1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2016 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 	IXGBE_MVALS_INIT(8259X)
63 };
64 
65 /**
66  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67  *  control
68  *  @hw: pointer to hardware structure
69  *
70  *  There are several phys that do not support autoneg flow control. This
71  *  function check the device id to see if the associated phy supports
72  *  autoneg flow control.
73  **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 	bool supported = false;
77 	ixgbe_link_speed speed;
78 	bool link_up;
79 
80 	switch (hw->phy.media_type) {
81 	case ixgbe_media_type_fiber:
82 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 		/* if link is down, assume supported */
84 		if (link_up)
85 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 				true : false;
87 		else
88 			supported = true;
89 		break;
90 	case ixgbe_media_type_backplane:
91 		supported = true;
92 		break;
93 	case ixgbe_media_type_copper:
94 		/* only some copper devices support flow control autoneg */
95 		switch (hw->device_id) {
96 		case IXGBE_DEV_ID_82599_T3_LOM:
97 		case IXGBE_DEV_ID_X540T:
98 		case IXGBE_DEV_ID_X540T1:
99 		case IXGBE_DEV_ID_X550T:
100 		case IXGBE_DEV_ID_X550T1:
101 		case IXGBE_DEV_ID_X550EM_X_10G_T:
102 		case IXGBE_DEV_ID_X550EM_A_10G_T:
103 			supported = true;
104 			break;
105 		default:
106 			break;
107 		}
108 	default:
109 		break;
110 	}
111 
112 	return supported;
113 }
114 
115 /**
116  *  ixgbe_setup_fc_generic - Set up flow control
117  *  @hw: pointer to hardware structure
118  *
119  *  Called at init time to set up flow control.
120  **/
121 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
122 {
123 	s32 ret_val = 0;
124 	u32 reg = 0, reg_bp = 0;
125 	u16 reg_cu = 0;
126 	bool locked = false;
127 
128 	/*
129 	 * Validate the requested mode.  Strict IEEE mode does not allow
130 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
131 	 */
132 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
133 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
134 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
135 	}
136 
137 	/*
138 	 * 10gig parts do not have a word in the EEPROM to determine the
139 	 * default flow control setting, so we explicitly set it to full.
140 	 */
141 	if (hw->fc.requested_mode == ixgbe_fc_default)
142 		hw->fc.requested_mode = ixgbe_fc_full;
143 
144 	/*
145 	 * Set up the 1G and 10G flow control advertisement registers so the
146 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
147 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
148 	 */
149 	switch (hw->phy.media_type) {
150 	case ixgbe_media_type_backplane:
151 		/* some MAC's need RMW protection on AUTOC */
152 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
153 		if (ret_val)
154 			return ret_val;
155 
156 		/* only backplane uses autoc so fall though */
157 	case ixgbe_media_type_fiber:
158 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
159 
160 		break;
161 	case ixgbe_media_type_copper:
162 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
163 					MDIO_MMD_AN, &reg_cu);
164 		break;
165 	default:
166 		break;
167 	}
168 
169 	/*
170 	 * The possible values of fc.requested_mode are:
171 	 * 0: Flow control is completely disabled
172 	 * 1: Rx flow control is enabled (we can receive pause frames,
173 	 *    but not send pause frames).
174 	 * 2: Tx flow control is enabled (we can send pause frames but
175 	 *    we do not support receiving pause frames).
176 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
177 	 * other: Invalid.
178 	 */
179 	switch (hw->fc.requested_mode) {
180 	case ixgbe_fc_none:
181 		/* Flow control completely disabled by software override. */
182 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
183 		if (hw->phy.media_type == ixgbe_media_type_backplane)
184 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
185 				    IXGBE_AUTOC_ASM_PAUSE);
186 		else if (hw->phy.media_type == ixgbe_media_type_copper)
187 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
188 		break;
189 	case ixgbe_fc_tx_pause:
190 		/*
191 		 * Tx Flow control is enabled, and Rx Flow control is
192 		 * disabled by software override.
193 		 */
194 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
195 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
196 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
197 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
198 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
199 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
200 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
201 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
202 		}
203 		break;
204 	case ixgbe_fc_rx_pause:
205 		/*
206 		 * Rx Flow control is enabled and Tx Flow control is
207 		 * disabled by software override. Since there really
208 		 * isn't a way to advertise that we are capable of RX
209 		 * Pause ONLY, we will advertise that we support both
210 		 * symmetric and asymmetric Rx PAUSE, as such we fall
211 		 * through to the fc_full statement.  Later, we will
212 		 * disable the adapter's ability to send PAUSE frames.
213 		 */
214 	case ixgbe_fc_full:
215 		/* Flow control (both Rx and Tx) is enabled by SW override. */
216 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
217 		if (hw->phy.media_type == ixgbe_media_type_backplane)
218 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
219 				  IXGBE_AUTOC_ASM_PAUSE;
220 		else if (hw->phy.media_type == ixgbe_media_type_copper)
221 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
222 		break;
223 	default:
224 		hw_dbg(hw, "Flow control param set incorrectly\n");
225 		return IXGBE_ERR_CONFIG;
226 	}
227 
228 	if (hw->mac.type != ixgbe_mac_X540) {
229 		/*
230 		 * Enable auto-negotiation between the MAC & PHY;
231 		 * the MAC will advertise clause 37 flow control.
232 		 */
233 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
234 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
235 
236 		/* Disable AN timeout */
237 		if (hw->fc.strict_ieee)
238 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
239 
240 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
241 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
242 	}
243 
244 	/*
245 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
246 	 * and copper. There is no need to set the PCS1GCTL register.
247 	 *
248 	 */
249 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
250 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
251 		 * LESM is on, likewise reset_pipeline requries the lock as
252 		 * it also writes AUTOC.
253 		 */
254 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
255 		if (ret_val)
256 			return ret_val;
257 
258 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
259 		   ixgbe_device_supports_autoneg_fc(hw)) {
260 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
261 				      MDIO_MMD_AN, reg_cu);
262 	}
263 
264 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
265 	return ret_val;
266 }
267 
268 /**
269  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
270  *  @hw: pointer to hardware structure
271  *
272  *  Starts the hardware by filling the bus info structure and media type, clears
273  *  all on chip counters, initializes receive address registers, multicast
274  *  table, VLAN filter table, calls routine to set up link and flow control
275  *  settings, and leaves transmit and receive units disabled and uninitialized
276  **/
277 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
278 {
279 	s32 ret_val;
280 	u32 ctrl_ext;
281 	u16 device_caps;
282 
283 	/* Set the media type */
284 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
285 
286 	/* Identify the PHY */
287 	hw->phy.ops.identify(hw);
288 
289 	/* Clear the VLAN filter table */
290 	hw->mac.ops.clear_vfta(hw);
291 
292 	/* Clear statistics registers */
293 	hw->mac.ops.clear_hw_cntrs(hw);
294 
295 	/* Set No Snoop Disable */
296 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
297 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
298 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
299 	IXGBE_WRITE_FLUSH(hw);
300 
301 	/* Setup flow control */
302 	ret_val = hw->mac.ops.setup_fc(hw);
303 	if (ret_val)
304 		return ret_val;
305 
306 	/* Cashe bit indicating need for crosstalk fix */
307 	switch (hw->mac.type) {
308 	case ixgbe_mac_82599EB:
309 	case ixgbe_mac_X550EM_x:
310 	case ixgbe_mac_x550em_a:
311 		hw->mac.ops.get_device_caps(hw, &device_caps);
312 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
313 			hw->need_crosstalk_fix = false;
314 		else
315 			hw->need_crosstalk_fix = true;
316 		break;
317 	default:
318 		hw->need_crosstalk_fix = false;
319 		break;
320 	}
321 
322 	/* Clear adapter stopped flag */
323 	hw->adapter_stopped = false;
324 
325 	return 0;
326 }
327 
328 /**
329  *  ixgbe_start_hw_gen2 - Init sequence for common device family
330  *  @hw: pointer to hw structure
331  *
332  * Performs the init sequence common to the second generation
333  * of 10 GbE devices.
334  * Devices in the second generation:
335  *     82599
336  *     X540
337  **/
338 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
339 {
340 	u32 i;
341 
342 	/* Clear the rate limiters */
343 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
344 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
345 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
346 	}
347 	IXGBE_WRITE_FLUSH(hw);
348 
349 #ifndef CONFIG_SPARC
350 	/* Disable relaxed ordering */
351 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
352 		u32 regval;
353 
354 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
355 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
356 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
357 	}
358 
359 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
360 		u32 regval;
361 
362 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
363 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
364 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
365 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
366 	}
367 #endif
368 	return 0;
369 }
370 
371 /**
372  *  ixgbe_init_hw_generic - Generic hardware initialization
373  *  @hw: pointer to hardware structure
374  *
375  *  Initialize the hardware by resetting the hardware, filling the bus info
376  *  structure and media type, clears all on chip counters, initializes receive
377  *  address registers, multicast table, VLAN filter table, calls routine to set
378  *  up link and flow control settings, and leaves transmit and receive units
379  *  disabled and uninitialized
380  **/
381 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
382 {
383 	s32 status;
384 
385 	/* Reset the hardware */
386 	status = hw->mac.ops.reset_hw(hw);
387 
388 	if (status == 0) {
389 		/* Start the HW */
390 		status = hw->mac.ops.start_hw(hw);
391 	}
392 
393 	return status;
394 }
395 
396 /**
397  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
398  *  @hw: pointer to hardware structure
399  *
400  *  Clears all hardware statistics counters by reading them from the hardware
401  *  Statistics counters are clear on read.
402  **/
403 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
404 {
405 	u16 i = 0;
406 
407 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
408 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
409 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
410 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
411 	for (i = 0; i < 8; i++)
412 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
413 
414 	IXGBE_READ_REG(hw, IXGBE_MLFC);
415 	IXGBE_READ_REG(hw, IXGBE_MRFC);
416 	IXGBE_READ_REG(hw, IXGBE_RLEC);
417 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
418 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
419 	if (hw->mac.type >= ixgbe_mac_82599EB) {
420 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
421 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
422 	} else {
423 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
424 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
425 	}
426 
427 	for (i = 0; i < 8; i++) {
428 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
429 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
430 		if (hw->mac.type >= ixgbe_mac_82599EB) {
431 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
432 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
433 		} else {
434 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
435 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
436 		}
437 	}
438 	if (hw->mac.type >= ixgbe_mac_82599EB)
439 		for (i = 0; i < 8; i++)
440 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
441 	IXGBE_READ_REG(hw, IXGBE_PRC64);
442 	IXGBE_READ_REG(hw, IXGBE_PRC127);
443 	IXGBE_READ_REG(hw, IXGBE_PRC255);
444 	IXGBE_READ_REG(hw, IXGBE_PRC511);
445 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
446 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
447 	IXGBE_READ_REG(hw, IXGBE_GPRC);
448 	IXGBE_READ_REG(hw, IXGBE_BPRC);
449 	IXGBE_READ_REG(hw, IXGBE_MPRC);
450 	IXGBE_READ_REG(hw, IXGBE_GPTC);
451 	IXGBE_READ_REG(hw, IXGBE_GORCL);
452 	IXGBE_READ_REG(hw, IXGBE_GORCH);
453 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
454 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
455 	if (hw->mac.type == ixgbe_mac_82598EB)
456 		for (i = 0; i < 8; i++)
457 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
458 	IXGBE_READ_REG(hw, IXGBE_RUC);
459 	IXGBE_READ_REG(hw, IXGBE_RFC);
460 	IXGBE_READ_REG(hw, IXGBE_ROC);
461 	IXGBE_READ_REG(hw, IXGBE_RJC);
462 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
463 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
464 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
465 	IXGBE_READ_REG(hw, IXGBE_TORL);
466 	IXGBE_READ_REG(hw, IXGBE_TORH);
467 	IXGBE_READ_REG(hw, IXGBE_TPR);
468 	IXGBE_READ_REG(hw, IXGBE_TPT);
469 	IXGBE_READ_REG(hw, IXGBE_PTC64);
470 	IXGBE_READ_REG(hw, IXGBE_PTC127);
471 	IXGBE_READ_REG(hw, IXGBE_PTC255);
472 	IXGBE_READ_REG(hw, IXGBE_PTC511);
473 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
474 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
475 	IXGBE_READ_REG(hw, IXGBE_MPTC);
476 	IXGBE_READ_REG(hw, IXGBE_BPTC);
477 	for (i = 0; i < 16; i++) {
478 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
479 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
480 		if (hw->mac.type >= ixgbe_mac_82599EB) {
481 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
482 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
483 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
484 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
485 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
486 		} else {
487 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
488 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
489 		}
490 	}
491 
492 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
493 		if (hw->phy.id == 0)
494 			hw->phy.ops.identify(hw);
495 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
496 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
497 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
498 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
499 	}
500 
501 	return 0;
502 }
503 
504 /**
505  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
506  *  @hw: pointer to hardware structure
507  *  @pba_num: stores the part number string from the EEPROM
508  *  @pba_num_size: part number string buffer length
509  *
510  *  Reads the part number string from the EEPROM.
