xref: /openbmc/linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2016 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 	IXGBE_MVALS_INIT(8259X)
63 };
64 
65 /**
66  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67  *  control
68  *  @hw: pointer to hardware structure
69  *
70  *  There are several phys that do not support autoneg flow control. This
71  *  function check the device id to see if the associated phy supports
72  *  autoneg flow control.
73  **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 	bool supported = false;
77 	ixgbe_link_speed speed;
78 	bool link_up;
79 
80 	switch (hw->phy.media_type) {
81 	case ixgbe_media_type_fiber:
82 		/* flow control autoneg black list */
83 		switch (hw->device_id) {
84 		case IXGBE_DEV_ID_X550EM_A_SFP:
85 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
86 			supported = false;
87 			break;
88 		default:
89 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
90 			/* if link is down, assume supported */
91 			if (link_up)
92 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
93 				true : false;
94 			else
95 				supported = true;
96 		}
97 
98 		break;
99 	case ixgbe_media_type_backplane:
100 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
101 			supported = false;
102 		else
103 			supported = true;
104 		break;
105 	case ixgbe_media_type_copper:
106 		/* only some copper devices support flow control autoneg */
107 		switch (hw->device_id) {
108 		case IXGBE_DEV_ID_82599_T3_LOM:
109 		case IXGBE_DEV_ID_X540T:
110 		case IXGBE_DEV_ID_X540T1:
111 		case IXGBE_DEV_ID_X550T:
112 		case IXGBE_DEV_ID_X550T1:
113 		case IXGBE_DEV_ID_X550EM_X_10G_T:
114 		case IXGBE_DEV_ID_X550EM_A_10G_T:
115 		case IXGBE_DEV_ID_X550EM_A_1G_T:
116 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
117 			supported = true;
118 			break;
119 		default:
120 			break;
121 		}
122 	default:
123 		break;
124 	}
125 
126 	if (!supported)
127 		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
128 		       hw->device_id);
129 
130 	return supported;
131 }
132 
133 /**
134  *  ixgbe_setup_fc_generic - Set up flow control
135  *  @hw: pointer to hardware structure
136  *
137  *  Called at init time to set up flow control.
138  **/
139 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
140 {
141 	s32 ret_val = 0;
142 	u32 reg = 0, reg_bp = 0;
143 	u16 reg_cu = 0;
144 	bool locked = false;
145 
146 	/*
147 	 * Validate the requested mode.  Strict IEEE mode does not allow
148 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
149 	 */
150 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
151 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
152 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
153 	}
154 
155 	/*
156 	 * 10gig parts do not have a word in the EEPROM to determine the
157 	 * default flow control setting, so we explicitly set it to full.
158 	 */
159 	if (hw->fc.requested_mode == ixgbe_fc_default)
160 		hw->fc.requested_mode = ixgbe_fc_full;
161 
162 	/*
163 	 * Set up the 1G and 10G flow control advertisement registers so the
164 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
165 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
166 	 */
167 	switch (hw->phy.media_type) {
168 	case ixgbe_media_type_backplane:
169 		/* some MAC's need RMW protection on AUTOC */
170 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
171 		if (ret_val)
172 			return ret_val;
173 
174 		/* fall through - only backplane uses autoc */
175 	case ixgbe_media_type_fiber:
176 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
177 
178 		break;
179 	case ixgbe_media_type_copper:
180 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
181 					MDIO_MMD_AN, &reg_cu);
182 		break;
183 	default:
184 		break;
185 	}
186 
187 	/*
188 	 * The possible values of fc.requested_mode are:
189 	 * 0: Flow control is completely disabled
190 	 * 1: Rx flow control is enabled (we can receive pause frames,
191 	 *    but not send pause frames).
192 	 * 2: Tx flow control is enabled (we can send pause frames but
193 	 *    we do not support receiving pause frames).
194 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
195 	 * other: Invalid.
196 	 */
197 	switch (hw->fc.requested_mode) {
198 	case ixgbe_fc_none:
199 		/* Flow control completely disabled by software override. */
200 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
201 		if (hw->phy.media_type == ixgbe_media_type_backplane)
202 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
203 				    IXGBE_AUTOC_ASM_PAUSE);
204 		else if (hw->phy.media_type == ixgbe_media_type_copper)
205 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
206 		break;
207 	case ixgbe_fc_tx_pause:
208 		/*
209 		 * Tx Flow control is enabled, and Rx Flow control is
210 		 * disabled by software override.
211 		 */
212 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
213 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
214 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
215 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
216 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
217 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
218 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
219 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
220 		}
221 		break;
222 	case ixgbe_fc_rx_pause:
223 		/*
224 		 * Rx Flow control is enabled and Tx Flow control is
225 		 * disabled by software override. Since there really
226 		 * isn't a way to advertise that we are capable of RX
227 		 * Pause ONLY, we will advertise that we support both
228 		 * symmetric and asymmetric Rx PAUSE, as such we fall
229 		 * through to the fc_full statement.  Later, we will
230 		 * disable the adapter's ability to send PAUSE frames.
231 		 */
232 	case ixgbe_fc_full:
233 		/* Flow control (both Rx and Tx) is enabled by SW override. */
234 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
235 		if (hw->phy.media_type == ixgbe_media_type_backplane)
236 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
237 				  IXGBE_AUTOC_ASM_PAUSE;
238 		else if (hw->phy.media_type == ixgbe_media_type_copper)
239 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
240 		break;
241 	default:
242 		hw_dbg(hw, "Flow control param set incorrectly\n");
243 		return IXGBE_ERR_CONFIG;
244 	}
245 
246 	if (hw->mac.type != ixgbe_mac_X540) {
247 		/*
248 		 * Enable auto-negotiation between the MAC & PHY;
249 		 * the MAC will advertise clause 37 flow control.
250 		 */
251 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
252 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
253 
254 		/* Disable AN timeout */
255 		if (hw->fc.strict_ieee)
256 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
257 
258 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
259 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
260 	}
261 
262 	/*
263 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
264 	 * and copper. There is no need to set the PCS1GCTL register.
265 	 *
266 	 */
267 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
268 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
269 		 * LESM is on, likewise reset_pipeline requries the lock as
270 		 * it also writes AUTOC.
271 		 */
272 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
273 		if (ret_val)
274 			return ret_val;
275 
276 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
277 		   ixgbe_device_supports_autoneg_fc(hw)) {
278 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
279 				      MDIO_MMD_AN, reg_cu);
280 	}
281 
282 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
283 	return ret_val;
284 }
285 
286 /**
287  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
288  *  @hw: pointer to hardware structure
289  *
290  *  Starts the hardware by filling the bus info structure and media type, clears
291  *  all on chip counters, initializes receive address registers, multicast
292  *  table, VLAN filter table, calls routine to set up link and flow control
293  *  settings, and leaves transmit and receive units disabled and uninitialized
294  **/
295 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
296 {
297 	s32 ret_val;
298 	u32 ctrl_ext;
299 	u16 device_caps;
300 
301 	/* Set the media type */
302 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
303 
304 	/* Identify the PHY */
305 	hw->phy.ops.identify(hw);
306 
307 	/* Clear the VLAN filter table */
308 	hw->mac.ops.clear_vfta(hw);
309 
310 	/* Clear statistics registers */
311 	hw->mac.ops.clear_hw_cntrs(hw);
312 
313 	/* Set No Snoop Disable */
314 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
315 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
316 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
317 	IXGBE_WRITE_FLUSH(hw);
318 
319 	/* Setup flow control if method for doing so */
320 	if (hw->mac.ops.setup_fc) {
321 		ret_val = hw->mac.ops.setup_fc(hw);
322 		if (ret_val)
323 			return ret_val;
324 	}
325 
326 	/* Cashe bit indicating need for crosstalk fix */
327 	switch (hw->mac.type) {
328 	case ixgbe_mac_82599EB:
329 	case ixgbe_mac_X550EM_x:
330 	case ixgbe_mac_x550em_a:
331 		hw->mac.ops.get_device_caps(hw, &device_caps);
332 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
333 			hw->need_crosstalk_fix = false;
334 		else
335 			hw->need_crosstalk_fix = true;
336 		break;
337 	default:
338 		hw->need_crosstalk_fix = false;
339 		break;
340 	}
341 
342 	/* Clear adapter stopped flag */
343 	hw->adapter_stopped = false;
344 
345 	return 0;
346 }
347 
348 /**
349  *  ixgbe_start_hw_gen2 - Init sequence for common device family
350  *  @hw: pointer to hw structure
351  *
352  * Performs the init sequence common to the second generation
353  * of 10 GbE devices.
354  * Devices in the second generation:
355  *     82599
356  *     X540
357  **/
358 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
359 {
360 	u32 i;
361 
362 	/* Clear the rate limiters */
363 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
364 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
365 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
366 	}
367 	IXGBE_WRITE_FLUSH(hw);
368 
369 	return 0;
370 }
371 
372 /**
373  *  ixgbe_init_hw_generic - Generic hardware initialization
374  *  @hw: pointer to hardware structure
375  *
376  *  Initialize the hardware by resetting the hardware, filling the bus info
377  *  structure and media type, clears all on chip counters, initializes receive
378  *  address registers, multicast table, VLAN filter table, calls routine to set
379  *  up link and flow control settings, and leaves transmit and receive units
380  *  disabled and uninitialized
381  **/
382 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
383 {
384 	s32 status;
385 
386 	/* Reset the hardware */
387 	status = hw->mac.ops.reset_hw(hw);
388 
389 	if (status == 0) {
390 		/* Start the HW */
391 		status = hw->mac.ops.start_hw(hw);
392 	}
393 
394 	/* Initialize the LED link active for LED blink support */
395 	if (hw->mac.ops.init_led_link_act)
396 		hw->mac.ops.init_led_link_act(hw);
397 
398 	return status;
399 }
400 
401 /**
402  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
403  *  @hw: pointer to hardware structure
404  *
405  *  Clears all hardware statistics counters by reading them from the hardware
406  *  Statistics counters are clear on read.
407  **/
408 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
409 {
410 	u16 i = 0;
411 
412 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
413 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
414 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
415 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
416 	for (i = 0; i < 8; i++)
417 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
418 
419 	IXGBE_READ_REG(hw, IXGBE_MLFC);
420 	IXGBE_READ_REG(hw, IXGBE_MRFC);
421 	IXGBE_READ_REG(hw, IXGBE_RLEC);
422 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
423 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
424 	if (hw->mac.type >= ixgbe_mac_82599EB) {
425 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
426 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
427 	} else {
428 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
429 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
430 	}
431 
432 	for (i = 0; i < 8; i++) {
433 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
434 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
435 		if (hw->mac.type >= ixgbe_mac_82599EB) {
436 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
437 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
438 		} else {
439 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
440 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
441 		}
442 	}
443 	if (hw->mac.type >= ixgbe_mac_82599EB)
444 		for (i = 0; i < 8; i++)
445 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
446 	IXGBE_READ_REG(hw, IXGBE_PRC64);
447 	IXGBE_READ_REG(hw, IXGBE_PRC127);
448 	IXGBE_READ_REG(hw, IXGBE_PRC255);
449 	IXGBE_READ_REG(hw, IXGBE_PRC511);
450 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
451 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
452 	IXGBE_READ_REG(hw, IXGBE_GPRC);
453 	IXGBE_READ_REG(hw, IXGBE_BPRC);
454 	IXGBE_READ_REG(hw, IXGBE_MPRC);
455 	IXGBE_READ_REG(hw, IXGBE_GPTC);
456 	IXGBE_READ_REG(hw, IXGBE_GORCL);
457 	IXGBE_READ_REG(hw, IXGBE_GORCH);
458 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
459 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
460 	if (hw->mac.type == ixgbe_mac_82598EB)
461 		for (i = 0; i < 8; i++)
462 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
463 	IXGBE_READ_REG(hw, IXGBE_RUC);
464 	IXGBE_READ_REG(hw, IXGBE_RFC);
465 	IXGBE_READ_REG(hw, IXGBE_ROC);
466 	IXGBE_READ_REG(hw, IXGBE_RJC);
467 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
468 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
469 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
470 	IXGBE_READ_REG(hw, IXGBE_TORL);
471 	IXGBE_READ_REG(hw, IXGBE_TORH);
472 	IXGBE_READ_REG(hw, IXGBE_TPR);
473 	IXGBE_READ_REG(hw, IXGBE_TPT);
474 	IXGBE_READ_REG(hw, IXGBE_PTC64);
475 	IXGBE_READ_REG(hw, IXGBE_PTC127);
476 	IXGBE_READ_REG(hw, IXGBE_PTC255);
477 	IXGBE_READ_REG(hw, IXGBE_PTC511);
478 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
479 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
480 	IXGBE_READ_REG(hw, IXGBE_MPTC);
481 	IXGBE_READ_REG(hw, IXGBE_BPTC);
482 	for (i = 0; i < 16; i++) {
483 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
484 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
485 		if (hw->mac.type >= ixgbe_mac_82599EB) {
486 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
487 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
488 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
489 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
490 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
491 		} else {
492 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
493 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
494 		}
495 	}
496 
497 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
498 		if (hw->phy.id == 0)
499 			hw->phy.ops.identify(hw);
500 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
501 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
502 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
503 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
504 	}
505 
506 	return 0;
507 }
508 
509 /**
510  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
511  *  @hw: pointer to hardware structure
512  *  @pba_num: stores the part number string from the EEPROM
513  *  @pba_num_size: part number string buffer length
514  *
515  *  Reads the part number string from the EEPROM.
