xref: /openbmc/linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2016 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 	IXGBE_MVALS_INIT(8259X)
63 };
64 
65 /**
66  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67  *  control
68  *  @hw: pointer to hardware structure
69  *
70  *  There are several phys that do not support autoneg flow control. This
71  *  function check the device id to see if the associated phy supports
72  *  autoneg flow control.
73  **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 	bool supported = false;
77 	ixgbe_link_speed speed;
78 	bool link_up;
79 
80 	switch (hw->phy.media_type) {
81 	case ixgbe_media_type_fiber:
82 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 		/* if link is down, assume supported */
84 		if (link_up)
85 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 				true : false;
87 		else
88 			supported = true;
89 		break;
90 	case ixgbe_media_type_backplane:
91 		supported = true;
92 		break;
93 	case ixgbe_media_type_copper:
94 		/* only some copper devices support flow control autoneg */
95 		switch (hw->device_id) {
96 		case IXGBE_DEV_ID_82599_T3_LOM:
97 		case IXGBE_DEV_ID_X540T:
98 		case IXGBE_DEV_ID_X540T1:
99 		case IXGBE_DEV_ID_X550T:
100 		case IXGBE_DEV_ID_X550T1:
101 		case IXGBE_DEV_ID_X550EM_X_10G_T:
102 		case IXGBE_DEV_ID_X550EM_A_10G_T:
103 		case IXGBE_DEV_ID_X550EM_A_1G_T:
104 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
105 			supported = true;
106 			break;
107 		default:
108 			break;
109 		}
110 	default:
111 		break;
112 	}
113 
114 	return supported;
115 }
116 
117 /**
118  *  ixgbe_setup_fc_generic - Set up flow control
119  *  @hw: pointer to hardware structure
120  *
121  *  Called at init time to set up flow control.
122  **/
123 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
124 {
125 	s32 ret_val = 0;
126 	u32 reg = 0, reg_bp = 0;
127 	u16 reg_cu = 0;
128 	bool locked = false;
129 
130 	/*
131 	 * Validate the requested mode.  Strict IEEE mode does not allow
132 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
133 	 */
134 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
135 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
136 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
137 	}
138 
139 	/*
140 	 * 10gig parts do not have a word in the EEPROM to determine the
141 	 * default flow control setting, so we explicitly set it to full.
142 	 */
143 	if (hw->fc.requested_mode == ixgbe_fc_default)
144 		hw->fc.requested_mode = ixgbe_fc_full;
145 
146 	/*
147 	 * Set up the 1G and 10G flow control advertisement registers so the
148 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
149 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
150 	 */
151 	switch (hw->phy.media_type) {
152 	case ixgbe_media_type_backplane:
153 		/* some MAC's need RMW protection on AUTOC */
154 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
155 		if (ret_val)
156 			return ret_val;
157 
158 		/* fall through - only backplane uses autoc */
159 	case ixgbe_media_type_fiber:
160 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
161 
162 		break;
163 	case ixgbe_media_type_copper:
164 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
165 					MDIO_MMD_AN, &reg_cu);
166 		break;
167 	default:
168 		break;
169 	}
170 
171 	/*
172 	 * The possible values of fc.requested_mode are:
173 	 * 0: Flow control is completely disabled
174 	 * 1: Rx flow control is enabled (we can receive pause frames,
175 	 *    but not send pause frames).
176 	 * 2: Tx flow control is enabled (we can send pause frames but
177 	 *    we do not support receiving pause frames).
178 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
179 	 * other: Invalid.
180 	 */
181 	switch (hw->fc.requested_mode) {
182 	case ixgbe_fc_none:
183 		/* Flow control completely disabled by software override. */
184 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
185 		if (hw->phy.media_type == ixgbe_media_type_backplane)
186 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
187 				    IXGBE_AUTOC_ASM_PAUSE);
188 		else if (hw->phy.media_type == ixgbe_media_type_copper)
189 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
190 		break;
191 	case ixgbe_fc_tx_pause:
192 		/*
193 		 * Tx Flow control is enabled, and Rx Flow control is
194 		 * disabled by software override.
195 		 */
196 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
197 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
198 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
199 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
200 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
201 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
202 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
203 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
204 		}
205 		break;
206 	case ixgbe_fc_rx_pause:
207 		/*
208 		 * Rx Flow control is enabled and Tx Flow control is
209 		 * disabled by software override. Since there really
210 		 * isn't a way to advertise that we are capable of RX
211 		 * Pause ONLY, we will advertise that we support both
212 		 * symmetric and asymmetric Rx PAUSE, as such we fall
213 		 * through to the fc_full statement.  Later, we will
214 		 * disable the adapter's ability to send PAUSE frames.
215 		 */
216 	case ixgbe_fc_full:
217 		/* Flow control (both Rx and Tx) is enabled by SW override. */
218 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
219 		if (hw->phy.media_type == ixgbe_media_type_backplane)
220 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
221 				  IXGBE_AUTOC_ASM_PAUSE;
222 		else if (hw->phy.media_type == ixgbe_media_type_copper)
223 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
224 		break;
225 	default:
226 		hw_dbg(hw, "Flow control param set incorrectly\n");
227 		return IXGBE_ERR_CONFIG;
228 	}
229 
230 	if (hw->mac.type != ixgbe_mac_X540) {
231 		/*
232 		 * Enable auto-negotiation between the MAC & PHY;
233 		 * the MAC will advertise clause 37 flow control.
234 		 */
235 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
236 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
237 
238 		/* Disable AN timeout */
239 		if (hw->fc.strict_ieee)
240 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
241 
242 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
243 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
244 	}
245 
246 	/*
247 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
248 	 * and copper. There is no need to set the PCS1GCTL register.
249 	 *
250 	 */
251 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
252 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
253 		 * LESM is on, likewise reset_pipeline requries the lock as
254 		 * it also writes AUTOC.
255 		 */
256 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
257 		if (ret_val)
258 			return ret_val;
259 
260 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
261 		   ixgbe_device_supports_autoneg_fc(hw)) {
262 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
263 				      MDIO_MMD_AN, reg_cu);
264 	}
265 
266 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
267 	return ret_val;
268 }
269 
270 /**
271  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
272  *  @hw: pointer to hardware structure
273  *
274  *  Starts the hardware by filling the bus info structure and media type, clears
275  *  all on chip counters, initializes receive address registers, multicast
276  *  table, VLAN filter table, calls routine to set up link and flow control
277  *  settings, and leaves transmit and receive units disabled and uninitialized
278  **/
279 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
280 {
281 	s32 ret_val;
282 	u32 ctrl_ext;
283 	u16 device_caps;
284 
285 	/* Set the media type */
286 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
287 
288 	/* Identify the PHY */
289 	hw->phy.ops.identify(hw);
290 
291 	/* Clear the VLAN filter table */
292 	hw->mac.ops.clear_vfta(hw);
293 
294 	/* Clear statistics registers */
295 	hw->mac.ops.clear_hw_cntrs(hw);
296 
297 	/* Set No Snoop Disable */
298 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
299 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
300 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
301 	IXGBE_WRITE_FLUSH(hw);
302 
303 	/* Setup flow control if method for doing so */
304 	if (hw->mac.ops.setup_fc) {
305 		ret_val = hw->mac.ops.setup_fc(hw);
306 		if (ret_val)
307 			return ret_val;
308 	}
309 
310 	/* Cashe bit indicating need for crosstalk fix */
311 	switch (hw->mac.type) {
312 	case ixgbe_mac_82599EB:
313 	case ixgbe_mac_X550EM_x:
314 	case ixgbe_mac_x550em_a:
315 		hw->mac.ops.get_device_caps(hw, &device_caps);
316 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
317 			hw->need_crosstalk_fix = false;
318 		else
319 			hw->need_crosstalk_fix = true;
320 		break;
321 	default:
322 		hw->need_crosstalk_fix = false;
323 		break;
324 	}
325 
326 	/* Clear adapter stopped flag */
327 	hw->adapter_stopped = false;
328 
329 	return 0;
330 }
331 
332 /**
333  *  ixgbe_start_hw_gen2 - Init sequence for common device family
334  *  @hw: pointer to hw structure
335  *
336  * Performs the init sequence common to the second generation
337  * of 10 GbE devices.
338  * Devices in the second generation:
339  *     82599
340  *     X540
341  **/
342 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
343 {
344 	u32 i;
345 
346 	/* Clear the rate limiters */
347 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
348 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
349 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
350 	}
351 	IXGBE_WRITE_FLUSH(hw);
352 
353 #ifndef CONFIG_ARCH_WANT_RELAX_ORDER
354 	/* Disable relaxed ordering */
355 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
356 		u32 regval;
357 
358 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
359 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
360 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
361 	}
362 
363 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
364 		u32 regval;
365 
366 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
367 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
368 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
369 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
370 	}
371 #endif
372 	return 0;
373 }
374 
375 /**
376  *  ixgbe_init_hw_generic - Generic hardware initialization
377  *  @hw: pointer to hardware structure
378  *
379  *  Initialize the hardware by resetting the hardware, filling the bus info
380  *  structure and media type, clears all on chip counters, initializes receive
381  *  address registers, multicast table, VLAN filter table, calls routine to set
382  *  up link and flow control settings, and leaves transmit and receive units
383  *  disabled and uninitialized
384  **/
385 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
386 {
387 	s32 status;
388 
389 	/* Reset the hardware */
390 	status = hw->mac.ops.reset_hw(hw);
391 
392 	if (status == 0) {
393 		/* Start the HW */
394 		status = hw->mac.ops.start_hw(hw);
395 	}
396 
397 	/* Initialize the LED link active for LED blink support */
398 	if (hw->mac.ops.init_led_link_act)
399 		hw->mac.ops.init_led_link_act(hw);
400 
401 	return status;
402 }
403 
404 /**
405  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
406  *  @hw: pointer to hardware structure
407  *
408  *  Clears all hardware statistics counters by reading them from the hardware
409  *  Statistics counters are clear on read.
410  **/
411 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
412 {
413 	u16 i = 0;
414 
415 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
416 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
417 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
418 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
419 	for (i = 0; i < 8; i++)
420 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
421 
422 	IXGBE_READ_REG(hw, IXGBE_MLFC);
423 	IXGBE_READ_REG(hw, IXGBE_MRFC);
424 	IXGBE_READ_REG(hw, IXGBE_RLEC);
425 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
426 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
427 	if (hw->mac.type >= ixgbe_mac_82599EB) {
428 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
429 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
430 	} else {
431 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
432 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
433 	}
434 
435 	for (i = 0; i < 8; i++) {
436 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
437 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
438 		if (hw->mac.type >= ixgbe_mac_82599EB) {
439 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
440 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
441 		} else {
442 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
443 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
444 		}
445 	}
446 	if (hw->mac.type >= ixgbe_mac_82599EB)
447 		for (i = 0; i < 8; i++)
448 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
449 	IXGBE_READ_REG(hw, IXGBE_PRC64);
450 	IXGBE_READ_REG(hw, IXGBE_PRC127);
451 	IXGBE_READ_REG(hw, IXGBE_PRC255);
452 	IXGBE_READ_REG(hw, IXGBE_PRC511);
453 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
454 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
455 	IXGBE_READ_REG(hw, IXGBE_GPRC);
456 	IXGBE_READ_REG(hw, IXGBE_BPRC);
457 	IXGBE_READ_REG(hw, IXGBE_MPRC);
458 	IXGBE_READ_REG(hw, IXGBE_GPTC);
459 	IXGBE_READ_REG(hw, IXGBE_GORCL);
460 	IXGBE_READ_REG(hw, IXGBE_GORCH);
461 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
462 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
463 	if (hw->mac.type == ixgbe_mac_82598EB)
464 		for (i = 0; i < 8; i++)
465 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
466 	IXGBE_READ_REG(hw, IXGBE_RUC);
467 	IXGBE_READ_REG(hw, IXGBE_RFC);
468 	IXGBE_READ_REG(hw, IXGBE_ROC);
469 	IXGBE_READ_REG(hw, IXGBE_RJC);
470 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
471 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
472 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
473 	IXGBE_READ_REG(hw, IXGBE_TORL);
474 	IXGBE_READ_REG(hw, IXGBE_TORH);
475 	IXGBE_READ_REG(hw, IXGBE_TPR);
476 	IXGBE_READ_REG(hw, IXGBE_TPT);
477 	IXGBE_READ_REG(hw, IXGBE_PTC64);
478 	IXGBE_READ_REG(hw, IXGBE_PTC127);
479 	IXGBE_READ_REG(hw, IXGBE_PTC255);
480 	IXGBE_READ_REG(hw, IXGBE_PTC511);
481 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
482 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
483 	IXGBE_READ_REG(hw, IXGBE_MPTC);
484 	IXGBE_READ_REG(hw, IXGBE_BPTC);
485 	for (i = 0; i < 16; i++) {
486 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
487 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
488 		if (hw->mac.type >= ixgbe_mac_82599EB) {
489 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
490 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
491 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
492 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
493 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
494 		} else {
495 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
496 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
497 		}
498 	}
499 
500 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
501 		if (hw->phy.id == 0)
502 			hw->phy.ops.identify(hw);
503 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
504 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
505 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
506 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
507 	}
508 
509 	return 0;
510 }
511 
512 /**
513  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
514  *  @hw: pointer to hardware structure
515  *  @pba_num: stores the part number string from the EEPROM
516  *  @pba_num_size: part number string buffer length
517  *
518  *  Reads the part number string from the EEPROM.