511  **/
512 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
513 				  u32 pba_num_size)
514 {
515 	s32 ret_val;
516 	u16 data;
517 	u16 pba_ptr;
518 	u16 offset;
519 	u16 length;
520 
521 	if (pba_num == NULL) {
522 		hw_dbg(hw, "PBA string buffer was null\n");
523 		return IXGBE_ERR_INVALID_ARGUMENT;
524 	}
525 
526 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
527 	if (ret_val) {
528 		hw_dbg(hw, "NVM Read Error\n");
529 		return ret_val;
530 	}
531 
532 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
533 	if (ret_val) {
534 		hw_dbg(hw, "NVM Read Error\n");
535 		return ret_val;
536 	}
537 
538 	/*
539 	 * if data is not ptr guard the PBA must be in legacy format which
540 	 * means pba_ptr is actually our second data word for the PBA number
541 	 * and we can decode it into an ascii string
542 	 */
543 	if (data != IXGBE_PBANUM_PTR_GUARD) {
544 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
545 
546 		/* we will need 11 characters to store the PBA */
547 		if (pba_num_size < 11) {
548 			hw_dbg(hw, "PBA string buffer too small\n");
549 			return IXGBE_ERR_NO_SPACE;
550 		}
551 
552 		/* extract hex string from data and pba_ptr */
553 		pba_num[0] = (data >> 12) & 0xF;
554 		pba_num[1] = (data >> 8) & 0xF;
555 		pba_num[2] = (data >> 4) & 0xF;
556 		pba_num[3] = data & 0xF;
557 		pba_num[4] = (pba_ptr >> 12) & 0xF;
558 		pba_num[5] = (pba_ptr >> 8) & 0xF;
559 		pba_num[6] = '-';
560 		pba_num[7] = 0;
561 		pba_num[8] = (pba_ptr >> 4) & 0xF;
562 		pba_num[9] = pba_ptr & 0xF;
563 
564 		/* put a null character on the end of our string */
565 		pba_num[10] = '\0';
566 
567 		/* switch all the data but the '-' to hex char */
568 		for (offset = 0; offset < 10; offset++) {
569 			if (pba_num[offset] < 0xA)
570 				pba_num[offset] += '0';
571 			else if (pba_num[offset] < 0x10)
572 				pba_num[offset] += 'A' - 0xA;
573 		}
574 
575 		return 0;
576 	}
577 
578 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
579 	if (ret_val) {
580 		hw_dbg(hw, "NVM Read Error\n");
581 		return ret_val;
582 	}
583 
584 	if (length == 0xFFFF || length == 0) {
585 		hw_dbg(hw, "NVM PBA number section invalid length\n");
586 		return IXGBE_ERR_PBA_SECTION;
587 	}
588 
589 	/* check if pba_num buffer is big enough */
590 	if (pba_num_size  < (((u32)length * 2) - 1)) {
591 		hw_dbg(hw, "PBA string buffer too small\n");
592 		return IXGBE_ERR_NO_SPACE;
593 	}
594 
595 	/* trim pba length from start of string */
596 	pba_ptr++;
597 	length--;
598 
599 	for (offset = 0; offset < length; offset++) {
600 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
601 		if (ret_val) {
602 			hw_dbg(hw, "NVM Read Error\n");
603 			return ret_val;
604 		}
605 		pba_num[offset * 2] = (u8)(data >> 8);
606 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
607 	}
608 	pba_num[offset * 2] = '\0';
609 
610 	return 0;
611 }
612 
613 /**
614  *  ixgbe_get_mac_addr_generic - Generic get MAC address
615  *  @hw: pointer to hardware structure
616  *  @mac_addr: Adapter MAC address
617  *
618  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
619  *  A reset of the adapter must be performed prior to calling this function
620  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
621  **/
622 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
623 {
624 	u32 rar_high;
625 	u32 rar_low;
626 	u16 i;
627 
628 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
629 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
630 
631 	for (i = 0; i < 4; i++)
632 		mac_addr[i] = (u8)(rar_low >> (i*8));
633 
634 	for (i = 0; i < 2; i++)
635 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
636 
637 	return 0;
638 }
639 
640 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
641 {
642 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
643 	case IXGBE_PCI_LINK_WIDTH_1:
644 		return ixgbe_bus_width_pcie_x1;
645 	case IXGBE_PCI_LINK_WIDTH_2:
646 		return ixgbe_bus_width_pcie_x2;
647 	case IXGBE_PCI_LINK_WIDTH_4:
648 		return ixgbe_bus_width_pcie_x4;
649 	case IXGBE_PCI_LINK_WIDTH_8:
650 		return ixgbe_bus_width_pcie_x8;
651 	default:
652 		return ixgbe_bus_width_unknown;
653 	}
654 }
655 
656 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
657 {
658 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
659 	case IXGBE_PCI_LINK_SPEED_2500:
660 		return ixgbe_bus_speed_2500;
661 	case IXGBE_PCI_LINK_SPEED_5000:
662 		return ixgbe_bus_speed_5000;
663 	case IXGBE_PCI_LINK_SPEED_8000:
664 		return ixgbe_bus_speed_8000;
665 	default:
666 		return ixgbe_bus_speed_unknown;
667 	}
668 }
669 
670 /**
671  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
672  *  @hw: pointer to hardware structure
673  *
674  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
675  **/
676 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
677 {
678 	u16 link_status;
679 
680 	hw->bus.type = ixgbe_bus_type_pci_express;
681 
682 	/* Get the negotiated link width and speed from PCI config space */
683 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
684 
685 	hw->bus.width = ixgbe_convert_bus_width(link_status);
686 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
687 
688 	hw->mac.ops.set_lan_id(hw);
689 
690 	return 0;
691 }
692 
693 /**
694  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
695  *  @hw: pointer to the HW structure
696  *
697  *  Determines the LAN function id by reading memory-mapped registers
698  *  and swaps the port value if requested.
699  **/
700 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
701 {
702 	struct ixgbe_bus_info *bus = &hw->bus;
703 	u16 ee_ctrl_4;
704 	u32 reg;
705 
706 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
707 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
708 	bus->lan_id = bus->func;
709 
710 	/* check for a port swap */
711 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
712 	if (reg & IXGBE_FACTPS_LFS)
713 		bus->func ^= 0x1;
714 
715 	/* Get MAC instance from EEPROM for configuring CS4227 */
716 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
717 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
718 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
719 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
720 	}
721 }
722 
723 /**
724  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
725  *  @hw: pointer to hardware structure
726  *
727  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
728  *  disables transmit and receive units. The adapter_stopped flag is used by
729  *  the shared code and drivers to determine if the adapter is in a stopped
730  *  state and should not touch the hardware.
731  **/
732 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
733 {
734 	u32 reg_val;
735 	u16 i;
736 
737 	/*
738 	 * Set the adapter_stopped flag so other driver functions stop touching
739 	 * the hardware
740 	 */
741 	hw->adapter_stopped = true;
742 
743 	/* Disable the receive unit */
744 	hw->mac.ops.disable_rx(hw);
745 
746 	/* Clear interrupt mask to stop interrupts from being generated */
747 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
748 
749 	/* Clear any pending interrupts, flush previous writes */
750 	IXGBE_READ_REG(hw, IXGBE_EICR);
751 
752 	/* Disable the transmit unit.  Each queue must be disabled. */
753 	for (i = 0; i < hw->mac.max_tx_queues; i++)
754 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
755 
756 	/* Disable the receive unit by stopping each queue */
757 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
758 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
759 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
760 		reg_val |= IXGBE_RXDCTL_SWFLSH;
761 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
762 	}
763 
764 	/* flush all queues disables */
765 	IXGBE_WRITE_FLUSH(hw);
766 	usleep_range(1000, 2000);
767 
768 	/*
769 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
770 	 * access and verify no pending requests
771 	 */
772 	return ixgbe_disable_pcie_master(hw);
773 }
774 
775 /**
776  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
777  *  @hw: pointer to hardware structure
778  *  @index: led number to turn on
779  **/
780 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
781 {
782 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
783 
784 	if (index > 3)
785 		return IXGBE_ERR_PARAM;
786 
787 	/* To turn on the LED, set mode to ON. */
788 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
789 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
790 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
791 	IXGBE_WRITE_FLUSH(hw);
792 
793 	return 0;
794 }
795 
796 /**
797  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
798  *  @hw: pointer to hardware structure
799  *  @index: led number to turn off
800  **/
801 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
802 {
803 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
804 
805 	if (index > 3)
806 		return IXGBE_ERR_PARAM;
807 
808 	/* To turn off the LED, set mode to OFF. */
809 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
810 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
811 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
812 	IXGBE_WRITE_FLUSH(hw);
813 
814 	return 0;
815 }
816 
817 /**
818  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
819  *  @hw: pointer to hardware structure
820  *
821  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
822  *  ixgbe_hw struct in order to set up EEPROM access.
823  **/
824 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
825 {
826 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
827 	u32 eec;
828 	u16 eeprom_size;
829 
830 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
831 		eeprom->type = ixgbe_eeprom_none;
832 		/* Set default semaphore delay to 10ms which is a well
833 		 * tested value */
834 		eeprom->semaphore_delay = 10;
835 		/* Clear EEPROM page size, it will be initialized as needed */
836 		eeprom->word_page_size = 0;
837 
838 		/*
839 		 * Check for EEPROM present first.
840 		 * If not present leave as none
841 		 */
842 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
843 		if (eec & IXGBE_EEC_PRES) {
844 			eeprom->type = ixgbe_eeprom_spi;
845 
846 			/*
847 			 * SPI EEPROM is assumed here.  This code would need to
848 			 * change if a future EEPROM is not SPI.
849 			 */
850 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
851 					    IXGBE_EEC_SIZE_SHIFT);
852 			eeprom->word_size = BIT(eeprom_size +
853 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
854 		}
855 
856 		if (eec & IXGBE_EEC_ADDR_SIZE)
857 			eeprom->address_bits = 16;
858 		else
859 			eeprom->address_bits = 8;
860 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
861 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
862 	}
863 
864 	return 0;
865 }
866 
867 /**
868  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
869  *  @hw: pointer to hardware structure
870  *  @offset: offset within the EEPROM to write
871  *  @words: number of words
872  *  @data: 16 bit word(s) to write to EEPROM
873  *
874  *  Reads 16 bit word(s) from EEPROM through bit-bang method
875  **/
876 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
877 					       u16 words, u16 *data)
878 {
879 	s32 status;
880 	u16 i, count;
881 
882 	hw->eeprom.ops.init_params(hw);
883 
884 	if (words == 0)
885 		return IXGBE_ERR_INVALID_ARGUMENT;
886 
887 	if (offset + words > hw->eeprom.word_size)
888 		return IXGBE_ERR_EEPROM;
889 
890 	/*
891 	 * The EEPROM page size cannot be queried from the chip. We do lazy
892 	 * initialization. It is worth to do that when we write large buffer.
893 	 */
894 	if ((hw->eeprom.word_page_size == 0) &&
895 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
896 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
897 
898 	/*
899 	 * We cannot hold synchronization semaphores for too long
900 	 * to avoid other entity starvation. However it is more efficient
901 	 * to read in bursts than synchronizing access for each word.
902 	 */
903 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
904 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
905 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
906 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
907 							    count, &data[i]);
908 
909 		if (status != 0)
910 			break;
911 	}
912 
913 	return status;
914 }
915 
916 /**
917  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
918  *  @hw: pointer to hardware structure
919  *  @offset: offset within the EEPROM to be written to
920  *  @words: number of word(s)
921  *  @data: 16 bit word(s) to be written to the EEPROM
922  *
923  *  If ixgbe_eeprom_update_checksum is not called after this function, the
924  *  EEPROM will most likely contain an invalid checksum.
925  **/
926 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
927 					      u16 words, u16 *data)
928 {
929 	s32 status;
930 	u16 word;
931 	u16 page_size;
932 	u16 i;
933 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
934 
935 	/* Prepare the EEPROM for writing  */
936 	status = ixgbe_acquire_eeprom(hw);
937 	if (status)
938 		return status;
939 
940 	if (ixgbe_ready_eeprom(hw) != 0) {
941 		ixgbe_release_eeprom(hw);
942 		return IXGBE_ERR_EEPROM;
943 	}
944 
945 	for (i = 0; i < words; i++) {
946 		ixgbe_standby_eeprom(hw);
947 
948 		/* Send the WRITE ENABLE command (8 bit opcode) */
949 		ixgbe_shift_out_eeprom_bits(hw,
950 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
951 					    IXGBE_EEPROM_OPCODE_BITS);
952 
953 		ixgbe_standby_eeprom(hw);
954 
955 		/* Some SPI eeproms use the 8th address bit embedded
956 		 * in the opcode
957 		 */
958 		if ((hw->eeprom.address_bits == 8) &&
959 		    ((offset + i) >= 128))
960 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
961 
962 		/* Send the Write command (8-bit opcode + addr) */
963 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
964 					    IXGBE_EEPROM_OPCODE_BITS);
965 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
966 					    hw->eeprom.address_bits);
967 
968 		page_size = hw->eeprom.word_page_size;
969 
970 		/* Send the data in burst via SPI */
971 		do {
972 			word = data[i];
973 			word = (word >> 8) | (word << 8);
974 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
975 
976 			if (page_size == 0)
977 				break;
978 
979 			/* do not wrap around page */
980 			if (((offset + i) & (page_size - 1)) ==
981 			    (page_size - 1))
982 				break;
983 		} while (++i < words);
984 
985 		ixgbe_standby_eeprom(hw);
986 		usleep_range(10000, 20000);
987 	}
988 	/* Done with writing - release the EEPROM */
989 	ixgbe_release_eeprom(hw);
990 
991 	return 0;
992 }
993 
994 /**
995  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
996  *  @hw: pointer to hardware structure
997  *  @offset: offset within the EEPROM to be written to
998  *  @data: 16 bit word to be written to the EEPROM
999  *
1000  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1001  *  EEPROM will most likely contain an invalid checksum.
1002  **/
1003 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1004 {
1005 	hw->eeprom.ops.init_params(hw);
1006 
1007 	if (offset >= hw->eeprom.word_size)
1008 		return IXGBE_ERR_EEPROM;
1009 
1010 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1011 }
1012 
1013 /**
1014  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1015  *  @hw: pointer to hardware structure
1016  *  @offset: offset within the EEPROM to be read
1017  *  @words: number of word(s)
1018  *  @data: read 16 bit words(s) from EEPROM
1019  *
1020  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1021  **/
1022 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1023 					      u16 words, u16 *data)
1024 {
1025 	s32 status;
1026 	u16 i, count;
1027 
1028 	hw->eeprom.ops.init_params(hw);
1029 
1030 	if (words == 0)
1031 		return IXGBE_ERR_INVALID_ARGUMENT;
1032 
1033 	if (offset + words > hw->eeprom.word_size)
1034 		return IXGBE_ERR_EEPROM;
1035 
1036 	/*
1037 	 * We cannot hold synchronization semaphores for too long
1038 	 * to avoid other entity starvation. However it is more efficient
1039 	 * to read in bursts than synchronizing access for each word.