516  **/
517 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
518 				  u32 pba_num_size)
519 {
520 	s32 ret_val;
521 	u16 data;
522 	u16 pba_ptr;
523 	u16 offset;
524 	u16 length;
525 
526 	if (pba_num == NULL) {
527 		hw_dbg(hw, "PBA string buffer was null\n");
528 		return IXGBE_ERR_INVALID_ARGUMENT;
529 	}
530 
531 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
532 	if (ret_val) {
533 		hw_dbg(hw, "NVM Read Error\n");
534 		return ret_val;
535 	}
536 
537 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
538 	if (ret_val) {
539 		hw_dbg(hw, "NVM Read Error\n");
540 		return ret_val;
541 	}
542 
543 	/*
544 	 * if data is not ptr guard the PBA must be in legacy format which
545 	 * means pba_ptr is actually our second data word for the PBA number
546 	 * and we can decode it into an ascii string
547 	 */
548 	if (data != IXGBE_PBANUM_PTR_GUARD) {
549 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
550 
551 		/* we will need 11 characters to store the PBA */
552 		if (pba_num_size < 11) {
553 			hw_dbg(hw, "PBA string buffer too small\n");
554 			return IXGBE_ERR_NO_SPACE;
555 		}
556 
557 		/* extract hex string from data and pba_ptr */
558 		pba_num[0] = (data >> 12) & 0xF;
559 		pba_num[1] = (data >> 8) & 0xF;
560 		pba_num[2] = (data >> 4) & 0xF;
561 		pba_num[3] = data & 0xF;
562 		pba_num[4] = (pba_ptr >> 12) & 0xF;
563 		pba_num[5] = (pba_ptr >> 8) & 0xF;
564 		pba_num[6] = '-';
565 		pba_num[7] = 0;
566 		pba_num[8] = (pba_ptr >> 4) & 0xF;
567 		pba_num[9] = pba_ptr & 0xF;
568 
569 		/* put a null character on the end of our string */
570 		pba_num[10] = '\0';
571 
572 		/* switch all the data but the '-' to hex char */
573 		for (offset = 0; offset < 10; offset++) {
574 			if (pba_num[offset] < 0xA)
575 				pba_num[offset] += '0';
576 			else if (pba_num[offset] < 0x10)
577 				pba_num[offset] += 'A' - 0xA;
578 		}
579 
580 		return 0;
581 	}
582 
583 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
584 	if (ret_val) {
585 		hw_dbg(hw, "NVM Read Error\n");
586 		return ret_val;
587 	}
588 
589 	if (length == 0xFFFF || length == 0) {
590 		hw_dbg(hw, "NVM PBA number section invalid length\n");
591 		return IXGBE_ERR_PBA_SECTION;
592 	}
593 
594 	/* check if pba_num buffer is big enough */
595 	if (pba_num_size  < (((u32)length * 2) - 1)) {
596 		hw_dbg(hw, "PBA string buffer too small\n");
597 		return IXGBE_ERR_NO_SPACE;
598 	}
599 
600 	/* trim pba length from start of string */
601 	pba_ptr++;
602 	length--;
603 
604 	for (offset = 0; offset < length; offset++) {
605 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
606 		if (ret_val) {
607 			hw_dbg(hw, "NVM Read Error\n");
608 			return ret_val;
609 		}
610 		pba_num[offset * 2] = (u8)(data >> 8);
611 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
612 	}
613 	pba_num[offset * 2] = '\0';
614 
615 	return 0;
616 }
617 
618 /**
619  *  ixgbe_get_mac_addr_generic - Generic get MAC address
620  *  @hw: pointer to hardware structure
621  *  @mac_addr: Adapter MAC address
622  *
623  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
624  *  A reset of the adapter must be performed prior to calling this function
625  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
626  **/
627 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
628 {
629 	u32 rar_high;
630 	u32 rar_low;
631 	u16 i;
632 
633 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
634 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
635 
636 	for (i = 0; i < 4; i++)
637 		mac_addr[i] = (u8)(rar_low >> (i*8));
638 
639 	for (i = 0; i < 2; i++)
640 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
641 
642 	return 0;
643 }
644 
645 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
646 {
647 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
648 	case IXGBE_PCI_LINK_WIDTH_1:
649 		return ixgbe_bus_width_pcie_x1;
650 	case IXGBE_PCI_LINK_WIDTH_2:
651 		return ixgbe_bus_width_pcie_x2;
652 	case IXGBE_PCI_LINK_WIDTH_4:
653 		return ixgbe_bus_width_pcie_x4;
654 	case IXGBE_PCI_LINK_WIDTH_8:
655 		return ixgbe_bus_width_pcie_x8;
656 	default:
657 		return ixgbe_bus_width_unknown;
658 	}
659 }
660 
661 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
662 {
663 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
664 	case IXGBE_PCI_LINK_SPEED_2500:
665 		return ixgbe_bus_speed_2500;
666 	case IXGBE_PCI_LINK_SPEED_5000:
667 		return ixgbe_bus_speed_5000;
668 	case IXGBE_PCI_LINK_SPEED_8000:
669 		return ixgbe_bus_speed_8000;
670 	default:
671 		return ixgbe_bus_speed_unknown;
672 	}
673 }
674 
675 /**
676  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
677  *  @hw: pointer to hardware structure
678  *
679  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
680  **/
681 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
682 {
683 	u16 link_status;
684 
685 	hw->bus.type = ixgbe_bus_type_pci_express;
686 
687 	/* Get the negotiated link width and speed from PCI config space */
688 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
689 
690 	hw->bus.width = ixgbe_convert_bus_width(link_status);
691 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
692 
693 	hw->mac.ops.set_lan_id(hw);
694 
695 	return 0;
696 }
697 
698 /**
699  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
700  *  @hw: pointer to the HW structure
701  *
702  *  Determines the LAN function id by reading memory-mapped registers
703  *  and swaps the port value if requested.
704  **/
705 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
706 {
707 	struct ixgbe_bus_info *bus = &hw->bus;
708 	u16 ee_ctrl_4;
709 	u32 reg;
710 
711 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
712 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
713 	bus->lan_id = bus->func;
714 
715 	/* check for a port swap */
716 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
717 	if (reg & IXGBE_FACTPS_LFS)
718 		bus->func ^= 0x1;
719 
720 	/* Get MAC instance from EEPROM for configuring CS4227 */
721 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
722 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
723 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
724 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
725 	}
726 }
727 
728 /**
729  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
730  *  @hw: pointer to hardware structure
731  *
732  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
733  *  disables transmit and receive units. The adapter_stopped flag is used by
734  *  the shared code and drivers to determine if the adapter is in a stopped
735  *  state and should not touch the hardware.
736  **/
737 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
738 {
739 	u32 reg_val;
740 	u16 i;
741 
742 	/*
743 	 * Set the adapter_stopped flag so other driver functions stop touching
744 	 * the hardware
745 	 */
746 	hw->adapter_stopped = true;
747 
748 	/* Disable the receive unit */
749 	hw->mac.ops.disable_rx(hw);
750 
751 	/* Clear interrupt mask to stop interrupts from being generated */
752 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
753 
754 	/* Clear any pending interrupts, flush previous writes */
755 	IXGBE_READ_REG(hw, IXGBE_EICR);
756 
757 	/* Disable the transmit unit.  Each queue must be disabled. */
758 	for (i = 0; i < hw->mac.max_tx_queues; i++)
759 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
760 
761 	/* Disable the receive unit by stopping each queue */
762 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
763 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
764 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
765 		reg_val |= IXGBE_RXDCTL_SWFLSH;
766 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
767 	}
768 
769 	/* flush all queues disables */
770 	IXGBE_WRITE_FLUSH(hw);
771 	usleep_range(1000, 2000);
772 
773 	/*
774 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
775 	 * access and verify no pending requests
776 	 */
777 	return ixgbe_disable_pcie_master(hw);
778 }
779 
780 /**
781  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
782  *  @hw: pointer to hardware structure
783  *
784  *  Store the index for the link active LED. This will be used to support
785  *  blinking the LED.
786  **/
787 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
788 {
789 	struct ixgbe_mac_info *mac = &hw->mac;
790 	u32 led_reg, led_mode;
791 	u16 i;
792 
793 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
794 
795 	/* Get LED link active from the LEDCTL register */
796 	for (i = 0; i < 4; i++) {
797 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
798 
799 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
800 		    IXGBE_LED_LINK_ACTIVE) {
801 			mac->led_link_act = i;
802 			return 0;
803 		}
804 	}
805 
806 	/* If LEDCTL register does not have the LED link active set, then use
807 	 * known MAC defaults.
808 	 */
809 	switch (hw->mac.type) {
810 	case ixgbe_mac_x550em_a:
811 		mac->led_link_act = 0;
812 		break;
813 	case ixgbe_mac_X550EM_x:
814 		mac->led_link_act = 1;
815 		break;
816 	default:
817 		mac->led_link_act = 2;
818 	}
819 
820 	return 0;
821 }
822 
823 /**
824  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
825  *  @hw: pointer to hardware structure
826  *  @index: led number to turn on
827  **/
828 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
829 {
830 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
831 
832 	if (index > 3)
833 		return IXGBE_ERR_PARAM;
834 
835 	/* To turn on the LED, set mode to ON. */
836 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
837 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
838 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
839 	IXGBE_WRITE_FLUSH(hw);
840 
841 	return 0;
842 }
843 
844 /**
845  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
846  *  @hw: pointer to hardware structure
847  *  @index: led number to turn off
848  **/
849 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
850 {
851 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
852 
853 	if (index > 3)
854 		return IXGBE_ERR_PARAM;
855 
856 	/* To turn off the LED, set mode to OFF. */
857 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
858 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
859 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
860 	IXGBE_WRITE_FLUSH(hw);
861 
862 	return 0;
863 }
864 
865 /**
866  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
867  *  @hw: pointer to hardware structure
868  *
869  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
870  *  ixgbe_hw struct in order to set up EEPROM access.
871  **/
872 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
873 {
874 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
875 	u32 eec;
876 	u16 eeprom_size;
877 
878 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
879 		eeprom->type = ixgbe_eeprom_none;
880 		/* Set default semaphore delay to 10ms which is a well
881 		 * tested value */
882 		eeprom->semaphore_delay = 10;
883 		/* Clear EEPROM page size, it will be initialized as needed */
884 		eeprom->word_page_size = 0;
885 
886 		/*
887 		 * Check for EEPROM present first.
888 		 * If not present leave as none
889 		 */
890 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
891 		if (eec & IXGBE_EEC_PRES) {
892 			eeprom->type = ixgbe_eeprom_spi;
893 
894 			/*
895 			 * SPI EEPROM is assumed here.  This code would need to
896 			 * change if a future EEPROM is not SPI.
897 			 */
898 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
899 					    IXGBE_EEC_SIZE_SHIFT);
900 			eeprom->word_size = BIT(eeprom_size +
901 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
902 		}
903 
904 		if (eec & IXGBE_EEC_ADDR_SIZE)
905 			eeprom->address_bits = 16;
906 		else
907 			eeprom->address_bits = 8;
908 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
909 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
910 	}
911 
912 	return 0;
913 }
914 
915 /**
916  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
917  *  @hw: pointer to hardware structure
918  *  @offset: offset within the EEPROM to write
919  *  @words: number of words
920  *  @data: 16 bit word(s) to write to EEPROM
921  *
922  *  Reads 16 bit word(s) from EEPROM through bit-bang method
923  **/
924 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
925 					       u16 words, u16 *data)
926 {
927 	s32 status;
928 	u16 i, count;
929 
930 	hw->eeprom.ops.init_params(hw);
931 
932 	if (words == 0)
933 		return IXGBE_ERR_INVALID_ARGUMENT;
934 
935 	if (offset + words > hw->eeprom.word_size)
936 		return IXGBE_ERR_EEPROM;
937 
938 	/*
939 	 * The EEPROM page size cannot be queried from the chip. We do lazy
940 	 * initialization. It is worth to do that when we write large buffer.
941 	 */
942 	if ((hw->eeprom.word_page_size == 0) &&
943 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
944 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
945 
946 	/*
947 	 * We cannot hold synchronization semaphores for too long
948 	 * to avoid other entity starvation. However it is more efficient
949 	 * to read in bursts than synchronizing access for each word.
950 	 */
951 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
952 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
953 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
954 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
955 							    count, &data[i]);
956 
957 		if (status != 0)
958 			break;
959 	}
960 
961 	return status;
962 }
963 
964 /**
965  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
966  *  @hw: pointer to hardware structure
967  *  @offset: offset within the EEPROM to be written to
968  *  @words: number of word(s)
969  *  @data: 16 bit word(s) to be written to the EEPROM
970  *
971  *  If ixgbe_eeprom_update_checksum is not called after this function, the
972  *  EEPROM will most likely contain an invalid checksum.
973  **/
974 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
975 					      u16 words, u16 *data)
976 {
977 	s32 status;
978 	u16 word;
979 	u16 page_size;
980 	u16 i;
981 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
982 
983 	/* Prepare the EEPROM for writing  */
984 	status = ixgbe_acquire_eeprom(hw);
985 	if (status)
986 		return status;
987 
988 	if (ixgbe_ready_eeprom(hw) != 0) {
989 		ixgbe_release_eeprom(hw);
990 		return IXGBE_ERR_EEPROM;
991 	}
992 
993 	for (i = 0; i < words; i++) {
994 		ixgbe_standby_eeprom(hw);
995 
996 		/* Send the WRITE ENABLE command (8 bit opcode) */
997 		ixgbe_shift_out_eeprom_bits(hw,
998 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
999 					    IXGBE_EEPROM_OPCODE_BITS);
1000 
1001 		ixgbe_standby_eeprom(hw);
1002 
1003 		/* Some SPI eeproms use the 8th address bit embedded
1004 		 * in the opcode
1005 		 */
1006 		if ((hw->eeprom.address_bits == 8) &&
1007 		    ((offset + i) >= 128))
1008 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1009 
1010 		/* Send the Write command (8-bit opcode + addr) */
1011 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1012 					    IXGBE_EEPROM_OPCODE_BITS);
1013 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1014 					    hw->eeprom.address_bits);
1015 
1016 		page_size = hw->eeprom.word_page_size;
1017 
1018 		/* Send the data in burst via SPI */
1019 		do {
1020 			word = data[i];
1021 			word = (word >> 8) | (word << 8);
1022 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
1023 
1024 			if (page_size == 0)
1025 				break;
1026 
1027 			/* do not wrap around page */
1028 			if (((offset + i) & (page_size - 1)) ==
1029 			    (page_size - 1))
1030 				break;
1031 		} while (++i < words);
1032 
1033 		ixgbe_standby_eeprom(hw);
1034 		usleep_range(10000, 20000);
1035 	}
1036 	/* Done with writing - release the EEPROM */
1037 	ixgbe_release_eeprom(hw);
1038 
1039 	return 0;
1040 }
1041 
1042 /**
1043  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1044  *  @hw: pointer to hardware structure
1045  *  @offset: offset within the EEPROM to be written to
1046  *  @data: 16 bit word to be written to the EEPROM
1047  *
1048  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1049  *  EEPROM will most likely contain an invalid checksum.
1050  **/
1051 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1052 {
1053 	hw->eeprom.ops.init_params(hw);
1054 
1055 	if (offset >= hw->eeprom.word_size)
1056 		return IXGBE_ERR_EEPROM;
1057 
1058 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1059 }
1060 
1061 /**
1062  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1063  *  @hw: pointer to hardware structure
1064  *  @offset: offset within the EEPROM to be read
1065  *  @words: number of word(s)
1066  *  @data: read 16 bit words(s) from EEPROM
1067  *
1068  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1069  **/
1070 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1071 					      u16 words, u16 *data)
1072 {
1073 	s32 status;
1074 	u16 i, count;
1075 
1076 	hw->eeprom.ops.init_params(hw);
1077 
1078 	if (words == 0)
1079 		return IXGBE_ERR_INVALID_ARGUMENT;
1080 
1081 	if (offset + words > hw->eeprom.word_size)
1082 		return IXGBE_ERR_EEPROM;
1083 
1084 	/*
1085 	 * We cannot hold synchronization semaphores for too long
1086 	 * to avoid other entity starvation. However it is more efficient
1087 	 * to read in bursts than synchronizing access for each word.
