xref: /openbmc/linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/sched.h>
7 #include <linux/netdevice.h>
8 
9 #include "ixgbe.h"
10 #include "ixgbe_common.h"
11 #include "ixgbe_phy.h"
12 
13 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19 					u16 count);
20 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24 
25 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28 					     u16 words, u16 *data);
29 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30 					     u16 words, u16 *data);
31 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32 						 u16 offset);
33 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
34 
35 /* Base table for registers values that change by MAC */
36 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37 	IXGBE_MVALS_INIT(8259X)
38 };
39 
40 /**
41  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42  *  control
43  *  @hw: pointer to hardware structure
44  *
45  *  There are several phys that do not support autoneg flow control. This
46  *  function check the device id to see if the associated phy supports
47  *  autoneg flow control.
48  **/
49 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50 {
51 	bool supported = false;
52 	ixgbe_link_speed speed;
53 	bool link_up;
54 
55 	switch (hw->phy.media_type) {
56 	case ixgbe_media_type_fiber:
57 		/* flow control autoneg black list */
58 		switch (hw->device_id) {
59 		case IXGBE_DEV_ID_X550EM_A_SFP:
60 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
61 			supported = false;
62 			break;
63 		default:
64 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
65 			/* if link is down, assume supported */
66 			if (link_up)
67 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
68 				true : false;
69 			else
70 				supported = true;
71 		}
72 
73 		break;
74 	case ixgbe_media_type_backplane:
75 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
76 			supported = false;
77 		else
78 			supported = true;
79 		break;
80 	case ixgbe_media_type_copper:
81 		/* only some copper devices support flow control autoneg */
82 		switch (hw->device_id) {
83 		case IXGBE_DEV_ID_82599_T3_LOM:
84 		case IXGBE_DEV_ID_X540T:
85 		case IXGBE_DEV_ID_X540T1:
86 		case IXGBE_DEV_ID_X550T:
87 		case IXGBE_DEV_ID_X550T1:
88 		case IXGBE_DEV_ID_X550EM_X_10G_T:
89 		case IXGBE_DEV_ID_X550EM_A_10G_T:
90 		case IXGBE_DEV_ID_X550EM_A_1G_T:
91 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
92 			supported = true;
93 			break;
94 		default:
95 			break;
96 		}
97 	default:
98 		break;
99 	}
100 
101 	if (!supported)
102 		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
103 		       hw->device_id);
104 
105 	return supported;
106 }
107 
108 /**
109  *  ixgbe_setup_fc_generic - Set up flow control
110  *  @hw: pointer to hardware structure
111  *
112  *  Called at init time to set up flow control.
113  **/
114 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
115 {
116 	s32 ret_val = 0;
117 	u32 reg = 0, reg_bp = 0;
118 	u16 reg_cu = 0;
119 	bool locked = false;
120 
121 	/*
122 	 * Validate the requested mode.  Strict IEEE mode does not allow
123 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
124 	 */
125 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
126 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
127 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
128 	}
129 
130 	/*
131 	 * 10gig parts do not have a word in the EEPROM to determine the
132 	 * default flow control setting, so we explicitly set it to full.
133 	 */
134 	if (hw->fc.requested_mode == ixgbe_fc_default)
135 		hw->fc.requested_mode = ixgbe_fc_full;
136 
137 	/*
138 	 * Set up the 1G and 10G flow control advertisement registers so the
139 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
140 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
141 	 */
142 	switch (hw->phy.media_type) {
143 	case ixgbe_media_type_backplane:
144 		/* some MAC's need RMW protection on AUTOC */
145 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
146 		if (ret_val)
147 			return ret_val;
148 
149 		/* fall through - only backplane uses autoc */
150 	case ixgbe_media_type_fiber:
151 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
152 
153 		break;
154 	case ixgbe_media_type_copper:
155 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
156 					MDIO_MMD_AN, &reg_cu);
157 		break;
158 	default:
159 		break;
160 	}
161 
162 	/*
163 	 * The possible values of fc.requested_mode are:
164 	 * 0: Flow control is completely disabled
165 	 * 1: Rx flow control is enabled (we can receive pause frames,
166 	 *    but not send pause frames).
167 	 * 2: Tx flow control is enabled (we can send pause frames but
168 	 *    we do not support receiving pause frames).
169 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
170 	 * other: Invalid.
171 	 */
172 	switch (hw->fc.requested_mode) {
173 	case ixgbe_fc_none:
174 		/* Flow control completely disabled by software override. */
175 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
176 		if (hw->phy.media_type == ixgbe_media_type_backplane)
177 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
178 				    IXGBE_AUTOC_ASM_PAUSE);
179 		else if (hw->phy.media_type == ixgbe_media_type_copper)
180 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
181 		break;
182 	case ixgbe_fc_tx_pause:
183 		/*
184 		 * Tx Flow control is enabled, and Rx Flow control is
185 		 * disabled by software override.
186 		 */
187 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
188 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
189 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
190 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
191 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
192 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
193 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
194 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
195 		}
196 		break;
197 	case ixgbe_fc_rx_pause:
198 		/*
199 		 * Rx Flow control is enabled and Tx Flow control is
200 		 * disabled by software override. Since there really
201 		 * isn't a way to advertise that we are capable of RX
202 		 * Pause ONLY, we will advertise that we support both
203 		 * symmetric and asymmetric Rx PAUSE, as such we fall
204 		 * through to the fc_full statement.  Later, we will
205 		 * disable the adapter's ability to send PAUSE frames.
206 		 */
207 	case ixgbe_fc_full:
208 		/* Flow control (both Rx and Tx) is enabled by SW override. */
209 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
210 		if (hw->phy.media_type == ixgbe_media_type_backplane)
211 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
212 				  IXGBE_AUTOC_ASM_PAUSE;
213 		else if (hw->phy.media_type == ixgbe_media_type_copper)
214 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
215 		break;
216 	default:
217 		hw_dbg(hw, "Flow control param set incorrectly\n");
218 		return IXGBE_ERR_CONFIG;
219 	}
220 
221 	if (hw->mac.type != ixgbe_mac_X540) {
222 		/*
223 		 * Enable auto-negotiation between the MAC & PHY;
224 		 * the MAC will advertise clause 37 flow control.
225 		 */
226 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
227 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
228 
229 		/* Disable AN timeout */
230 		if (hw->fc.strict_ieee)
231 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
232 
233 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
234 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
235 	}
236 
237 	/*
238 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
239 	 * and copper. There is no need to set the PCS1GCTL register.
240 	 *
241 	 */
242 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
243 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
244 		 * LESM is on, likewise reset_pipeline requries the lock as
245 		 * it also writes AUTOC.
246 		 */
247 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
248 		if (ret_val)
249 			return ret_val;
250 
251 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
252 		   ixgbe_device_supports_autoneg_fc(hw)) {
253 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
254 				      MDIO_MMD_AN, reg_cu);
255 	}
256 
257 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
258 	return ret_val;
259 }
260 
261 /**
262  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263  *  @hw: pointer to hardware structure
264  *
265  *  Starts the hardware by filling the bus info structure and media type, clears
266  *  all on chip counters, initializes receive address registers, multicast
267  *  table, VLAN filter table, calls routine to set up link and flow control
268  *  settings, and leaves transmit and receive units disabled and uninitialized
269  **/
270 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
271 {
272 	s32 ret_val;
273 	u32 ctrl_ext;
274 	u16 device_caps;
275 
276 	/* Set the media type */
277 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
278 
279 	/* Identify the PHY */
280 	hw->phy.ops.identify(hw);
281 
282 	/* Clear the VLAN filter table */
283 	hw->mac.ops.clear_vfta(hw);
284 
285 	/* Clear statistics registers */
286 	hw->mac.ops.clear_hw_cntrs(hw);
287 
288 	/* Set No Snoop Disable */
289 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
290 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
291 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
292 	IXGBE_WRITE_FLUSH(hw);
293 
294 	/* Setup flow control if method for doing so */
295 	if (hw->mac.ops.setup_fc) {
296 		ret_val = hw->mac.ops.setup_fc(hw);
297 		if (ret_val)
298 			return ret_val;
299 	}
300 
301 	/* Cashe bit indicating need for crosstalk fix */
302 	switch (hw->mac.type) {
303 	case ixgbe_mac_82599EB:
304 	case ixgbe_mac_X550EM_x:
305 	case ixgbe_mac_x550em_a:
306 		hw->mac.ops.get_device_caps(hw, &device_caps);
307 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
308 			hw->need_crosstalk_fix = false;
309 		else
310 			hw->need_crosstalk_fix = true;
311 		break;
312 	default:
313 		hw->need_crosstalk_fix = false;
314 		break;
315 	}
316 
317 	/* Clear adapter stopped flag */
318 	hw->adapter_stopped = false;
319 
320 	return 0;
321 }
322 
323 /**
324  *  ixgbe_start_hw_gen2 - Init sequence for common device family
325  *  @hw: pointer to hw structure
326  *
327  * Performs the init sequence common to the second generation
328  * of 10 GbE devices.
329  * Devices in the second generation:
330  *     82599
331  *     X540
332  **/
333 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
334 {
335 	u32 i;
336 
337 	/* Clear the rate limiters */
338 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
339 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
340 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
341 	}
342 	IXGBE_WRITE_FLUSH(hw);
343 
344 	return 0;
345 }
346 
347 /**
348  *  ixgbe_init_hw_generic - Generic hardware initialization
349  *  @hw: pointer to hardware structure
350  *
351  *  Initialize the hardware by resetting the hardware, filling the bus info
352  *  structure and media type, clears all on chip counters, initializes receive
353  *  address registers, multicast table, VLAN filter table, calls routine to set
354  *  up link and flow control settings, and leaves transmit and receive units
355  *  disabled and uninitialized
356  **/
357 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
358 {
359 	s32 status;
360 
361 	/* Reset the hardware */
362 	status = hw->mac.ops.reset_hw(hw);
363 
364 	if (status == 0) {
365 		/* Start the HW */
366 		status = hw->mac.ops.start_hw(hw);
367 	}
368 
369 	/* Initialize the LED link active for LED blink support */
370 	if (hw->mac.ops.init_led_link_act)
371 		hw->mac.ops.init_led_link_act(hw);
372 
373 	return status;
374 }
375 
376 /**
377  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378  *  @hw: pointer to hardware structure
379  *
380  *  Clears all hardware statistics counters by reading them from the hardware
381  *  Statistics counters are clear on read.
382  **/
383 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
384 {
385 	u16 i = 0;
386 
387 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
388 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
389 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
390 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
391 	for (i = 0; i < 8; i++)
392 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
393 
394 	IXGBE_READ_REG(hw, IXGBE_MLFC);
395 	IXGBE_READ_REG(hw, IXGBE_MRFC);
396 	IXGBE_READ_REG(hw, IXGBE_RLEC);
397 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
398 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
399 	if (hw->mac.type >= ixgbe_mac_82599EB) {
400 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
401 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
402 	} else {
403 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
404 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
405 	}
406 
407 	for (i = 0; i < 8; i++) {
408 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
409 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
410 		if (hw->mac.type >= ixgbe_mac_82599EB) {
411 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
412 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
413 		} else {
414 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
415 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
416 		}
417 	}
418 	if (hw->mac.type >= ixgbe_mac_82599EB)
419 		for (i = 0; i < 8; i++)
420 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
421 	IXGBE_READ_REG(hw, IXGBE_PRC64);
422 	IXGBE_READ_REG(hw, IXGBE_PRC127);
423 	IXGBE_READ_REG(hw, IXGBE_PRC255);
424 	IXGBE_READ_REG(hw, IXGBE_PRC511);
425 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
426 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
427 	IXGBE_READ_REG(hw, IXGBE_GPRC);
428 	IXGBE_READ_REG(hw, IXGBE_BPRC);
429 	IXGBE_READ_REG(hw, IXGBE_MPRC);
430 	IXGBE_READ_REG(hw, IXGBE_GPTC);
431 	IXGBE_READ_REG(hw, IXGBE_GORCL);
432 	IXGBE_READ_REG(hw, IXGBE_GORCH);
433 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
434 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
435 	if (hw->mac.type == ixgbe_mac_82598EB)
436 		for (i = 0; i < 8; i++)
437 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
438 	IXGBE_READ_REG(hw, IXGBE_RUC);
439 	IXGBE_READ_REG(hw, IXGBE_RFC);
440 	IXGBE_READ_REG(hw, IXGBE_ROC);
441 	IXGBE_READ_REG(hw, IXGBE_RJC);
442 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
443 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
444 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
445 	IXGBE_READ_REG(hw, IXGBE_TORL);
446 	IXGBE_READ_REG(hw, IXGBE_TORH);
447 	IXGBE_READ_REG(hw, IXGBE_TPR);
448 	IXGBE_READ_REG(hw, IXGBE_TPT);
449 	IXGBE_READ_REG(hw, IXGBE_PTC64);
450 	IXGBE_READ_REG(hw, IXGBE_PTC127);
451 	IXGBE_READ_REG(hw, IXGBE_PTC255);
452 	IXGBE_READ_REG(hw, IXGBE_PTC511);
453 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
454 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
455 	IXGBE_READ_REG(hw, IXGBE_MPTC);
456 	IXGBE_READ_REG(hw, IXGBE_BPTC);
457 	for (i = 0; i < 16; i++) {
458 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
459 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
460 		if (hw->mac.type >= ixgbe_mac_82599EB) {
461 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
462 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
463 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
464 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
465 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
466 		} else {
467 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
468 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
469 		}
470 	}
471 
472 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
473 		if (hw->phy.id == 0)
474 			hw->phy.ops.identify(hw);
475 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
476 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
477 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
478 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
479 	}
480 
481 	return 0;
482 }
483 
484 /**
485  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486  *  @hw: pointer to hardware structure
487  *  @pba_num: stores the part number string from the EEPROM
488  *  @pba_num_size: part number string buffer length
489  *
490  *  Reads the part number string from the EEPROM.