1040 	 */
1041 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1042 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1043 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1044 
1045 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1046 							   count, &data[i]);
1047 
1048 		if (status)
1049 			return status;
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 /**
1056  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1057  *  @hw: pointer to hardware structure
1058  *  @offset: offset within the EEPROM to be read
1059  *  @words: number of word(s)
1060  *  @data: read 16 bit word(s) from EEPROM
1061  *
1062  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1063  **/
1064 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1065 					     u16 words, u16 *data)
1066 {
1067 	s32 status;
1068 	u16 word_in;
1069 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1070 	u16 i;
1071 
1072 	/* Prepare the EEPROM for reading  */
1073 	status = ixgbe_acquire_eeprom(hw);
1074 	if (status)
1075 		return status;
1076 
1077 	if (ixgbe_ready_eeprom(hw) != 0) {
1078 		ixgbe_release_eeprom(hw);
1079 		return IXGBE_ERR_EEPROM;
1080 	}
1081 
1082 	for (i = 0; i < words; i++) {
1083 		ixgbe_standby_eeprom(hw);
1084 		/* Some SPI eeproms use the 8th address bit embedded
1085 		 * in the opcode
1086 		 */
1087 		if ((hw->eeprom.address_bits == 8) &&
1088 		    ((offset + i) >= 128))
1089 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1090 
1091 		/* Send the READ command (opcode + addr) */
1092 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1093 					    IXGBE_EEPROM_OPCODE_BITS);
1094 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1095 					    hw->eeprom.address_bits);
1096 
1097 		/* Read the data. */
1098 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1099 		data[i] = (word_in >> 8) | (word_in << 8);
1100 	}
1101 
1102 	/* End this read operation */
1103 	ixgbe_release_eeprom(hw);
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1110  *  @hw: pointer to hardware structure
1111  *  @offset: offset within the EEPROM to be read
1112  *  @data: read 16 bit value from EEPROM
1113  *
1114  *  Reads 16 bit value from EEPROM through bit-bang method
1115  **/
1116 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1117 				       u16 *data)
1118 {
1119 	hw->eeprom.ops.init_params(hw);
1120 
1121 	if (offset >= hw->eeprom.word_size)
1122 		return IXGBE_ERR_EEPROM;
1123 
1124 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1125 }
1126 
1127 /**
1128  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1129  *  @hw: pointer to hardware structure
1130  *  @offset: offset of word in the EEPROM to read
1131  *  @words: number of word(s)
1132  *  @data: 16 bit word(s) from the EEPROM
1133  *
1134  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1135  **/
1136 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1137 				   u16 words, u16 *data)
1138 {
1139 	u32 eerd;
1140 	s32 status;
1141 	u32 i;
1142 
1143 	hw->eeprom.ops.init_params(hw);
1144 
1145 	if (words == 0)
1146 		return IXGBE_ERR_INVALID_ARGUMENT;
1147 
1148 	if (offset >= hw->eeprom.word_size)
1149 		return IXGBE_ERR_EEPROM;
1150 
1151 	for (i = 0; i < words; i++) {
1152 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1153 		       IXGBE_EEPROM_RW_REG_START;
1154 
1155 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1156 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1157 
1158 		if (status == 0) {
1159 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1160 				   IXGBE_EEPROM_RW_REG_DATA);
1161 		} else {
1162 			hw_dbg(hw, "Eeprom read timed out\n");
1163 			return status;
1164 		}
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1172  *  @hw: pointer to hardware structure
1173  *  @offset: offset within the EEPROM to be used as a scratch pad
1174  *
1175  *  Discover EEPROM page size by writing marching data at given offset.
1176  *  This function is called only when we are writing a new large buffer
1177  *  at given offset so the data would be overwritten anyway.
1178  **/
1179 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1180 						 u16 offset)
1181 {
1182 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1183 	s32 status;
1184 	u16 i;
1185 
1186 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1187 		data[i] = i;
1188 
1189 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1190 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1191 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1192 	hw->eeprom.word_page_size = 0;
1193 	if (status)
1194 		return status;
1195 
1196 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1197 	if (status)
1198 		return status;
1199 
1200 	/*
1201 	 * When writing in burst more than the actual page size
1202 	 * EEPROM address wraps around current page.
1203 	 */
1204 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1205 
1206 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1207 	       hw->eeprom.word_page_size);
1208 	return 0;
1209 }
1210 
1211 /**
1212  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1213  *  @hw: pointer to hardware structure
1214  *  @offset: offset of  word in the EEPROM to read
1215  *  @data: word read from the EEPROM
1216  *
1217  *  Reads a 16 bit word from the EEPROM using the EERD register.
1218  **/
1219 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1220 {
1221 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1222 }
1223 
1224 /**
1225  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1226  *  @hw: pointer to hardware structure
1227  *  @offset: offset of  word in the EEPROM to write
1228  *  @words: number of words
1229  *  @data: word(s) write to the EEPROM
1230  *
1231  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1232  **/
1233 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1234 				    u16 words, u16 *data)
1235 {
1236 	u32 eewr;
1237 	s32 status;
1238 	u16 i;
1239 
1240 	hw->eeprom.ops.init_params(hw);
1241 
1242 	if (words == 0)
1243 		return IXGBE_ERR_INVALID_ARGUMENT;
1244 
1245 	if (offset >= hw->eeprom.word_size)
1246 		return IXGBE_ERR_EEPROM;
1247 
1248 	for (i = 0; i < words; i++) {
1249 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1250 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1251 		       IXGBE_EEPROM_RW_REG_START;
1252 
1253 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1254 		if (status) {
1255 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1256 			return status;
1257 		}
1258 
1259 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1260 
1261 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1262 		if (status) {
1263 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1264 			return status;
1265 		}
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 /**
1272  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1273  *  @hw: pointer to hardware structure
1274  *  @offset: offset of  word in the EEPROM to write
1275  *  @data: word write to the EEPROM
1276  *
1277  *  Write a 16 bit word to the EEPROM using the EEWR register.
1278  **/
1279 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1280 {
1281 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1282 }
1283 
1284 /**
1285  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1286  *  @hw: pointer to hardware structure
1287  *  @ee_reg: EEPROM flag for polling
1288  *
1289  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1290  *  read or write is done respectively.
1291  **/
1292 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1293 {
1294 	u32 i;
1295 	u32 reg;
1296 
1297 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1298 		if (ee_reg == IXGBE_NVM_POLL_READ)
1299 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1300 		else
1301 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1302 
1303 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1304 			return 0;
1305 		}
1306 		udelay(5);
1307 	}
1308 	return IXGBE_ERR_EEPROM;
1309 }
1310 
1311 /**
1312  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1313  *  @hw: pointer to hardware structure
1314  *
1315  *  Prepares EEPROM for access using bit-bang method. This function should
1316  *  be called before issuing a command to the EEPROM.
1317  **/
1318 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1319 {
1320 	u32 eec;
1321 	u32 i;
1322 
1323 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1324 		return IXGBE_ERR_SWFW_SYNC;
1325 
1326 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1327 
1328 	/* Request EEPROM Access */
1329 	eec |= IXGBE_EEC_REQ;
1330 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1331 
1332 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1333 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1334 		if (eec & IXGBE_EEC_GNT)
1335 			break;
1336 		udelay(5);
1337 	}
1338 
1339 	/* Release if grant not acquired */
1340 	if (!(eec & IXGBE_EEC_GNT)) {
1341 		eec &= ~IXGBE_EEC_REQ;
1342 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1343 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1344 
1345 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1346 		return IXGBE_ERR_EEPROM;
1347 	}
1348 
1349 	/* Setup EEPROM for Read/Write */
1350 	/* Clear CS and SK */
1351 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1352 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353 	IXGBE_WRITE_FLUSH(hw);
1354 	udelay(1);
1355 	return 0;
1356 }
1357 
1358 /**
1359  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1360  *  @hw: pointer to hardware structure
1361  *
1362  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1363  **/
1364 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1365 {
1366 	u32 timeout = 2000;
1367 	u32 i;
1368 	u32 swsm;
1369 
1370 	/* Get SMBI software semaphore between device drivers first */
1371 	for (i = 0; i < timeout; i++) {
1372 		/*
1373 		 * If the SMBI bit is 0 when we read it, then the bit will be
1374 		 * set and we have the semaphore
1375 		 */
1376 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1377 		if (!(swsm & IXGBE_SWSM_SMBI))
1378 			break;
1379 		usleep_range(50, 100);
1380 	}
1381 
1382 	if (i == timeout) {
1383 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1384 		/* this release is particularly important because our attempts
1385 		 * above to get the semaphore may have succeeded, and if there
1386 		 * was a timeout, we should unconditionally clear the semaphore
1387 		 * bits to free the driver to make progress
1388 		 */
1389 		ixgbe_release_eeprom_semaphore(hw);
1390 
1391 		usleep_range(50, 100);
1392 		/* one last try
1393 		 * If the SMBI bit is 0 when we read it, then the bit will be
1394 		 * set and we have the semaphore
1395 		 */
1396 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1397 		if (swsm & IXGBE_SWSM_SMBI) {
1398 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1399 			return IXGBE_ERR_EEPROM;
1400 		}
1401 	}
1402 
1403 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1404 	for (i = 0; i < timeout; i++) {
1405 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1406 
1407 		/* Set the SW EEPROM semaphore bit to request access */
1408 		swsm |= IXGBE_SWSM_SWESMBI;
1409 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1410 
1411 		/* If we set the bit successfully then we got the
1412 		 * semaphore.
1413 		 */
1414 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1415 		if (swsm & IXGBE_SWSM_SWESMBI)
1416 			break;
1417 
1418 		usleep_range(50, 100);
1419 	}
1420 
1421 	/* Release semaphores and return error if SW EEPROM semaphore
1422 	 * was not granted because we don't have access to the EEPROM
1423 	 */
1424 	if (i >= timeout) {
1425 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1426 		ixgbe_release_eeprom_semaphore(hw);
1427 		return IXGBE_ERR_EEPROM;
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 /**
1434  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1435  *  @hw: pointer to hardware structure
1436  *
1437  *  This function clears hardware semaphore bits.
1438  **/
1439 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1440 {
1441 	u32 swsm;
1442 
1443 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1444 
1445 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1446 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1447 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1448 	IXGBE_WRITE_FLUSH(hw);
1449 }
1450 
1451 /**
1452  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1453  *  @hw: pointer to hardware structure
1454  **/
1455 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1456 {
1457 	u16 i;
1458 	u8 spi_stat_reg;
1459 
1460 	/*
1461 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1462 	 * EEPROM will signal that the command has been completed by clearing
1463 	 * bit 0 of the internal status register.  If it's not cleared within
1464 	 * 5 milliseconds, then error out.
1465 	 */
1466 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1467 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1468 					    IXGBE_EEPROM_OPCODE_BITS);
1469 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1470 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1471 			break;
1472 
1473 		udelay(5);
1474 		ixgbe_standby_eeprom(hw);
1475 	}
1476 
1477 	/*
1478 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1479 	 * devices (and only 0-5mSec on 5V devices)
1480 	 */
1481 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1482 		hw_dbg(hw, "SPI EEPROM Status error\n");
1483 		return IXGBE_ERR_EEPROM;
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 /**
1490  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1491  *  @hw: pointer to hardware structure
1492  **/
1493 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1494 {
1495 	u32 eec;
1496 
1497 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1498 
1499 	/* Toggle CS to flush commands */
1500 	eec |= IXGBE_EEC_CS;
1501 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1502 	IXGBE_WRITE_FLUSH(hw);
1503 	udelay(1);
1504 	eec &= ~IXGBE_EEC_CS;
1505 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1506 	IXGBE_WRITE_FLUSH(hw);
1507 	udelay(1);
1508 }
1509 
1510 /**
1511  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1512  *  @hw: pointer to hardware structure
1513  *  @data: data to send to the EEPROM
1514  *  @count: number of bits to shift out
1515  **/
1516 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1517 					u16 count)
1518 {
1519 	u32 eec;
1520 	u32 mask;
1521 	u32 i;
1522 
1523 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1524 
1525 	/*
1526 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1527 	 * one bit at a time.  Determine the starting bit based on count
1528 	 */
1529 	mask = BIT(count - 1);
1530 
1531 	for (i = 0; i < count; i++) {
1532 		/*
1533 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1534 		 * "1", and then raising and then lowering the clock (the SK
1535 		 * bit controls the clock input to the EEPROM).  A "0" is
1536 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1537 		 * raising and then lowering the clock.
1538 		 */
1539 		if (data & mask)
1540 			eec |= IXGBE_EEC_DI;
1541 		else
1542 			eec &= ~IXGBE_EEC_DI;
1543 
1544 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1545 		IXGBE_WRITE_FLUSH(hw);
1546 
1547 		udelay(1);
1548 
1549 		ixgbe_raise_eeprom_clk(hw, &eec);
1550 		ixgbe_lower_eeprom_clk(hw, &eec);
1551 
1552 		/*
1553 		 * Shift mask to signify next bit of data to shift in to the
1554 		 * EEPROM
1555 		 */
1556 		mask = mask >> 1;
1557 	}
1558 
1559 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1560 	eec &= ~IXGBE_EEC_DI;
1561 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1562 	IXGBE_WRITE_FLUSH(hw);
1563 }
1564 
1565 /**
1566  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1567  *  @hw: pointer to hardware structure
1568  **/
1569 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1570 {
1571 	u32 eec;
1572 	u32 i;
1573 	u16 data = 0;
1574 
1575 	/*
1576 	 * In order to read a register from the EEPROM, we need to shift
1577 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1578 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1579 	 * the value of the "DO" bit.  During this "shifting in" process the
1580 	 * "DI" bit should always be clear.