519  **/
520 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
521 				  u32 pba_num_size)
522 {
523 	s32 ret_val;
524 	u16 data;
525 	u16 pba_ptr;
526 	u16 offset;
527 	u16 length;
528 
529 	if (pba_num == NULL) {
530 		hw_dbg(hw, "PBA string buffer was null\n");
531 		return IXGBE_ERR_INVALID_ARGUMENT;
532 	}
533 
534 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
535 	if (ret_val) {
536 		hw_dbg(hw, "NVM Read Error\n");
537 		return ret_val;
538 	}
539 
540 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
541 	if (ret_val) {
542 		hw_dbg(hw, "NVM Read Error\n");
543 		return ret_val;
544 	}
545 
546 	/*
547 	 * if data is not ptr guard the PBA must be in legacy format which
548 	 * means pba_ptr is actually our second data word for the PBA number
549 	 * and we can decode it into an ascii string
550 	 */
551 	if (data != IXGBE_PBANUM_PTR_GUARD) {
552 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
553 
554 		/* we will need 11 characters to store the PBA */
555 		if (pba_num_size < 11) {
556 			hw_dbg(hw, "PBA string buffer too small\n");
557 			return IXGBE_ERR_NO_SPACE;
558 		}
559 
560 		/* extract hex string from data and pba_ptr */
561 		pba_num[0] = (data >> 12) & 0xF;
562 		pba_num[1] = (data >> 8) & 0xF;
563 		pba_num[2] = (data >> 4) & 0xF;
564 		pba_num[3] = data & 0xF;
565 		pba_num[4] = (pba_ptr >> 12) & 0xF;
566 		pba_num[5] = (pba_ptr >> 8) & 0xF;
567 		pba_num[6] = '-';
568 		pba_num[7] = 0;
569 		pba_num[8] = (pba_ptr >> 4) & 0xF;
570 		pba_num[9] = pba_ptr & 0xF;
571 
572 		/* put a null character on the end of our string */
573 		pba_num[10] = '\0';
574 
575 		/* switch all the data but the '-' to hex char */
576 		for (offset = 0; offset < 10; offset++) {
577 			if (pba_num[offset] < 0xA)
578 				pba_num[offset] += '0';
579 			else if (pba_num[offset] < 0x10)
580 				pba_num[offset] += 'A' - 0xA;
581 		}
582 
583 		return 0;
584 	}
585 
586 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
587 	if (ret_val) {
588 		hw_dbg(hw, "NVM Read Error\n");
589 		return ret_val;
590 	}
591 
592 	if (length == 0xFFFF || length == 0) {
593 		hw_dbg(hw, "NVM PBA number section invalid length\n");
594 		return IXGBE_ERR_PBA_SECTION;
595 	}
596 
597 	/* check if pba_num buffer is big enough */
598 	if (pba_num_size  < (((u32)length * 2) - 1)) {
599 		hw_dbg(hw, "PBA string buffer too small\n");
600 		return IXGBE_ERR_NO_SPACE;
601 	}
602 
603 	/* trim pba length from start of string */
604 	pba_ptr++;
605 	length--;
606 
607 	for (offset = 0; offset < length; offset++) {
608 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
609 		if (ret_val) {
610 			hw_dbg(hw, "NVM Read Error\n");
611 			return ret_val;
612 		}
613 		pba_num[offset * 2] = (u8)(data >> 8);
614 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
615 	}
616 	pba_num[offset * 2] = '\0';
617 
618 	return 0;
619 }
620 
621 /**
622  *  ixgbe_get_mac_addr_generic - Generic get MAC address
623  *  @hw: pointer to hardware structure
624  *  @mac_addr: Adapter MAC address
625  *
626  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
627  *  A reset of the adapter must be performed prior to calling this function
628  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
629  **/
630 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
631 {
632 	u32 rar_high;
633 	u32 rar_low;
634 	u16 i;
635 
636 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
637 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
638 
639 	for (i = 0; i < 4; i++)
640 		mac_addr[i] = (u8)(rar_low >> (i*8));
641 
642 	for (i = 0; i < 2; i++)
643 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
644 
645 	return 0;
646 }
647 
648 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
649 {
650 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
651 	case IXGBE_PCI_LINK_WIDTH_1:
652 		return ixgbe_bus_width_pcie_x1;
653 	case IXGBE_PCI_LINK_WIDTH_2:
654 		return ixgbe_bus_width_pcie_x2;
655 	case IXGBE_PCI_LINK_WIDTH_4:
656 		return ixgbe_bus_width_pcie_x4;
657 	case IXGBE_PCI_LINK_WIDTH_8:
658 		return ixgbe_bus_width_pcie_x8;
659 	default:
660 		return ixgbe_bus_width_unknown;
661 	}
662 }
663 
664 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
665 {
666 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
667 	case IXGBE_PCI_LINK_SPEED_2500:
668 		return ixgbe_bus_speed_2500;
669 	case IXGBE_PCI_LINK_SPEED_5000:
670 		return ixgbe_bus_speed_5000;
671 	case IXGBE_PCI_LINK_SPEED_8000:
672 		return ixgbe_bus_speed_8000;
673 	default:
674 		return ixgbe_bus_speed_unknown;
675 	}
676 }
677 
678 /**
679  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
680  *  @hw: pointer to hardware structure
681  *
682  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
683  **/
684 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
685 {
686 	u16 link_status;
687 
688 	hw->bus.type = ixgbe_bus_type_pci_express;
689 
690 	/* Get the negotiated link width and speed from PCI config space */
691 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
692 
693 	hw->bus.width = ixgbe_convert_bus_width(link_status);
694 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
695 
696 	hw->mac.ops.set_lan_id(hw);
697 
698 	return 0;
699 }
700 
701 /**
702  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
703  *  @hw: pointer to the HW structure
704  *
705  *  Determines the LAN function id by reading memory-mapped registers
706  *  and swaps the port value if requested.
707  **/
708 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
709 {
710 	struct ixgbe_bus_info *bus = &hw->bus;
711 	u16 ee_ctrl_4;
712 	u32 reg;
713 
714 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
715 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
716 	bus->lan_id = bus->func;
717 
718 	/* check for a port swap */
719 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
720 	if (reg & IXGBE_FACTPS_LFS)
721 		bus->func ^= 0x1;
722 
723 	/* Get MAC instance from EEPROM for configuring CS4227 */
724 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
725 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
726 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
727 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
728 	}
729 }
730 
731 /**
732  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
733  *  @hw: pointer to hardware structure
734  *
735  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
736  *  disables transmit and receive units. The adapter_stopped flag is used by
737  *  the shared code and drivers to determine if the adapter is in a stopped
738  *  state and should not touch the hardware.
739  **/
740 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
741 {
742 	u32 reg_val;
743 	u16 i;
744 
745 	/*
746 	 * Set the adapter_stopped flag so other driver functions stop touching
747 	 * the hardware
748 	 */
749 	hw->adapter_stopped = true;
750 
751 	/* Disable the receive unit */
752 	hw->mac.ops.disable_rx(hw);
753 
754 	/* Clear interrupt mask to stop interrupts from being generated */
755 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
756 
757 	/* Clear any pending interrupts, flush previous writes */
758 	IXGBE_READ_REG(hw, IXGBE_EICR);
759 
760 	/* Disable the transmit unit.  Each queue must be disabled. */
761 	for (i = 0; i < hw->mac.max_tx_queues; i++)
762 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
763 
764 	/* Disable the receive unit by stopping each queue */
765 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
766 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
767 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
768 		reg_val |= IXGBE_RXDCTL_SWFLSH;
769 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
770 	}
771 
772 	/* flush all queues disables */
773 	IXGBE_WRITE_FLUSH(hw);
774 	usleep_range(1000, 2000);
775 
776 	/*
777 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
778 	 * access and verify no pending requests
779 	 */
780 	return ixgbe_disable_pcie_master(hw);
781 }
782 
783 /**
784  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
785  *  @hw: pointer to hardware structure
786  *
787  *  Store the index for the link active LED. This will be used to support
788  *  blinking the LED.
789  **/
790 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
791 {
792 	struct ixgbe_mac_info *mac = &hw->mac;
793 	u32 led_reg, led_mode;
794 	u16 i;
795 
796 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
797 
798 	/* Get LED link active from the LEDCTL register */
799 	for (i = 0; i < 4; i++) {
800 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
801 
802 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
803 		    IXGBE_LED_LINK_ACTIVE) {
804 			mac->led_link_act = i;
805 			return 0;
806 		}
807 	}
808 
809 	/* If LEDCTL register does not have the LED link active set, then use
810 	 * known MAC defaults.
811 	 */
812 	switch (hw->mac.type) {
813 	case ixgbe_mac_x550em_a:
814 		mac->led_link_act = 0;
815 		break;
816 	case ixgbe_mac_X550EM_x:
817 		mac->led_link_act = 1;
818 		break;
819 	default:
820 		mac->led_link_act = 2;
821 	}
822 
823 	return 0;
824 }
825 
826 /**
827  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
828  *  @hw: pointer to hardware structure
829  *  @index: led number to turn on
830  **/
831 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
832 {
833 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
834 
835 	if (index > 3)
836 		return IXGBE_ERR_PARAM;
837 
838 	/* To turn on the LED, set mode to ON. */
839 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
840 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
841 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
842 	IXGBE_WRITE_FLUSH(hw);
843 
844 	return 0;
845 }
846 
847 /**
848  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
849  *  @hw: pointer to hardware structure
850  *  @index: led number to turn off
851  **/
852 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
853 {
854 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
855 
856 	if (index > 3)
857 		return IXGBE_ERR_PARAM;
858 
859 	/* To turn off the LED, set mode to OFF. */
860 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
861 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
862 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
863 	IXGBE_WRITE_FLUSH(hw);
864 
865 	return 0;
866 }
867 
868 /**
869  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
870  *  @hw: pointer to hardware structure
871  *
872  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
873  *  ixgbe_hw struct in order to set up EEPROM access.
874  **/
875 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
876 {
877 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
878 	u32 eec;
879 	u16 eeprom_size;
880 
881 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
882 		eeprom->type = ixgbe_eeprom_none;
883 		/* Set default semaphore delay to 10ms which is a well
884 		 * tested value */
885 		eeprom->semaphore_delay = 10;
886 		/* Clear EEPROM page size, it will be initialized as needed */
887 		eeprom->word_page_size = 0;
888 
889 		/*
890 		 * Check for EEPROM present first.
891 		 * If not present leave as none
892 		 */
893 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
894 		if (eec & IXGBE_EEC_PRES) {
895 			eeprom->type = ixgbe_eeprom_spi;
896 
897 			/*
898 			 * SPI EEPROM is assumed here.  This code would need to
899 			 * change if a future EEPROM is not SPI.
900 			 */
901 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
902 					    IXGBE_EEC_SIZE_SHIFT);
903 			eeprom->word_size = BIT(eeprom_size +
904 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
905 		}
906 
907 		if (eec & IXGBE_EEC_ADDR_SIZE)
908 			eeprom->address_bits = 16;
909 		else
910 			eeprom->address_bits = 8;
911 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
912 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
913 	}
914 
915 	return 0;
916 }
917 
918 /**
919  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
920  *  @hw: pointer to hardware structure
921  *  @offset: offset within the EEPROM to write
922  *  @words: number of words
923  *  @data: 16 bit word(s) to write to EEPROM
924  *
925  *  Reads 16 bit word(s) from EEPROM through bit-bang method
926  **/
927 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
928 					       u16 words, u16 *data)
929 {
930 	s32 status;
931 	u16 i, count;
932 
933 	hw->eeprom.ops.init_params(hw);
934 
935 	if (words == 0)
936 		return IXGBE_ERR_INVALID_ARGUMENT;
937 
938 	if (offset + words > hw->eeprom.word_size)
939 		return IXGBE_ERR_EEPROM;
940 
941 	/*
942 	 * The EEPROM page size cannot be queried from the chip. We do lazy
943 	 * initialization. It is worth to do that when we write large buffer.