491  **/
492 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
493 				  u32 pba_num_size)
494 {
495 	s32 ret_val;
496 	u16 data;
497 	u16 pba_ptr;
498 	u16 offset;
499 	u16 length;
500 
501 	if (pba_num == NULL) {
502 		hw_dbg(hw, "PBA string buffer was null\n");
503 		return IXGBE_ERR_INVALID_ARGUMENT;
504 	}
505 
506 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
507 	if (ret_val) {
508 		hw_dbg(hw, "NVM Read Error\n");
509 		return ret_val;
510 	}
511 
512 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
513 	if (ret_val) {
514 		hw_dbg(hw, "NVM Read Error\n");
515 		return ret_val;
516 	}
517 
518 	/*
519 	 * if data is not ptr guard the PBA must be in legacy format which
520 	 * means pba_ptr is actually our second data word for the PBA number
521 	 * and we can decode it into an ascii string
522 	 */
523 	if (data != IXGBE_PBANUM_PTR_GUARD) {
524 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
525 
526 		/* we will need 11 characters to store the PBA */
527 		if (pba_num_size < 11) {
528 			hw_dbg(hw, "PBA string buffer too small\n");
529 			return IXGBE_ERR_NO_SPACE;
530 		}
531 
532 		/* extract hex string from data and pba_ptr */
533 		pba_num[0] = (data >> 12) & 0xF;
534 		pba_num[1] = (data >> 8) & 0xF;
535 		pba_num[2] = (data >> 4) & 0xF;
536 		pba_num[3] = data & 0xF;
537 		pba_num[4] = (pba_ptr >> 12) & 0xF;
538 		pba_num[5] = (pba_ptr >> 8) & 0xF;
539 		pba_num[6] = '-';
540 		pba_num[7] = 0;
541 		pba_num[8] = (pba_ptr >> 4) & 0xF;
542 		pba_num[9] = pba_ptr & 0xF;
543 
544 		/* put a null character on the end of our string */
545 		pba_num[10] = '\0';
546 
547 		/* switch all the data but the '-' to hex char */
548 		for (offset = 0; offset < 10; offset++) {
549 			if (pba_num[offset] < 0xA)
550 				pba_num[offset] += '0';
551 			else if (pba_num[offset] < 0x10)
552 				pba_num[offset] += 'A' - 0xA;
553 		}
554 
555 		return 0;
556 	}
557 
558 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
559 	if (ret_val) {
560 		hw_dbg(hw, "NVM Read Error\n");
561 		return ret_val;
562 	}
563 
564 	if (length == 0xFFFF || length == 0) {
565 		hw_dbg(hw, "NVM PBA number section invalid length\n");
566 		return IXGBE_ERR_PBA_SECTION;
567 	}
568 
569 	/* check if pba_num buffer is big enough */
570 	if (pba_num_size  < (((u32)length * 2) - 1)) {
571 		hw_dbg(hw, "PBA string buffer too small\n");
572 		return IXGBE_ERR_NO_SPACE;
573 	}
574 
575 	/* trim pba length from start of string */
576 	pba_ptr++;
577 	length--;
578 
579 	for (offset = 0; offset < length; offset++) {
580 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
581 		if (ret_val) {
582 			hw_dbg(hw, "NVM Read Error\n");
583 			return ret_val;
584 		}
585 		pba_num[offset * 2] = (u8)(data >> 8);
586 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
587 	}
588 	pba_num[offset * 2] = '\0';
589 
590 	return 0;
591 }
592 
593 /**
594  *  ixgbe_get_mac_addr_generic - Generic get MAC address
595  *  @hw: pointer to hardware structure
596  *  @mac_addr: Adapter MAC address
597  *
598  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
599  *  A reset of the adapter must be performed prior to calling this function
600  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
601  **/
602 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
603 {
604 	u32 rar_high;
605 	u32 rar_low;
606 	u16 i;
607 
608 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
609 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
610 
611 	for (i = 0; i < 4; i++)
612 		mac_addr[i] = (u8)(rar_low >> (i*8));
613 
614 	for (i = 0; i < 2; i++)
615 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
616 
617 	return 0;
618 }
619 
620 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
621 {
622 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
623 	case IXGBE_PCI_LINK_WIDTH_1:
624 		return ixgbe_bus_width_pcie_x1;
625 	case IXGBE_PCI_LINK_WIDTH_2:
626 		return ixgbe_bus_width_pcie_x2;
627 	case IXGBE_PCI_LINK_WIDTH_4:
628 		return ixgbe_bus_width_pcie_x4;
629 	case IXGBE_PCI_LINK_WIDTH_8:
630 		return ixgbe_bus_width_pcie_x8;
631 	default:
632 		return ixgbe_bus_width_unknown;
633 	}
634 }
635 
636 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
637 {
638 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
639 	case IXGBE_PCI_LINK_SPEED_2500:
640 		return ixgbe_bus_speed_2500;
641 	case IXGBE_PCI_LINK_SPEED_5000:
642 		return ixgbe_bus_speed_5000;
643 	case IXGBE_PCI_LINK_SPEED_8000:
644 		return ixgbe_bus_speed_8000;
645 	default:
646 		return ixgbe_bus_speed_unknown;
647 	}
648 }
649 
650 /**
651  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
652  *  @hw: pointer to hardware structure
653  *
654  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
655  **/
656 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
657 {
658 	u16 link_status;
659 
660 	hw->bus.type = ixgbe_bus_type_pci_express;
661 
662 	/* Get the negotiated link width and speed from PCI config space */
663 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
664 
665 	hw->bus.width = ixgbe_convert_bus_width(link_status);
666 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
667 
668 	hw->mac.ops.set_lan_id(hw);
669 
670 	return 0;
671 }
672 
673 /**
674  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675  *  @hw: pointer to the HW structure
676  *
677  *  Determines the LAN function id by reading memory-mapped registers
678  *  and swaps the port value if requested.
679  **/
680 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
681 {
682 	struct ixgbe_bus_info *bus = &hw->bus;
683 	u16 ee_ctrl_4;
684 	u32 reg;
685 
686 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
688 	bus->lan_id = bus->func;
689 
690 	/* check for a port swap */
691 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692 	if (reg & IXGBE_FACTPS_LFS)
693 		bus->func ^= 0x1;
694 
695 	/* Get MAC instance from EEPROM for configuring CS4227 */
696 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
697 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
698 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
699 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
700 	}
701 }
702 
703 /**
704  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705  *  @hw: pointer to hardware structure
706  *
707  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708  *  disables transmit and receive units. The adapter_stopped flag is used by
709  *  the shared code and drivers to determine if the adapter is in a stopped
710  *  state and should not touch the hardware.
711  **/
712 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
713 {
714 	u32 reg_val;
715 	u16 i;
716 
717 	/*
718 	 * Set the adapter_stopped flag so other driver functions stop touching
719 	 * the hardware
720 	 */
721 	hw->adapter_stopped = true;
722 
723 	/* Disable the receive unit */
724 	hw->mac.ops.disable_rx(hw);
725 
726 	/* Clear interrupt mask to stop interrupts from being generated */
727 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
728 
729 	/* Clear any pending interrupts, flush previous writes */
730 	IXGBE_READ_REG(hw, IXGBE_EICR);
731 
732 	/* Disable the transmit unit.  Each queue must be disabled. */
733 	for (i = 0; i < hw->mac.max_tx_queues; i++)
734 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
735 
736 	/* Disable the receive unit by stopping each queue */
737 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
738 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
739 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
740 		reg_val |= IXGBE_RXDCTL_SWFLSH;
741 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
742 	}
743 
744 	/* flush all queues disables */
745 	IXGBE_WRITE_FLUSH(hw);
746 	usleep_range(1000, 2000);
747 
748 	/*
749 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
750 	 * access and verify no pending requests
751 	 */
752 	return ixgbe_disable_pcie_master(hw);
753 }
754 
755 /**
756  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757  *  @hw: pointer to hardware structure
758  *
759  *  Store the index for the link active LED. This will be used to support
760  *  blinking the LED.
761  **/
762 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
763 {
764 	struct ixgbe_mac_info *mac = &hw->mac;
765 	u32 led_reg, led_mode;
766 	u16 i;
767 
768 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
769 
770 	/* Get LED link active from the LEDCTL register */
771 	for (i = 0; i < 4; i++) {
772 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
773 
774 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
775 		    IXGBE_LED_LINK_ACTIVE) {
776 			mac->led_link_act = i;
777 			return 0;
778 		}
779 	}
780 
781 	/* If LEDCTL register does not have the LED link active set, then use
782 	 * known MAC defaults.
783 	 */
784 	switch (hw->mac.type) {
785 	case ixgbe_mac_x550em_a:
786 		mac->led_link_act = 0;
787 		break;
788 	case ixgbe_mac_X550EM_x:
789 		mac->led_link_act = 1;
790 		break;
791 	default:
792 		mac->led_link_act = 2;
793 	}
794 
795 	return 0;
796 }
797 
798 /**
799  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
800  *  @hw: pointer to hardware structure
801  *  @index: led number to turn on
802  **/
803 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
804 {
805 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
806 
807 	if (index > 3)
808 		return IXGBE_ERR_PARAM;
809 
810 	/* To turn on the LED, set mode to ON. */
811 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
812 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
813 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
814 	IXGBE_WRITE_FLUSH(hw);
815 
816 	return 0;
817 }
818 
819 /**
820  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
821  *  @hw: pointer to hardware structure
822  *  @index: led number to turn off
823  **/
824 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
825 {
826 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
827 
828 	if (index > 3)
829 		return IXGBE_ERR_PARAM;
830 
831 	/* To turn off the LED, set mode to OFF. */
832 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
833 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
834 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
835 	IXGBE_WRITE_FLUSH(hw);
836 
837 	return 0;
838 }
839 
840 /**
841  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842  *  @hw: pointer to hardware structure
843  *
844  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
845  *  ixgbe_hw struct in order to set up EEPROM access.
846  **/
847 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
848 {
849 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
850 	u32 eec;
851 	u16 eeprom_size;
852 
853 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
854 		eeprom->type = ixgbe_eeprom_none;
855 		/* Set default semaphore delay to 10ms which is a well
856 		 * tested value */
857 		eeprom->semaphore_delay = 10;
858 		/* Clear EEPROM page size, it will be initialized as needed */
859 		eeprom->word_page_size = 0;
860 
861 		/*
862 		 * Check for EEPROM present first.
863 		 * If not present leave as none
864 		 */
865 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
866 		if (eec & IXGBE_EEC_PRES) {
867 			eeprom->type = ixgbe_eeprom_spi;
868 
869 			/*
870 			 * SPI EEPROM is assumed here.  This code would need to
871 			 * change if a future EEPROM is not SPI.
872 			 */
873 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
874 					    IXGBE_EEC_SIZE_SHIFT);
875 			eeprom->word_size = BIT(eeprom_size +
876 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
877 		}
878 
879 		if (eec & IXGBE_EEC_ADDR_SIZE)
880 			eeprom->address_bits = 16;
881 		else
882 			eeprom->address_bits = 8;
883 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
884 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
885 	}
886 
887 	return 0;
888 }
889 
890 /**
891  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
892  *  @hw: pointer to hardware structure
893  *  @offset: offset within the EEPROM to write
894  *  @words: number of words
895  *  @data: 16 bit word(s) to write to EEPROM
896  *
897  *  Reads 16 bit word(s) from EEPROM through bit-bang method
898  **/
899 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
900 					       u16 words, u16 *data)
901 {
902 	s32 status;
903 	u16 i, count;
904 
905 	hw->eeprom.ops.init_params(hw);
906 
907 	if (words == 0)
908 		return IXGBE_ERR_INVALID_ARGUMENT;
909 
910 	if (offset + words > hw->eeprom.word_size)
911 		return IXGBE_ERR_EEPROM;
912 
913 	/*
914 	 * The EEPROM page size cannot be queried from the chip. We do lazy
915 	 * initialization. It is worth to do that when we write large buffer.
916 	 */
917 	if ((hw->eeprom.word_page_size == 0) &&
918 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
919 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
920 
921 	/*
922 	 * We cannot hold synchronization semaphores for too long
923 	 * to avoid other entity starvation. However it is more efficient
924 	 * to read in bursts than synchronizing access for each word.
925 	 */
926 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
927 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
928 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
929 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
930 							    count, &data[i]);
931 
932 		if (status != 0)
933 			break;
934 	}
935 
936 	return status;
937 }
938 
939 /**
940  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
941  *  @hw: pointer to hardware structure
942  *  @offset: offset within the EEPROM to be written to
943  *  @words: number of word(s)
944  *  @data: 16 bit word(s) to be written to the EEPROM
945  *
946  *  If ixgbe_eeprom_update_checksum is not called after this function, the
947  *  EEPROM will most likely contain an invalid checksum.
948  **/
949 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
950 					      u16 words, u16 *data)
951 {
952 	s32 status;
953 	u16 word;
954 	u16 page_size;
955 	u16 i;
956 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
957 
958 	/* Prepare the EEPROM for writing  */
959 	status = ixgbe_acquire_eeprom(hw);
960 	if (status)
961 		return status;
962 
963 	if (ixgbe_ready_eeprom(hw) != 0) {
964 		ixgbe_release_eeprom(hw);
965 		return IXGBE_ERR_EEPROM;
966 	}
967 
968 	for (i = 0; i < words; i++) {
969 		ixgbe_standby_eeprom(hw);
970 
971 		/* Send the WRITE ENABLE command (8 bit opcode) */
972 		ixgbe_shift_out_eeprom_bits(hw,
973 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
974 					    IXGBE_EEPROM_OPCODE_BITS);
975 
976 		ixgbe_standby_eeprom(hw);
977 
978 		/* Some SPI eeproms use the 8th address bit embedded
979 		 * in the opcode
980 		 */
981 		if ((hw->eeprom.address_bits == 8) &&
982 		    ((offset + i) >= 128))
983 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
984 
985 		/* Send the Write command (8-bit opcode + addr) */
986 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
987 					    IXGBE_EEPROM_OPCODE_BITS);
988 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
989 					    hw->eeprom.address_bits);
990 
991 		page_size = hw->eeprom.word_page_size;
992 
993 		/* Send the data in burst via SPI */
994 		do {
995 			word = data[i];
996 			word = (word >> 8) | (word << 8);
997 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
998 
999 			if (page_size == 0)
1000 				break;
1001 
1002 			/* do not wrap around page */
1003 			if (((offset + i) & (page_size - 1)) ==
1004 			    (page_size - 1))
1005 				break;
1006 		} while (++i < words);
1007 
1008 		ixgbe_standby_eeprom(hw);
1009 		usleep_range(10000, 20000);
1010 	}
1011 	/* Done with writing - release the EEPROM */
1012 	ixgbe_release_eeprom(hw);
1013 
1014 	return 0;
1015 }
1016 
1017 /**
1018  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1019  *  @hw: pointer to hardware structure
1020  *  @offset: offset within the EEPROM to be written to
1021  *  @data: 16 bit word to be written to the EEPROM
1022  *
1023  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1024  *  EEPROM will most likely contain an invalid checksum.
1025  **/
1026 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1027 {
1028 	hw->eeprom.ops.init_params(hw);
1029 
1030 	if (offset >= hw->eeprom.word_size)
1031 		return IXGBE_ERR_EEPROM;
1032 
1033 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1034 }
1035 
1036 /**
1037  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1038  *  @hw: pointer to hardware structure
1039  *  @offset: offset within the EEPROM to be read
1040  *  @words: number of word(s)
1041  *  @data: read 16 bit words(s) from EEPROM
1042  *
1043  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1044  **/
1045 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1046 					      u16 words, u16 *data)
1047 {
1048 	s32 status;
1049 	u16 i, count;
1050 
1051 	hw->eeprom.ops.init_params(hw);
1052 
1053 	if (words == 0)
1054 		return IXGBE_ERR_INVALID_ARGUMENT;
1055 
1056 	if (offset + words > hw->eeprom.word_size)
1057 		return IXGBE_ERR_EEPROM;
1058 
1059 	/*
1060 	 * We cannot hold synchronization semaphores for too long
1061 	 * to avoid other entity starvation. However it is more efficient
1062 	 * to read in bursts than synchronizing access for each word.