1581 	 */
1582 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1583 
1584 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1585 
1586 	for (i = 0; i < count; i++) {
1587 		data = data << 1;
1588 		ixgbe_raise_eeprom_clk(hw, &eec);
1589 
1590 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1591 
1592 		eec &= ~(IXGBE_EEC_DI);
1593 		if (eec & IXGBE_EEC_DO)
1594 			data |= 1;
1595 
1596 		ixgbe_lower_eeprom_clk(hw, &eec);
1597 	}
1598 
1599 	return data;
1600 }
1601 
1602 /**
1603  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1604  *  @hw: pointer to hardware structure
1605  *  @eec: EEC register's current value
1606  **/
1607 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1608 {
1609 	/*
1610 	 * Raise the clock input to the EEPROM
1611 	 * (setting the SK bit), then delay
1612 	 */
1613 	*eec = *eec | IXGBE_EEC_SK;
1614 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1615 	IXGBE_WRITE_FLUSH(hw);
1616 	udelay(1);
1617 }
1618 
1619 /**
1620  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1621  *  @hw: pointer to hardware structure
1622  *  @eecd: EECD's current value
1623  **/
1624 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1625 {
1626 	/*
1627 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1628 	 * delay
1629 	 */
1630 	*eec = *eec & ~IXGBE_EEC_SK;
1631 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1632 	IXGBE_WRITE_FLUSH(hw);
1633 	udelay(1);
1634 }
1635 
1636 /**
1637  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1638  *  @hw: pointer to hardware structure
1639  **/
1640 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1641 {
1642 	u32 eec;
1643 
1644 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1645 
1646 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1647 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1648 
1649 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1650 	IXGBE_WRITE_FLUSH(hw);
1651 
1652 	udelay(1);
1653 
1654 	/* Stop requesting EEPROM access */
1655 	eec &= ~IXGBE_EEC_REQ;
1656 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1657 
1658 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1659 
1660 	/*
1661 	 * Delay before attempt to obtain semaphore again to allow FW
1662 	 * access. semaphore_delay is in ms we need us for usleep_range
1663 	 */
1664 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1665 		     hw->eeprom.semaphore_delay * 2000);
1666 }
1667 
1668 /**
1669  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1670  *  @hw: pointer to hardware structure
1671  **/
1672 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1673 {
1674 	u16 i;
1675 	u16 j;
1676 	u16 checksum = 0;
1677 	u16 length = 0;
1678 	u16 pointer = 0;
1679 	u16 word = 0;
1680 
1681 	/* Include 0x0-0x3F in the checksum */
1682 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1683 		if (hw->eeprom.ops.read(hw, i, &word)) {
1684 			hw_dbg(hw, "EEPROM read failed\n");
1685 			break;
1686 		}
1687 		checksum += word;
1688 	}
1689 
1690 	/* Include all data from pointers except for the fw pointer */
1691 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1692 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1693 			hw_dbg(hw, "EEPROM read failed\n");
1694 			return IXGBE_ERR_EEPROM;
1695 		}
1696 
1697 		/* If the pointer seems invalid */
1698 		if (pointer == 0xFFFF || pointer == 0)
1699 			continue;
1700 
1701 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1702 			hw_dbg(hw, "EEPROM read failed\n");
1703 			return IXGBE_ERR_EEPROM;
1704 		}
1705 
1706 		if (length == 0xFFFF || length == 0)
1707 			continue;
1708 
1709 		for (j = pointer + 1; j <= pointer + length; j++) {
1710 			if (hw->eeprom.ops.read(hw, j, &word)) {
1711 				hw_dbg(hw, "EEPROM read failed\n");
1712 				return IXGBE_ERR_EEPROM;
1713 			}
1714 			checksum += word;
1715 		}
1716 	}
1717 
1718 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1719 
1720 	return (s32)checksum;
1721 }
1722 
1723 /**
1724  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1725  *  @hw: pointer to hardware structure
1726  *  @checksum_val: calculated checksum
1727  *
1728  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1729  *  caller does not need checksum_val, the value can be NULL.
1730  **/
1731 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1732 					   u16 *checksum_val)
1733 {
1734 	s32 status;
1735 	u16 checksum;
1736 	u16 read_checksum = 0;
1737 
1738 	/*
1739 	 * Read the first word from the EEPROM. If this times out or fails, do
1740 	 * not continue or we could be in for a very long wait while every
1741 	 * EEPROM read fails
1742 	 */
1743 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1744 	if (status) {
1745 		hw_dbg(hw, "EEPROM read failed\n");
1746 		return status;
1747 	}
1748 
1749 	status = hw->eeprom.ops.calc_checksum(hw);
1750 	if (status < 0)
1751 		return status;
1752 
1753 	checksum = (u16)(status & 0xffff);
1754 
1755 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1756 	if (status) {
1757 		hw_dbg(hw, "EEPROM read failed\n");
1758 		return status;
1759 	}
1760 
1761 	/* Verify read checksum from EEPROM is the same as
1762 	 * calculated checksum
1763 	 */
1764 	if (read_checksum != checksum)
1765 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1766 
1767 	/* If the user cares, return the calculated checksum */
1768 	if (checksum_val)
1769 		*checksum_val = checksum;
1770 
1771 	return status;
1772 }
1773 
1774 /**
1775  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1776  *  @hw: pointer to hardware structure
1777  **/
1778 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1779 {
1780 	s32 status;
1781 	u16 checksum;
1782 
1783 	/*
1784 	 * Read the first word from the EEPROM. If this times out or fails, do
1785 	 * not continue or we could be in for a very long wait while every
1786 	 * EEPROM read fails
1787 	 */
1788 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1789 	if (status) {
1790 		hw_dbg(hw, "EEPROM read failed\n");
1791 		return status;
1792 	}
1793 
1794 	status = hw->eeprom.ops.calc_checksum(hw);
1795 	if (status < 0)
1796 		return status;
1797 
1798 	checksum = (u16)(status & 0xffff);
1799 
1800 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1801 
1802 	return status;
1803 }
1804 
1805 /**
1806  *  ixgbe_set_rar_generic - Set Rx address register
1807  *  @hw: pointer to hardware structure
1808  *  @index: Receive address register to write
1809  *  @addr: Address to put into receive address register
1810  *  @vmdq: VMDq "set" or "pool" index
1811  *  @enable_addr: set flag that address is active
1812  *
1813  *  Puts an ethernet address into a receive address register.
1814  **/
1815 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1816 			  u32 enable_addr)
1817 {
1818 	u32 rar_low, rar_high;
1819 	u32 rar_entries = hw->mac.num_rar_entries;
1820 
1821 	/* Make sure we are using a valid rar index range */
1822 	if (index >= rar_entries) {
1823 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1824 		return IXGBE_ERR_INVALID_ARGUMENT;
1825 	}
1826 
1827 	/* setup VMDq pool selection before this RAR gets enabled */
1828 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1829 
1830 	/*
1831 	 * HW expects these in little endian so we reverse the byte
1832 	 * order from network order (big endian) to little endian
1833 	 */
1834 	rar_low = ((u32)addr[0] |
1835 		   ((u32)addr[1] << 8) |
1836 		   ((u32)addr[2] << 16) |
1837 		   ((u32)addr[3] << 24));
1838 	/*
1839 	 * Some parts put the VMDq setting in the extra RAH bits,
1840 	 * so save everything except the lower 16 bits that hold part
1841 	 * of the address and the address valid bit.
1842 	 */
1843 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1844 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1845 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1846 
1847 	if (enable_addr != 0)
1848 		rar_high |= IXGBE_RAH_AV;
1849 
1850 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1851 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1852 
1853 	return 0;
1854 }
1855 
1856 /**
1857  *  ixgbe_clear_rar_generic - Remove Rx address register
1858  *  @hw: pointer to hardware structure
1859  *  @index: Receive address register to write
1860  *
1861  *  Clears an ethernet address from a receive address register.
1862  **/
1863 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1864 {
1865 	u32 rar_high;
1866 	u32 rar_entries = hw->mac.num_rar_entries;
1867 
1868 	/* Make sure we are using a valid rar index range */
1869 	if (index >= rar_entries) {
1870 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1871 		return IXGBE_ERR_INVALID_ARGUMENT;
1872 	}
1873 
1874 	/*
1875 	 * Some parts put the VMDq setting in the extra RAH bits,
1876 	 * so save everything except the lower 16 bits that hold part
1877 	 * of the address and the address valid bit.
1878 	 */
1879 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1880 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1881 
1882 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1883 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1884 
1885 	/* clear VMDq pool/queue selection for this RAR */
1886 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1887 
1888 	return 0;
1889 }
1890 
1891 /**
1892  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1893  *  @hw: pointer to hardware structure
1894  *
1895  *  Places the MAC address in receive address register 0 and clears the rest
1896  *  of the receive address registers. Clears the multicast table. Assumes
1897  *  the receiver is in reset when the routine is called.
1898  **/
1899 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1900 {
1901 	u32 i;
1902 	u32 rar_entries = hw->mac.num_rar_entries;
1903 
1904 	/*
1905 	 * If the current mac address is valid, assume it is a software override
1906 	 * to the permanent address.
1907 	 * Otherwise, use the permanent address from the eeprom.
1908 	 */
1909 	if (!is_valid_ether_addr(hw->mac.addr)) {
1910 		/* Get the MAC address from the RAR0 for later reference */
1911 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1912 
1913 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1914 	} else {
1915 		/* Setup the receive address. */
1916 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1917 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1918 
1919 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1920 	}
1921 
1922 	/*  clear VMDq pool/queue selection for RAR 0 */
1923 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1924 
1925 	hw->addr_ctrl.overflow_promisc = 0;
1926 
1927 	hw->addr_ctrl.rar_used_count = 1;
1928 
1929 	/* Zero out the other receive addresses. */
1930 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1931 	for (i = 1; i < rar_entries; i++) {
1932 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1933 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1934 	}
1935 
1936 	/* Clear the MTA */
1937 	hw->addr_ctrl.mta_in_use = 0;
1938 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1939 
1940 	hw_dbg(hw, " Clearing MTA\n");
1941 	for (i = 0; i < hw->mac.mcft_size; i++)
1942 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1943 
1944 	if (hw->mac.ops.init_uta_tables)
1945 		hw->mac.ops.init_uta_tables(hw);
1946 
1947 	return 0;
1948 }
1949 
1950 /**
1951  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1952  *  @hw: pointer to hardware structure
1953  *  @mc_addr: the multicast address
1954  *
1955  *  Extracts the 12 bits, from a multicast address, to determine which
1956  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1957  *  incoming rx multicast addresses, to determine the bit-vector to check in
1958  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1959  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1960  *  to mc_filter_type.
1961  **/
1962 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1963 {
1964 	u32 vector = 0;
1965 
1966 	switch (hw->mac.mc_filter_type) {
1967 	case 0:   /* use bits [47:36] of the address */
1968 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1969 		break;
1970 	case 1:   /* use bits [46:35] of the address */
1971 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1972 		break;
1973 	case 2:   /* use bits [45:34] of the address */
1974 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1975 		break;
1976 	case 3:   /* use bits [43:32] of the address */
1977 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1978 		break;
1979 	default:  /* Invalid mc_filter_type */
1980 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1981 		break;
1982 	}
1983 
1984 	/* vector can only be 12-bits or boundary will be exceeded */
1985 	vector &= 0xFFF;
1986 	return vector;
1987 }
1988 
1989 /**
1990  *  ixgbe_set_mta - Set bit-vector in multicast table
1991  *  @hw: pointer to hardware structure
1992  *  @hash_value: Multicast address hash value
1993  *
1994  *  Sets the bit-vector in the multicast table.
1995  **/
1996 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1997 {
1998 	u32 vector;
1999 	u32 vector_bit;
2000 	u32 vector_reg;
2001 
2002 	hw->addr_ctrl.mta_in_use++;
2003 
2004 	vector = ixgbe_mta_vector(hw, mc_addr);
2005 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2006 
2007 	/*
2008 	 * The MTA is a register array of 128 32-bit registers. It is treated
2009 	 * like an array of 4096 bits.  We want to set bit
2010 	 * BitArray[vector_value]. So we figure out what register the bit is
2011 	 * in, read it, OR in the new bit, then write back the new value.  The
2012 	 * register is determined by the upper 7 bits of the vector value and
2013 	 * the bit within that register are determined by the lower 5 bits of
2014 	 * the value.
2015 	 */
2016 	vector_reg = (vector >> 5) & 0x7F;
2017 	vector_bit = vector & 0x1F;
2018 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2019 }
2020 
2021 /**
2022  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2023  *  @hw: pointer to hardware structure
2024  *  @netdev: pointer to net device structure
2025  *
2026  *  The given list replaces any existing list. Clears the MC addrs from receive
2027  *  address registers and the multicast table. Uses unused receive address
2028  *  registers for the first multicast addresses, and hashes the rest into the
2029  *  multicast table.
2030  **/
2031 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2032 				      struct net_device *netdev)
2033 {
2034 	struct netdev_hw_addr *ha;
2035 	u32 i;
2036 
2037 	/*
2038 	 * Set the new number of MC addresses that we are being requested to
2039 	 * use.
2040 	 */
2041 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2042 	hw->addr_ctrl.mta_in_use = 0;
2043 
2044 	/* Clear mta_shadow */
2045 	hw_dbg(hw, " Clearing MTA\n");
2046 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2047 
2048 	/* Update mta shadow */
2049 	netdev_for_each_mc_addr(ha, netdev) {
2050 		hw_dbg(hw, " Adding the multicast addresses:\n");
2051 		ixgbe_set_mta(hw, ha->addr);
2052 	}
2053 
2054 	/* Enable mta */
2055 	for (i = 0; i < hw->mac.mcft_size; i++)
2056 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2057 				      hw->mac.mta_shadow[i]);
2058 
2059 	if (hw->addr_ctrl.mta_in_use > 0)
2060 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2061 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2062 
2063 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2064 	return 0;
2065 }
2066 
2067 /**
2068  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2069  *  @hw: pointer to hardware structure
2070  *
2071  *  Enables multicast address in RAR and the use of the multicast hash table.
2072  **/
2073 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2074 {
2075 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2076 
2077 	if (a->mta_in_use > 0)
2078 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2079 				hw->mac.mc_filter_type);
2080 
2081 	return 0;
2082 }
2083 
2084 /**
2085  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2086  *  @hw: pointer to hardware structure
2087  *
2088  *  Disables multicast address in RAR and the use of the multicast hash table.
2089  **/
2090 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2091 {
2092 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2093 
2094 	if (a->mta_in_use > 0)
2095 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2096 
2097 	return 0;
2098 }
2099 
2100 /**
2101  *  ixgbe_fc_enable_generic - Enable flow control
2102  *  @hw: pointer to hardware structure
2103  *
2104  *  Enable flow control according to the current settings.
2105  **/
2106 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2107 {
2108 	u32 mflcn_reg, fccfg_reg;
2109 	u32 reg;
2110 	u32 fcrtl, fcrth;
2111 	int i;
2112 
2113 	/* Validate the water mark configuration. */
2114 	if (!hw->fc.pause_time)
2115 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2116 
2117 	/* Low water mark of zero causes XOFF floods */
2118 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2119 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2120 		    hw->fc.high_water[i]) {
2121 			if (!hw->fc.low_water[i] ||
2122 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2123 				hw_dbg(hw, "Invalid water mark configuration\n");
2124 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2125 			}
2126 		}
2127 	}
2128 
2129 	/* Negotiate the fc mode to use */
2130 	ixgbe_fc_autoneg(hw);
2131 
2132 	/* Disable any previous flow control settings */
2133 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2134 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2135 
2136 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2137 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2138 
2139 	/*
2140 	 * The possible values of fc.current_mode are:
2141 	 * 0: Flow control is completely disabled
2142 	 * 1: Rx flow control is enabled (we can receive pause frames,
2143 	 *    but not send pause frames).
