1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2016 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 	IXGBE_MVALS_INIT(8259X)
63 };
64 
65 /**
66  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67  *  control
68  *  @hw: pointer to hardware structure
69  *
70  *  There are several phys that do not support autoneg flow control. This
71  *  function check the device id to see if the associated phy supports
72  *  autoneg flow control.
73  **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 	bool supported = false;
77 	ixgbe_link_speed speed;
78 	bool link_up;
79 
80 	switch (hw->phy.media_type) {
81 	case ixgbe_media_type_fiber:
82 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 		/* if link is down, assume supported */
84 		if (link_up)
85 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 				true : false;
87 		else
88 			supported = true;
89 		break;
90 	case ixgbe_media_type_backplane:
91 		supported = true;
92 		break;
93 	case ixgbe_media_type_copper:
94 		/* only some copper devices support flow control autoneg */
95 		switch (hw->device_id) {
96 		case IXGBE_DEV_ID_82599_T3_LOM:
97 		case IXGBE_DEV_ID_X540T:
98 		case IXGBE_DEV_ID_X540T1:
99 		case IXGBE_DEV_ID_X550T:
100 		case IXGBE_DEV_ID_X550T1:
101 		case IXGBE_DEV_ID_X550EM_X_10G_T:
102 			supported = true;
103 			break;
104 		default:
105 			break;
106 		}
107 	default:
108 		break;
109 	}
110 
111 	return supported;
112 }
113 
114 /**
115  *  ixgbe_setup_fc_generic - Set up flow control
116  *  @hw: pointer to hardware structure
117  *
118  *  Called at init time to set up flow control.
119  **/
120 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
121 {
122 	s32 ret_val = 0;
123 	u32 reg = 0, reg_bp = 0;
124 	u16 reg_cu = 0;
125 	bool locked = false;
126 
127 	/*
128 	 * Validate the requested mode.  Strict IEEE mode does not allow
129 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
130 	 */
131 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
132 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
133 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
134 	}
135 
136 	/*
137 	 * 10gig parts do not have a word in the EEPROM to determine the
138 	 * default flow control setting, so we explicitly set it to full.
139 	 */
140 	if (hw->fc.requested_mode == ixgbe_fc_default)
141 		hw->fc.requested_mode = ixgbe_fc_full;
142 
143 	/*
144 	 * Set up the 1G and 10G flow control advertisement registers so the
145 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
146 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
147 	 */
148 	switch (hw->phy.media_type) {
149 	case ixgbe_media_type_backplane:
150 		/* some MAC's need RMW protection on AUTOC */
151 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
152 		if (ret_val)
153 			return ret_val;
154 
155 		/* only backplane uses autoc so fall though */
156 	case ixgbe_media_type_fiber:
157 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
158 
159 		break;
160 	case ixgbe_media_type_copper:
161 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
162 					MDIO_MMD_AN, &reg_cu);
163 		break;
164 	default:
165 		break;
166 	}
167 
168 	/*
169 	 * The possible values of fc.requested_mode are:
170 	 * 0: Flow control is completely disabled
171 	 * 1: Rx flow control is enabled (we can receive pause frames,
172 	 *    but not send pause frames).
173 	 * 2: Tx flow control is enabled (we can send pause frames but
174 	 *    we do not support receiving pause frames).
175 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
176 	 * other: Invalid.
177 	 */
178 	switch (hw->fc.requested_mode) {
179 	case ixgbe_fc_none:
180 		/* Flow control completely disabled by software override. */
181 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
182 		if (hw->phy.media_type == ixgbe_media_type_backplane)
183 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
184 				    IXGBE_AUTOC_ASM_PAUSE);
185 		else if (hw->phy.media_type == ixgbe_media_type_copper)
186 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
187 		break;
188 	case ixgbe_fc_tx_pause:
189 		/*
190 		 * Tx Flow control is enabled, and Rx Flow control is
191 		 * disabled by software override.
192 		 */
193 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
194 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
195 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
196 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
197 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
198 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
199 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
200 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
201 		}
202 		break;
203 	case ixgbe_fc_rx_pause:
204 		/*
205 		 * Rx Flow control is enabled and Tx Flow control is
206 		 * disabled by software override. Since there really
207 		 * isn't a way to advertise that we are capable of RX
208 		 * Pause ONLY, we will advertise that we support both
209 		 * symmetric and asymmetric Rx PAUSE, as such we fall
210 		 * through to the fc_full statement.  Later, we will
211 		 * disable the adapter's ability to send PAUSE frames.
212 		 */
213 	case ixgbe_fc_full:
214 		/* Flow control (both Rx and Tx) is enabled by SW override. */
215 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
216 		if (hw->phy.media_type == ixgbe_media_type_backplane)
217 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
218 				  IXGBE_AUTOC_ASM_PAUSE;
219 		else if (hw->phy.media_type == ixgbe_media_type_copper)
220 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
221 		break;
222 	default:
223 		hw_dbg(hw, "Flow control param set incorrectly\n");
224 		return IXGBE_ERR_CONFIG;
225 	}
226 
227 	if (hw->mac.type != ixgbe_mac_X540) {
228 		/*
229 		 * Enable auto-negotiation between the MAC & PHY;
230 		 * the MAC will advertise clause 37 flow control.
231 		 */
232 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
233 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
234 
235 		/* Disable AN timeout */
236 		if (hw->fc.strict_ieee)
237 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
238 
239 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
240 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
241 	}
242 
243 	/*
244 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
245 	 * and copper. There is no need to set the PCS1GCTL register.
246 	 *
247 	 */
248 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
249 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
250 		 * LESM is on, likewise reset_pipeline requries the lock as
251 		 * it also writes AUTOC.
252 		 */
253 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
254 		if (ret_val)
255 			return ret_val;
256 
257 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
258 		   ixgbe_device_supports_autoneg_fc(hw)) {
259 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
260 				      MDIO_MMD_AN, reg_cu);
261 	}
262 
263 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
264 	return ret_val;
265 }
266 
267 /**
268  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
269  *  @hw: pointer to hardware structure
270  *
271  *  Starts the hardware by filling the bus info structure and media type, clears
272  *  all on chip counters, initializes receive address registers, multicast
273  *  table, VLAN filter table, calls routine to set up link and flow control
274  *  settings, and leaves transmit and receive units disabled and uninitialized
275  **/
276 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
277 {
278 	s32 ret_val;
279 	u32 ctrl_ext;
280 	u16 device_caps;
281 
282 	/* Set the media type */
283 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
284 
285 	/* Identify the PHY */
286 	hw->phy.ops.identify(hw);
287 
288 	/* Clear the VLAN filter table */
289 	hw->mac.ops.clear_vfta(hw);
290 
291 	/* Clear statistics registers */
292 	hw->mac.ops.clear_hw_cntrs(hw);
293 
294 	/* Set No Snoop Disable */
295 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
296 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
297 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
298 	IXGBE_WRITE_FLUSH(hw);
299 
300 	/* Setup flow control */
301 	ret_val = hw->mac.ops.setup_fc(hw);
302 	if (ret_val)
303 		return ret_val;
304 
305 	/* Cashe bit indicating need for crosstalk fix */
306 	switch (hw->mac.type) {
307 	case ixgbe_mac_82599EB:
308 	case ixgbe_mac_X550EM_x:
309 	case ixgbe_mac_x550em_a:
310 		hw->mac.ops.get_device_caps(hw, &device_caps);
311 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
312 			hw->need_crosstalk_fix = false;
313 		else
314 			hw->need_crosstalk_fix = true;
315 		break;
316 	default:
317 		hw->need_crosstalk_fix = false;
318 		break;
319 	}
320 
321 	/* Clear adapter stopped flag */
322 	hw->adapter_stopped = false;
323 
324 	return 0;
325 }
326 
327 /**
328  *  ixgbe_start_hw_gen2 - Init sequence for common device family
329  *  @hw: pointer to hw structure
330  *
331  * Performs the init sequence common to the second generation
332  * of 10 GbE devices.
333  * Devices in the second generation:
334  *     82599
335  *     X540
336  **/
337 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
338 {
339 	u32 i;
340 
341 	/* Clear the rate limiters */
342 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
343 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
344 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
345 	}
346 	IXGBE_WRITE_FLUSH(hw);
347 
348 #ifndef CONFIG_SPARC
349 	/* Disable relaxed ordering */
350 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
351 		u32 regval;
352 
353 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
354 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
355 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
356 	}
357 
358 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
359 		u32 regval;
360 
361 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
362 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
363 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
364 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
365 	}
366 #endif
367 	return 0;
368 }
369 
370 /**
371  *  ixgbe_init_hw_generic - Generic hardware initialization
372  *  @hw: pointer to hardware structure
373  *
374  *  Initialize the hardware by resetting the hardware, filling the bus info
375  *  structure and media type, clears all on chip counters, initializes receive
376  *  address registers, multicast table, VLAN filter table, calls routine to set
377  *  up link and flow control settings, and leaves transmit and receive units
378  *  disabled and uninitialized
379  **/
380 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
381 {
382 	s32 status;
383 
384 	/* Reset the hardware */
385 	status = hw->mac.ops.reset_hw(hw);
386 
387 	if (status == 0) {
388 		/* Start the HW */
389 		status = hw->mac.ops.start_hw(hw);
390 	}
391 
392 	return status;
393 }
394 
395 /**
396  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
397  *  @hw: pointer to hardware structure
398  *
399  *  Clears all hardware statistics counters by reading them from the hardware
400  *  Statistics counters are clear on read.
401  **/
402 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
403 {
404 	u16 i = 0;
405 
406 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
407 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
408 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
409 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
410 	for (i = 0; i < 8; i++)
411 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
412 
413 	IXGBE_READ_REG(hw, IXGBE_MLFC);
414 	IXGBE_READ_REG(hw, IXGBE_MRFC);
415 	IXGBE_READ_REG(hw, IXGBE_RLEC);
416 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
417 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
418 	if (hw->mac.type >= ixgbe_mac_82599EB) {
419 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
420 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
421 	} else {
422 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
423 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
424 	}
425 
426 	for (i = 0; i < 8; i++) {
427 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
428 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
429 		if (hw->mac.type >= ixgbe_mac_82599EB) {
430 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
431 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
432 		} else {
433 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
434 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
435 		}
436 	}
437 	if (hw->mac.type >= ixgbe_mac_82599EB)
438 		for (i = 0; i < 8; i++)
439 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
440 	IXGBE_READ_REG(hw, IXGBE_PRC64);
441 	IXGBE_READ_REG(hw, IXGBE_PRC127);
442 	IXGBE_READ_REG(hw, IXGBE_PRC255);
443 	IXGBE_READ_REG(hw, IXGBE_PRC511);
444 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
445 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
446 	IXGBE_READ_REG(hw, IXGBE_GPRC);
447 	IXGBE_READ_REG(hw, IXGBE_BPRC);
448 	IXGBE_READ_REG(hw, IXGBE_MPRC);
449 	IXGBE_READ_REG(hw, IXGBE_GPTC);
450 	IXGBE_READ_REG(hw, IXGBE_GORCL);
451 	IXGBE_READ_REG(hw, IXGBE_GORCH);
452 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
453 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
454 	if (hw->mac.type == ixgbe_mac_82598EB)
455 		for (i = 0; i < 8; i++)
456 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
457 	IXGBE_READ_REG(hw, IXGBE_RUC);
458 	IXGBE_READ_REG(hw, IXGBE_RFC);
459 	IXGBE_READ_REG(hw, IXGBE_ROC);
460 	IXGBE_READ_REG(hw, IXGBE_RJC);
461 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
462 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
463 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
464 	IXGBE_READ_REG(hw, IXGBE_TORL);
465 	IXGBE_READ_REG(hw, IXGBE_TORH);
466 	IXGBE_READ_REG(hw, IXGBE_TPR);
467 	IXGBE_READ_REG(hw, IXGBE_TPT);
468 	IXGBE_READ_REG(hw, IXGBE_PTC64);
469 	IXGBE_READ_REG(hw, IXGBE_PTC127);
470 	IXGBE_READ_REG(hw, IXGBE_PTC255);
471 	IXGBE_READ_REG(hw, IXGBE_PTC511);
472 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
473 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
474 	IXGBE_READ_REG(hw, IXGBE_MPTC);
475 	IXGBE_READ_REG(hw, IXGBE_BPTC);
476 	for (i = 0; i < 16; i++) {
477 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
478 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
479 		if (hw->mac.type >= ixgbe_mac_82599EB) {
480 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
481 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
482 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
483 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
484 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
485 		} else {
486 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
487 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
488 		}
489 	}
490 
491 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
492 		if (hw->phy.id == 0)
493 			hw->phy.ops.identify(hw);
494 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
495 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
496 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
497 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
498 	}
499 
500 	return 0;
501 }
502 
503 /**
504  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
505  *  @hw: pointer to hardware structure
506  *  @pba_num: stores the part number string from the EEPROM
507  *  @pba_num_size: part number string buffer length
508  *
509  *  Reads the part number string from the EEPROM.