944 	 */
945 	if ((hw->eeprom.word_page_size == 0) &&
946 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
947 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
948 
949 	/*
950 	 * We cannot hold synchronization semaphores for too long
951 	 * to avoid other entity starvation. However it is more efficient
952 	 * to read in bursts than synchronizing access for each word.
953 	 */
954 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
955 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
956 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
957 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
958 							    count, &data[i]);
959 
960 		if (status != 0)
961 			break;
962 	}
963 
964 	return status;
965 }
966 
967 /**
968  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
969  *  @hw: pointer to hardware structure
970  *  @offset: offset within the EEPROM to be written to
971  *  @words: number of word(s)
972  *  @data: 16 bit word(s) to be written to the EEPROM
973  *
974  *  If ixgbe_eeprom_update_checksum is not called after this function, the
975  *  EEPROM will most likely contain an invalid checksum.
976  **/
977 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
978 					      u16 words, u16 *data)
979 {
980 	s32 status;
981 	u16 word;
982 	u16 page_size;
983 	u16 i;
984 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
985 
986 	/* Prepare the EEPROM for writing  */
987 	status = ixgbe_acquire_eeprom(hw);
988 	if (status)
989 		return status;
990 
991 	if (ixgbe_ready_eeprom(hw) != 0) {
992 		ixgbe_release_eeprom(hw);
993 		return IXGBE_ERR_EEPROM;
994 	}
995 
996 	for (i = 0; i < words; i++) {
997 		ixgbe_standby_eeprom(hw);
998 
999 		/* Send the WRITE ENABLE command (8 bit opcode) */
1000 		ixgbe_shift_out_eeprom_bits(hw,
1001 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
1002 					    IXGBE_EEPROM_OPCODE_BITS);
1003 
1004 		ixgbe_standby_eeprom(hw);
1005 
1006 		/* Some SPI eeproms use the 8th address bit embedded
1007 		 * in the opcode
1008 		 */
1009 		if ((hw->eeprom.address_bits == 8) &&
1010 		    ((offset + i) >= 128))
1011 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1012 
1013 		/* Send the Write command (8-bit opcode + addr) */
1014 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1015 					    IXGBE_EEPROM_OPCODE_BITS);
1016 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1017 					    hw->eeprom.address_bits);
1018 
1019 		page_size = hw->eeprom.word_page_size;
1020 
1021 		/* Send the data in burst via SPI */
1022 		do {
1023 			word = data[i];
1024 			word = (word >> 8) | (word << 8);
1025 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
1026 
1027 			if (page_size == 0)
1028 				break;
1029 
1030 			/* do not wrap around page */
1031 			if (((offset + i) & (page_size - 1)) ==
1032 			    (page_size - 1))
1033 				break;
1034 		} while (++i < words);
1035 
1036 		ixgbe_standby_eeprom(hw);
1037 		usleep_range(10000, 20000);
1038 	}
1039 	/* Done with writing - release the EEPROM */
1040 	ixgbe_release_eeprom(hw);
1041 
1042 	return 0;
1043 }
1044 
1045 /**
1046  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1047  *  @hw: pointer to hardware structure
1048  *  @offset: offset within the EEPROM to be written to
1049  *  @data: 16 bit word to be written to the EEPROM
1050  *
1051  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1052  *  EEPROM will most likely contain an invalid checksum.
1053  **/
1054 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1055 {
1056 	hw->eeprom.ops.init_params(hw);
1057 
1058 	if (offset >= hw->eeprom.word_size)
1059 		return IXGBE_ERR_EEPROM;
1060 
1061 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1062 }
1063 
1064 /**
1065  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1066  *  @hw: pointer to hardware structure
1067  *  @offset: offset within the EEPROM to be read
1068  *  @words: number of word(s)
1069  *  @data: read 16 bit words(s) from EEPROM
1070  *
1071  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1072  **/
1073 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1074 					      u16 words, u16 *data)
1075 {
1076 	s32 status;
1077 	u16 i, count;
1078 
1079 	hw->eeprom.ops.init_params(hw);
1080 
1081 	if (words == 0)
1082 		return IXGBE_ERR_INVALID_ARGUMENT;
1083 
1084 	if (offset + words > hw->eeprom.word_size)
1085 		return IXGBE_ERR_EEPROM;
1086 
1087 	/*
1088 	 * We cannot hold synchronization semaphores for too long
1089 	 * to avoid other entity starvation. However it is more efficient
1090 	 * to read in bursts than synchronizing access for each word.
1091 	 */
1092 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1093 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1094 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1095 
1096 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1097 							   count, &data[i]);
1098 
1099 		if (status)
1100 			return status;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 /**
1107  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1108  *  @hw: pointer to hardware structure
1109  *  @offset: offset within the EEPROM to be read
1110  *  @words: number of word(s)
1111  *  @data: read 16 bit word(s) from EEPROM
1112  *
1113  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1114  **/
1115 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1116 					     u16 words, u16 *data)
1117 {
1118 	s32 status;
1119 	u16 word_in;
1120 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1121 	u16 i;
1122 
1123 	/* Prepare the EEPROM for reading  */
1124 	status = ixgbe_acquire_eeprom(hw);
1125 	if (status)
1126 		return status;
1127 
1128 	if (ixgbe_ready_eeprom(hw) != 0) {
1129 		ixgbe_release_eeprom(hw);
1130 		return IXGBE_ERR_EEPROM;
1131 	}
1132 
1133 	for (i = 0; i < words; i++) {
1134 		ixgbe_standby_eeprom(hw);
1135 		/* Some SPI eeproms use the 8th address bit embedded
1136 		 * in the opcode
1137 		 */
1138 		if ((hw->eeprom.address_bits == 8) &&
1139 		    ((offset + i) >= 128))
1140 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1141 
1142 		/* Send the READ command (opcode + addr) */
1143 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1144 					    IXGBE_EEPROM_OPCODE_BITS);
1145 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1146 					    hw->eeprom.address_bits);
1147 
1148 		/* Read the data. */
1149 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1150 		data[i] = (word_in >> 8) | (word_in << 8);
1151 	}
1152 
1153 	/* End this read operation */
1154 	ixgbe_release_eeprom(hw);
1155 
1156 	return 0;
1157 }
1158 
1159 /**
1160  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1161  *  @hw: pointer to hardware structure
1162  *  @offset: offset within the EEPROM to be read
1163  *  @data: read 16 bit value from EEPROM
1164  *
1165  *  Reads 16 bit value from EEPROM through bit-bang method
1166  **/
1167 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1168 				       u16 *data)
1169 {
1170 	hw->eeprom.ops.init_params(hw);
1171 
1172 	if (offset >= hw->eeprom.word_size)
1173 		return IXGBE_ERR_EEPROM;
1174 
1175 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1176 }
1177 
1178 /**
1179  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1180  *  @hw: pointer to hardware structure
1181  *  @offset: offset of word in the EEPROM to read
1182  *  @words: number of word(s)
1183  *  @data: 16 bit word(s) from the EEPROM
1184  *
1185  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1186  **/
1187 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1188 				   u16 words, u16 *data)
1189 {
1190 	u32 eerd;
1191 	s32 status;
1192 	u32 i;
1193 
1194 	hw->eeprom.ops.init_params(hw);
1195 
1196 	if (words == 0)
1197 		return IXGBE_ERR_INVALID_ARGUMENT;
1198 
1199 	if (offset >= hw->eeprom.word_size)
1200 		return IXGBE_ERR_EEPROM;
1201 
1202 	for (i = 0; i < words; i++) {
1203 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1204 		       IXGBE_EEPROM_RW_REG_START;
1205 
1206 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1207 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1208 
1209 		if (status == 0) {
1210 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1211 				   IXGBE_EEPROM_RW_REG_DATA);
1212 		} else {
1213 			hw_dbg(hw, "Eeprom read timed out\n");
1214 			return status;
1215 		}
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 /**
1222  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1223  *  @hw: pointer to hardware structure
1224  *  @offset: offset within the EEPROM to be used as a scratch pad
1225  *
1226  *  Discover EEPROM page size by writing marching data at given offset.
1227  *  This function is called only when we are writing a new large buffer
1228  *  at given offset so the data would be overwritten anyway.
1229  **/
1230 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1231 						 u16 offset)
1232 {
1233 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1234 	s32 status;
1235 	u16 i;
1236 
1237 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1238 		data[i] = i;
1239 
1240 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1241 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1242 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1243 	hw->eeprom.word_page_size = 0;
1244 	if (status)
1245 		return status;
1246 
1247 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1248 	if (status)
1249 		return status;
1250 
1251 	/*
1252 	 * When writing in burst more than the actual page size
1253 	 * EEPROM address wraps around current page.
1254 	 */
1255 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1256 
1257 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1258 	       hw->eeprom.word_page_size);
1259 	return 0;
1260 }
1261 
1262 /**
1263  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1264  *  @hw: pointer to hardware structure
1265  *  @offset: offset of  word in the EEPROM to read
1266  *  @data: word read from the EEPROM
1267  *
1268  *  Reads a 16 bit word from the EEPROM using the EERD register.
1269  **/
1270 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1271 {
1272 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1273 }
1274 
1275 /**
1276  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1277  *  @hw: pointer to hardware structure
1278  *  @offset: offset of  word in the EEPROM to write
1279  *  @words: number of words
1280  *  @data: word(s) write to the EEPROM
1281  *
1282  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1283  **/
1284 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1285 				    u16 words, u16 *data)
1286 {
1287 	u32 eewr;
1288 	s32 status;
1289 	u16 i;
1290 
1291 	hw->eeprom.ops.init_params(hw);
1292 
1293 	if (words == 0)
1294 		return IXGBE_ERR_INVALID_ARGUMENT;
1295 
1296 	if (offset >= hw->eeprom.word_size)
1297 		return IXGBE_ERR_EEPROM;
1298 
1299 	for (i = 0; i < words; i++) {
1300 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1301 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1302 		       IXGBE_EEPROM_RW_REG_START;
1303 
1304 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1305 		if (status) {
1306 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1307 			return status;
1308 		}
1309 
1310 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1311 
1312 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1313 		if (status) {
1314 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1315 			return status;
1316 		}
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 /**
1323  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1324  *  @hw: pointer to hardware structure
1325  *  @offset: offset of  word in the EEPROM to write
1326  *  @data: word write to the EEPROM
1327  *
1328  *  Write a 16 bit word to the EEPROM using the EEWR register.
1329  **/
1330 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1331 {
1332 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1333 }
1334 
1335 /**
1336  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1337  *  @hw: pointer to hardware structure
1338  *  @ee_reg: EEPROM flag for polling
1339  *
1340  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1341  *  read or write is done respectively.
1342  **/
1343 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1344 {
1345 	u32 i;
1346 	u32 reg;
1347 
1348 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1349 		if (ee_reg == IXGBE_NVM_POLL_READ)
1350 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1351 		else
1352 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1353 
1354 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1355 			return 0;
1356 		}
1357 		udelay(5);
1358 	}
1359 	return IXGBE_ERR_EEPROM;
1360 }
1361 
1362 /**
1363  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1364  *  @hw: pointer to hardware structure
1365  *
1366  *  Prepares EEPROM for access using bit-bang method. This function should
1367  *  be called before issuing a command to the EEPROM.