2144 	 * 2: Tx flow control is enabled (we can send pause frames but
2145 	 *    we do not support receiving pause frames).
2146 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2147 	 * other: Invalid.
2148 	 */
2149 	switch (hw->fc.current_mode) {
2150 	case ixgbe_fc_none:
2151 		/*
2152 		 * Flow control is disabled by software override or autoneg.
2153 		 * The code below will actually disable it in the HW.
2154 		 */
2155 		break;
2156 	case ixgbe_fc_rx_pause:
2157 		/*
2158 		 * Rx Flow control is enabled and Tx Flow control is
2159 		 * disabled by software override. Since there really
2160 		 * isn't a way to advertise that we are capable of RX
2161 		 * Pause ONLY, we will advertise that we support both
2162 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2163 		 * disable the adapter's ability to send PAUSE frames.
2164 		 */
2165 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2166 		break;
2167 	case ixgbe_fc_tx_pause:
2168 		/*
2169 		 * Tx Flow control is enabled, and Rx Flow control is
2170 		 * disabled by software override.
2171 		 */
2172 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2173 		break;
2174 	case ixgbe_fc_full:
2175 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2176 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2177 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2178 		break;
2179 	default:
2180 		hw_dbg(hw, "Flow control param set incorrectly\n");
2181 		return IXGBE_ERR_CONFIG;
2182 	}
2183 
2184 	/* Set 802.3x based flow control settings. */
2185 	mflcn_reg |= IXGBE_MFLCN_DPF;
2186 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2187 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2188 
2189 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2190 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2191 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2192 		    hw->fc.high_water[i]) {
2193 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2194 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2195 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2196 		} else {
2197 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2198 			/*
2199 			 * In order to prevent Tx hangs when the internal Tx
2200 			 * switch is enabled we must set the high water mark
2201 			 * to the Rx packet buffer size - 24KB.  This allows
2202 			 * the Tx switch to function even under heavy Rx
2203 			 * workloads.
2204 			 */
2205 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2206 		}
2207 
2208 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2209 	}
2210 
2211 	/* Configure pause time (2 TCs per register) */
2212 	reg = hw->fc.pause_time * 0x00010001;
2213 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2214 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2215 
2216 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2217 
2218 	return 0;
2219 }
2220 
2221 /**
2222  *  ixgbe_negotiate_fc - Negotiate flow control
2223  *  @hw: pointer to hardware structure
2224  *  @adv_reg: flow control advertised settings
2225  *  @lp_reg: link partner's flow control settings
2226  *  @adv_sym: symmetric pause bit in advertisement
2227  *  @adv_asm: asymmetric pause bit in advertisement
2228  *  @lp_sym: symmetric pause bit in link partner advertisement
2229  *  @lp_asm: asymmetric pause bit in link partner advertisement
2230  *
2231  *  Find the intersection between advertised settings and link partner's
2232  *  advertised settings
2233  **/
2234 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2235 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2236 {
2237 	if ((!(adv_reg)) ||  (!(lp_reg)))
2238 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2239 
2240 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2241 		/*
2242 		 * Now we need to check if the user selected Rx ONLY
2243 		 * of pause frames.  In this case, we had to advertise
2244 		 * FULL flow control because we could not advertise RX
2245 		 * ONLY. Hence, we must now check to see if we need to
2246 		 * turn OFF the TRANSMISSION of PAUSE frames.
2247 		 */
2248 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2249 			hw->fc.current_mode = ixgbe_fc_full;
2250 			hw_dbg(hw, "Flow Control = FULL.\n");
2251 		} else {
2252 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2253 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2254 		}
2255 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2256 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2257 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2258 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2259 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2260 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2261 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2262 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2263 	} else {
2264 		hw->fc.current_mode = ixgbe_fc_none;
2265 		hw_dbg(hw, "Flow Control = NONE.\n");
2266 	}
2267 	return 0;
2268 }
2269 
2270 /**
2271  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2272  *  @hw: pointer to hardware structure
2273  *
2274  *  Enable flow control according on 1 gig fiber.
2275  **/
2276 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2277 {
2278 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2279 	s32 ret_val;
2280 
2281 	/*
2282 	 * On multispeed fiber at 1g, bail out if
2283 	 * - link is up but AN did not complete, or if
2284 	 * - link is up and AN completed but timed out
2285 	 */
2286 
2287 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2288 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2289 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2290 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2291 
2292 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2293 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2294 
2295 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2296 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2297 			       IXGBE_PCS1GANA_ASM_PAUSE,
2298 			       IXGBE_PCS1GANA_SYM_PAUSE,
2299 			       IXGBE_PCS1GANA_ASM_PAUSE);
2300 
2301 	return ret_val;
2302 }
2303 
2304 /**
2305  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2306  *  @hw: pointer to hardware structure
2307  *
2308  *  Enable flow control according to IEEE clause 37.
2309  **/
2310 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2311 {
2312 	u32 links2, anlp1_reg, autoc_reg, links;
2313 	s32 ret_val;
2314 
2315 	/*
2316 	 * On backplane, bail out if
2317 	 * - backplane autoneg was not completed, or if
2318 	 * - we are 82599 and link partner is not AN enabled
2319 	 */
2320 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2321 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2322 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2323 
2324 	if (hw->mac.type == ixgbe_mac_82599EB) {
2325 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2326 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2327 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2328 	}
2329 	/*
2330 	 * Read the 10g AN autoc and LP ability registers and resolve
2331 	 * local flow control settings accordingly
2332 	 */
2333 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2334 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2335 
2336 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2337 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2338 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2339 
2340 	return ret_val;
2341 }
2342 
2343 /**
2344  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2345  *  @hw: pointer to hardware structure
2346  *
2347  *  Enable flow control according to IEEE clause 37.
2348  **/
2349 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2350 {
2351 	u16 technology_ability_reg = 0;
2352 	u16 lp_technology_ability_reg = 0;
2353 
2354 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2355 			     MDIO_MMD_AN,
2356 			     &technology_ability_reg);
2357 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2358 			     MDIO_MMD_AN,
2359 			     &lp_technology_ability_reg);
2360 
2361 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2362 				  (u32)lp_technology_ability_reg,
2363 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2364 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2365 }
2366 
2367 /**
2368  *  ixgbe_fc_autoneg - Configure flow control
2369  *  @hw: pointer to hardware structure
2370  *
2371  *  Compares our advertised flow control capabilities to those advertised by
2372  *  our link partner, and determines the proper flow control mode to use.
2373  **/
2374 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2375 {
2376 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2377 	ixgbe_link_speed speed;
2378 	bool link_up;
2379 
2380 	/*
2381 	 * AN should have completed when the cable was plugged in.
2382 	 * Look for reasons to bail out.  Bail out if:
2383 	 * - FC autoneg is disabled, or if
2384 	 * - link is not up.
2385 	 *
2386 	 * Since we're being called from an LSC, link is already known to be up.
2387 	 * So use link_up_wait_to_complete=false.
2388 	 */
2389 	if (hw->fc.disable_fc_autoneg)
2390 		goto out;
2391 
2392 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2393 	if (!link_up)
2394 		goto out;
2395 
2396 	switch (hw->phy.media_type) {
2397 	/* Autoneg flow control on fiber adapters */
2398 	case ixgbe_media_type_fiber:
2399 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2400 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2401 		break;
2402 
2403 	/* Autoneg flow control on backplane adapters */
2404 	case ixgbe_media_type_backplane:
2405 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2406 		break;
2407 
2408 	/* Autoneg flow control on copper adapters */
2409 	case ixgbe_media_type_copper:
2410 		if (ixgbe_device_supports_autoneg_fc(hw))
2411 			ret_val = ixgbe_fc_autoneg_copper(hw);
2412 		break;
2413 
2414 	default:
2415 		break;
2416 	}
2417 
2418 out:
2419 	if (ret_val == 0) {
2420 		hw->fc.fc_was_autonegged = true;
2421 	} else {
2422 		hw->fc.fc_was_autonegged = false;
2423 		hw->fc.current_mode = hw->fc.requested_mode;
2424 	}
2425 }
2426 
2427 /**
2428  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2429  * @hw: pointer to hardware structure
2430  *
2431  * System-wide timeout range is encoded in PCIe Device Control2 register.
2432  *
2433  *  Add 10% to specified maximum and return the number of times to poll for
2434  *  completion timeout, in units of 100 microsec.  Never return less than
2435  *  800 = 80 millisec.
2436  **/
2437 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2438 {
2439 	s16 devctl2;
2440 	u32 pollcnt;
2441 
2442 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2443 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2444 
2445 	switch (devctl2) {
2446 	case IXGBE_PCIDEVCTRL2_65_130ms:
2447 		 pollcnt = 1300;         /* 130 millisec */
2448 		break;
2449 	case IXGBE_PCIDEVCTRL2_260_520ms:
2450 		pollcnt = 5200;         /* 520 millisec */
2451 		break;
2452 	case IXGBE_PCIDEVCTRL2_1_2s:
2453 		pollcnt = 20000;        /* 2 sec */
2454 		break;
2455 	case IXGBE_PCIDEVCTRL2_4_8s:
2456 		pollcnt = 80000;        /* 8 sec */
2457 		break;
2458 	case IXGBE_PCIDEVCTRL2_17_34s:
2459 		pollcnt = 34000;        /* 34 sec */
2460 		break;
2461 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2462 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2463 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2464 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2465 	default:
2466 		pollcnt = 800;          /* 80 millisec minimum */
2467 		break;
2468 	}
2469 
2470 	/* add 10% to spec maximum */
2471 	return (pollcnt * 11) / 10;
2472 }
2473 
2474 /**
2475  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2476  *  @hw: pointer to hardware structure
2477  *
2478  *  Disables PCI-Express master access and verifies there are no pending
2479  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2480  *  bit hasn't caused the master requests to be disabled, else 0
2481  *  is returned signifying master requests disabled.
2482  **/
2483 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2484 {
2485 	u32 i, poll;
2486 	u16 value;
2487 
2488 	/* Always set this bit to ensure any future transactions are blocked */
2489 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2490 
2491 	/* Poll for bit to read as set */
2492 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2493 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2494 			break;
2495 		usleep_range(100, 120);
2496 	}
2497 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2498 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2499 		goto gio_disable_fail;
2500 	}
2501 
2502 	/* Exit if master requests are blocked */
2503 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2504 	    ixgbe_removed(hw->hw_addr))
2505 		return 0;
2506 
2507 	/* Poll for master request bit to clear */
2508 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2509 		udelay(100);
2510 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2511 			return 0;
2512 	}
2513 
2514 	/*
2515 	 * Two consecutive resets are required via CTRL.RST per datasheet
2516 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2517 	 * of this need.  The first reset prevents new master requests from
2518 	 * being issued by our device.  We then must wait 1usec or more for any
2519 	 * remaining completions from the PCIe bus to trickle in, and then reset
2520 	 * again to clear out any effects they may have had on our device.
2521 	 */
2522 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2523 gio_disable_fail:
2524 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2525 
2526 	if (hw->mac.type >= ixgbe_mac_X550)
2527 		return 0;
2528 
2529 	/*
2530 	 * Before proceeding, make sure that the PCIe block does not have
2531 	 * transactions pending.
2532 	 */
2533 	poll = ixgbe_pcie_timeout_poll(hw);
2534 	for (i = 0; i < poll; i++) {
2535 		udelay(100);
2536 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2537 		if (ixgbe_removed(hw->hw_addr))
2538 			return 0;
2539 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2540 			return 0;
2541 	}
2542 
2543 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2544 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2545 }
2546 
2547 /**
2548  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2549  *  @hw: pointer to hardware structure
2550  *  @mask: Mask to specify which semaphore to acquire
2551  *
2552  *  Acquires the SWFW semaphore through the GSSR register for the specified
2553  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2554  **/
2555 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2556 {
2557 	u32 gssr = 0;
2558 	u32 swmask = mask;
2559 	u32 fwmask = mask << 5;
2560 	u32 timeout = 200;
2561 	u32 i;
2562 
2563 	for (i = 0; i < timeout; i++) {
2564 		/*
2565 		 * SW NVM semaphore bit is used for access to all
2566 		 * SW_FW_SYNC bits (not just NVM)
2567 		 */
2568 		if (ixgbe_get_eeprom_semaphore(hw))
2569 			return IXGBE_ERR_SWFW_SYNC;
2570 
2571 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2572 		if (!(gssr & (fwmask | swmask))) {
2573 			gssr |= swmask;
2574 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2575 			ixgbe_release_eeprom_semaphore(hw);
2576 			return 0;
2577 		} else {
2578 			/* Resource is currently in use by FW or SW */
2579 			ixgbe_release_eeprom_semaphore(hw);
2580 			usleep_range(5000, 10000);
2581 		}
2582 	}
2583 
2584 	/* If time expired clear the bits holding the lock and retry */
2585 	if (gssr & (fwmask | swmask))
2586 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2587 
2588 	usleep_range(5000, 10000);
2589 	return IXGBE_ERR_SWFW_SYNC;
2590 }
2591 
2592 /**
2593  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2594  *  @hw: pointer to hardware structure
2595  *  @mask: Mask to specify which semaphore to release
2596  *
2597  *  Releases the SWFW semaphore through the GSSR register for the specified
2598  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2599  **/
2600 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2601 {
2602 	u32 gssr;
2603 	u32 swmask = mask;
2604 
2605 	ixgbe_get_eeprom_semaphore(hw);
2606 
2607 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2608 	gssr &= ~swmask;
2609 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2610 
2611 	ixgbe_release_eeprom_semaphore(hw);
2612 }
2613 
2614 /**
2615  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2616  * @hw: pointer to hardware structure
2617  * @reg_val: Value we read from AUTOC
2618  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2619  *	    true in this the generic case.
2620  *
2621  * The default case requires no protection so just to the register read.
2622  **/
2623 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2624 {
2625 	*locked = false;
2626 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2627 	return 0;
2628 }
2629 
2630 /**
2631  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2632  * @hw: pointer to hardware structure
2633  * @reg_val: value to write to AUTOC
2634  * @locked: bool to indicate whether the SW/FW lock was already taken by
2635  *	    previous read.