510  **/
511 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
512 				  u32 pba_num_size)
513 {
514 	s32 ret_val;
515 	u16 data;
516 	u16 pba_ptr;
517 	u16 offset;
518 	u16 length;
519 
520 	if (pba_num == NULL) {
521 		hw_dbg(hw, "PBA string buffer was null\n");
522 		return IXGBE_ERR_INVALID_ARGUMENT;
523 	}
524 
525 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
526 	if (ret_val) {
527 		hw_dbg(hw, "NVM Read Error\n");
528 		return ret_val;
529 	}
530 
531 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
532 	if (ret_val) {
533 		hw_dbg(hw, "NVM Read Error\n");
534 		return ret_val;
535 	}
536 
537 	/*
538 	 * if data is not ptr guard the PBA must be in legacy format which
539 	 * means pba_ptr is actually our second data word for the PBA number
540 	 * and we can decode it into an ascii string
541 	 */
542 	if (data != IXGBE_PBANUM_PTR_GUARD) {
543 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
544 
545 		/* we will need 11 characters to store the PBA */
546 		if (pba_num_size < 11) {
547 			hw_dbg(hw, "PBA string buffer too small\n");
548 			return IXGBE_ERR_NO_SPACE;
549 		}
550 
551 		/* extract hex string from data and pba_ptr */
552 		pba_num[0] = (data >> 12) & 0xF;
553 		pba_num[1] = (data >> 8) & 0xF;
554 		pba_num[2] = (data >> 4) & 0xF;
555 		pba_num[3] = data & 0xF;
556 		pba_num[4] = (pba_ptr >> 12) & 0xF;
557 		pba_num[5] = (pba_ptr >> 8) & 0xF;
558 		pba_num[6] = '-';
559 		pba_num[7] = 0;
560 		pba_num[8] = (pba_ptr >> 4) & 0xF;
561 		pba_num[9] = pba_ptr & 0xF;
562 
563 		/* put a null character on the end of our string */
564 		pba_num[10] = '\0';
565 
566 		/* switch all the data but the '-' to hex char */
567 		for (offset = 0; offset < 10; offset++) {
568 			if (pba_num[offset] < 0xA)
569 				pba_num[offset] += '0';
570 			else if (pba_num[offset] < 0x10)
571 				pba_num[offset] += 'A' - 0xA;
572 		}
573 
574 		return 0;
575 	}
576 
577 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
578 	if (ret_val) {
579 		hw_dbg(hw, "NVM Read Error\n");
580 		return ret_val;
581 	}
582 
583 	if (length == 0xFFFF || length == 0) {
584 		hw_dbg(hw, "NVM PBA number section invalid length\n");
585 		return IXGBE_ERR_PBA_SECTION;
586 	}
587 
588 	/* check if pba_num buffer is big enough */
589 	if (pba_num_size  < (((u32)length * 2) - 1)) {
590 		hw_dbg(hw, "PBA string buffer too small\n");
591 		return IXGBE_ERR_NO_SPACE;
592 	}
593 
594 	/* trim pba length from start of string */
595 	pba_ptr++;
596 	length--;
597 
598 	for (offset = 0; offset < length; offset++) {
599 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
600 		if (ret_val) {
601 			hw_dbg(hw, "NVM Read Error\n");
602 			return ret_val;
603 		}
604 		pba_num[offset * 2] = (u8)(data >> 8);
605 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
606 	}
607 	pba_num[offset * 2] = '\0';
608 
609 	return 0;
610 }
611 
612 /**
613  *  ixgbe_get_mac_addr_generic - Generic get MAC address
614  *  @hw: pointer to hardware structure
615  *  @mac_addr: Adapter MAC address
616  *
617  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
618  *  A reset of the adapter must be performed prior to calling this function
619  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
620  **/
621 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
622 {
623 	u32 rar_high;
624 	u32 rar_low;
625 	u16 i;
626 
627 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
628 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
629 
630 	for (i = 0; i < 4; i++)
631 		mac_addr[i] = (u8)(rar_low >> (i*8));
632 
633 	for (i = 0; i < 2; i++)
634 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
635 
636 	return 0;
637 }
638 
639 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
640 {
641 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
642 	case IXGBE_PCI_LINK_WIDTH_1:
643 		return ixgbe_bus_width_pcie_x1;
644 	case IXGBE_PCI_LINK_WIDTH_2:
645 		return ixgbe_bus_width_pcie_x2;
646 	case IXGBE_PCI_LINK_WIDTH_4:
647 		return ixgbe_bus_width_pcie_x4;
648 	case IXGBE_PCI_LINK_WIDTH_8:
649 		return ixgbe_bus_width_pcie_x8;
650 	default:
651 		return ixgbe_bus_width_unknown;
652 	}
653 }
654 
655 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
656 {
657 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
658 	case IXGBE_PCI_LINK_SPEED_2500:
659 		return ixgbe_bus_speed_2500;
660 	case IXGBE_PCI_LINK_SPEED_5000:
661 		return ixgbe_bus_speed_5000;
662 	case IXGBE_PCI_LINK_SPEED_8000:
663 		return ixgbe_bus_speed_8000;
664 	default:
665 		return ixgbe_bus_speed_unknown;
666 	}
667 }
668 
669 /**
670  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
671  *  @hw: pointer to hardware structure
672  *
673  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
674  **/
675 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
676 {
677 	u16 link_status;
678 
679 	hw->bus.type = ixgbe_bus_type_pci_express;
680 
681 	/* Get the negotiated link width and speed from PCI config space */
682 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
683 
684 	hw->bus.width = ixgbe_convert_bus_width(link_status);
685 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
686 
687 	hw->mac.ops.set_lan_id(hw);
688 
689 	return 0;
690 }
691 
692 /**
693  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
694  *  @hw: pointer to the HW structure
695  *
696  *  Determines the LAN function id by reading memory-mapped registers
697  *  and swaps the port value if requested.
698  **/
699 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
700 {
701 	struct ixgbe_bus_info *bus = &hw->bus;
702 	u16 ee_ctrl_4;
703 	u32 reg;
704 
705 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
706 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
707 	bus->lan_id = bus->func;
708 
709 	/* check for a port swap */
710 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
711 	if (reg & IXGBE_FACTPS_LFS)
712 		bus->func ^= 0x1;
713 
714 	/* Get MAC instance from EEPROM for configuring CS4227 */
715 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
716 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
717 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
718 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
719 	}
720 }
721 
722 /**
723  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
724  *  @hw: pointer to hardware structure
725  *
726  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
727  *  disables transmit and receive units. The adapter_stopped flag is used by
728  *  the shared code and drivers to determine if the adapter is in a stopped
729  *  state and should not touch the hardware.
730  **/
731 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
732 {
733 	u32 reg_val;
734 	u16 i;
735 
736 	/*
737 	 * Set the adapter_stopped flag so other driver functions stop touching
738 	 * the hardware
739 	 */
740 	hw->adapter_stopped = true;
741 
742 	/* Disable the receive unit */
743 	hw->mac.ops.disable_rx(hw);
744 
745 	/* Clear interrupt mask to stop interrupts from being generated */
746 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
747 
748 	/* Clear any pending interrupts, flush previous writes */
749 	IXGBE_READ_REG(hw, IXGBE_EICR);
750 
751 	/* Disable the transmit unit.  Each queue must be disabled. */
752 	for (i = 0; i < hw->mac.max_tx_queues; i++)
753 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
754 
755 	/* Disable the receive unit by stopping each queue */
756 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
757 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
758 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
759 		reg_val |= IXGBE_RXDCTL_SWFLSH;
760 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
761 	}
762 
763 	/* flush all queues disables */
764 	IXGBE_WRITE_FLUSH(hw);
765 	usleep_range(1000, 2000);
766 
767 	/*
768 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
769 	 * access and verify no pending requests
770 	 */
771 	return ixgbe_disable_pcie_master(hw);
772 }
773 
774 /**
775  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
776  *  @hw: pointer to hardware structure
777  *  @index: led number to turn on
778  **/
779 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
780 {
781 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
782 
783 	if (index > 3)
784 		return IXGBE_ERR_PARAM;
785 
786 	/* To turn on the LED, set mode to ON. */
787 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
788 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
789 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
790 	IXGBE_WRITE_FLUSH(hw);
791 
792 	return 0;
793 }
794 
795 /**
796  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
797  *  @hw: pointer to hardware structure
798  *  @index: led number to turn off
799  **/
800 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
801 {
802 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
803 
804 	if (index > 3)
805 		return IXGBE_ERR_PARAM;
806 
807 	/* To turn off the LED, set mode to OFF. */
808 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
809 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
810 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
811 	IXGBE_WRITE_FLUSH(hw);
812 
813 	return 0;
814 }
815 
816 /**
817  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
818  *  @hw: pointer to hardware structure
819  *
820  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
821  *  ixgbe_hw struct in order to set up EEPROM access.
822  **/
823 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
824 {
825 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
826 	u32 eec;
827 	u16 eeprom_size;
828 
829 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
830 		eeprom->type = ixgbe_eeprom_none;
831 		/* Set default semaphore delay to 10ms which is a well
832 		 * tested value */
833 		eeprom->semaphore_delay = 10;
834 		/* Clear EEPROM page size, it will be initialized as needed */
835 		eeprom->word_page_size = 0;
836 
837 		/*
838 		 * Check for EEPROM present first.
839 		 * If not present leave as none
840 		 */
841 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
842 		if (eec & IXGBE_EEC_PRES) {
843 			eeprom->type = ixgbe_eeprom_spi;
844 
845 			/*
846 			 * SPI EEPROM is assumed here.  This code would need to
847 			 * change if a future EEPROM is not SPI.
848 			 */
849 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
850 					    IXGBE_EEC_SIZE_SHIFT);
851 			eeprom->word_size = BIT(eeprom_size +
852 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
853 		}
854 
855 		if (eec & IXGBE_EEC_ADDR_SIZE)
856 			eeprom->address_bits = 16;
857 		else
858 			eeprom->address_bits = 8;
859 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
860 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
861 	}
862 
863 	return 0;
864 }
865 
866 /**
867  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
868  *  @hw: pointer to hardware structure
869  *  @offset: offset within the EEPROM to write
870  *  @words: number of words
871  *  @data: 16 bit word(s) to write to EEPROM
872  *
873  *  Reads 16 bit word(s) from EEPROM through bit-bang method
874  **/
875 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
876 					       u16 words, u16 *data)
877 {
878 	s32 status;
879 	u16 i, count;
880 
881 	hw->eeprom.ops.init_params(hw);
882 
883 	if (words == 0)
884 		return IXGBE_ERR_INVALID_ARGUMENT;
885 
886 	if (offset + words > hw->eeprom.word_size)
887 		return IXGBE_ERR_EEPROM;
888 
889 	/*
890 	 * The EEPROM page size cannot be queried from the chip. We do lazy
891 	 * initialization. It is worth to do that when we write large buffer.
892 	 */
893 	if ((hw->eeprom.word_page_size == 0) &&
894 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
895 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
896 
897 	/*
898 	 * We cannot hold synchronization semaphores for too long
899 	 * to avoid other entity starvation. However it is more efficient
900 	 * to read in bursts than synchronizing access for each word.
901 	 */
902 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
903 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
904 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
905 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
906 							    count, &data[i]);
907 
908 		if (status != 0)
909 			break;
910 	}
911 
912 	return status;
913 }
914 
915 /**
916  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
917  *  @hw: pointer to hardware structure
918  *  @offset: offset within the EEPROM to be written to
919  *  @words: number of word(s)
920  *  @data: 16 bit word(s) to be written to the EEPROM
921  *
922  *  If ixgbe_eeprom_update_checksum is not called after this function, the
923  *  EEPROM will most likely contain an invalid checksum.
924  **/
925 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
926 					      u16 words, u16 *data)
927 {
928 	s32 status;
929 	u16 word;
930 	u16 page_size;
931 	u16 i;
932 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
933 
934 	/* Prepare the EEPROM for writing  */
935 	status = ixgbe_acquire_eeprom(hw);
936 	if (status)
937 		return status;
938 
939 	if (ixgbe_ready_eeprom(hw) != 0) {
940 		ixgbe_release_eeprom(hw);
941 		return IXGBE_ERR_EEPROM;
942 	}
943 
944 	for (i = 0; i < words; i++) {
945 		ixgbe_standby_eeprom(hw);
946 
947 		/* Send the WRITE ENABLE command (8 bit opcode) */
948 		ixgbe_shift_out_eeprom_bits(hw,
949 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
950 					    IXGBE_EEPROM_OPCODE_BITS);
951 
952 		ixgbe_standby_eeprom(hw);
953 
954 		/* Some SPI eeproms use the 8th address bit embedded
955 		 * in the opcode
956 		 */
957 		if ((hw->eeprom.address_bits == 8) &&
958 		    ((offset + i) >= 128))
959 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
960 
961 		/* Send the Write command (8-bit opcode + addr) */
962 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
963 					    IXGBE_EEPROM_OPCODE_BITS);
964 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
965 					    hw->eeprom.address_bits);
966 
967 		page_size = hw->eeprom.word_page_size;
968 
969 		/* Send the data in burst via SPI */
970 		do {
971 			word = data[i];
972 			word = (word >> 8) | (word << 8);
973 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
974 
975 			if (page_size == 0)
976 				break;
977 
978 			/* do not wrap around page */
979 			if (((offset + i) & (page_size - 1)) ==
980 			    (page_size - 1))
981 				break;
982 		} while (++i < words);
983 
984 		ixgbe_standby_eeprom(hw);
985 		usleep_range(10000, 20000);
986 	}
987 	/* Done with writing - release the EEPROM */
988 	ixgbe_release_eeprom(hw);
989 
990 	return 0;
991 }
992 
993 /**
994  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
995  *  @hw: pointer to hardware structure
996  *  @offset: offset within the EEPROM to be written to
997  *  @data: 16 bit word to be written to the EEPROM
998  *
999  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1000  *  EEPROM will most likely contain an invalid checksum.
1001  **/
1002 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1003 {
1004 	hw->eeprom.ops.init_params(hw);
1005 
1006 	if (offset >= hw->eeprom.word_size)
1007 		return IXGBE_ERR_EEPROM;
1008 
1009 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1010 }
1011 
1012 /**
1013  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1014  *  @hw: pointer to hardware structure
1015  *  @offset: offset within the EEPROM to be read
1016  *  @words: number of word(s)
1017  *  @data: read 16 bit words(s) from EEPROM
1018  *
1019  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1020  **/
1021 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1022 					      u16 words, u16 *data)
1023 {
1024 	s32 status;
1025 	u16 i, count;
1026 
1027 	hw->eeprom.ops.init_params(hw);
1028 
1029 	if (words == 0)
1030 		return IXGBE_ERR_INVALID_ARGUMENT;
1031 
1032 	if (offset + words > hw->eeprom.word_size)
1033 		return IXGBE_ERR_EEPROM;
1034 
1035 	/*
1036 	 * We cannot hold synchronization semaphores for too long
1037 	 * to avoid other entity starvation. However it is more efficient
1038 	 * to read in bursts than synchronizing access for each word.