1088 	 */
1089 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1090 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1091 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1092 
1093 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1094 							   count, &data[i]);
1095 
1096 		if (status)
1097 			return status;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 /**
1104  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1105  *  @hw: pointer to hardware structure
1106  *  @offset: offset within the EEPROM to be read
1107  *  @words: number of word(s)
1108  *  @data: read 16 bit word(s) from EEPROM
1109  *
1110  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1111  **/
1112 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1113 					     u16 words, u16 *data)
1114 {
1115 	s32 status;
1116 	u16 word_in;
1117 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1118 	u16 i;
1119 
1120 	/* Prepare the EEPROM for reading  */
1121 	status = ixgbe_acquire_eeprom(hw);
1122 	if (status)
1123 		return status;
1124 
1125 	if (ixgbe_ready_eeprom(hw) != 0) {
1126 		ixgbe_release_eeprom(hw);
1127 		return IXGBE_ERR_EEPROM;
1128 	}
1129 
1130 	for (i = 0; i < words; i++) {
1131 		ixgbe_standby_eeprom(hw);
1132 		/* Some SPI eeproms use the 8th address bit embedded
1133 		 * in the opcode
1134 		 */
1135 		if ((hw->eeprom.address_bits == 8) &&
1136 		    ((offset + i) >= 128))
1137 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1138 
1139 		/* Send the READ command (opcode + addr) */
1140 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1141 					    IXGBE_EEPROM_OPCODE_BITS);
1142 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1143 					    hw->eeprom.address_bits);
1144 
1145 		/* Read the data. */
1146 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1147 		data[i] = (word_in >> 8) | (word_in << 8);
1148 	}
1149 
1150 	/* End this read operation */
1151 	ixgbe_release_eeprom(hw);
1152 
1153 	return 0;
1154 }
1155 
1156 /**
1157  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1158  *  @hw: pointer to hardware structure
1159  *  @offset: offset within the EEPROM to be read
1160  *  @data: read 16 bit value from EEPROM
1161  *
1162  *  Reads 16 bit value from EEPROM through bit-bang method
1163  **/
1164 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1165 				       u16 *data)
1166 {
1167 	hw->eeprom.ops.init_params(hw);
1168 
1169 	if (offset >= hw->eeprom.word_size)
1170 		return IXGBE_ERR_EEPROM;
1171 
1172 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1173 }
1174 
1175 /**
1176  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1177  *  @hw: pointer to hardware structure
1178  *  @offset: offset of word in the EEPROM to read
1179  *  @words: number of word(s)
1180  *  @data: 16 bit word(s) from the EEPROM
1181  *
1182  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1183  **/
1184 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1185 				   u16 words, u16 *data)
1186 {
1187 	u32 eerd;
1188 	s32 status;
1189 	u32 i;
1190 
1191 	hw->eeprom.ops.init_params(hw);
1192 
1193 	if (words == 0)
1194 		return IXGBE_ERR_INVALID_ARGUMENT;
1195 
1196 	if (offset >= hw->eeprom.word_size)
1197 		return IXGBE_ERR_EEPROM;
1198 
1199 	for (i = 0; i < words; i++) {
1200 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1201 		       IXGBE_EEPROM_RW_REG_START;
1202 
1203 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1204 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1205 
1206 		if (status == 0) {
1207 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1208 				   IXGBE_EEPROM_RW_REG_DATA);
1209 		} else {
1210 			hw_dbg(hw, "Eeprom read timed out\n");
1211 			return status;
1212 		}
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 /**
1219  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1220  *  @hw: pointer to hardware structure
1221  *  @offset: offset within the EEPROM to be used as a scratch pad
1222  *
1223  *  Discover EEPROM page size by writing marching data at given offset.
1224  *  This function is called only when we are writing a new large buffer
1225  *  at given offset so the data would be overwritten anyway.
1226  **/
1227 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1228 						 u16 offset)
1229 {
1230 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1231 	s32 status;
1232 	u16 i;
1233 
1234 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1235 		data[i] = i;
1236 
1237 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1238 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1239 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1240 	hw->eeprom.word_page_size = 0;
1241 	if (status)
1242 		return status;
1243 
1244 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1245 	if (status)
1246 		return status;
1247 
1248 	/*
1249 	 * When writing in burst more than the actual page size
1250 	 * EEPROM address wraps around current page.
1251 	 */
1252 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1253 
1254 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1255 	       hw->eeprom.word_page_size);
1256 	return 0;
1257 }
1258 
1259 /**
1260  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1261  *  @hw: pointer to hardware structure
1262  *  @offset: offset of  word in the EEPROM to read
1263  *  @data: word read from the EEPROM
1264  *
1265  *  Reads a 16 bit word from the EEPROM using the EERD register.
1266  **/
1267 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1268 {
1269 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1270 }
1271 
1272 /**
1273  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1274  *  @hw: pointer to hardware structure
1275  *  @offset: offset of  word in the EEPROM to write
1276  *  @words: number of words
1277  *  @data: word(s) write to the EEPROM
1278  *
1279  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1280  **/
1281 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1282 				    u16 words, u16 *data)
1283 {
1284 	u32 eewr;
1285 	s32 status;
1286 	u16 i;
1287 
1288 	hw->eeprom.ops.init_params(hw);
1289 
1290 	if (words == 0)
1291 		return IXGBE_ERR_INVALID_ARGUMENT;
1292 
1293 	if (offset >= hw->eeprom.word_size)
1294 		return IXGBE_ERR_EEPROM;
1295 
1296 	for (i = 0; i < words; i++) {
1297 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1298 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1299 		       IXGBE_EEPROM_RW_REG_START;
1300 
1301 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1302 		if (status) {
1303 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1304 			return status;
1305 		}
1306 
1307 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1308 
1309 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1310 		if (status) {
1311 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1312 			return status;
1313 		}
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1321  *  @hw: pointer to hardware structure
1322  *  @offset: offset of  word in the EEPROM to write
1323  *  @data: word write to the EEPROM
1324  *
1325  *  Write a 16 bit word to the EEPROM using the EEWR register.
1326  **/
1327 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1328 {
1329 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1330 }
1331 
1332 /**
1333  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1334  *  @hw: pointer to hardware structure
1335  *  @ee_reg: EEPROM flag for polling
1336  *
1337  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1338  *  read or write is done respectively.
1339  **/
1340 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1341 {
1342 	u32 i;
1343 	u32 reg;
1344 
1345 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1346 		if (ee_reg == IXGBE_NVM_POLL_READ)
1347 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1348 		else
1349 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1350 
1351 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1352 			return 0;
1353 		}
1354 		udelay(5);
1355 	}
1356 	return IXGBE_ERR_EEPROM;
1357 }
1358 
1359 /**
1360  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1361  *  @hw: pointer to hardware structure
1362  *
1363  *  Prepares EEPROM for access using bit-bang method. This function should
1364  *  be called before issuing a command to the EEPROM.
1365  **/
1366 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1367 {
1368 	u32 eec;
1369 	u32 i;
1370 
1371 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1372 		return IXGBE_ERR_SWFW_SYNC;
1373 
1374 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1375 
1376 	/* Request EEPROM Access */
1377 	eec |= IXGBE_EEC_REQ;
1378 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1379 
1380 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1381 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1382 		if (eec & IXGBE_EEC_GNT)
1383 			break;
1384 		udelay(5);
1385 	}
1386 
1387 	/* Release if grant not acquired */
1388 	if (!(eec & IXGBE_EEC_GNT)) {
1389 		eec &= ~IXGBE_EEC_REQ;
1390 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1391 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1392 
1393 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1394 		return IXGBE_ERR_EEPROM;
1395 	}
1396 
1397 	/* Setup EEPROM for Read/Write */
1398 	/* Clear CS and SK */
1399 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1400 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1401 	IXGBE_WRITE_FLUSH(hw);
1402 	udelay(1);
1403 	return 0;
1404 }
1405 
1406 /**
1407  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1408  *  @hw: pointer to hardware structure
1409  *
1410  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1411  **/
1412 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1413 {
1414 	u32 timeout = 2000;
1415 	u32 i;
1416 	u32 swsm;
1417 
1418 	/* Get SMBI software semaphore between device drivers first */
1419 	for (i = 0; i < timeout; i++) {
1420 		/*
1421 		 * If the SMBI bit is 0 when we read it, then the bit will be
1422 		 * set and we have the semaphore
1423 		 */
1424 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425 		if (!(swsm & IXGBE_SWSM_SMBI))
1426 			break;
1427 		usleep_range(50, 100);
1428 	}
1429 
1430 	if (i == timeout) {
1431 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1432 		/* this release is particularly important because our attempts
1433 		 * above to get the semaphore may have succeeded, and if there
1434 		 * was a timeout, we should unconditionally clear the semaphore
1435 		 * bits to free the driver to make progress
1436 		 */
1437 		ixgbe_release_eeprom_semaphore(hw);
1438 
1439 		usleep_range(50, 100);
1440 		/* one last try
1441 		 * If the SMBI bit is 0 when we read it, then the bit will be
1442 		 * set and we have the semaphore
1443 		 */
1444 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1445 		if (swsm & IXGBE_SWSM_SMBI) {
1446 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1447 			return IXGBE_ERR_EEPROM;
1448 		}
1449 	}
1450 
1451 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1452 	for (i = 0; i < timeout; i++) {
1453 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1454 
1455 		/* Set the SW EEPROM semaphore bit to request access */
1456 		swsm |= IXGBE_SWSM_SWESMBI;
1457 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1458 
1459 		/* If we set the bit successfully then we got the
1460 		 * semaphore.
1461 		 */
1462 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1463 		if (swsm & IXGBE_SWSM_SWESMBI)
1464 			break;
1465 
1466 		usleep_range(50, 100);
1467 	}
1468 
1469 	/* Release semaphores and return error if SW EEPROM semaphore
1470 	 * was not granted because we don't have access to the EEPROM
1471 	 */
1472 	if (i >= timeout) {
1473 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1474 		ixgbe_release_eeprom_semaphore(hw);
1475 		return IXGBE_ERR_EEPROM;
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 /**
1482  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1483  *  @hw: pointer to hardware structure
1484  *
1485  *  This function clears hardware semaphore bits.
1486  **/
1487 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1488 {
1489 	u32 swsm;
1490 
1491 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1492 
1493 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1494 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1495 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1496 	IXGBE_WRITE_FLUSH(hw);
1497 }
1498 
1499 /**
1500  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1501  *  @hw: pointer to hardware structure
1502  **/
1503 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1504 {
1505 	u16 i;
1506 	u8 spi_stat_reg;
1507 
1508 	/*
1509 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1510 	 * EEPROM will signal that the command has been completed by clearing
1511 	 * bit 0 of the internal status register.  If it's not cleared within
1512 	 * 5 milliseconds, then error out.
1513 	 */
1514 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1515 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1516 					    IXGBE_EEPROM_OPCODE_BITS);
1517 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1518 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1519 			break;
1520 
1521 		udelay(5);
1522 		ixgbe_standby_eeprom(hw);
1523 	}
1524 
1525 	/*
1526 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1527 	 * devices (and only 0-5mSec on 5V devices)
1528 	 */
1529 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1530 		hw_dbg(hw, "SPI EEPROM Status error\n");
1531 		return IXGBE_ERR_EEPROM;
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 /**
1538  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1539  *  @hw: pointer to hardware structure
1540  **/
1541 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1542 {
1543 	u32 eec;
1544 
1545 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1546 
1547 	/* Toggle CS to flush commands */
1548 	eec |= IXGBE_EEC_CS;
1549 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1550 	IXGBE_WRITE_FLUSH(hw);
1551 	udelay(1);
1552 	eec &= ~IXGBE_EEC_CS;
1553 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1554 	IXGBE_WRITE_FLUSH(hw);
1555 	udelay(1);
1556 }
1557 
1558 /**
1559  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1560  *  @hw: pointer to hardware structure
1561  *  @data: data to send to the EEPROM
1562  *  @count: number of bits to shift out
1563  **/
1564 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1565 					u16 count)
1566 {
1567 	u32 eec;
1568 	u32 mask;
1569 	u32 i;
1570 
1571 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1572 
1573 	/*
1574 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1575 	 * one bit at a time.  Determine the starting bit based on count
1576 	 */
1577 	mask = BIT(count - 1);
1578 
1579 	for (i = 0; i < count; i++) {
1580 		/*
1581 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1582 		 * "1", and then raising and then lowering the clock (the SK
1583 		 * bit controls the clock input to the EEPROM).  A "0" is
1584 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1585 		 * raising and then lowering the clock.
1586 		 */
1587 		if (data & mask)
1588 			eec |= IXGBE_EEC_DI;
1589 		else
1590 			eec &= ~IXGBE_EEC_DI;
1591 
1592 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1593 		IXGBE_WRITE_FLUSH(hw);
1594 
1595 		udelay(1);
1596 
1597 		ixgbe_raise_eeprom_clk(hw, &eec);
1598 		ixgbe_lower_eeprom_clk(hw, &eec);
1599 
1600 		/*
1601 		 * Shift mask to signify next bit of data to shift in to the
1602 		 * EEPROM
1603 		 */
1604 		mask = mask >> 1;
1605 	}
1606 
1607 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1608 	eec &= ~IXGBE_EEC_DI;
1609 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1610 	IXGBE_WRITE_FLUSH(hw);
1611 }
1612 
1613 /**
1614  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1615  *  @hw: pointer to hardware structure
1616  *  @count: number of bits to shift
1617  **/
1618 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1619 {
1620 	u32 eec;
1621 	u32 i;
1622 	u16 data = 0;
1623 
1624 	/*
1625 	 * In order to read a register from the EEPROM, we need to shift
1626 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1627 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1628 	 * the value of the "DO" bit.  During this "shifting in" process the
1629 	 * "DI" bit should always be clear.