2636  **/
2637 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2638 {
2639 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2640 	return 0;
2641 }
2642 
2643 /**
2644  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2645  *  @hw: pointer to hardware structure
2646  *
2647  *  Stops the receive data path and waits for the HW to internally
2648  *  empty the Rx security block.
2649  **/
2650 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2651 {
2652 #define IXGBE_MAX_SECRX_POLL 40
2653 	int i;
2654 	int secrxreg;
2655 
2656 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2657 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2658 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2659 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2660 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2661 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2662 			break;
2663 		else
2664 			/* Use interrupt-safe sleep just in case */
2665 			udelay(1000);
2666 	}
2667 
2668 	/* For informational purposes only */
2669 	if (i >= IXGBE_MAX_SECRX_POLL)
2670 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2671 
2672 	return 0;
2673 
2674 }
2675 
2676 /**
2677  *  ixgbe_enable_rx_buff - Enables the receive data path
2678  *  @hw: pointer to hardware structure
2679  *
2680  *  Enables the receive data path
2681  **/
2682 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2683 {
2684 	u32 secrxreg;
2685 
2686 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2687 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2688 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2689 	IXGBE_WRITE_FLUSH(hw);
2690 
2691 	return 0;
2692 }
2693 
2694 /**
2695  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2696  *  @hw: pointer to hardware structure
2697  *  @regval: register value to write to RXCTRL
2698  *
2699  *  Enables the Rx DMA unit
2700  **/
2701 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2702 {
2703 	if (regval & IXGBE_RXCTRL_RXEN)
2704 		hw->mac.ops.enable_rx(hw);
2705 	else
2706 		hw->mac.ops.disable_rx(hw);
2707 
2708 	return 0;
2709 }
2710 
2711 /**
2712  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2713  *  @hw: pointer to hardware structure
2714  *  @index: led number to blink
2715  **/
2716 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2717 {
2718 	ixgbe_link_speed speed = 0;
2719 	bool link_up = false;
2720 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2721 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2722 	bool locked = false;
2723 	s32 ret_val;
2724 
2725 	if (index > 3)
2726 		return IXGBE_ERR_PARAM;
2727 
2728 	/*
2729 	 * Link must be up to auto-blink the LEDs;
2730 	 * Force it if link is down.
2731 	 */
2732 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2733 
2734 	if (!link_up) {
2735 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2736 		if (ret_val)
2737 			return ret_val;
2738 
2739 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2740 		autoc_reg |= IXGBE_AUTOC_FLU;
2741 
2742 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2743 		if (ret_val)
2744 			return ret_val;
2745 
2746 		IXGBE_WRITE_FLUSH(hw);
2747 
2748 		usleep_range(10000, 20000);
2749 	}
2750 
2751 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2752 	led_reg |= IXGBE_LED_BLINK(index);
2753 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2754 	IXGBE_WRITE_FLUSH(hw);
2755 
2756 	return 0;
2757 }
2758 
2759 /**
2760  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2761  *  @hw: pointer to hardware structure
2762  *  @index: led number to stop blinking
2763  **/
2764 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2765 {
2766 	u32 autoc_reg = 0;
2767 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2768 	bool locked = false;
2769 	s32 ret_val;
2770 
2771 	if (index > 3)
2772 		return IXGBE_ERR_PARAM;
2773 
2774 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2775 	if (ret_val)
2776 		return ret_val;
2777 
2778 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2779 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2780 
2781 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2782 	if (ret_val)
2783 		return ret_val;
2784 
2785 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2786 	led_reg &= ~IXGBE_LED_BLINK(index);
2787 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2788 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2789 	IXGBE_WRITE_FLUSH(hw);
2790 
2791 	return 0;
2792 }
2793 
2794 /**
2795  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2796  *  @hw: pointer to hardware structure
2797  *  @san_mac_offset: SAN MAC address offset
2798  *
2799  *  This function will read the EEPROM location for the SAN MAC address
2800  *  pointer, and returns the value at that location.  This is used in both
2801  *  get and set mac_addr routines.
2802  **/
2803 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2804 					u16 *san_mac_offset)
2805 {
2806 	s32 ret_val;
2807 
2808 	/*
2809 	 * First read the EEPROM pointer to see if the MAC addresses are
2810 	 * available.
2811 	 */
2812 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2813 				      san_mac_offset);
2814 	if (ret_val)
2815 		hw_err(hw, "eeprom read at offset %d failed\n",
2816 		       IXGBE_SAN_MAC_ADDR_PTR);
2817 
2818 	return ret_val;
2819 }
2820 
2821 /**
2822  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2823  *  @hw: pointer to hardware structure
2824  *  @san_mac_addr: SAN MAC address
2825  *
2826  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2827  *  per-port, so set_lan_id() must be called before reading the addresses.
2828  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2829  *  upon for non-SFP connections, so we must call it here.
2830  **/
2831 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2832 {
2833 	u16 san_mac_data, san_mac_offset;
2834 	u8 i;
2835 	s32 ret_val;
2836 
2837 	/*
2838 	 * First read the EEPROM pointer to see if the MAC addresses are
2839 	 * available.  If they're not, no point in calling set_lan_id() here.
2840 	 */
2841 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2842 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2843 
2844 		goto san_mac_addr_clr;
2845 
2846 	/* make sure we know which port we need to program */
2847 	hw->mac.ops.set_lan_id(hw);
2848 	/* apply the port offset to the address offset */
2849 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2850 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2851 	for (i = 0; i < 3; i++) {
2852 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2853 					      &san_mac_data);
2854 		if (ret_val) {
2855 			hw_err(hw, "eeprom read at offset %d failed\n",
2856 			       san_mac_offset);
2857 			goto san_mac_addr_clr;
2858 		}
2859 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2860 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2861 		san_mac_offset++;
2862 	}
2863 	return 0;
2864 
2865 san_mac_addr_clr:
2866 	/* No addresses available in this EEPROM.  It's not necessarily an
2867 	 * error though, so just wipe the local address and return.
2868 	 */
2869 	for (i = 0; i < 6; i++)
2870 		san_mac_addr[i] = 0xFF;
2871 	return ret_val;
2872 }
2873 
2874 /**
2875  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2876  *  @hw: pointer to hardware structure
2877  *
2878  *  Read PCIe configuration space, and get the MSI-X vector count from
2879  *  the capabilities table.
2880  **/
2881 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2882 {
2883 	u16 msix_count;
2884 	u16 max_msix_count;
2885 	u16 pcie_offset;
2886 
2887 	switch (hw->mac.type) {
2888 	case ixgbe_mac_82598EB:
2889 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2890 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2891 		break;
2892 	case ixgbe_mac_82599EB:
2893 	case ixgbe_mac_X540:
2894 	case ixgbe_mac_X550:
2895 	case ixgbe_mac_X550EM_x:
2896 	case ixgbe_mac_x550em_a:
2897 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2898 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2899 		break;
2900 	default:
2901 		return 1;
2902 	}
2903 
2904 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2905 	if (ixgbe_removed(hw->hw_addr))
2906 		msix_count = 0;
2907 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2908 
2909 	/* MSI-X count is zero-based in HW */
2910 	msix_count++;
2911 
2912 	if (msix_count > max_msix_count)
2913 		msix_count = max_msix_count;
2914 
2915 	return msix_count;
2916 }
2917 
2918 /**
2919  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2920  *  @hw: pointer to hardware struct
2921  *  @rar: receive address register index to disassociate
2922  *  @vmdq: VMDq pool index to remove from the rar
2923  **/
2924 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2925 {
2926 	u32 mpsar_lo, mpsar_hi;
2927 	u32 rar_entries = hw->mac.num_rar_entries;
2928 
2929 	/* Make sure we are using a valid rar index range */
2930 	if (rar >= rar_entries) {
2931 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2932 		return IXGBE_ERR_INVALID_ARGUMENT;
2933 	}
2934 
2935 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2936 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2937 
2938 	if (ixgbe_removed(hw->hw_addr))
2939 		return 0;
2940 
2941 	if (!mpsar_lo && !mpsar_hi)
2942 		return 0;
2943 
2944 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2945 		if (mpsar_lo) {
2946 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2947 			mpsar_lo = 0;
2948 		}
2949 		if (mpsar_hi) {
2950 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2951 			mpsar_hi = 0;
2952 		}
2953 	} else if (vmdq < 32) {
2954 		mpsar_lo &= ~BIT(vmdq);
2955 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2956 	} else {
2957 		mpsar_hi &= ~BIT(vmdq - 32);
2958 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2959 	}
2960 
2961 	/* was that the last pool using this rar? */
2962 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2963 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2964 		hw->mac.ops.clear_rar(hw, rar);
2965 
2966 	return 0;
2967 }
2968 
2969 /**
2970  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2971  *  @hw: pointer to hardware struct
2972  *  @rar: receive address register index to associate with a VMDq index
2973  *  @vmdq: VMDq pool index
2974  **/
2975 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2976 {
2977 	u32 mpsar;
2978 	u32 rar_entries = hw->mac.num_rar_entries;
2979 
2980 	/* Make sure we are using a valid rar index range */
2981 	if (rar >= rar_entries) {
2982 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2983 		return IXGBE_ERR_INVALID_ARGUMENT;
2984 	}
2985 
2986 	if (vmdq < 32) {
2987 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2988 		mpsar |= BIT(vmdq);
2989 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2990 	} else {
2991 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2992 		mpsar |= BIT(vmdq - 32);
2993 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2994 	}
2995 	return 0;
2996 }
2997 
2998 /**
2999  *  This function should only be involved in the IOV mode.
3000  *  In IOV mode, Default pool is next pool after the number of
3001  *  VFs advertized and not 0.
3002  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3003  *
3004  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3005  *  @hw: pointer to hardware struct
3006  *  @vmdq: VMDq pool index
3007  **/
3008 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3009 {
3010 	u32 rar = hw->mac.san_mac_rar_index;
3011 
3012 	if (vmdq < 32) {
3013 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3014 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3015 	} else {
3016 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3017 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 /**
3024  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3025  *  @hw: pointer to hardware structure
3026  **/
3027 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3028 {
3029 	int i;
3030 
3031 	for (i = 0; i < 128; i++)
3032 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3033 
3034 	return 0;
3035 }
3036 
3037 /**
3038  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3039  *  @hw: pointer to hardware structure
3040  *  @vlan: VLAN id to write to VLAN filter
3041  *
3042  *  return the VLVF index where this VLAN id should be placed
3043  *
3044  **/
3045 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3046 {
3047 	s32 regindex, first_empty_slot;
3048 	u32 bits;
3049 
3050 	/* short cut the special case */
3051 	if (vlan == 0)
3052 		return 0;
3053 
3054 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3055 	 * will simply bypass the VLVF if there are no entries present in the
3056 	 * VLVF that contain our VLAN
3057 	 */
3058 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3059 
3060 	/* add VLAN enable bit for comparison */
3061 	vlan |= IXGBE_VLVF_VIEN;
3062 
3063 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3064 	 * slot found along the way.
3065 	 *
3066 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3067 	 */
3068 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3069 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3070 		if (bits == vlan)
3071 			return regindex;
3072 		if (!first_empty_slot && !bits)
3073 			first_empty_slot = regindex;
3074 	}
3075 
3076 	/* If we are here then we didn't find the VLAN.  Return first empty
3077 	 * slot we found during our search, else error.
3078 	 */
3079 	if (!first_empty_slot)
3080 		hw_dbg(hw, "No space in VLVF.\n");
3081 
3082 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3083 }
3084 
3085 /**
3086  *  ixgbe_set_vfta_generic - Set VLAN filter table
3087  *  @hw: pointer to hardware structure
3088  *  @vlan: VLAN id to write to VLAN filter
3089  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3090  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3091  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3092  *
3093  *  Turn on/off specified VLAN in the VLAN filter table.
3094  **/
3095 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3096 			   bool vlan_on, bool vlvf_bypass)
3097 {
3098 	u32 regidx, vfta_delta, vfta, bits;
3099 	s32 vlvf_index;
3100 
3101 	if ((vlan > 4095) || (vind > 63))
3102 		return IXGBE_ERR_PARAM;
3103 
3104 	/*
3105 	 * this is a 2 part operation - first the VFTA, then the
3106 	 * VLVF and VLVFB if VT Mode is set
3107 	 * We don't write the VFTA until we know the VLVF part succeeded.
3108 	 */
3109 
3110 	/* Part 1
3111 	 * The VFTA is a bitstring made up of 128 32-bit registers
3112 	 * that enable the particular VLAN id, much like the MTA:
3113 	 *    bits[11-5]: which register
3114 	 *    bits[4-0]:  which bit in the register
3115 	 */
3116 	regidx = vlan / 32;
3117 	vfta_delta = BIT(vlan % 32);
3118 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3119 
3120 	/* vfta_delta represents the difference between the current value
3121 	 * of vfta and the value we want in the register.  Since the diff
3122 	 * is an XOR mask we can just update vfta using an XOR.
3123 	 */
3124 	vfta_delta &= vlan_on ? ~vfta : vfta;
3125 	vfta ^= vfta_delta;
3126 
3127 	/* Part 2
3128 	 * If VT Mode is set
3129 	 *   Either vlan_on
3130 	 *     make sure the vlan is in VLVF
3131 	 *     set the vind bit in the matching VLVFB
3132 	 *   Or !vlan_on
3133 	 *     clear the pool bit and possibly the vind
3134 	 */
3135 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3136 		goto vfta_update;
3137 
3138 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3139 	if (vlvf_index < 0) {
3140 		if (vlvf_bypass)
3141 			goto vfta_update;
3142 		return vlvf_index;
3143 	}
3144 
3145 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3146 
3147 	/* set the pool bit */
3148 	bits |= BIT(vind % 32);
3149 	if (vlan_on)
3150 		goto vlvf_update;
3151 
3152 	/* clear the pool bit */
3153 	bits ^= BIT(vind % 32);
3154 
3155 	if (!bits &&
3156 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3157 		/* Clear VFTA first, then disable VLVF.  Otherwise
3158 		 * we run the risk of stray packets leaking into
3159 		 * the PF via the default pool
3160 		 */
3161 		if (vfta_delta)
3162 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3163 
3164 		/* disable VLVF and clear remaining bit from pool */
3165 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3166 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3167 
3168 		return 0;
3169 	}
3170 
3171 	/* If there are still bits set in the VLVFB registers
3172 	 * for the VLAN ID indicated we need to see if the
3173 	 * caller is requesting that we clear the VFTA entry bit.
