBE_MPRC);
429 	IXGBE_READ_REG(hw, IXGBE_GPTC);
430 	IXGBE_READ_REG(hw, IXGBE_GORCL);
431 	IXGBE_READ_REG(hw, IXGBE_GORCH);
432 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
433 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
434 	if (hw->mac.type == ixgbe_mac_82598EB)
435 		for (i = 0; i < 8; i++)
436 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
437 	IXGBE_READ_REG(hw, IXGBE_RUC);
438 	IXGBE_READ_REG(hw, IXGBE_RFC);
439 	IXGBE_READ_REG(hw, IXGBE_ROC);
440 	IXGBE_READ_REG(hw, IXGBE_RJC);
441 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
442 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
443 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
444 	IXGBE_READ_REG(hw, IXGBE_TORL);
445 	IXGBE_READ_REG(hw, IXGBE_TORH);
446 	IXGBE_READ_REG(hw, IXGBE_TPR);
447 	IXGBE_READ_REG(hw, IXGBE_TPT);
448 	IXGBE_READ_REG(hw, IXGBE_PTC64);
449 	IXGBE_READ_REG(hw, IXGBE_PTC127);
450 	IXGBE_READ_REG(hw, IXGBE_PTC255);
451 	IXGBE_READ_REG(hw, IXGBE_PTC511);
452 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
453 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
454 	IXGBE_READ_REG(hw, IXGBE_MPTC);
455 	IXGBE_READ_REG(hw, IXGBE_BPTC);
456 	for (i = 0; i < 16; i++) {
457 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
458 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
459 		if (hw->mac.type >= ixgbe_mac_82599EB) {
460 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
461 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
462 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
463 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
464 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
465 		} else {
466 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
467 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
468 		}
469 	}
470 
471 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
472 		if (hw->phy.id == 0)
473 			hw->phy.ops.identify(hw);
474 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
475 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
476 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
477 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
478 	}
479 
480 	return 0;
481 }
482 
483 /**
484  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
485  *  @hw: pointer to hardware structure
486  *  @pba_num: stores the part number string from the EEPROM
487  *  @pba_num_size: part number string buffer length
488  *
489  *  Reads the part number string from the EEPROM.
490  **/
491 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
492 				  u32 pba_num_size)
493 {
494 	s32 ret_val;
495 	u16 data;
496 	u16 pba_ptr;
497 	u16 offset;
498 	u16 length;
499 
500 	if (pba_num == NULL) {
501 		hw_dbg(hw, "PBA string buffer was null\n");
502 		return IXGBE_ERR_INVALID_ARGUMENT;
503 	}
504 
505 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
506 	if (ret_val) {
507 		hw_dbg(hw, "NVM Read Error\n");
508 		return ret_val;
509 	}
510 
511 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
512 	if (ret_val) {
513 		hw_dbg(hw, "NVM Read Error\n");
514 		return ret_val;
515 	}
516 
517 	/*
518 	 * if data is not ptr guard the PBA must be in legacy format which
519 	 * means pba_ptr is actually our second data word for the PBA number
520 	 * and we can decode it into an ascii string
521 	 */
522 	if (data != IXGBE_PBANUM_PTR_GUARD) {
523 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
524 
525 		/* we will need 11 characters to store the PBA */
526 		if (pba_num_size < 11) {
527 			hw_dbg(hw, "PBA string buffer too small\n");
528 			return IXGBE_ERR_NO_SPACE;
529 		}
530 
531 		/* extract hex string from data and pba_ptr */
532 		pba_num[0] = (data >> 12) & 0xF;
533 		pba_num[1] = (data >> 8) & 0xF;
534 		pba_num[2] = (data >> 4) & 0xF;
535 		pba_num[3] = data & 0xF;
536 		pba_num[4] = (pba_ptr >> 12) & 0xF;
537 		pba_num[5] = (pba_ptr >> 8) & 0xF;
538 		pba_num[6] = '-';
539 		pba_num[7] = 0;
540 		pba_num[8] = (pba_ptr >> 4) & 0xF;
541 		pba_num[9] = pba_ptr & 0xF;
542 
543 		/* put a null character on the end of our string */
544 		pba_num[10] = '\0';
545 
546 		/* switch all the data but the '-' to hex char */
547 		for (offset = 0; offset < 10; offset++) {
548 			if (pba_num[offset] < 0xA)
549 				pba_num[offset] += '0';
550 			else if (pba_num[offset] < 0x10)
551 				pba_num[offset] += 'A' - 0xA;
552 		}
553 
554 		return 0;
555 	}
556 
557 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
558 	if (ret_val) {
559 		hw_dbg(hw, "NVM Read Error\n");
560 		return ret_val;
561 	}
562 
563 	if (length == 0xFFFF || length == 0) {
564 		hw_dbg(hw, "NVM PBA number section invalid length\n");
565 		return IXGBE_ERR_PBA_SECTION;
566 	}
567 
568 	/* check if pba_num buffer is big enough */
569 	if (pba_num_size  < (((u32)length * 2) - 1)) {
570 		hw_dbg(hw, "PBA string buffer too small\n");
571 		return IXGBE_ERR_NO_SPACE;
572 	}
573 
574 	/* trim pba length from start of string */
575 	pba_ptr++;
576 	length--;
577 
578 	for (offset = 0; offset < length; offset++) {
579 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
580 		if (ret_val) {
581 			hw_dbg(hw, "NVM Read Error\n");
582 			return ret_val;
583 		}
584 		pba_num[offset * 2] = (u8)(data >> 8);
585 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
586 	}
587 	pba_num[offset * 2] = '\0';
588 
589 	return 0;
590 }
591 
592 /**
593  *  ixgbe_get_mac_addr_generic - Generic get MAC address
594  *  @hw: pointer to hardware structure
595  *  @mac_addr: Adapter MAC address
596  *
597  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
598  *  A reset of the adapter must be performed prior to calling this function
599  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
600  **/
601 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
602 {
603 	u32 rar_high;
604 	u32 rar_low;
605 	u16 i;
606 
607 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
608 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
609 
610 	for (i = 0; i < 4; i++)
611 		mac_addr[i] = (u8)(rar_low >> (i*8));
612 
613 	for (i = 0; i < 2; i++)
614 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
615 
616 	return 0;
617 }
618 
619 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
620 {
621 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
622 	case IXGBE_PCI_LINK_WIDTH_1:
623 		return ixgbe_bus_width_pcie_x1;
624 	case IXGBE_PCI_LINK_WIDTH_2:
625 		return ixgbe_bus_width_pcie_x2;
626 	case IXGBE_PCI_LINK_WIDTH_4:
627 		return ixgbe_bus_width_pcie_x4;
628 	case IXGBE_PCI_LINK_WIDTH_8:
629 		return ixgbe_bus_width_pcie_x8;
630 	default:
631 		return ixgbe_bus_width_unknown;
632 	}
633 }
634 
635 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
636 {
637 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
638 	case IXGBE_PCI_LINK_SPEED_2500:
639 		return ixgbe_bus_speed_2500;
640 	case IXGBE_PCI_LINK_SPEED_5000:
641 		return ixgbe_bus_speed_5000;
642 	case IXGBE_PCI_LINK_SPEED_8000:
643 		return ixgbe_bus_speed_8000;
644 	default:
645 		return ixgbe_bus_speed_unknown;
646 	}
647 }
648 
649 /**
650  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
651  *  @hw: pointer to hardware structure
652  *
653  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
654  **/
655 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
656 {
657 	u16 link_status;
658 
659 	hw->bus.type = ixgbe_bus_type_pci_express;
660 
661 	/* Get the negotiated link width and speed from PCI config space */
662 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
663 
664 	hw->bus.width = ixgbe_convert_bus_width(link_status);
665 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
666 
667 	hw->mac.ops.set_lan_id(hw);
668 
669 	return 0;
670 }
671 
672 /**
673  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
674  *  @hw: pointer to the HW structure
675  *
676  *  Determines the LAN function id by reading memory-mapped registers
677  *  and swaps the port value if requested.
678  **/
679 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
680 {
681 	struct ixgbe_bus_info *bus = &hw->bus;
682 	u16 ee_ctrl_4;
683 	u32 reg;
684 
685 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
686 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
687 	bus->lan_id = bus->func;
688 
689 	/* check for a port swap */
690 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
691 	if (reg & IXGBE_FACTPS_LFS)
692 		bus->func ^= 0x1;
693 
694 	/* Get MAC instance from EEPROM for configuring CS4227 */
695 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
696 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
697 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
698 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
699 	}
700 }
701 
702 /**
703  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
704  *  @hw: pointer to hardware structure
705  *
706  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
707  *  disables transmit and receive units. The adapter_stopped flag is used by
708  *  the shared code and drivers to determine if the adapter is in a stopped
709  *  state and should not touch the hardware.
710  **/
711 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
712 {
713 	u32 reg_val;
714 	u16 i;
715 
716 	/*
717 	 * Set the adapter_stopped flag so other driver functions stop touching
718 	 * the hardware
719 	 */
720 	hw->adapter_stopped = true;
721 
722 	/* Disable the receive unit */
723 	hw->mac.ops.disable_rx(hw);
724 
725 	/* Clear interrupt mask to stop interrupts from being generated */
726 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
727 
728 	/* Clear any pending interrupts, flush previous writes */
729 	IXGBE_READ_REG(hw, IXGBE_EICR);
730 
731 	/* Disable the transmit unit.  Each queue must be disabled. */
732 	for (i = 0; i < hw->mac.max_tx_queues; i++)
733 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
734 
735 	/* Disable the receive unit by stopping each queue */
736 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
737 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
738 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
739 		reg_val |= IXGBE_RXDCTL_SWFLSH;
740 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
741 	}
742 
743 	/* flush all queues disables */
744 	IXGBE_WRITE_FLUSH(hw);
745 	usleep_range(1000, 2000);
746 
747 	/*
748 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
749 	 * access and verify no pending requests
750 	 */
751 	return ixgbe_disable_pcie_master(hw);
752 }
753 
754 /**
755  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
756  *  @hw: pointer to hardware structure
757  *
758  *  Store the index for the link active LED. This will be used to support
759  *  blinking the LED.
760  **/
761 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
762 {
763 	struct ixgbe_mac_info *mac = &hw->mac;
764 	u32 led_reg, led_mode;
765 	u16 i;
766 
767 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
768 
769 	/* Get LED link active from the LEDCTL register */
770 	for (i = 0; i < 4; i++) {
771 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
772 
773 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
774 		    IXGBE_LED_LINK_ACTIVE) {
775 			mac->led_link_act = i;
776 			return 0;
777 		}
778 	}
779 
780 	/* If LEDCTL register does not have the LED link active set, then use
781 	 * known MAC defaults.
782 	 */
783 	switch (hw->mac.type) {
784 	case ixgbe_mac_x550em_a:
785 		mac->led_link_act = 0;
786 		break;
787 	case ixgbe_mac_X550EM_x:
788 		mac->led_link_act = 1;
789 		break;
790 	default:
791 		mac->led_link_act = 2;
792 	}
793 
794 	return 0;
795 }
796 
797 /**
798  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
799  *  @hw: pointer to hardware structure
800  *  @index: led number to turn on
801  **/
802 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
803 {
804 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
805 
806 	if (index > 3)
807 		return IXGBE_ERR_PARAM;
808 
809 	/* To turn on the LED, set mode to ON. */
810 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
811 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
812 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
813 	IXGBE_WRITE_FLUSH(hw);
814 
815 	return 0;
816 }
817 
818 /**
819  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
820  *  @hw: pointer to hardware structure
821  *  @index: led number to turn off
822  **/
823 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
824 {
825 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
826 
827 	if (index > 3)
828 		return IXGBE_ERR_PARAM;
829 
830 	/* To turn off the LED, set mode to OFF. */
831 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
832 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
833 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
834 	IXGBE_WRITE_FLUSH(hw);
835 
836 	return 0;
837 }
838 
839 /**
840  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
841  *  @hw: pointer to hardware structure
842  *
843  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
844  *  ixgbe_hw struct in order to set up EEPROM access.
845  **/
846 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
847 {
848 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
849 	u32 eec;
850 	u16 eeprom_size;
851 
852 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
853 		eeprom->type = ixgbe_eeprom_none;
854 		/* Set default semaphore delay to 10ms which is a well
855 		 * tested value */
856 		eeprom->semaphore_delay = 10;
857 		/* Clear EEPROM page size, it will be initialized as needed */
858 		eeprom->word_page_size = 0;
859 
860 		/*
861 		 * Check for EEPROM present first.
862 		 * If not present leave as none
863 		 */
864 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
865 		if (eec & IXGBE_EEC_PRES) {
866 			eeprom->type = ixgbe_eeprom_spi;
867 
868 			/*
869 			 * SPI EEPROM is assumed here.  This code would need to
870 			 * change if a future EEPROM is not SPI.
871 			 */
872 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
873 					    IXGBE_EEC_SIZE_SHIFT);
874 			eeprom->word_size = BIT(eeprom_size +
875 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
876 		}
877 
878 		if (eec & IXGBE_EEC_ADDR_SIZE)
879 			eeprom->address_bits = 16;
880 		else
881 			eeprom->address_bits = 8;
882 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
883 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
884 	}
885 
886 	return 0;
887 }
888 
889 /**
890  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
891  *  @hw: pointer to hardware structure
892  *  @offset: offset within the EEPROM to write
893  *  @words: number of words
894  *  @data: 16 bit word(s) to write to EEPROM
895  *
896  *  Reads 16 bit word(s) from EEPROM through bit-bang method
897  **/
898 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
899 					       u16 words, u16 *data)
900 {
901 	s32 status;
902 	u16 i, count;
903 
904 	hw->eeprom.ops.init_params(hw);
905 
906 	if (words == 0)
907 		return IXGBE_ERR_INVALID_ARGUMENT;
908 
909 	if (offset + words > hw->eeprom.word_size)
910 		return IXGBE_ERR_EEPROM;
911 
912 	/*
913 	 * The EEPROM page size cannot be queried from the chip. We do lazy
914 	 * initialization. It is worth to do that when we write large buffer.