1368  **/
1369 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1370 {
1371 	u32 eec;
1372 	u32 i;
1373 
1374 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1375 		return IXGBE_ERR_SWFW_SYNC;
1376 
1377 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1378 
1379 	/* Request EEPROM Access */
1380 	eec |= IXGBE_EEC_REQ;
1381 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1382 
1383 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1384 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1385 		if (eec & IXGBE_EEC_GNT)
1386 			break;
1387 		udelay(5);
1388 	}
1389 
1390 	/* Release if grant not acquired */
1391 	if (!(eec & IXGBE_EEC_GNT)) {
1392 		eec &= ~IXGBE_EEC_REQ;
1393 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1394 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1395 
1396 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1397 		return IXGBE_ERR_EEPROM;
1398 	}
1399 
1400 	/* Setup EEPROM for Read/Write */
1401 	/* Clear CS and SK */
1402 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1403 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1404 	IXGBE_WRITE_FLUSH(hw);
1405 	udelay(1);
1406 	return 0;
1407 }
1408 
1409 /**
1410  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1411  *  @hw: pointer to hardware structure
1412  *
1413  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1414  **/
1415 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1416 {
1417 	u32 timeout = 2000;
1418 	u32 i;
1419 	u32 swsm;
1420 
1421 	/* Get SMBI software semaphore between device drivers first */
1422 	for (i = 0; i < timeout; i++) {
1423 		/*
1424 		 * If the SMBI bit is 0 when we read it, then the bit will be
1425 		 * set and we have the semaphore
1426 		 */
1427 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1428 		if (!(swsm & IXGBE_SWSM_SMBI))
1429 			break;
1430 		usleep_range(50, 100);
1431 	}
1432 
1433 	if (i == timeout) {
1434 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1435 		/* this release is particularly important because our attempts
1436 		 * above to get the semaphore may have succeeded, and if there
1437 		 * was a timeout, we should unconditionally clear the semaphore
1438 		 * bits to free the driver to make progress
1439 		 */
1440 		ixgbe_release_eeprom_semaphore(hw);
1441 
1442 		usleep_range(50, 100);
1443 		/* one last try
1444 		 * If the SMBI bit is 0 when we read it, then the bit will be
1445 		 * set and we have the semaphore
1446 		 */
1447 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1448 		if (swsm & IXGBE_SWSM_SMBI) {
1449 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1450 			return IXGBE_ERR_EEPROM;
1451 		}
1452 	}
1453 
1454 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1455 	for (i = 0; i < timeout; i++) {
1456 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1457 
1458 		/* Set the SW EEPROM semaphore bit to request access */
1459 		swsm |= IXGBE_SWSM_SWESMBI;
1460 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1461 
1462 		/* If we set the bit successfully then we got the
1463 		 * semaphore.
1464 		 */
1465 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1466 		if (swsm & IXGBE_SWSM_SWESMBI)
1467 			break;
1468 
1469 		usleep_range(50, 100);
1470 	}
1471 
1472 	/* Release semaphores and return error if SW EEPROM semaphore
1473 	 * was not granted because we don't have access to the EEPROM
1474 	 */
1475 	if (i >= timeout) {
1476 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1477 		ixgbe_release_eeprom_semaphore(hw);
1478 		return IXGBE_ERR_EEPROM;
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 /**
1485  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1486  *  @hw: pointer to hardware structure
1487  *
1488  *  This function clears hardware semaphore bits.
1489  **/
1490 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1491 {
1492 	u32 swsm;
1493 
1494 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1495 
1496 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1497 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1498 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1499 	IXGBE_WRITE_FLUSH(hw);
1500 }
1501 
1502 /**
1503  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1504  *  @hw: pointer to hardware structure
1505  **/
1506 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1507 {
1508 	u16 i;
1509 	u8 spi_stat_reg;
1510 
1511 	/*
1512 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1513 	 * EEPROM will signal that the command has been completed by clearing
1514 	 * bit 0 of the internal status register.  If it's not cleared within
1515 	 * 5 milliseconds, then error out.
1516 	 */
1517 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1518 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1519 					    IXGBE_EEPROM_OPCODE_BITS);
1520 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1521 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1522 			break;
1523 
1524 		udelay(5);
1525 		ixgbe_standby_eeprom(hw);
1526 	}
1527 
1528 	/*
1529 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1530 	 * devices (and only 0-5mSec on 5V devices)
1531 	 */
1532 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1533 		hw_dbg(hw, "SPI EEPROM Status error\n");
1534 		return IXGBE_ERR_EEPROM;
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 /**
1541  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1542  *  @hw: pointer to hardware structure
1543  **/
1544 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1545 {
1546 	u32 eec;
1547 
1548 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1549 
1550 	/* Toggle CS to flush commands */
1551 	eec |= IXGBE_EEC_CS;
1552 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1553 	IXGBE_WRITE_FLUSH(hw);
1554 	udelay(1);
1555 	eec &= ~IXGBE_EEC_CS;
1556 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1557 	IXGBE_WRITE_FLUSH(hw);
1558 	udelay(1);
1559 }
1560 
1561 /**
1562  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1563  *  @hw: pointer to hardware structure
1564  *  @data: data to send to the EEPROM
1565  *  @count: number of bits to shift out
1566  **/
1567 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1568 					u16 count)
1569 {
1570 	u32 eec;
1571 	u32 mask;
1572 	u32 i;
1573 
1574 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1575 
1576 	/*
1577 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1578 	 * one bit at a time.  Determine the starting bit based on count
1579 	 */
1580 	mask = BIT(count - 1);
1581 
1582 	for (i = 0; i < count; i++) {
1583 		/*
1584 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1585 		 * "1", and then raising and then lowering the clock (the SK
1586 		 * bit controls the clock input to the EEPROM).  A "0" is
1587 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1588 		 * raising and then lowering the clock.
1589 		 */
1590 		if (data & mask)
1591 			eec |= IXGBE_EEC_DI;
1592 		else
1593 			eec &= ~IXGBE_EEC_DI;
1594 
1595 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1596 		IXGBE_WRITE_FLUSH(hw);
1597 
1598 		udelay(1);
1599 
1600 		ixgbe_raise_eeprom_clk(hw, &eec);
1601 		ixgbe_lower_eeprom_clk(hw, &eec);
1602 
1603 		/*
1604 		 * Shift mask to signify next bit of data to shift in to the
1605 		 * EEPROM
1606 		 */
1607 		mask = mask >> 1;
1608 	}
1609 
1610 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1611 	eec &= ~IXGBE_EEC_DI;
1612 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1613 	IXGBE_WRITE_FLUSH(hw);
1614 }
1615 
1616 /**
1617  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1618  *  @hw: pointer to hardware structure
1619  **/
1620 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1621 {
1622 	u32 eec;
1623 	u32 i;
1624 	u16 data = 0;
1625 
1626 	/*
1627 	 * In order to read a register from the EEPROM, we need to shift
1628 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1629 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1630 	 * the value of the "DO" bit.  During this "shifting in" process the
1631 	 * "DI" bit should always be clear.
1632 	 */
1633 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1634 
1635 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1636 
1637 	for (i = 0; i < count; i++) {
1638 		data = data << 1;
1639 		ixgbe_raise_eeprom_clk(hw, &eec);
1640 
1641 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1642 
1643 		eec &= ~(IXGBE_EEC_DI);
1644 		if (eec & IXGBE_EEC_DO)
1645 			data |= 1;
1646 
1647 		ixgbe_lower_eeprom_clk(hw, &eec);
1648 	}
1649 
1650 	return data;
1651 }
1652 
1653 /**
1654  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1655  *  @hw: pointer to hardware structure
1656  *  @eec: EEC register's current value
1657  **/
1658 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1659 {
1660 	/*
1661 	 * Raise the clock input to the EEPROM
1662 	 * (setting the SK bit), then delay
1663 	 */
1664 	*eec = *eec | IXGBE_EEC_SK;
1665 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1666 	IXGBE_WRITE_FLUSH(hw);
1667 	udelay(1);
1668 }
1669 
1670 /**
1671  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1672  *  @hw: pointer to hardware structure
1673  *  @eecd: EECD's current value
1674  **/
1675 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1676 {
1677 	/*
1678 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1679 	 * delay
1680 	 */
1681 	*eec = *eec & ~IXGBE_EEC_SK;
1682 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1683 	IXGBE_WRITE_FLUSH(hw);
1684 	udelay(1);
1685 }
1686 
1687 /**
1688  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1689  *  @hw: pointer to hardware structure
1690  **/
1691 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1692 {
1693 	u32 eec;
1694 
1695 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1696 
1697 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1698 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1699 
1700 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1701 	IXGBE_WRITE_FLUSH(hw);
1702 
1703 	udelay(1);
1704 
1705 	/* Stop requesting EEPROM access */
1706 	eec &= ~IXGBE_EEC_REQ;
1707 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1708 
1709 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1710 
1711 	/*
1712 	 * Delay before attempt to obtain semaphore again to allow FW
1713 	 * access. semaphore_delay is in ms we need us for usleep_range
1714 	 */
1715 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1716 		     hw->eeprom.semaphore_delay * 2000);
1717 }
1718 
1719 /**
1720  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1721  *  @hw: pointer to hardware structure
1722  **/
1723 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1724 {
1725 	u16 i;
1726 	u16 j;
1727 	u16 checksum = 0;
1728 	u16 length = 0;
1729 	u16 pointer = 0;
1730 	u16 word = 0;
1731 
1732 	/* Include 0x0-0x3F in the checksum */
1733 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1734 		if (hw->eeprom.ops.read(hw, i, &word)) {
1735 			hw_dbg(hw, "EEPROM read failed\n");
1736 			break;
1737 		}
1738 		checksum += word;
1739 	}
1740 
1741 	/* Include all data from pointers except for the fw pointer */
1742 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1743 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1744 			hw_dbg(hw, "EEPROM read failed\n");
1745 			return IXGBE_ERR_EEPROM;
1746 		}
1747 
1748 		/* If the pointer seems invalid */
1749 		if (pointer == 0xFFFF || pointer == 0)
1750 			continue;
1751 
1752 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1753 			hw_dbg(hw, "EEPROM read failed\n");
1754 			return IXGBE_ERR_EEPROM;
1755 		}
1756 
1757 		if (length == 0xFFFF || length == 0)
1758 			continue;
1759 
1760 		for (j = pointer + 1; j <= pointer + length; j++) {
1761 			if (hw->eeprom.ops.read(hw, j, &word)) {
1762 				hw_dbg(hw, "EEPROM read failed\n");
1763 				return IXGBE_ERR_EEPROM;
1764 			}
1765 			checksum += word;
1766 		}
1767 	}
1768 
1769 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1770 
1771 	return (s32)checksum;
1772 }
1773 
1774 /**
1775  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1776  *  @hw: pointer to hardware structure
1777  *  @checksum_val: calculated checksum
1778  *
1779  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1780  *  caller does not need checksum_val, the value can be NULL.
1781  **/
1782 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1783 					   u16 *checksum_val)
1784 {
1785 	s32 status;
1786 	u16 checksum;
1787 	u16 read_checksum = 0;
1788 
1789 	/*
1790 	 * Read the first word from the EEPROM. If this times out or fails, do
1791 	 * not continue or we could be in for a very long wait while every
1792 	 * EEPROM read fails
1793 	 */
1794 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1795 	if (status) {
1796 		hw_dbg(hw, "EEPROM read failed\n");
1797 		return status;
1798 	}
1799 
1800 	status = hw->eeprom.ops.calc_checksum(hw);
1801 	if (status < 0)
1802 		return status;
1803 
1804 	checksum = (u16)(status & 0xffff);
1805 
1806 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1807 	if (status) {
1808 		hw_dbg(hw, "EEPROM read failed\n");
1809 		return status;
1810 	}
1811 
1812 	/* Verify read checksum from EEPROM is the same as
1813 	 * calculated checksum
1814 	 */
1815 	if (read_checksum != checksum)
1816 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1817 
1818 	/* If the user cares, return the calculated checksum */
1819 	if (checksum_val)
1820 		*checksum_val = checksum;
1821 
1822 	return status;
1823 }
1824 
1825 /**
1826  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1827  *  @hw: pointer to hardware structure
1828  **/
1829 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1830 {
1831 	s32 status;
1832 	u16 checksum;
1833 
1834 	/*
1835 	 * Read the first word from the EEPROM. If this times out or fails, do
1836 	 * not continue or we could be in for a very long wait while every
1837 	 * EEPROM read fails
1838 	 */
1839 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1840 	if (status) {
1841 		hw_dbg(hw, "EEPROM read failed\n");
1842 		return status;
1843 	}
1844 
1845 	status = hw->eeprom.ops.calc_checksum(hw);
1846 	if (status < 0)
1847 		return status;
1848 
1849 	checksum = (u16)(status & 0xffff);
1850 
1851 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1852 
1853 	return status;
1854 }
1855 
1856 /**
1857  *  ixgbe_set_rar_generic - Set Rx address register
1858  *  @hw: pointer to hardware structure
1859  *  @index: Receive address register to write
1860  *  @addr: Address to put into receive address register
1861  *  @vmdq: VMDq "set" or "pool" index
1862  *  @enable_addr: set flag that address is active
1863  *
1864  *  Puts an ethernet address into a receive address register.