1063 	 */
1064 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1065 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1066 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1067 
1068 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1069 							   count, &data[i]);
1070 
1071 		if (status)
1072 			return status;
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1080  *  @hw: pointer to hardware structure
1081  *  @offset: offset within the EEPROM to be read
1082  *  @words: number of word(s)
1083  *  @data: read 16 bit word(s) from EEPROM
1084  *
1085  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1086  **/
1087 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1088 					     u16 words, u16 *data)
1089 {
1090 	s32 status;
1091 	u16 word_in;
1092 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1093 	u16 i;
1094 
1095 	/* Prepare the EEPROM for reading  */
1096 	status = ixgbe_acquire_eeprom(hw);
1097 	if (status)
1098 		return status;
1099 
1100 	if (ixgbe_ready_eeprom(hw) != 0) {
1101 		ixgbe_release_eeprom(hw);
1102 		return IXGBE_ERR_EEPROM;
1103 	}
1104 
1105 	for (i = 0; i < words; i++) {
1106 		ixgbe_standby_eeprom(hw);
1107 		/* Some SPI eeproms use the 8th address bit embedded
1108 		 * in the opcode
1109 		 */
1110 		if ((hw->eeprom.address_bits == 8) &&
1111 		    ((offset + i) >= 128))
1112 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1113 
1114 		/* Send the READ command (opcode + addr) */
1115 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1116 					    IXGBE_EEPROM_OPCODE_BITS);
1117 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1118 					    hw->eeprom.address_bits);
1119 
1120 		/* Read the data. */
1121 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1122 		data[i] = (word_in >> 8) | (word_in << 8);
1123 	}
1124 
1125 	/* End this read operation */
1126 	ixgbe_release_eeprom(hw);
1127 
1128 	return 0;
1129 }
1130 
1131 /**
1132  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1133  *  @hw: pointer to hardware structure
1134  *  @offset: offset within the EEPROM to be read
1135  *  @data: read 16 bit value from EEPROM
1136  *
1137  *  Reads 16 bit value from EEPROM through bit-bang method
1138  **/
1139 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1140 				       u16 *data)
1141 {
1142 	hw->eeprom.ops.init_params(hw);
1143 
1144 	if (offset >= hw->eeprom.word_size)
1145 		return IXGBE_ERR_EEPROM;
1146 
1147 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1148 }
1149 
1150 /**
1151  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1152  *  @hw: pointer to hardware structure
1153  *  @offset: offset of word in the EEPROM to read
1154  *  @words: number of word(s)
1155  *  @data: 16 bit word(s) from the EEPROM
1156  *
1157  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1158  **/
1159 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1160 				   u16 words, u16 *data)
1161 {
1162 	u32 eerd;
1163 	s32 status;
1164 	u32 i;
1165 
1166 	hw->eeprom.ops.init_params(hw);
1167 
1168 	if (words == 0)
1169 		return IXGBE_ERR_INVALID_ARGUMENT;
1170 
1171 	if (offset >= hw->eeprom.word_size)
1172 		return IXGBE_ERR_EEPROM;
1173 
1174 	for (i = 0; i < words; i++) {
1175 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1176 		       IXGBE_EEPROM_RW_REG_START;
1177 
1178 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1179 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1180 
1181 		if (status == 0) {
1182 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1183 				   IXGBE_EEPROM_RW_REG_DATA);
1184 		} else {
1185 			hw_dbg(hw, "Eeprom read timed out\n");
1186 			return status;
1187 		}
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 /**
1194  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1195  *  @hw: pointer to hardware structure
1196  *  @offset: offset within the EEPROM to be used as a scratch pad
1197  *
1198  *  Discover EEPROM page size by writing marching data at given offset.
1199  *  This function is called only when we are writing a new large buffer
1200  *  at given offset so the data would be overwritten anyway.
1201  **/
1202 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1203 						 u16 offset)
1204 {
1205 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1206 	s32 status;
1207 	u16 i;
1208 
1209 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1210 		data[i] = i;
1211 
1212 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1213 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1214 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1215 	hw->eeprom.word_page_size = 0;
1216 	if (status)
1217 		return status;
1218 
1219 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1220 	if (status)
1221 		return status;
1222 
1223 	/*
1224 	 * When writing in burst more than the actual page size
1225 	 * EEPROM address wraps around current page.
1226 	 */
1227 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1228 
1229 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1230 	       hw->eeprom.word_page_size);
1231 	return 0;
1232 }
1233 
1234 /**
1235  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1236  *  @hw: pointer to hardware structure
1237  *  @offset: offset of  word in the EEPROM to read
1238  *  @data: word read from the EEPROM
1239  *
1240  *  Reads a 16 bit word from the EEPROM using the EERD register.
1241  **/
1242 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1243 {
1244 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1245 }
1246 
1247 /**
1248  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1249  *  @hw: pointer to hardware structure
1250  *  @offset: offset of  word in the EEPROM to write
1251  *  @words: number of words
1252  *  @data: word(s) write to the EEPROM
1253  *
1254  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1255  **/
1256 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1257 				    u16 words, u16 *data)
1258 {
1259 	u32 eewr;
1260 	s32 status;
1261 	u16 i;
1262 
1263 	hw->eeprom.ops.init_params(hw);
1264 
1265 	if (words == 0)
1266 		return IXGBE_ERR_INVALID_ARGUMENT;
1267 
1268 	if (offset >= hw->eeprom.word_size)
1269 		return IXGBE_ERR_EEPROM;
1270 
1271 	for (i = 0; i < words; i++) {
1272 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1273 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1274 		       IXGBE_EEPROM_RW_REG_START;
1275 
1276 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1277 		if (status) {
1278 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1279 			return status;
1280 		}
1281 
1282 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1283 
1284 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1285 		if (status) {
1286 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1287 			return status;
1288 		}
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 /**
1295  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1296  *  @hw: pointer to hardware structure
1297  *  @offset: offset of  word in the EEPROM to write
1298  *  @data: word write to the EEPROM
1299  *
1300  *  Write a 16 bit word to the EEPROM using the EEWR register.
1301  **/
1302 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1303 {
1304 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1305 }
1306 
1307 /**
1308  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1309  *  @hw: pointer to hardware structure
1310  *  @ee_reg: EEPROM flag for polling
1311  *
1312  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1313  *  read or write is done respectively.
1314  **/
1315 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1316 {
1317 	u32 i;
1318 	u32 reg;
1319 
1320 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1321 		if (ee_reg == IXGBE_NVM_POLL_READ)
1322 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1323 		else
1324 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1325 
1326 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1327 			return 0;
1328 		}
1329 		udelay(5);
1330 	}
1331 	return IXGBE_ERR_EEPROM;
1332 }
1333 
1334 /**
1335  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1336  *  @hw: pointer to hardware structure
1337  *
1338  *  Prepares EEPROM for access using bit-bang method. This function should
1339  *  be called before issuing a command to the EEPROM.
1340  **/
1341 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1342 {
1343 	u32 eec;
1344 	u32 i;
1345 
1346 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1347 		return IXGBE_ERR_SWFW_SYNC;
1348 
1349 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1350 
1351 	/* Request EEPROM Access */
1352 	eec |= IXGBE_EEC_REQ;
1353 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1354 
1355 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1356 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1357 		if (eec & IXGBE_EEC_GNT)
1358 			break;
1359 		udelay(5);
1360 	}
1361 
1362 	/* Release if grant not acquired */
1363 	if (!(eec & IXGBE_EEC_GNT)) {
1364 		eec &= ~IXGBE_EEC_REQ;
1365 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1366 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1367 
1368 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1369 		return IXGBE_ERR_EEPROM;
1370 	}
1371 
1372 	/* Setup EEPROM for Read/Write */
1373 	/* Clear CS and SK */
1374 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1375 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1376 	IXGBE_WRITE_FLUSH(hw);
1377 	udelay(1);
1378 	return 0;
1379 }
1380 
1381 /**
1382  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1383  *  @hw: pointer to hardware structure
1384  *
1385  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1386  **/
1387 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1388 {
1389 	u32 timeout = 2000;
1390 	u32 i;
1391 	u32 swsm;
1392 
1393 	/* Get SMBI software semaphore between device drivers first */
1394 	for (i = 0; i < timeout; i++) {
1395 		/*
1396 		 * If the SMBI bit is 0 when we read it, then the bit will be
1397 		 * set and we have the semaphore
1398 		 */
1399 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1400 		if (!(swsm & IXGBE_SWSM_SMBI))
1401 			break;
1402 		usleep_range(50, 100);
1403 	}
1404 
1405 	if (i == timeout) {
1406 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1407 		/* this release is particularly important because our attempts
1408 		 * above to get the semaphore may have succeeded, and if there
1409 		 * was a timeout, we should unconditionally clear the semaphore
1410 		 * bits to free the driver to make progress
1411 		 */
1412 		ixgbe_release_eeprom_semaphore(hw);
1413 
1414 		usleep_range(50, 100);
1415 		/* one last try
1416 		 * If the SMBI bit is 0 when we read it, then the bit will be
1417 		 * set and we have the semaphore
1418 		 */
1419 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1420 		if (swsm & IXGBE_SWSM_SMBI) {
1421 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1422 			return IXGBE_ERR_EEPROM;
1423 		}
1424 	}
1425 
1426 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1427 	for (i = 0; i < timeout; i++) {
1428 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1429 
1430 		/* Set the SW EEPROM semaphore bit to request access */
1431 		swsm |= IXGBE_SWSM_SWESMBI;
1432 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1433 
1434 		/* If we set the bit successfully then we got the
1435 		 * semaphore.
1436 		 */
1437 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1438 		if (swsm & IXGBE_SWSM_SWESMBI)
1439 			break;
1440 
1441 		usleep_range(50, 100);
1442 	}
1443 
1444 	/* Release semaphores and return error if SW EEPROM semaphore
1445 	 * was not granted because we don't have access to the EEPROM
1446 	 */
1447 	if (i >= timeout) {
1448 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1449 		ixgbe_release_eeprom_semaphore(hw);
1450 		return IXGBE_ERR_EEPROM;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1458  *  @hw: pointer to hardware structure
1459  *
1460  *  This function clears hardware semaphore bits.
1461  **/
1462 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1463 {
1464 	u32 swsm;
1465 
1466 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1467 
1468 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1469 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1470 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1471 	IXGBE_WRITE_FLUSH(hw);
1472 }
1473 
1474 /**
1475  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1476  *  @hw: pointer to hardware structure
1477  **/
1478 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1479 {
1480 	u16 i;
1481 	u8 spi_stat_reg;
1482 
1483 	/*
1484 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1485 	 * EEPROM will signal that the command has been completed by clearing
1486 	 * bit 0 of the internal status register.  If it's not cleared within
1487 	 * 5 milliseconds, then error out.
1488 	 */
1489 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1490 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1491 					    IXGBE_EEPROM_OPCODE_BITS);
1492 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1493 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1494 			break;
1495 
1496 		udelay(5);
1497 		ixgbe_standby_eeprom(hw);
1498 	}
1499 
1500 	/*
1501 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1502 	 * devices (and only 0-5mSec on 5V devices)
1503 	 */
1504 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1505 		hw_dbg(hw, "SPI EEPROM Status error\n");
1506 		return IXGBE_ERR_EEPROM;
1507 	}
1508 
1509 	return 0;
1510 }
1511 
1512 /**
1513  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1514  *  @hw: pointer to hardware structure
1515  **/
1516 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1517 {
1518 	u32 eec;
1519 
1520 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1521 
1522 	/* Toggle CS to flush commands */
1523 	eec |= IXGBE_EEC_CS;
1524 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1525 	IXGBE_WRITE_FLUSH(hw);
1526 	udelay(1);
1527 	eec &= ~IXGBE_EEC_CS;
1528 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529 	IXGBE_WRITE_FLUSH(hw);
1530 	udelay(1);
1531 }
1532 
1533 /**
1534  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1535  *  @hw: pointer to hardware structure
1536  *  @data: data to send to the EEPROM
1537  *  @count: number of bits to shift out
1538  **/
1539 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1540 					u16 count)
1541 {
1542 	u32 eec;
1543 	u32 mask;
1544 	u32 i;
1545 
1546 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547 
1548 	/*
1549 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1550 	 * one bit at a time.  Determine the starting bit based on count
1551 	 */
1552 	mask = BIT(count - 1);
1553 
1554 	for (i = 0; i < count; i++) {
1555 		/*
1556 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1557 		 * "1", and then raising and then lowering the clock (the SK
1558 		 * bit controls the clock input to the EEPROM).  A "0" is
1559 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1560 		 * raising and then lowering the clock.
1561 		 */
1562 		if (data & mask)
1563 			eec |= IXGBE_EEC_DI;
1564 		else
1565 			eec &= ~IXGBE_EEC_DI;
1566 
1567 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1568 		IXGBE_WRITE_FLUSH(hw);
1569 
1570 		udelay(1);
1571 
1572 		ixgbe_raise_eeprom_clk(hw, &eec);
1573 		ixgbe_lower_eeprom_clk(hw, &eec);
1574 
1575 		/*
1576 		 * Shift mask to signify next bit of data to shift in to the
1577 		 * EEPROM
1578 		 */
1579 		mask = mask >> 1;
1580 	}
1581 
1582 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1583 	eec &= ~IXGBE_EEC_DI;
1584 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1585 	IXGBE_WRITE_FLUSH(hw);
1586 }
1587 
1588 /**
1589  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1590  *  @hw: pointer to hardware structure
1591  *  @count: number of bits to shift
1592  **/
1593 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1594 {
1595 	u32 eec;
1596 	u32 i;
1597 	u16 data = 0;
1598 
1599 	/*
1600 	 * In order to read a register from the EEPROM, we need to shift
1601 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1602 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1603 	 * the value of the "DO" bit.  During this "shifting in" process the
1604 	 * "DI" bit should always be clear.