3174 	 * If the caller has requested that we clear the VFTA
3175 	 * entry bit but there are still pools/VFs using this VLAN
3176 	 * ID entry then ignore the request.  We're not worried
3177 	 * about the case where we're turning the VFTA VLAN ID
3178 	 * entry bit on, only when requested to turn it off as
3179 	 * there may be multiple pools and/or VFs using the
3180 	 * VLAN ID entry.  In that case we cannot clear the
3181 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3182 	 * been cleared.  This will be indicated by "bits" being
3183 	 * zero.
3184 	 */
3185 	vfta_delta = 0;
3186 
3187 vlvf_update:
3188 	/* record pool change and enable VLAN ID if not already enabled */
3189 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3190 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3191 
3192 vfta_update:
3193 	/* Update VFTA now that we are ready for traffic */
3194 	if (vfta_delta)
3195 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3196 
3197 	return 0;
3198 }
3199 
3200 /**
3201  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3202  *  @hw: pointer to hardware structure
3203  *
3204  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3205  **/
3206 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3207 {
3208 	u32 offset;
3209 
3210 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3211 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3212 
3213 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3214 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3215 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3216 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3217 	}
3218 
3219 	return 0;
3220 }
3221 
3222 /**
3223  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3224  *  @hw: pointer to hardware structure
3225  *
3226  *  Contains the logic to identify if we need to verify link for the
3227  *  crosstalk fix
3228  **/
3229 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3230 {
3231 	/* Does FW say we need the fix */
3232 	if (!hw->need_crosstalk_fix)
3233 		return false;
3234 
3235 	/* Only consider SFP+ PHYs i.e. media type fiber */
3236 	switch (hw->mac.ops.get_media_type(hw)) {
3237 	case ixgbe_media_type_fiber:
3238 	case ixgbe_media_type_fiber_qsfp:
3239 		break;
3240 	default:
3241 		return false;
3242 	}
3243 
3244 	return true;
3245 }
3246 
3247 /**
3248  *  ixgbe_check_mac_link_generic - Determine link and speed status
3249  *  @hw: pointer to hardware structure
3250  *  @speed: pointer to link speed
3251  *  @link_up: true when link is up
3252  *  @link_up_wait_to_complete: bool used to wait for link up or not
3253  *
3254  *  Reads the links register to determine if link is up and the current speed
3255  **/
3256 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3257 				 bool *link_up, bool link_up_wait_to_complete)
3258 {
3259 	u32 links_reg, links_orig;
3260 	u32 i;
3261 
3262 	/* If Crosstalk fix enabled do the sanity check of making sure
3263 	 * the SFP+ cage is full.
3264 	 */
3265 	if (ixgbe_need_crosstalk_fix(hw)) {
3266 		u32 sfp_cage_full;
3267 
3268 		switch (hw->mac.type) {
3269 		case ixgbe_mac_82599EB:
3270 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3271 					IXGBE_ESDP_SDP2;
3272 			break;
3273 		case ixgbe_mac_X550EM_x:
3274 		case ixgbe_mac_x550em_a:
3275 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3276 					IXGBE_ESDP_SDP0;
3277 			break;
3278 		default:
3279 			/* sanity check - No SFP+ devices here */
3280 			sfp_cage_full = false;
3281 			break;
3282 		}
3283 
3284 		if (!sfp_cage_full) {
3285 			*link_up = false;
3286 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3287 			return 0;
3288 		}
3289 	}
3290 
3291 	/* clear the old state */
3292 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3293 
3294 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3295 
3296 	if (links_orig != links_reg) {
3297 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3298 		       links_orig, links_reg);
3299 	}
3300 
3301 	if (link_up_wait_to_complete) {
3302 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3303 			if (links_reg & IXGBE_LINKS_UP) {
3304 				*link_up = true;
3305 				break;
3306 			} else {
3307 				*link_up = false;
3308 			}
3309 			msleep(100);
3310 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3311 		}
3312 	} else {
3313 		if (links_reg & IXGBE_LINKS_UP)
3314 			*link_up = true;
3315 		else
3316 			*link_up = false;
3317 	}
3318 
3319 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3320 	case IXGBE_LINKS_SPEED_10G_82599:
3321 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3322 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3323 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3324 		else
3325 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3326 		break;
3327 	case IXGBE_LINKS_SPEED_1G_82599:
3328 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3329 		break;
3330 	case IXGBE_LINKS_SPEED_100_82599:
3331 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3332 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3333 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3334 		else
3335 			*speed = IXGBE_LINK_SPEED_100_FULL;
3336 		break;
3337 	default:
3338 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3339 	}
3340 
3341 	return 0;
3342 }
3343 
3344 /**
3345  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3346  *  the EEPROM
3347  *  @hw: pointer to hardware structure
3348  *  @wwnn_prefix: the alternative WWNN prefix
3349  *  @wwpn_prefix: the alternative WWPN prefix
3350  *
3351  *  This function will read the EEPROM from the alternative SAN MAC address
3352  *  block to check the support for the alternative WWNN/WWPN prefix support.
3353  **/
3354 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3355 					u16 *wwpn_prefix)
3356 {
3357 	u16 offset, caps;
3358 	u16 alt_san_mac_blk_offset;
3359 
3360 	/* clear output first */
3361 	*wwnn_prefix = 0xFFFF;
3362 	*wwpn_prefix = 0xFFFF;
3363 
3364 	/* check if alternative SAN MAC is supported */
3365 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3366 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3367 		goto wwn_prefix_err;
3368 
3369 	if ((alt_san_mac_blk_offset == 0) ||
3370 	    (alt_san_mac_blk_offset == 0xFFFF))
3371 		return 0;
3372 
3373 	/* check capability in alternative san mac address block */
3374 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3375 	if (hw->eeprom.ops.read(hw, offset, &caps))
3376 		goto wwn_prefix_err;
3377 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3378 		return 0;
3379 
3380 	/* get the corresponding prefix for WWNN/WWPN */
3381 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3382 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3383 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3384 
3385 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3386 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3387 		goto wwn_prefix_err;
3388 
3389 	return 0;
3390 
3391 wwn_prefix_err:
3392 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3393 	return 0;
3394 }
3395 
3396 /**
3397  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3398  *  @hw: pointer to hardware structure
3399  *  @enable: enable or disable switch for MAC anti-spoofing
3400  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3401  *
3402  **/
3403 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3404 {
3405 	int vf_target_reg = vf >> 3;
3406 	int vf_target_shift = vf % 8;
3407 	u32 pfvfspoof;
3408 
3409 	if (hw->mac.type == ixgbe_mac_82598EB)
3410 		return;
3411 
3412 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3413 	if (enable)
3414 		pfvfspoof |= BIT(vf_target_shift);
3415 	else
3416 		pfvfspoof &= ~BIT(vf_target_shift);
3417 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3418 }
3419 
3420 /**
3421  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3422  *  @hw: pointer to hardware structure
3423  *  @enable: enable or disable switch for VLAN anti-spoofing
3424  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3425  *
3426  **/
3427 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3428 {
3429 	int vf_target_reg = vf >> 3;
3430 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3431 	u32 pfvfspoof;
3432 
3433 	if (hw->mac.type == ixgbe_mac_82598EB)
3434 		return;
3435 
3436 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3437 	if (enable)
3438 		pfvfspoof |= BIT(vf_target_shift);
3439 	else
3440 		pfvfspoof &= ~BIT(vf_target_shift);
3441 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3442 }
3443 
3444 /**
3445  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3446  *  @hw: pointer to hardware structure
3447  *  @device_caps: the EEPROM word with the extra device capabilities
3448  *
3449  *  This function will read the EEPROM location for the device capabilities,
3450  *  and return the word through device_caps.
3451  **/
3452 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3453 {
3454 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3455 
3456 	return 0;
3457 }
3458 
3459 /**
3460  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3461  * @hw: pointer to hardware structure
3462  * @num_pb: number of packet buffers to allocate
3463  * @headroom: reserve n KB of headroom
3464  * @strategy: packet buffer allocation strategy
3465  **/
3466 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3467 			     int num_pb,
3468 			     u32 headroom,
3469 			     int strategy)
3470 {
3471 	u32 pbsize = hw->mac.rx_pb_size;
3472 	int i = 0;
3473 	u32 rxpktsize, txpktsize, txpbthresh;
3474 
3475 	/* Reserve headroom */
3476 	pbsize -= headroom;
3477 
3478 	if (!num_pb)
3479 		num_pb = 1;
3480 
3481 	/* Divide remaining packet buffer space amongst the number
3482 	 * of packet buffers requested using supplied strategy.
3483 	 */
3484 	switch (strategy) {
3485 	case (PBA_STRATEGY_WEIGHTED):
3486 		/* pba_80_48 strategy weight first half of packet buffer with
3487 		 * 5/8 of the packet buffer space.
3488 		 */
3489 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3490 		pbsize -= rxpktsize * (num_pb / 2);
3491 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3492 		for (; i < (num_pb / 2); i++)
3493 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3494 		/* Fall through to configure remaining packet buffers */
3495 	case (PBA_STRATEGY_EQUAL):
3496 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3497 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3498 		for (; i < num_pb; i++)
3499 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3500 		break;
3501 	default:
3502 		break;
3503 	}
3504 
3505 	/*
3506 	 * Setup Tx packet buffer and threshold equally for all TCs
3507 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3508 	 * 10 since the largest packet we support is just over 9K.
3509 	 */
3510 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3511 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3512 	for (i = 0; i < num_pb; i++) {
3513 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3514 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3515 	}
3516 
3517 	/* Clear unused TCs, if any, to zero buffer size*/
3518 	for (; i < IXGBE_MAX_PB; i++) {
3519 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3520 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3521 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3522 	}
3523 }
3524 
3525 /**
3526  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3527  *  @buffer: pointer to EEPROM
3528  *  @length: size of EEPROM to calculate a checksum for
3529  *
3530  *  Calculates the checksum for some buffer on a specified length.  The
3531  *  checksum calculated is returned.
3532  **/
3533 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3534 {
3535 	u32 i;
3536 	u8 sum = 0;
3537 
3538 	if (!buffer)
3539 		return 0;
3540 
3541 	for (i = 0; i < length; i++)
3542 		sum += buffer[i];
3543 
3544 	return (u8) (0 - sum);
3545 }
3546 
3547 /**
3548  *  ixgbe_host_interface_command - Issue command to manageability block
3549  *  @hw: pointer to the HW structure
3550  *  @buffer: contains the command to write and where the return status will
3551  *           be placed
3552  *  @length: length of buffer, must be multiple of 4 bytes
3553  *  @timeout: time in ms to wait for command completion
3554  *  @return_data: read and return data from the buffer (true) or not (false)
3555  *  Needed because FW structures are big endian and decoding of
3556  *  these fields can be 8 bit or 16 bit based on command. Decoding
3557  *  is not easily understood without making a table of commands.
3558  *  So we will leave this up to the caller to read back the data
3559  *  in these cases.
3560  *
3561  *  Communicates with the manageability block.  On success return 0
3562  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3563  **/
3564 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3565 				 u32 length, u32 timeout,
3566 				 bool return_data)
3567 {
3568 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3569 	u32 hicr, i, bi, fwsts;
3570 	u16 buf_len, dword_len;
3571 	union {
3572 		struct ixgbe_hic_hdr hdr;
3573 		u32 u32arr[1];
3574 	} *bp = buffer;
3575 	s32 status;
3576 
3577 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3578 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3579 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3580 	}
3581 	/* Take management host interface semaphore */
3582 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3583 	if (status)
3584 		return status;
3585 
3586 	/* Set bit 9 of FWSTS clearing FW reset indication */
3587 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3588 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3589 
3590 	/* Check that the host interface is enabled. */
3591 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3592 	if (!(hicr & IXGBE_HICR_EN)) {
3593 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3594 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3595 		goto rel_out;
3596 	}
3597 
3598 	/* Calculate length in DWORDs. We must be DWORD aligned */
3599 	if (length % sizeof(u32)) {
3600 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3601 		status = IXGBE_ERR_INVALID_ARGUMENT;
3602 		goto rel_out;
3603 	}
3604 
3605 	dword_len = length >> 2;
3606 
3607 	/* The device driver writes the relevant command block
3608 	 * into the ram area.
3609 	 */
3610 	for (i = 0; i < dword_len; i++)
3611 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3612 				      i, cpu_to_le32(bp->u32arr[i]));
3613 
3614 	/* Setting this bit tells the ARC that a new command is pending. */
3615 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3616 
3617 	for (i = 0; i < timeout; i++) {
3618 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3619 		if (!(hicr & IXGBE_HICR_C))
3620 			break;
3621 		usleep_range(1000, 2000);
3622 	}
3623 
3624 	/* Check command successful completion. */
3625 	if ((timeout && i == timeout) ||
3626 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
3627 		hw_dbg(hw, "Command has failed with no status valid.\n");
3628 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3629 		goto rel_out;
3630 	}
3631 
3632 	if (!return_data)
3633 		goto rel_out;
3634 
3635 	/* Calculate length in DWORDs */
3636 	dword_len = hdr_size >> 2;
3637 
3638 	/* first pull in the header so we know the buffer length */
3639 	for (bi = 0; bi < dword_len; bi++) {
3640 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3641 		le32_to_cpus(&bp->u32arr[bi]);
3642 	}
3643 
3644 	/* If there is any thing in data position pull it in */
3645 	buf_len = bp->hdr.buf_len;
3646 	if (!buf_len)
3647 		goto rel_out;
3648 
3649 	if (length < round_up(buf_len, 4) + hdr_size) {
3650 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3651 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3652 		goto rel_out;
3653 	}
3654 
3655 	/* Calculate length in DWORDs, add 3 for odd lengths */
3656 	dword_len = (buf_len + 3) >> 2;
3657 
3658 	/* Pull in the rest of the buffer (bi is where we left off) */
3659 	for (; bi <= dword_len; bi++) {
3660 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3661 		le32_to_cpus(&bp->u32arr[bi]);
3662 	}
3663 
3664 rel_out:
3665 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3666 
3667 	return status;
3668 }
3669 
3670 /**
3671  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3672  *  @hw: pointer to the HW structure
3673  *  @maj: driver version major number
3674  *  @min: driver version minor number
3675  *  @build: driver version build number
3676  *  @sub: driver version sub build number
3677  *
3678  *  Sends driver version number to firmware through the manageability
3679  *  block.  On success return 0
3680  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3681  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3682  **/
3683 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3684 				 u8 build, u8 sub)
3685 {
3686 	struct ixgbe_hic_drv_info fw_cmd;
3687 	int i;
3688 	s32 ret_val;
3689 
3690 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3691 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3692 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3693 	fw_cmd.port_num = hw->bus.func;
3694 	fw_cmd.ver_maj = maj;
3695 	fw_cmd.ver_min = min;
3696 	fw_cmd.ver_build = build;
3697 	fw_cmd.ver_sub = sub;
3698 	fw_cmd.hdr.checksum = 0;
3699 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3700 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3701 	fw_cmd.pad = 0;
3702 	fw_cmd.pad2 = 0;
3703 
3704 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3705 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3706 						       sizeof(fw_cmd),
3707 						       IXGBE_HI_COMMAND_TIMEOUT,
3708 						       true);
3709 		if (ret_val != 0)
3710 			continue;
3711 
3712 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3713 		    FW_CEM_RESP_STATUS_SUCCESS)
3714 			ret_val = 0;
3715 		else
3716 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3717 
3718 		break;
3719 	}
3720 
3721 	return ret_val;
3722 }
3723 
3724 /**
3725  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3726  * @hw: pointer to the hardware structure
3727  *
3728  * The 82599 and x540 MACs can experience issues if TX work is still pending
3729  * when a reset occurs.  This function prevents this by flushing the PCIe
3730  * buffers on the system.