1630 	 */
1631 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1632 
1633 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1634 
1635 	for (i = 0; i < count; i++) {
1636 		data = data << 1;
1637 		ixgbe_raise_eeprom_clk(hw, &eec);
1638 
1639 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1640 
1641 		eec &= ~(IXGBE_EEC_DI);
1642 		if (eec & IXGBE_EEC_DO)
1643 			data |= 1;
1644 
1645 		ixgbe_lower_eeprom_clk(hw, &eec);
1646 	}
1647 
1648 	return data;
1649 }
1650 
1651 /**
1652  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1653  *  @hw: pointer to hardware structure
1654  *  @eec: EEC register's current value
1655  **/
1656 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1657 {
1658 	/*
1659 	 * Raise the clock input to the EEPROM
1660 	 * (setting the SK bit), then delay
1661 	 */
1662 	*eec = *eec | IXGBE_EEC_SK;
1663 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1664 	IXGBE_WRITE_FLUSH(hw);
1665 	udelay(1);
1666 }
1667 
1668 /**
1669  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1670  *  @hw: pointer to hardware structure
1671  *  @eec: EEC's current value
1672  **/
1673 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1674 {
1675 	/*
1676 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1677 	 * delay
1678 	 */
1679 	*eec = *eec & ~IXGBE_EEC_SK;
1680 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1681 	IXGBE_WRITE_FLUSH(hw);
1682 	udelay(1);
1683 }
1684 
1685 /**
1686  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1687  *  @hw: pointer to hardware structure
1688  **/
1689 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1690 {
1691 	u32 eec;
1692 
1693 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1694 
1695 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1696 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1697 
1698 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1699 	IXGBE_WRITE_FLUSH(hw);
1700 
1701 	udelay(1);
1702 
1703 	/* Stop requesting EEPROM access */
1704 	eec &= ~IXGBE_EEC_REQ;
1705 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1706 
1707 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1708 
1709 	/*
1710 	 * Delay before attempt to obtain semaphore again to allow FW
1711 	 * access. semaphore_delay is in ms we need us for usleep_range
1712 	 */
1713 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1714 		     hw->eeprom.semaphore_delay * 2000);
1715 }
1716 
1717 /**
1718  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1719  *  @hw: pointer to hardware structure
1720  **/
1721 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1722 {
1723 	u16 i;
1724 	u16 j;
1725 	u16 checksum = 0;
1726 	u16 length = 0;
1727 	u16 pointer = 0;
1728 	u16 word = 0;
1729 
1730 	/* Include 0x0-0x3F in the checksum */
1731 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1732 		if (hw->eeprom.ops.read(hw, i, &word)) {
1733 			hw_dbg(hw, "EEPROM read failed\n");
1734 			break;
1735 		}
1736 		checksum += word;
1737 	}
1738 
1739 	/* Include all data from pointers except for the fw pointer */
1740 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1741 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1742 			hw_dbg(hw, "EEPROM read failed\n");
1743 			return IXGBE_ERR_EEPROM;
1744 		}
1745 
1746 		/* If the pointer seems invalid */
1747 		if (pointer == 0xFFFF || pointer == 0)
1748 			continue;
1749 
1750 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1751 			hw_dbg(hw, "EEPROM read failed\n");
1752 			return IXGBE_ERR_EEPROM;
1753 		}
1754 
1755 		if (length == 0xFFFF || length == 0)
1756 			continue;
1757 
1758 		for (j = pointer + 1; j <= pointer + length; j++) {
1759 			if (hw->eeprom.ops.read(hw, j, &word)) {
1760 				hw_dbg(hw, "EEPROM read failed\n");
1761 				return IXGBE_ERR_EEPROM;
1762 			}
1763 			checksum += word;
1764 		}
1765 	}
1766 
1767 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1768 
1769 	return (s32)checksum;
1770 }
1771 
1772 /**
1773  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1774  *  @hw: pointer to hardware structure
1775  *  @checksum_val: calculated checksum
1776  *
1777  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1778  *  caller does not need checksum_val, the value can be NULL.
1779  **/
1780 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1781 					   u16 *checksum_val)
1782 {
1783 	s32 status;
1784 	u16 checksum;
1785 	u16 read_checksum = 0;
1786 
1787 	/*
1788 	 * Read the first word from the EEPROM. If this times out or fails, do
1789 	 * not continue or we could be in for a very long wait while every
1790 	 * EEPROM read fails
1791 	 */
1792 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1793 	if (status) {
1794 		hw_dbg(hw, "EEPROM read failed\n");
1795 		return status;
1796 	}
1797 
1798 	status = hw->eeprom.ops.calc_checksum(hw);
1799 	if (status < 0)
1800 		return status;
1801 
1802 	checksum = (u16)(status & 0xffff);
1803 
1804 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1805 	if (status) {
1806 		hw_dbg(hw, "EEPROM read failed\n");
1807 		return status;
1808 	}
1809 
1810 	/* Verify read checksum from EEPROM is the same as
1811 	 * calculated checksum
1812 	 */
1813 	if (read_checksum != checksum)
1814 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1815 
1816 	/* If the user cares, return the calculated checksum */
1817 	if (checksum_val)
1818 		*checksum_val = checksum;
1819 
1820 	return status;
1821 }
1822 
1823 /**
1824  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1825  *  @hw: pointer to hardware structure
1826  **/
1827 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1828 {
1829 	s32 status;
1830 	u16 checksum;
1831 
1832 	/*
1833 	 * Read the first word from the EEPROM. If this times out or fails, do
1834 	 * not continue or we could be in for a very long wait while every
1835 	 * EEPROM read fails
1836 	 */
1837 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1838 	if (status) {
1839 		hw_dbg(hw, "EEPROM read failed\n");
1840 		return status;
1841 	}
1842 
1843 	status = hw->eeprom.ops.calc_checksum(hw);
1844 	if (status < 0)
1845 		return status;
1846 
1847 	checksum = (u16)(status & 0xffff);
1848 
1849 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1850 
1851 	return status;
1852 }
1853 
1854 /**
1855  *  ixgbe_set_rar_generic - Set Rx address register
1856  *  @hw: pointer to hardware structure
1857  *  @index: Receive address register to write
1858  *  @addr: Address to put into receive address register
1859  *  @vmdq: VMDq "set" or "pool" index
1860  *  @enable_addr: set flag that address is active
1861  *
1862  *  Puts an ethernet address into a receive address register.
1863  **/
1864 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1865 			  u32 enable_addr)
1866 {
1867 	u32 rar_low, rar_high;
1868 	u32 rar_entries = hw->mac.num_rar_entries;
1869 
1870 	/* Make sure we are using a valid rar index range */
1871 	if (index >= rar_entries) {
1872 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1873 		return IXGBE_ERR_INVALID_ARGUMENT;
1874 	}
1875 
1876 	/* setup VMDq pool selection before this RAR gets enabled */
1877 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1878 
1879 	/*
1880 	 * HW expects these in little endian so we reverse the byte
1881 	 * order from network order (big endian) to little endian
1882 	 */
1883 	rar_low = ((u32)addr[0] |
1884 		   ((u32)addr[1] << 8) |
1885 		   ((u32)addr[2] << 16) |
1886 		   ((u32)addr[3] << 24));
1887 	/*
1888 	 * Some parts put the VMDq setting in the extra RAH bits,
1889 	 * so save everything except the lower 16 bits that hold part
1890 	 * of the address and the address valid bit.
1891 	 */
1892 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1893 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1894 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1895 
1896 	if (enable_addr != 0)
1897 		rar_high |= IXGBE_RAH_AV;
1898 
1899 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1900 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1901 
1902 	return 0;
1903 }
1904 
1905 /**
1906  *  ixgbe_clear_rar_generic - Remove Rx address register
1907  *  @hw: pointer to hardware structure
1908  *  @index: Receive address register to write
1909  *
1910  *  Clears an ethernet address from a receive address register.
1911  **/
1912 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1913 {
1914 	u32 rar_high;
1915 	u32 rar_entries = hw->mac.num_rar_entries;
1916 
1917 	/* Make sure we are using a valid rar index range */
1918 	if (index >= rar_entries) {
1919 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1920 		return IXGBE_ERR_INVALID_ARGUMENT;
1921 	}
1922 
1923 	/*
1924 	 * Some parts put the VMDq setting in the extra RAH bits,
1925 	 * so save everything except the lower 16 bits that hold part
1926 	 * of the address and the address valid bit.
1927 	 */
1928 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1929 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1930 
1931 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1932 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1933 
1934 	/* clear VMDq pool/queue selection for this RAR */
1935 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1936 
1937 	return 0;
1938 }
1939 
1940 /**
1941  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1942  *  @hw: pointer to hardware structure
1943  *
1944  *  Places the MAC address in receive address register 0 and clears the rest
1945  *  of the receive address registers. Clears the multicast table. Assumes
1946  *  the receiver is in reset when the routine is called.
1947  **/
1948 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1949 {
1950 	u32 i;
1951 	u32 rar_entries = hw->mac.num_rar_entries;
1952 
1953 	/*
1954 	 * If the current mac address is valid, assume it is a software override
1955 	 * to the permanent address.
1956 	 * Otherwise, use the permanent address from the eeprom.
1957 	 */
1958 	if (!is_valid_ether_addr(hw->mac.addr)) {
1959 		/* Get the MAC address from the RAR0 for later reference */
1960 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1961 
1962 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1963 	} else {
1964 		/* Setup the receive address. */
1965 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1966 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1967 
1968 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1969 	}
1970 
1971 	/*  clear VMDq pool/queue selection for RAR 0 */
1972 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1973 
1974 	hw->addr_ctrl.overflow_promisc = 0;
1975 
1976 	hw->addr_ctrl.rar_used_count = 1;
1977 
1978 	/* Zero out the other receive addresses. */
1979 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1980 	for (i = 1; i < rar_entries; i++) {
1981 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1982 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1983 	}
1984 
1985 	/* Clear the MTA */
1986 	hw->addr_ctrl.mta_in_use = 0;
1987 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1988 
1989 	hw_dbg(hw, " Clearing MTA\n");
1990 	for (i = 0; i < hw->mac.mcft_size; i++)
1991 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1992 
1993 	if (hw->mac.ops.init_uta_tables)
1994 		hw->mac.ops.init_uta_tables(hw);
1995 
1996 	return 0;
1997 }
1998 
1999 /**
2000  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2001  *  @hw: pointer to hardware structure
2002  *  @mc_addr: the multicast address
2003  *
2004  *  Extracts the 12 bits, from a multicast address, to determine which
2005  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2006  *  incoming rx multicast addresses, to determine the bit-vector to check in
2007  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2008  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2009  *  to mc_filter_type.
2010  **/
2011 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2012 {
2013 	u32 vector = 0;
2014 
2015 	switch (hw->mac.mc_filter_type) {
2016 	case 0:   /* use bits [47:36] of the address */
2017 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2018 		break;
2019 	case 1:   /* use bits [46:35] of the address */
2020 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2021 		break;
2022 	case 2:   /* use bits [45:34] of the address */
2023 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2024 		break;
2025 	case 3:   /* use bits [43:32] of the address */
2026 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2027 		break;
2028 	default:  /* Invalid mc_filter_type */
2029 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2030 		break;
2031 	}
2032 
2033 	/* vector can only be 12-bits or boundary will be exceeded */
2034 	vector &= 0xFFF;
2035 	return vector;
2036 }
2037 
2038 /**
2039  *  ixgbe_set_mta - Set bit-vector in multicast table
2040  *  @hw: pointer to hardware structure
2041  *  @mc_addr: Multicast address
2042  *
2043  *  Sets the bit-vector in the multicast table.
2044  **/
2045 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2046 {
2047 	u32 vector;
2048 	u32 vector_bit;
2049 	u32 vector_reg;
2050 
2051 	hw->addr_ctrl.mta_in_use++;
2052 
2053 	vector = ixgbe_mta_vector(hw, mc_addr);
2054 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2055 
2056 	/*
2057 	 * The MTA is a register array of 128 32-bit registers. It is treated
2058 	 * like an array of 4096 bits.  We want to set bit
2059 	 * BitArray[vector_value]. So we figure out what register the bit is
2060 	 * in, read it, OR in the new bit, then write back the new value.  The
2061 	 * register is determined by the upper 7 bits of the vector value and
2062 	 * the bit within that register are determined by the lower 5 bits of
2063 	 * the value.
2064 	 */
2065 	vector_reg = (vector >> 5) & 0x7F;
2066 	vector_bit = vector & 0x1F;
2067 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2068 }
2069 
2070 /**
2071  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2072  *  @hw: pointer to hardware structure
2073  *  @netdev: pointer to net device structure
2074  *
2075  *  The given list replaces any existing list. Clears the MC addrs from receive
2076  *  address registers and the multicast table. Uses unused receive address
2077  *  registers for the first multicast addresses, and hashes the rest into the
2078  *  multicast table.
2079  **/
2080 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2081 				      struct net_device *netdev)
2082 {
2083 	struct netdev_hw_addr *ha;
2084 	u32 i;
2085 
2086 	/*
2087 	 * Set the new number of MC addresses that we are being requested to
2088 	 * use.
2089 	 */
2090 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2091 	hw->addr_ctrl.mta_in_use = 0;
2092 
2093 	/* Clear mta_shadow */
2094 	hw_dbg(hw, " Clearing MTA\n");
2095 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2096 
2097 	/* Update mta shadow */
2098 	netdev_for_each_mc_addr(ha, netdev) {
2099 		hw_dbg(hw, " Adding the multicast addresses:\n");
2100 		ixgbe_set_mta(hw, ha->addr);
2101 	}
2102 
2103 	/* Enable mta */
2104 	for (i = 0; i < hw->mac.mcft_size; i++)
2105 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2106 				      hw->mac.mta_shadow[i]);
2107 
2108 	if (hw->addr_ctrl.mta_in_use > 0)
2109 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2110 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2111 
2112 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2113 	return 0;
2114 }
2115 
2116 /**
2117  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2118  *  @hw: pointer to hardware structure
2119  *
2120  *  Enables multicast address in RAR and the use of the multicast hash table.
2121  **/
2122 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2123 {
2124 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2125 
2126 	if (a->mta_in_use > 0)
2127 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2128 				hw->mac.mc_filter_type);
2129 
2130 	return 0;
2131 }
2132 
2133 /**
2134  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2135  *  @hw: pointer to hardware structure
2136  *
2137  *  Disables multicast address in RAR and the use of the multicast hash table.
2138  **/
2139 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2140 {
2141 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2142 
2143 	if (a->mta_in_use > 0)
2144 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2145 
2146 	return 0;
2147 }
2148 
2149 /**
2150  *  ixgbe_fc_enable_generic - Enable flow control
2151  *  @hw: pointer to hardware structure
2152  *
2153  *  Enable flow control according to the current settings.
2154  **/
2155 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2156 {
2157 	u32 mflcn_reg, fccfg_reg;
2158 	u32 reg;
2159 	u32 fcrtl, fcrth;
2160 	int i;
2161 
2162 	/* Validate the water mark configuration. */
2163 	if (!hw->fc.pause_time)
2164 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2165 
2166 	/* Low water mark of zero causes XOFF floods */
2167 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2168 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2169 		    hw->fc.high_water[i]) {
2170 			if (!hw->fc.low_water[i] ||
2171 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2172 				hw_dbg(hw, "Invalid water mark configuration\n");
2173 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2174 			}
2175 		}
2176 	}
2177 
2178 	/* Negotiate the fc mode to use */
2179 	hw->mac.ops.fc_autoneg(hw);
2180 
2181 	/* Disable any previous flow control settings */
2182 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2183 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2184 
2185 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2186 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2187 
2188 	/*
2189 	 * The possible values of fc.current_mode are:
2190 	 * 0: Flow control is completely disabled
2191 	 * 1: Rx flow control is enabled (we can receive pause frames,
2192 	 *    but not send pause frames).
2193 	 * 2: Tx flow control is enabled (we can send pause frames but
2194 	 *    we do not support receiving pause frames).
2195 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2196 	 * other: Invalid.
2197 	 */
2198 	switch (hw->fc.current_mode) {
2199 	case ixgbe_fc_none:
2200 		/*
2201 		 * Flow control is disabled by software override or autoneg.
2202 		 * The code below will actually disable it in the HW.
2203 		 */
2204 		break;
2205 	case ixgbe_fc_rx_pause:
2206 		/*
2207 		 * Rx Flow control is enabled and Tx Flow control is
2208 		 * disabled by software override. Since there really
2209 		 * isn't a way to advertise that we are capable of RX
2210 		 * Pause ONLY, we will advertise that we support both
2211 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2212 		 * disable the adapter's ability to send PAUSE frames.