1039 	 */
1040 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1041 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1042 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1043 
1044 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1045 							   count, &data[i]);
1046 
1047 		if (status)
1048 			return status;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 /**
1055  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1056  *  @hw: pointer to hardware structure
1057  *  @offset: offset within the EEPROM to be read
1058  *  @words: number of word(s)
1059  *  @data: read 16 bit word(s) from EEPROM
1060  *
1061  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1062  **/
1063 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1064 					     u16 words, u16 *data)
1065 {
1066 	s32 status;
1067 	u16 word_in;
1068 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1069 	u16 i;
1070 
1071 	/* Prepare the EEPROM for reading  */
1072 	status = ixgbe_acquire_eeprom(hw);
1073 	if (status)
1074 		return status;
1075 
1076 	if (ixgbe_ready_eeprom(hw) != 0) {
1077 		ixgbe_release_eeprom(hw);
1078 		return IXGBE_ERR_EEPROM;
1079 	}
1080 
1081 	for (i = 0; i < words; i++) {
1082 		ixgbe_standby_eeprom(hw);
1083 		/* Some SPI eeproms use the 8th address bit embedded
1084 		 * in the opcode
1085 		 */
1086 		if ((hw->eeprom.address_bits == 8) &&
1087 		    ((offset + i) >= 128))
1088 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1089 
1090 		/* Send the READ command (opcode + addr) */
1091 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1092 					    IXGBE_EEPROM_OPCODE_BITS);
1093 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1094 					    hw->eeprom.address_bits);
1095 
1096 		/* Read the data. */
1097 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1098 		data[i] = (word_in >> 8) | (word_in << 8);
1099 	}
1100 
1101 	/* End this read operation */
1102 	ixgbe_release_eeprom(hw);
1103 
1104 	return 0;
1105 }
1106 
1107 /**
1108  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1109  *  @hw: pointer to hardware structure
1110  *  @offset: offset within the EEPROM to be read
1111  *  @data: read 16 bit value from EEPROM
1112  *
1113  *  Reads 16 bit value from EEPROM through bit-bang method
1114  **/
1115 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1116 				       u16 *data)
1117 {
1118 	hw->eeprom.ops.init_params(hw);
1119 
1120 	if (offset >= hw->eeprom.word_size)
1121 		return IXGBE_ERR_EEPROM;
1122 
1123 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1124 }
1125 
1126 /**
1127  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1128  *  @hw: pointer to hardware structure
1129  *  @offset: offset of word in the EEPROM to read
1130  *  @words: number of word(s)
1131  *  @data: 16 bit word(s) from the EEPROM
1132  *
1133  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1134  **/
1135 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1136 				   u16 words, u16 *data)
1137 {
1138 	u32 eerd;
1139 	s32 status;
1140 	u32 i;
1141 
1142 	hw->eeprom.ops.init_params(hw);
1143 
1144 	if (words == 0)
1145 		return IXGBE_ERR_INVALID_ARGUMENT;
1146 
1147 	if (offset >= hw->eeprom.word_size)
1148 		return IXGBE_ERR_EEPROM;
1149 
1150 	for (i = 0; i < words; i++) {
1151 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1152 		       IXGBE_EEPROM_RW_REG_START;
1153 
1154 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1155 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1156 
1157 		if (status == 0) {
1158 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1159 				   IXGBE_EEPROM_RW_REG_DATA);
1160 		} else {
1161 			hw_dbg(hw, "Eeprom read timed out\n");
1162 			return status;
1163 		}
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 /**
1170  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1171  *  @hw: pointer to hardware structure
1172  *  @offset: offset within the EEPROM to be used as a scratch pad
1173  *
1174  *  Discover EEPROM page size by writing marching data at given offset.
1175  *  This function is called only when we are writing a new large buffer
1176  *  at given offset so the data would be overwritten anyway.
1177  **/
1178 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1179 						 u16 offset)
1180 {
1181 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1182 	s32 status;
1183 	u16 i;
1184 
1185 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1186 		data[i] = i;
1187 
1188 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1189 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1190 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1191 	hw->eeprom.word_page_size = 0;
1192 	if (status)
1193 		return status;
1194 
1195 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1196 	if (status)
1197 		return status;
1198 
1199 	/*
1200 	 * When writing in burst more than the actual page size
1201 	 * EEPROM address wraps around current page.
1202 	 */
1203 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1204 
1205 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1206 	       hw->eeprom.word_page_size);
1207 	return 0;
1208 }
1209 
1210 /**
1211  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1212  *  @hw: pointer to hardware structure
1213  *  @offset: offset of  word in the EEPROM to read
1214  *  @data: word read from the EEPROM
1215  *
1216  *  Reads a 16 bit word from the EEPROM using the EERD register.
1217  **/
1218 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1219 {
1220 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1221 }
1222 
1223 /**
1224  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1225  *  @hw: pointer to hardware structure
1226  *  @offset: offset of  word in the EEPROM to write
1227  *  @words: number of words
1228  *  @data: word(s) write to the EEPROM
1229  *
1230  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1231  **/
1232 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1233 				    u16 words, u16 *data)
1234 {
1235 	u32 eewr;
1236 	s32 status;
1237 	u16 i;
1238 
1239 	hw->eeprom.ops.init_params(hw);
1240 
1241 	if (words == 0)
1242 		return IXGBE_ERR_INVALID_ARGUMENT;
1243 
1244 	if (offset >= hw->eeprom.word_size)
1245 		return IXGBE_ERR_EEPROM;
1246 
1247 	for (i = 0; i < words; i++) {
1248 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1249 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1250 		       IXGBE_EEPROM_RW_REG_START;
1251 
1252 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1253 		if (status) {
1254 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1255 			return status;
1256 		}
1257 
1258 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1259 
1260 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1261 		if (status) {
1262 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1263 			return status;
1264 		}
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 /**
1271  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1272  *  @hw: pointer to hardware structure
1273  *  @offset: offset of  word in the EEPROM to write
1274  *  @data: word write to the EEPROM
1275  *
1276  *  Write a 16 bit word to the EEPROM using the EEWR register.
1277  **/
1278 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1279 {
1280 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1281 }
1282 
1283 /**
1284  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1285  *  @hw: pointer to hardware structure
1286  *  @ee_reg: EEPROM flag for polling
1287  *
1288  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1289  *  read or write is done respectively.
1290  **/
1291 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1292 {
1293 	u32 i;
1294 	u32 reg;
1295 
1296 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1297 		if (ee_reg == IXGBE_NVM_POLL_READ)
1298 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1299 		else
1300 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1301 
1302 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1303 			return 0;
1304 		}
1305 		udelay(5);
1306 	}
1307 	return IXGBE_ERR_EEPROM;
1308 }
1309 
1310 /**
1311  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1312  *  @hw: pointer to hardware structure
1313  *
1314  *  Prepares EEPROM for access using bit-bang method. This function should
1315  *  be called before issuing a command to the EEPROM.
1316  **/
1317 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1318 {
1319 	u32 eec;
1320 	u32 i;
1321 
1322 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1323 		return IXGBE_ERR_SWFW_SYNC;
1324 
1325 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1326 
1327 	/* Request EEPROM Access */
1328 	eec |= IXGBE_EEC_REQ;
1329 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1330 
1331 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1332 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1333 		if (eec & IXGBE_EEC_GNT)
1334 			break;
1335 		udelay(5);
1336 	}
1337 
1338 	/* Release if grant not acquired */
1339 	if (!(eec & IXGBE_EEC_GNT)) {
1340 		eec &= ~IXGBE_EEC_REQ;
1341 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1342 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1343 
1344 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1345 		return IXGBE_ERR_EEPROM;
1346 	}
1347 
1348 	/* Setup EEPROM for Read/Write */
1349 	/* Clear CS and SK */
1350 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1351 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1352 	IXGBE_WRITE_FLUSH(hw);
1353 	udelay(1);
1354 	return 0;
1355 }
1356 
1357 /**
1358  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1359  *  @hw: pointer to hardware structure
1360  *
1361  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1362  **/
1363 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1364 {
1365 	u32 timeout = 2000;
1366 	u32 i;
1367 	u32 swsm;
1368 
1369 	/* Get SMBI software semaphore between device drivers first */
1370 	for (i = 0; i < timeout; i++) {
1371 		/*
1372 		 * If the SMBI bit is 0 when we read it, then the bit will be
1373 		 * set and we have the semaphore
1374 		 */
1375 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1376 		if (!(swsm & IXGBE_SWSM_SMBI))
1377 			break;
1378 		usleep_range(50, 100);
1379 	}
1380 
1381 	if (i == timeout) {
1382 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1383 		/* this release is particularly important because our attempts
1384 		 * above to get the semaphore may have succeeded, and if there
1385 		 * was a timeout, we should unconditionally clear the semaphore
1386 		 * bits to free the driver to make progress
1387 		 */
1388 		ixgbe_release_eeprom_semaphore(hw);
1389 
1390 		usleep_range(50, 100);
1391 		/* one last try
1392 		 * If the SMBI bit is 0 when we read it, then the bit will be
1393 		 * set and we have the semaphore
1394 		 */
1395 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1396 		if (swsm & IXGBE_SWSM_SMBI) {
1397 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1398 			return IXGBE_ERR_EEPROM;
1399 		}
1400 	}
1401 
1402 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1403 	for (i = 0; i < timeout; i++) {
1404 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1405 
1406 		/* Set the SW EEPROM semaphore bit to request access */
1407 		swsm |= IXGBE_SWSM_SWESMBI;
1408 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1409 
1410 		/* If we set the bit successfully then we got the
1411 		 * semaphore.
1412 		 */
1413 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1414 		if (swsm & IXGBE_SWSM_SWESMBI)
1415 			break;
1416 
1417 		usleep_range(50, 100);
1418 	}
1419 
1420 	/* Release semaphores and return error if SW EEPROM semaphore
1421 	 * was not granted because we don't have access to the EEPROM
1422 	 */
1423 	if (i >= timeout) {
1424 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1425 		ixgbe_release_eeprom_semaphore(hw);
1426 		return IXGBE_ERR_EEPROM;
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 /**
1433  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1434  *  @hw: pointer to hardware structure
1435  *
1436  *  This function clears hardware semaphore bits.
1437  **/
1438 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1439 {
1440 	u32 swsm;
1441 
1442 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1443 
1444 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1445 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1446 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1447 	IXGBE_WRITE_FLUSH(hw);
1448 }
1449 
1450 /**
1451  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1452  *  @hw: pointer to hardware structure
1453  **/
1454 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1455 {
1456 	u16 i;
1457 	u8 spi_stat_reg;
1458 
1459 	/*
1460 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1461 	 * EEPROM will signal that the command has been completed by clearing
1462 	 * bit 0 of the internal status register.  If it's not cleared within
1463 	 * 5 milliseconds, then error out.
1464 	 */
1465 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1466 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1467 					    IXGBE_EEPROM_OPCODE_BITS);
1468 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1469 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1470 			break;
1471 
1472 		udelay(5);
1473 		ixgbe_standby_eeprom(hw);
1474 	}
1475 
1476 	/*
1477 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1478 	 * devices (and only 0-5mSec on 5V devices)
1479 	 */
1480 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1481 		hw_dbg(hw, "SPI EEPROM Status error\n");
1482 		return IXGBE_ERR_EEPROM;
1483 	}
1484 
1485 	return 0;
1486 }
1487 
1488 /**
1489  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1490  *  @hw: pointer to hardware structure
1491  **/
1492 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1493 {
1494 	u32 eec;
1495 
1496 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1497 
1498 	/* Toggle CS to flush commands */
1499 	eec |= IXGBE_EEC_CS;
1500 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1501 	IXGBE_WRITE_FLUSH(hw);
1502 	udelay(1);
1503 	eec &= ~IXGBE_EEC_CS;
1504 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1505 	IXGBE_WRITE_FLUSH(hw);
1506 	udelay(1);
1507 }
1508 
1509 /**
1510  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1511  *  @hw: pointer to hardware structure
1512  *  @data: data to send to the EEPROM
1513  *  @count: number of bits to shift out
1514  **/
1515 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1516 					u16 count)
1517 {
1518 	u32 eec;
1519 	u32 mask;
1520 	u32 i;
1521 
1522 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1523 
1524 	/*
1525 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1526 	 * one bit at a time.  Determine the starting bit based on count
1527 	 */
1528 	mask = BIT(count - 1);
1529 
1530 	for (i = 0; i < count; i++) {
1531 		/*
1532 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1533 		 * "1", and then raising and then lowering the clock (the SK
1534 		 * bit controls the clock input to the EEPROM).  A "0" is
1535 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1536 		 * raising and then lowering the clock.
1537 		 */
1538 		if (data & mask)
1539 			eec |= IXGBE_EEC_DI;
1540 		else
1541 			eec &= ~IXGBE_EEC_DI;
1542 
1543 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1544 		IXGBE_WRITE_FLUSH(hw);
1545 
1546 		udelay(1);
1547 
1548 		ixgbe_raise_eeprom_clk(hw, &eec);
1549 		ixgbe_lower_eeprom_clk(hw, &eec);
1550 
1551 		/*
1552 		 * Shift mask to signify next bit of data to shift in to the
1553 		 * EEPROM
1554 		 */
1555 		mask = mask >> 1;
1556 	}
1557 
1558 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1559 	eec &= ~IXGBE_EEC_DI;
1560 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1561 	IXGBE_WRITE_FLUSH(hw);
1562 }
1563 
1564 /**
1565  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1566  *  @hw: pointer to hardware structure
1567  **/
1568 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1569 {
1570 	u32 eec;
1571 	u32 i;
1572 	u16 data = 0;
1573 
1574 	/*
1575 	 * In order to read a register from the EEPROM, we need to shift
1576 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1577 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1578 	 * the value of the "DO" bit.  During this "shifting in" process the
1579 	 * "DI" bit should always be clear.