915 	 */
916 	if ((hw->eeprom.word_page_size == 0) &&
917 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
918 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
919 
920 	/*
921 	 * We cannot hold synchronization semaphores for too long
922 	 * to avoid other entity starvation. However it is more efficient
923 	 * to read in bursts than synchronizing access for each word.
924 	 */
925 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
926 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
927 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
928 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
929 							    count, &data[i]);
930 
931 		if (status != 0)
932 			break;
933 	}
934 
935 	return status;
936 }
937 
938 /**
939  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
940  *  @hw: pointer to hardware structure
941  *  @offset: offset within the EEPROM to be written to
942  *  @words: number of word(s)
943  *  @data: 16 bit word(s) to be written to the EEPROM
944  *
945  *  If ixgbe_eeprom_update_checksum is not called after this function, the
946  *  EEPROM will most likely contain an invalid checksum.
947  **/
948 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
949 					      u16 words, u16 *data)
950 {
951 	s32 status;
952 	u16 word;
953 	u16 page_size;
954 	u16 i;
955 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
956 
957 	/* Prepare the EEPROM for writing  */
958 	status = ixgbe_acquire_eeprom(hw);
959 	if (status)
960 		return status;
961 
962 	if (ixgbe_ready_eeprom(hw) != 0) {
963 		ixgbe_release_eeprom(hw);
964 		return IXGBE_ERR_EEPROM;
965 	}
966 
967 	for (i = 0; i < words; i++) {
968 		ixgbe_standby_eeprom(hw);
969 
970 		/* Send the WRITE ENABLE command (8 bit opcode) */
971 		ixgbe_shift_out_eeprom_bits(hw,
972 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
973 					    IXGBE_EEPROM_OPCODE_BITS);
974 
975 		ixgbe_standby_eeprom(hw);
976 
977 		/* Some SPI eeproms use the 8th address bit embedded
978 		 * in the opcode
979 		 */
980 		if ((hw->eeprom.address_bits == 8) &&
981 		    ((offset + i) >= 128))
982 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
983 
984 		/* Send the Write command (8-bit opcode + addr) */
985 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
986 					    IXGBE_EEPROM_OPCODE_BITS);
987 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
988 					    hw->eeprom.address_bits);
989 
990 		page_size = hw->eeprom.word_page_size;
991 
992 		/* Send the data in burst via SPI */
993 		do {
994 			word = data[i];
995 			word = (word >> 8) | (word << 8);
996 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
997 
998 			if (page_size == 0)
999 				break;
1000 
1001 			/* do not wrap around page */
1002 			if (((offset + i) & (page_size - 1)) ==
1003 			    (page_size - 1))
1004 				break;
1005 		} while (++i < words);
1006 
1007 		ixgbe_standby_eeprom(hw);
1008 		usleep_range(10000, 20000);
1009 	}
1010 	/* Done with writing - release the EEPROM */
1011 	ixgbe_release_eeprom(hw);
1012 
1013 	return 0;
1014 }
1015 
1016 /**
1017  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1018  *  @hw: pointer to hardware structure
1019  *  @offset: offset within the EEPROM to be written to
1020  *  @data: 16 bit word to be written to the EEPROM
1021  *
1022  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1023  *  EEPROM will most likely contain an invalid checksum.
1024  **/
1025 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1026 {
1027 	hw->eeprom.ops.init_params(hw);
1028 
1029 	if (offset >= hw->eeprom.word_size)
1030 		return IXGBE_ERR_EEPROM;
1031 
1032 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1033 }
1034 
1035 /**
1036  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1037  *  @hw: pointer to hardware structure
1038  *  @offset: offset within the EEPROM to be read
1039  *  @words: number of word(s)
1040  *  @data: read 16 bit words(s) from EEPROM
1041  *
1042  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1043  **/
1044 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1045 					      u16 words, u16 *data)
1046 {
1047 	s32 status;
1048 	u16 i, count;
1049 
1050 	hw->eeprom.ops.init_params(hw);
1051 
1052 	if (words == 0)
1053 		return IXGBE_ERR_INVALID_ARGUMENT;
1054 
1055 	if (offset + words > hw->eeprom.word_size)
1056 		return IXGBE_ERR_EEPROM;
1057 
1058 	/*
1059 	 * We cannot hold synchronization semaphores for too long
1060 	 * to avoid other entity starvation. However it is more efficient
1061 	 * to read in bursts than synchronizing access for each word.
1062 	 */
1063 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1064 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1065 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1066 
1067 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1068 							   count, &data[i]);
1069 
1070 		if (status)
1071 			return status;
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 /**
1078  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1079  *  @hw: pointer to hardware structure
1080  *  @offset: offset within the EEPROM to be read
1081  *  @words: number of word(s)
1082  *  @data: read 16 bit word(s) from EEPROM
1083  *
1084  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1085  **/
1086 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1087 					     u16 words, u16 *data)
1088 {
1089 	s32 status;
1090 	u16 word_in;
1091 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1092 	u16 i;
1093 
1094 	/* Prepare the EEPROM for reading  */
1095 	status = ixgbe_acquire_eeprom(hw);
1096 	if (status)
1097 		return status;
1098 
1099 	if (ixgbe_ready_eeprom(hw) != 0) {
1100 		ixgbe_release_eeprom(hw);
1101 		return IXGBE_ERR_EEPROM;
1102 	}
1103 
1104 	for (i = 0; i < words; i++) {
1105 		ixgbe_standby_eeprom(hw);
1106 		/* Some SPI eeproms use the 8th address bit embedded
1107 		 * in the opcode
1108 		 */
1109 		if ((hw->eeprom.address_bits == 8) &&
1110 		    ((offset + i) >= 128))
1111 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1112 
1113 		/* Send the READ command (opcode + addr) */
1114 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1115 					    IXGBE_EEPROM_OPCODE_BITS);
1116 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1117 					    hw->eeprom.address_bits);
1118 
1119 		/* Read the data. */
1120 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1121 		data[i] = (word_in >> 8) | (word_in << 8);
1122 	}
1123 
1124 	/* End this read operation */
1125 	ixgbe_release_eeprom(hw);
1126 
1127 	return 0;
1128 }
1129 
1130 /**
1131  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1132  *  @hw: pointer to hardware structure
1133  *  @offset: offset within the EEPROM to be read
1134  *  @data: read 16 bit value from EEPROM
1135  *
1136  *  Reads 16 bit value from EEPROM through bit-bang method
1137  **/
1138 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1139 				       u16 *data)
1140 {
1141 	hw->eeprom.ops.init_params(hw);
1142 
1143 	if (offset >= hw->eeprom.word_size)
1144 		return IXGBE_ERR_EEPROM;
1145 
1146 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1147 }
1148 
1149 /**
1150  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1151  *  @hw: pointer to hardware structure
1152  *  @offset: offset of word in the EEPROM to read
1153  *  @words: number of word(s)
1154  *  @data: 16 bit word(s) from the EEPROM
1155  *
1156  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1157  **/
1158 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1159 				   u16 words, u16 *data)
1160 {
1161 	u32 eerd;
1162 	s32 status;
1163 	u32 i;
1164 
1165 	hw->eeprom.ops.init_params(hw);
1166 
1167 	if (words == 0)
1168 		return IXGBE_ERR_INVALID_ARGUMENT;
1169 
1170 	if (offset >= hw->eeprom.word_size)
1171 		return IXGBE_ERR_EEPROM;
1172 
1173 	for (i = 0; i < words; i++) {
1174 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1175 		       IXGBE_EEPROM_RW_REG_START;
1176 
1177 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1178 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1179 
1180 		if (status == 0) {
1181 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1182 				   IXGBE_EEPROM_RW_REG_DATA);
1183 		} else {
1184 			hw_dbg(hw, "Eeprom read timed out\n");
1185 			return status;
1186 		}
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 /**
1193  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1194  *  @hw: pointer to hardware structure
1195  *  @offset: offset within the EEPROM to be used as a scratch pad
1196  *
1197  *  Discover EEPROM page size by writing marching data at given offset.
1198  *  This function is called only when we are writing a new large buffer
1199  *  at given offset so the data would be overwritten anyway.
1200  **/
1201 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1202 						 u16 offset)
1203 {
1204 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1205 	s32 status;
1206 	u16 i;
1207 
1208 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1209 		data[i] = i;
1210 
1211 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1212 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1213 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1214 	hw->eeprom.word_page_size = 0;
1215 	if (status)
1216 		return status;
1217 
1218 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1219 	if (status)
1220 		return status;
1221 
1222 	/*
1223 	 * When writing in burst more than the actual page size
1224 	 * EEPROM address wraps around current page.
1225 	 */
1226 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1227 
1228 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1229 	       hw->eeprom.word_page_size);
1230 	return 0;
1231 }
1232 
1233 /**
1234  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1235  *  @hw: pointer to hardware structure
1236  *  @offset: offset of  word in the EEPROM to read
1237  *  @data: word read from the EEPROM
1238  *
1239  *  Reads a 16 bit word from the EEPROM using the EERD register.
1240  **/
1241 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1242 {
1243 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1244 }
1245 
1246 /**
1247  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1248  *  @hw: pointer to hardware structure
1249  *  @offset: offset of  word in the EEPROM to write
1250  *  @words: number of words
1251  *  @data: word(s) write to the EEPROM
1252  *
1253  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1254  **/
1255 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1256 				    u16 words, u16 *data)
1257 {
1258 	u32 eewr;
1259 	s32 status;
1260 	u16 i;
1261 
1262 	hw->eeprom.ops.init_params(hw);
1263 
1264 	if (words == 0)
1265 		return IXGBE_ERR_INVALID_ARGUMENT;
1266 
1267 	if (offset >= hw->eeprom.word_size)
1268 		return IXGBE_ERR_EEPROM;
1269 
1270 	for (i = 0; i < words; i++) {
1271 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1272 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1273 		       IXGBE_EEPROM_RW_REG_START;
1274 
1275 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1276 		if (status) {
1277 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1278 			return status;
1279 		}
1280 
1281 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1282 
1283 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1284 		if (status) {
1285 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1286 			return status;
1287 		}
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 /**
1294  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1295  *  @hw: pointer to hardware structure
1296  *  @offset: offset of  word in the EEPROM to write
1297  *  @data: word write to the EEPROM
1298  *
1299  *  Write a 16 bit word to the EEPROM using the EEWR register.
1300  **/
1301 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1302 {
1303 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1304 }
1305 
1306 /**
1307  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1308  *  @hw: pointer to hardware structure
1309  *  @ee_reg: EEPROM flag for polling
1310  *
1311  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1312  *  read or write is done respectively.
1313  **/
1314 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1315 {
1316 	u32 i;
1317 	u32 reg;
1318 
1319 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1320 		if (ee_reg == IXGBE_NVM_POLL_READ)
1321 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1322 		else
1323 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1324 
1325 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1326 			return 0;
1327 		}
1328 		udelay(5);
1329 	}
1330 	return IXGBE_ERR_EEPROM;
1331 }
1332 
1333 /**
1334  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1335  *  @hw: pointer to hardware structure
1336  *
1337  *  Prepares EEPROM for access using bit-bang method. This function should
1338  *  be called before issuing a command to the EEPROM.
1339  **/
1340 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1341 {
1342 	u32 eec;
1343 	u32 i;
1344 
1345 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1346 		return IXGBE_ERR_SWFW_SYNC;
1347 
1348 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1349 
1350 	/* Request EEPROM Access */
1351 	eec |= IXGBE_EEC_REQ;
1352 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353 
1354 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1355 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1356 		if (eec & IXGBE_EEC_GNT)
1357 			break;
1358 		udelay(5);
1359 	}
1360 
1361 	/* Release if grant not acquired */
1362 	if (!(eec & IXGBE_EEC_GNT)) {
1363 		eec &= ~IXGBE_EEC_REQ;
1364 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1365 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1366 
1367 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1368 		return IXGBE_ERR_EEPROM;
1369 	}
1370 
1371 	/* Setup EEPROM for Read/Write */
1372 	/* Clear CS and SK */
1373 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1374 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1375 	IXGBE_WRITE_FLUSH(hw);
1376 	udelay(1);
1377 	return 0;
1378 }
1379 
1380 /**
1381  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1382  *  @hw: pointer to hardware structure
1383  *
1384  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1385  **/
1386 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1387 {
1388 	u32 timeout = 2000;
1389 	u32 i;
1390 	u32 swsm;
1391 
1392 	/* Get SMBI software semaphore between device drivers first */
1393 	for (i = 0; i < timeout; i++) {
1394 		/*
1395 		 * If the SMBI bit is 0 when we read it, then the bit will be
1396 		 * set and we have the semaphore
1397 		 */
1398 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1399 		if (!(swsm & IXGBE_SWSM_SMBI))
1400 			break;
1401 		usleep_range(50, 100);
1402 	}
1403 
1404 	if (i == timeout) {
1405 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1406 		/* this release is particularly important because our attempts
1407 		 * above to get the semaphore may have succeeded, and if there
1408 		 * was a timeout, we should unconditionally clear the semaphore
1409 		 * bits to free the driver to make progress
1410 		 */
1411 		ixgbe_release_eeprom_semaphore(hw);
1412 
1413 		usleep_range(50, 100);
1414 		/* one last try
1415 		 * If the SMBI bit is 0 when we read it, then the bit will be
1416 		 * set and we have the semaphore
1417 		 */
1418 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1419 		if (swsm & IXGBE_SWSM_SMBI) {
1420 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1421 			return IXGBE_ERR_EEPROM;
1422 		}
1423 	}
1424 
1425 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1426 	for (i = 0; i < timeout; i++) {
1427 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1428 
1429 		/* Set the SW EEPROM semaphore bit to request access */
1430 		swsm |= IXGBE_SWSM_SWESMBI;
1431 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1432 
1433 		/* If we set the bit successfully then we got the
1434 		 * semaphore.