2213 		 */
2214 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2215 		break;
2216 	case ixgbe_fc_tx_pause:
2217 		/*
2218 		 * Tx Flow control is enabled, and Rx Flow control is
2219 		 * disabled by software override.
2220 		 */
2221 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2222 		break;
2223 	case ixgbe_fc_full:
2224 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2225 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2226 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2227 		break;
2228 	default:
2229 		hw_dbg(hw, "Flow control param set incorrectly\n");
2230 		return IXGBE_ERR_CONFIG;
2231 	}
2232 
2233 	/* Set 802.3x based flow control settings. */
2234 	mflcn_reg |= IXGBE_MFLCN_DPF;
2235 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2236 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2237 
2238 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2239 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2240 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2241 		    hw->fc.high_water[i]) {
2242 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2243 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2244 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2245 		} else {
2246 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2247 			/*
2248 			 * In order to prevent Tx hangs when the internal Tx
2249 			 * switch is enabled we must set the high water mark
2250 			 * to the Rx packet buffer size - 24KB.  This allows
2251 			 * the Tx switch to function even under heavy Rx
2252 			 * workloads.
2253 			 */
2254 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2255 		}
2256 
2257 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2258 	}
2259 
2260 	/* Configure pause time (2 TCs per register) */
2261 	reg = hw->fc.pause_time * 0x00010001;
2262 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2263 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2264 
2265 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2266 
2267 	return 0;
2268 }
2269 
2270 /**
2271  *  ixgbe_negotiate_fc - Negotiate flow control
2272  *  @hw: pointer to hardware structure
2273  *  @adv_reg: flow control advertised settings
2274  *  @lp_reg: link partner's flow control settings
2275  *  @adv_sym: symmetric pause bit in advertisement
2276  *  @adv_asm: asymmetric pause bit in advertisement
2277  *  @lp_sym: symmetric pause bit in link partner advertisement
2278  *  @lp_asm: asymmetric pause bit in link partner advertisement
2279  *
2280  *  Find the intersection between advertised settings and link partner's
2281  *  advertised settings
2282  **/
2283 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2284 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2285 {
2286 	if ((!(adv_reg)) ||  (!(lp_reg)))
2287 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2288 
2289 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2290 		/*
2291 		 * Now we need to check if the user selected Rx ONLY
2292 		 * of pause frames.  In this case, we had to advertise
2293 		 * FULL flow control because we could not advertise RX
2294 		 * ONLY. Hence, we must now check to see if we need to
2295 		 * turn OFF the TRANSMISSION of PAUSE frames.
2296 		 */
2297 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2298 			hw->fc.current_mode = ixgbe_fc_full;
2299 			hw_dbg(hw, "Flow Control = FULL.\n");
2300 		} else {
2301 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2302 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2303 		}
2304 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2305 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2306 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2307 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2308 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2309 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2310 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2311 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2312 	} else {
2313 		hw->fc.current_mode = ixgbe_fc_none;
2314 		hw_dbg(hw, "Flow Control = NONE.\n");
2315 	}
2316 	return 0;
2317 }
2318 
2319 /**
2320  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2321  *  @hw: pointer to hardware structure
2322  *
2323  *  Enable flow control according on 1 gig fiber.
2324  **/
2325 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2326 {
2327 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2328 	s32 ret_val;
2329 
2330 	/*
2331 	 * On multispeed fiber at 1g, bail out if
2332 	 * - link is up but AN did not complete, or if
2333 	 * - link is up and AN completed but timed out
2334 	 */
2335 
2336 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2337 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2338 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2339 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2340 
2341 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2342 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2343 
2344 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2345 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2346 			       IXGBE_PCS1GANA_ASM_PAUSE,
2347 			       IXGBE_PCS1GANA_SYM_PAUSE,
2348 			       IXGBE_PCS1GANA_ASM_PAUSE);
2349 
2350 	return ret_val;
2351 }
2352 
2353 /**
2354  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2355  *  @hw: pointer to hardware structure
2356  *
2357  *  Enable flow control according to IEEE clause 37.
2358  **/
2359 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2360 {
2361 	u32 links2, anlp1_reg, autoc_reg, links;
2362 	s32 ret_val;
2363 
2364 	/*
2365 	 * On backplane, bail out if
2366 	 * - backplane autoneg was not completed, or if
2367 	 * - we are 82599 and link partner is not AN enabled
2368 	 */
2369 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2370 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2371 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2372 
2373 	if (hw->mac.type == ixgbe_mac_82599EB) {
2374 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2375 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2376 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2377 	}
2378 	/*
2379 	 * Read the 10g AN autoc and LP ability registers and resolve
2380 	 * local flow control settings accordingly
2381 	 */
2382 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2383 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2384 
2385 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2386 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2387 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2388 
2389 	return ret_val;
2390 }
2391 
2392 /**
2393  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2394  *  @hw: pointer to hardware structure
2395  *
2396  *  Enable flow control according to IEEE clause 37.
2397  **/
2398 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2399 {
2400 	u16 technology_ability_reg = 0;
2401 	u16 lp_technology_ability_reg = 0;
2402 
2403 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2404 			     MDIO_MMD_AN,
2405 			     &technology_ability_reg);
2406 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2407 			     MDIO_MMD_AN,
2408 			     &lp_technology_ability_reg);
2409 
2410 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2411 				  (u32)lp_technology_ability_reg,
2412 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2413 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2414 }
2415 
2416 /**
2417  *  ixgbe_fc_autoneg - Configure flow control
2418  *  @hw: pointer to hardware structure
2419  *
2420  *  Compares our advertised flow control capabilities to those advertised by
2421  *  our link partner, and determines the proper flow control mode to use.
2422  **/
2423 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2424 {
2425 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2426 	ixgbe_link_speed speed;
2427 	bool link_up;
2428 
2429 	/*
2430 	 * AN should have completed when the cable was plugged in.
2431 	 * Look for reasons to bail out.  Bail out if:
2432 	 * - FC autoneg is disabled, or if
2433 	 * - link is not up.
2434 	 *
2435 	 * Since we're being called from an LSC, link is already known to be up.
2436 	 * So use link_up_wait_to_complete=false.
2437 	 */
2438 	if (hw->fc.disable_fc_autoneg)
2439 		goto out;
2440 
2441 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2442 	if (!link_up)
2443 		goto out;
2444 
2445 	switch (hw->phy.media_type) {
2446 	/* Autoneg flow control on fiber adapters */
2447 	case ixgbe_media_type_fiber:
2448 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2449 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2450 		break;
2451 
2452 	/* Autoneg flow control on backplane adapters */
2453 	case ixgbe_media_type_backplane:
2454 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2455 		break;
2456 
2457 	/* Autoneg flow control on copper adapters */
2458 	case ixgbe_media_type_copper:
2459 		if (ixgbe_device_supports_autoneg_fc(hw))
2460 			ret_val = ixgbe_fc_autoneg_copper(hw);
2461 		break;
2462 
2463 	default:
2464 		break;
2465 	}
2466 
2467 out:
2468 	if (ret_val == 0) {
2469 		hw->fc.fc_was_autonegged = true;
2470 	} else {
2471 		hw->fc.fc_was_autonegged = false;
2472 		hw->fc.current_mode = hw->fc.requested_mode;
2473 	}
2474 }
2475 
2476 /**
2477  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2478  * @hw: pointer to hardware structure
2479  *
2480  * System-wide timeout range is encoded in PCIe Device Control2 register.
2481  *
2482  *  Add 10% to specified maximum and return the number of times to poll for
2483  *  completion timeout, in units of 100 microsec.  Never return less than
2484  *  800 = 80 millisec.
2485  **/
2486 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2487 {
2488 	s16 devctl2;
2489 	u32 pollcnt;
2490 
2491 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2492 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2493 
2494 	switch (devctl2) {
2495 	case IXGBE_PCIDEVCTRL2_65_130ms:
2496 		 pollcnt = 1300;         /* 130 millisec */
2497 		break;
2498 	case IXGBE_PCIDEVCTRL2_260_520ms:
2499 		pollcnt = 5200;         /* 520 millisec */
2500 		break;
2501 	case IXGBE_PCIDEVCTRL2_1_2s:
2502 		pollcnt = 20000;        /* 2 sec */
2503 		break;
2504 	case IXGBE_PCIDEVCTRL2_4_8s:
2505 		pollcnt = 80000;        /* 8 sec */
2506 		break;
2507 	case IXGBE_PCIDEVCTRL2_17_34s:
2508 		pollcnt = 34000;        /* 34 sec */
2509 		break;
2510 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2511 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2512 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2513 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2514 	default:
2515 		pollcnt = 800;          /* 80 millisec minimum */
2516 		break;
2517 	}
2518 
2519 	/* add 10% to spec maximum */
2520 	return (pollcnt * 11) / 10;
2521 }
2522 
2523 /**
2524  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2525  *  @hw: pointer to hardware structure
2526  *
2527  *  Disables PCI-Express master access and verifies there are no pending
2528  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2529  *  bit hasn't caused the master requests to be disabled, else 0
2530  *  is returned signifying master requests disabled.
2531  **/
2532 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2533 {
2534 	u32 i, poll;
2535 	u16 value;
2536 
2537 	/* Always set this bit to ensure any future transactions are blocked */
2538 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2539 
2540 	/* Poll for bit to read as set */
2541 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2542 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2543 			break;
2544 		usleep_range(100, 120);
2545 	}
2546 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2547 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2548 		goto gio_disable_fail;
2549 	}
2550 
2551 	/* Exit if master requests are blocked */
2552 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2553 	    ixgbe_removed(hw->hw_addr))
2554 		return 0;
2555 
2556 	/* Poll for master request bit to clear */
2557 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2558 		udelay(100);
2559 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2560 			return 0;
2561 	}
2562 
2563 	/*
2564 	 * Two consecutive resets are required via CTRL.RST per datasheet
2565 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2566 	 * of this need.  The first reset prevents new master requests from
2567 	 * being issued by our device.  We then must wait 1usec or more for any
2568 	 * remaining completions from the PCIe bus to trickle in, and then reset
2569 	 * again to clear out any effects they may have had on our device.
2570 	 */
2571 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2572 gio_disable_fail:
2573 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2574 
2575 	if (hw->mac.type >= ixgbe_mac_X550)
2576 		return 0;
2577 
2578 	/*
2579 	 * Before proceeding, make sure that the PCIe block does not have
2580 	 * transactions pending.
2581 	 */
2582 	poll = ixgbe_pcie_timeout_poll(hw);
2583 	for (i = 0; i < poll; i++) {
2584 		udelay(100);
2585 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2586 		if (ixgbe_removed(hw->hw_addr))
2587 			return 0;
2588 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2589 			return 0;
2590 	}
2591 
2592 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2593 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2594 }
2595 
2596 /**
2597  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2598  *  @hw: pointer to hardware structure
2599  *  @mask: Mask to specify which semaphore to acquire
2600  *
2601  *  Acquires the SWFW semaphore through the GSSR register for the specified
2602  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2603  **/
2604 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2605 {
2606 	u32 gssr = 0;
2607 	u32 swmask = mask;
2608 	u32 fwmask = mask << 5;
2609 	u32 timeout = 200;
2610 	u32 i;
2611 
2612 	for (i = 0; i < timeout; i++) {
2613 		/*
2614 		 * SW NVM semaphore bit is used for access to all
2615 		 * SW_FW_SYNC bits (not just NVM)
2616 		 */
2617 		if (ixgbe_get_eeprom_semaphore(hw))
2618 			return IXGBE_ERR_SWFW_SYNC;
2619 
2620 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2621 		if (!(gssr & (fwmask | swmask))) {
2622 			gssr |= swmask;
2623 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2624 			ixgbe_release_eeprom_semaphore(hw);
2625 			return 0;
2626 		} else {
2627 			/* Resource is currently in use by FW or SW */
2628 			ixgbe_release_eeprom_semaphore(hw);
2629 			usleep_range(5000, 10000);
2630 		}
2631 	}
2632 
2633 	/* If time expired clear the bits holding the lock and retry */
2634 	if (gssr & (fwmask | swmask))
2635 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2636 
2637 	usleep_range(5000, 10000);
2638 	return IXGBE_ERR_SWFW_SYNC;
2639 }
2640 
2641 /**
2642  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2643  *  @hw: pointer to hardware structure
2644  *  @mask: Mask to specify which semaphore to release
2645  *
2646  *  Releases the SWFW semaphore through the GSSR register for the specified
2647  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2648  **/
2649 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2650 {
2651 	u32 gssr;
2652 	u32 swmask = mask;
2653 
2654 	ixgbe_get_eeprom_semaphore(hw);
2655 
2656 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2657 	gssr &= ~swmask;
2658 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2659 
2660 	ixgbe_release_eeprom_semaphore(hw);
2661 }
2662 
2663 /**
2664  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2665  * @hw: pointer to hardware structure
2666  * @reg_val: Value we read from AUTOC
2667  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2668  *	    true in this the generic case.
2669  *
2670  * The default case requires no protection so just to the register read.
2671  **/
2672 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2673 {
2674 	*locked = false;
2675 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2676 	return 0;
2677 }
2678 
2679 /**
2680  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2681  * @hw: pointer to hardware structure
2682  * @reg_val: value to write to AUTOC
2683  * @locked: bool to indicate whether the SW/FW lock was already taken by
2684  *	    previous read.
2685  **/
2686 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2687 {
2688 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2689 	return 0;
2690 }
2691 
2692 /**
2693  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2694  *  @hw: pointer to hardware structure
2695  *
2696  *  Stops the receive data path and waits for the HW to internally
2697  *  empty the Rx security block.
2698  **/
2699 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2700 {
2701 #define IXGBE_MAX_SECRX_POLL 40
2702 	int i;
2703 	int secrxreg;
2704 
2705 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2706 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2707 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2708 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2709 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2710 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2711 			break;
2712 		else
2713 			/* Use interrupt-safe sleep just in case */
2714 			udelay(1000);
2715 	}
2716 
2717 	/* For informational purposes only */
2718 	if (i >= IXGBE_MAX_SECRX_POLL)
2719 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2720 
2721 	return 0;
2722 
2723 }
2724 
2725 /**
2726  *  ixgbe_enable_rx_buff - Enables the receive data path
2727  *  @hw: pointer to hardware structure
2728  *
2729  *  Enables the receive data path
2730  **/
2731 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2732 {
2733 	u32 secrxreg;
2734 
2735 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2736 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2737 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2738 	IXGBE_WRITE_FLUSH(hw);
2739 
2740 	return 0;
2741 }
2742 
2743 /**
2744  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2745  *  @hw: pointer to hardware structure
2746  *  @regval: register value to write to RXCTRL
2747  *
2748  *  Enables the Rx DMA unit
2749  **/
2750 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2751 {
2752 	if (regval & IXGBE_RXCTRL_RXEN)
2753 		hw->mac.ops.enable_rx(hw);
2754 	else
2755 		hw->mac.ops.disable_rx(hw);
2756 
2757 	return 0;
2758 }
2759 
2760 /**
2761  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2762  *  @hw: pointer to hardware structure
2763  *  @index: led number to blink
2764  **/
2765 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2766 {
2767 	ixgbe_link_speed speed = 0;
2768 	bool link_up = false;
2769 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2770 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2771 	bool locked = false;
2772 	s32 ret_val;
2773 
2774 	if (index > 3)
2775 		return IXGBE_ERR_PARAM;
2776 
2777 	/*
2778 	 * Link must be up to auto-blink the LEDs;
2779 	 * Force it if link is down.