1605 	 */
1606 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1607 
1608 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1609 
1610 	for (i = 0; i < count; i++) {
1611 		data = data << 1;
1612 		ixgbe_raise_eeprom_clk(hw, &eec);
1613 
1614 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1615 
1616 		eec &= ~(IXGBE_EEC_DI);
1617 		if (eec & IXGBE_EEC_DO)
1618 			data |= 1;
1619 
1620 		ixgbe_lower_eeprom_clk(hw, &eec);
1621 	}
1622 
1623 	return data;
1624 }
1625 
1626 /**
1627  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1628  *  @hw: pointer to hardware structure
1629  *  @eec: EEC register's current value
1630  **/
1631 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1632 {
1633 	/*
1634 	 * Raise the clock input to the EEPROM
1635 	 * (setting the SK bit), then delay
1636 	 */
1637 	*eec = *eec | IXGBE_EEC_SK;
1638 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1639 	IXGBE_WRITE_FLUSH(hw);
1640 	udelay(1);
1641 }
1642 
1643 /**
1644  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1645  *  @hw: pointer to hardware structure
1646  *  @eec: EEC's current value
1647  **/
1648 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1649 {
1650 	/*
1651 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1652 	 * delay
1653 	 */
1654 	*eec = *eec & ~IXGBE_EEC_SK;
1655 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1656 	IXGBE_WRITE_FLUSH(hw);
1657 	udelay(1);
1658 }
1659 
1660 /**
1661  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1662  *  @hw: pointer to hardware structure
1663  **/
1664 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1665 {
1666 	u32 eec;
1667 
1668 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1669 
1670 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1671 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1672 
1673 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1674 	IXGBE_WRITE_FLUSH(hw);
1675 
1676 	udelay(1);
1677 
1678 	/* Stop requesting EEPROM access */
1679 	eec &= ~IXGBE_EEC_REQ;
1680 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1681 
1682 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1683 
1684 	/*
1685 	 * Delay before attempt to obtain semaphore again to allow FW
1686 	 * access. semaphore_delay is in ms we need us for usleep_range
1687 	 */
1688 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1689 		     hw->eeprom.semaphore_delay * 2000);
1690 }
1691 
1692 /**
1693  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1694  *  @hw: pointer to hardware structure
1695  **/
1696 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1697 {
1698 	u16 i;
1699 	u16 j;
1700 	u16 checksum = 0;
1701 	u16 length = 0;
1702 	u16 pointer = 0;
1703 	u16 word = 0;
1704 
1705 	/* Include 0x0-0x3F in the checksum */
1706 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1707 		if (hw->eeprom.ops.read(hw, i, &word)) {
1708 			hw_dbg(hw, "EEPROM read failed\n");
1709 			break;
1710 		}
1711 		checksum += word;
1712 	}
1713 
1714 	/* Include all data from pointers except for the fw pointer */
1715 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1716 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1717 			hw_dbg(hw, "EEPROM read failed\n");
1718 			return IXGBE_ERR_EEPROM;
1719 		}
1720 
1721 		/* If the pointer seems invalid */
1722 		if (pointer == 0xFFFF || pointer == 0)
1723 			continue;
1724 
1725 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1726 			hw_dbg(hw, "EEPROM read failed\n");
1727 			return IXGBE_ERR_EEPROM;
1728 		}
1729 
1730 		if (length == 0xFFFF || length == 0)
1731 			continue;
1732 
1733 		for (j = pointer + 1; j <= pointer + length; j++) {
1734 			if (hw->eeprom.ops.read(hw, j, &word)) {
1735 				hw_dbg(hw, "EEPROM read failed\n");
1736 				return IXGBE_ERR_EEPROM;
1737 			}
1738 			checksum += word;
1739 		}
1740 	}
1741 
1742 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1743 
1744 	return (s32)checksum;
1745 }
1746 
1747 /**
1748  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1749  *  @hw: pointer to hardware structure
1750  *  @checksum_val: calculated checksum
1751  *
1752  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1753  *  caller does not need checksum_val, the value can be NULL.
1754  **/
1755 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1756 					   u16 *checksum_val)
1757 {
1758 	s32 status;
1759 	u16 checksum;
1760 	u16 read_checksum = 0;
1761 
1762 	/*
1763 	 * Read the first word from the EEPROM. If this times out or fails, do
1764 	 * not continue or we could be in for a very long wait while every
1765 	 * EEPROM read fails
1766 	 */
1767 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1768 	if (status) {
1769 		hw_dbg(hw, "EEPROM read failed\n");
1770 		return status;
1771 	}
1772 
1773 	status = hw->eeprom.ops.calc_checksum(hw);
1774 	if (status < 0)
1775 		return status;
1776 
1777 	checksum = (u16)(status & 0xffff);
1778 
1779 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1780 	if (status) {
1781 		hw_dbg(hw, "EEPROM read failed\n");
1782 		return status;
1783 	}
1784 
1785 	/* Verify read checksum from EEPROM is the same as
1786 	 * calculated checksum
1787 	 */
1788 	if (read_checksum != checksum)
1789 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1790 
1791 	/* If the user cares, return the calculated checksum */
1792 	if (checksum_val)
1793 		*checksum_val = checksum;
1794 
1795 	return status;
1796 }
1797 
1798 /**
1799  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1800  *  @hw: pointer to hardware structure
1801  **/
1802 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1803 {
1804 	s32 status;
1805 	u16 checksum;
1806 
1807 	/*
1808 	 * Read the first word from the EEPROM. If this times out or fails, do
1809 	 * not continue or we could be in for a very long wait while every
1810 	 * EEPROM read fails
1811 	 */
1812 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1813 	if (status) {
1814 		hw_dbg(hw, "EEPROM read failed\n");
1815 		return status;
1816 	}
1817 
1818 	status = hw->eeprom.ops.calc_checksum(hw);
1819 	if (status < 0)
1820 		return status;
1821 
1822 	checksum = (u16)(status & 0xffff);
1823 
1824 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1825 
1826 	return status;
1827 }
1828 
1829 /**
1830  *  ixgbe_set_rar_generic - Set Rx address register
1831  *  @hw: pointer to hardware structure
1832  *  @index: Receive address register to write
1833  *  @addr: Address to put into receive address register
1834  *  @vmdq: VMDq "set" or "pool" index
1835  *  @enable_addr: set flag that address is active
1836  *
1837  *  Puts an ethernet address into a receive address register.
1838  **/
1839 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1840 			  u32 enable_addr)
1841 {
1842 	u32 rar_low, rar_high;
1843 	u32 rar_entries = hw->mac.num_rar_entries;
1844 
1845 	/* Make sure we are using a valid rar index range */
1846 	if (index >= rar_entries) {
1847 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1848 		return IXGBE_ERR_INVALID_ARGUMENT;
1849 	}
1850 
1851 	/* setup VMDq pool selection before this RAR gets enabled */
1852 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1853 
1854 	/*
1855 	 * HW expects these in little endian so we reverse the byte
1856 	 * order from network order (big endian) to little endian
1857 	 */
1858 	rar_low = ((u32)addr[0] |
1859 		   ((u32)addr[1] << 8) |
1860 		   ((u32)addr[2] << 16) |
1861 		   ((u32)addr[3] << 24));
1862 	/*
1863 	 * Some parts put the VMDq setting in the extra RAH bits,
1864 	 * so save everything except the lower 16 bits that hold part
1865 	 * of the address and the address valid bit.
1866 	 */
1867 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1868 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1869 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1870 
1871 	if (enable_addr != 0)
1872 		rar_high |= IXGBE_RAH_AV;
1873 
1874 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1875 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1876 
1877 	return 0;
1878 }
1879 
1880 /**
1881  *  ixgbe_clear_rar_generic - Remove Rx address register
1882  *  @hw: pointer to hardware structure
1883  *  @index: Receive address register to write
1884  *
1885  *  Clears an ethernet address from a receive address register.
1886  **/
1887 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1888 {
1889 	u32 rar_high;
1890 	u32 rar_entries = hw->mac.num_rar_entries;
1891 
1892 	/* Make sure we are using a valid rar index range */
1893 	if (index >= rar_entries) {
1894 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1895 		return IXGBE_ERR_INVALID_ARGUMENT;
1896 	}
1897 
1898 	/*
1899 	 * Some parts put the VMDq setting in the extra RAH bits,
1900 	 * so save everything except the lower 16 bits that hold part
1901 	 * of the address and the address valid bit.
1902 	 */
1903 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1904 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1905 
1906 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1907 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1908 
1909 	/* clear VMDq pool/queue selection for this RAR */
1910 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1911 
1912 	return 0;
1913 }
1914 
1915 /**
1916  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1917  *  @hw: pointer to hardware structure
1918  *
1919  *  Places the MAC address in receive address register 0 and clears the rest
1920  *  of the receive address registers. Clears the multicast table. Assumes
1921  *  the receiver is in reset when the routine is called.
1922  **/
1923 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1924 {
1925 	u32 i;
1926 	u32 rar_entries = hw->mac.num_rar_entries;
1927 
1928 	/*
1929 	 * If the current mac address is valid, assume it is a software override
1930 	 * to the permanent address.
1931 	 * Otherwise, use the permanent address from the eeprom.
1932 	 */
1933 	if (!is_valid_ether_addr(hw->mac.addr)) {
1934 		/* Get the MAC address from the RAR0 for later reference */
1935 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1936 
1937 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1938 	} else {
1939 		/* Setup the receive address. */
1940 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1941 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1942 
1943 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1944 	}
1945 
1946 	/*  clear VMDq pool/queue selection for RAR 0 */
1947 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1948 
1949 	hw->addr_ctrl.overflow_promisc = 0;
1950 
1951 	hw->addr_ctrl.rar_used_count = 1;
1952 
1953 	/* Zero out the other receive addresses. */
1954 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1955 	for (i = 1; i < rar_entries; i++) {
1956 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1957 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1958 	}
1959 
1960 	/* Clear the MTA */
1961 	hw->addr_ctrl.mta_in_use = 0;
1962 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1963 
1964 	hw_dbg(hw, " Clearing MTA\n");
1965 	for (i = 0; i < hw->mac.mcft_size; i++)
1966 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1967 
1968 	if (hw->mac.ops.init_uta_tables)
1969 		hw->mac.ops.init_uta_tables(hw);
1970 
1971 	return 0;
1972 }
1973 
1974 /**
1975  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1976  *  @hw: pointer to hardware structure
1977  *  @mc_addr: the multicast address
1978  *
1979  *  Extracts the 12 bits, from a multicast address, to determine which
1980  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1981  *  incoming rx multicast addresses, to determine the bit-vector to check in
1982  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1983  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1984  *  to mc_filter_type.
1985  **/
1986 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1987 {
1988 	u32 vector = 0;
1989 
1990 	switch (hw->mac.mc_filter_type) {
1991 	case 0:   /* use bits [47:36] of the address */
1992 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1993 		break;
1994 	case 1:   /* use bits [46:35] of the address */
1995 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1996 		break;
1997 	case 2:   /* use bits [45:34] of the address */
1998 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1999 		break;
2000 	case 3:   /* use bits [43:32] of the address */
2001 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2002 		break;
2003 	default:  /* Invalid mc_filter_type */
2004 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2005 		break;
2006 	}
2007 
2008 	/* vector can only be 12-bits or boundary will be exceeded */
2009 	vector &= 0xFFF;
2010 	return vector;
2011 }
2012 
2013 /**
2014  *  ixgbe_set_mta - Set bit-vector in multicast table
2015  *  @hw: pointer to hardware structure
2016  *  @mc_addr: Multicast address
2017  *
2018  *  Sets the bit-vector in the multicast table.
2019  **/
2020 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2021 {
2022 	u32 vector;
2023 	u32 vector_bit;
2024 	u32 vector_reg;
2025 
2026 	hw->addr_ctrl.mta_in_use++;
2027 
2028 	vector = ixgbe_mta_vector(hw, mc_addr);
2029 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2030 
2031 	/*
2032 	 * The MTA is a register array of 128 32-bit registers. It is treated
2033 	 * like an array of 4096 bits.  We want to set bit
2034 	 * BitArray[vector_value]. So we figure out what register the bit is
2035 	 * in, read it, OR in the new bit, then write back the new value.  The
2036 	 * register is determined by the upper 7 bits of the vector value and
2037 	 * the bit within that register are determined by the lower 5 bits of
2038 	 * the value.
2039 	 */
2040 	vector_reg = (vector >> 5) & 0x7F;
2041 	vector_bit = vector & 0x1F;
2042 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2043 }
2044 
2045 /**
2046  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2047  *  @hw: pointer to hardware structure
2048  *  @netdev: pointer to net device structure
2049  *
2050  *  The given list replaces any existing list. Clears the MC addrs from receive
2051  *  address registers and the multicast table. Uses unused receive address
2052  *  registers for the first multicast addresses, and hashes the rest into the
2053  *  multicast table.
2054  **/
2055 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2056 				      struct net_device *netdev)
2057 {
2058 	struct netdev_hw_addr *ha;
2059 	u32 i;
2060 
2061 	/*
2062 	 * Set the new number of MC addresses that we are being requested to
2063 	 * use.
2064 	 */
2065 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2066 	hw->addr_ctrl.mta_in_use = 0;
2067 
2068 	/* Clear mta_shadow */
2069 	hw_dbg(hw, " Clearing MTA\n");
2070 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2071 
2072 	/* Update mta shadow */
2073 	netdev_for_each_mc_addr(ha, netdev) {
2074 		hw_dbg(hw, " Adding the multicast addresses:\n");
2075 		ixgbe_set_mta(hw, ha->addr);
2076 	}
2077 
2078 	/* Enable mta */
2079 	for (i = 0; i < hw->mac.mcft_size; i++)
2080 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2081 				      hw->mac.mta_shadow[i]);
2082 
2083 	if (hw->addr_ctrl.mta_in_use > 0)
2084 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2085 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2086 
2087 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2088 	return 0;
2089 }
2090 
2091 /**
2092  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2093  *  @hw: pointer to hardware structure
2094  *
2095  *  Enables multicast address in RAR and the use of the multicast hash table.
2096  **/
2097 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2098 {
2099 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2100 
2101 	if (a->mta_in_use > 0)
2102 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2103 				hw->mac.mc_filter_type);
2104 
2105 	return 0;
2106 }
2107 
2108 /**
2109  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2110  *  @hw: pointer to hardware structure
2111  *
2112  *  Disables multicast address in RAR and the use of the multicast hash table.
2113  **/
2114 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2115 {
2116 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2117 
2118 	if (a->mta_in_use > 0)
2119 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2120 
2121 	return 0;
2122 }
2123 
2124 /**
2125  *  ixgbe_fc_enable_generic - Enable flow control
2126  *  @hw: pointer to hardware structure
2127  *
2128  *  Enable flow control according to the current settings.
2129  **/
2130 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2131 {
2132 	u32 mflcn_reg, fccfg_reg;
2133 	u32 reg;
2134 	u32 fcrtl, fcrth;
2135 	int i;
2136 
2137 	/* Validate the water mark configuration. */
2138 	if (!hw->fc.pause_time)
2139 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2140 
2141 	/* Low water mark of zero causes XOFF floods */
2142 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2143 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2144 		    hw->fc.high_water[i]) {
2145 			if (!hw->fc.low_water[i] ||
2146 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2147 				hw_dbg(hw, "Invalid water mark configuration\n");
2148 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2149 			}
2150 		}
2151 	}
2152 
2153 	/* Negotiate the fc mode to use */
2154 	hw->mac.ops.fc_autoneg(hw);
2155 
2156 	/* Disable any previous flow control settings */
2157 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2158 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2159 
2160 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2161 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2162 
2163 	/*
2164 	 * The possible values of fc.current_mode are:
2165 	 * 0: Flow control is completely disabled
2166 	 * 1: Rx flow control is enabled (we can receive pause frames,
2167 	 *    but not send pause frames).
2168 	 * 2: Tx flow control is enabled (we can send pause frames but
2169 	 *    we do not support receiving pause frames).
2170 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2171 	 * other: Invalid.
2172 	 */
2173 	switch (hw->fc.current_mode) {
2174 	case ixgbe_fc_none:
2175 		/*
2176 		 * Flow control is disabled by software override or autoneg.
2177 		 * The code below will actually disable it in the HW.
2178 		 */
2179 		break;
2180 	case ixgbe_fc_rx_pause:
2181 		/*
2182 		 * Rx Flow control is enabled and Tx Flow control is
2183 		 * disabled by software override. Since there really
2184 		 * isn't a way to advertise that we are capable of RX
2185 		 * Pause ONLY, we will advertise that we support both
2186 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2187 		 * disable the adapter's ability to send PAUSE frames.