1865  **/
1866 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1867 			  u32 enable_addr)
1868 {
1869 	u32 rar_low, rar_high;
1870 	u32 rar_entries = hw->mac.num_rar_entries;
1871 
1872 	/* Make sure we are using a valid rar index range */
1873 	if (index >= rar_entries) {
1874 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1875 		return IXGBE_ERR_INVALID_ARGUMENT;
1876 	}
1877 
1878 	/* setup VMDq pool selection before this RAR gets enabled */
1879 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1880 
1881 	/*
1882 	 * HW expects these in little endian so we reverse the byte
1883 	 * order from network order (big endian) to little endian
1884 	 */
1885 	rar_low = ((u32)addr[0] |
1886 		   ((u32)addr[1] << 8) |
1887 		   ((u32)addr[2] << 16) |
1888 		   ((u32)addr[3] << 24));
1889 	/*
1890 	 * Some parts put the VMDq setting in the extra RAH bits,
1891 	 * so save everything except the lower 16 bits that hold part
1892 	 * of the address and the address valid bit.
1893 	 */
1894 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1895 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1896 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1897 
1898 	if (enable_addr != 0)
1899 		rar_high |= IXGBE_RAH_AV;
1900 
1901 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1902 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1903 
1904 	return 0;
1905 }
1906 
1907 /**
1908  *  ixgbe_clear_rar_generic - Remove Rx address register
1909  *  @hw: pointer to hardware structure
1910  *  @index: Receive address register to write
1911  *
1912  *  Clears an ethernet address from a receive address register.
1913  **/
1914 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1915 {
1916 	u32 rar_high;
1917 	u32 rar_entries = hw->mac.num_rar_entries;
1918 
1919 	/* Make sure we are using a valid rar index range */
1920 	if (index >= rar_entries) {
1921 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1922 		return IXGBE_ERR_INVALID_ARGUMENT;
1923 	}
1924 
1925 	/*
1926 	 * Some parts put the VMDq setting in the extra RAH bits,
1927 	 * so save everything except the lower 16 bits that hold part
1928 	 * of the address and the address valid bit.
1929 	 */
1930 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1931 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1932 
1933 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1934 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1935 
1936 	/* clear VMDq pool/queue selection for this RAR */
1937 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1938 
1939 	return 0;
1940 }
1941 
1942 /**
1943  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1944  *  @hw: pointer to hardware structure
1945  *
1946  *  Places the MAC address in receive address register 0 and clears the rest
1947  *  of the receive address registers. Clears the multicast table. Assumes
1948  *  the receiver is in reset when the routine is called.
1949  **/
1950 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1951 {
1952 	u32 i;
1953 	u32 rar_entries = hw->mac.num_rar_entries;
1954 
1955 	/*
1956 	 * If the current mac address is valid, assume it is a software override
1957 	 * to the permanent address.
1958 	 * Otherwise, use the permanent address from the eeprom.
1959 	 */
1960 	if (!is_valid_ether_addr(hw->mac.addr)) {
1961 		/* Get the MAC address from the RAR0 for later reference */
1962 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1963 
1964 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1965 	} else {
1966 		/* Setup the receive address. */
1967 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1968 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1969 
1970 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1971 	}
1972 
1973 	/*  clear VMDq pool/queue selection for RAR 0 */
1974 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1975 
1976 	hw->addr_ctrl.overflow_promisc = 0;
1977 
1978 	hw->addr_ctrl.rar_used_count = 1;
1979 
1980 	/* Zero out the other receive addresses. */
1981 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1982 	for (i = 1; i < rar_entries; i++) {
1983 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1984 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1985 	}
1986 
1987 	/* Clear the MTA */
1988 	hw->addr_ctrl.mta_in_use = 0;
1989 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1990 
1991 	hw_dbg(hw, " Clearing MTA\n");
1992 	for (i = 0; i < hw->mac.mcft_size; i++)
1993 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1994 
1995 	if (hw->mac.ops.init_uta_tables)
1996 		hw->mac.ops.init_uta_tables(hw);
1997 
1998 	return 0;
1999 }
2000 
2001 /**
2002  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2003  *  @hw: pointer to hardware structure
2004  *  @mc_addr: the multicast address
2005  *
2006  *  Extracts the 12 bits, from a multicast address, to determine which
2007  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2008  *  incoming rx multicast addresses, to determine the bit-vector to check in
2009  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2010  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2011  *  to mc_filter_type.
2012  **/
2013 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2014 {
2015 	u32 vector = 0;
2016 
2017 	switch (hw->mac.mc_filter_type) {
2018 	case 0:   /* use bits [47:36] of the address */
2019 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2020 		break;
2021 	case 1:   /* use bits [46:35] of the address */
2022 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2023 		break;
2024 	case 2:   /* use bits [45:34] of the address */
2025 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2026 		break;
2027 	case 3:   /* use bits [43:32] of the address */
2028 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2029 		break;
2030 	default:  /* Invalid mc_filter_type */
2031 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2032 		break;
2033 	}
2034 
2035 	/* vector can only be 12-bits or boundary will be exceeded */
2036 	vector &= 0xFFF;
2037 	return vector;
2038 }
2039 
2040 /**
2041  *  ixgbe_set_mta - Set bit-vector in multicast table
2042  *  @hw: pointer to hardware structure
2043  *  @hash_value: Multicast address hash value
2044  *
2045  *  Sets the bit-vector in the multicast table.
2046  **/
2047 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2048 {
2049 	u32 vector;
2050 	u32 vector_bit;
2051 	u32 vector_reg;
2052 
2053 	hw->addr_ctrl.mta_in_use++;
2054 
2055 	vector = ixgbe_mta_vector(hw, mc_addr);
2056 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2057 
2058 	/*
2059 	 * The MTA is a register array of 128 32-bit registers. It is treated
2060 	 * like an array of 4096 bits.  We want to set bit
2061 	 * BitArray[vector_value]. So we figure out what register the bit is
2062 	 * in, read it, OR in the new bit, then write back the new value.  The
2063 	 * register is determined by the upper 7 bits of the vector value and
2064 	 * the bit within that register are determined by the lower 5 bits of
2065 	 * the value.
2066 	 */
2067 	vector_reg = (vector >> 5) & 0x7F;
2068 	vector_bit = vector & 0x1F;
2069 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2070 }
2071 
2072 /**
2073  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2074  *  @hw: pointer to hardware structure
2075  *  @netdev: pointer to net device structure
2076  *
2077  *  The given list replaces any existing list. Clears the MC addrs from receive
2078  *  address registers and the multicast table. Uses unused receive address
2079  *  registers for the first multicast addresses, and hashes the rest into the
2080  *  multicast table.
2081  **/
2082 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2083 				      struct net_device *netdev)
2084 {
2085 	struct netdev_hw_addr *ha;
2086 	u32 i;
2087 
2088 	/*
2089 	 * Set the new number of MC addresses that we are being requested to
2090 	 * use.
2091 	 */
2092 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2093 	hw->addr_ctrl.mta_in_use = 0;
2094 
2095 	/* Clear mta_shadow */
2096 	hw_dbg(hw, " Clearing MTA\n");
2097 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2098 
2099 	/* Update mta shadow */
2100 	netdev_for_each_mc_addr(ha, netdev) {
2101 		hw_dbg(hw, " Adding the multicast addresses:\n");
2102 		ixgbe_set_mta(hw, ha->addr);
2103 	}
2104 
2105 	/* Enable mta */
2106 	for (i = 0; i < hw->mac.mcft_size; i++)
2107 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2108 				      hw->mac.mta_shadow[i]);
2109 
2110 	if (hw->addr_ctrl.mta_in_use > 0)
2111 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2112 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2113 
2114 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2115 	return 0;
2116 }
2117 
2118 /**
2119  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2120  *  @hw: pointer to hardware structure
2121  *
2122  *  Enables multicast address in RAR and the use of the multicast hash table.
2123  **/
2124 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2125 {
2126 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2127 
2128 	if (a->mta_in_use > 0)
2129 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2130 				hw->mac.mc_filter_type);
2131 
2132 	return 0;
2133 }
2134 
2135 /**
2136  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2137  *  @hw: pointer to hardware structure
2138  *
2139  *  Disables multicast address in RAR and the use of the multicast hash table.
2140  **/
2141 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2142 {
2143 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2144 
2145 	if (a->mta_in_use > 0)
2146 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2147 
2148 	return 0;
2149 }
2150 
2151 /**
2152  *  ixgbe_fc_enable_generic - Enable flow control
2153  *  @hw: pointer to hardware structure
2154  *
2155  *  Enable flow control according to the current settings.
2156  **/
2157 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2158 {
2159 	u32 mflcn_reg, fccfg_reg;
2160 	u32 reg;
2161 	u32 fcrtl, fcrth;
2162 	int i;
2163 
2164 	/* Validate the water mark configuration. */
2165 	if (!hw->fc.pause_time)
2166 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2167 
2168 	/* Low water mark of zero causes XOFF floods */
2169 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2170 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2171 		    hw->fc.high_water[i]) {
2172 			if (!hw->fc.low_water[i] ||
2173 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2174 				hw_dbg(hw, "Invalid water mark configuration\n");
2175 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2176 			}
2177 		}
2178 	}
2179 
2180 	/* Negotiate the fc mode to use */
2181 	hw->mac.ops.fc_autoneg(hw);
2182 
2183 	/* Disable any previous flow control settings */
2184 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2185 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2186 
2187 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2188 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2189 
2190 	/*
2191 	 * The possible values of fc.current_mode are:
2192 	 * 0: Flow control is completely disabled
2193 	 * 1: Rx flow control is enabled (we can receive pause frames,
2194 	 *    but not send pause frames).
2195 	 * 2: Tx flow control is enabled (we can send pause frames but
2196 	 *    we do not support receiving pause frames).
2197 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2198 	 * other: Invalid.
2199 	 */
2200 	switch (hw->fc.current_mode) {
2201 	case ixgbe_fc_none:
2202 		/*
2203 		 * Flow control is disabled by software override or autoneg.
2204 		 * The code below will actually disable it in the HW.
2205 		 */
2206 		break;
2207 	case ixgbe_fc_rx_pause:
2208 		/*
2209 		 * Rx Flow control is enabled and Tx Flow control is
2210 		 * disabled by software override. Since there really
2211 		 * isn't a way to advertise that we are capable of RX
2212 		 * Pause ONLY, we will advertise that we support both
2213 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2214 		 * disable the adapter's ability to send PAUSE frames.
2215 		 */
2216 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2217 		break;
2218 	case ixgbe_fc_tx_pause:
2219 		/*
2220 		 * Tx Flow control is enabled, and Rx Flow control is
2221 		 * disabled by software override.
2222 		 */
2223 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2224 		break;
2225 	case ixgbe_fc_full:
2226 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2227 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2228 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2229 		break;
2230 	default:
2231 		hw_dbg(hw, "Flow control param set incorrectly\n");
2232 		return IXGBE_ERR_CONFIG;
2233 	}
2234 
2235 	/* Set 802.3x based flow control settings. */
2236 	mflcn_reg |= IXGBE_MFLCN_DPF;
2237 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2238 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2239 
2240 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2241 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2242 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2243 		    hw->fc.high_water[i]) {
2244 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2245 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2246 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2247 		} else {
2248 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2249 			/*
2250 			 * In order to prevent Tx hangs when the internal Tx
2251 			 * switch is enabled we must set the high water mark
2252 			 * to the Rx packet buffer size - 24KB.  This allows
2253 			 * the Tx switch to function even under heavy Rx
2254 			 * workloads.