2780 	 */
2781 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2782 
2783 	if (!link_up) {
2784 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2785 		if (ret_val)
2786 			return ret_val;
2787 
2788 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2789 		autoc_reg |= IXGBE_AUTOC_FLU;
2790 
2791 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2792 		if (ret_val)
2793 			return ret_val;
2794 
2795 		IXGBE_WRITE_FLUSH(hw);
2796 
2797 		usleep_range(10000, 20000);
2798 	}
2799 
2800 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2801 	led_reg |= IXGBE_LED_BLINK(index);
2802 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2803 	IXGBE_WRITE_FLUSH(hw);
2804 
2805 	return 0;
2806 }
2807 
2808 /**
2809  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2810  *  @hw: pointer to hardware structure
2811  *  @index: led number to stop blinking
2812  **/
2813 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2814 {
2815 	u32 autoc_reg = 0;
2816 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2817 	bool locked = false;
2818 	s32 ret_val;
2819 
2820 	if (index > 3)
2821 		return IXGBE_ERR_PARAM;
2822 
2823 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2824 	if (ret_val)
2825 		return ret_val;
2826 
2827 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2828 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2829 
2830 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2831 	if (ret_val)
2832 		return ret_val;
2833 
2834 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2835 	led_reg &= ~IXGBE_LED_BLINK(index);
2836 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2837 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2838 	IXGBE_WRITE_FLUSH(hw);
2839 
2840 	return 0;
2841 }
2842 
2843 /**
2844  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2845  *  @hw: pointer to hardware structure
2846  *  @san_mac_offset: SAN MAC address offset
2847  *
2848  *  This function will read the EEPROM location for the SAN MAC address
2849  *  pointer, and returns the value at that location.  This is used in both
2850  *  get and set mac_addr routines.
2851  **/
2852 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2853 					u16 *san_mac_offset)
2854 {
2855 	s32 ret_val;
2856 
2857 	/*
2858 	 * First read the EEPROM pointer to see if the MAC addresses are
2859 	 * available.
2860 	 */
2861 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2862 				      san_mac_offset);
2863 	if (ret_val)
2864 		hw_err(hw, "eeprom read at offset %d failed\n",
2865 		       IXGBE_SAN_MAC_ADDR_PTR);
2866 
2867 	return ret_val;
2868 }
2869 
2870 /**
2871  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2872  *  @hw: pointer to hardware structure
2873  *  @san_mac_addr: SAN MAC address
2874  *
2875  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2876  *  per-port, so set_lan_id() must be called before reading the addresses.
2877  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2878  *  upon for non-SFP connections, so we must call it here.
2879  **/
2880 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2881 {
2882 	u16 san_mac_data, san_mac_offset;
2883 	u8 i;
2884 	s32 ret_val;
2885 
2886 	/*
2887 	 * First read the EEPROM pointer to see if the MAC addresses are
2888 	 * available.  If they're not, no point in calling set_lan_id() here.
2889 	 */
2890 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2891 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2892 
2893 		goto san_mac_addr_clr;
2894 
2895 	/* make sure we know which port we need to program */
2896 	hw->mac.ops.set_lan_id(hw);
2897 	/* apply the port offset to the address offset */
2898 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2899 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2900 	for (i = 0; i < 3; i++) {
2901 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2902 					      &san_mac_data);
2903 		if (ret_val) {
2904 			hw_err(hw, "eeprom read at offset %d failed\n",
2905 			       san_mac_offset);
2906 			goto san_mac_addr_clr;
2907 		}
2908 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2909 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2910 		san_mac_offset++;
2911 	}
2912 	return 0;
2913 
2914 san_mac_addr_clr:
2915 	/* No addresses available in this EEPROM.  It's not necessarily an
2916 	 * error though, so just wipe the local address and return.
2917 	 */
2918 	for (i = 0; i < 6; i++)
2919 		san_mac_addr[i] = 0xFF;
2920 	return ret_val;
2921 }
2922 
2923 /**
2924  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2925  *  @hw: pointer to hardware structure
2926  *
2927  *  Read PCIe configuration space, and get the MSI-X vector count from
2928  *  the capabilities table.
2929  **/
2930 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2931 {
2932 	u16 msix_count;
2933 	u16 max_msix_count;
2934 	u16 pcie_offset;
2935 
2936 	switch (hw->mac.type) {
2937 	case ixgbe_mac_82598EB:
2938 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2939 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2940 		break;
2941 	case ixgbe_mac_82599EB:
2942 	case ixgbe_mac_X540:
2943 	case ixgbe_mac_X550:
2944 	case ixgbe_mac_X550EM_x:
2945 	case ixgbe_mac_x550em_a:
2946 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2947 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2948 		break;
2949 	default:
2950 		return 1;
2951 	}
2952 
2953 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2954 	if (ixgbe_removed(hw->hw_addr))
2955 		msix_count = 0;
2956 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2957 
2958 	/* MSI-X count is zero-based in HW */
2959 	msix_count++;
2960 
2961 	if (msix_count > max_msix_count)
2962 		msix_count = max_msix_count;
2963 
2964 	return msix_count;
2965 }
2966 
2967 /**
2968  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2969  *  @hw: pointer to hardware struct
2970  *  @rar: receive address register index to disassociate
2971  *  @vmdq: VMDq pool index to remove from the rar
2972  **/
2973 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2974 {
2975 	u32 mpsar_lo, mpsar_hi;
2976 	u32 rar_entries = hw->mac.num_rar_entries;
2977 
2978 	/* Make sure we are using a valid rar index range */
2979 	if (rar >= rar_entries) {
2980 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2981 		return IXGBE_ERR_INVALID_ARGUMENT;
2982 	}
2983 
2984 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2985 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2986 
2987 	if (ixgbe_removed(hw->hw_addr))
2988 		return 0;
2989 
2990 	if (!mpsar_lo && !mpsar_hi)
2991 		return 0;
2992 
2993 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2994 		if (mpsar_lo) {
2995 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2996 			mpsar_lo = 0;
2997 		}
2998 		if (mpsar_hi) {
2999 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3000 			mpsar_hi = 0;
3001 		}
3002 	} else if (vmdq < 32) {
3003 		mpsar_lo &= ~BIT(vmdq);
3004 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3005 	} else {
3006 		mpsar_hi &= ~BIT(vmdq - 32);
3007 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3008 	}
3009 
3010 	/* was that the last pool using this rar? */
3011 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3012 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3013 		hw->mac.ops.clear_rar(hw, rar);
3014 
3015 	return 0;
3016 }
3017 
3018 /**
3019  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3020  *  @hw: pointer to hardware struct
3021  *  @rar: receive address register index to associate with a VMDq index
3022  *  @vmdq: VMDq pool index
3023  **/
3024 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3025 {
3026 	u32 mpsar;
3027 	u32 rar_entries = hw->mac.num_rar_entries;
3028 
3029 	/* Make sure we are using a valid rar index range */
3030 	if (rar >= rar_entries) {
3031 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3032 		return IXGBE_ERR_INVALID_ARGUMENT;
3033 	}
3034 
3035 	if (vmdq < 32) {
3036 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3037 		mpsar |= BIT(vmdq);
3038 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3039 	} else {
3040 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3041 		mpsar |= BIT(vmdq - 32);
3042 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3043 	}
3044 	return 0;
3045 }
3046 
3047 /**
3048  *  This function should only be involved in the IOV mode.
3049  *  In IOV mode, Default pool is next pool after the number of
3050  *  VFs advertized and not 0.
3051  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3052  *
3053  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3054  *  @hw: pointer to hardware struct
3055  *  @vmdq: VMDq pool index
3056  **/
3057 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3058 {
3059 	u32 rar = hw->mac.san_mac_rar_index;
3060 
3061 	if (vmdq < 32) {
3062 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3063 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3064 	} else {
3065 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3066 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3067 	}
3068 
3069 	return 0;
3070 }
3071 
3072 /**
3073  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3074  *  @hw: pointer to hardware structure
3075  **/
3076 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3077 {
3078 	int i;
3079 
3080 	for (i = 0; i < 128; i++)
3081 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3082 
3083 	return 0;
3084 }
3085 
3086 /**
3087  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3088  *  @hw: pointer to hardware structure
3089  *  @vlan: VLAN id to write to VLAN filter
3090  *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3091  *		  vlanid not found
3092  *
3093  *  return the VLVF index where this VLAN id should be placed
3094  *
3095  **/
3096 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3097 {
3098 	s32 regindex, first_empty_slot;
3099 	u32 bits;
3100 
3101 	/* short cut the special case */
3102 	if (vlan == 0)
3103 		return 0;
3104 
3105 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3106 	 * will simply bypass the VLVF if there are no entries present in the
3107 	 * VLVF that contain our VLAN
3108 	 */
3109 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3110 
3111 	/* add VLAN enable bit for comparison */
3112 	vlan |= IXGBE_VLVF_VIEN;
3113 
3114 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3115 	 * slot found along the way.
3116 	 *
3117 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3118 	 */
3119 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3120 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3121 		if (bits == vlan)
3122 			return regindex;
3123 		if (!first_empty_slot && !bits)
3124 			first_empty_slot = regindex;
3125 	}
3126 
3127 	/* If we are here then we didn't find the VLAN.  Return first empty
3128 	 * slot we found during our search, else error.
3129 	 */
3130 	if (!first_empty_slot)
3131 		hw_dbg(hw, "No space in VLVF.\n");
3132 
3133 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3134 }
3135 
3136 /**
3137  *  ixgbe_set_vfta_generic - Set VLAN filter table
3138  *  @hw: pointer to hardware structure
3139  *  @vlan: VLAN id to write to VLAN filter
3140  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3141  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3142  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3143  *
3144  *  Turn on/off specified VLAN in the VLAN filter table.
3145  **/
3146 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3147 			   bool vlan_on, bool vlvf_bypass)
3148 {
3149 	u32 regidx, vfta_delta, vfta, bits;
3150 	s32 vlvf_index;
3151 
3152 	if ((vlan > 4095) || (vind > 63))
3153 		return IXGBE_ERR_PARAM;
3154 
3155 	/*
3156 	 * this is a 2 part operation - first the VFTA, then the
3157 	 * VLVF and VLVFB if VT Mode is set
3158 	 * We don't write the VFTA until we know the VLVF part succeeded.
3159 	 */
3160 
3161 	/* Part 1
3162 	 * The VFTA is a bitstring made up of 128 32-bit registers
3163 	 * that enable the particular VLAN id, much like the MTA:
3164 	 *    bits[11-5]: which register
3165 	 *    bits[4-0]:  which bit in the register
3166 	 */
3167 	regidx = vlan / 32;
3168 	vfta_delta = BIT(vlan % 32);
3169 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3170 
3171 	/* vfta_delta represents the difference between the current value
3172 	 * of vfta and the value we want in the register.  Since the diff
3173 	 * is an XOR mask we can just update vfta using an XOR.
3174 	 */
3175 	vfta_delta &= vlan_on ? ~vfta : vfta;
3176 	vfta ^= vfta_delta;
3177 
3178 	/* Part 2
3179 	 * If VT Mode is set
3180 	 *   Either vlan_on
3181 	 *     make sure the vlan is in VLVF
3182 	 *     set the vind bit in the matching VLVFB
3183 	 *   Or !vlan_on
3184 	 *     clear the pool bit and possibly the vind
3185 	 */
3186 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3187 		goto vfta_update;
3188 
3189 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3190 	if (vlvf_index < 0) {
3191 		if (vlvf_bypass)
3192 			goto vfta_update;
3193 		return vlvf_index;
3194 	}
3195 
3196 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3197 
3198 	/* set the pool bit */
3199 	bits |= BIT(vind % 32);
3200 	if (vlan_on)
3201 		goto vlvf_update;
3202 
3203 	/* clear the pool bit */
3204 	bits ^= BIT(vind % 32);
3205 
3206 	if (!bits &&
3207 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3208 		/* Clear VFTA first, then disable VLVF.  Otherwise
3209 		 * we run the risk of stray packets leaking into
3210 		 * the PF via the default pool
3211 		 */
3212 		if (vfta_delta)
3213 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3214 
3215 		/* disable VLVF and clear remaining bit from pool */
3216 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3217 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3218 
3219 		return 0;
3220 	}
3221 
3222 	/* If there are still bits set in the VLVFB registers
3223 	 * for the VLAN ID indicated we need to see if the
3224 	 * caller is requesting that we clear the VFTA entry bit.
3225 	 * If the caller has requested that we clear the VFTA
3226 	 * entry bit but there are still pools/VFs using this VLAN
3227 	 * ID entry then ignore the request.  We're not worried
3228 	 * about the case where we're turning the VFTA VLAN ID
3229 	 * entry bit on, only when requested to turn it off as
3230 	 * there may be multiple pools and/or VFs using the
3231 	 * VLAN ID entry.  In that case we cannot clear the
3232 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3233 	 * been cleared.  This will be indicated by "bits" being
3234 	 * zero.
3235 	 */
3236 	vfta_delta = 0;
3237 
3238 vlvf_update:
3239 	/* record pool change and enable VLAN ID if not already enabled */
3240 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3241 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3242 
3243 vfta_update:
3244 	/* Update VFTA now that we are ready for traffic */
3245 	if (vfta_delta)
3246 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3247 
3248 	return 0;
3249 }
3250 
3251 /**
3252  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3253  *  @hw: pointer to hardware structure
3254  *
3255  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3256  **/
3257 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3258 {
3259 	u32 offset;
3260 
3261 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3262 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3263 
3264 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3265 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3266 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3267 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 /**
3274  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3275  *  @hw: pointer to hardware structure
3276  *
3277  *  Contains the logic to identify if we need to verify link for the
3278  *  crosstalk fix
3279  **/
3280 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3281 {
3282 	/* Does FW say we need the fix */
3283 	if (!hw->need_crosstalk_fix)
3284 		return false;
3285 
3286 	/* Only consider SFP+ PHYs i.e. media type fiber */
3287 	switch (hw->mac.ops.get_media_type(hw)) {
3288 	case ixgbe_media_type_fiber:
3289 	case ixgbe_media_type_fiber_qsfp:
3290 		break;
3291 	default:
3292 		return false;
3293 	}
3294 
3295 	return true;
3296 }
3297 
3298 /**
3299  *  ixgbe_check_mac_link_generic - Determine link and speed status
3300  *  @hw: pointer to hardware structure
3301  *  @speed: pointer to link speed
3302  *  @link_up: true when link is up
3303  *  @link_up_wait_to_complete: bool used to wait for link up or not
3304  *
3305  *  Reads the links register to determine if link is up and the current speed
3306  **/
3307 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3308 				 bool *link_up, bool link_up_wait_to_complete)
3309 {
3310 	u32 links_reg, links_orig;
3311 	u32 i;
3312 
3313 	/* If Crosstalk fix enabled do the sanity check of making sure
3314 	 * the SFP+ cage is full.