2188 		 */
2189 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2190 		break;
2191 	case ixgbe_fc_tx_pause:
2192 		/*
2193 		 * Tx Flow control is enabled, and Rx Flow control is
2194 		 * disabled by software override.
2195 		 */
2196 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2197 		break;
2198 	case ixgbe_fc_full:
2199 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2200 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2201 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2202 		break;
2203 	default:
2204 		hw_dbg(hw, "Flow control param set incorrectly\n");
2205 		return IXGBE_ERR_CONFIG;
2206 	}
2207 
2208 	/* Set 802.3x based flow control settings. */
2209 	mflcn_reg |= IXGBE_MFLCN_DPF;
2210 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2211 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2212 
2213 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2214 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2215 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2216 		    hw->fc.high_water[i]) {
2217 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2218 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2219 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2220 		} else {
2221 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2222 			/*
2223 			 * In order to prevent Tx hangs when the internal Tx
2224 			 * switch is enabled we must set the high water mark
2225 			 * to the Rx packet buffer size - 24KB.  This allows
2226 			 * the Tx switch to function even under heavy Rx
2227 			 * workloads.
2228 			 */
2229 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2230 		}
2231 
2232 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2233 	}
2234 
2235 	/* Configure pause time (2 TCs per register) */
2236 	reg = hw->fc.pause_time * 0x00010001;
2237 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2238 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2239 
2240 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2241 
2242 	return 0;
2243 }
2244 
2245 /**
2246  *  ixgbe_negotiate_fc - Negotiate flow control
2247  *  @hw: pointer to hardware structure
2248  *  @adv_reg: flow control advertised settings
2249  *  @lp_reg: link partner's flow control settings
2250  *  @adv_sym: symmetric pause bit in advertisement
2251  *  @adv_asm: asymmetric pause bit in advertisement
2252  *  @lp_sym: symmetric pause bit in link partner advertisement
2253  *  @lp_asm: asymmetric pause bit in link partner advertisement
2254  *
2255  *  Find the intersection between advertised settings and link partner's
2256  *  advertised settings
2257  **/
2258 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2259 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2260 {
2261 	if ((!(adv_reg)) ||  (!(lp_reg)))
2262 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2263 
2264 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2265 		/*
2266 		 * Now we need to check if the user selected Rx ONLY
2267 		 * of pause frames.  In this case, we had to advertise
2268 		 * FULL flow control because we could not advertise RX
2269 		 * ONLY. Hence, we must now check to see if we need to
2270 		 * turn OFF the TRANSMISSION of PAUSE frames.
2271 		 */
2272 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2273 			hw->fc.current_mode = ixgbe_fc_full;
2274 			hw_dbg(hw, "Flow Control = FULL.\n");
2275 		} else {
2276 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2277 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2278 		}
2279 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2280 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2281 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2282 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2283 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2284 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2285 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2286 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2287 	} else {
2288 		hw->fc.current_mode = ixgbe_fc_none;
2289 		hw_dbg(hw, "Flow Control = NONE.\n");
2290 	}
2291 	return 0;
2292 }
2293 
2294 /**
2295  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2296  *  @hw: pointer to hardware structure
2297  *
2298  *  Enable flow control according on 1 gig fiber.
2299  **/
2300 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2301 {
2302 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2303 	s32 ret_val;
2304 
2305 	/*
2306 	 * On multispeed fiber at 1g, bail out if
2307 	 * - link is up but AN did not complete, or if
2308 	 * - link is up and AN completed but timed out
2309 	 */
2310 
2311 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2312 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2313 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2314 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2315 
2316 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2317 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2318 
2319 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2320 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2321 			       IXGBE_PCS1GANA_ASM_PAUSE,
2322 			       IXGBE_PCS1GANA_SYM_PAUSE,
2323 			       IXGBE_PCS1GANA_ASM_PAUSE);
2324 
2325 	return ret_val;
2326 }
2327 
2328 /**
2329  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2330  *  @hw: pointer to hardware structure
2331  *
2332  *  Enable flow control according to IEEE clause 37.
2333  **/
2334 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2335 {
2336 	u32 links2, anlp1_reg, autoc_reg, links;
2337 	s32 ret_val;
2338 
2339 	/*
2340 	 * On backplane, bail out if
2341 	 * - backplane autoneg was not completed, or if
2342 	 * - we are 82599 and link partner is not AN enabled
2343 	 */
2344 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2345 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2346 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2347 
2348 	if (hw->mac.type == ixgbe_mac_82599EB) {
2349 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2350 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2351 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2352 	}
2353 	/*
2354 	 * Read the 10g AN autoc and LP ability registers and resolve
2355 	 * local flow control settings accordingly
2356 	 */
2357 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2358 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2359 
2360 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2361 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2362 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2363 
2364 	return ret_val;
2365 }
2366 
2367 /**
2368  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2369  *  @hw: pointer to hardware structure
2370  *
2371  *  Enable flow control according to IEEE clause 37.
2372  **/
2373 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2374 {
2375 	u16 technology_ability_reg = 0;
2376 	u16 lp_technology_ability_reg = 0;
2377 
2378 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2379 			     MDIO_MMD_AN,
2380 			     &technology_ability_reg);
2381 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2382 			     MDIO_MMD_AN,
2383 			     &lp_technology_ability_reg);
2384 
2385 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2386 				  (u32)lp_technology_ability_reg,
2387 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2388 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2389 }
2390 
2391 /**
2392  *  ixgbe_fc_autoneg - Configure flow control
2393  *  @hw: pointer to hardware structure
2394  *
2395  *  Compares our advertised flow control capabilities to those advertised by
2396  *  our link partner, and determines the proper flow control mode to use.
2397  **/
2398 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2399 {
2400 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2401 	ixgbe_link_speed speed;
2402 	bool link_up;
2403 
2404 	/*
2405 	 * AN should have completed when the cable was plugged in.
2406 	 * Look for reasons to bail out.  Bail out if:
2407 	 * - FC autoneg is disabled, or if
2408 	 * - link is not up.
2409 	 *
2410 	 * Since we're being called from an LSC, link is already known to be up.
2411 	 * So use link_up_wait_to_complete=false.
2412 	 */
2413 	if (hw->fc.disable_fc_autoneg)
2414 		goto out;
2415 
2416 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2417 	if (!link_up)
2418 		goto out;
2419 
2420 	switch (hw->phy.media_type) {
2421 	/* Autoneg flow control on fiber adapters */
2422 	case ixgbe_media_type_fiber:
2423 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2424 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2425 		break;
2426 
2427 	/* Autoneg flow control on backplane adapters */
2428 	case ixgbe_media_type_backplane:
2429 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2430 		break;
2431 
2432 	/* Autoneg flow control on copper adapters */
2433 	case ixgbe_media_type_copper:
2434 		if (ixgbe_device_supports_autoneg_fc(hw))
2435 			ret_val = ixgbe_fc_autoneg_copper(hw);
2436 		break;
2437 
2438 	default:
2439 		break;
2440 	}
2441 
2442 out:
2443 	if (ret_val == 0) {
2444 		hw->fc.fc_was_autonegged = true;
2445 	} else {
2446 		hw->fc.fc_was_autonegged = false;
2447 		hw->fc.current_mode = hw->fc.requested_mode;
2448 	}
2449 }
2450 
2451 /**
2452  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2453  * @hw: pointer to hardware structure
2454  *
2455  * System-wide timeout range is encoded in PCIe Device Control2 register.
2456  *
2457  *  Add 10% to specified maximum and return the number of times to poll for
2458  *  completion timeout, in units of 100 microsec.  Never return less than
2459  *  800 = 80 millisec.
2460  **/
2461 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2462 {
2463 	s16 devctl2;
2464 	u32 pollcnt;
2465 
2466 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2467 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2468 
2469 	switch (devctl2) {
2470 	case IXGBE_PCIDEVCTRL2_65_130ms:
2471 		 pollcnt = 1300;         /* 130 millisec */
2472 		break;
2473 	case IXGBE_PCIDEVCTRL2_260_520ms:
2474 		pollcnt = 5200;         /* 520 millisec */
2475 		break;
2476 	case IXGBE_PCIDEVCTRL2_1_2s:
2477 		pollcnt = 20000;        /* 2 sec */
2478 		break;
2479 	case IXGBE_PCIDEVCTRL2_4_8s:
2480 		pollcnt = 80000;        /* 8 sec */
2481 		break;
2482 	case IXGBE_PCIDEVCTRL2_17_34s:
2483 		pollcnt = 34000;        /* 34 sec */
2484 		break;
2485 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2486 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2487 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2488 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2489 	default:
2490 		pollcnt = 800;          /* 80 millisec minimum */
2491 		break;
2492 	}
2493 
2494 	/* add 10% to spec maximum */
2495 	return (pollcnt * 11) / 10;
2496 }
2497 
2498 /**
2499  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2500  *  @hw: pointer to hardware structure
2501  *
2502  *  Disables PCI-Express master access and verifies there are no pending
2503  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2504  *  bit hasn't caused the master requests to be disabled, else 0
2505  *  is returned signifying master requests disabled.
2506  **/
2507 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2508 {
2509 	u32 i, poll;
2510 	u16 value;
2511 
2512 	/* Always set this bit to ensure any future transactions are blocked */
2513 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2514 
2515 	/* Poll for bit to read as set */
2516 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2517 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2518 			break;
2519 		usleep_range(100, 120);
2520 	}
2521 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2522 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2523 		goto gio_disable_fail;
2524 	}
2525 
2526 	/* Exit if master requests are blocked */
2527 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2528 	    ixgbe_removed(hw->hw_addr))
2529 		return 0;
2530 
2531 	/* Poll for master request bit to clear */
2532 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2533 		udelay(100);
2534 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2535 			return 0;
2536 	}
2537 
2538 	/*
2539 	 * Two consecutive resets are required via CTRL.RST per datasheet
2540 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2541 	 * of this need.  The first reset prevents new master requests from
2542 	 * being issued by our device.  We then must wait 1usec or more for any
2543 	 * remaining completions from the PCIe bus to trickle in, and then reset
2544 	 * again to clear out any effects they may have had on our device.
2545 	 */
2546 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2547 gio_disable_fail:
2548 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2549 
2550 	if (hw->mac.type >= ixgbe_mac_X550)
2551 		return 0;
2552 
2553 	/*
2554 	 * Before proceeding, make sure that the PCIe block does not have
2555 	 * transactions pending.
2556 	 */
2557 	poll = ixgbe_pcie_timeout_poll(hw);
2558 	for (i = 0; i < poll; i++) {
2559 		udelay(100);
2560 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2561 		if (ixgbe_removed(hw->hw_addr))
2562 			return 0;
2563 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2564 			return 0;
2565 	}
2566 
2567 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2568 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2569 }
2570 
2571 /**
2572  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2573  *  @hw: pointer to hardware structure
2574  *  @mask: Mask to specify which semaphore to acquire
2575  *
2576  *  Acquires the SWFW semaphore through the GSSR register for the specified
2577  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2578  **/
2579 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2580 {
2581 	u32 gssr = 0;
2582 	u32 swmask = mask;
2583 	u32 fwmask = mask << 5;
2584 	u32 timeout = 200;
2585 	u32 i;
2586 
2587 	for (i = 0; i < timeout; i++) {
2588 		/*
2589 		 * SW NVM semaphore bit is used for access to all
2590 		 * SW_FW_SYNC bits (not just NVM)
2591 		 */
2592 		if (ixgbe_get_eeprom_semaphore(hw))
2593 			return IXGBE_ERR_SWFW_SYNC;
2594 
2595 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2596 		if (!(gssr & (fwmask | swmask))) {
2597 			gssr |= swmask;
2598 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2599 			ixgbe_release_eeprom_semaphore(hw);
2600 			return 0;
2601 		} else {
2602 			/* Resource is currently in use by FW or SW */
2603 			ixgbe_release_eeprom_semaphore(hw);
2604 			usleep_range(5000, 10000);
2605 		}
2606 	}
2607 
2608 	/* If time expired clear the bits holding the lock and retry */
2609 	if (gssr & (fwmask | swmask))
2610 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2611 
2612 	usleep_range(5000, 10000);
2613 	return IXGBE_ERR_SWFW_SYNC;
2614 }
2615 
2616 /**
2617  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2618  *  @hw: pointer to hardware structure
2619  *  @mask: Mask to specify which semaphore to release
2620  *
2621  *  Releases the SWFW semaphore through the GSSR register for the specified
2622  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2623  **/
2624 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2625 {
2626 	u32 gssr;
2627 	u32 swmask = mask;
2628 
2629 	ixgbe_get_eeprom_semaphore(hw);
2630 
2631 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2632 	gssr &= ~swmask;
2633 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2634 
2635 	ixgbe_release_eeprom_semaphore(hw);
2636 }
2637 
2638 /**
2639  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2640  * @hw: pointer to hardware structure
2641  * @reg_val: Value we read from AUTOC
2642  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2643  *	    true in this the generic case.
2644  *
2645  * The default case requires no protection so just to the register read.
2646  **/
2647 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2648 {
2649 	*locked = false;
2650 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2651 	return 0;
2652 }
2653 
2654 /**
2655  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2656  * @hw: pointer to hardware structure
2657  * @reg_val: value to write to AUTOC
2658  * @locked: bool to indicate whether the SW/FW lock was already taken by
2659  *	    previous read.
2660  **/
2661 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2662 {
2663 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2664 	return 0;
2665 }
2666 
2667 /**
2668  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2669  *  @hw: pointer to hardware structure
2670  *
2671  *  Stops the receive data path and waits for the HW to internally
2672  *  empty the Rx security block.
2673  **/
2674 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2675 {
2676 #define IXGBE_MAX_SECRX_POLL 40
2677 	int i;
2678 	int secrxreg;
2679 
2680 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2681 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2682 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2683 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2684 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2685 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2686 			break;
2687 		else
2688 			/* Use interrupt-safe sleep just in case */
2689 			udelay(1000);
2690 	}
2691 
2692 	/* For informational purposes only */
2693 	if (i >= IXGBE_MAX_SECRX_POLL)
2694 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2695 
2696 	return 0;
2697 
2698 }
2699 
2700 /**
2701  *  ixgbe_enable_rx_buff - Enables the receive data path
2702  *  @hw: pointer to hardware structure
2703  *
2704  *  Enables the receive data path
2705  **/
2706 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2707 {
2708 	u32 secrxreg;
2709 
2710 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2711 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2712 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2713 	IXGBE_WRITE_FLUSH(hw);
2714 
2715 	return 0;
2716 }
2717 
2718 /**
2719  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2720  *  @hw: pointer to hardware structure
2721  *  @regval: register value to write to RXCTRL
2722  *
2723  *  Enables the Rx DMA unit
2724  **/
2725 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2726 {
2727 	if (regval & IXGBE_RXCTRL_RXEN)
2728 		hw->mac.ops.enable_rx(hw);
2729 	else
2730 		hw->mac.ops.disable_rx(hw);
2731 
2732 	return 0;
2733 }
2734 
2735 /**
2736  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2737  *  @hw: pointer to hardware structure
2738  *  @index: led number to blink
2739  **/
2740 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2741 {
2742 	ixgbe_link_speed speed = 0;
2743 	bool link_up = false;
2744 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2745 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2746 	bool locked = false;
2747 	s32 ret_val;
2748 
2749 	if (index > 3)
2750 		return IXGBE_ERR_PARAM;
2751 
2752 	/*
2753 	 * Link must be up to auto-blink the LEDs;
2754 	 * Force it if link is down.