1435 		 */
1436 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1437 		if (swsm & IXGBE_SWSM_SWESMBI)
1438 			break;
1439 
1440 		usleep_range(50, 100);
1441 	}
1442 
1443 	/* Release semaphores and return error if SW EEPROM semaphore
1444 	 * was not granted because we don't have access to the EEPROM
1445 	 */
1446 	if (i >= timeout) {
1447 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1448 		ixgbe_release_eeprom_semaphore(hw);
1449 		return IXGBE_ERR_EEPROM;
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 /**
1456  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1457  *  @hw: pointer to hardware structure
1458  *
1459  *  This function clears hardware semaphore bits.
1460  **/
1461 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1462 {
1463 	u32 swsm;
1464 
1465 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1466 
1467 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1468 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1469 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1470 	IXGBE_WRITE_FLUSH(hw);
1471 }
1472 
1473 /**
1474  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1475  *  @hw: pointer to hardware structure
1476  **/
1477 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1478 {
1479 	u16 i;
1480 	u8 spi_stat_reg;
1481 
1482 	/*
1483 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1484 	 * EEPROM will signal that the command has been completed by clearing
1485 	 * bit 0 of the internal status register.  If it's not cleared within
1486 	 * 5 milliseconds, then error out.
1487 	 */
1488 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1489 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1490 					    IXGBE_EEPROM_OPCODE_BITS);
1491 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1492 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1493 			break;
1494 
1495 		udelay(5);
1496 		ixgbe_standby_eeprom(hw);
1497 	}
1498 
1499 	/*
1500 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1501 	 * devices (and only 0-5mSec on 5V devices)
1502 	 */
1503 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1504 		hw_dbg(hw, "SPI EEPROM Status error\n");
1505 		return IXGBE_ERR_EEPROM;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 /**
1512  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1513  *  @hw: pointer to hardware structure
1514  **/
1515 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1516 {
1517 	u32 eec;
1518 
1519 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1520 
1521 	/* Toggle CS to flush commands */
1522 	eec |= IXGBE_EEC_CS;
1523 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1524 	IXGBE_WRITE_FLUSH(hw);
1525 	udelay(1);
1526 	eec &= ~IXGBE_EEC_CS;
1527 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1528 	IXGBE_WRITE_FLUSH(hw);
1529 	udelay(1);
1530 }
1531 
1532 /**
1533  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1534  *  @hw: pointer to hardware structure
1535  *  @data: data to send to the EEPROM
1536  *  @count: number of bits to shift out
1537  **/
1538 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1539 					u16 count)
1540 {
1541 	u32 eec;
1542 	u32 mask;
1543 	u32 i;
1544 
1545 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1546 
1547 	/*
1548 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1549 	 * one bit at a time.  Determine the starting bit based on count
1550 	 */
1551 	mask = BIT(count - 1);
1552 
1553 	for (i = 0; i < count; i++) {
1554 		/*
1555 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1556 		 * "1", and then raising and then lowering the clock (the SK
1557 		 * bit controls the clock input to the EEPROM).  A "0" is
1558 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1559 		 * raising and then lowering the clock.
1560 		 */
1561 		if (data & mask)
1562 			eec |= IXGBE_EEC_DI;
1563 		else
1564 			eec &= ~IXGBE_EEC_DI;
1565 
1566 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1567 		IXGBE_WRITE_FLUSH(hw);
1568 
1569 		udelay(1);
1570 
1571 		ixgbe_raise_eeprom_clk(hw, &eec);
1572 		ixgbe_lower_eeprom_clk(hw, &eec);
1573 
1574 		/*
1575 		 * Shift mask to signify next bit of data to shift in to the
1576 		 * EEPROM
1577 		 */
1578 		mask = mask >> 1;
1579 	}
1580 
1581 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1582 	eec &= ~IXGBE_EEC_DI;
1583 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1584 	IXGBE_WRITE_FLUSH(hw);
1585 }
1586 
1587 /**
1588  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1589  *  @hw: pointer to hardware structure
1590  *  @count: number of bits to shift
1591  **/
1592 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1593 {
1594 	u32 eec;
1595 	u32 i;
1596 	u16 data = 0;
1597 
1598 	/*
1599 	 * In order to read a register from the EEPROM, we need to shift
1600 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1601 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1602 	 * the value of the "DO" bit.  During this "shifting in" process the
1603 	 * "DI" bit should always be clear.
1604 	 */
1605 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1606 
1607 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1608 
1609 	for (i = 0; i < count; i++) {
1610 		data = data << 1;
1611 		ixgbe_raise_eeprom_clk(hw, &eec);
1612 
1613 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1614 
1615 		eec &= ~(IXGBE_EEC_DI);
1616 		if (eec & IXGBE_EEC_DO)
1617 			data |= 1;
1618 
1619 		ixgbe_lower_eeprom_clk(hw, &eec);
1620 	}
1621 
1622 	return data;
1623 }
1624 
1625 /**
1626  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1627  *  @hw: pointer to hardware structure
1628  *  @eec: EEC register's current value
1629  **/
1630 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1631 {
1632 	/*
1633 	 * Raise the clock input to the EEPROM
1634 	 * (setting the SK bit), then delay
1635 	 */
1636 	*eec = *eec | IXGBE_EEC_SK;
1637 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1638 	IXGBE_WRITE_FLUSH(hw);
1639 	udelay(1);
1640 }
1641 
1642 /**
1643  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1644  *  @hw: pointer to hardware structure
1645  *  @eec: EEC's current value
1646  **/
1647 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1648 {
1649 	/*
1650 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1651 	 * delay
1652 	 */
1653 	*eec = *eec & ~IXGBE_EEC_SK;
1654 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1655 	IXGBE_WRITE_FLUSH(hw);
1656 	udelay(1);
1657 }
1658 
1659 /**
1660  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1661  *  @hw: pointer to hardware structure
1662  **/
1663 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1664 {
1665 	u32 eec;
1666 
1667 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1668 
1669 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1670 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1671 
1672 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1673 	IXGBE_WRITE_FLUSH(hw);
1674 
1675 	udelay(1);
1676 
1677 	/* Stop requesting EEPROM access */
1678 	eec &= ~IXGBE_EEC_REQ;
1679 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1680 
1681 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1682 
1683 	/*
1684 	 * Delay before attempt to obtain semaphore again to allow FW
1685 	 * access. semaphore_delay is in ms we need us for usleep_range
1686 	 */
1687 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1688 		     hw->eeprom.semaphore_delay * 2000);
1689 }
1690 
1691 /**
1692  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1693  *  @hw: pointer to hardware structure
1694  **/
1695 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1696 {
1697 	u16 i;
1698 	u16 j;
1699 	u16 checksum = 0;
1700 	u16 length = 0;
1701 	u16 pointer = 0;
1702 	u16 word = 0;
1703 
1704 	/* Include 0x0-0x3F in the checksum */
1705 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1706 		if (hw->eeprom.ops.read(hw, i, &word)) {
1707 			hw_dbg(hw, "EEPROM read failed\n");
1708 			break;
1709 		}
1710 		checksum += word;
1711 	}
1712 
1713 	/* Include all data from pointers except for the fw pointer */
1714 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1715 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1716 			hw_dbg(hw, "EEPROM read failed\n");
1717 			return IXGBE_ERR_EEPROM;
1718 		}
1719 
1720 		/* If the pointer seems invalid */
1721 		if (pointer == 0xFFFF || pointer == 0)
1722 			continue;
1723 
1724 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1725 			hw_dbg(hw, "EEPROM read failed\n");
1726 			return IXGBE_ERR_EEPROM;
1727 		}
1728 
1729 		if (length == 0xFFFF || length == 0)
1730 			continue;
1731 
1732 		for (j = pointer + 1; j <= pointer + length; j++) {
1733 			if (hw->eeprom.ops.read(hw, j, &word)) {
1734 				hw_dbg(hw, "EEPROM read failed\n");
1735 				return IXGBE_ERR_EEPROM;
1736 			}
1737 			checksum += word;
1738 		}
1739 	}
1740 
1741 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1742 
1743 	return (s32)checksum;
1744 }
1745 
1746 /**
1747  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1748  *  @hw: pointer to hardware structure
1749  *  @checksum_val: calculated checksum
1750  *
1751  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1752  *  caller does not need checksum_val, the value can be NULL.
1753  **/
1754 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1755 					   u16 *checksum_val)
1756 {
1757 	s32 status;
1758 	u16 checksum;
1759 	u16 read_checksum = 0;
1760 
1761 	/*
1762 	 * Read the first word from the EEPROM. If this times out or fails, do
1763 	 * not continue or we could be in for a very long wait while every
1764 	 * EEPROM read fails
1765 	 */
1766 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1767 	if (status) {
1768 		hw_dbg(hw, "EEPROM read failed\n");
1769 		return status;
1770 	}
1771 
1772 	status = hw->eeprom.ops.calc_checksum(hw);
1773 	if (status < 0)
1774 		return status;
1775 
1776 	checksum = (u16)(status & 0xffff);
1777 
1778 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1779 	if (status) {
1780 		hw_dbg(hw, "EEPROM read failed\n");
1781 		return status;
1782 	}
1783 
1784 	/* Verify read checksum from EEPROM is the same as
1785 	 * calculated checksum
1786 	 */
1787 	if (read_checksum != checksum)
1788 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1789 
1790 	/* If the user cares, return the calculated checksum */
1791 	if (checksum_val)
1792 		*checksum_val = checksum;
1793 
1794 	return status;
1795 }
1796 
1797 /**
1798  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1799  *  @hw: pointer to hardware structure
1800  **/
1801 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1802 {
1803 	s32 status;
1804 	u16 checksum;
1805 
1806 	/*
1807 	 * Read the first word from the EEPROM. If this times out or fails, do
1808 	 * not continue or we could be in for a very long wait while every
1809 	 * EEPROM read fails
1810 	 */
1811 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1812 	if (status) {
1813 		hw_dbg(hw, "EEPROM read failed\n");
1814 		return status;
1815 	}
1816 
1817 	status = hw->eeprom.ops.calc_checksum(hw);
1818 	if (status < 0)
1819 		return status;
1820 
1821 	checksum = (u16)(status & 0xffff);
1822 
1823 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1824 
1825 	return status;
1826 }
1827 
1828 /**
1829  *  ixgbe_set_rar_generic - Set Rx address register
1830  *  @hw: pointer to hardware structure
1831  *  @index: Receive address register to write
1832  *  @addr: Address to put into receive address register
1833  *  @vmdq: VMDq "set" or "pool" index
1834  *  @enable_addr: set flag that address is active
1835  *
1836  *  Puts an ethernet address into a receive address register.
1837  **/
1838 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1839 			  u32 enable_addr)
1840 {
1841 	u32 rar_low, rar_high;
1842 	u32 rar_entries = hw->mac.num_rar_entries;
1843 
1844 	/* Make sure we are using a valid rar index range */
1845 	if (index >= rar_entries) {
1846 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1847 		return IXGBE_ERR_INVALID_ARGUMENT;
1848 	}
1849 
1850 	/* setup VMDq pool selection before this RAR gets enabled */
1851 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1852 
1853 	/*
1854 	 * HW expects these in little endian so we reverse the byte
1855 	 * order from network order (big endian) to little endian
1856 	 */
1857 	rar_low = ((u32)addr[0] |
1858 		   ((u32)addr[1] << 8) |
1859 		   ((u32)addr[2] << 16) |
1860 		   ((u32)addr[3] << 24));
1861 	/*
1862 	 * Some parts put the VMDq setting in the extra RAH bits,
1863 	 * so save everything except the lower 16 bits that hold part
1864 	 * of the address and the address valid bit.
1865 	 */
1866 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1867 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1868 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1869 
1870 	if (enable_addr != 0)
1871 		rar_high |= IXGBE_RAH_AV;
1872 
1873 	/* Record lower 32 bits of MAC address and then make
1874 	 * sure that write is flushed to hardware before writing
1875 	 * the upper 16 bits and setting the valid bit.
1876 	 */
1877 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1878 	IXGBE_WRITE_FLUSH(hw);
1879 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1880 
1881 	return 0;
1882 }
1883 
1884 /**
1885  *  ixgbe_clear_rar_generic - Remove Rx address register
1886  *  @hw: pointer to hardware structure
1887  *  @index: Receive address register to write
1888  *
1889  *  Clears an ethernet address from a receive address register.
1890  **/
1891 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1892 {
1893 	u32 rar_high;
1894 	u32 rar_entries = hw->mac.num_rar_entries;
1895 
1896 	/* Make sure we are using a valid rar index range */
1897 	if (index >= rar_entries) {
1898 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1899 		return IXGBE_ERR_INVALID_ARGUMENT;
1900 	}
1901 
1902 	/*
1903 	 * Some parts put the VMDq setting in the extra RAH bits,
1904 	 * so save everything except the lower 16 bits that hold part
1905 	 * of the address and the address valid bit.
1906 	 */
1907 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1908 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1909 
1910 	/* Clear the address valid bit and upper 16 bits of the address
1911 	 * before clearing the lower bits. This way we aren't updating
1912 	 * a live filter.