2255 			 */
2256 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2257 		}
2258 
2259 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2260 	}
2261 
2262 	/* Configure pause time (2 TCs per register) */
2263 	reg = hw->fc.pause_time * 0x00010001;
2264 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2265 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2266 
2267 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2268 
2269 	return 0;
2270 }
2271 
2272 /**
2273  *  ixgbe_negotiate_fc - Negotiate flow control
2274  *  @hw: pointer to hardware structure
2275  *  @adv_reg: flow control advertised settings
2276  *  @lp_reg: link partner's flow control settings
2277  *  @adv_sym: symmetric pause bit in advertisement
2278  *  @adv_asm: asymmetric pause bit in advertisement
2279  *  @lp_sym: symmetric pause bit in link partner advertisement
2280  *  @lp_asm: asymmetric pause bit in link partner advertisement
2281  *
2282  *  Find the intersection between advertised settings and link partner's
2283  *  advertised settings
2284  **/
2285 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2286 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2287 {
2288 	if ((!(adv_reg)) ||  (!(lp_reg)))
2289 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2290 
2291 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2292 		/*
2293 		 * Now we need to check if the user selected Rx ONLY
2294 		 * of pause frames.  In this case, we had to advertise
2295 		 * FULL flow control because we could not advertise RX
2296 		 * ONLY. Hence, we must now check to see if we need to
2297 		 * turn OFF the TRANSMISSION of PAUSE frames.
2298 		 */
2299 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2300 			hw->fc.current_mode = ixgbe_fc_full;
2301 			hw_dbg(hw, "Flow Control = FULL.\n");
2302 		} else {
2303 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2304 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2305 		}
2306 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2307 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2308 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2309 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2310 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2311 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2312 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2313 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2314 	} else {
2315 		hw->fc.current_mode = ixgbe_fc_none;
2316 		hw_dbg(hw, "Flow Control = NONE.\n");
2317 	}
2318 	return 0;
2319 }
2320 
2321 /**
2322  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2323  *  @hw: pointer to hardware structure
2324  *
2325  *  Enable flow control according on 1 gig fiber.
2326  **/
2327 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2328 {
2329 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2330 	s32 ret_val;
2331 
2332 	/*
2333 	 * On multispeed fiber at 1g, bail out if
2334 	 * - link is up but AN did not complete, or if
2335 	 * - link is up and AN completed but timed out
2336 	 */
2337 
2338 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2339 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2340 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2341 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2342 
2343 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2344 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2345 
2346 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2347 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2348 			       IXGBE_PCS1GANA_ASM_PAUSE,
2349 			       IXGBE_PCS1GANA_SYM_PAUSE,
2350 			       IXGBE_PCS1GANA_ASM_PAUSE);
2351 
2352 	return ret_val;
2353 }
2354 
2355 /**
2356  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2357  *  @hw: pointer to hardware structure
2358  *
2359  *  Enable flow control according to IEEE clause 37.
2360  **/
2361 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2362 {
2363 	u32 links2, anlp1_reg, autoc_reg, links;
2364 	s32 ret_val;
2365 
2366 	/*
2367 	 * On backplane, bail out if
2368 	 * - backplane autoneg was not completed, or if
2369 	 * - we are 82599 and link partner is not AN enabled
2370 	 */
2371 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2372 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2373 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2374 
2375 	if (hw->mac.type == ixgbe_mac_82599EB) {
2376 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2377 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2378 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2379 	}
2380 	/*
2381 	 * Read the 10g AN autoc and LP ability registers and resolve
2382 	 * local flow control settings accordingly
2383 	 */
2384 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2385 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2386 
2387 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2388 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2389 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2390 
2391 	return ret_val;
2392 }
2393 
2394 /**
2395  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2396  *  @hw: pointer to hardware structure
2397  *
2398  *  Enable flow control according to IEEE clause 37.
2399  **/
2400 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2401 {
2402 	u16 technology_ability_reg = 0;
2403 	u16 lp_technology_ability_reg = 0;
2404 
2405 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2406 			     MDIO_MMD_AN,
2407 			     &technology_ability_reg);
2408 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2409 			     MDIO_MMD_AN,
2410 			     &lp_technology_ability_reg);
2411 
2412 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2413 				  (u32)lp_technology_ability_reg,
2414 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2415 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2416 }
2417 
2418 /**
2419  *  ixgbe_fc_autoneg - Configure flow control
2420  *  @hw: pointer to hardware structure
2421  *
2422  *  Compares our advertised flow control capabilities to those advertised by
2423  *  our link partner, and determines the proper flow control mode to use.
2424  **/
2425 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2426 {
2427 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2428 	ixgbe_link_speed speed;
2429 	bool link_up;
2430 
2431 	/*
2432 	 * AN should have completed when the cable was plugged in.
2433 	 * Look for reasons to bail out.  Bail out if:
2434 	 * - FC autoneg is disabled, or if
2435 	 * - link is not up.
2436 	 *
2437 	 * Since we're being called from an LSC, link is already known to be up.
2438 	 * So use link_up_wait_to_complete=false.
2439 	 */
2440 	if (hw->fc.disable_fc_autoneg)
2441 		goto out;
2442 
2443 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2444 	if (!link_up)
2445 		goto out;
2446 
2447 	switch (hw->phy.media_type) {
2448 	/* Autoneg flow control on fiber adapters */
2449 	case ixgbe_media_type_fiber:
2450 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2451 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2452 		break;
2453 
2454 	/* Autoneg flow control on backplane adapters */
2455 	case ixgbe_media_type_backplane:
2456 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2457 		break;
2458 
2459 	/* Autoneg flow control on copper adapters */
2460 	case ixgbe_media_type_copper:
2461 		if (ixgbe_device_supports_autoneg_fc(hw))
2462 			ret_val = ixgbe_fc_autoneg_copper(hw);
2463 		break;
2464 
2465 	default:
2466 		break;
2467 	}
2468 
2469 out:
2470 	if (ret_val == 0) {
2471 		hw->fc.fc_was_autonegged = true;
2472 	} else {
2473 		hw->fc.fc_was_autonegged = false;
2474 		hw->fc.current_mode = hw->fc.requested_mode;
2475 	}
2476 }
2477 
2478 /**
2479  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2480  * @hw: pointer to hardware structure
2481  *
2482  * System-wide timeout range is encoded in PCIe Device Control2 register.
2483  *
2484  *  Add 10% to specified maximum and return the number of times to poll for
2485  *  completion timeout, in units of 100 microsec.  Never return less than
2486  *  800 = 80 millisec.
2487  **/
2488 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2489 {
2490 	s16 devctl2;
2491 	u32 pollcnt;
2492 
2493 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2494 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2495 
2496 	switch (devctl2) {
2497 	case IXGBE_PCIDEVCTRL2_65_130ms:
2498 		 pollcnt = 1300;         /* 130 millisec */
2499 		break;
2500 	case IXGBE_PCIDEVCTRL2_260_520ms:
2501 		pollcnt = 5200;         /* 520 millisec */
2502 		break;
2503 	case IXGBE_PCIDEVCTRL2_1_2s:
2504 		pollcnt = 20000;        /* 2 sec */
2505 		break;
2506 	case IXGBE_PCIDEVCTRL2_4_8s:
2507 		pollcnt = 80000;        /* 8 sec */
2508 		break;
2509 	case IXGBE_PCIDEVCTRL2_17_34s:
2510 		pollcnt = 34000;        /* 34 sec */
2511 		break;
2512 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2513 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2514 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2515 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2516 	default:
2517 		pollcnt = 800;          /* 80 millisec minimum */
2518 		break;
2519 	}
2520 
2521 	/* add 10% to spec maximum */
2522 	return (pollcnt * 11) / 10;
2523 }
2524 
2525 /**
2526  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2527  *  @hw: pointer to hardware structure
2528  *
2529  *  Disables PCI-Express master access and verifies there are no pending
2530  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2531  *  bit hasn't caused the master requests to be disabled, else 0
2532  *  is returned signifying master requests disabled.
2533  **/
2534 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2535 {
2536 	u32 i, poll;
2537 	u16 value;
2538 
2539 	/* Always set this bit to ensure any future transactions are blocked */
2540 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2541 
2542 	/* Poll for bit to read as set */
2543 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2544 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2545 			break;
2546 		usleep_range(100, 120);
2547 	}
2548 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2549 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2550 		goto gio_disable_fail;
2551 	}
2552 
2553 	/* Exit if master requests are blocked */
2554 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2555 	    ixgbe_removed(hw->hw_addr))
2556 		return 0;
2557 
2558 	/* Poll for master request bit to clear */
2559 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2560 		udelay(100);
2561 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2562 			return 0;
2563 	}
2564 
2565 	/*
2566 	 * Two consecutive resets are required via CTRL.RST per datasheet
2567 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2568 	 * of this need.  The first reset prevents new master requests from
2569 	 * being issued by our device.  We then must wait 1usec or more for any
2570 	 * remaining completions from the PCIe bus to trickle in, and then reset
2571 	 * again to clear out any effects they may have had on our device.
2572 	 */
2573 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2574 gio_disable_fail:
2575 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2576 
2577 	if (hw->mac.type >= ixgbe_mac_X550)
2578 		return 0;
2579 
2580 	/*
2581 	 * Before proceeding, make sure that the PCIe block does not have
2582 	 * transactions pending.
2583 	 */
2584 	poll = ixgbe_pcie_timeout_poll(hw);
2585 	for (i = 0; i < poll; i++) {
2586 		udelay(100);
2587 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2588 		if (ixgbe_removed(hw->hw_addr))
2589 			return 0;
2590 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2591 			return 0;
2592 	}
2593 
2594 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2595 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2596 }
2597 
2598 /**
2599  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2600  *  @hw: pointer to hardware structure
2601  *  @mask: Mask to specify which semaphore to acquire
2602  *
2603  *  Acquires the SWFW semaphore through the GSSR register for the specified
2604  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2605  **/
2606 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2607 {
2608 	u32 gssr = 0;
2609 	u32 swmask = mask;
2610 	u32 fwmask = mask << 5;
2611 	u32 timeout = 200;
2612 	u32 i;
2613 
2614 	for (i = 0; i < timeout; i++) {
2615 		/*
2616 		 * SW NVM semaphore bit is used for access to all
2617 		 * SW_FW_SYNC bits (not just NVM)
2618 		 */
2619 		if (ixgbe_get_eeprom_semaphore(hw))
2620 			return IXGBE_ERR_SWFW_SYNC;
2621 
2622 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2623 		if (!(gssr & (fwmask | swmask))) {
2624 			gssr |= swmask;
2625 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2626 			ixgbe_release_eeprom_semaphore(hw);
2627 			return 0;
2628 		} else {
2629 			/* Resource is currently in use by FW or SW */
2630 			ixgbe_release_eeprom_semaphore(hw);
2631 			usleep_range(5000, 10000);
2632 		}
2633 	}
2634 
2635 	/* If time expired clear the bits holding the lock and retry */
2636 	if (gssr & (fwmask | swmask))
2637 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2638 
2639 	usleep_range(5000, 10000);
2640 	return IXGBE_ERR_SWFW_SYNC;
2641 }
2642 
2643 /**
2644  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2645  *  @hw: pointer to hardware structure
2646  *  @mask: Mask to specify which semaphore to release
2647  *
2648  *  Releases the SWFW semaphore through the GSSR register for the specified
2649  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2650  **/
2651 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2652 {
2653 	u32 gssr;
2654 	u32 swmask = mask;
2655 
2656 	ixgbe_get_eeprom_semaphore(hw);
2657 
2658 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2659 	gssr &= ~swmask;
2660 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2661 
2662 	ixgbe_release_eeprom_semaphore(hw);
2663 }
2664 
2665 /**
2666  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2667  * @hw: pointer to hardware structure
2668  * @reg_val: Value we read from AUTOC
2669  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2670  *	    true in this the generic case.
2671  *
2672  * The default case requires no protection so just to the register read.
2673  **/
2674 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2675 {
2676 	*locked = false;
2677 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2678 	return 0;
2679 }
2680 
2681 /**
2682  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2683  * @hw: pointer to hardware structure
2684  * @reg_val: value to write to AUTOC
2685  * @locked: bool to indicate whether the SW/FW lock was already taken by
2686  *	    previous read.
2687  **/
2688 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2689 {
2690 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2691 	return 0;
2692 }
2693 
2694 /**
2695  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2696  *  @hw: pointer to hardware structure
2697  *
2698  *  Stops the receive data path and waits for the HW to internally
2699  *  empty the Rx security block.