2755 	 */
2756 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2757 
2758 	if (!link_up) {
2759 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2760 		if (ret_val)
2761 			return ret_val;
2762 
2763 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2764 		autoc_reg |= IXGBE_AUTOC_FLU;
2765 
2766 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2767 		if (ret_val)
2768 			return ret_val;
2769 
2770 		IXGBE_WRITE_FLUSH(hw);
2771 
2772 		usleep_range(10000, 20000);
2773 	}
2774 
2775 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2776 	led_reg |= IXGBE_LED_BLINK(index);
2777 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2778 	IXGBE_WRITE_FLUSH(hw);
2779 
2780 	return 0;
2781 }
2782 
2783 /**
2784  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2785  *  @hw: pointer to hardware structure
2786  *  @index: led number to stop blinking
2787  **/
2788 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2789 {
2790 	u32 autoc_reg = 0;
2791 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2792 	bool locked = false;
2793 	s32 ret_val;
2794 
2795 	if (index > 3)
2796 		return IXGBE_ERR_PARAM;
2797 
2798 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2799 	if (ret_val)
2800 		return ret_val;
2801 
2802 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2803 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2804 
2805 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2806 	if (ret_val)
2807 		return ret_val;
2808 
2809 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2810 	led_reg &= ~IXGBE_LED_BLINK(index);
2811 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2812 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2813 	IXGBE_WRITE_FLUSH(hw);
2814 
2815 	return 0;
2816 }
2817 
2818 /**
2819  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2820  *  @hw: pointer to hardware structure
2821  *  @san_mac_offset: SAN MAC address offset
2822  *
2823  *  This function will read the EEPROM location for the SAN MAC address
2824  *  pointer, and returns the value at that location.  This is used in both
2825  *  get and set mac_addr routines.
2826  **/
2827 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2828 					u16 *san_mac_offset)
2829 {
2830 	s32 ret_val;
2831 
2832 	/*
2833 	 * First read the EEPROM pointer to see if the MAC addresses are
2834 	 * available.
2835 	 */
2836 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2837 				      san_mac_offset);
2838 	if (ret_val)
2839 		hw_err(hw, "eeprom read at offset %d failed\n",
2840 		       IXGBE_SAN_MAC_ADDR_PTR);
2841 
2842 	return ret_val;
2843 }
2844 
2845 /**
2846  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2847  *  @hw: pointer to hardware structure
2848  *  @san_mac_addr: SAN MAC address
2849  *
2850  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2851  *  per-port, so set_lan_id() must be called before reading the addresses.
2852  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2853  *  upon for non-SFP connections, so we must call it here.
2854  **/
2855 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2856 {
2857 	u16 san_mac_data, san_mac_offset;
2858 	u8 i;
2859 	s32 ret_val;
2860 
2861 	/*
2862 	 * First read the EEPROM pointer to see if the MAC addresses are
2863 	 * available.  If they're not, no point in calling set_lan_id() here.
2864 	 */
2865 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2866 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2867 
2868 		goto san_mac_addr_clr;
2869 
2870 	/* make sure we know which port we need to program */
2871 	hw->mac.ops.set_lan_id(hw);
2872 	/* apply the port offset to the address offset */
2873 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2874 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2875 	for (i = 0; i < 3; i++) {
2876 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2877 					      &san_mac_data);
2878 		if (ret_val) {
2879 			hw_err(hw, "eeprom read at offset %d failed\n",
2880 			       san_mac_offset);
2881 			goto san_mac_addr_clr;
2882 		}
2883 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2884 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2885 		san_mac_offset++;
2886 	}
2887 	return 0;
2888 
2889 san_mac_addr_clr:
2890 	/* No addresses available in this EEPROM.  It's not necessarily an
2891 	 * error though, so just wipe the local address and return.
2892 	 */
2893 	for (i = 0; i < 6; i++)
2894 		san_mac_addr[i] = 0xFF;
2895 	return ret_val;
2896 }
2897 
2898 /**
2899  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2900  *  @hw: pointer to hardware structure
2901  *
2902  *  Read PCIe configuration space, and get the MSI-X vector count from
2903  *  the capabilities table.
2904  **/
2905 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2906 {
2907 	u16 msix_count;
2908 	u16 max_msix_count;
2909 	u16 pcie_offset;
2910 
2911 	switch (hw->mac.type) {
2912 	case ixgbe_mac_82598EB:
2913 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2914 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2915 		break;
2916 	case ixgbe_mac_82599EB:
2917 	case ixgbe_mac_X540:
2918 	case ixgbe_mac_X550:
2919 	case ixgbe_mac_X550EM_x:
2920 	case ixgbe_mac_x550em_a:
2921 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2922 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2923 		break;
2924 	default:
2925 		return 1;
2926 	}
2927 
2928 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2929 	if (ixgbe_removed(hw->hw_addr))
2930 		msix_count = 0;
2931 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2932 
2933 	/* MSI-X count is zero-based in HW */
2934 	msix_count++;
2935 
2936 	if (msix_count > max_msix_count)
2937 		msix_count = max_msix_count;
2938 
2939 	return msix_count;
2940 }
2941 
2942 /**
2943  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2944  *  @hw: pointer to hardware struct
2945  *  @rar: receive address register index to disassociate
2946  *  @vmdq: VMDq pool index to remove from the rar
2947  **/
2948 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2949 {
2950 	u32 mpsar_lo, mpsar_hi;
2951 	u32 rar_entries = hw->mac.num_rar_entries;
2952 
2953 	/* Make sure we are using a valid rar index range */
2954 	if (rar >= rar_entries) {
2955 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2956 		return IXGBE_ERR_INVALID_ARGUMENT;
2957 	}
2958 
2959 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2960 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2961 
2962 	if (ixgbe_removed(hw->hw_addr))
2963 		return 0;
2964 
2965 	if (!mpsar_lo && !mpsar_hi)
2966 		return 0;
2967 
2968 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2969 		if (mpsar_lo) {
2970 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2971 			mpsar_lo = 0;
2972 		}
2973 		if (mpsar_hi) {
2974 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2975 			mpsar_hi = 0;
2976 		}
2977 	} else if (vmdq < 32) {
2978 		mpsar_lo &= ~BIT(vmdq);
2979 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2980 	} else {
2981 		mpsar_hi &= ~BIT(vmdq - 32);
2982 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2983 	}
2984 
2985 	/* was that the last pool using this rar? */
2986 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2987 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2988 		hw->mac.ops.clear_rar(hw, rar);
2989 
2990 	return 0;
2991 }
2992 
2993 /**
2994  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2995  *  @hw: pointer to hardware struct
2996  *  @rar: receive address register index to associate with a VMDq index
2997  *  @vmdq: VMDq pool index
2998  **/
2999 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3000 {
3001 	u32 mpsar;
3002 	u32 rar_entries = hw->mac.num_rar_entries;
3003 
3004 	/* Make sure we are using a valid rar index range */
3005 	if (rar >= rar_entries) {
3006 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3007 		return IXGBE_ERR_INVALID_ARGUMENT;
3008 	}
3009 
3010 	if (vmdq < 32) {
3011 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3012 		mpsar |= BIT(vmdq);
3013 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3014 	} else {
3015 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3016 		mpsar |= BIT(vmdq - 32);
3017 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3018 	}
3019 	return 0;
3020 }
3021 
3022 /**
3023  *  This function should only be involved in the IOV mode.
3024  *  In IOV mode, Default pool is next pool after the number of
3025  *  VFs advertized and not 0.
3026  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3027  *
3028  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3029  *  @hw: pointer to hardware struct
3030  *  @vmdq: VMDq pool index
3031  **/
3032 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3033 {
3034 	u32 rar = hw->mac.san_mac_rar_index;
3035 
3036 	if (vmdq < 32) {
3037 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3038 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3039 	} else {
3040 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3041 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3042 	}
3043 
3044 	return 0;
3045 }
3046 
3047 /**
3048  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3049  *  @hw: pointer to hardware structure
3050  **/
3051 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3052 {
3053 	int i;
3054 
3055 	for (i = 0; i < 128; i++)
3056 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3057 
3058 	return 0;
3059 }
3060 
3061 /**
3062  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3063  *  @hw: pointer to hardware structure
3064  *  @vlan: VLAN id to write to VLAN filter
3065  *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3066  *		  vlanid not found
3067  *
3068  *  return the VLVF index where this VLAN id should be placed
3069  *
3070  **/
3071 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3072 {
3073 	s32 regindex, first_empty_slot;
3074 	u32 bits;
3075 
3076 	/* short cut the special case */
3077 	if (vlan == 0)
3078 		return 0;
3079 
3080 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3081 	 * will simply bypass the VLVF if there are no entries present in the
3082 	 * VLVF that contain our VLAN
3083 	 */
3084 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3085 
3086 	/* add VLAN enable bit for comparison */
3087 	vlan |= IXGBE_VLVF_VIEN;
3088 
3089 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3090 	 * slot found along the way.
3091 	 *
3092 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3093 	 */
3094 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3095 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3096 		if (bits == vlan)
3097 			return regindex;
3098 		if (!first_empty_slot && !bits)
3099 			first_empty_slot = regindex;
3100 	}
3101 
3102 	/* If we are here then we didn't find the VLAN.  Return first empty
3103 	 * slot we found during our search, else error.
3104 	 */
3105 	if (!first_empty_slot)
3106 		hw_dbg(hw, "No space in VLVF.\n");
3107 
3108 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3109 }
3110 
3111 /**
3112  *  ixgbe_set_vfta_generic - Set VLAN filter table
3113  *  @hw: pointer to hardware structure
3114  *  @vlan: VLAN id to write to VLAN filter
3115  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3116  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3117  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3118  *
3119  *  Turn on/off specified VLAN in the VLAN filter table.
3120  **/
3121 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3122 			   bool vlan_on, bool vlvf_bypass)
3123 {
3124 	u32 regidx, vfta_delta, vfta, bits;
3125 	s32 vlvf_index;
3126 
3127 	if ((vlan > 4095) || (vind > 63))
3128 		return IXGBE_ERR_PARAM;
3129 
3130 	/*
3131 	 * this is a 2 part operation - first the VFTA, then the
3132 	 * VLVF and VLVFB if VT Mode is set
3133 	 * We don't write the VFTA until we know the VLVF part succeeded.
3134 	 */
3135 
3136 	/* Part 1
3137 	 * The VFTA is a bitstring made up of 128 32-bit registers
3138 	 * that enable the particular VLAN id, much like the MTA:
3139 	 *    bits[11-5]: which register
3140 	 *    bits[4-0]:  which bit in the register
3141 	 */
3142 	regidx = vlan / 32;
3143 	vfta_delta = BIT(vlan % 32);
3144 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3145 
3146 	/* vfta_delta represents the difference between the current value
3147 	 * of vfta and the value we want in the register.  Since the diff
3148 	 * is an XOR mask we can just update vfta using an XOR.
3149 	 */
3150 	vfta_delta &= vlan_on ? ~vfta : vfta;
3151 	vfta ^= vfta_delta;
3152 
3153 	/* Part 2
3154 	 * If VT Mode is set
3155 	 *   Either vlan_on
3156 	 *     make sure the vlan is in VLVF
3157 	 *     set the vind bit in the matching VLVFB
3158 	 *   Or !vlan_on
3159 	 *     clear the pool bit and possibly the vind
3160 	 */
3161 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3162 		goto vfta_update;
3163 
3164 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3165 	if (vlvf_index < 0) {
3166 		if (vlvf_bypass)
3167 			goto vfta_update;
3168 		return vlvf_index;
3169 	}
3170 
3171 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3172 
3173 	/* set the pool bit */
3174 	bits |= BIT(vind % 32);
3175 	if (vlan_on)
3176 		goto vlvf_update;
3177 
3178 	/* clear the pool bit */
3179 	bits ^= BIT(vind % 32);
3180 
3181 	if (!bits &&
3182 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3183 		/* Clear VFTA first, then disable VLVF.  Otherwise
3184 		 * we run the risk of stray packets leaking into
3185 		 * the PF via the default pool
3186 		 */
3187 		if (vfta_delta)
3188 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3189 
3190 		/* disable VLVF and clear remaining bit from pool */
3191 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3192 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3193 
3194 		return 0;
3195 	}
3196 
3197 	/* If there are still bits set in the VLVFB registers
3198 	 * for the VLAN ID indicated we need to see if the
3199 	 * caller is requesting that we clear the VFTA entry bit.
3200 	 * If the caller has requested that we clear the VFTA
3201 	 * entry bit but there are still pools/VFs using this VLAN
3202 	 * ID entry then ignore the request.  We're not worried
3203 	 * about the case where we're turning the VFTA VLAN ID
3204 	 * entry bit on, only when requested to turn it off as
3205 	 * there may be multiple pools and/or VFs using the
3206 	 * VLAN ID entry.  In that case we cannot clear the
3207 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3208 	 * been cleared.  This will be indicated by "bits" being
3209 	 * zero.
3210 	 */
3211 	vfta_delta = 0;
3212 
3213 vlvf_update:
3214 	/* record pool change and enable VLAN ID if not already enabled */
3215 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3216 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3217 
3218 vfta_update:
3219 	/* Update VFTA now that we are ready for traffic */
3220 	if (vfta_delta)
3221 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3222 
3223 	return 0;
3224 }
3225 
3226 /**
3227  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3228  *  @hw: pointer to hardware structure
3229  *
3230  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3231  **/
3232 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3233 {
3234 	u32 offset;
3235 
3236 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3237 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3238 
3239 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3240 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3241 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3242 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3243 	}
3244 
3245 	return 0;
3246 }
3247 
3248 /**
3249  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3250  *  @hw: pointer to hardware structure
3251  *
3252  *  Contains the logic to identify if we need to verify link for the
3253  *  crosstalk fix
3254  **/
3255 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3256 {
3257 	/* Does FW say we need the fix */
3258 	if (!hw->need_crosstalk_fix)
3259 		return false;
3260 
3261 	/* Only consider SFP+ PHYs i.e. media type fiber */
3262 	switch (hw->mac.ops.get_media_type(hw)) {
3263 	case ixgbe_media_type_fiber:
3264 	case ixgbe_media_type_fiber_qsfp:
3265 		break;
3266 	default:
3267 		return false;
3268 	}
3269 
3270 	return true;
3271 }
3272 
3273 /**
3274  *  ixgbe_check_mac_link_generic - Determine link and speed status
3275  *  @hw: pointer to hardware structure
3276  *  @speed: pointer to link speed
3277  *  @link_up: true when link is up
3278  *  @link_up_wait_to_complete: bool used to wait for link up or not
3279  *
3280  *  Reads the links register to determine if link is up and the current speed
3281  **/
3282 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3283 				 bool *link_up, bool link_up_wait_to_complete)
3284 {
3285 	u32 links_reg, links_orig;
3286 	u32 i;
3287 
3288 	/* If Crosstalk fix enabled do the sanity check of making sure
3289 	 * the SFP+ cage is full.