1580 	 */
1581 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1582 
1583 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1584 
1585 	for (i = 0; i < count; i++) {
1586 		data = data << 1;
1587 		ixgbe_raise_eeprom_clk(hw, &eec);
1588 
1589 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1590 
1591 		eec &= ~(IXGBE_EEC_DI);
1592 		if (eec & IXGBE_EEC_DO)
1593 			data |= 1;
1594 
1595 		ixgbe_lower_eeprom_clk(hw, &eec);
1596 	}
1597 
1598 	return data;
1599 }
1600 
1601 /**
1602  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1603  *  @hw: pointer to hardware structure
1604  *  @eec: EEC register's current value
1605  **/
1606 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1607 {
1608 	/*
1609 	 * Raise the clock input to the EEPROM
1610 	 * (setting the SK bit), then delay
1611 	 */
1612 	*eec = *eec | IXGBE_EEC_SK;
1613 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1614 	IXGBE_WRITE_FLUSH(hw);
1615 	udelay(1);
1616 }
1617 
1618 /**
1619  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1620  *  @hw: pointer to hardware structure
1621  *  @eecd: EECD's current value
1622  **/
1623 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1624 {
1625 	/*
1626 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1627 	 * delay
1628 	 */
1629 	*eec = *eec & ~IXGBE_EEC_SK;
1630 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1631 	IXGBE_WRITE_FLUSH(hw);
1632 	udelay(1);
1633 }
1634 
1635 /**
1636  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1637  *  @hw: pointer to hardware structure
1638  **/
1639 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1640 {
1641 	u32 eec;
1642 
1643 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1644 
1645 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1646 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1647 
1648 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1649 	IXGBE_WRITE_FLUSH(hw);
1650 
1651 	udelay(1);
1652 
1653 	/* Stop requesting EEPROM access */
1654 	eec &= ~IXGBE_EEC_REQ;
1655 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1656 
1657 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1658 
1659 	/*
1660 	 * Delay before attempt to obtain semaphore again to allow FW
1661 	 * access. semaphore_delay is in ms we need us for usleep_range
1662 	 */
1663 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1664 		     hw->eeprom.semaphore_delay * 2000);
1665 }
1666 
1667 /**
1668  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1669  *  @hw: pointer to hardware structure
1670  **/
1671 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1672 {
1673 	u16 i;
1674 	u16 j;
1675 	u16 checksum = 0;
1676 	u16 length = 0;
1677 	u16 pointer = 0;
1678 	u16 word = 0;
1679 
1680 	/* Include 0x0-0x3F in the checksum */
1681 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1682 		if (hw->eeprom.ops.read(hw, i, &word)) {
1683 			hw_dbg(hw, "EEPROM read failed\n");
1684 			break;
1685 		}
1686 		checksum += word;
1687 	}
1688 
1689 	/* Include all data from pointers except for the fw pointer */
1690 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1691 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1692 			hw_dbg(hw, "EEPROM read failed\n");
1693 			return IXGBE_ERR_EEPROM;
1694 		}
1695 
1696 		/* If the pointer seems invalid */
1697 		if (pointer == 0xFFFF || pointer == 0)
1698 			continue;
1699 
1700 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1701 			hw_dbg(hw, "EEPROM read failed\n");
1702 			return IXGBE_ERR_EEPROM;
1703 		}
1704 
1705 		if (length == 0xFFFF || length == 0)
1706 			continue;
1707 
1708 		for (j = pointer + 1; j <= pointer + length; j++) {
1709 			if (hw->eeprom.ops.read(hw, j, &word)) {
1710 				hw_dbg(hw, "EEPROM read failed\n");
1711 				return IXGBE_ERR_EEPROM;
1712 			}
1713 			checksum += word;
1714 		}
1715 	}
1716 
1717 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1718 
1719 	return (s32)checksum;
1720 }
1721 
1722 /**
1723  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1724  *  @hw: pointer to hardware structure
1725  *  @checksum_val: calculated checksum
1726  *
1727  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1728  *  caller does not need checksum_val, the value can be NULL.
1729  **/
1730 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1731 					   u16 *checksum_val)
1732 {
1733 	s32 status;
1734 	u16 checksum;
1735 	u16 read_checksum = 0;
1736 
1737 	/*
1738 	 * Read the first word from the EEPROM. If this times out or fails, do
1739 	 * not continue or we could be in for a very long wait while every
1740 	 * EEPROM read fails
1741 	 */
1742 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1743 	if (status) {
1744 		hw_dbg(hw, "EEPROM read failed\n");
1745 		return status;
1746 	}
1747 
1748 	status = hw->eeprom.ops.calc_checksum(hw);
1749 	if (status < 0)
1750 		return status;
1751 
1752 	checksum = (u16)(status & 0xffff);
1753 
1754 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1755 	if (status) {
1756 		hw_dbg(hw, "EEPROM read failed\n");
1757 		return status;
1758 	}
1759 
1760 	/* Verify read checksum from EEPROM is the same as
1761 	 * calculated checksum
1762 	 */
1763 	if (read_checksum != checksum)
1764 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1765 
1766 	/* If the user cares, return the calculated checksum */
1767 	if (checksum_val)
1768 		*checksum_val = checksum;
1769 
1770 	return status;
1771 }
1772 
1773 /**
1774  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1775  *  @hw: pointer to hardware structure
1776  **/
1777 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1778 {
1779 	s32 status;
1780 	u16 checksum;
1781 
1782 	/*
1783 	 * Read the first word from the EEPROM. If this times out or fails, do
1784 	 * not continue or we could be in for a very long wait while every
1785 	 * EEPROM read fails
1786 	 */
1787 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1788 	if (status) {
1789 		hw_dbg(hw, "EEPROM read failed\n");
1790 		return status;
1791 	}
1792 
1793 	status = hw->eeprom.ops.calc_checksum(hw);
1794 	if (status < 0)
1795 		return status;
1796 
1797 	checksum = (u16)(status & 0xffff);
1798 
1799 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1800 
1801 	return status;
1802 }
1803 
1804 /**
1805  *  ixgbe_set_rar_generic - Set Rx address register
1806  *  @hw: pointer to hardware structure
1807  *  @index: Receive address register to write
1808  *  @addr: Address to put into receive address register
1809  *  @vmdq: VMDq "set" or "pool" index
1810  *  @enable_addr: set flag that address is active
1811  *
1812  *  Puts an ethernet address into a receive address register.
1813  **/
1814 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1815 			  u32 enable_addr)
1816 {
1817 	u32 rar_low, rar_high;
1818 	u32 rar_entries = hw->mac.num_rar_entries;
1819 
1820 	/* Make sure we are using a valid rar index range */
1821 	if (index >= rar_entries) {
1822 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1823 		return IXGBE_ERR_INVALID_ARGUMENT;
1824 	}
1825 
1826 	/* setup VMDq pool selection before this RAR gets enabled */
1827 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1828 
1829 	/*
1830 	 * HW expects these in little endian so we reverse the byte
1831 	 * order from network order (big endian) to little endian
1832 	 */
1833 	rar_low = ((u32)addr[0] |
1834 		   ((u32)addr[1] << 8) |
1835 		   ((u32)addr[2] << 16) |
1836 		   ((u32)addr[3] << 24));
1837 	/*
1838 	 * Some parts put the VMDq setting in the extra RAH bits,
1839 	 * so save everything except the lower 16 bits that hold part
1840 	 * of the address and the address valid bit.
1841 	 */
1842 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1843 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1844 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1845 
1846 	if (enable_addr != 0)
1847 		rar_high |= IXGBE_RAH_AV;
1848 
1849 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1850 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1851 
1852 	return 0;
1853 }
1854 
1855 /**
1856  *  ixgbe_clear_rar_generic - Remove Rx address register
1857  *  @hw: pointer to hardware structure
1858  *  @index: Receive address register to write
1859  *
1860  *  Clears an ethernet address from a receive address register.
1861  **/
1862 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1863 {
1864 	u32 rar_high;
1865 	u32 rar_entries = hw->mac.num_rar_entries;
1866 
1867 	/* Make sure we are using a valid rar index range */
1868 	if (index >= rar_entries) {
1869 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1870 		return IXGBE_ERR_INVALID_ARGUMENT;
1871 	}
1872 
1873 	/*
1874 	 * Some parts put the VMDq setting in the extra RAH bits,
1875 	 * so save everything except the lower 16 bits that hold part
1876 	 * of the address and the address valid bit.
1877 	 */
1878 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1879 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1880 
1881 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1882 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1883 
1884 	/* clear VMDq pool/queue selection for this RAR */
1885 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1886 
1887 	return 0;
1888 }
1889 
1890 /**
1891  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1892  *  @hw: pointer to hardware structure
1893  *
1894  *  Places the MAC address in receive address register 0 and clears the rest
1895  *  of the receive address registers. Clears the multicast table. Assumes
1896  *  the receiver is in reset when the routine is called.
1897  **/
1898 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1899 {
1900 	u32 i;
1901 	u32 rar_entries = hw->mac.num_rar_entries;
1902 
1903 	/*
1904 	 * If the current mac address is valid, assume it is a software override
1905 	 * to the permanent address.
1906 	 * Otherwise, use the permanent address from the eeprom.
1907 	 */
1908 	if (!is_valid_ether_addr(hw->mac.addr)) {
1909 		/* Get the MAC address from the RAR0 for later reference */
1910 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1911 
1912 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1913 	} else {
1914 		/* Setup the receive address. */
1915 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1916 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1917 
1918 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1919 	}
1920 
1921 	/*  clear VMDq pool/queue selection for RAR 0 */
1922 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1923 
1924 	hw->addr_ctrl.overflow_promisc = 0;
1925 
1926 	hw->addr_ctrl.rar_used_count = 1;
1927 
1928 	/* Zero out the other receive addresses. */
1929 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1930 	for (i = 1; i < rar_entries; i++) {
1931 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1932 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1933 	}
1934 
1935 	/* Clear the MTA */
1936 	hw->addr_ctrl.mta_in_use = 0;
1937 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1938 
1939 	hw_dbg(hw, " Clearing MTA\n");
1940 	for (i = 0; i < hw->mac.mcft_size; i++)
1941 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1942 
1943 	if (hw->mac.ops.init_uta_tables)
1944 		hw->mac.ops.init_uta_tables(hw);
1945 
1946 	return 0;
1947 }
1948 
1949 /**
1950  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1951  *  @hw: pointer to hardware structure
1952  *  @mc_addr: the multicast address
1953  *
1954  *  Extracts the 12 bits, from a multicast address, to determine which
1955  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1956  *  incoming rx multicast addresses, to determine the bit-vector to check in
1957  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1958  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1959  *  to mc_filter_type.
1960  **/
1961 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1962 {
1963 	u32 vector = 0;
1964 
1965 	switch (hw->mac.mc_filter_type) {
1966 	case 0:   /* use bits [47:36] of the address */
1967 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1968 		break;
1969 	case 1:   /* use bits [46:35] of the address */
1970 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1971 		break;
1972 	case 2:   /* use bits [45:34] of the address */
1973 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1974 		break;
1975 	case 3:   /* use bits [43:32] of the address */
1976 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1977 		break;
1978 	default:  /* Invalid mc_filter_type */
1979 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1980 		break;
1981 	}
1982 
1983 	/* vector can only be 12-bits or boundary will be exceeded */
1984 	vector &= 0xFFF;
1985 	return vector;
1986 }
1987 
1988 /**
1989  *  ixgbe_set_mta - Set bit-vector in multicast table
1990  *  @hw: pointer to hardware structure
1991  *  @hash_value: Multicast address hash value
1992  *
1993  *  Sets the bit-vector in the multicast table.
1994  **/
1995 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1996 {
1997 	u32 vector;
1998 	u32 vector_bit;
1999 	u32 vector_reg;
2000 
2001 	hw->addr_ctrl.mta_in_use++;
2002 
2003 	vector = ixgbe_mta_vector(hw, mc_addr);
2004 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2005 
2006 	/*
2007 	 * The MTA is a register array of 128 32-bit registers. It is treated
2008 	 * like an array of 4096 bits.  We want to set bit
2009 	 * BitArray[vector_value]. So we figure out what register the bit is
2010 	 * in, read it, OR in the new bit, then write back the new value.  The
2011 	 * register is determined by the upper 7 bits of the vector value and
2012 	 * the bit within that register are determined by the lower 5 bits of
2013 	 * the value.
2014 	 */
2015 	vector_reg = (vector >> 5) & 0x7F;
2016 	vector_bit = vector & 0x1F;
2017 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2018 }
2019 
2020 /**
2021  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2022  *  @hw: pointer to hardware structure
2023  *  @netdev: pointer to net device structure
2024  *
2025  *  The given list replaces any existing list. Clears the MC addrs from receive
2026  *  address registers and the multicast table. Uses unused receive address
2027  *  registers for the first multicast addresses, and hashes the rest into the
2028  *  multicast table.
2029  **/
2030 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2031 				      struct net_device *netdev)
2032 {
2033 	struct netdev_hw_addr *ha;
2034 	u32 i;
2035 
2036 	/*
2037 	 * Set the new number of MC addresses that we are being requested to
2038 	 * use.
2039 	 */
2040 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2041 	hw->addr_ctrl.mta_in_use = 0;
2042 
2043 	/* Clear mta_shadow */
2044 	hw_dbg(hw, " Clearing MTA\n");
2045 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2046 
2047 	/* Update mta shadow */
2048 	netdev_for_each_mc_addr(ha, netdev) {
2049 		hw_dbg(hw, " Adding the multicast addresses:\n");
2050 		ixgbe_set_mta(hw, ha->addr);
2051 	}
2052 
2053 	/* Enable mta */
2054 	for (i = 0; i < hw->mac.mcft_size; i++)
2055 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2056 				      hw->mac.mta_shadow[i]);
2057 
2058 	if (hw->addr_ctrl.mta_in_use > 0)
2059 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2060 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2061 
2062 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2063 	return 0;
2064 }
2065 
2066 /**
2067  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2068  *  @hw: pointer to hardware structure
2069  *
2070  *  Enables multicast address in RAR and the use of the multicast hash table.
2071  **/
2072 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2073 {
2074 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2075 
2076 	if (a->mta_in_use > 0)
2077 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2078 				hw->mac.mc_filter_type);
2079 
2080 	return 0;
2081 }
2082 
2083 /**
2084  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2085  *  @hw: pointer to hardware structure
2086  *
2087  *  Disables multicast address in RAR and the use of the multicast hash table.
2088  **/
2089 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2090 {
2091 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2092 
2093 	if (a->mta_in_use > 0)
2094 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2095 
2096 	return 0;
2097 }
2098 
2099 /**
2100  *  ixgbe_fc_enable_generic - Enable flow control
2101  *  @hw: pointer to hardware structure
2102  *
2103  *  Enable flow control according to the current settings.
2104  **/
2105 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2106 {
2107 	u32 mflcn_reg, fccfg_reg;
2108 	u32 reg;
2109 	u32 fcrtl, fcrth;
2110 	int i;
2111 
2112 	/* Validate the water mark configuration. */
2113 	if (!hw->fc.pause_time)
2114 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2115 
2116 	/* Low water mark of zero causes XOFF floods */
2117 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2118 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2119 		    hw->fc.high_water[i]) {
2120 			if (!hw->fc.low_water[i] ||
2121 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2122 				hw_dbg(hw, "Invalid water mark configuration\n");
2123 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2124 			}
2125 		}
2126 	}
2127 
2128 	/* Negotiate the fc mode to use */
2129 	ixgbe_fc_autoneg(hw);
2130 
2131 	/* Disable any previous flow control settings */
2132 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2133 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2134 
2135 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2136 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2137 
2138 	/*
2139 	 * The possible values of fc.current_mode are:
2140 	 * 0: Flow control is completely disabled
2141 	 * 1: Rx flow control is enabled (we can receive pause frames,
2142 	 *    but not send pause frames).