2700  **/
2701 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2702 {
2703 #define IXGBE_MAX_SECRX_POLL 40
2704 	int i;
2705 	int secrxreg;
2706 
2707 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2708 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2709 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2710 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2711 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2712 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2713 			break;
2714 		else
2715 			/* Use interrupt-safe sleep just in case */
2716 			udelay(1000);
2717 	}
2718 
2719 	/* For informational purposes only */
2720 	if (i >= IXGBE_MAX_SECRX_POLL)
2721 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2722 
2723 	return 0;
2724 
2725 }
2726 
2727 /**
2728  *  ixgbe_enable_rx_buff - Enables the receive data path
2729  *  @hw: pointer to hardware structure
2730  *
2731  *  Enables the receive data path
2732  **/
2733 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2734 {
2735 	u32 secrxreg;
2736 
2737 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2738 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2739 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2740 	IXGBE_WRITE_FLUSH(hw);
2741 
2742 	return 0;
2743 }
2744 
2745 /**
2746  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2747  *  @hw: pointer to hardware structure
2748  *  @regval: register value to write to RXCTRL
2749  *
2750  *  Enables the Rx DMA unit
2751  **/
2752 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2753 {
2754 	if (regval & IXGBE_RXCTRL_RXEN)
2755 		hw->mac.ops.enable_rx(hw);
2756 	else
2757 		hw->mac.ops.disable_rx(hw);
2758 
2759 	return 0;
2760 }
2761 
2762 /**
2763  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2764  *  @hw: pointer to hardware structure
2765  *  @index: led number to blink
2766  **/
2767 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2768 {
2769 	ixgbe_link_speed speed = 0;
2770 	bool link_up = false;
2771 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2772 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2773 	bool locked = false;
2774 	s32 ret_val;
2775 
2776 	if (index > 3)
2777 		return IXGBE_ERR_PARAM;
2778 
2779 	/*
2780 	 * Link must be up to auto-blink the LEDs;
2781 	 * Force it if link is down.
2782 	 */
2783 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2784 
2785 	if (!link_up) {
2786 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2787 		if (ret_val)
2788 			return ret_val;
2789 
2790 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2791 		autoc_reg |= IXGBE_AUTOC_FLU;
2792 
2793 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2794 		if (ret_val)
2795 			return ret_val;
2796 
2797 		IXGBE_WRITE_FLUSH(hw);
2798 
2799 		usleep_range(10000, 20000);
2800 	}
2801 
2802 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2803 	led_reg |= IXGBE_LED_BLINK(index);
2804 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2805 	IXGBE_WRITE_FLUSH(hw);
2806 
2807 	return 0;
2808 }
2809 
2810 /**
2811  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2812  *  @hw: pointer to hardware structure
2813  *  @index: led number to stop blinking
2814  **/
2815 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2816 {
2817 	u32 autoc_reg = 0;
2818 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2819 	bool locked = false;
2820 	s32 ret_val;
2821 
2822 	if (index > 3)
2823 		return IXGBE_ERR_PARAM;
2824 
2825 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2826 	if (ret_val)
2827 		return ret_val;
2828 
2829 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2830 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2831 
2832 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2833 	if (ret_val)
2834 		return ret_val;
2835 
2836 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2837 	led_reg &= ~IXGBE_LED_BLINK(index);
2838 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2839 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2840 	IXGBE_WRITE_FLUSH(hw);
2841 
2842 	return 0;
2843 }
2844 
2845 /**
2846  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2847  *  @hw: pointer to hardware structure
2848  *  @san_mac_offset: SAN MAC address offset
2849  *
2850  *  This function will read the EEPROM location for the SAN MAC address
2851  *  pointer, and returns the value at that location.  This is used in both
2852  *  get and set mac_addr routines.
2853  **/
2854 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2855 					u16 *san_mac_offset)
2856 {
2857 	s32 ret_val;
2858 
2859 	/*
2860 	 * First read the EEPROM pointer to see if the MAC addresses are
2861 	 * available.
2862 	 */
2863 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2864 				      san_mac_offset);
2865 	if (ret_val)
2866 		hw_err(hw, "eeprom read at offset %d failed\n",
2867 		       IXGBE_SAN_MAC_ADDR_PTR);
2868 
2869 	return ret_val;
2870 }
2871 
2872 /**
2873  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2874  *  @hw: pointer to hardware structure
2875  *  @san_mac_addr: SAN MAC address
2876  *
2877  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2878  *  per-port, so set_lan_id() must be called before reading the addresses.
2879  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2880  *  upon for non-SFP connections, so we must call it here.
2881  **/
2882 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2883 {
2884 	u16 san_mac_data, san_mac_offset;
2885 	u8 i;
2886 	s32 ret_val;
2887 
2888 	/*
2889 	 * First read the EEPROM pointer to see if the MAC addresses are
2890 	 * available.  If they're not, no point in calling set_lan_id() here.
2891 	 */
2892 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2893 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2894 
2895 		goto san_mac_addr_clr;
2896 
2897 	/* make sure we know which port we need to program */
2898 	hw->mac.ops.set_lan_id(hw);
2899 	/* apply the port offset to the address offset */
2900 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2901 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2902 	for (i = 0; i < 3; i++) {
2903 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2904 					      &san_mac_data);
2905 		if (ret_val) {
2906 			hw_err(hw, "eeprom read at offset %d failed\n",
2907 			       san_mac_offset);
2908 			goto san_mac_addr_clr;
2909 		}
2910 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2911 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2912 		san_mac_offset++;
2913 	}
2914 	return 0;
2915 
2916 san_mac_addr_clr:
2917 	/* No addresses available in this EEPROM.  It's not necessarily an
2918 	 * error though, so just wipe the local address and return.
2919 	 */
2920 	for (i = 0; i < 6; i++)
2921 		san_mac_addr[i] = 0xFF;
2922 	return ret_val;
2923 }
2924 
2925 /**
2926  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2927  *  @hw: pointer to hardware structure
2928  *
2929  *  Read PCIe configuration space, and get the MSI-X vector count from
2930  *  the capabilities table.
2931  **/
2932 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2933 {
2934 	u16 msix_count;
2935 	u16 max_msix_count;
2936 	u16 pcie_offset;
2937 
2938 	switch (hw->mac.type) {
2939 	case ixgbe_mac_82598EB:
2940 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2941 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2942 		break;
2943 	case ixgbe_mac_82599EB:
2944 	case ixgbe_mac_X540:
2945 	case ixgbe_mac_X550:
2946 	case ixgbe_mac_X550EM_x:
2947 	case ixgbe_mac_x550em_a:
2948 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2949 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2950 		break;
2951 	default:
2952 		return 1;
2953 	}
2954 
2955 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2956 	if (ixgbe_removed(hw->hw_addr))
2957 		msix_count = 0;
2958 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2959 
2960 	/* MSI-X count is zero-based in HW */
2961 	msix_count++;
2962 
2963 	if (msix_count > max_msix_count)
2964 		msix_count = max_msix_count;
2965 
2966 	return msix_count;
2967 }
2968 
2969 /**
2970  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2971  *  @hw: pointer to hardware struct
2972  *  @rar: receive address register index to disassociate
2973  *  @vmdq: VMDq pool index to remove from the rar
2974  **/
2975 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2976 {
2977 	u32 mpsar_lo, mpsar_hi;
2978 	u32 rar_entries = hw->mac.num_rar_entries;
2979 
2980 	/* Make sure we are using a valid rar index range */
2981 	if (rar >= rar_entries) {
2982 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2983 		return IXGBE_ERR_INVALID_ARGUMENT;
2984 	}
2985 
2986 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2987 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2988 
2989 	if (ixgbe_removed(hw->hw_addr))
2990 		return 0;
2991 
2992 	if (!mpsar_lo && !mpsar_hi)
2993 		return 0;
2994 
2995 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2996 		if (mpsar_lo) {
2997 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2998 			mpsar_lo = 0;
2999 		}
3000 		if (mpsar_hi) {
3001 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3002 			mpsar_hi = 0;
3003 		}
3004 	} else if (vmdq < 32) {
3005 		mpsar_lo &= ~BIT(vmdq);
3006 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3007 	} else {
3008 		mpsar_hi &= ~BIT(vmdq - 32);
3009 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3010 	}
3011 
3012 	/* was that the last pool using this rar? */
3013 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3014 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3015 		hw->mac.ops.clear_rar(hw, rar);
3016 
3017 	return 0;
3018 }
3019 
3020 /**
3021  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3022  *  @hw: pointer to hardware struct
3023  *  @rar: receive address register index to associate with a VMDq index
3024  *  @vmdq: VMDq pool index
3025  **/
3026 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3027 {
3028 	u32 mpsar;
3029 	u32 rar_entries = hw->mac.num_rar_entries;
3030 
3031 	/* Make sure we are using a valid rar index range */
3032 	if (rar >= rar_entries) {
3033 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3034 		return IXGBE_ERR_INVALID_ARGUMENT;
3035 	}
3036 
3037 	if (vmdq < 32) {
3038 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3039 		mpsar |= BIT(vmdq);
3040 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3041 	} else {
3042 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3043 		mpsar |= BIT(vmdq - 32);
3044 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3045 	}
3046 	return 0;
3047 }
3048 
3049 /**
3050  *  This function should only be involved in the IOV mode.
3051  *  In IOV mode, Default pool is next pool after the number of
3052  *  VFs advertized and not 0.
3053  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3054  *
3055  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3056  *  @hw: pointer to hardware struct
3057  *  @vmdq: VMDq pool index
3058  **/
3059 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3060 {
3061 	u32 rar = hw->mac.san_mac_rar_index;
3062 
3063 	if (vmdq < 32) {
3064 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3065 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3066 	} else {
3067 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3068 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3069 	}
3070 
3071 	return 0;
3072 }
3073 
3074 /**
3075  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3076  *  @hw: pointer to hardware structure
3077  **/
3078 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3079 {
3080 	int i;
3081 
3082 	for (i = 0; i < 128; i++)
3083 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3084 
3085 	return 0;
3086 }
3087 
3088 /**
3089  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3090  *  @hw: pointer to hardware structure
3091  *  @vlan: VLAN id to write to VLAN filter
3092  *
3093  *  return the VLVF index where this VLAN id should be placed
3094  *
3095  **/
3096 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3097 {
3098 	s32 regindex, first_empty_slot;
3099 	u32 bits;
3100 
3101 	/* short cut the special case */
3102 	if (vlan == 0)
3103 		return 0;
3104 
3105 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3106 	 * will simply bypass the VLVF if there are no entries present in the
3107 	 * VLVF that contain our VLAN
3108 	 */
3109 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3110 
3111 	/* add VLAN enable bit for comparison */
3112 	vlan |= IXGBE_VLVF_VIEN;
3113 
3114 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3115 	 * slot found along the way.
3116 	 *
3117 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3118 	 */
3119 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3120 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3121 		if (bits == vlan)
3122 			return regindex;
3123 		if (!first_empty_slot && !bits)
3124 			first_empty_slot = regindex;
3125 	}
3126 
3127 	/* If we are here then we didn't find the VLAN.  Return first empty
3128 	 * slot we found during our search, else error.
3129 	 */
3130 	if (!first_empty_slot)
3131 		hw_dbg(hw, "No space in VLVF.\n");
3132 
3133 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3134 }
3135 
3136 /**
3137  *  ixgbe_set_vfta_generic - Set VLAN filter table
3138  *  @hw: pointer to hardware structure
3139  *  @vlan: VLAN id to write to VLAN filter
3140  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3141  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3142  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3143  *
3144  *  Turn on/off specified VLAN in the VLAN filter table.
3145  **/
3146 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3147 			   bool vlan_on, bool vlvf_bypass)
3148 {
3149 	u32 regidx, vfta_delta, vfta, bits;
3150 	s32 vlvf_index;
3151 
3152 	if ((vlan > 4095) || (vind > 63))
3153 		return IXGBE_ERR_PARAM;
3154 
3155 	/*
3156 	 * this is a 2 part operation - first the VFTA, then the
3157 	 * VLVF and VLVFB if VT Mode is set
3158 	 * We don't write the VFTA until we know the VLVF part succeeded.
3159 	 */
3160 
3161 	/* Part 1
3162 	 * The VFTA is a bitstring made up of 128 32-bit registers
3163 	 * that enable the particular VLAN id, much like the MTA:
3164 	 *    bits[11-5]: which register
3165 	 *    bits[4-0]:  which bit in the register
3166 	 */
3167 	regidx = vlan / 32;
3168 	vfta_delta = BIT(vlan % 32);
3169 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3170 
3171 	/* vfta_delta represents the difference between the current value
3172 	 * of vfta and the value we want in the register.  Since the diff
3173 	 * is an XOR mask we can just update vfta using an XOR.