3315 	 */
3316 	if (ixgbe_need_crosstalk_fix(hw)) {
3317 		u32 sfp_cage_full;
3318 
3319 		switch (hw->mac.type) {
3320 		case ixgbe_mac_82599EB:
3321 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3322 					IXGBE_ESDP_SDP2;
3323 			break;
3324 		case ixgbe_mac_X550EM_x:
3325 		case ixgbe_mac_x550em_a:
3326 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3327 					IXGBE_ESDP_SDP0;
3328 			break;
3329 		default:
3330 			/* sanity check - No SFP+ devices here */
3331 			sfp_cage_full = false;
3332 			break;
3333 		}
3334 
3335 		if (!sfp_cage_full) {
3336 			*link_up = false;
3337 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3338 			return 0;
3339 		}
3340 	}
3341 
3342 	/* clear the old state */
3343 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3344 
3345 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3346 
3347 	if (links_orig != links_reg) {
3348 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3349 		       links_orig, links_reg);
3350 	}
3351 
3352 	if (link_up_wait_to_complete) {
3353 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3354 			if (links_reg & IXGBE_LINKS_UP) {
3355 				*link_up = true;
3356 				break;
3357 			} else {
3358 				*link_up = false;
3359 			}
3360 			msleep(100);
3361 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3362 		}
3363 	} else {
3364 		if (links_reg & IXGBE_LINKS_UP)
3365 			*link_up = true;
3366 		else
3367 			*link_up = false;
3368 	}
3369 
3370 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3371 	case IXGBE_LINKS_SPEED_10G_82599:
3372 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3373 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3374 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3375 		else
3376 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3377 		break;
3378 	case IXGBE_LINKS_SPEED_1G_82599:
3379 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3380 		break;
3381 	case IXGBE_LINKS_SPEED_100_82599:
3382 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3383 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3384 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3385 		else
3386 			*speed = IXGBE_LINK_SPEED_100_FULL;
3387 		break;
3388 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3389 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3390 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3391 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3392 			*speed = IXGBE_LINK_SPEED_10_FULL;
3393 		}
3394 		break;
3395 	default:
3396 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3397 	}
3398 
3399 	return 0;
3400 }
3401 
3402 /**
3403  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3404  *  the EEPROM
3405  *  @hw: pointer to hardware structure
3406  *  @wwnn_prefix: the alternative WWNN prefix
3407  *  @wwpn_prefix: the alternative WWPN prefix
3408  *
3409  *  This function will read the EEPROM from the alternative SAN MAC address
3410  *  block to check the support for the alternative WWNN/WWPN prefix support.
3411  **/
3412 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3413 					u16 *wwpn_prefix)
3414 {
3415 	u16 offset, caps;
3416 	u16 alt_san_mac_blk_offset;
3417 
3418 	/* clear output first */
3419 	*wwnn_prefix = 0xFFFF;
3420 	*wwpn_prefix = 0xFFFF;
3421 
3422 	/* check if alternative SAN MAC is supported */
3423 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3424 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3425 		goto wwn_prefix_err;
3426 
3427 	if ((alt_san_mac_blk_offset == 0) ||
3428 	    (alt_san_mac_blk_offset == 0xFFFF))
3429 		return 0;
3430 
3431 	/* check capability in alternative san mac address block */
3432 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3433 	if (hw->eeprom.ops.read(hw, offset, &caps))
3434 		goto wwn_prefix_err;
3435 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3436 		return 0;
3437 
3438 	/* get the corresponding prefix for WWNN/WWPN */
3439 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3440 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3441 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3442 
3443 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3444 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3445 		goto wwn_prefix_err;
3446 
3447 	return 0;
3448 
3449 wwn_prefix_err:
3450 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3451 	return 0;
3452 }
3453 
3454 /**
3455  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3456  *  @hw: pointer to hardware structure
3457  *  @enable: enable or disable switch for MAC anti-spoofing
3458  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3459  *
3460  **/
3461 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3462 {
3463 	int vf_target_reg = vf >> 3;
3464 	int vf_target_shift = vf % 8;
3465 	u32 pfvfspoof;
3466 
3467 	if (hw->mac.type == ixgbe_mac_82598EB)
3468 		return;
3469 
3470 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3471 	if (enable)
3472 		pfvfspoof |= BIT(vf_target_shift);
3473 	else
3474 		pfvfspoof &= ~BIT(vf_target_shift);
3475 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3476 }
3477 
3478 /**
3479  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3480  *  @hw: pointer to hardware structure
3481  *  @enable: enable or disable switch for VLAN anti-spoofing
3482  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3483  *
3484  **/
3485 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3486 {
3487 	int vf_target_reg = vf >> 3;
3488 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3489 	u32 pfvfspoof;
3490 
3491 	if (hw->mac.type == ixgbe_mac_82598EB)
3492 		return;
3493 
3494 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3495 	if (enable)
3496 		pfvfspoof |= BIT(vf_target_shift);
3497 	else
3498 		pfvfspoof &= ~BIT(vf_target_shift);
3499 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3500 }
3501 
3502 /**
3503  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3504  *  @hw: pointer to hardware structure
3505  *  @device_caps: the EEPROM word with the extra device capabilities
3506  *
3507  *  This function will read the EEPROM location for the device capabilities,
3508  *  and return the word through device_caps.
3509  **/
3510 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3511 {
3512 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3513 
3514 	return 0;
3515 }
3516 
3517 /**
3518  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3519  * @hw: pointer to hardware structure
3520  * @num_pb: number of packet buffers to allocate
3521  * @headroom: reserve n KB of headroom
3522  * @strategy: packet buffer allocation strategy
3523  **/
3524 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3525 			     int num_pb,
3526 			     u32 headroom,
3527 			     int strategy)
3528 {
3529 	u32 pbsize = hw->mac.rx_pb_size;
3530 	int i = 0;
3531 	u32 rxpktsize, txpktsize, txpbthresh;
3532 
3533 	/* Reserve headroom */
3534 	pbsize -= headroom;
3535 
3536 	if (!num_pb)
3537 		num_pb = 1;
3538 
3539 	/* Divide remaining packet buffer space amongst the number
3540 	 * of packet buffers requested using supplied strategy.
3541 	 */
3542 	switch (strategy) {
3543 	case (PBA_STRATEGY_WEIGHTED):
3544 		/* pba_80_48 strategy weight first half of packet buffer with
3545 		 * 5/8 of the packet buffer space.
3546 		 */
3547 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3548 		pbsize -= rxpktsize * (num_pb / 2);
3549 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3550 		for (; i < (num_pb / 2); i++)
3551 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3552 		/* fall through - configure remaining packet buffers */
3553 	case (PBA_STRATEGY_EQUAL):
3554 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3555 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3556 		for (; i < num_pb; i++)
3557 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3558 		break;
3559 	default:
3560 		break;
3561 	}
3562 
3563 	/*
3564 	 * Setup Tx packet buffer and threshold equally for all TCs
3565 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3566 	 * 10 since the largest packet we support is just over 9K.
3567 	 */
3568 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3569 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3570 	for (i = 0; i < num_pb; i++) {
3571 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3572 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3573 	}
3574 
3575 	/* Clear unused TCs, if any, to zero buffer size*/
3576 	for (; i < IXGBE_MAX_PB; i++) {
3577 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3578 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3579 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3580 	}
3581 }
3582 
3583 /**
3584  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3585  *  @buffer: pointer to EEPROM
3586  *  @length: size of EEPROM to calculate a checksum for
3587  *
3588  *  Calculates the checksum for some buffer on a specified length.  The
3589  *  checksum calculated is returned.
3590  **/
3591 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3592 {
3593 	u32 i;
3594 	u8 sum = 0;
3595 
3596 	if (!buffer)
3597 		return 0;
3598 
3599 	for (i = 0; i < length; i++)
3600 		sum += buffer[i];
3601 
3602 	return (u8) (0 - sum);
3603 }
3604 
3605 /**
3606  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3607  *  @hw: pointer to the HW structure
3608  *  @buffer: command to write and where the return status will be placed
3609  *  @length: length of buffer, must be multiple of 4 bytes
3610  *  @timeout: time in ms to wait for command completion
3611  *
3612  *  Communicates with the manageability block. On success return 0
3613  *  else returns semaphore error when encountering an error acquiring
3614  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3615  *
3616  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3617  *  by the caller.
3618  **/
3619 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3620 		       u32 timeout)
3621 {
3622 	u32 hicr, i, fwsts;
3623 	u16 dword_len;
3624 
3625 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3626 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3627 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3628 	}
3629 
3630 	/* Set bit 9 of FWSTS clearing FW reset indication */
3631 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3632 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3633 
3634 	/* Check that the host interface is enabled. */
3635 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3636 	if (!(hicr & IXGBE_HICR_EN)) {
3637 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3638 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3639 	}
3640 
3641 	/* Calculate length in DWORDs. We must be DWORD aligned */
3642 	if (length % sizeof(u32)) {
3643 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3644 		return IXGBE_ERR_INVALID_ARGUMENT;
3645 	}
3646 
3647 	dword_len = length >> 2;
3648 
3649 	/* The device driver writes the relevant command block
3650 	 * into the ram area.
3651 	 */
3652 	for (i = 0; i < dword_len; i++)
3653 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3654 				      i, cpu_to_le32(buffer[i]));
3655 
3656 	/* Setting this bit tells the ARC that a new command is pending. */
3657 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3658 
3659 	for (i = 0; i < timeout; i++) {
3660 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3661 		if (!(hicr & IXGBE_HICR_C))
3662 			break;
3663 		usleep_range(1000, 2000);
3664 	}
3665 
3666 	/* Check command successful completion. */
3667 	if ((timeout && i == timeout) ||
3668 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3669 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3670 
3671 	return 0;
3672 }
3673 
3674 /**
3675  *  ixgbe_host_interface_command - Issue command to manageability block
3676  *  @hw: pointer to the HW structure
3677  *  @buffer: contains the command to write and where the return status will
3678  *           be placed
3679  *  @length: length of buffer, must be multiple of 4 bytes
3680  *  @timeout: time in ms to wait for command completion
3681  *  @return_data: read and return data from the buffer (true) or not (false)
3682  *  Needed because FW structures are big endian and decoding of
3683  *  these fields can be 8 bit or 16 bit based on command. Decoding
3684  *  is not easily understood without making a table of commands.
3685  *  So we will leave this up to the caller to read back the data
3686  *  in these cases.
3687  *
3688  *  Communicates with the manageability block.  On success return 0
3689  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3690  **/
3691 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3692 				 u32 length, u32 timeout,
3693 				 bool return_data)
3694 {
3695 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3696 	union {
3697 		struct ixgbe_hic_hdr hdr;
3698 		u32 u32arr[1];
3699 	} *bp = buffer;
3700 	u16 buf_len, dword_len;
3701 	s32 status;
3702 	u32 bi;
3703 
3704 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3705 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3706 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3707 	}
3708 	/* Take management host interface semaphore */
3709 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3710 	if (status)
3711 		return status;
3712 
3713 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3714 	if (status)
3715 		goto rel_out;
3716 
3717 	if (!return_data)
3718 		goto rel_out;
3719 
3720 	/* Calculate length in DWORDs */
3721 	dword_len = hdr_size >> 2;
3722 
3723 	/* first pull in the header so we know the buffer length */
3724 	for (bi = 0; bi < dword_len; bi++) {
3725 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3726 		le32_to_cpus(&bp->u32arr[bi]);
3727 	}
3728 
3729 	/* If there is any thing in data position pull it in */
3730 	buf_len = bp->hdr.buf_len;
3731 	if (!buf_len)
3732 		goto rel_out;
3733 
3734 	if (length < round_up(buf_len, 4) + hdr_size) {
3735 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3736 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3737 		goto rel_out;
3738 	}
3739 
3740 	/* Calculate length in DWORDs, add 3 for odd lengths */
3741 	dword_len = (buf_len + 3) >> 2;
3742 
3743 	/* Pull in the rest of the buffer (bi is where we left off) */
3744 	for (; bi <= dword_len; bi++) {
3745 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3746 		le32_to_cpus(&bp->u32arr[bi]);
3747 	}
3748 
3749 rel_out:
3750 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3751 
3752 	return status;
3753 }
3754 
3755 /**
3756  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3757  *  @hw: pointer to the HW structure
3758  *  @maj: driver version major number
3759  *  @min: driver version minor number
3760  *  @build: driver version build number
3761  *  @sub: driver version sub build number
3762  *  @len: length of driver_ver string
3763  *  @driver_ver: driver string
3764  *
3765  *  Sends driver version number to firmware through the manageability
3766  *  block.  On success return 0
3767  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3768  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3769  **/
3770 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3771 				 u8 build, u8 sub, __always_unused u16 len,
3772 				 __always_unused const char *driver_ver)
3773 {
3774 	struct ixgbe_hic_drv_info fw_cmd;
3775 	int i;
3776 	s32 ret_val;
3777 
3778 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3779 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3780 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3781 	fw_cmd.port_num = hw->bus.func;
3782 	fw_cmd.ver_maj = maj;
3783 	fw_cmd.ver_min = min;
3784 	fw_cmd.ver_build = build;
3785 	fw_cmd.ver_sub = sub;
3786 	fw_cmd.hdr.checksum = 0;
3787 	fw_cmd.pad = 0;
3788 	fw_cmd.pad2 = 0;
3789 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3790 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3791 
3792 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3793 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3794 						       sizeof(fw_cmd),
3795 						       IXGBE_HI_COMMAND_TIMEOUT,
3796 						       true);
3797 		if (ret_val != 0)
3798 			continue;
3799 
3800 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3801 		    FW_CEM_RESP_STATUS_SUCCESS)
3802 			ret_val = 0;
3803 		else
3804 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3805 
3806 		break;
3807 	}
3808 
3809 	return ret_val;
3810 }
3811 
3812 /**
3813  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3814  * @hw: pointer to the hardware structure
3815  *
3816  * The 82599 and x540 MACs can experience issues if TX work is still pending
3817  * when a reset occurs.  This function prevents this by flushing the PCIe
3818  * buffers on the system.
3819  **/
3820 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3821 {
3822 	u32 gcr_ext, hlreg0, i, poll;
3823 	u16 value;
3824 
3825 	/*
3826 	 * If double reset is not requested then all transactions should
3827 	 * already be clear and as such there is no work to do
3828 	 */
3829 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3830 		return;
3831 
3832 	/*
3833 	 * Set loopback enable to prevent any transmits from being sent
3834 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3835 	 * has already been cleared.
3836 	 */
3837 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3838 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3839 
3840 	/* wait for a last completion before clearing buffers */
3841 	IXGBE_WRITE_FLUSH(hw);
3842 	usleep_range(3000, 6000);
3843 
3844 	/* Before proceeding, make sure that the PCIe block does not have
3845 	 * transactions pending.