2143 	 * 2: Tx flow control is enabled (we can send pause frames but
2144 	 *    we do not support receiving pause frames).
2145 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2146 	 * other: Invalid.
2147 	 */
2148 	switch (hw->fc.current_mode) {
2149 	case ixgbe_fc_none:
2150 		/*
2151 		 * Flow control is disabled by software override or autoneg.
2152 		 * The code below will actually disable it in the HW.
2153 		 */
2154 		break;
2155 	case ixgbe_fc_rx_pause:
2156 		/*
2157 		 * Rx Flow control is enabled and Tx Flow control is
2158 		 * disabled by software override. Since there really
2159 		 * isn't a way to advertise that we are capable of RX
2160 		 * Pause ONLY, we will advertise that we support both
2161 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2162 		 * disable the adapter's ability to send PAUSE frames.
2163 		 */
2164 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2165 		break;
2166 	case ixgbe_fc_tx_pause:
2167 		/*
2168 		 * Tx Flow control is enabled, and Rx Flow control is
2169 		 * disabled by software override.
2170 		 */
2171 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2172 		break;
2173 	case ixgbe_fc_full:
2174 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2175 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2176 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2177 		break;
2178 	default:
2179 		hw_dbg(hw, "Flow control param set incorrectly\n");
2180 		return IXGBE_ERR_CONFIG;
2181 	}
2182 
2183 	/* Set 802.3x based flow control settings. */
2184 	mflcn_reg |= IXGBE_MFLCN_DPF;
2185 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2186 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2187 
2188 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2189 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2190 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2191 		    hw->fc.high_water[i]) {
2192 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2193 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2194 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2195 		} else {
2196 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2197 			/*
2198 			 * In order to prevent Tx hangs when the internal Tx
2199 			 * switch is enabled we must set the high water mark
2200 			 * to the Rx packet buffer size - 24KB.  This allows
2201 			 * the Tx switch to function even under heavy Rx
2202 			 * workloads.
2203 			 */
2204 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2205 		}
2206 
2207 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2208 	}
2209 
2210 	/* Configure pause time (2 TCs per register) */
2211 	reg = hw->fc.pause_time * 0x00010001;
2212 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2213 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2214 
2215 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2216 
2217 	return 0;
2218 }
2219 
2220 /**
2221  *  ixgbe_negotiate_fc - Negotiate flow control
2222  *  @hw: pointer to hardware structure
2223  *  @adv_reg: flow control advertised settings
2224  *  @lp_reg: link partner's flow control settings
2225  *  @adv_sym: symmetric pause bit in advertisement
2226  *  @adv_asm: asymmetric pause bit in advertisement
2227  *  @lp_sym: symmetric pause bit in link partner advertisement
2228  *  @lp_asm: asymmetric pause bit in link partner advertisement
2229  *
2230  *  Find the intersection between advertised settings and link partner's
2231  *  advertised settings
2232  **/
2233 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2234 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2235 {
2236 	if ((!(adv_reg)) ||  (!(lp_reg)))
2237 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2238 
2239 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2240 		/*
2241 		 * Now we need to check if the user selected Rx ONLY
2242 		 * of pause frames.  In this case, we had to advertise
2243 		 * FULL flow control because we could not advertise RX
2244 		 * ONLY. Hence, we must now check to see if we need to
2245 		 * turn OFF the TRANSMISSION of PAUSE frames.
2246 		 */
2247 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2248 			hw->fc.current_mode = ixgbe_fc_full;
2249 			hw_dbg(hw, "Flow Control = FULL.\n");
2250 		} else {
2251 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2252 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2253 		}
2254 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2255 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2256 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2257 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2258 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2259 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2260 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2261 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2262 	} else {
2263 		hw->fc.current_mode = ixgbe_fc_none;
2264 		hw_dbg(hw, "Flow Control = NONE.\n");
2265 	}
2266 	return 0;
2267 }
2268 
2269 /**
2270  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2271  *  @hw: pointer to hardware structure
2272  *
2273  *  Enable flow control according on 1 gig fiber.
2274  **/
2275 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2276 {
2277 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2278 	s32 ret_val;
2279 
2280 	/*
2281 	 * On multispeed fiber at 1g, bail out if
2282 	 * - link is up but AN did not complete, or if
2283 	 * - link is up and AN completed but timed out
2284 	 */
2285 
2286 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2287 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2288 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2289 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2290 
2291 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2292 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2293 
2294 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2295 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2296 			       IXGBE_PCS1GANA_ASM_PAUSE,
2297 			       IXGBE_PCS1GANA_SYM_PAUSE,
2298 			       IXGBE_PCS1GANA_ASM_PAUSE);
2299 
2300 	return ret_val;
2301 }
2302 
2303 /**
2304  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2305  *  @hw: pointer to hardware structure
2306  *
2307  *  Enable flow control according to IEEE clause 37.
2308  **/
2309 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2310 {
2311 	u32 links2, anlp1_reg, autoc_reg, links;
2312 	s32 ret_val;
2313 
2314 	/*
2315 	 * On backplane, bail out if
2316 	 * - backplane autoneg was not completed, or if
2317 	 * - we are 82599 and link partner is not AN enabled
2318 	 */
2319 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2320 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2321 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2322 
2323 	if (hw->mac.type == ixgbe_mac_82599EB) {
2324 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2325 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2326 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2327 	}
2328 	/*
2329 	 * Read the 10g AN autoc and LP ability registers and resolve
2330 	 * local flow control settings accordingly
2331 	 */
2332 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2333 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2334 
2335 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2336 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2337 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2338 
2339 	return ret_val;
2340 }
2341 
2342 /**
2343  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2344  *  @hw: pointer to hardware structure
2345  *
2346  *  Enable flow control according to IEEE clause 37.
2347  **/
2348 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2349 {
2350 	u16 technology_ability_reg = 0;
2351 	u16 lp_technology_ability_reg = 0;
2352 
2353 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2354 			     MDIO_MMD_AN,
2355 			     &technology_ability_reg);
2356 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2357 			     MDIO_MMD_AN,
2358 			     &lp_technology_ability_reg);
2359 
2360 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2361 				  (u32)lp_technology_ability_reg,
2362 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2363 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2364 }
2365 
2366 /**
2367  *  ixgbe_fc_autoneg - Configure flow control
2368  *  @hw: pointer to hardware structure
2369  *
2370  *  Compares our advertised flow control capabilities to those advertised by
2371  *  our link partner, and determines the proper flow control mode to use.
2372  **/
2373 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2374 {
2375 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2376 	ixgbe_link_speed speed;
2377 	bool link_up;
2378 
2379 	/*
2380 	 * AN should have completed when the cable was plugged in.
2381 	 * Look for reasons to bail out.  Bail out if:
2382 	 * - FC autoneg is disabled, or if
2383 	 * - link is not up.
2384 	 *
2385 	 * Since we're being called from an LSC, link is already known to be up.
2386 	 * So use link_up_wait_to_complete=false.
2387 	 */
2388 	if (hw->fc.disable_fc_autoneg)
2389 		goto out;
2390 
2391 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2392 	if (!link_up)
2393 		goto out;
2394 
2395 	switch (hw->phy.media_type) {
2396 	/* Autoneg flow control on fiber adapters */
2397 	case ixgbe_media_type_fiber:
2398 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2399 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2400 		break;
2401 
2402 	/* Autoneg flow control on backplane adapters */
2403 	case ixgbe_media_type_backplane:
2404 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2405 		break;
2406 
2407 	/* Autoneg flow control on copper adapters */
2408 	case ixgbe_media_type_copper:
2409 		if (ixgbe_device_supports_autoneg_fc(hw))
2410 			ret_val = ixgbe_fc_autoneg_copper(hw);
2411 		break;
2412 
2413 	default:
2414 		break;
2415 	}
2416 
2417 out:
2418 	if (ret_val == 0) {
2419 		hw->fc.fc_was_autonegged = true;
2420 	} else {
2421 		hw->fc.fc_was_autonegged = false;
2422 		hw->fc.current_mode = hw->fc.requested_mode;
2423 	}
2424 }
2425 
2426 /**
2427  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2428  * @hw: pointer to hardware structure
2429  *
2430  * System-wide timeout range is encoded in PCIe Device Control2 register.
2431  *
2432  *  Add 10% to specified maximum and return the number of times to poll for
2433  *  completion timeout, in units of 100 microsec.  Never return less than
2434  *  800 = 80 millisec.
2435  **/
2436 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2437 {
2438 	s16 devctl2;
2439 	u32 pollcnt;
2440 
2441 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2442 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2443 
2444 	switch (devctl2) {
2445 	case IXGBE_PCIDEVCTRL2_65_130ms:
2446 		 pollcnt = 1300;         /* 130 millisec */
2447 		break;
2448 	case IXGBE_PCIDEVCTRL2_260_520ms:
2449 		pollcnt = 5200;         /* 520 millisec */
2450 		break;
2451 	case IXGBE_PCIDEVCTRL2_1_2s:
2452 		pollcnt = 20000;        /* 2 sec */
2453 		break;
2454 	case IXGBE_PCIDEVCTRL2_4_8s:
2455 		pollcnt = 80000;        /* 8 sec */
2456 		break;
2457 	case IXGBE_PCIDEVCTRL2_17_34s:
2458 		pollcnt = 34000;        /* 34 sec */
2459 		break;
2460 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2461 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2462 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2463 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2464 	default:
2465 		pollcnt = 800;          /* 80 millisec minimum */
2466 		break;
2467 	}
2468 
2469 	/* add 10% to spec maximum */
2470 	return (pollcnt * 11) / 10;
2471 }
2472 
2473 /**
2474  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2475  *  @hw: pointer to hardware structure
2476  *
2477  *  Disables PCI-Express master access and verifies there are no pending
2478  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2479  *  bit hasn't caused the master requests to be disabled, else 0
2480  *  is returned signifying master requests disabled.
2481  **/
2482 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2483 {
2484 	u32 i, poll;
2485 	u16 value;
2486 
2487 	/* Always set this bit to ensure any future transactions are blocked */
2488 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2489 
2490 	/* Poll for bit to read as set */
2491 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2492 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2493 			break;
2494 		usleep_range(100, 120);
2495 	}
2496 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2497 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2498 		goto gio_disable_fail;
2499 	}
2500 
2501 	/* Exit if master requests are blocked */
2502 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2503 	    ixgbe_removed(hw->hw_addr))
2504 		return 0;
2505 
2506 	/* Poll for master request bit to clear */
2507 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2508 		udelay(100);
2509 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2510 			return 0;
2511 	}
2512 
2513 	/*
2514 	 * Two consecutive resets are required via CTRL.RST per datasheet
2515 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2516 	 * of this need.  The first reset prevents new master requests from
2517 	 * being issued by our device.  We then must wait 1usec or more for any
2518 	 * remaining completions from the PCIe bus to trickle in, and then reset
2519 	 * again to clear out any effects they may have had on our device.
2520 	 */
2521 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2522 gio_disable_fail:
2523 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2524 
2525 	if (hw->mac.type >= ixgbe_mac_X550)
2526 		return 0;
2527 
2528 	/*
2529 	 * Before proceeding, make sure that the PCIe block does not have
2530 	 * transactions pending.
2531 	 */
2532 	poll = ixgbe_pcie_timeout_poll(hw);
2533 	for (i = 0; i < poll; i++) {
2534 		udelay(100);
2535 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2536 		if (ixgbe_removed(hw->hw_addr))
2537 			return 0;
2538 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2539 			return 0;
2540 	}
2541 
2542 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2543 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2544 }
2545 
2546 /**
2547  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2548  *  @hw: pointer to hardware structure
2549  *  @mask: Mask to specify which semaphore to acquire
2550  *
2551  *  Acquires the SWFW semaphore through the GSSR register for the specified
2552  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2553  **/
2554 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2555 {
2556 	u32 gssr = 0;
2557 	u32 swmask = mask;
2558 	u32 fwmask = mask << 5;
2559 	u32 timeout = 200;
2560 	u32 i;
2561 
2562 	for (i = 0; i < timeout; i++) {
2563 		/*
2564 		 * SW NVM semaphore bit is used for access to all
2565 		 * SW_FW_SYNC bits (not just NVM)
2566 		 */
2567 		if (ixgbe_get_eeprom_semaphore(hw))
2568 			return IXGBE_ERR_SWFW_SYNC;
2569 
2570 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2571 		if (!(gssr & (fwmask | swmask))) {
2572 			gssr |= swmask;
2573 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2574 			ixgbe_release_eeprom_semaphore(hw);
2575 			return 0;
2576 		} else {
2577 			/* Resource is currently in use by FW or SW */
2578 			ixgbe_release_eeprom_semaphore(hw);
2579 			usleep_range(5000, 10000);
2580 		}
2581 	}
2582 
2583 	/* If time expired clear the bits holding the lock and retry */
2584 	if (gssr & (fwmask | swmask))
2585 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2586 
2587 	usleep_range(5000, 10000);
2588 	return IXGBE_ERR_SWFW_SYNC;
2589 }
2590 
2591 /**
2592  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2593  *  @hw: pointer to hardware structure
2594  *  @mask: Mask to specify which semaphore to release
2595  *
2596  *  Releases the SWFW semaphore through the GSSR register for the specified
2597  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2598  **/
2599 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2600 {
2601 	u32 gssr;
2602 	u32 swmask = mask;
2603 
2604 	ixgbe_get_eeprom_semaphore(hw);
2605 
2606 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2607 	gssr &= ~swmask;
2608 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2609 
2610 	ixgbe_release_eeprom_semaphore(hw);
2611 }
2612 
2613 /**
2614  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2615  * @hw: pointer to hardware structure
2616  * @reg_val: Value we read from AUTOC
2617  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2618  *	    true in this the generic case.
2619  *
2620  * The default case requires no protection so just to the register read.
2621  **/
2622 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2623 {
2624 	*locked = false;
2625 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2626 	return 0;
2627 }
2628 
2629 /**
2630  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2631  * @hw: pointer to hardware structure
2632  * @reg_val: value to write to AUTOC
2633  * @locked: bool to indicate whether the SW/FW lock was already taken by
2634  *	    previous read.