1913 	 */
1914 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1915 	IXGBE_WRITE_FLUSH(hw);
1916 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1917 
1918 	/* clear VMDq pool/queue selection for this RAR */
1919 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1920 
1921 	return 0;
1922 }
1923 
1924 /**
1925  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1926  *  @hw: pointer to hardware structure
1927  *
1928  *  Places the MAC address in receive address register 0 and clears the rest
1929  *  of the receive address registers. Clears the multicast table. Assumes
1930  *  the receiver is in reset when the routine is called.
1931  **/
1932 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1933 {
1934 	u32 i;
1935 	u32 rar_entries = hw->mac.num_rar_entries;
1936 
1937 	/*
1938 	 * If the current mac address is valid, assume it is a software override
1939 	 * to the permanent address.
1940 	 * Otherwise, use the permanent address from the eeprom.
1941 	 */
1942 	if (!is_valid_ether_addr(hw->mac.addr)) {
1943 		/* Get the MAC address from the RAR0 for later reference */
1944 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1945 
1946 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1947 	} else {
1948 		/* Setup the receive address. */
1949 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1950 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1951 
1952 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1953 	}
1954 
1955 	/*  clear VMDq pool/queue selection for RAR 0 */
1956 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1957 
1958 	hw->addr_ctrl.overflow_promisc = 0;
1959 
1960 	hw->addr_ctrl.rar_used_count = 1;
1961 
1962 	/* Zero out the other receive addresses. */
1963 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1964 	for (i = 1; i < rar_entries; i++) {
1965 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1966 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1967 	}
1968 
1969 	/* Clear the MTA */
1970 	hw->addr_ctrl.mta_in_use = 0;
1971 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1972 
1973 	hw_dbg(hw, " Clearing MTA\n");
1974 	for (i = 0; i < hw->mac.mcft_size; i++)
1975 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1976 
1977 	if (hw->mac.ops.init_uta_tables)
1978 		hw->mac.ops.init_uta_tables(hw);
1979 
1980 	return 0;
1981 }
1982 
1983 /**
1984  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1985  *  @hw: pointer to hardware structure
1986  *  @mc_addr: the multicast address
1987  *
1988  *  Extracts the 12 bits, from a multicast address, to determine which
1989  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1990  *  incoming rx multicast addresses, to determine the bit-vector to check in
1991  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1992  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1993  *  to mc_filter_type.
1994  **/
1995 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1996 {
1997 	u32 vector = 0;
1998 
1999 	switch (hw->mac.mc_filter_type) {
2000 	case 0:   /* use bits [47:36] of the address */
2001 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2002 		break;
2003 	case 1:   /* use bits [46:35] of the address */
2004 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2005 		break;
2006 	case 2:   /* use bits [45:34] of the address */
2007 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2008 		break;
2009 	case 3:   /* use bits [43:32] of the address */
2010 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2011 		break;
2012 	default:  /* Invalid mc_filter_type */
2013 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2014 		break;
2015 	}
2016 
2017 	/* vector can only be 12-bits or boundary will be exceeded */
2018 	vector &= 0xFFF;
2019 	return vector;
2020 }
2021 
2022 /**
2023  *  ixgbe_set_mta - Set bit-vector in multicast table
2024  *  @hw: pointer to hardware structure
2025  *  @mc_addr: Multicast address
2026  *
2027  *  Sets the bit-vector in the multicast table.
2028  **/
2029 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2030 {
2031 	u32 vector;
2032 	u32 vector_bit;
2033 	u32 vector_reg;
2034 
2035 	hw->addr_ctrl.mta_in_use++;
2036 
2037 	vector = ixgbe_mta_vector(hw, mc_addr);
2038 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2039 
2040 	/*
2041 	 * The MTA is a register array of 128 32-bit registers. It is treated
2042 	 * like an array of 4096 bits.  We want to set bit
2043 	 * BitArray[vector_value]. So we figure out what register the bit is
2044 	 * in, read it, OR in the new bit, then write back the new value.  The
2045 	 * register is determined by the upper 7 bits of the vector value and
2046 	 * the bit within that register are determined by the lower 5 bits of
2047 	 * the value.
2048 	 */
2049 	vector_reg = (vector >> 5) & 0x7F;
2050 	vector_bit = vector & 0x1F;
2051 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2052 }
2053 
2054 /**
2055  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2056  *  @hw: pointer to hardware structure
2057  *  @netdev: pointer to net device structure
2058  *
2059  *  The given list replaces any existing list. Clears the MC addrs from receive
2060  *  address registers and the multicast table. Uses unused receive address
2061  *  registers for the first multicast addresses, and hashes the rest into the
2062  *  multicast table.
2063  **/
2064 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2065 				      struct net_device *netdev)
2066 {
2067 	struct netdev_hw_addr *ha;
2068 	u32 i;
2069 
2070 	/*
2071 	 * Set the new number of MC addresses that we are being requested to
2072 	 * use.
2073 	 */
2074 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2075 	hw->addr_ctrl.mta_in_use = 0;
2076 
2077 	/* Clear mta_shadow */
2078 	hw_dbg(hw, " Clearing MTA\n");
2079 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2080 
2081 	/* Update mta shadow */
2082 	netdev_for_each_mc_addr(ha, netdev) {
2083 		hw_dbg(hw, " Adding the multicast addresses:\n");
2084 		ixgbe_set_mta(hw, ha->addr);
2085 	}
2086 
2087 	/* Enable mta */
2088 	for (i = 0; i < hw->mac.mcft_size; i++)
2089 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2090 				      hw->mac.mta_shadow[i]);
2091 
2092 	if (hw->addr_ctrl.mta_in_use > 0)
2093 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2094 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2095 
2096 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2097 	return 0;
2098 }
2099 
2100 /**
2101  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2102  *  @hw: pointer to hardware structure
2103  *
2104  *  Enables multicast address in RAR and the use of the multicast hash table.
2105  **/
2106 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2107 {
2108 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2109 
2110 	if (a->mta_in_use > 0)
2111 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2112 				hw->mac.mc_filter_type);
2113 
2114 	return 0;
2115 }
2116 
2117 /**
2118  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2119  *  @hw: pointer to hardware structure
2120  *
2121  *  Disables multicast address in RAR and the use of the multicast hash table.
2122  **/
2123 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2124 {
2125 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2126 
2127 	if (a->mta_in_use > 0)
2128 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2129 
2130 	return 0;
2131 }
2132 
2133 /**
2134  *  ixgbe_fc_enable_generic - Enable flow control
2135  *  @hw: pointer to hardware structure
2136  *
2137  *  Enable flow control according to the current settings.
2138  **/
2139 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2140 {
2141 	u32 mflcn_reg, fccfg_reg;
2142 	u32 reg;
2143 	u32 fcrtl, fcrth;
2144 	int i;
2145 
2146 	/* Validate the water mark configuration. */
2147 	if (!hw->fc.pause_time)
2148 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2149 
2150 	/* Low water mark of zero causes XOFF floods */
2151 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2152 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2153 		    hw->fc.high_water[i]) {
2154 			if (!hw->fc.low_water[i] ||
2155 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2156 				hw_dbg(hw, "Invalid water mark configuration\n");
2157 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2158 			}
2159 		}
2160 	}
2161 
2162 	/* Negotiate the fc mode to use */
2163 	hw->mac.ops.fc_autoneg(hw);
2164 
2165 	/* Disable any previous flow control settings */
2166 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2167 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2168 
2169 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2170 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2171 
2172 	/*
2173 	 * The possible values of fc.current_mode are:
2174 	 * 0: Flow control is completely disabled
2175 	 * 1: Rx flow control is enabled (we can receive pause frames,
2176 	 *    but not send pause frames).
2177 	 * 2: Tx flow control is enabled (we can send pause frames but
2178 	 *    we do not support receiving pause frames).
2179 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2180 	 * other: Invalid.
2181 	 */
2182 	switch (hw->fc.current_mode) {
2183 	case ixgbe_fc_none:
2184 		/*
2185 		 * Flow control is disabled by software override or autoneg.
2186 		 * The code below will actually disable it in the HW.
2187 		 */
2188 		break;
2189 	case ixgbe_fc_rx_pause:
2190 		/*
2191 		 * Rx Flow control is enabled and Tx Flow control is
2192 		 * disabled by software override. Since there really
2193 		 * isn't a way to advertise that we are capable of RX
2194 		 * Pause ONLY, we will advertise that we support both
2195 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2196 		 * disable the adapter's ability to send PAUSE frames.
2197 		 */
2198 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2199 		break;
2200 	case ixgbe_fc_tx_pause:
2201 		/*
2202 		 * Tx Flow control is enabled, and Rx Flow control is
2203 		 * disabled by software override.
2204 		 */
2205 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2206 		break;
2207 	case ixgbe_fc_full:
2208 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2209 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2210 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2211 		break;
2212 	default:
2213 		hw_dbg(hw, "Flow control param set incorrectly\n");
2214 		return IXGBE_ERR_CONFIG;
2215 	}
2216 
2217 	/* Set 802.3x based flow control settings. */
2218 	mflcn_reg |= IXGBE_MFLCN_DPF;
2219 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2220 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2221 
2222 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2223 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2224 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2225 		    hw->fc.high_water[i]) {
2226 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2227 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2228 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2229 		} else {
2230 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2231 			/*
2232 			 * In order to prevent Tx hangs when the internal Tx
2233 			 * switch is enabled we must set the high water mark
2234 			 * to the Rx packet buffer size - 24KB.  This allows
2235 			 * the Tx switch to function even under heavy Rx
2236 			 * workloads.
2237 			 */
2238 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2239 		}
2240 
2241 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2242 	}
2243 
2244 	/* Configure pause time (2 TCs per register) */
2245 	reg = hw->fc.pause_time * 0x00010001U;
2246 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2247 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2248 
2249 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2250 
2251 	return 0;
2252 }
2253 
2254 /**
2255  *  ixgbe_negotiate_fc - Negotiate flow control
2256  *  @hw: pointer to hardware structure
2257  *  @adv_reg: flow control advertised settings
2258  *  @lp_reg: link partner's flow control settings
2259  *  @adv_sym: symmetric pause bit in advertisement
2260  *  @adv_asm: asymmetric pause bit in advertisement
2261  *  @lp_sym: symmetric pause bit in link partner advertisement
2262  *  @lp_asm: asymmetric pause bit in link partner advertisement
2263  *
2264  *  Find the intersection between advertised settings and link partner's
2265  *  advertised settings
2266  **/
2267 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2268 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2269 {
2270 	if ((!(adv_reg)) ||  (!(lp_reg)))
2271 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2272 
2273 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2274 		/*
2275 		 * Now we need to check if the user selected Rx ONLY
2276 		 * of pause frames.  In this case, we had to advertise
2277 		 * FULL flow control because we could not advertise RX
2278 		 * ONLY. Hence, we must now check to see if we need to
2279 		 * turn OFF the TRANSMISSION of PAUSE frames.
2280 		 */
2281 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2282 			hw->fc.current_mode = ixgbe_fc_full;
2283 			hw_dbg(hw, "Flow Control = FULL.\n");
2284 		} else {
2285 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2286 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2287 		}
2288 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2289 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2290 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2291 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2292 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2293 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2294 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2295 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2296 	} else {
2297 		hw->fc.current_mode = ixgbe_fc_none;
2298 		hw_dbg(hw, "Flow Control = NONE.\n");
2299 	}
2300 	return 0;
2301 }
2302 
2303 /**
2304  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2305  *  @hw: pointer to hardware structure
2306  *
2307  *  Enable flow control according on 1 gig fiber.
2308  **/
2309 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2310 {
2311 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2312 	s32 ret_val;
2313 
2314 	/*
2315 	 * On multispeed fiber at 1g, bail out if
2316 	 * - link is up but AN did not complete, or if
2317 	 * - link is up and AN completed but timed out
2318 	 */
2319 
2320 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2321 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2322 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2323 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2324 
2325 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2326 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2327 
2328 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2329 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2330 			       IXGBE_PCS1GANA_ASM_PAUSE,
2331 			       IXGBE_PCS1GANA_SYM_PAUSE,
2332 			       IXGBE_PCS1GANA_ASM_PAUSE);
2333 
2334 	return ret_val;
2335 }
2336 
2337 /**
2338  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2339  *  @hw: pointer to hardware structure
2340  *
2341  *  Enable flow control according to IEEE clause 37.
2342  **/
2343 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2344 {
2345 	u32 links2, anlp1_reg, autoc_reg, links;
2346 	s32 ret_val;
2347 
2348 	/*
2349 	 * On backplane, bail out if
2350 	 * - backplane autoneg was not completed, or if
2351 	 * - we are 82599 and link partner is not AN enabled
2352 	 */
2353 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2354 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2355 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2356 
2357 	if (hw->mac.type == ixgbe_mac_82599EB) {
2358 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2359 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2360 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2361 	}
2362 	/*
2363 	 * Read the 10g AN autoc and LP ability registers and resolve
2364 	 * local flow control settings accordingly
2365 	 */
2366 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2367 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2368 
2369 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2370 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2371 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2372 
2373 	return ret_val;
2374 }
2375 
2376 /**
2377  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2378  *  @hw: pointer to hardware structure
2379  *
2380  *  Enable flow control according to IEEE clause 37.
2381  **/
2382 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2383 {
2384 	u16 technology_ability_reg = 0;
2385 	u16 lp_technology_ability_reg = 0;
2386 
2387 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2388 			     MDIO_MMD_AN,
2389 			     &technology_ability_reg);
2390 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2391 			     MDIO_MMD_AN,
2392 			     &lp_technology_ability_reg);
2393 
2394 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2395 				  (u32)lp_technology_ability_reg,
2396 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2397 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2398 }
2399 
2400 /**
2401  *  ixgbe_fc_autoneg - Configure flow control
2402  *  @hw: pointer to hardware structure
2403  *
2404  *  Compares our advertised flow control capabilities to those advertised by
2405  *  our link partner, and determines the proper flow control mode to use.