3290 	 */
3291 	if (ixgbe_need_crosstalk_fix(hw)) {
3292 		u32 sfp_cage_full;
3293 
3294 		switch (hw->mac.type) {
3295 		case ixgbe_mac_82599EB:
3296 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3297 					IXGBE_ESDP_SDP2;
3298 			break;
3299 		case ixgbe_mac_X550EM_x:
3300 		case ixgbe_mac_x550em_a:
3301 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3302 					IXGBE_ESDP_SDP0;
3303 			break;
3304 		default:
3305 			/* sanity check - No SFP+ devices here */
3306 			sfp_cage_full = false;
3307 			break;
3308 		}
3309 
3310 		if (!sfp_cage_full) {
3311 			*link_up = false;
3312 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3313 			return 0;
3314 		}
3315 	}
3316 
3317 	/* clear the old state */
3318 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3319 
3320 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3321 
3322 	if (links_orig != links_reg) {
3323 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3324 		       links_orig, links_reg);
3325 	}
3326 
3327 	if (link_up_wait_to_complete) {
3328 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3329 			if (links_reg & IXGBE_LINKS_UP) {
3330 				*link_up = true;
3331 				break;
3332 			} else {
3333 				*link_up = false;
3334 			}
3335 			msleep(100);
3336 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3337 		}
3338 	} else {
3339 		if (links_reg & IXGBE_LINKS_UP)
3340 			*link_up = true;
3341 		else
3342 			*link_up = false;
3343 	}
3344 
3345 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3346 	case IXGBE_LINKS_SPEED_10G_82599:
3347 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3348 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3349 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3350 		else
3351 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3352 		break;
3353 	case IXGBE_LINKS_SPEED_1G_82599:
3354 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3355 		break;
3356 	case IXGBE_LINKS_SPEED_100_82599:
3357 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3358 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3359 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3360 		else
3361 			*speed = IXGBE_LINK_SPEED_100_FULL;
3362 		break;
3363 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3364 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3365 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3366 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3367 			*speed = IXGBE_LINK_SPEED_10_FULL;
3368 		}
3369 		break;
3370 	default:
3371 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3372 	}
3373 
3374 	return 0;
3375 }
3376 
3377 /**
3378  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3379  *  the EEPROM
3380  *  @hw: pointer to hardware structure
3381  *  @wwnn_prefix: the alternative WWNN prefix
3382  *  @wwpn_prefix: the alternative WWPN prefix
3383  *
3384  *  This function will read the EEPROM from the alternative SAN MAC address
3385  *  block to check the support for the alternative WWNN/WWPN prefix support.
3386  **/
3387 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3388 					u16 *wwpn_prefix)
3389 {
3390 	u16 offset, caps;
3391 	u16 alt_san_mac_blk_offset;
3392 
3393 	/* clear output first */
3394 	*wwnn_prefix = 0xFFFF;
3395 	*wwpn_prefix = 0xFFFF;
3396 
3397 	/* check if alternative SAN MAC is supported */
3398 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3399 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3400 		goto wwn_prefix_err;
3401 
3402 	if ((alt_san_mac_blk_offset == 0) ||
3403 	    (alt_san_mac_blk_offset == 0xFFFF))
3404 		return 0;
3405 
3406 	/* check capability in alternative san mac address block */
3407 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3408 	if (hw->eeprom.ops.read(hw, offset, &caps))
3409 		goto wwn_prefix_err;
3410 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3411 		return 0;
3412 
3413 	/* get the corresponding prefix for WWNN/WWPN */
3414 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3415 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3416 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3417 
3418 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3419 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3420 		goto wwn_prefix_err;
3421 
3422 	return 0;
3423 
3424 wwn_prefix_err:
3425 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3426 	return 0;
3427 }
3428 
3429 /**
3430  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3431  *  @hw: pointer to hardware structure
3432  *  @enable: enable or disable switch for MAC anti-spoofing
3433  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3434  *
3435  **/
3436 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3437 {
3438 	int vf_target_reg = vf >> 3;
3439 	int vf_target_shift = vf % 8;
3440 	u32 pfvfspoof;
3441 
3442 	if (hw->mac.type == ixgbe_mac_82598EB)
3443 		return;
3444 
3445 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3446 	if (enable)
3447 		pfvfspoof |= BIT(vf_target_shift);
3448 	else
3449 		pfvfspoof &= ~BIT(vf_target_shift);
3450 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3451 }
3452 
3453 /**
3454  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3455  *  @hw: pointer to hardware structure
3456  *  @enable: enable or disable switch for VLAN anti-spoofing
3457  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3458  *
3459  **/
3460 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3461 {
3462 	int vf_target_reg = vf >> 3;
3463 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3464 	u32 pfvfspoof;
3465 
3466 	if (hw->mac.type == ixgbe_mac_82598EB)
3467 		return;
3468 
3469 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3470 	if (enable)
3471 		pfvfspoof |= BIT(vf_target_shift);
3472 	else
3473 		pfvfspoof &= ~BIT(vf_target_shift);
3474 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3475 }
3476 
3477 /**
3478  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3479  *  @hw: pointer to hardware structure
3480  *  @device_caps: the EEPROM word with the extra device capabilities
3481  *
3482  *  This function will read the EEPROM location for the device capabilities,
3483  *  and return the word through device_caps.
3484  **/
3485 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3486 {
3487 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3488 
3489 	return 0;
3490 }
3491 
3492 /**
3493  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3494  * @hw: pointer to hardware structure
3495  * @num_pb: number of packet buffers to allocate
3496  * @headroom: reserve n KB of headroom
3497  * @strategy: packet buffer allocation strategy
3498  **/
3499 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3500 			     int num_pb,
3501 			     u32 headroom,
3502 			     int strategy)
3503 {
3504 	u32 pbsize = hw->mac.rx_pb_size;
3505 	int i = 0;
3506 	u32 rxpktsize, txpktsize, txpbthresh;
3507 
3508 	/* Reserve headroom */
3509 	pbsize -= headroom;
3510 
3511 	if (!num_pb)
3512 		num_pb = 1;
3513 
3514 	/* Divide remaining packet buffer space amongst the number
3515 	 * of packet buffers requested using supplied strategy.
3516 	 */
3517 	switch (strategy) {
3518 	case (PBA_STRATEGY_WEIGHTED):
3519 		/* pba_80_48 strategy weight first half of packet buffer with
3520 		 * 5/8 of the packet buffer space.
3521 		 */
3522 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3523 		pbsize -= rxpktsize * (num_pb / 2);
3524 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3525 		for (; i < (num_pb / 2); i++)
3526 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3527 		/* fall through - configure remaining packet buffers */
3528 	case (PBA_STRATEGY_EQUAL):
3529 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3530 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3531 		for (; i < num_pb; i++)
3532 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3533 		break;
3534 	default:
3535 		break;
3536 	}
3537 
3538 	/*
3539 	 * Setup Tx packet buffer and threshold equally for all TCs
3540 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3541 	 * 10 since the largest packet we support is just over 9K.
3542 	 */
3543 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3544 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3545 	for (i = 0; i < num_pb; i++) {
3546 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3547 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3548 	}
3549 
3550 	/* Clear unused TCs, if any, to zero buffer size*/
3551 	for (; i < IXGBE_MAX_PB; i++) {
3552 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3553 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3554 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3555 	}
3556 }
3557 
3558 /**
3559  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3560  *  @buffer: pointer to EEPROM
3561  *  @length: size of EEPROM to calculate a checksum for
3562  *
3563  *  Calculates the checksum for some buffer on a specified length.  The
3564  *  checksum calculated is returned.
3565  **/
3566 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3567 {
3568 	u32 i;
3569 	u8 sum = 0;
3570 
3571 	if (!buffer)
3572 		return 0;
3573 
3574 	for (i = 0; i < length; i++)
3575 		sum += buffer[i];
3576 
3577 	return (u8) (0 - sum);
3578 }
3579 
3580 /**
3581  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3582  *  @hw: pointer to the HW structure
3583  *  @buffer: command to write and where the return status will be placed
3584  *  @length: length of buffer, must be multiple of 4 bytes
3585  *  @timeout: time in ms to wait for command completion
3586  *
3587  *  Communicates with the manageability block. On success return 0
3588  *  else returns semaphore error when encountering an error acquiring
3589  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3590  *
3591  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3592  *  by the caller.
3593  **/
3594 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3595 		       u32 timeout)
3596 {
3597 	u32 hicr, i, fwsts;
3598 	u16 dword_len;
3599 
3600 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3601 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3602 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3603 	}
3604 
3605 	/* Set bit 9 of FWSTS clearing FW reset indication */
3606 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3607 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3608 
3609 	/* Check that the host interface is enabled. */
3610 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3611 	if (!(hicr & IXGBE_HICR_EN)) {
3612 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3613 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3614 	}
3615 
3616 	/* Calculate length in DWORDs. We must be DWORD aligned */
3617 	if (length % sizeof(u32)) {
3618 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3619 		return IXGBE_ERR_INVALID_ARGUMENT;
3620 	}
3621 
3622 	dword_len = length >> 2;
3623 
3624 	/* The device driver writes the relevant command block
3625 	 * into the ram area.
3626 	 */
3627 	for (i = 0; i < dword_len; i++)
3628 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3629 				      i, (__force u32)cpu_to_le32(buffer[i]));
3630 
3631 	/* Setting this bit tells the ARC that a new command is pending. */
3632 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3633 
3634 	for (i = 0; i < timeout; i++) {
3635 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3636 		if (!(hicr & IXGBE_HICR_C))
3637 			break;
3638 		usleep_range(1000, 2000);
3639 	}
3640 
3641 	/* Check command successful completion. */
3642 	if ((timeout && i == timeout) ||
3643 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3644 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3645 
3646 	return 0;
3647 }
3648 
3649 /**
3650  *  ixgbe_host_interface_command - Issue command to manageability block
3651  *  @hw: pointer to the HW structure
3652  *  @buffer: contains the command to write and where the return status will
3653  *           be placed
3654  *  @length: length of buffer, must be multiple of 4 bytes
3655  *  @timeout: time in ms to wait for command completion
3656  *  @return_data: read and return data from the buffer (true) or not (false)
3657  *  Needed because FW structures are big endian and decoding of
3658  *  these fields can be 8 bit or 16 bit based on command. Decoding
3659  *  is not easily understood without making a table of commands.
3660  *  So we will leave this up to the caller to read back the data
3661  *  in these cases.
3662  *
3663  *  Communicates with the manageability block.  On success return 0
3664  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3665  **/
3666 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3667 				 u32 length, u32 timeout,
3668 				 bool return_data)
3669 {
3670 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3671 	union {
3672 		struct ixgbe_hic_hdr hdr;
3673 		u32 u32arr[1];
3674 	} *bp = buffer;
3675 	u16 buf_len, dword_len;
3676 	s32 status;
3677 	u32 bi;
3678 
3679 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3680 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3681 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3682 	}
3683 	/* Take management host interface semaphore */
3684 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3685 	if (status)
3686 		return status;
3687 
3688 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3689 	if (status)
3690 		goto rel_out;
3691 
3692 	if (!return_data)
3693 		goto rel_out;
3694 
3695 	/* Calculate length in DWORDs */
3696 	dword_len = hdr_size >> 2;
3697 
3698 	/* first pull in the header so we know the buffer length */
3699 	for (bi = 0; bi < dword_len; bi++) {
3700 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3701 		le32_to_cpus(&bp->u32arr[bi]);
3702 	}
3703 
3704 	/* If there is any thing in data position pull it in */
3705 	buf_len = bp->hdr.buf_len;
3706 	if (!buf_len)
3707 		goto rel_out;
3708 
3709 	if (length < round_up(buf_len, 4) + hdr_size) {
3710 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3711 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3712 		goto rel_out;
3713 	}
3714 
3715 	/* Calculate length in DWORDs, add 3 for odd lengths */
3716 	dword_len = (buf_len + 3) >> 2;
3717 
3718 	/* Pull in the rest of the buffer (bi is where we left off) */
3719 	for (; bi <= dword_len; bi++) {
3720 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3721 		le32_to_cpus(&bp->u32arr[bi]);
3722 	}
3723 
3724 rel_out:
3725 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3726 
3727 	return status;
3728 }
3729 
3730 /**
3731  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3732  *  @hw: pointer to the HW structure
3733  *  @maj: driver version major number
3734  *  @min: driver version minor number
3735  *  @build: driver version build number
3736  *  @sub: driver version sub build number
3737  *  @len: length of driver_ver string
3738  *  @driver_ver: driver string
3739  *
3740  *  Sends driver version number to firmware through the manageability
3741  *  block.  On success return 0
3742  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3743  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3744  **/
3745 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3746 				 u8 build, u8 sub, __always_unused u16 len,
3747 				 __always_unused const char *driver_ver)
3748 {
3749 	struct ixgbe_hic_drv_info fw_cmd;
3750 	int i;
3751 	s32 ret_val;
3752 
3753 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3754 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3755 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3756 	fw_cmd.port_num = hw->bus.func;
3757 	fw_cmd.ver_maj = maj;
3758 	fw_cmd.ver_min = min;
3759 	fw_cmd.ver_build = build;
3760 	fw_cmd.ver_sub = sub;
3761 	fw_cmd.hdr.checksum = 0;
3762 	fw_cmd.pad = 0;
3763 	fw_cmd.pad2 = 0;
3764 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3765 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3766 
3767 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3768 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3769 						       sizeof(fw_cmd),
3770 						       IXGBE_HI_COMMAND_TIMEOUT,
3771 						       true);
3772 		if (ret_val != 0)
3773 			continue;
3774 
3775 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3776 		    FW_CEM_RESP_STATUS_SUCCESS)
3777 			ret_val = 0;
3778 		else
3779 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3780 
3781 		break;
3782 	}
3783 
3784 	return ret_val;
3785 }
3786 
3787 /**
3788  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3789  * @hw: pointer to the hardware structure
3790  *
3791  * The 82599 and x540 MACs can experience issues if TX work is still pending
3792  * when a reset occurs.  This function prevents this by flushing the PCIe
3793  * buffers on the system.
3794  **/
3795 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3796 {
3797 	u32 gcr_ext, hlreg0, i, poll;
3798 	u16 value;
3799 
3800 	/*
3801 	 * If double reset is not requested then all transactions should
3802 	 * already be clear and as such there is no work to do
3803 	 */
3804 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3805 		return;
3806 
3807 	/*
3808 	 * Set loopback enable to prevent any transmits from being sent
3809 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3810 	 * has already been cleared.
3811 	 */
3812 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3813 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3814 
3815 	/* wait for a last completion before clearing buffers */
3816 	IXGBE_WRITE_FLUSH(hw);
3817 	usleep_range(3000, 6000);
3818 
3819 	/* Before proceeding, make sure that the PCIe block does not have
3820 	 * transactions pending.