2635  **/
2636 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2637 {
2638 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2639 	return 0;
2640 }
2641 
2642 /**
2643  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2644  *  @hw: pointer to hardware structure
2645  *
2646  *  Stops the receive data path and waits for the HW to internally
2647  *  empty the Rx security block.
2648  **/
2649 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2650 {
2651 #define IXGBE_MAX_SECRX_POLL 40
2652 	int i;
2653 	int secrxreg;
2654 
2655 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2656 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2657 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2658 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2659 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2660 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2661 			break;
2662 		else
2663 			/* Use interrupt-safe sleep just in case */
2664 			udelay(1000);
2665 	}
2666 
2667 	/* For informational purposes only */
2668 	if (i >= IXGBE_MAX_SECRX_POLL)
2669 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2670 
2671 	return 0;
2672 
2673 }
2674 
2675 /**
2676  *  ixgbe_enable_rx_buff - Enables the receive data path
2677  *  @hw: pointer to hardware structure
2678  *
2679  *  Enables the receive data path
2680  **/
2681 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2682 {
2683 	u32 secrxreg;
2684 
2685 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2686 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2687 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2688 	IXGBE_WRITE_FLUSH(hw);
2689 
2690 	return 0;
2691 }
2692 
2693 /**
2694  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2695  *  @hw: pointer to hardware structure
2696  *  @regval: register value to write to RXCTRL
2697  *
2698  *  Enables the Rx DMA unit
2699  **/
2700 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2701 {
2702 	if (regval & IXGBE_RXCTRL_RXEN)
2703 		hw->mac.ops.enable_rx(hw);
2704 	else
2705 		hw->mac.ops.disable_rx(hw);
2706 
2707 	return 0;
2708 }
2709 
2710 /**
2711  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2712  *  @hw: pointer to hardware structure
2713  *  @index: led number to blink
2714  **/
2715 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2716 {
2717 	ixgbe_link_speed speed = 0;
2718 	bool link_up = false;
2719 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2720 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2721 	bool locked = false;
2722 	s32 ret_val;
2723 
2724 	if (index > 3)
2725 		return IXGBE_ERR_PARAM;
2726 
2727 	/*
2728 	 * Link must be up to auto-blink the LEDs;
2729 	 * Force it if link is down.
2730 	 */
2731 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2732 
2733 	if (!link_up) {
2734 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2735 		if (ret_val)
2736 			return ret_val;
2737 
2738 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2739 		autoc_reg |= IXGBE_AUTOC_FLU;
2740 
2741 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2742 		if (ret_val)
2743 			return ret_val;
2744 
2745 		IXGBE_WRITE_FLUSH(hw);
2746 
2747 		usleep_range(10000, 20000);
2748 	}
2749 
2750 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2751 	led_reg |= IXGBE_LED_BLINK(index);
2752 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2753 	IXGBE_WRITE_FLUSH(hw);
2754 
2755 	return 0;
2756 }
2757 
2758 /**
2759  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2760  *  @hw: pointer to hardware structure
2761  *  @index: led number to stop blinking
2762  **/
2763 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2764 {
2765 	u32 autoc_reg = 0;
2766 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2767 	bool locked = false;
2768 	s32 ret_val;
2769 
2770 	if (index > 3)
2771 		return IXGBE_ERR_PARAM;
2772 
2773 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2774 	if (ret_val)
2775 		return ret_val;
2776 
2777 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2778 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2779 
2780 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2781 	if (ret_val)
2782 		return ret_val;
2783 
2784 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2785 	led_reg &= ~IXGBE_LED_BLINK(index);
2786 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2787 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2788 	IXGBE_WRITE_FLUSH(hw);
2789 
2790 	return 0;
2791 }
2792 
2793 /**
2794  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2795  *  @hw: pointer to hardware structure
2796  *  @san_mac_offset: SAN MAC address offset
2797  *
2798  *  This function will read the EEPROM location for the SAN MAC address
2799  *  pointer, and returns the value at that location.  This is used in both
2800  *  get and set mac_addr routines.
2801  **/
2802 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2803 					u16 *san_mac_offset)
2804 {
2805 	s32 ret_val;
2806 
2807 	/*
2808 	 * First read the EEPROM pointer to see if the MAC addresses are
2809 	 * available.
2810 	 */
2811 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2812 				      san_mac_offset);
2813 	if (ret_val)
2814 		hw_err(hw, "eeprom read at offset %d failed\n",
2815 		       IXGBE_SAN_MAC_ADDR_PTR);
2816 
2817 	return ret_val;
2818 }
2819 
2820 /**
2821  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2822  *  @hw: pointer to hardware structure
2823  *  @san_mac_addr: SAN MAC address
2824  *
2825  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2826  *  per-port, so set_lan_id() must be called before reading the addresses.
2827  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2828  *  upon for non-SFP connections, so we must call it here.
2829  **/
2830 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2831 {
2832 	u16 san_mac_data, san_mac_offset;
2833 	u8 i;
2834 	s32 ret_val;
2835 
2836 	/*
2837 	 * First read the EEPROM pointer to see if the MAC addresses are
2838 	 * available.  If they're not, no point in calling set_lan_id() here.
2839 	 */
2840 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2841 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2842 
2843 		goto san_mac_addr_clr;
2844 
2845 	/* make sure we know which port we need to program */
2846 	hw->mac.ops.set_lan_id(hw);
2847 	/* apply the port offset to the address offset */
2848 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2849 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2850 	for (i = 0; i < 3; i++) {
2851 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2852 					      &san_mac_data);
2853 		if (ret_val) {
2854 			hw_err(hw, "eeprom read at offset %d failed\n",
2855 			       san_mac_offset);
2856 			goto san_mac_addr_clr;
2857 		}
2858 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2859 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2860 		san_mac_offset++;
2861 	}
2862 	return 0;
2863 
2864 san_mac_addr_clr:
2865 	/* No addresses available in this EEPROM.  It's not necessarily an
2866 	 * error though, so just wipe the local address and return.
2867 	 */
2868 	for (i = 0; i < 6; i++)
2869 		san_mac_addr[i] = 0xFF;
2870 	return ret_val;
2871 }
2872 
2873 /**
2874  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2875  *  @hw: pointer to hardware structure
2876  *
2877  *  Read PCIe configuration space, and get the MSI-X vector count from
2878  *  the capabilities table.
2879  **/
2880 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2881 {
2882 	u16 msix_count;
2883 	u16 max_msix_count;
2884 	u16 pcie_offset;
2885 
2886 	switch (hw->mac.type) {
2887 	case ixgbe_mac_82598EB:
2888 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2889 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2890 		break;
2891 	case ixgbe_mac_82599EB:
2892 	case ixgbe_mac_X540:
2893 	case ixgbe_mac_X550:
2894 	case ixgbe_mac_X550EM_x:
2895 	case ixgbe_mac_x550em_a:
2896 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2897 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2898 		break;
2899 	default:
2900 		return 1;
2901 	}
2902 
2903 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2904 	if (ixgbe_removed(hw->hw_addr))
2905 		msix_count = 0;
2906 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2907 
2908 	/* MSI-X count is zero-based in HW */
2909 	msix_count++;
2910 
2911 	if (msix_count > max_msix_count)
2912 		msix_count = max_msix_count;
2913 
2914 	return msix_count;
2915 }
2916 
2917 /**
2918  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2919  *  @hw: pointer to hardware struct
2920  *  @rar: receive address register index to disassociate
2921  *  @vmdq: VMDq pool index to remove from the rar
2922  **/
2923 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2924 {
2925 	u32 mpsar_lo, mpsar_hi;
2926 	u32 rar_entries = hw->mac.num_rar_entries;
2927 
2928 	/* Make sure we are using a valid rar index range */
2929 	if (rar >= rar_entries) {
2930 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2931 		return IXGBE_ERR_INVALID_ARGUMENT;
2932 	}
2933 
2934 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2935 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2936 
2937 	if (ixgbe_removed(hw->hw_addr))
2938 		return 0;
2939 
2940 	if (!mpsar_lo && !mpsar_hi)
2941 		return 0;
2942 
2943 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2944 		if (mpsar_lo) {
2945 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2946 			mpsar_lo = 0;
2947 		}
2948 		if (mpsar_hi) {
2949 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2950 			mpsar_hi = 0;
2951 		}
2952 	} else if (vmdq < 32) {
2953 		mpsar_lo &= ~BIT(vmdq);
2954 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2955 	} else {
2956 		mpsar_hi &= ~BIT(vmdq - 32);
2957 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2958 	}
2959 
2960 	/* was that the last pool using this rar? */
2961 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2962 		hw->mac.ops.clear_rar(hw, rar);
2963 	return 0;
2964 }
2965 
2966 /**
2967  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2968  *  @hw: pointer to hardware struct
2969  *  @rar: receive address register index to associate with a VMDq index
2970  *  @vmdq: VMDq pool index
2971  **/
2972 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2973 {
2974 	u32 mpsar;
2975 	u32 rar_entries = hw->mac.num_rar_entries;
2976 
2977 	/* Make sure we are using a valid rar index range */
2978 	if (rar >= rar_entries) {
2979 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2980 		return IXGBE_ERR_INVALID_ARGUMENT;
2981 	}
2982 
2983 	if (vmdq < 32) {
2984 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2985 		mpsar |= BIT(vmdq);
2986 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2987 	} else {
2988 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2989 		mpsar |= BIT(vmdq - 32);
2990 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2991 	}
2992 	return 0;
2993 }
2994 
2995 /**
2996  *  This function should only be involved in the IOV mode.
2997  *  In IOV mode, Default pool is next pool after the number of
2998  *  VFs advertized and not 0.
2999  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3000  *
3001  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3002  *  @hw: pointer to hardware struct
3003  *  @vmdq: VMDq pool index
3004  **/
3005 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3006 {
3007 	u32 rar = hw->mac.san_mac_rar_index;
3008 
3009 	if (vmdq < 32) {
3010 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3011 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3012 	} else {
3013 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3014 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3015 	}
3016 
3017 	return 0;
3018 }
3019 
3020 /**
3021  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3022  *  @hw: pointer to hardware structure
3023  **/
3024 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3025 {
3026 	int i;
3027 
3028 	for (i = 0; i < 128; i++)
3029 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3030 
3031 	return 0;
3032 }
3033 
3034 /**
3035  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3036  *  @hw: pointer to hardware structure
3037  *  @vlan: VLAN id to write to VLAN filter
3038  *
3039  *  return the VLVF index where this VLAN id should be placed
3040  *
3041  **/
3042 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3043 {
3044 	s32 regindex, first_empty_slot;
3045 	u32 bits;
3046 
3047 	/* short cut the special case */
3048 	if (vlan == 0)
3049 		return 0;
3050 
3051 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3052 	 * will simply bypass the VLVF if there are no entries present in the
3053 	 * VLVF that contain our VLAN
3054 	 */
3055 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3056 
3057 	/* add VLAN enable bit for comparison */
3058 	vlan |= IXGBE_VLVF_VIEN;
3059 
3060 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3061 	 * slot found along the way.
3062 	 *
3063 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3064 	 */
3065 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3066 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3067 		if (bits == vlan)
3068 			return regindex;
3069 		if (!first_empty_slot && !bits)
3070 			first_empty_slot = regindex;
3071 	}
3072 
3073 	/* If we are here then we didn't find the VLAN.  Return first empty
3074 	 * slot we found during our search, else error.
3075 	 */
3076 	if (!first_empty_slot)
3077 		hw_dbg(hw, "No space in VLVF.\n");
3078 
3079 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3080 }
3081 
3082 /**
3083  *  ixgbe_set_vfta_generic - Set VLAN filter table
3084  *  @hw: pointer to hardware structure
3085  *  @vlan: VLAN id to write to VLAN filter
3086  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3087  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3088  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3089  *
3090  *  Turn on/off specified VLAN in the VLAN filter table.
3091  **/
3092 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3093 			   bool vlan_on, bool vlvf_bypass)
3094 {
3095 	u32 regidx, vfta_delta, vfta, bits;
3096 	s32 vlvf_index;
3097 
3098 	if ((vlan > 4095) || (vind > 63))
3099 		return IXGBE_ERR_PARAM;
3100 
3101 	/*
3102 	 * this is a 2 part operation - first the VFTA, then the
3103 	 * VLVF and VLVFB if VT Mode is set
3104 	 * We don't write the VFTA until we know the VLVF part succeeded.
3105 	 */
3106 
3107 	/* Part 1
3108 	 * The VFTA is a bitstring made up of 128 32-bit registers
3109 	 * that enable the particular VLAN id, much like the MTA:
3110 	 *    bits[11-5]: which register
3111 	 *    bits[4-0]:  which bit in the register
3112 	 */
3113 	regidx = vlan / 32;
3114 	vfta_delta = BIT(vlan % 32);
3115 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3116 
3117 	/* vfta_delta represents the difference between the current value
3118 	 * of vfta and the value we want in the register.  Since the diff
3119 	 * is an XOR mask we can just update vfta using an XOR.
3120 	 */
3121 	vfta_delta &= vlan_on ? ~vfta : vfta;
3122 	vfta ^= vfta_delta;
3123 
3124 	/* Part 2
3125 	 * If VT Mode is set
3126 	 *   Either vlan_on
3127 	 *     make sure the vlan is in VLVF
3128 	 *     set the vind bit in the matching VLVFB
3129 	 *   Or !vlan_on
3130 	 *     clear the pool bit and possibly the vind
3131 	 */
3132 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3133 		goto vfta_update;
3134 
3135 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3136 	if (vlvf_index < 0) {
3137 		if (vlvf_bypass)
3138 			goto vfta_update;
3139 		return vlvf_index;
3140 	}
3141 
3142 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3143 
3144 	/* set the pool bit */
3145 	bits |= BIT(vind % 32);
3146 	if (vlan_on)
3147 		goto vlvf_update;
3148 
3149 	/* clear the pool bit */
3150 	bits ^= BIT(vind % 32);
3151 
3152 	if (!bits &&
3153 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3154 		/* Clear VFTA first, then disable VLVF.  Otherwise
3155 		 * we run the risk of stray packets leaking into
3156 		 * the PF via the default pool
3157 		 */
3158 		if (vfta_delta)
3159 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3160 
3161 		/* disable VLVF and clear remaining bit from pool */
3162 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3163 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3164 
3165 		return 0;
3166 	}
3167 
3168 	/* If there are still bits set in the VLVFB registers
3169 	 * for the VLAN ID indicated we need to see if the
3170 	 * caller is requesting that we clear the VFTA entry bit.