2406  **/
2407 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2408 {
2409 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2410 	ixgbe_link_speed speed;
2411 	bool link_up;
2412 
2413 	/*
2414 	 * AN should have completed when the cable was plugged in.
2415 	 * Look for reasons to bail out.  Bail out if:
2416 	 * - FC autoneg is disabled, or if
2417 	 * - link is not up.
2418 	 *
2419 	 * Since we're being called from an LSC, link is already known to be up.
2420 	 * So use link_up_wait_to_complete=false.
2421 	 */
2422 	if (hw->fc.disable_fc_autoneg)
2423 		goto out;
2424 
2425 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2426 	if (!link_up)
2427 		goto out;
2428 
2429 	switch (hw->phy.media_type) {
2430 	/* Autoneg flow control on fiber adapters */
2431 	case ixgbe_media_type_fiber:
2432 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2433 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2434 		break;
2435 
2436 	/* Autoneg flow control on backplane adapters */
2437 	case ixgbe_media_type_backplane:
2438 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2439 		break;
2440 
2441 	/* Autoneg flow control on copper adapters */
2442 	case ixgbe_media_type_copper:
2443 		if (ixgbe_device_supports_autoneg_fc(hw))
2444 			ret_val = ixgbe_fc_autoneg_copper(hw);
2445 		break;
2446 
2447 	default:
2448 		break;
2449 	}
2450 
2451 out:
2452 	if (ret_val == 0) {
2453 		hw->fc.fc_was_autonegged = true;
2454 	} else {
2455 		hw->fc.fc_was_autonegged = false;
2456 		hw->fc.current_mode = hw->fc.requested_mode;
2457 	}
2458 }
2459 
2460 /**
2461  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2462  * @hw: pointer to hardware structure
2463  *
2464  * System-wide timeout range is encoded in PCIe Device Control2 register.
2465  *
2466  *  Add 10% to specified maximum and return the number of times to poll for
2467  *  completion timeout, in units of 100 microsec.  Never return less than
2468  *  800 = 80 millisec.
2469  **/
2470 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2471 {
2472 	s16 devctl2;
2473 	u32 pollcnt;
2474 
2475 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2476 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2477 
2478 	switch (devctl2) {
2479 	case IXGBE_PCIDEVCTRL2_65_130ms:
2480 		 pollcnt = 1300;         /* 130 millisec */
2481 		break;
2482 	case IXGBE_PCIDEVCTRL2_260_520ms:
2483 		pollcnt = 5200;         /* 520 millisec */
2484 		break;
2485 	case IXGBE_PCIDEVCTRL2_1_2s:
2486 		pollcnt = 20000;        /* 2 sec */
2487 		break;
2488 	case IXGBE_PCIDEVCTRL2_4_8s:
2489 		pollcnt = 80000;        /* 8 sec */
2490 		break;
2491 	case IXGBE_PCIDEVCTRL2_17_34s:
2492 		pollcnt = 34000;        /* 34 sec */
2493 		break;
2494 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2495 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2496 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2497 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2498 	default:
2499 		pollcnt = 800;          /* 80 millisec minimum */
2500 		break;
2501 	}
2502 
2503 	/* add 10% to spec maximum */
2504 	return (pollcnt * 11) / 10;
2505 }
2506 
2507 /**
2508  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2509  *  @hw: pointer to hardware structure
2510  *
2511  *  Disables PCI-Express master access and verifies there are no pending
2512  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2513  *  bit hasn't caused the master requests to be disabled, else 0
2514  *  is returned signifying master requests disabled.
2515  **/
2516 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2517 {
2518 	u32 i, poll;
2519 	u16 value;
2520 
2521 	/* Always set this bit to ensure any future transactions are blocked */
2522 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2523 
2524 	/* Poll for bit to read as set */
2525 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2526 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2527 			break;
2528 		usleep_range(100, 120);
2529 	}
2530 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2531 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2532 		goto gio_disable_fail;
2533 	}
2534 
2535 	/* Exit if master requests are blocked */
2536 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2537 	    ixgbe_removed(hw->hw_addr))
2538 		return 0;
2539 
2540 	/* Poll for master request bit to clear */
2541 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2542 		udelay(100);
2543 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2544 			return 0;
2545 	}
2546 
2547 	/*
2548 	 * Two consecutive resets are required via CTRL.RST per datasheet
2549 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2550 	 * of this need.  The first reset prevents new master requests from
2551 	 * being issued by our device.  We then must wait 1usec or more for any
2552 	 * remaining completions from the PCIe bus to trickle in, and then reset
2553 	 * again to clear out any effects they may have had on our device.
2554 	 */
2555 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2556 gio_disable_fail:
2557 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2558 
2559 	if (hw->mac.type >= ixgbe_mac_X550)
2560 		return 0;
2561 
2562 	/*
2563 	 * Before proceeding, make sure that the PCIe block does not have
2564 	 * transactions pending.
2565 	 */
2566 	poll = ixgbe_pcie_timeout_poll(hw);
2567 	for (i = 0; i < poll; i++) {
2568 		udelay(100);
2569 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2570 		if (ixgbe_removed(hw->hw_addr))
2571 			return 0;
2572 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2573 			return 0;
2574 	}
2575 
2576 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2577 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2578 }
2579 
2580 /**
2581  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2582  *  @hw: pointer to hardware structure
2583  *  @mask: Mask to specify which semaphore to acquire
2584  *
2585  *  Acquires the SWFW semaphore through the GSSR register for the specified
2586  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2587  **/
2588 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2589 {
2590 	u32 gssr = 0;
2591 	u32 swmask = mask;
2592 	u32 fwmask = mask << 5;
2593 	u32 timeout = 200;
2594 	u32 i;
2595 
2596 	for (i = 0; i < timeout; i++) {
2597 		/*
2598 		 * SW NVM semaphore bit is used for access to all
2599 		 * SW_FW_SYNC bits (not just NVM)
2600 		 */
2601 		if (ixgbe_get_eeprom_semaphore(hw))
2602 			return IXGBE_ERR_SWFW_SYNC;
2603 
2604 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2605 		if (!(gssr & (fwmask | swmask))) {
2606 			gssr |= swmask;
2607 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2608 			ixgbe_release_eeprom_semaphore(hw);
2609 			return 0;
2610 		} else {
2611 			/* Resource is currently in use by FW or SW */
2612 			ixgbe_release_eeprom_semaphore(hw);
2613 			usleep_range(5000, 10000);
2614 		}
2615 	}
2616 
2617 	/* If time expired clear the bits holding the lock and retry */
2618 	if (gssr & (fwmask | swmask))
2619 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2620 
2621 	usleep_range(5000, 10000);
2622 	return IXGBE_ERR_SWFW_SYNC;
2623 }
2624 
2625 /**
2626  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2627  *  @hw: pointer to hardware structure
2628  *  @mask: Mask to specify which semaphore to release
2629  *
2630  *  Releases the SWFW semaphore through the GSSR register for the specified
2631  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2632  **/
2633 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2634 {
2635 	u32 gssr;
2636 	u32 swmask = mask;
2637 
2638 	ixgbe_get_eeprom_semaphore(hw);
2639 
2640 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2641 	gssr &= ~swmask;
2642 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2643 
2644 	ixgbe_release_eeprom_semaphore(hw);
2645 }
2646 
2647 /**
2648  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2649  * @hw: pointer to hardware structure
2650  * @reg_val: Value we read from AUTOC
2651  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2652  *	    true in this the generic case.
2653  *
2654  * The default case requires no protection so just to the register read.
2655  **/
2656 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2657 {
2658 	*locked = false;
2659 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2660 	return 0;
2661 }
2662 
2663 /**
2664  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2665  * @hw: pointer to hardware structure
2666  * @reg_val: value to write to AUTOC
2667  * @locked: bool to indicate whether the SW/FW lock was already taken by
2668  *	    previous read.
2669  **/
2670 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2671 {
2672 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2673 	return 0;
2674 }
2675 
2676 /**
2677  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2678  *  @hw: pointer to hardware structure
2679  *
2680  *  Stops the receive data path and waits for the HW to internally
2681  *  empty the Rx security block.
2682  **/
2683 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2684 {
2685 #define IXGBE_MAX_SECRX_POLL 40
2686 	int i;
2687 	int secrxreg;
2688 
2689 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2690 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2691 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2692 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2693 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2694 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2695 			break;
2696 		else
2697 			/* Use interrupt-safe sleep just in case */
2698 			udelay(1000);
2699 	}
2700 
2701 	/* For informational purposes only */
2702 	if (i >= IXGBE_MAX_SECRX_POLL)
2703 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2704 
2705 	return 0;
2706 
2707 }
2708 
2709 /**
2710  *  ixgbe_enable_rx_buff - Enables the receive data path
2711  *  @hw: pointer to hardware structure
2712  *
2713  *  Enables the receive data path
2714  **/
2715 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2716 {
2717 	u32 secrxreg;
2718 
2719 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2720 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2721 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2722 	IXGBE_WRITE_FLUSH(hw);
2723 
2724 	return 0;
2725 }
2726 
2727 /**
2728  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2729  *  @hw: pointer to hardware structure
2730  *  @regval: register value to write to RXCTRL
2731  *
2732  *  Enables the Rx DMA unit
2733  **/
2734 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2735 {
2736 	if (regval & IXGBE_RXCTRL_RXEN)
2737 		hw->mac.ops.enable_rx(hw);
2738 	else
2739 		hw->mac.ops.disable_rx(hw);
2740 
2741 	return 0;
2742 }
2743 
2744 /**
2745  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2746  *  @hw: pointer to hardware structure
2747  *  @index: led number to blink
2748  **/
2749 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2750 {
2751 	ixgbe_link_speed speed = 0;
2752 	bool link_up = false;
2753 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2754 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2755 	bool locked = false;
2756 	s32 ret_val;
2757 
2758 	if (index > 3)
2759 		return IXGBE_ERR_PARAM;
2760 
2761 	/*
2762 	 * Link must be up to auto-blink the LEDs;
2763 	 * Force it if link is down.
2764 	 */
2765 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2766 
2767 	if (!link_up) {
2768 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2769 		if (ret_val)
2770 			return ret_val;
2771 
2772 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2773 		autoc_reg |= IXGBE_AUTOC_FLU;
2774 
2775 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2776 		if (ret_val)
2777 			return ret_val;
2778 
2779 		IXGBE_WRITE_FLUSH(hw);
2780 
2781 		usleep_range(10000, 20000);
2782 	}
2783 
2784 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2785 	led_reg |= IXGBE_LED_BLINK(index);
2786 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2787 	IXGBE_WRITE_FLUSH(hw);
2788 
2789 	return 0;
2790 }
2791 
2792 /**
2793  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2794  *  @hw: pointer to hardware structure
2795  *  @index: led number to stop blinking
2796  **/
2797 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2798 {
2799 	u32 autoc_reg = 0;
2800 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2801 	bool locked = false;
2802 	s32 ret_val;
2803 
2804 	if (index > 3)
2805 		return IXGBE_ERR_PARAM;
2806 
2807 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2808 	if (ret_val)
2809 		return ret_val;
2810 
2811 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2812 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2813 
2814 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2815 	if (ret_val)
2816 		return ret_val;
2817 
2818 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2819 	led_reg &= ~IXGBE_LED_BLINK(index);
2820 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2821 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2822 	IXGBE_WRITE_FLUSH(hw);
2823 
2824 	return 0;
2825 }
2826 
2827 /**
2828  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2829  *  @hw: pointer to hardware structure
2830  *  @san_mac_offset: SAN MAC address offset
2831  *
2832  *  This function will read the EEPROM location for the SAN MAC address
2833  *  pointer, and returns the value at that location.  This is used in both
2834  *  get and set mac_addr routines.
2835  **/
2836 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2837 					u16 *san_mac_offset)
2838 {
2839 	s32 ret_val;
2840 
2841 	/*
2842 	 * First read the EEPROM pointer to see if the MAC addresses are
2843 	 * available.
2844 	 */
2845 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2846 				      san_mac_offset);
2847 	if (ret_val)
2848 		hw_err(hw, "eeprom read at offset %d failed\n",
2849 		       IXGBE_SAN_MAC_ADDR_PTR);
2850 
2851 	return ret_val;
2852 }
2853 
2854 /**
2855  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2856  *  @hw: pointer to hardware structure
2857  *  @san_mac_addr: SAN MAC address
2858  *
2859  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2860  *  per-port, so set_lan_id() must be called before reading the addresses.
2861  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2862  *  upon for non-SFP connections, so we must call it here.
2863  **/
2864 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2865 {
2866 	u16 san_mac_data, san_mac_offset;
2867 	u8 i;
2868 	s32 ret_val;
2869 
2870 	/*
2871 	 * First read the EEPROM pointer to see if the MAC addresses are
2872 	 * available.  If they're not, no point in calling set_lan_id() here.
2873 	 */
2874 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2875 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2876 
2877 		goto san_mac_addr_clr;
2878 
2879 	/* make sure we know which port we need to program */
2880 	hw->mac.ops.set_lan_id(hw);
2881 	/* apply the port offset to the address offset */
2882 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2883 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2884 	for (i = 0; i < 3; i++) {
2885 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2886 					      &san_mac_data);
2887 		if (ret_val) {
2888 			hw_err(hw, "eeprom read at offset %d failed\n",
2889 			       san_mac_offset);
2890 			goto san_mac_addr_clr;
2891 		}
2892 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2893 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2894 		san_mac_offset++;
2895 	}
2896 	return 0;
2897 
2898 san_mac_addr_clr:
2899 	/* No addresses available in this EEPROM.  It's not necessarily an
2900 	 * error though, so just wipe the local address and return.