3821 	 */
3822 	poll = ixgbe_pcie_timeout_poll(hw);
3823 	for (i = 0; i < poll; i++) {
3824 		usleep_range(100, 200);
3825 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3826 		if (ixgbe_removed(hw->hw_addr))
3827 			break;
3828 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3829 			break;
3830 	}
3831 
3832 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3833 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3834 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3835 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3836 
3837 	/* Flush all writes and allow 20usec for all transactions to clear */
3838 	IXGBE_WRITE_FLUSH(hw);
3839 	udelay(20);
3840 
3841 	/* restore previous register values */
3842 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3843 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3844 }
3845 
3846 static const u8 ixgbe_emc_temp_data[4] = {
3847 	IXGBE_EMC_INTERNAL_DATA,
3848 	IXGBE_EMC_DIODE1_DATA,
3849 	IXGBE_EMC_DIODE2_DATA,
3850 	IXGBE_EMC_DIODE3_DATA
3851 };
3852 static const u8 ixgbe_emc_therm_limit[4] = {
3853 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3854 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3855 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3856 	IXGBE_EMC_DIODE3_THERM_LIMIT
3857 };
3858 
3859 /**
3860  *  ixgbe_get_ets_data - Extracts the ETS bit data
3861  *  @hw: pointer to hardware structure
3862  *  @ets_cfg: extected ETS data
3863  *  @ets_offset: offset of ETS data
3864  *
3865  *  Returns error code.
3866  **/
3867 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3868 			      u16 *ets_offset)
3869 {
3870 	s32 status;
3871 
3872 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3873 	if (status)
3874 		return status;
3875 
3876 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3877 		return IXGBE_NOT_IMPLEMENTED;
3878 
3879 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3880 	if (status)
3881 		return status;
3882 
3883 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3884 		return IXGBE_NOT_IMPLEMENTED;
3885 
3886 	return 0;
3887 }
3888 
3889 /**
3890  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3891  *  @hw: pointer to hardware structure
3892  *
3893  *  Returns the thermal sensor data structure
3894  **/
3895 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3896 {
3897 	s32 status;
3898 	u16 ets_offset;
3899 	u16 ets_cfg;
3900 	u16 ets_sensor;
3901 	u8  num_sensors;
3902 	u8  i;
3903 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3904 
3905 	/* Only support thermal sensors attached to physical port 0 */
3906 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3907 		return IXGBE_NOT_IMPLEMENTED;
3908 
3909 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3910 	if (status)
3911 		return status;
3912 
3913 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3914 	if (num_sensors > IXGBE_MAX_SENSORS)
3915 		num_sensors = IXGBE_MAX_SENSORS;
3916 
3917 	for (i = 0; i < num_sensors; i++) {
3918 		u8  sensor_index;
3919 		u8  sensor_location;
3920 
3921 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3922 					     &ets_sensor);
3923 		if (status)
3924 			return status;
3925 
3926 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3927 				IXGBE_ETS_DATA_INDEX_SHIFT);
3928 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3929 				   IXGBE_ETS_DATA_LOC_SHIFT);
3930 
3931 		if (sensor_location != 0) {
3932 			status = hw->phy.ops.read_i2c_byte(hw,
3933 					ixgbe_emc_temp_data[sensor_index],
3934 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3935 					&data->sensor[i].temp);
3936 			if (status)
3937 				return status;
3938 		}
3939 	}
3940 
3941 	return 0;
3942 }
3943 
3944 /**
3945  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3946  * @hw: pointer to hardware structure
3947  *
3948  * Inits the thermal sensor thresholds according to the NVM map
3949  * and save off the threshold and location values into mac.thermal_sensor_data
3950  **/
3951 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3952 {
3953 	s32 status;
3954 	u16 ets_offset;
3955 	u16 ets_cfg;
3956 	u16 ets_sensor;
3957 	u8  low_thresh_delta;
3958 	u8  num_sensors;
3959 	u8  therm_limit;
3960 	u8  i;
3961 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3962 
3963 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3964 
3965 	/* Only support thermal sensors attached to physical port 0 */
3966 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3967 		return IXGBE_NOT_IMPLEMENTED;
3968 
3969 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3970 	if (status)
3971 		return status;
3972 
3973 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3974 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3975 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3976 	if (num_sensors > IXGBE_MAX_SENSORS)
3977 		num_sensors = IXGBE_MAX_SENSORS;
3978 
3979 	for (i = 0; i < num_sensors; i++) {
3980 		u8  sensor_index;
3981 		u8  sensor_location;
3982 
3983 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3984 			hw_err(hw, "eeprom read at offset %d failed\n",
3985 			       ets_offset + 1 + i);
3986 			continue;
3987 		}
3988 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3989 				IXGBE_ETS_DATA_INDEX_SHIFT);
3990 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3991 				   IXGBE_ETS_DATA_LOC_SHIFT);
3992 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3993 
3994 		hw->phy.ops.write_i2c_byte(hw,
3995 			ixgbe_emc_therm_limit[sensor_index],
3996 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3997 
3998 		if (sensor_location == 0)
3999 			continue;
4000 
4001 		data->sensor[i].location = sensor_location;
4002 		data->sensor[i].caution_thresh = therm_limit;
4003 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4004 	}
4005 
4006 	return 0;
4007 }
4008 
4009 /**
4010  *  ixgbe_get_orom_version - Return option ROM from EEPROM
4011  *
4012  *  @hw: pointer to hardware structure
4013  *  @nvm_ver: pointer to output structure
4014  *
4015  *  if valid option ROM version, nvm_ver->or_valid set to true
4016  *  else nvm_ver->or_valid is false.
4017  **/
4018 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4019 			    struct ixgbe_nvm_version *nvm_ver)
4020 {
4021 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4022 
4023 	nvm_ver->or_valid = false;
4024 	/* Option Rom may or may not be present.  Start with pointer */
4025 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4026 
4027 	/* make sure offset is valid */
4028 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4029 		return;
4030 
4031 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4032 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4033 
4034 	/* option rom exists and is valid */
4035 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4036 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4037 	    eeprom_cfg_blkh == NVM_VER_INVALID)
4038 		return;
4039 
4040 	nvm_ver->or_valid = true;
4041 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4042 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4043 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4044 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4045 }
4046 
4047 /**
4048  *  ixgbe_get_oem_prod_version Etrack ID from EEPROM
4049  *
4050  *  @hw: pointer to hardware structure
4051  *  @nvm_ver: pointer to output structure
4052  *
4053  *  if valid OEM product version, nvm_ver->oem_valid set to true
4054  *  else nvm_ver->oem_valid is false.
4055  **/
4056 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4057 				struct ixgbe_nvm_version *nvm_ver)
4058 {
4059 	u16 rel_num, prod_ver, mod_len, cap, offset;
4060 
4061 	nvm_ver->oem_valid = false;
4062 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4063 
4064 	/* Return is offset to OEM Product Version block is invalid */
4065 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4066 		return;
4067 
4068 	/* Read product version block */
4069 	hw->eeprom.ops.read(hw, offset, &mod_len);
4070 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4071 
4072 	/* Return if OEM product version block is invalid */
4073 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4074 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4075 		return;
4076 
4077 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4078 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4079 
4080 	/* Return if version is invalid */
4081 	if ((rel_num | prod_ver) == 0x0 ||
4082 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4083 		return;
4084 
4085 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4086 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4087 	nvm_ver->oem_release = rel_num;
4088 	nvm_ver->oem_valid = true;
4089 }
4090 
4091 /**
4092  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4093  *
4094  *  @hw: pointer to hardware structure
4095  *  @nvm_ver: pointer to output structure
4096  *
4097  *  word read errors will return 0xFFFF
4098  **/
4099 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4100 		      struct ixgbe_nvm_version *nvm_ver)
4101 {
4102 	u16 etk_id_l, etk_id_h;
4103 
4104 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4105 		etk_id_l = NVM_VER_INVALID;
4106 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4107 		etk_id_h = NVM_VER_INVALID;
4108 
4109 	/* The word order for the version format is determined by high order
4110 	 * word bit 15.
4111 	 */
4112 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4113 		nvm_ver->etk_id = etk_id_h;
4114 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4115 	} else {
4116 		nvm_ver->etk_id = etk_id_l;
4117 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4118 	}
4119 }
4120 
4121 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4122 {
4123 	u32 rxctrl;
4124 
4125 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4126 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4127 		if (hw->mac.type != ixgbe_mac_82598EB) {
4128 			u32 pfdtxgswc;
4129 
4130 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4131 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4132 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4133 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4134 				hw->mac.set_lben = true;
4135 			} else {
4136 				hw->mac.set_lben = false;
4137 			}
4138 		}
4139 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4140 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4141 	}
4142 }
4143 
4144 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4145 {
4146 	u32 rxctrl;
4147 
4148 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4149 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4150 
4151 	if (hw->mac.type != ixgbe_mac_82598EB) {
4152 		if (hw->mac.set_lben) {
4153 			u32 pfdtxgswc;
4154 
4155 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4156 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4157 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4158 			hw->mac.set_lben = false;
4159 		}
4160 	}
4161 }
4162 
4163 /** ixgbe_mng_present - returns true when management capability is present
4164  * @hw: pointer to hardware structure
4165  **/
4166 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4167 {
4168 	u32 fwsm;
4169 
4170 	if (hw->mac.type < ixgbe_mac_82599EB)
4171 		return false;
4172 
4173 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4174 
4175 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4176 }
4177 
4178 /**
4179  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4180  *  @hw: pointer to hardware structure
4181  *  @speed: new link speed
4182  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4183  *
4184  *  Set the link speed in the MAC and/or PHY register and restarts link.
4185  */
4186 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4187 					  ixgbe_link_speed speed,
4188 					  bool autoneg_wait_to_complete)
4189 {
4190 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4191 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4192 	s32 status = 0;
4193 	u32 speedcnt = 0;
4194 	u32 i = 0;
4195 	bool autoneg, link_up = false;
4196 
4197 	/* Mask off requested but non-supported speeds */
4198 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4199 	if (status)
4200 		return status;
4201 
4202 	speed &= link_speed;
4203 
4204 	/* Try each speed one by one, highest priority first.  We do this in
4205 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4206 	 */
4207 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4208 		speedcnt++;
4209 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4210 
4211 		/* Set the module link speed */
4212 		switch (hw->phy.media_type) {
4213 		case ixgbe_media_type_fiber:
4214 			hw->mac.ops.set_rate_select_speed(hw,
4215 						    IXGBE_LINK_SPEED_10GB_FULL);
4216 			break;
4217 		case ixgbe_media_type_fiber_qsfp:
4218 			/* QSFP module automatically detects MAC link speed */
4219 			break;
4220 		default:
4221 			hw_dbg(hw, "Unexpected media type\n");
4222 			break;
4223 		}
4224 
4225 		/* Allow module to change analog characteristics (1G->10G) */
4226 		msleep(40);
4227 
4228 		status = hw->mac.ops.setup_mac_link(hw,
4229 						    IXGBE_LINK_SPEED_10GB_FULL,
4230 						    autoneg_wait_to_complete);
4231 		if (status)
4232 			return status;
4233 
4234 		/* Flap the Tx laser if it has not already been done */
4235 		if (hw->mac.ops.flap_tx_laser)
4236 			hw->mac.ops.flap_tx_laser(hw);
4237 
4238 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4239 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4240 		 * attempted.  82599 uses the same timing for 10g SFI.
4241 		 */
4242 		for (i = 0; i < 5; i++) {
4243 			/* Wait for the link partner to also set speed */
4244 			msleep(100);
4245 
4246 			/* If we have link, just jump out */
4247 			status = hw->mac.ops.check_link(hw, &link_speed,
4248 							&link_up, false);
4249 			if (status)
4250 				return status;
4251 
4252 			if (link_up)
4253 				goto out;
4254 		}
4255 	}
4256 
4257 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4258 		speedcnt++;
4259 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4260 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4261 
4262 		/* Set the module link speed */
4263 		switch (hw->phy.media_type) {
4264 		case ixgbe_media_type_fiber:
4265 			hw->mac.ops.set_rate_select_speed(hw,
4266 						     IXGBE_LINK_SPEED_1GB_FULL);
4267 			break;
4268 		case ixgbe_media_type_fiber_qsfp:
4269 			/* QSFP module automatically detects link speed */
4270 			break;
4271 		default:
4272 			hw_dbg(hw, "Unexpected media type\n");
4273 			break;
4274 		}
4275 
4276 		/* Allow module to change analog characteristics (10G->1G) */
4277 		msleep(40);
4278 
4279 		status = hw->mac.ops.setup_mac_link(hw,
4280 						    IXGBE_LINK_SPEED_1GB_FULL,
4281 						    autoneg_wait_to_complete);
4282 		if (status)
4283 			return status;
4284 
4285 		/* Flap the Tx laser if it has not already been done */
4286 		if (hw->mac.ops.flap_tx_laser)
4287 			hw->mac.ops.flap_tx_laser(hw);
4288 
4289 		/* Wait for the link partner to also set speed */
4290 		msleep(100);
4291 
4292 		/* If we have link, just jump out */
4293 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4294 						false);
4295 		if (status)
4296 			return status;
4297 
4298 		if (link_up)
4299 			goto out;
4300 	}
4301 
4302 	/* We didn't get link.  Configure back to the highest speed we tried,
4303 	 * (if there was more than one).  We call ourselves back with just the
4304 	 * single highest speed that the user requested.
4305 	 */
4306 	if (speedcnt > 1)
4307 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4308 						      highest_link_speed,
4309 						      autoneg_wait_to_complete);
4310 
4311 out:
4312 	/* Set autoneg_advertised value based on input link speed */
4313 	hw->phy.autoneg_advertised = 0;
4314 
4315 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4316 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4317 
4318 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4319 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4320 
4321 	return status;
4322 }
4323 
4324 /**
4325  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4326  *  @hw: pointer to hardware structure
4327  *  @speed: link speed to set
4328  *
4329  *  Set module link speed via the soft rate select.
4330  */
4331 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4332 				      ixgbe_link_speed speed)
4333 {
4334 	s32 status;
4335 	u8 rs, eeprom_data;
4336 
4337 	switch (speed) {
4338 	case IXGBE_LINK_SPEED_10GB_FULL:
4339 		/* one bit mask same as setting on */
4340 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4341 		break;
4342 	case IXGBE_LINK_SPEED_1GB_FULL:
4343 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4344 		break;
4345 	default:
4346 		hw_dbg(hw, "Invalid fixed module speed\n");
4347 		return;
4348 	}
4349 
4350 	/* Set RS0 */
4351 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4352 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4353 					   &eeprom_data);
4354 	if (status) {
4355 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4356 		return;
4357 	}
4358 
4359 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4360 
4361 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4362 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4363 					    eeprom_data);
4364 	if (status) {
4365 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4366 		return;
4367 	}
4368 
4369 	/* Set RS1 */
4370 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4371 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4372 					   &eeprom_data);
4373 	if (status) {
4374 		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4375 		return;
4376 	}
4377 
4378 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4379 
4380 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4381 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4382 					    eeprom_data);
4383 	if (status) {
4384 		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4385 		return;
4386 	}
4387 }
4388