3171 	 * If the caller has requested that we clear the VFTA
3172 	 * entry bit but there are still pools/VFs using this VLAN
3173 	 * ID entry then ignore the request.  We're not worried
3174 	 * about the case where we're turning the VFTA VLAN ID
3175 	 * entry bit on, only when requested to turn it off as
3176 	 * there may be multiple pools and/or VFs using the
3177 	 * VLAN ID entry.  In that case we cannot clear the
3178 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3179 	 * been cleared.  This will be indicated by "bits" being
3180 	 * zero.
3181 	 */
3182 	vfta_delta = 0;
3183 
3184 vlvf_update:
3185 	/* record pool change and enable VLAN ID if not already enabled */
3186 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3187 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3188 
3189 vfta_update:
3190 	/* Update VFTA now that we are ready for traffic */
3191 	if (vfta_delta)
3192 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3193 
3194 	return 0;
3195 }
3196 
3197 /**
3198  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3199  *  @hw: pointer to hardware structure
3200  *
3201  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3202  **/
3203 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3204 {
3205 	u32 offset;
3206 
3207 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3208 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3209 
3210 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3211 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3212 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3213 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3214 	}
3215 
3216 	return 0;
3217 }
3218 
3219 /**
3220  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3221  *  @hw: pointer to hardware structure
3222  *
3223  *  Contains the logic to identify if we need to verify link for the
3224  *  crosstalk fix
3225  **/
3226 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3227 {
3228 	/* Does FW say we need the fix */
3229 	if (!hw->need_crosstalk_fix)
3230 		return false;
3231 
3232 	/* Only consider SFP+ PHYs i.e. media type fiber */
3233 	switch (hw->mac.ops.get_media_type(hw)) {
3234 	case ixgbe_media_type_fiber:
3235 	case ixgbe_media_type_fiber_qsfp:
3236 		break;
3237 	default:
3238 		return false;
3239 	}
3240 
3241 	return true;
3242 }
3243 
3244 /**
3245  *  ixgbe_check_mac_link_generic - Determine link and speed status
3246  *  @hw: pointer to hardware structure
3247  *  @speed: pointer to link speed
3248  *  @link_up: true when link is up
3249  *  @link_up_wait_to_complete: bool used to wait for link up or not
3250  *
3251  *  Reads the links register to determine if link is up and the current speed
3252  **/
3253 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3254 				 bool *link_up, bool link_up_wait_to_complete)
3255 {
3256 	u32 links_reg, links_orig;
3257 	u32 i;
3258 
3259 	/* If Crosstalk fix enabled do the sanity check of making sure
3260 	 * the SFP+ cage is full.
3261 	 */
3262 	if (ixgbe_need_crosstalk_fix(hw)) {
3263 		u32 sfp_cage_full;
3264 
3265 		switch (hw->mac.type) {
3266 		case ixgbe_mac_82599EB:
3267 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3268 					IXGBE_ESDP_SDP2;
3269 			break;
3270 		case ixgbe_mac_X550EM_x:
3271 		case ixgbe_mac_x550em_a:
3272 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3273 					IXGBE_ESDP_SDP0;
3274 			break;
3275 		default:
3276 			/* sanity check - No SFP+ devices here */
3277 			sfp_cage_full = false;
3278 			break;
3279 		}
3280 
3281 		if (!sfp_cage_full) {
3282 			*link_up = false;
3283 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3284 			return 0;
3285 		}
3286 	}
3287 
3288 	/* clear the old state */
3289 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3290 
3291 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3292 
3293 	if (links_orig != links_reg) {
3294 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3295 		       links_orig, links_reg);
3296 	}
3297 
3298 	if (link_up_wait_to_complete) {
3299 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3300 			if (links_reg & IXGBE_LINKS_UP) {
3301 				*link_up = true;
3302 				break;
3303 			} else {
3304 				*link_up = false;
3305 			}
3306 			msleep(100);
3307 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3308 		}
3309 	} else {
3310 		if (links_reg & IXGBE_LINKS_UP)
3311 			*link_up = true;
3312 		else
3313 			*link_up = false;
3314 	}
3315 
3316 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3317 	case IXGBE_LINKS_SPEED_10G_82599:
3318 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3319 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3320 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3321 		else
3322 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3323 		break;
3324 	case IXGBE_LINKS_SPEED_1G_82599:
3325 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3326 		break;
3327 	case IXGBE_LINKS_SPEED_100_82599:
3328 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3329 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3330 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3331 		else
3332 			*speed = IXGBE_LINK_SPEED_100_FULL;
3333 		break;
3334 	default:
3335 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 /**
3342  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3343  *  the EEPROM
3344  *  @hw: pointer to hardware structure
3345  *  @wwnn_prefix: the alternative WWNN prefix
3346  *  @wwpn_prefix: the alternative WWPN prefix
3347  *
3348  *  This function will read the EEPROM from the alternative SAN MAC address
3349  *  block to check the support for the alternative WWNN/WWPN prefix support.
3350  **/
3351 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3352 					u16 *wwpn_prefix)
3353 {
3354 	u16 offset, caps;
3355 	u16 alt_san_mac_blk_offset;
3356 
3357 	/* clear output first */
3358 	*wwnn_prefix = 0xFFFF;
3359 	*wwpn_prefix = 0xFFFF;
3360 
3361 	/* check if alternative SAN MAC is supported */
3362 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3363 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3364 		goto wwn_prefix_err;
3365 
3366 	if ((alt_san_mac_blk_offset == 0) ||
3367 	    (alt_san_mac_blk_offset == 0xFFFF))
3368 		return 0;
3369 
3370 	/* check capability in alternative san mac address block */
3371 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3372 	if (hw->eeprom.ops.read(hw, offset, &caps))
3373 		goto wwn_prefix_err;
3374 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3375 		return 0;
3376 
3377 	/* get the corresponding prefix for WWNN/WWPN */
3378 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3379 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3380 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3381 
3382 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3383 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3384 		goto wwn_prefix_err;
3385 
3386 	return 0;
3387 
3388 wwn_prefix_err:
3389 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3390 	return 0;
3391 }
3392 
3393 /**
3394  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3395  *  @hw: pointer to hardware structure
3396  *  @enable: enable or disable switch for MAC anti-spoofing
3397  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3398  *
3399  **/
3400 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3401 {
3402 	int vf_target_reg = vf >> 3;
3403 	int vf_target_shift = vf % 8;
3404 	u32 pfvfspoof;
3405 
3406 	if (hw->mac.type == ixgbe_mac_82598EB)
3407 		return;
3408 
3409 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3410 	if (enable)
3411 		pfvfspoof |= BIT(vf_target_shift);
3412 	else
3413 		pfvfspoof &= ~BIT(vf_target_shift);
3414 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3415 }
3416 
3417 /**
3418  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3419  *  @hw: pointer to hardware structure
3420  *  @enable: enable or disable switch for VLAN anti-spoofing
3421  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3422  *
3423  **/
3424 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3425 {
3426 	int vf_target_reg = vf >> 3;
3427 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3428 	u32 pfvfspoof;
3429 
3430 	if (hw->mac.type == ixgbe_mac_82598EB)
3431 		return;
3432 
3433 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3434 	if (enable)
3435 		pfvfspoof |= BIT(vf_target_shift);
3436 	else
3437 		pfvfspoof &= ~BIT(vf_target_shift);
3438 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3439 }
3440 
3441 /**
3442  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3443  *  @hw: pointer to hardware structure
3444  *  @device_caps: the EEPROM word with the extra device capabilities
3445  *
3446  *  This function will read the EEPROM location for the device capabilities,
3447  *  and return the word through device_caps.
3448  **/
3449 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3450 {
3451 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3452 
3453 	return 0;
3454 }
3455 
3456 /**
3457  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3458  * @hw: pointer to hardware structure
3459  * @num_pb: number of packet buffers to allocate
3460  * @headroom: reserve n KB of headroom
3461  * @strategy: packet buffer allocation strategy
3462  **/
3463 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3464 			     int num_pb,
3465 			     u32 headroom,
3466 			     int strategy)
3467 {
3468 	u32 pbsize = hw->mac.rx_pb_size;
3469 	int i = 0;
3470 	u32 rxpktsize, txpktsize, txpbthresh;
3471 
3472 	/* Reserve headroom */
3473 	pbsize -= headroom;
3474 
3475 	if (!num_pb)
3476 		num_pb = 1;
3477 
3478 	/* Divide remaining packet buffer space amongst the number
3479 	 * of packet buffers requested using supplied strategy.
3480 	 */
3481 	switch (strategy) {
3482 	case (PBA_STRATEGY_WEIGHTED):
3483 		/* pba_80_48 strategy weight first half of packet buffer with
3484 		 * 5/8 of the packet buffer space.
3485 		 */
3486 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3487 		pbsize -= rxpktsize * (num_pb / 2);
3488 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3489 		for (; i < (num_pb / 2); i++)
3490 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3491 		/* Fall through to configure remaining packet buffers */
3492 	case (PBA_STRATEGY_EQUAL):
3493 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3494 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3495 		for (; i < num_pb; i++)
3496 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3497 		break;
3498 	default:
3499 		break;
3500 	}
3501 
3502 	/*
3503 	 * Setup Tx packet buffer and threshold equally for all TCs
3504 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3505 	 * 10 since the largest packet we support is just over 9K.
3506 	 */
3507 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3508 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3509 	for (i = 0; i < num_pb; i++) {
3510 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3511 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3512 	}
3513 
3514 	/* Clear unused TCs, if any, to zero buffer size*/
3515 	for (; i < IXGBE_MAX_PB; i++) {
3516 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3517 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3518 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3519 	}
3520 }
3521 
3522 /**
3523  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3524  *  @buffer: pointer to EEPROM
3525  *  @length: size of EEPROM to calculate a checksum for
3526  *
3527  *  Calculates the checksum for some buffer on a specified length.  The
3528  *  checksum calculated is returned.
3529  **/
3530 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3531 {
3532 	u32 i;
3533 	u8 sum = 0;
3534 
3535 	if (!buffer)
3536 		return 0;
3537 
3538 	for (i = 0; i < length; i++)
3539 		sum += buffer[i];
3540 
3541 	return (u8) (0 - sum);
3542 }
3543 
3544 /**
3545  *  ixgbe_host_interface_command - Issue command to manageability block
3546  *  @hw: pointer to the HW structure
3547  *  @buffer: contains the command to write and where the return status will
3548  *           be placed
3549  *  @length: length of buffer, must be multiple of 4 bytes
3550  *  @timeout: time in ms to wait for command completion
3551  *  @return_data: read and return data from the buffer (true) or not (false)
3552  *  Needed because FW structures are big endian and decoding of
3553  *  these fields can be 8 bit or 16 bit based on command. Decoding
3554  *  is not easily understood without making a table of commands.
3555  *  So we will leave this up to the caller to read back the data
3556  *  in these cases.
3557  *
3558  *  Communicates with the manageability block.  On success return 0
3559  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3560  **/
3561 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3562 				 u32 length, u32 timeout,
3563 				 bool return_data)
3564 {
3565 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3566 	u32 hicr, i, bi, fwsts;
3567 	u16 buf_len, dword_len;
3568 	union {
3569 		struct ixgbe_hic_hdr hdr;
3570 		u32 u32arr[1];
3571 	} *bp = buffer;
3572 	s32 status;
3573 
3574 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3575 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3576 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3577 	}
3578 	/* Take management host interface semaphore */
3579 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3580 	if (status)
3581 		return status;
3582 
3583 	/* Set bit 9 of FWSTS clearing FW reset indication */
3584 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3585 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3586 
3587 	/* Check that the host interface is enabled. */
3588 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3589 	if (!(hicr & IXGBE_HICR_EN)) {
3590 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3591 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3592 		goto rel_out;
3593 	}
3594 
3595 	/* Calculate length in DWORDs. We must be DWORD aligned */
3596 	if (length % sizeof(u32)) {
3597 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3598 		status = IXGBE_ERR_INVALID_ARGUMENT;
3599 		goto rel_out;
3600 	}
3601 
3602 	dword_len = length >> 2;
3603 
3604 	/* The device driver writes the relevant command block
3605 	 * into the ram area.
3606 	 */
3607 	for (i = 0; i < dword_len; i++)
3608 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3609 				      i, cpu_to_le32(bp->u32arr[i]));
3610 
3611 	/* Setting this bit tells the ARC that a new command is pending. */
3612 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3613 
3614 	for (i = 0; i < timeout; i++) {
3615 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3616 		if (!(hicr & IXGBE_HICR_C))
3617 			break;
3618 		usleep_range(1000, 2000);
3619 	}
3620 
3621 	/* Check command successful completion. */
3622 	if ((timeout && i == timeout) ||
3623 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
3624 		hw_dbg(hw, "Command has failed with no status valid.\n");
3625 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3626 		goto rel_out;
3627 	}
3628 
3629 	if (!return_data)
3630 		goto rel_out;
3631 
3632 	/* Calculate length in DWORDs */
3633 	dword_len = hdr_size >> 2;
3634 
3635 	/* first pull in the header so we know the buffer length */
3636 	for (bi = 0; bi < dword_len; bi++) {
3637 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3638 		le32_to_cpus(&bp->u32arr[bi]);
3639 	}
3640 
3641 	/* If there is any thing in data position pull it in */
3642 	buf_len = bp->hdr.buf_len;
3643 	if (!buf_len)
3644 		goto rel_out;
3645 
3646 	if (length < round_up(buf_len, 4) + hdr_size) {
3647 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3648 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3649 		goto rel_out;
3650 	}
3651 
3652 	/* Calculate length in DWORDs, add 3 for odd lengths */
3653 	dword_len = (buf_len + 3) >> 2;
3654 
3655 	/* Pull in the rest of the buffer (bi is where we left off) */
3656 	for (; bi <= dword_len; bi++) {
3657 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3658 		le32_to_cpus(&bp->u32arr[bi]);
3659 	}
3660 
3661 rel_out:
3662 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3663 
3664 	return status;
3665 }
3666 
3667 /**
3668  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3669  *  @hw: pointer to the HW structure
3670  *  @maj: driver version major number
3671  *  @min: driver version minor number
3672  *  @build: driver version build number
3673  *  @sub: driver version sub build number
3674  *
3675  *  Sends driver version number to firmware through the manageability
3676  *  block.  On success return 0
3677  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3678  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3679  **/
3680 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3681 				 u8 build, u8 sub)
3682 {
3683 	struct ixgbe_hic_drv_info fw_cmd;
3684 	int i;
3685 	s32 ret_val;
3686 
3687 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3688 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3689 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3690 	fw_cmd.port_num = hw->bus.func;
3691 	fw_cmd.ver_maj = maj;
3692 	fw_cmd.ver_min = min;
3693 	fw_cmd.ver_build = build;
3694 	fw_cmd.ver_sub = sub;
3695 	fw_cmd.hdr.checksum = 0;
3696 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3697 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3698 	fw_cmd.pad = 0;
3699 	fw_cmd.pad2 = 0;
3700 
3701 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3702 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3703 						       sizeof(fw_cmd),
3704 						       IXGBE_HI_COMMAND_TIMEOUT,
3705 						       true);
3706 		if (ret_val != 0)
3707 			continue;
3708 
3709 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3710 		    FW_CEM_RESP_STATUS_SUCCESS)
3711 			ret_val = 0;
3712 		else
3713 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3714 
3715 		break;
3716 	}
3717 
3718 	return ret_val;
3719 }
3720 
3721 /**
3722  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3723  * @hw: pointer to the hardware structure
3724  *
3725  * The 82599 and x540 MACs can experience issues if TX work is still pending
3726  * when a reset occurs.  This function prevents this by flushing the PCIe
3727  * buffers on the system.