2901 	 */
2902 	for (i = 0; i < 6; i++)
2903 		san_mac_addr[i] = 0xFF;
2904 	return ret_val;
2905 }
2906 
2907 /**
2908  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2909  *  @hw: pointer to hardware structure
2910  *
2911  *  Read PCIe configuration space, and get the MSI-X vector count from
2912  *  the capabilities table.
2913  **/
2914 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2915 {
2916 	u16 msix_count;
2917 	u16 max_msix_count;
2918 	u16 pcie_offset;
2919 
2920 	switch (hw->mac.type) {
2921 	case ixgbe_mac_82598EB:
2922 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2923 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2924 		break;
2925 	case ixgbe_mac_82599EB:
2926 	case ixgbe_mac_X540:
2927 	case ixgbe_mac_X550:
2928 	case ixgbe_mac_X550EM_x:
2929 	case ixgbe_mac_x550em_a:
2930 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2931 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2932 		break;
2933 	default:
2934 		return 1;
2935 	}
2936 
2937 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2938 	if (ixgbe_removed(hw->hw_addr))
2939 		msix_count = 0;
2940 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2941 
2942 	/* MSI-X count is zero-based in HW */
2943 	msix_count++;
2944 
2945 	if (msix_count > max_msix_count)
2946 		msix_count = max_msix_count;
2947 
2948 	return msix_count;
2949 }
2950 
2951 /**
2952  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2953  *  @hw: pointer to hardware struct
2954  *  @rar: receive address register index to disassociate
2955  *  @vmdq: VMDq pool index to remove from the rar
2956  **/
2957 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2958 {
2959 	u32 mpsar_lo, mpsar_hi;
2960 	u32 rar_entries = hw->mac.num_rar_entries;
2961 
2962 	/* Make sure we are using a valid rar index range */
2963 	if (rar >= rar_entries) {
2964 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2965 		return IXGBE_ERR_INVALID_ARGUMENT;
2966 	}
2967 
2968 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2969 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2970 
2971 	if (ixgbe_removed(hw->hw_addr))
2972 		return 0;
2973 
2974 	if (!mpsar_lo && !mpsar_hi)
2975 		return 0;
2976 
2977 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2978 		if (mpsar_lo) {
2979 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2980 			mpsar_lo = 0;
2981 		}
2982 		if (mpsar_hi) {
2983 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2984 			mpsar_hi = 0;
2985 		}
2986 	} else if (vmdq < 32) {
2987 		mpsar_lo &= ~BIT(vmdq);
2988 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2989 	} else {
2990 		mpsar_hi &= ~BIT(vmdq - 32);
2991 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2992 	}
2993 
2994 	/* was that the last pool using this rar? */
2995 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2996 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2997 		hw->mac.ops.clear_rar(hw, rar);
2998 
2999 	return 0;
3000 }
3001 
3002 /**
3003  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3004  *  @hw: pointer to hardware struct
3005  *  @rar: receive address register index to associate with a VMDq index
3006  *  @vmdq: VMDq pool index
3007  **/
3008 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3009 {
3010 	u32 mpsar;
3011 	u32 rar_entries = hw->mac.num_rar_entries;
3012 
3013 	/* Make sure we are using a valid rar index range */
3014 	if (rar >= rar_entries) {
3015 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3016 		return IXGBE_ERR_INVALID_ARGUMENT;
3017 	}
3018 
3019 	if (vmdq < 32) {
3020 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3021 		mpsar |= BIT(vmdq);
3022 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3023 	} else {
3024 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3025 		mpsar |= BIT(vmdq - 32);
3026 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3027 	}
3028 	return 0;
3029 }
3030 
3031 /**
3032  *  This function should only be involved in the IOV mode.
3033  *  In IOV mode, Default pool is next pool after the number of
3034  *  VFs advertized and not 0.
3035  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3036  *
3037  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3038  *  @hw: pointer to hardware struct
3039  *  @vmdq: VMDq pool index
3040  **/
3041 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3042 {
3043 	u32 rar = hw->mac.san_mac_rar_index;
3044 
3045 	if (vmdq < 32) {
3046 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3047 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3048 	} else {
3049 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3050 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3051 	}
3052 
3053 	return 0;
3054 }
3055 
3056 /**
3057  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3058  *  @hw: pointer to hardware structure
3059  **/
3060 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3061 {
3062 	int i;
3063 
3064 	for (i = 0; i < 128; i++)
3065 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3066 
3067 	return 0;
3068 }
3069 
3070 /**
3071  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3072  *  @hw: pointer to hardware structure
3073  *  @vlan: VLAN id to write to VLAN filter
3074  *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3075  *		  vlanid not found
3076  *
3077  *  return the VLVF index where this VLAN id should be placed
3078  *
3079  **/
3080 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3081 {
3082 	s32 regindex, first_empty_slot;
3083 	u32 bits;
3084 
3085 	/* short cut the special case */
3086 	if (vlan == 0)
3087 		return 0;
3088 
3089 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3090 	 * will simply bypass the VLVF if there are no entries present in the
3091 	 * VLVF that contain our VLAN
3092 	 */
3093 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3094 
3095 	/* add VLAN enable bit for comparison */
3096 	vlan |= IXGBE_VLVF_VIEN;
3097 
3098 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3099 	 * slot found along the way.
3100 	 *
3101 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3102 	 */
3103 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3104 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3105 		if (bits == vlan)
3106 			return regindex;
3107 		if (!first_empty_slot && !bits)
3108 			first_empty_slot = regindex;
3109 	}
3110 
3111 	/* If we are here then we didn't find the VLAN.  Return first empty
3112 	 * slot we found during our search, else error.
3113 	 */
3114 	if (!first_empty_slot)
3115 		hw_dbg(hw, "No space in VLVF.\n");
3116 
3117 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3118 }
3119 
3120 /**
3121  *  ixgbe_set_vfta_generic - Set VLAN filter table
3122  *  @hw: pointer to hardware structure
3123  *  @vlan: VLAN id to write to VLAN filter
3124  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3125  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3126  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3127  *
3128  *  Turn on/off specified VLAN in the VLAN filter table.
3129  **/
3130 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3131 			   bool vlan_on, bool vlvf_bypass)
3132 {
3133 	u32 regidx, vfta_delta, vfta, bits;
3134 	s32 vlvf_index;
3135 
3136 	if ((vlan > 4095) || (vind > 63))
3137 		return IXGBE_ERR_PARAM;
3138 
3139 	/*
3140 	 * this is a 2 part operation - first the VFTA, then the
3141 	 * VLVF and VLVFB if VT Mode is set
3142 	 * We don't write the VFTA until we know the VLVF part succeeded.
3143 	 */
3144 
3145 	/* Part 1
3146 	 * The VFTA is a bitstring made up of 128 32-bit registers
3147 	 * that enable the particular VLAN id, much like the MTA:
3148 	 *    bits[11-5]: which register
3149 	 *    bits[4-0]:  which bit in the register
3150 	 */
3151 	regidx = vlan / 32;
3152 	vfta_delta = BIT(vlan % 32);
3153 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3154 
3155 	/* vfta_delta represents the difference between the current value
3156 	 * of vfta and the value we want in the register.  Since the diff
3157 	 * is an XOR mask we can just update vfta using an XOR.
3158 	 */
3159 	vfta_delta &= vlan_on ? ~vfta : vfta;
3160 	vfta ^= vfta_delta;
3161 
3162 	/* Part 2
3163 	 * If VT Mode is set
3164 	 *   Either vlan_on
3165 	 *     make sure the vlan is in VLVF
3166 	 *     set the vind bit in the matching VLVFB
3167 	 *   Or !vlan_on
3168 	 *     clear the pool bit and possibly the vind
3169 	 */
3170 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3171 		goto vfta_update;
3172 
3173 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3174 	if (vlvf_index < 0) {
3175 		if (vlvf_bypass)
3176 			goto vfta_update;
3177 		return vlvf_index;
3178 	}
3179 
3180 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3181 
3182 	/* set the pool bit */
3183 	bits |= BIT(vind % 32);
3184 	if (vlan_on)
3185 		goto vlvf_update;
3186 
3187 	/* clear the pool bit */
3188 	bits ^= BIT(vind % 32);
3189 
3190 	if (!bits &&
3191 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3192 		/* Clear VFTA first, then disable VLVF.  Otherwise
3193 		 * we run the risk of stray packets leaking into
3194 		 * the PF via the default pool
3195 		 */
3196 		if (vfta_delta)
3197 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3198 
3199 		/* disable VLVF and clear remaining bit from pool */
3200 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3201 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3202 
3203 		return 0;
3204 	}
3205 
3206 	/* If there are still bits set in the VLVFB registers
3207 	 * for the VLAN ID indicated we need to see if the
3208 	 * caller is requesting that we clear the VFTA entry bit.
3209 	 * If the caller has requested that we clear the VFTA
3210 	 * entry bit but there are still pools/VFs using this VLAN
3211 	 * ID entry then ignore the request.  We're not worried
3212 	 * about the case where we're turning the VFTA VLAN ID
3213 	 * entry bit on, only when requested to turn it off as
3214 	 * there may be multiple pools and/or VFs using the
3215 	 * VLAN ID entry.  In that case we cannot clear the
3216 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3217 	 * been cleared.  This will be indicated by "bits" being
3218 	 * zero.
3219 	 */
3220 	vfta_delta = 0;
3221 
3222 vlvf_update:
3223 	/* record pool change and enable VLAN ID if not already enabled */
3224 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3225 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3226 
3227 vfta_update:
3228 	/* Update VFTA now that we are ready for traffic */
3229 	if (vfta_delta)
3230 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3231 
3232 	return 0;
3233 }
3234 
3235 /**
3236  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3237  *  @hw: pointer to hardware structure
3238  *
3239  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3240  **/
3241 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3242 {
3243 	u32 offset;
3244 
3245 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3246 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3247 
3248 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3249 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3250 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3251 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3252 	}
3253 
3254 	return 0;
3255 }
3256 
3257 /**
3258  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3259  *  @hw: pointer to hardware structure
3260  *
3261  *  Contains the logic to identify if we need to verify link for the
3262  *  crosstalk fix
3263  **/
3264 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3265 {
3266 	/* Does FW say we need the fix */
3267 	if (!hw->need_crosstalk_fix)
3268 		return false;
3269 
3270 	/* Only consider SFP+ PHYs i.e. media type fiber */
3271 	switch (hw->mac.ops.get_media_type(hw)) {
3272 	case ixgbe_media_type_fiber:
3273 	case ixgbe_media_type_fiber_qsfp:
3274 		break;
3275 	default:
3276 		return false;
3277 	}
3278 
3279 	return true;
3280 }
3281 
3282 /**
3283  *  ixgbe_check_mac_link_generic - Determine link and speed status
3284  *  @hw: pointer to hardware structure
3285  *  @speed: pointer to link speed
3286  *  @link_up: true when link is up
3287  *  @link_up_wait_to_complete: bool used to wait for link up or not
3288  *
3289  *  Reads the links register to determine if link is up and the current speed
3290  **/
3291 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3292 				 bool *link_up, bool link_up_wait_to_complete)
3293 {
3294 	u32 links_reg, links_orig;
3295 	u32 i;
3296 
3297 	/* If Crosstalk fix enabled do the sanity check of making sure
3298 	 * the SFP+ cage is full.
3299 	 */
3300 	if (ixgbe_need_crosstalk_fix(hw)) {
3301 		u32 sfp_cage_full;
3302 
3303 		switch (hw->mac.type) {
3304 		case ixgbe_mac_82599EB:
3305 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3306 					IXGBE_ESDP_SDP2;
3307 			break;
3308 		case ixgbe_mac_X550EM_x:
3309 		case ixgbe_mac_x550em_a:
3310 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3311 					IXGBE_ESDP_SDP0;
3312 			break;
3313 		default:
3314 			/* sanity check - No SFP+ devices here */
3315 			sfp_cage_full = false;
3316 			break;
3317 		}
3318 
3319 		if (!sfp_cage_full) {
3320 			*link_up = false;
3321 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3322 			return 0;
3323 		}
3324 	}
3325 
3326 	/* clear the old state */
3327 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3328 
3329 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3330 
3331 	if (links_orig != links_reg) {
3332 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3333 		       links_orig, links_reg);
3334 	}
3335 
3336 	if (link_up_wait_to_complete) {
3337 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3338 			if (links_reg & IXGBE_LINKS_UP) {
3339 				*link_up = true;
3340 				break;
3341 			} else {
3342 				*link_up = false;
3343 			}
3344 			msleep(100);
3345 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3346 		}
3347 	} else {
3348 		if (links_reg & IXGBE_LINKS_UP)
3349 			*link_up = true;
3350 		else
3351 			*link_up = false;
3352 	}
3353 
3354 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3355 	case IXGBE_LINKS_SPEED_10G_82599:
3356 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3357 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3358 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3359 		else
3360 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3361 		break;
3362 	case IXGBE_LINKS_SPEED_1G_82599:
3363 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3364 		break;
3365 	case IXGBE_LINKS_SPEED_100_82599:
3366 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3367 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3368 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3369 		else
3370 			*speed = IXGBE_LINK_SPEED_100_FULL;
3371 		break;
3372 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3373 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3374 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3375 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3376 			*speed = IXGBE_LINK_SPEED_10_FULL;
3377 		}
3378 		break;
3379 	default:
3380 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3381 	}
3382 
3383 	return 0;
3384 }
3385 
3386 /**
3387  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3388  *  the EEPROM
3389  *  @hw: pointer to hardware structure
3390  *  @wwnn_prefix: the alternative WWNN prefix
3391  *  @wwpn_prefix: the alternative WWPN prefix
3392  *
3393  *  This function will read the EEPROM from the alternative SAN MAC address
3394  *  block to check the support for the alternative WWNN/WWPN prefix support.