3846 	 */
3847 	poll = ixgbe_pcie_timeout_poll(hw);
3848 	for (i = 0; i < poll; i++) {
3849 		usleep_range(100, 200);
3850 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3851 		if (ixgbe_removed(hw->hw_addr))
3852 			break;
3853 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3854 			break;
3855 	}
3856 
3857 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3858 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3859 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3860 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3861 
3862 	/* Flush all writes and allow 20usec for all transactions to clear */
3863 	IXGBE_WRITE_FLUSH(hw);
3864 	udelay(20);
3865 
3866 	/* restore previous register values */
3867 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3868 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3869 }
3870 
3871 static const u8 ixgbe_emc_temp_data[4] = {
3872 	IXGBE_EMC_INTERNAL_DATA,
3873 	IXGBE_EMC_DIODE1_DATA,
3874 	IXGBE_EMC_DIODE2_DATA,
3875 	IXGBE_EMC_DIODE3_DATA
3876 };
3877 static const u8 ixgbe_emc_therm_limit[4] = {
3878 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3879 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3880 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3881 	IXGBE_EMC_DIODE3_THERM_LIMIT
3882 };
3883 
3884 /**
3885  *  ixgbe_get_ets_data - Extracts the ETS bit data
3886  *  @hw: pointer to hardware structure
3887  *  @ets_cfg: extected ETS data
3888  *  @ets_offset: offset of ETS data
3889  *
3890  *  Returns error code.
3891  **/
3892 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3893 			      u16 *ets_offset)
3894 {
3895 	s32 status;
3896 
3897 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3898 	if (status)
3899 		return status;
3900 
3901 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3902 		return IXGBE_NOT_IMPLEMENTED;
3903 
3904 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3905 	if (status)
3906 		return status;
3907 
3908 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3909 		return IXGBE_NOT_IMPLEMENTED;
3910 
3911 	return 0;
3912 }
3913 
3914 /**
3915  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3916  *  @hw: pointer to hardware structure
3917  *
3918  *  Returns the thermal sensor data structure
3919  **/
3920 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3921 {
3922 	s32 status;
3923 	u16 ets_offset;
3924 	u16 ets_cfg;
3925 	u16 ets_sensor;
3926 	u8  num_sensors;
3927 	u8  i;
3928 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3929 
3930 	/* Only support thermal sensors attached to physical port 0 */
3931 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3932 		return IXGBE_NOT_IMPLEMENTED;
3933 
3934 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3935 	if (status)
3936 		return status;
3937 
3938 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3939 	if (num_sensors > IXGBE_MAX_SENSORS)
3940 		num_sensors = IXGBE_MAX_SENSORS;
3941 
3942 	for (i = 0; i < num_sensors; i++) {
3943 		u8  sensor_index;
3944 		u8  sensor_location;
3945 
3946 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3947 					     &ets_sensor);
3948 		if (status)
3949 			return status;
3950 
3951 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3952 				IXGBE_ETS_DATA_INDEX_SHIFT);
3953 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3954 				   IXGBE_ETS_DATA_LOC_SHIFT);
3955 
3956 		if (sensor_location != 0) {
3957 			status = hw->phy.ops.read_i2c_byte(hw,
3958 					ixgbe_emc_temp_data[sensor_index],
3959 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3960 					&data->sensor[i].temp);
3961 			if (status)
3962 				return status;
3963 		}
3964 	}
3965 
3966 	return 0;
3967 }
3968 
3969 /**
3970  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3971  * @hw: pointer to hardware structure
3972  *
3973  * Inits the thermal sensor thresholds according to the NVM map
3974  * and save off the threshold and location values into mac.thermal_sensor_data
3975  **/
3976 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3977 {
3978 	s32 status;
3979 	u16 ets_offset;
3980 	u16 ets_cfg;
3981 	u16 ets_sensor;
3982 	u8  low_thresh_delta;
3983 	u8  num_sensors;
3984 	u8  therm_limit;
3985 	u8  i;
3986 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3987 
3988 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3989 
3990 	/* Only support thermal sensors attached to physical port 0 */
3991 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3992 		return IXGBE_NOT_IMPLEMENTED;
3993 
3994 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3995 	if (status)
3996 		return status;
3997 
3998 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3999 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
4000 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4001 	if (num_sensors > IXGBE_MAX_SENSORS)
4002 		num_sensors = IXGBE_MAX_SENSORS;
4003 
4004 	for (i = 0; i < num_sensors; i++) {
4005 		u8  sensor_index;
4006 		u8  sensor_location;
4007 
4008 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4009 			hw_err(hw, "eeprom read at offset %d failed\n",
4010 			       ets_offset + 1 + i);
4011 			continue;
4012 		}
4013 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4014 				IXGBE_ETS_DATA_INDEX_SHIFT);
4015 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4016 				   IXGBE_ETS_DATA_LOC_SHIFT);
4017 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4018 
4019 		hw->phy.ops.write_i2c_byte(hw,
4020 			ixgbe_emc_therm_limit[sensor_index],
4021 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4022 
4023 		if (sensor_location == 0)
4024 			continue;
4025 
4026 		data->sensor[i].location = sensor_location;
4027 		data->sensor[i].caution_thresh = therm_limit;
4028 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4029 	}
4030 
4031 	return 0;
4032 }
4033 
4034 /**
4035  *  ixgbe_get_orom_version - Return option ROM from EEPROM
4036  *
4037  *  @hw: pointer to hardware structure
4038  *  @nvm_ver: pointer to output structure
4039  *
4040  *  if valid option ROM version, nvm_ver->or_valid set to true
4041  *  else nvm_ver->or_valid is false.
4042  **/
4043 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4044 			    struct ixgbe_nvm_version *nvm_ver)
4045 {
4046 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4047 
4048 	nvm_ver->or_valid = false;
4049 	/* Option Rom may or may not be present.  Start with pointer */
4050 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4051 
4052 	/* make sure offset is valid */
4053 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4054 		return;
4055 
4056 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4057 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4058 
4059 	/* option rom exists and is valid */
4060 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4061 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4062 	    eeprom_cfg_blkh == NVM_VER_INVALID)
4063 		return;
4064 
4065 	nvm_ver->or_valid = true;
4066 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4067 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4068 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4069 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4070 }
4071 
4072 /**
4073  *  ixgbe_get_oem_prod_version Etrack ID from EEPROM
4074  *
4075  *  @hw: pointer to hardware structure
4076  *  @nvm_ver: pointer to output structure
4077  *
4078  *  if valid OEM product version, nvm_ver->oem_valid set to true
4079  *  else nvm_ver->oem_valid is false.
4080  **/
4081 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4082 				struct ixgbe_nvm_version *nvm_ver)
4083 {
4084 	u16 rel_num, prod_ver, mod_len, cap, offset;
4085 
4086 	nvm_ver->oem_valid = false;
4087 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4088 
4089 	/* Return is offset to OEM Product Version block is invalid */
4090 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4091 		return;
4092 
4093 	/* Read product version block */
4094 	hw->eeprom.ops.read(hw, offset, &mod_len);
4095 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4096 
4097 	/* Return if OEM product version block is invalid */
4098 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4099 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4100 		return;
4101 
4102 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4103 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4104 
4105 	/* Return if version is invalid */
4106 	if ((rel_num | prod_ver) == 0x0 ||
4107 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4108 		return;
4109 
4110 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4111 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4112 	nvm_ver->oem_release = rel_num;
4113 	nvm_ver->oem_valid = true;
4114 }
4115 
4116 /**
4117  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4118  *
4119  *  @hw: pointer to hardware structure
4120  *  @nvm_ver: pointer to output structure
4121  *
4122  *  word read errors will return 0xFFFF
4123  **/
4124 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4125 		      struct ixgbe_nvm_version *nvm_ver)
4126 {
4127 	u16 etk_id_l, etk_id_h;
4128 
4129 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4130 		etk_id_l = NVM_VER_INVALID;
4131 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4132 		etk_id_h = NVM_VER_INVALID;
4133 
4134 	/* The word order for the version format is determined by high order
4135 	 * word bit 15.
4136 	 */
4137 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4138 		nvm_ver->etk_id = etk_id_h;
4139 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4140 	} else {
4141 		nvm_ver->etk_id = etk_id_l;
4142 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4143 	}
4144 }
4145 
4146 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4147 {
4148 	u32 rxctrl;
4149 
4150 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4151 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4152 		if (hw->mac.type != ixgbe_mac_82598EB) {
4153 			u32 pfdtxgswc;
4154 
4155 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4156 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4157 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4158 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4159 				hw->mac.set_lben = true;
4160 			} else {
4161 				hw->mac.set_lben = false;
4162 			}
4163 		}
4164 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4165 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4166 	}
4167 }
4168 
4169 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4170 {
4171 	u32 rxctrl;
4172 
4173 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4174 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4175 
4176 	if (hw->mac.type != ixgbe_mac_82598EB) {
4177 		if (hw->mac.set_lben) {
4178 			u32 pfdtxgswc;
4179 
4180 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4181 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4182 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4183 			hw->mac.set_lben = false;
4184 		}
4185 	}
4186 }
4187 
4188 /** ixgbe_mng_present - returns true when management capability is present
4189  * @hw: pointer to hardware structure
4190  **/
4191 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4192 {
4193 	u32 fwsm;
4194 
4195 	if (hw->mac.type < ixgbe_mac_82599EB)
4196 		return false;
4197 
4198 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4199 
4200 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4201 }
4202 
4203 /**
4204  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4205  *  @hw: pointer to hardware structure
4206  *  @speed: new link speed
4207  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4208  *
4209  *  Set the link speed in the MAC and/or PHY register and restarts link.
4210  */
4211 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4212 					  ixgbe_link_speed speed,
4213 					  bool autoneg_wait_to_complete)
4214 {
4215 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4216 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4217 	s32 status = 0;
4218 	u32 speedcnt = 0;
4219 	u32 i = 0;
4220 	bool autoneg, link_up = false;
4221 
4222 	/* Mask off requested but non-supported speeds */
4223 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4224 	if (status)
4225 		return status;
4226 
4227 	speed &= link_speed;
4228 
4229 	/* Try each speed one by one, highest priority first.  We do this in
4230 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4231 	 */
4232 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4233 		speedcnt++;
4234 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4235 
4236 		/* Set the module link speed */
4237 		switch (hw->phy.media_type) {
4238 		case ixgbe_media_type_fiber:
4239 			hw->mac.ops.set_rate_select_speed(hw,
4240 						    IXGBE_LINK_SPEED_10GB_FULL);
4241 			break;
4242 		case ixgbe_media_type_fiber_qsfp:
4243 			/* QSFP module automatically detects MAC link speed */
4244 			break;
4245 		default:
4246 			hw_dbg(hw, "Unexpected media type\n");
4247 			break;
4248 		}
4249 
4250 		/* Allow module to change analog characteristics (1G->10G) */
4251 		msleep(40);
4252 
4253 		status = hw->mac.ops.setup_mac_link(hw,
4254 						    IXGBE_LINK_SPEED_10GB_FULL,
4255 						    autoneg_wait_to_complete);
4256 		if (status)
4257 			return status;
4258 
4259 		/* Flap the Tx laser if it has not already been done */
4260 		if (hw->mac.ops.flap_tx_laser)
4261 			hw->mac.ops.flap_tx_laser(hw);
4262 
4263 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4264 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4265 		 * attempted.  82599 uses the same timing for 10g SFI.
4266 		 */
4267 		for (i = 0; i < 5; i++) {
4268 			/* Wait for the link partner to also set speed */
4269 			msleep(100);
4270 
4271 			/* If we have link, just jump out */
4272 			status = hw->mac.ops.check_link(hw, &link_speed,
4273 							&link_up, false);
4274 			if (status)
4275 				return status;
4276 
4277 			if (link_up)
4278 				goto out;
4279 		}
4280 	}
4281 
4282 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4283 		speedcnt++;
4284 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4285 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4286 
4287 		/* Set the module link speed */
4288 		switch (hw->phy.media_type) {
4289 		case ixgbe_media_type_fiber:
4290 			hw->mac.ops.set_rate_select_speed(hw,
4291 						     IXGBE_LINK_SPEED_1GB_FULL);
4292 			break;
4293 		case ixgbe_media_type_fiber_qsfp:
4294 			/* QSFP module automatically detects link speed */
4295 			break;
4296 		default:
4297 			hw_dbg(hw, "Unexpected media type\n");
4298 			break;
4299 		}
4300 
4301 		/* Allow module to change analog characteristics (10G->1G) */
4302 		msleep(40);
4303 
4304 		status = hw->mac.ops.setup_mac_link(hw,
4305 						    IXGBE_LINK_SPEED_1GB_FULL,
4306 						    autoneg_wait_to_complete);
4307 		if (status)
4308 			return status;
4309 
4310 		/* Flap the Tx laser if it has not already been done */
4311 		if (hw->mac.ops.flap_tx_laser)
4312 			hw->mac.ops.flap_tx_laser(hw);
4313 
4314 		/* Wait for the link partner to also set speed */
4315 		msleep(100);
4316 
4317 		/* If we have link, just jump out */
4318 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4319 						false);
4320 		if (status)
4321 			return status;
4322 
4323 		if (link_up)
4324 			goto out;
4325 	}
4326 
4327 	/* We didn't get link.  Configure back to the highest speed we tried,
4328 	 * (if there was more than one).  We call ourselves back with just the
4329 	 * single highest speed that the user requested.
4330 	 */
4331 	if (speedcnt > 1)
4332 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4333 						      highest_link_speed,
4334 						      autoneg_wait_to_complete);
4335 
4336 out:
4337 	/* Set autoneg_advertised value based on input link speed */
4338 	hw->phy.autoneg_advertised = 0;
4339 
4340 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4341 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4342 
4343 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4344 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4345 
4346 	return status;
4347 }
4348 
4349 /**
4350  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4351  *  @hw: pointer to hardware structure
4352  *  @speed: link speed to set
4353  *
4354  *  Set module link speed via the soft rate select.
4355  */
4356 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4357 				      ixgbe_link_speed speed)
4358 {
4359 	s32 status;
4360 	u8 rs, eeprom_data;
4361 
4362 	switch (speed) {
4363 	case IXGBE_LINK_SPEED_10GB_FULL:
4364 		/* one bit mask same as setting on */
4365 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4366 		break;
4367 	case IXGBE_LINK_SPEED_1GB_FULL:
4368 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4369 		break;
4370 	default:
4371 		hw_dbg(hw, "Invalid fixed module speed\n");
4372 		return;
4373 	}
4374 
4375 	/* Set RS0 */
4376 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4377 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4378 					   &eeprom_data);
4379 	if (status) {
4380 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4381 		return;
4382 	}
4383 
4384 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4385 
4386 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4387 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4388 					    eeprom_data);
4389 	if (status) {
4390 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4391 		return;
4392 	}
4393 
4394 	/* Set RS1 */
4395 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4396 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4397 					   &eeprom_data);
4398 	if (status) {
4399 		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4400 		return;
4401 	}
4402 
4403 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4404 
4405 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4406 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4407 					    eeprom_data);
4408 	if (status) {
4409 		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4410 		return;
4411 	}
4412 }
4413