3728  **/
3729 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3730 {
3731 	u32 gcr_ext, hlreg0, i, poll;
3732 	u16 value;
3733 
3734 	/*
3735 	 * If double reset is not requested then all transactions should
3736 	 * already be clear and as such there is no work to do
3737 	 */
3738 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3739 		return;
3740 
3741 	/*
3742 	 * Set loopback enable to prevent any transmits from being sent
3743 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3744 	 * has already been cleared.
3745 	 */
3746 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3747 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3748 
3749 	/* wait for a last completion before clearing buffers */
3750 	IXGBE_WRITE_FLUSH(hw);
3751 	usleep_range(3000, 6000);
3752 
3753 	/* Before proceeding, make sure that the PCIe block does not have
3754 	 * transactions pending.
3755 	 */
3756 	poll = ixgbe_pcie_timeout_poll(hw);
3757 	for (i = 0; i < poll; i++) {
3758 		usleep_range(100, 200);
3759 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3760 		if (ixgbe_removed(hw->hw_addr))
3761 			break;
3762 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3763 			break;
3764 	}
3765 
3766 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3767 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3768 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3769 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3770 
3771 	/* Flush all writes and allow 20usec for all transactions to clear */
3772 	IXGBE_WRITE_FLUSH(hw);
3773 	udelay(20);
3774 
3775 	/* restore previous register values */
3776 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3777 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3778 }
3779 
3780 static const u8 ixgbe_emc_temp_data[4] = {
3781 	IXGBE_EMC_INTERNAL_DATA,
3782 	IXGBE_EMC_DIODE1_DATA,
3783 	IXGBE_EMC_DIODE2_DATA,
3784 	IXGBE_EMC_DIODE3_DATA
3785 };
3786 static const u8 ixgbe_emc_therm_limit[4] = {
3787 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3788 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3789 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3790 	IXGBE_EMC_DIODE3_THERM_LIMIT
3791 };
3792 
3793 /**
3794  *  ixgbe_get_ets_data - Extracts the ETS bit data
3795  *  @hw: pointer to hardware structure
3796  *  @ets_cfg: extected ETS data
3797  *  @ets_offset: offset of ETS data
3798  *
3799  *  Returns error code.
3800  **/
3801 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3802 			      u16 *ets_offset)
3803 {
3804 	s32 status;
3805 
3806 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3807 	if (status)
3808 		return status;
3809 
3810 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3811 		return IXGBE_NOT_IMPLEMENTED;
3812 
3813 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3814 	if (status)
3815 		return status;
3816 
3817 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3818 		return IXGBE_NOT_IMPLEMENTED;
3819 
3820 	return 0;
3821 }
3822 
3823 /**
3824  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3825  *  @hw: pointer to hardware structure
3826  *
3827  *  Returns the thermal sensor data structure
3828  **/
3829 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3830 {
3831 	s32 status;
3832 	u16 ets_offset;
3833 	u16 ets_cfg;
3834 	u16 ets_sensor;
3835 	u8  num_sensors;
3836 	u8  i;
3837 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3838 
3839 	/* Only support thermal sensors attached to physical port 0 */
3840 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3841 		return IXGBE_NOT_IMPLEMENTED;
3842 
3843 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3844 	if (status)
3845 		return status;
3846 
3847 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3848 	if (num_sensors > IXGBE_MAX_SENSORS)
3849 		num_sensors = IXGBE_MAX_SENSORS;
3850 
3851 	for (i = 0; i < num_sensors; i++) {
3852 		u8  sensor_index;
3853 		u8  sensor_location;
3854 
3855 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3856 					     &ets_sensor);
3857 		if (status)
3858 			return status;
3859 
3860 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3861 				IXGBE_ETS_DATA_INDEX_SHIFT);
3862 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3863 				   IXGBE_ETS_DATA_LOC_SHIFT);
3864 
3865 		if (sensor_location != 0) {
3866 			status = hw->phy.ops.read_i2c_byte(hw,
3867 					ixgbe_emc_temp_data[sensor_index],
3868 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3869 					&data->sensor[i].temp);
3870 			if (status)
3871 				return status;
3872 		}
3873 	}
3874 
3875 	return 0;
3876 }
3877 
3878 /**
3879  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3880  * @hw: pointer to hardware structure
3881  *
3882  * Inits the thermal sensor thresholds according to the NVM map
3883  * and save off the threshold and location values into mac.thermal_sensor_data
3884  **/
3885 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3886 {
3887 	s32 status;
3888 	u16 ets_offset;
3889 	u16 ets_cfg;
3890 	u16 ets_sensor;
3891 	u8  low_thresh_delta;
3892 	u8  num_sensors;
3893 	u8  therm_limit;
3894 	u8  i;
3895 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3896 
3897 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3898 
3899 	/* Only support thermal sensors attached to physical port 0 */
3900 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3901 		return IXGBE_NOT_IMPLEMENTED;
3902 
3903 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3904 	if (status)
3905 		return status;
3906 
3907 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3908 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3909 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3910 	if (num_sensors > IXGBE_MAX_SENSORS)
3911 		num_sensors = IXGBE_MAX_SENSORS;
3912 
3913 	for (i = 0; i < num_sensors; i++) {
3914 		u8  sensor_index;
3915 		u8  sensor_location;
3916 
3917 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3918 			hw_err(hw, "eeprom read at offset %d failed\n",
3919 			       ets_offset + 1 + i);
3920 			continue;
3921 		}
3922 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3923 				IXGBE_ETS_DATA_INDEX_SHIFT);
3924 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3925 				   IXGBE_ETS_DATA_LOC_SHIFT);
3926 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3927 
3928 		hw->phy.ops.write_i2c_byte(hw,
3929 			ixgbe_emc_therm_limit[sensor_index],
3930 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3931 
3932 		if (sensor_location == 0)
3933 			continue;
3934 
3935 		data->sensor[i].location = sensor_location;
3936 		data->sensor[i].caution_thresh = therm_limit;
3937 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3938 	}
3939 
3940 	return 0;
3941 }
3942 
3943 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3944 {
3945 	u32 rxctrl;
3946 
3947 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3948 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
3949 		if (hw->mac.type != ixgbe_mac_82598EB) {
3950 			u32 pfdtxgswc;
3951 
3952 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3953 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3954 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3955 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3956 				hw->mac.set_lben = true;
3957 			} else {
3958 				hw->mac.set_lben = false;
3959 			}
3960 		}
3961 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
3962 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3963 	}
3964 }
3965 
3966 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3967 {
3968 	u32 rxctrl;
3969 
3970 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3971 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3972 
3973 	if (hw->mac.type != ixgbe_mac_82598EB) {
3974 		if (hw->mac.set_lben) {
3975 			u32 pfdtxgswc;
3976 
3977 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3978 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3979 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3980 			hw->mac.set_lben = false;
3981 		}
3982 	}
3983 }
3984 
3985 /** ixgbe_mng_present - returns true when management capability is present
3986  * @hw: pointer to hardware structure
3987  **/
3988 bool ixgbe_mng_present(struct ixgbe_hw *hw)
3989 {
3990 	u32 fwsm;
3991 
3992 	if (hw->mac.type < ixgbe_mac_82599EB)
3993 		return false;
3994 
3995 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3996 	fwsm &= IXGBE_FWSM_MODE_MASK;
3997 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
3998 }
3999 
4000 /**
4001  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4002  *  @hw: pointer to hardware structure
4003  *  @speed: new link speed
4004  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4005  *
4006  *  Set the link speed in the MAC and/or PHY register and restarts link.
4007  */
4008 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4009 					  ixgbe_link_speed speed,
4010 					  bool autoneg_wait_to_complete)
4011 {
4012 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4013 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4014 	s32 status = 0;
4015 	u32 speedcnt = 0;
4016 	u32 i = 0;
4017 	bool autoneg, link_up = false;
4018 
4019 	/* Mask off requested but non-supported speeds */
4020 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4021 	if (status)
4022 		return status;
4023 
4024 	speed &= link_speed;
4025 
4026 	/* Try each speed one by one, highest priority first.  We do this in
4027 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4028 	 */
4029 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4030 		speedcnt++;
4031 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4032 
4033 		/* If we already have link at this speed, just jump out */
4034 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4035 						false);
4036 		if (status)
4037 			return status;
4038 
4039 		if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
4040 			goto out;
4041 
4042 		/* Set the module link speed */
4043 		switch (hw->phy.media_type) {
4044 		case ixgbe_media_type_fiber:
4045 			hw->mac.ops.set_rate_select_speed(hw,
4046 						    IXGBE_LINK_SPEED_10GB_FULL);
4047 			break;
4048 		case ixgbe_media_type_fiber_qsfp:
4049 			/* QSFP module automatically detects MAC link speed */
4050 			break;
4051 		default:
4052 			hw_dbg(hw, "Unexpected media type\n");
4053 			break;
4054 		}
4055 
4056 		/* Allow module to change analog characteristics (1G->10G) */
4057 		msleep(40);
4058 
4059 		status = hw->mac.ops.setup_mac_link(hw,
4060 						    IXGBE_LINK_SPEED_10GB_FULL,
4061 						    autoneg_wait_to_complete);
4062 		if (status)
4063 			return status;
4064 
4065 		/* Flap the Tx laser if it has not already been done */
4066 		if (hw->mac.ops.flap_tx_laser)
4067 			hw->mac.ops.flap_tx_laser(hw);
4068 
4069 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4070 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4071 		 * attempted.  82599 uses the same timing for 10g SFI.
4072 		 */
4073 		for (i = 0; i < 5; i++) {
4074 			/* Wait for the link partner to also set speed */
4075 			msleep(100);
4076 
4077 			/* If we have link, just jump out */
4078 			status = hw->mac.ops.check_link(hw, &link_speed,
4079 							&link_up, false);
4080 			if (status)
4081 				return status;
4082 
4083 			if (link_up)
4084 				goto out;
4085 		}
4086 	}
4087 
4088 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4089 		speedcnt++;
4090 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4091 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4092 
4093 		/* If we already have link at this speed, just jump out */
4094 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4095 						false);
4096 		if (status)
4097 			return status;
4098 
4099 		if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4100 			goto out;
4101 
4102 		/* Set the module link speed */
4103 		switch (hw->phy.media_type) {
4104 		case ixgbe_media_type_fiber:
4105 			hw->mac.ops.set_rate_select_speed(hw,
4106 						     IXGBE_LINK_SPEED_1GB_FULL);
4107 			break;
4108 		case ixgbe_media_type_fiber_qsfp:
4109 			/* QSFP module automatically detects link speed */
4110 			break;
4111 		default:
4112 			hw_dbg(hw, "Unexpected media type\n");
4113 			break;
4114 		}
4115 
4116 		/* Allow module to change analog characteristics (10G->1G) */
4117 		msleep(40);
4118 
4119 		status = hw->mac.ops.setup_mac_link(hw,
4120 						    IXGBE_LINK_SPEED_1GB_FULL,
4121 						    autoneg_wait_to_complete);
4122 		if (status)
4123 			return status;
4124 
4125 		/* Flap the Tx laser if it has not already been done */
4126 		if (hw->mac.ops.flap_tx_laser)
4127 			hw->mac.ops.flap_tx_laser(hw);
4128 
4129 		/* Wait for the link partner to also set speed */
4130 		msleep(100);
4131 
4132 		/* If we have link, just jump out */
4133 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4134 						false);
4135 		if (status)
4136 			return status;
4137 
4138 		if (link_up)
4139 			goto out;
4140 	}
4141 
4142 	/* We didn't get link.  Configure back to the highest speed we tried,
4143 	 * (if there was more than one).  We call ourselves back with just the
4144 	 * single highest speed that the user requested.
4145 	 */
4146 	if (speedcnt > 1)
4147 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4148 						      highest_link_speed,
4149 						      autoneg_wait_to_complete);
4150 
4151 out:
4152 	/* Set autoneg_advertised value based on input link speed */
4153 	hw->phy.autoneg_advertised = 0;
4154 
4155 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4156 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4157 
4158 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4159 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4160 
4161 	return status;
4162 }
4163 
4164 /**
4165  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4166  *  @hw: pointer to hardware structure
4167  *  @speed: link speed to set
4168  *
4169  *  Set module link speed via the soft rate select.
4170  */
4171 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4172 				      ixgbe_link_speed speed)
4173 {
4174 	s32 status;
4175 	u8 rs, eeprom_data;
4176 
4177 	switch (speed) {
4178 	case IXGBE_LINK_SPEED_10GB_FULL:
4179 		/* one bit mask same as setting on */
4180 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4181 		break;
4182 	case IXGBE_LINK_SPEED_1GB_FULL:
4183 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4184 		break;
4185 	default:
4186 		hw_dbg(hw, "Invalid fixed module speed\n");
4187 		return;
4188 	}
4189 
4190 	/* Set RS0 */
4191 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4192 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4193 					   &eeprom_data);
4194 	if (status) {
4195 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4196 		return;
4197 	}
4198 
4199 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4200 
4201 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4202 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4203 					    eeprom_data);
4204 	if (status) {
4205 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4206 		return;
4207 	}
4208 }
4209