3731  **/
3732 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3733 {
3734 	u32 gcr_ext, hlreg0, i, poll;
3735 	u16 value;
3736 
3737 	/*
3738 	 * If double reset is not requested then all transactions should
3739 	 * already be clear and as such there is no work to do
3740 	 */
3741 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3742 		return;
3743 
3744 	/*
3745 	 * Set loopback enable to prevent any transmits from being sent
3746 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3747 	 * has already been cleared.
3748 	 */
3749 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3750 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3751 
3752 	/* wait for a last completion before clearing buffers */
3753 	IXGBE_WRITE_FLUSH(hw);
3754 	usleep_range(3000, 6000);
3755 
3756 	/* Before proceeding, make sure that the PCIe block does not have
3757 	 * transactions pending.
3758 	 */
3759 	poll = ixgbe_pcie_timeout_poll(hw);
3760 	for (i = 0; i < poll; i++) {
3761 		usleep_range(100, 200);
3762 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3763 		if (ixgbe_removed(hw->hw_addr))
3764 			break;
3765 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3766 			break;
3767 	}
3768 
3769 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3770 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3771 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3772 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3773 
3774 	/* Flush all writes and allow 20usec for all transactions to clear */
3775 	IXGBE_WRITE_FLUSH(hw);
3776 	udelay(20);
3777 
3778 	/* restore previous register values */
3779 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3780 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3781 }
3782 
3783 static const u8 ixgbe_emc_temp_data[4] = {
3784 	IXGBE_EMC_INTERNAL_DATA,
3785 	IXGBE_EMC_DIODE1_DATA,
3786 	IXGBE_EMC_DIODE2_DATA,
3787 	IXGBE_EMC_DIODE3_DATA
3788 };
3789 static const u8 ixgbe_emc_therm_limit[4] = {
3790 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3791 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3792 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3793 	IXGBE_EMC_DIODE3_THERM_LIMIT
3794 };
3795 
3796 /**
3797  *  ixgbe_get_ets_data - Extracts the ETS bit data
3798  *  @hw: pointer to hardware structure
3799  *  @ets_cfg: extected ETS data
3800  *  @ets_offset: offset of ETS data
3801  *
3802  *  Returns error code.
3803  **/
3804 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3805 			      u16 *ets_offset)
3806 {
3807 	s32 status;
3808 
3809 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3810 	if (status)
3811 		return status;
3812 
3813 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3814 		return IXGBE_NOT_IMPLEMENTED;
3815 
3816 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3817 	if (status)
3818 		return status;
3819 
3820 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3821 		return IXGBE_NOT_IMPLEMENTED;
3822 
3823 	return 0;
3824 }
3825 
3826 /**
3827  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3828  *  @hw: pointer to hardware structure
3829  *
3830  *  Returns the thermal sensor data structure
3831  **/
3832 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3833 {
3834 	s32 status;
3835 	u16 ets_offset;
3836 	u16 ets_cfg;
3837 	u16 ets_sensor;
3838 	u8  num_sensors;
3839 	u8  i;
3840 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3841 
3842 	/* Only support thermal sensors attached to physical port 0 */
3843 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3844 		return IXGBE_NOT_IMPLEMENTED;
3845 
3846 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3847 	if (status)
3848 		return status;
3849 
3850 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3851 	if (num_sensors > IXGBE_MAX_SENSORS)
3852 		num_sensors = IXGBE_MAX_SENSORS;
3853 
3854 	for (i = 0; i < num_sensors; i++) {
3855 		u8  sensor_index;
3856 		u8  sensor_location;
3857 
3858 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3859 					     &ets_sensor);
3860 		if (status)
3861 			return status;
3862 
3863 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3864 				IXGBE_ETS_DATA_INDEX_SHIFT);
3865 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3866 				   IXGBE_ETS_DATA_LOC_SHIFT);
3867 
3868 		if (sensor_location != 0) {
3869 			status = hw->phy.ops.read_i2c_byte(hw,
3870 					ixgbe_emc_temp_data[sensor_index],
3871 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3872 					&data->sensor[i].temp);
3873 			if (status)
3874 				return status;
3875 		}
3876 	}
3877 
3878 	return 0;
3879 }
3880 
3881 /**
3882  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3883  * @hw: pointer to hardware structure
3884  *
3885  * Inits the thermal sensor thresholds according to the NVM map
3886  * and save off the threshold and location values into mac.thermal_sensor_data
3887  **/
3888 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3889 {
3890 	s32 status;
3891 	u16 ets_offset;
3892 	u16 ets_cfg;
3893 	u16 ets_sensor;
3894 	u8  low_thresh_delta;
3895 	u8  num_sensors;
3896 	u8  therm_limit;
3897 	u8  i;
3898 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3899 
3900 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3901 
3902 	/* Only support thermal sensors attached to physical port 0 */
3903 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3904 		return IXGBE_NOT_IMPLEMENTED;
3905 
3906 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3907 	if (status)
3908 		return status;
3909 
3910 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3911 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3912 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3913 	if (num_sensors > IXGBE_MAX_SENSORS)
3914 		num_sensors = IXGBE_MAX_SENSORS;
3915 
3916 	for (i = 0; i < num_sensors; i++) {
3917 		u8  sensor_index;
3918 		u8  sensor_location;
3919 
3920 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3921 			hw_err(hw, "eeprom read at offset %d failed\n",
3922 			       ets_offset + 1 + i);
3923 			continue;
3924 		}
3925 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3926 				IXGBE_ETS_DATA_INDEX_SHIFT);
3927 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3928 				   IXGBE_ETS_DATA_LOC_SHIFT);
3929 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3930 
3931 		hw->phy.ops.write_i2c_byte(hw,
3932 			ixgbe_emc_therm_limit[sensor_index],
3933 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3934 
3935 		if (sensor_location == 0)
3936 			continue;
3937 
3938 		data->sensor[i].location = sensor_location;
3939 		data->sensor[i].caution_thresh = therm_limit;
3940 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3941 	}
3942 
3943 	return 0;
3944 }
3945 
3946 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3947 {
3948 	u32 rxctrl;
3949 
3950 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3951 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
3952 		if (hw->mac.type != ixgbe_mac_82598EB) {
3953 			u32 pfdtxgswc;
3954 
3955 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3956 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3957 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3958 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3959 				hw->mac.set_lben = true;
3960 			} else {
3961 				hw->mac.set_lben = false;
3962 			}
3963 		}
3964 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
3965 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3966 	}
3967 }
3968 
3969 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3970 {
3971 	u32 rxctrl;
3972 
3973 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3974 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3975 
3976 	if (hw->mac.type != ixgbe_mac_82598EB) {
3977 		if (hw->mac.set_lben) {
3978 			u32 pfdtxgswc;
3979 
3980 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3981 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3982 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3983 			hw->mac.set_lben = false;
3984 		}
3985 	}
3986 }
3987 
3988 /** ixgbe_mng_present - returns true when management capability is present
3989  * @hw: pointer to hardware structure
3990  **/
3991 bool ixgbe_mng_present(struct ixgbe_hw *hw)
3992 {
3993 	u32 fwsm;
3994 
3995 	if (hw->mac.type < ixgbe_mac_82599EB)
3996 		return false;
3997 
3998 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3999 	fwsm &= IXGBE_FWSM_MODE_MASK;
4000 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
4001 }
4002 
4003 /**
4004  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4005  *  @hw: pointer to hardware structure
4006  *  @speed: new link speed
4007  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4008  *
4009  *  Set the link speed in the MAC and/or PHY register and restarts link.
4010  */
4011 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4012 					  ixgbe_link_speed speed,
4013 					  bool autoneg_wait_to_complete)
4014 {
4015 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4016 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4017 	s32 status = 0;
4018 	u32 speedcnt = 0;
4019 	u32 i = 0;
4020 	bool autoneg, link_up = false;
4021 
4022 	/* Mask off requested but non-supported speeds */
4023 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4024 	if (status)
4025 		return status;
4026 
4027 	speed &= link_speed;
4028 
4029 	/* Try each speed one by one, highest priority first.  We do this in
4030 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4031 	 */
4032 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4033 		speedcnt++;
4034 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4035 
4036 		/* If we already have link at this speed, just jump out */
4037 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4038 						false);
4039 		if (status)
4040 			return status;
4041 
4042 		if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
4043 			goto out;
4044 
4045 		/* Set the module link speed */
4046 		switch (hw->phy.media_type) {
4047 		case ixgbe_media_type_fiber:
4048 			hw->mac.ops.set_rate_select_speed(hw,
4049 						    IXGBE_LINK_SPEED_10GB_FULL);
4050 			break;
4051 		case ixgbe_media_type_fiber_qsfp:
4052 			/* QSFP module automatically detects MAC link speed */
4053 			break;
4054 		default:
4055 			hw_dbg(hw, "Unexpected media type\n");
4056 			break;
4057 		}
4058 
4059 		/* Allow module to change analog characteristics (1G->10G) */
4060 		msleep(40);
4061 
4062 		status = hw->mac.ops.setup_mac_link(hw,
4063 						    IXGBE_LINK_SPEED_10GB_FULL,
4064 						    autoneg_wait_to_complete);
4065 		if (status)
4066 			return status;
4067 
4068 		/* Flap the Tx laser if it has not already been done */
4069 		if (hw->mac.ops.flap_tx_laser)
4070 			hw->mac.ops.flap_tx_laser(hw);
4071 
4072 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4073 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4074 		 * attempted.  82599 uses the same timing for 10g SFI.
4075 		 */
4076 		for (i = 0; i < 5; i++) {
4077 			/* Wait for the link partner to also set speed */
4078 			msleep(100);
4079 
4080 			/* If we have link, just jump out */
4081 			status = hw->mac.ops.check_link(hw, &link_speed,
4082 							&link_up, false);
4083 			if (status)
4084 				return status;
4085 
4086 			if (link_up)
4087 				goto out;
4088 		}
4089 	}
4090 
4091 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4092 		speedcnt++;
4093 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4094 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4095 
4096 		/* If we already have link at this speed, just jump out */
4097 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4098 						false);
4099 		if (status)
4100 			return status;
4101 
4102 		if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4103 			goto out;
4104 
4105 		/* Set the module link speed */
4106 		switch (hw->phy.media_type) {
4107 		case ixgbe_media_type_fiber:
4108 			hw->mac.ops.set_rate_select_speed(hw,
4109 						     IXGBE_LINK_SPEED_1GB_FULL);
4110 			break;
4111 		case ixgbe_media_type_fiber_qsfp:
4112 			/* QSFP module automatically detects link speed */
4113 			break;
4114 		default:
4115 			hw_dbg(hw, "Unexpected media type\n");
4116 			break;
4117 		}
4118 
4119 		/* Allow module to change analog characteristics (10G->1G) */
4120 		msleep(40);
4121 
4122 		status = hw->mac.ops.setup_mac_link(hw,
4123 						    IXGBE_LINK_SPEED_1GB_FULL,
4124 						    autoneg_wait_to_complete);
4125 		if (status)
4126 			return status;
4127 
4128 		/* Flap the Tx laser if it has not already been done */
4129 		if (hw->mac.ops.flap_tx_laser)
4130 			hw->mac.ops.flap_tx_laser(hw);
4131 
4132 		/* Wait for the link partner to also set speed */
4133 		msleep(100);
4134 
4135 		/* If we have link, just jump out */
4136 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4137 						false);
4138 		if (status)
4139 			return status;
4140 
4141 		if (link_up)
4142 			goto out;
4143 	}
4144 
4145 	/* We didn't get link.  Configure back to the highest speed we tried,
4146 	 * (if there was more than one).  We call ourselves back with just the
4147 	 * single highest speed that the user requested.
4148 	 */
4149 	if (speedcnt > 1)
4150 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4151 						      highest_link_speed,
4152 						      autoneg_wait_to_complete);
4153 
4154 out:
4155 	/* Set autoneg_advertised value based on input link speed */
4156 	hw->phy.autoneg_advertised = 0;
4157 
4158 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4159 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4160 
4161 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4162 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4163 
4164 	return status;
4165 }
4166 
4167 /**
4168  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4169  *  @hw: pointer to hardware structure
4170  *  @speed: link speed to set
4171  *
4172  *  Set module link speed via the soft rate select.
4173  */
4174 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4175 				      ixgbe_link_speed speed)
4176 {
4177 	s32 status;
4178 	u8 rs, eeprom_data;
4179 
4180 	switch (speed) {
4181 	case IXGBE_LINK_SPEED_10GB_FULL:
4182 		/* one bit mask same as setting on */
4183 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4184 		break;
4185 	case IXGBE_LINK_SPEED_1GB_FULL:
4186 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4187 		break;
4188 	default:
4189 		hw_dbg(hw, "Invalid fixed module speed\n");
4190 		return;
4191 	}
4192 
4193 	/* Set RS0 */
4194 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4195 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4196 					   &eeprom_data);
4197 	if (status) {
4198 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4199 		return;
4200 	}
4201 
4202 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4203 
4204 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4205 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4206 					    eeprom_data);
4207 	if (status) {
4208 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4209 		return;
4210 	}
4211 }
4212