3395  **/
3396 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3397 					u16 *wwpn_prefix)
3398 {
3399 	u16 offset, caps;
3400 	u16 alt_san_mac_blk_offset;
3401 
3402 	/* clear output first */
3403 	*wwnn_prefix = 0xFFFF;
3404 	*wwpn_prefix = 0xFFFF;
3405 
3406 	/* check if alternative SAN MAC is supported */
3407 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3408 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3409 		goto wwn_prefix_err;
3410 
3411 	if ((alt_san_mac_blk_offset == 0) ||
3412 	    (alt_san_mac_blk_offset == 0xFFFF))
3413 		return 0;
3414 
3415 	/* check capability in alternative san mac address block */
3416 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3417 	if (hw->eeprom.ops.read(hw, offset, &caps))
3418 		goto wwn_prefix_err;
3419 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3420 		return 0;
3421 
3422 	/* get the corresponding prefix for WWNN/WWPN */
3423 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3424 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3425 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3426 
3427 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3428 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3429 		goto wwn_prefix_err;
3430 
3431 	return 0;
3432 
3433 wwn_prefix_err:
3434 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3435 	return 0;
3436 }
3437 
3438 /**
3439  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3440  *  @hw: pointer to hardware structure
3441  *  @enable: enable or disable switch for MAC anti-spoofing
3442  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3443  *
3444  **/
3445 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3446 {
3447 	int vf_target_reg = vf >> 3;
3448 	int vf_target_shift = vf % 8;
3449 	u32 pfvfspoof;
3450 
3451 	if (hw->mac.type == ixgbe_mac_82598EB)
3452 		return;
3453 
3454 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3455 	if (enable)
3456 		pfvfspoof |= BIT(vf_target_shift);
3457 	else
3458 		pfvfspoof &= ~BIT(vf_target_shift);
3459 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3460 }
3461 
3462 /**
3463  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3464  *  @hw: pointer to hardware structure
3465  *  @enable: enable or disable switch for VLAN anti-spoofing
3466  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3467  *
3468  **/
3469 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3470 {
3471 	int vf_target_reg = vf >> 3;
3472 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3473 	u32 pfvfspoof;
3474 
3475 	if (hw->mac.type == ixgbe_mac_82598EB)
3476 		return;
3477 
3478 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3479 	if (enable)
3480 		pfvfspoof |= BIT(vf_target_shift);
3481 	else
3482 		pfvfspoof &= ~BIT(vf_target_shift);
3483 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3484 }
3485 
3486 /**
3487  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3488  *  @hw: pointer to hardware structure
3489  *  @device_caps: the EEPROM word with the extra device capabilities
3490  *
3491  *  This function will read the EEPROM location for the device capabilities,
3492  *  and return the word through device_caps.
3493  **/
3494 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3495 {
3496 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3497 
3498 	return 0;
3499 }
3500 
3501 /**
3502  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3503  * @hw: pointer to hardware structure
3504  * @num_pb: number of packet buffers to allocate
3505  * @headroom: reserve n KB of headroom
3506  * @strategy: packet buffer allocation strategy
3507  **/
3508 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3509 			     int num_pb,
3510 			     u32 headroom,
3511 			     int strategy)
3512 {
3513 	u32 pbsize = hw->mac.rx_pb_size;
3514 	int i = 0;
3515 	u32 rxpktsize, txpktsize, txpbthresh;
3516 
3517 	/* Reserve headroom */
3518 	pbsize -= headroom;
3519 
3520 	if (!num_pb)
3521 		num_pb = 1;
3522 
3523 	/* Divide remaining packet buffer space amongst the number
3524 	 * of packet buffers requested using supplied strategy.
3525 	 */
3526 	switch (strategy) {
3527 	case (PBA_STRATEGY_WEIGHTED):
3528 		/* pba_80_48 strategy weight first half of packet buffer with
3529 		 * 5/8 of the packet buffer space.
3530 		 */
3531 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3532 		pbsize -= rxpktsize * (num_pb / 2);
3533 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3534 		for (; i < (num_pb / 2); i++)
3535 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3536 		/* fall through - configure remaining packet buffers */
3537 	case (PBA_STRATEGY_EQUAL):
3538 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3539 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3540 		for (; i < num_pb; i++)
3541 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3542 		break;
3543 	default:
3544 		break;
3545 	}
3546 
3547 	/*
3548 	 * Setup Tx packet buffer and threshold equally for all TCs
3549 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3550 	 * 10 since the largest packet we support is just over 9K.
3551 	 */
3552 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3553 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3554 	for (i = 0; i < num_pb; i++) {
3555 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3556 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3557 	}
3558 
3559 	/* Clear unused TCs, if any, to zero buffer size*/
3560 	for (; i < IXGBE_MAX_PB; i++) {
3561 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3562 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3563 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3564 	}
3565 }
3566 
3567 /**
3568  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3569  *  @buffer: pointer to EEPROM
3570  *  @length: size of EEPROM to calculate a checksum for
3571  *
3572  *  Calculates the checksum for some buffer on a specified length.  The
3573  *  checksum calculated is returned.
3574  **/
3575 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3576 {
3577 	u32 i;
3578 	u8 sum = 0;
3579 
3580 	if (!buffer)
3581 		return 0;
3582 
3583 	for (i = 0; i < length; i++)
3584 		sum += buffer[i];
3585 
3586 	return (u8) (0 - sum);
3587 }
3588 
3589 /**
3590  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3591  *  @hw: pointer to the HW structure
3592  *  @buffer: command to write and where the return status will be placed
3593  *  @length: length of buffer, must be multiple of 4 bytes
3594  *  @timeout: time in ms to wait for command completion
3595  *
3596  *  Communicates with the manageability block. On success return 0
3597  *  else returns semaphore error when encountering an error acquiring
3598  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3599  *
3600  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3601  *  by the caller.
3602  **/
3603 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3604 		       u32 timeout)
3605 {
3606 	u32 hicr, i, fwsts;
3607 	u16 dword_len;
3608 
3609 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3610 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3611 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3612 	}
3613 
3614 	/* Set bit 9 of FWSTS clearing FW reset indication */
3615 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3616 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3617 
3618 	/* Check that the host interface is enabled. */
3619 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3620 	if (!(hicr & IXGBE_HICR_EN)) {
3621 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3622 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3623 	}
3624 
3625 	/* Calculate length in DWORDs. We must be DWORD aligned */
3626 	if (length % sizeof(u32)) {
3627 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3628 		return IXGBE_ERR_INVALID_ARGUMENT;
3629 	}
3630 
3631 	dword_len = length >> 2;
3632 
3633 	/* The device driver writes the relevant command block
3634 	 * into the ram area.
3635 	 */
3636 	for (i = 0; i < dword_len; i++)
3637 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3638 				      i, (__force u32)cpu_to_le32(buffer[i]));
3639 
3640 	/* Setting this bit tells the ARC that a new command is pending. */
3641 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3642 
3643 	for (i = 0; i < timeout; i++) {
3644 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3645 		if (!(hicr & IXGBE_HICR_C))
3646 			break;
3647 		usleep_range(1000, 2000);
3648 	}
3649 
3650 	/* Check command successful completion. */
3651 	if ((timeout && i == timeout) ||
3652 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3653 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3654 
3655 	return 0;
3656 }
3657 
3658 /**
3659  *  ixgbe_host_interface_command - Issue command to manageability block
3660  *  @hw: pointer to the HW structure
3661  *  @buffer: contains the command to write and where the return status will
3662  *           be placed
3663  *  @length: length of buffer, must be multiple of 4 bytes
3664  *  @timeout: time in ms to wait for command completion
3665  *  @return_data: read and return data from the buffer (true) or not (false)
3666  *  Needed because FW structures are big endian and decoding of
3667  *  these fields can be 8 bit or 16 bit based on command. Decoding
3668  *  is not easily understood without making a table of commands.
3669  *  So we will leave this up to the caller to read back the data
3670  *  in these cases.
3671  *
3672  *  Communicates with the manageability block.  On success return 0
3673  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3674  **/
3675 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3676 				 u32 length, u32 timeout,
3677 				 bool return_data)
3678 {
3679 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3680 	union {
3681 		struct ixgbe_hic_hdr hdr;
3682 		u32 u32arr[1];
3683 	} *bp = buffer;
3684 	u16 buf_len, dword_len;
3685 	s32 status;
3686 	u32 bi;
3687 
3688 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3689 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3690 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3691 	}
3692 	/* Take management host interface semaphore */
3693 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3694 	if (status)
3695 		return status;
3696 
3697 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3698 	if (status)
3699 		goto rel_out;
3700 
3701 	if (!return_data)
3702 		goto rel_out;
3703 
3704 	/* Calculate length in DWORDs */
3705 	dword_len = hdr_size >> 2;
3706 
3707 	/* first pull in the header so we know the buffer length */
3708 	for (bi = 0; bi < dword_len; bi++) {
3709 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3710 		le32_to_cpus(&bp->u32arr[bi]);
3711 	}
3712 
3713 	/* If there is any thing in data position pull it in */
3714 	buf_len = bp->hdr.buf_len;
3715 	if (!buf_len)
3716 		goto rel_out;
3717 
3718 	if (length < round_up(buf_len, 4) + hdr_size) {
3719 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3720 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3721 		goto rel_out;
3722 	}
3723 
3724 	/* Calculate length in DWORDs, add 3 for odd lengths */
3725 	dword_len = (buf_len + 3) >> 2;
3726 
3727 	/* Pull in the rest of the buffer (bi is where we left off) */
3728 	for (; bi <= dword_len; bi++) {
3729 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3730 		le32_to_cpus(&bp->u32arr[bi]);
3731 	}
3732 
3733 rel_out:
3734 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3735 
3736 	return status;
3737 }
3738 
3739 /**
3740  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3741  *  @hw: pointer to the HW structure
3742  *  @maj: driver version major number
3743  *  @min: driver version minor number
3744  *  @build: driver version build number
3745  *  @sub: driver version sub build number
3746  *  @len: length of driver_ver string
3747  *  @driver_ver: driver string
3748  *
3749  *  Sends driver version number to firmware through the manageability
3750  *  block.  On success return 0
3751  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3752  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3753  **/
3754 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3755 				 u8 build, u8 sub, __always_unused u16 len,
3756 				 __always_unused const char *driver_ver)
3757 {
3758 	struct ixgbe_hic_drv_info fw_cmd;
3759 	int i;
3760 	s32 ret_val;
3761 
3762 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3763 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3764 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3765 	fw_cmd.port_num = hw->bus.func;
3766 	fw_cmd.ver_maj = maj;
3767 	fw_cmd.ver_min = min;
3768 	fw_cmd.ver_build = build;
3769 	fw_cmd.ver_sub = sub;
3770 	fw_cmd.hdr.checksum = 0;
3771 	fw_cmd.pad = 0;
3772 	fw_cmd.pad2 = 0;
3773 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3774 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3775 
3776 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3777 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3778 						       sizeof(fw_cmd),
3779 						       IXGBE_HI_COMMAND_TIMEOUT,
3780 						       true);
3781 		if (ret_val != 0)
3782 			continue;
3783 
3784 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3785 		    FW_CEM_RESP_STATUS_SUCCESS)
3786 			ret_val = 0;
3787 		else
3788 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3789 
3790 		break;
3791 	}
3792 
3793 	return ret_val;
3794 }
3795 
3796 /**
3797  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3798  * @hw: pointer to the hardware structure
3799  *
3800  * The 82599 and x540 MACs can experience issues if TX work is still pending
3801  * when a reset occurs.  This function prevents this by flushing the PCIe
3802  * buffers on the system.
3803  **/
3804 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3805 {
3806 	u32 gcr_ext, hlreg0, i, poll;
3807 	u16 value;
3808 
3809 	/*
3810 	 * If double reset is not requested then all transactions should
3811 	 * already be clear and as such there is no work to do
3812 	 */
3813 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3814 		return;
3815 
3816 	/*
3817 	 * Set loopback enable to prevent any transmits from being sent
3818 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3819 	 * has already been cleared.
3820 	 */
3821 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3822 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3823 
3824 	/* wait for a last completion before clearing buffers */
3825 	IXGBE_WRITE_FLUSH(hw);
3826 	usleep_range(3000, 6000);
3827 
3828 	/* Before proceeding, make sure that the PCIe block does not have
3829 	 * transactions pending.
3830 	 */
3831 	poll = ixgbe_pcie_timeout_poll(hw);
3832 	for (i = 0; i < poll; i++) {
3833 		usleep_range(100, 200);
3834 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3835 		if (ixgbe_removed(hw->hw_addr))
3836 			break;
3837 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3838 			break;
3839 	}
3840 
3841 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3842 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3843 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3844 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3845 
3846 	/* Flush all writes and allow 20usec for all transactions to clear */
3847 	IXGBE_WRITE_FLUSH(hw);
3848 	udelay(20);
3849 
3850 	/* restore previous register values */
3851 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3852 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3853 }
3854 
3855 static const u8 ixgbe_emc_temp_data[4] = {
3856 	IXGBE_EMC_INTERNAL_DATA,
3857 	IXGBE_EMC_DIODE1_DATA,
3858 	IXGBE_EMC_DIODE2_DATA,
3859 	IXGBE_EMC_DIODE3_DATA
3860 };
3861 static const u8 ixgbe_emc_therm_limit[4] = {
3862 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3863 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3864 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3865 	IXGBE_EMC_DIODE3_THERM_LIMIT
3866 };
3867 
3868 /**
3869  *  ixgbe_get_ets_data - Extracts the ETS bit data
3870  *  @hw: pointer to hardware structure
3871  *  @ets_cfg: extected ETS data
3872  *  @ets_offset: offset of ETS data
3873  *
3874  *  Returns error code.
3875  **/
3876 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3877 			      u16 *ets_offset)
3878 {
3879 	s32 status;
3880 
3881 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3882 	if (status)
3883 		return status;
3884 
3885 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3886 		return IXGBE_NOT_IMPLEMENTED;
3887 
3888 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3889 	if (status)
3890 		return status;
3891 
3892 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3893 		return IXGBE_NOT_IMPLEMENTED;
3894 
3895 	return 0;
3896 }
3897 
3898 /**
3899  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3900  *  @hw: pointer to hardware structure
3901  *
3902  *  Returns the thermal sensor data structure
3903  **/
3904 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3905 {
3906 	s32 status;
3907 	u16 ets_offset;
3908 	u16 ets_cfg;
3909 	u16 ets_sensor;
3910 	u8  num_sensors;
3911 	u8  i;
3912 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3913 
3914 	/* Only support thermal sensors attached to physical port 0 */
3915 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3916 		return IXGBE_NOT_IMPLEMENTED;
3917 
3918 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3919 	if (status)
3920 		return status;
3921 
3922 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3923 	if (num_sensors > IXGBE_MAX_SENSORS)
3924 		num_sensors = IXGBE_MAX_SENSORS;
3925 
3926 	for (i = 0; i < num_sensors; i++) {
3927 		u8  sensor_index;
3928 		u8  sensor_location;
3929 
3930 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3931 					     &ets_sensor);
3932 		if (status)
3933 			return status;
3934 
3935 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3936 				IXGBE_ETS_DATA_INDEX_SHIFT);
3937 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3938 				   IXGBE_ETS_DATA_LOC_SHIFT);
3939 
3940 		if (sensor_location != 0) {
3941 			status = hw->phy.ops.read_i2c_byte(hw,
3942 					ixgbe_emc_temp_data[sensor_index],
3943 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3944 					&data->sensor[i].temp);
3945 			if (status)
3946 				return status;
3947 		}
3948 	}
3949 
3950 	return 0;
3951 }
3952 
3953 /**
3954  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3955  * @hw: pointer to hardware structure
3956  *
3957  * Inits the thermal sensor thresholds according to the NVM map
3958  * and save off the threshold and location values into mac.thermal_sensor_data
3959  **/
3960 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3961 {
3962 	s32 status;
3963 	u16 ets_offset;
3964 	u16 ets_cfg;
3965 	u16 ets_sensor;
3966 	u8  low_thresh_delta;
3967 	u8  num_sensors;
3968 	u8  therm_limit;
3969 	u8  i;
3970 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3971 
3972 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3973 
3974 	/* Only support thermal sensors attached to physical port 0 */
3975 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3976 		return IXGBE_NOT_IMPLEMENTED;
3977 
3978 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3979 	if (status)
3980 		return status;
3981 
3982 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3983 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3984 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3985 	if (num_sensors > IXGBE_MAX_SENSORS)
3986 		num_sensors = IXGBE_MAX_SENSORS;
3987 
3988 	for (i = 0; i < num_sensors; i++) {
3989 		u8  sensor_index;
3990 		u8  sensor_location;
3991 
3992 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3993 			hw_err(hw, "eeprom read at offset %d failed\n",
3994 			       ets_offset + 1 + i);
3995 			continue;
3996 		}
3997 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3998 				IXGBE_ETS_DATA_INDEX_SHIFT);
3999 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4000 				   IXGBE_ETS_DATA_LOC_SHIFT);
4001 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4002 
4003 		hw->phy.ops.write_i2c_byte(hw,
4004 			ixgbe_emc_therm_limit[sensor_index],
4005 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4006 
4007 		if (sensor_location == 0)
4008 			continue;
4009 
4010 		data->sensor[i].location = sensor_location;
4011 		data->sensor[i].caution_thresh = therm_limit;
4012 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4013 	}
4014 
4015 	return 0;
4016 }
4017 
4018 /**
4019  *  ixgbe_get_orom_version - Return option ROM from EEPROM
4020  *
4021  *  @hw: pointer to hardware structure
4022  *  @nvm_ver: pointer to output structure
4023  *
4024  *  if valid option ROM version, nvm_ver->or_valid set to true
4025  *  else nvm_ver->or_valid is false.
4026  **/
4027 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4028 			    struct ixgbe_nvm_version *nvm_ver)
4029 {
4030 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4031 
4032 	nvm_ver->or_valid = false;
4033 	/* Option Rom may or may not be present.  Start with pointer */
4034 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4035 
4036 	/* make sure offset is valid */
4037 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4038 		return;
4039 
4040 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4041 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4042 
4043 	/* option rom exists and is valid */
4044 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4045 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4046 	    eeprom_cfg_blkh == NVM_VER_INVALID)
4047 		return;
4048 
4049 	nvm_ver->or_valid = true;
4050 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4051 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4052 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4053 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4054 }
4055 
4056 /**
4057  *  ixgbe_get_oem_prod_version Etrack ID from EEPROM
4058  *
4059  *  @hw: pointer to hardware structure
4060  *  @nvm_ver: pointer to output structure
4061  *
4062  *  if valid OEM product version, nvm_ver->oem_valid set to true
4063  *  else nvm_ver->oem_valid is false.
4064  **/
4065 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4066 				struct ixgbe_nvm_version *nvm_ver)
4067 {
4068 	u16 rel_num, prod_ver, mod_len, cap, offset;
4069 
4070 	nvm_ver->oem_valid = false;
4071 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4072 
4073 	/* Return is offset to OEM Product Version block is invalid */
4074 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4075 		return;
4076 
4077 	/* Read product version block */
4078 	hw->eeprom.ops.read(hw, offset, &mod_len);
4079 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4080 
4081 	/* Return if OEM product version block is invalid */
4082 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4083 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4084 		return;
4085 
4086 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4087 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4088 
4089 	/* Return if version is invalid */
4090 	if ((rel_num | prod_ver) == 0x0 ||
4091 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4092 		return;
4093 
4094 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4095 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4096 	nvm_ver->oem_release = rel_num;
4097 	nvm_ver->oem_valid = true;
4098 }
4099 
4100 /**
4101  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4102  *
4103  *  @hw: pointer to hardware structure
4104  *  @nvm_ver: pointer to output structure
4105  *
4106  *  word read errors will return 0xFFFF
4107  **/
4108 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4109 		      struct ixgbe_nvm_version *nvm_ver)
4110 {
4111 	u16 etk_id_l, etk_id_h;
4112 
4113 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4114 		etk_id_l = NVM_VER_INVALID;
4115 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4116 		etk_id_h = NVM_VER_INVALID;
4117 
4118 	/* The word order for the version format is determined by high order
4119 	 * word bit 15.
4120 	 */
4121 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4122 		nvm_ver->etk_id = etk_id_h;
4123 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4124 	} else {
4125 		nvm_ver->etk_id = etk_id_l;
4126 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4127 	}
4128 }
4129 
4130 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4131 {
4132 	u32 rxctrl;
4133 
4134 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4135 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4136 		if (hw->mac.type != ixgbe_mac_82598EB) {
4137 			u32 pfdtxgswc;
4138 
4139 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4140 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4141 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4142 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4143 				hw->mac.set_lben = true;
4144 			} else {
4145 				hw->mac.set_lben = false;
4146 			}
4147 		}
4148 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4149 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4150 	}
4151 }
4152 
4153 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4154 {
4155 	u32 rxctrl;
4156 
4157 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4158 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4159 
4160 	if (hw->mac.type != ixgbe_mac_82598EB) {
4161 		if (hw->mac.set_lben) {
4162 			u32 pfdtxgswc;
4163 
4164 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4165 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4166 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4167 			hw->mac.set_lben = false;
4168 		}
4169 	}
4170 }
4171 
4172 /** ixgbe_mng_present - returns true when management capability is present
4173  * @hw: pointer to hardware structure
4174  **/
4175 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4176 {
4177 	u32 fwsm;
4178 
4179 	if (hw->mac.type < ixgbe_mac_82599EB)
4180 		return false;
4181 
4182 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4183 
4184 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4185 }
4186 
4187 /**
4188  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4189  *  @hw: pointer to hardware structure
4190  *  @speed: new link speed
4191  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4192  *
4193  *  Set the link speed in the MAC and/or PHY register and restarts link.
4194  */
4195 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4196 					  ixgbe_link_speed speed,
4197 					  bool autoneg_wait_to_complete)
4198 {
4199 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4200 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4201 	s32 status = 0;
4202 	u32 speedcnt = 0;
4203 	u32 i = 0;
4204 	bool autoneg, link_up = false;
4205 
4206 	/* Mask off requested but non-supported speeds */
4207 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4208 	if (status)
4209 		return status;
4210 
4211 	speed &= link_speed;
4212 
4213 	/* Try each speed one by one, highest priority first.  We do this in
4214 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4215 	 */
4216 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4217 		speedcnt++;
4218 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4219 
4220 		/* Set the module link speed */
4221 		switch (hw->phy.media_type) {
4222 		case ixgbe_media_type_fiber:
4223 			hw->mac.ops.set_rate_select_speed(hw,
4224 						    IXGBE_LINK_SPEED_10GB_FULL);
4225 			break;
4226 		case ixgbe_media_type_fiber_qsfp:
4227 			/* QSFP module automatically detects MAC link speed */
4228 			break;
4229 		default:
4230 			hw_dbg(hw, "Unexpected media type\n");
4231 			break;
4232 		}
4233 
4234 		/* Allow module to change analog characteristics (1G->10G) */
4235 		msleep(40);
4236 
4237 		status = hw->mac.ops.setup_mac_link(hw,
4238 						    IXGBE_LINK_SPEED_10GB_FULL,
4239 						    autoneg_wait_to_complete);
4240 		if (status)
4241 			return status;
4242 
4243 		/* Flap the Tx laser if it has not already been done */
4244 		if (hw->mac.ops.flap_tx_laser)
4245 			hw->mac.ops.flap_tx_laser(hw);
4246 
4247 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4248 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4249 		 * attempted.  82599 uses the same timing for 10g SFI.
4250 		 */
4251 		for (i = 0; i < 5; i++) {
4252 			/* Wait for the link partner to also set speed */
4253 			msleep(100);
4254 
4255 			/* If we have link, just jump out */
4256 			status = hw->mac.ops.check_link(hw, &link_speed,
4257 							&link_up, false);
4258 			if (status)
4259 				return status;
4260 
4261 			if (link_up)
4262 				goto out;
4263 		}
4264 	}
4265 
4266 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4267 		speedcnt++;
4268 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4269 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4270 
4271 		/* Set the module link speed */
4272 		switch (hw->phy.media_type) {
4273 		case ixgbe_media_type_fiber:
4274 			hw->mac.ops.set_rate_select_speed(hw,
4275 						     IXGBE_LINK_SPEED_1GB_FULL);
4276 			break;
4277 		case ixgbe_media_type_fiber_qsfp:
4278 			/* QSFP module automatically detects link speed */
4279 			break;
4280 		default:
4281 			hw_dbg(hw, "Unexpected media type\n");
4282 			break;
4283 		}
4284 
4285 		/* Allow module to change analog characteristics (10G->1G) */
4286 		msleep(40);
4287 
4288 		status = hw->mac.ops.setup_mac_link(hw,
4289 						    IXGBE_LINK_SPEED_1GB_FULL,
4290 						    autoneg_wait_to_complete);
4291 		if (status)
4292 			return status;
4293 
4294 		/* Flap the Tx laser if it has not already been done */
4295 		if (hw->mac.ops.flap_tx_laser)
4296 			hw->mac.ops.flap_tx_laser(hw);
4297 
4298 		/* Wait for the link partner to also set speed */
4299 		msleep(100);
4300 
4301 		/* If we have link, just jump out */
4302 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4303 						false);
4304 		if (status)
4305 			return status;
4306 
4307 		if (link_up)
4308 			goto out;
4309 	}
4310 
4311 	/* We didn't get link.  Configure back to the highest speed we tried,
4312 	 * (if there was more than one).  We call ourselves back with just the
4313 	 * single highest speed that the user requested.
4314 	 */
4315 	if (speedcnt > 1)
4316 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4317 						      highest_link_speed,
4318 						      autoneg_wait_to_complete);
4319 
4320 out:
4321 	/* Set autoneg_advertised value based on input link speed */
4322 	hw->phy.autoneg_advertised = 0;
4323 
4324 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4325 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4326 
4327 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4328 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4329 
4330 	return status;
4331 }
4332 
4333 /**
4334  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4335  *  @hw: pointer to hardware structure
4336  *  @speed: link speed to set
4337  *
4338  *  Set module link speed via the soft rate select.
4339  */
4340 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4341 				      ixgbe_link_speed speed)
4342 {
4343 	s32 status;
4344 	u8 rs, eeprom_data;
4345 
4346 	switch (speed) {
4347 	case IXGBE_LINK_SPEED_10GB_FULL:
4348 		/* one bit mask same as setting on */
4349 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4350 		break;
4351 	case IXGBE_LINK_SPEED_1GB_FULL:
4352 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4353 		break;
4354 	default:
4355 		hw_dbg(hw, "Invalid fixed module speed\n");
4356 		return;
4357 	}
4358 
4359 	/* Set RS0 */
4360 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4361 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4362 					   &eeprom_data);
4363 	if (status) {
4364 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4365 		return;
4366 	}
4367 
4368 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4369 
4370 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4371 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4372 					    eeprom_data);
4373 	if (status) {
4374 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4375 		return;
4376 	}
4377 
4378 	/* Set RS1 */
4379 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4380 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4381 					   &eeprom_data);
4382 	if (status) {
4383 		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4384 		return;
4385 	}
4386 
4387 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4388 
4389 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4390 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4391 					    eeprom_data);
4392 	if (status) {
4393 		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4394 		return;
4395 	}
4396 }
4397