3174 	 */
3175 	vfta_delta &= vlan_on ? ~vfta : vfta;
3176 	vfta ^= vfta_delta;
3177 
3178 	/* Part 2
3179 	 * If VT Mode is set
3180 	 *   Either vlan_on
3181 	 *     make sure the vlan is in VLVF
3182 	 *     set the vind bit in the matching VLVFB
3183 	 *   Or !vlan_on
3184 	 *     clear the pool bit and possibly the vind
3185 	 */
3186 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3187 		goto vfta_update;
3188 
3189 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3190 	if (vlvf_index < 0) {
3191 		if (vlvf_bypass)
3192 			goto vfta_update;
3193 		return vlvf_index;
3194 	}
3195 
3196 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3197 
3198 	/* set the pool bit */
3199 	bits |= BIT(vind % 32);
3200 	if (vlan_on)
3201 		goto vlvf_update;
3202 
3203 	/* clear the pool bit */
3204 	bits ^= BIT(vind % 32);
3205 
3206 	if (!bits &&
3207 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3208 		/* Clear VFTA first, then disable VLVF.  Otherwise
3209 		 * we run the risk of stray packets leaking into
3210 		 * the PF via the default pool
3211 		 */
3212 		if (vfta_delta)
3213 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3214 
3215 		/* disable VLVF and clear remaining bit from pool */
3216 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3217 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3218 
3219 		return 0;
3220 	}
3221 
3222 	/* If there are still bits set in the VLVFB registers
3223 	 * for the VLAN ID indicated we need to see if the
3224 	 * caller is requesting that we clear the VFTA entry bit.
3225 	 * If the caller has requested that we clear the VFTA
3226 	 * entry bit but there are still pools/VFs using this VLAN
3227 	 * ID entry then ignore the request.  We're not worried
3228 	 * about the case where we're turning the VFTA VLAN ID
3229 	 * entry bit on, only when requested to turn it off as
3230 	 * there may be multiple pools and/or VFs using the
3231 	 * VLAN ID entry.  In that case we cannot clear the
3232 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3233 	 * been cleared.  This will be indicated by "bits" being
3234 	 * zero.
3235 	 */
3236 	vfta_delta = 0;
3237 
3238 vlvf_update:
3239 	/* record pool change and enable VLAN ID if not already enabled */
3240 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3241 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3242 
3243 vfta_update:
3244 	/* Update VFTA now that we are ready for traffic */
3245 	if (vfta_delta)
3246 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3247 
3248 	return 0;
3249 }
3250 
3251 /**
3252  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3253  *  @hw: pointer to hardware structure
3254  *
3255  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3256  **/
3257 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3258 {
3259 	u32 offset;
3260 
3261 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3262 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3263 
3264 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3265 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3266 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3267 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 /**
3274  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3275  *  @hw: pointer to hardware structure
3276  *
3277  *  Contains the logic to identify if we need to verify link for the
3278  *  crosstalk fix
3279  **/
3280 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3281 {
3282 	/* Does FW say we need the fix */
3283 	if (!hw->need_crosstalk_fix)
3284 		return false;
3285 
3286 	/* Only consider SFP+ PHYs i.e. media type fiber */
3287 	switch (hw->mac.ops.get_media_type(hw)) {
3288 	case ixgbe_media_type_fiber:
3289 	case ixgbe_media_type_fiber_qsfp:
3290 		break;
3291 	default:
3292 		return false;
3293 	}
3294 
3295 	return true;
3296 }
3297 
3298 /**
3299  *  ixgbe_check_mac_link_generic - Determine link and speed status
3300  *  @hw: pointer to hardware structure
3301  *  @speed: pointer to link speed
3302  *  @link_up: true when link is up
3303  *  @link_up_wait_to_complete: bool used to wait for link up or not
3304  *
3305  *  Reads the links register to determine if link is up and the current speed
3306  **/
3307 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3308 				 bool *link_up, bool link_up_wait_to_complete)
3309 {
3310 	u32 links_reg, links_orig;
3311 	u32 i;
3312 
3313 	/* If Crosstalk fix enabled do the sanity check of making sure
3314 	 * the SFP+ cage is full.
3315 	 */
3316 	if (ixgbe_need_crosstalk_fix(hw)) {
3317 		u32 sfp_cage_full;
3318 
3319 		switch (hw->mac.type) {
3320 		case ixgbe_mac_82599EB:
3321 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3322 					IXGBE_ESDP_SDP2;
3323 			break;
3324 		case ixgbe_mac_X550EM_x:
3325 		case ixgbe_mac_x550em_a:
3326 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3327 					IXGBE_ESDP_SDP0;
3328 			break;
3329 		default:
3330 			/* sanity check - No SFP+ devices here */
3331 			sfp_cage_full = false;
3332 			break;
3333 		}
3334 
3335 		if (!sfp_cage_full) {
3336 			*link_up = false;
3337 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3338 			return 0;
3339 		}
3340 	}
3341 
3342 	/* clear the old state */
3343 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3344 
3345 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3346 
3347 	if (links_orig != links_reg) {
3348 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3349 		       links_orig, links_reg);
3350 	}
3351 
3352 	if (link_up_wait_to_complete) {
3353 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3354 			if (links_reg & IXGBE_LINKS_UP) {
3355 				*link_up = true;
3356 				break;
3357 			} else {
3358 				*link_up = false;
3359 			}
3360 			msleep(100);
3361 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3362 		}
3363 	} else {
3364 		if (links_reg & IXGBE_LINKS_UP)
3365 			*link_up = true;
3366 		else
3367 			*link_up = false;
3368 	}
3369 
3370 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3371 	case IXGBE_LINKS_SPEED_10G_82599:
3372 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3373 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3374 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3375 		else
3376 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3377 		break;
3378 	case IXGBE_LINKS_SPEED_1G_82599:
3379 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3380 		break;
3381 	case IXGBE_LINKS_SPEED_100_82599:
3382 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3383 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3384 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3385 		else
3386 			*speed = IXGBE_LINK_SPEED_100_FULL;
3387 		break;
3388 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3389 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3390 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3391 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3392 			*speed = IXGBE_LINK_SPEED_10_FULL;
3393 		}
3394 		break;
3395 	default:
3396 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3397 	}
3398 
3399 	return 0;
3400 }
3401 
3402 /**
3403  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3404  *  the EEPROM
3405  *  @hw: pointer to hardware structure
3406  *  @wwnn_prefix: the alternative WWNN prefix
3407  *  @wwpn_prefix: the alternative WWPN prefix
3408  *
3409  *  This function will read the EEPROM from the alternative SAN MAC address
3410  *  block to check the support for the alternative WWNN/WWPN prefix support.
3411  **/
3412 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3413 					u16 *wwpn_prefix)
3414 {
3415 	u16 offset, caps;
3416 	u16 alt_san_mac_blk_offset;
3417 
3418 	/* clear output first */
3419 	*wwnn_prefix = 0xFFFF;
3420 	*wwpn_prefix = 0xFFFF;
3421 
3422 	/* check if alternative SAN MAC is supported */
3423 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3424 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3425 		goto wwn_prefix_err;
3426 
3427 	if ((alt_san_mac_blk_offset == 0) ||
3428 	    (alt_san_mac_blk_offset == 0xFFFF))
3429 		return 0;
3430 
3431 	/* check capability in alternative san mac address block */
3432 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3433 	if (hw->eeprom.ops.read(hw, offset, &caps))
3434 		goto wwn_prefix_err;
3435 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3436 		return 0;
3437 
3438 	/* get the corresponding prefix for WWNN/WWPN */
3439 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3440 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3441 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3442 
3443 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3444 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3445 		goto wwn_prefix_err;
3446 
3447 	return 0;
3448 
3449 wwn_prefix_err:
3450 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3451 	return 0;
3452 }
3453 
3454 /**
3455  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3456  *  @hw: pointer to hardware structure
3457  *  @enable: enable or disable switch for MAC anti-spoofing
3458  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3459  *
3460  **/
3461 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3462 {
3463 	int vf_target_reg = vf >> 3;
3464 	int vf_target_shift = vf % 8;
3465 	u32 pfvfspoof;
3466 
3467 	if (hw->mac.type == ixgbe_mac_82598EB)
3468 		return;
3469 
3470 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3471 	if (enable)
3472 		pfvfspoof |= BIT(vf_target_shift);
3473 	else
3474 		pfvfspoof &= ~BIT(vf_target_shift);
3475 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3476 }
3477 
3478 /**
3479  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3480  *  @hw: pointer to hardware structure
3481  *  @enable: enable or disable switch for VLAN anti-spoofing
3482  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3483  *
3484  **/
3485 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3486 {
3487 	int vf_target_reg = vf >> 3;
3488 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3489 	u32 pfvfspoof;
3490 
3491 	if (hw->mac.type == ixgbe_mac_82598EB)
3492 		return;
3493 
3494 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3495 	if (enable)
3496 		pfvfspoof |= BIT(vf_target_shift);
3497 	else
3498 		pfvfspoof &= ~BIT(vf_target_shift);
3499 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3500 }
3501 
3502 /**
3503  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3504  *  @hw: pointer to hardware structure
3505  *  @device_caps: the EEPROM word with the extra device capabilities
3506  *
3507  *  This function will read the EEPROM location for the device capabilities,
3508  *  and return the word through device_caps.
3509  **/
3510 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3511 {
3512 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3513 
3514 	return 0;
3515 }
3516 
3517 /**
3518  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3519  * @hw: pointer to hardware structure
3520  * @num_pb: number of packet buffers to allocate
3521  * @headroom: reserve n KB of headroom
3522  * @strategy: packet buffer allocation strategy
3523  **/
3524 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3525 			     int num_pb,
3526 			     u32 headroom,
3527 			     int strategy)
3528 {
3529 	u32 pbsize = hw->mac.rx_pb_size;
3530 	int i = 0;
3531 	u32 rxpktsize, txpktsize, txpbthresh;
3532 
3533 	/* Reserve headroom */
3534 	pbsize -= headroom;
3535 
3536 	if (!num_pb)
3537 		num_pb = 1;
3538 
3539 	/* Divide remaining packet buffer space amongst the number
3540 	 * of packet buffers requested using supplied strategy.
3541 	 */
3542 	switch (strategy) {
3543 	case (PBA_STRATEGY_WEIGHTED):
3544 		/* pba_80_48 strategy weight first half of packet buffer with
3545 		 * 5/8 of the packet buffer space.
3546 		 */
3547 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3548 		pbsize -= rxpktsize * (num_pb / 2);
3549 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3550 		for (; i < (num_pb / 2); i++)
3551 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3552 		/* fall through - configure remaining packet buffers */
3553 	case (PBA_STRATEGY_EQUAL):
3554 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3555 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3556 		for (; i < num_pb; i++)
3557 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3558 		break;
3559 	default:
3560 		break;
3561 	}
3562 
3563 	/*
3564 	 * Setup Tx packet buffer and threshold equally for all TCs
3565 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3566 	 * 10 since the largest packet we support is just over 9K.
3567 	 */
3568 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3569 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3570 	for (i = 0; i < num_pb; i++) {
3571 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3572 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3573 	}
3574 
3575 	/* Clear unused TCs, if any, to zero buffer size*/
3576 	for (; i < IXGBE_MAX_PB; i++) {
3577 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3578 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3579 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3580 	}
3581 }
3582 
3583 /**
3584  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3585  *  @buffer: pointer to EEPROM
3586  *  @length: size of EEPROM to calculate a checksum for
3587  *
3588  *  Calculates the checksum for some buffer on a specified length.  The
3589  *  checksum calculated is returned.
3590  **/
3591 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3592 {
3593 	u32 i;
3594 	u8 sum = 0;
3595 
3596 	if (!buffer)
3597 		return 0;
3598 
3599 	for (i = 0; i < length; i++)
3600 		sum += buffer[i];
3601 
3602 	return (u8) (0 - sum);
3603 }
3604 
3605 /**
3606  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3607  *  @hw: pointer to the HW structure
3608  *  @buffer: command to write and where the return status will be placed
3609  *  @length: length of buffer, must be multiple of 4 bytes
3610  *  @timeout: time in ms to wait for command completion
3611  *
3612  *  Communicates with the manageability block. On success return 0
3613  *  else returns semaphore error when encountering an error acquiring
3614  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3615  *
3616  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3617  *  by the caller.
3618  **/
3619 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3620 		       u32 timeout)
3621 {
3622 	u32 hicr, i, fwsts;
3623 	u16 dword_len;
3624 
3625 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3626 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3627 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3628 	}
3629 
3630 	/* Set bit 9 of FWSTS clearing FW reset indication */
3631 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3632 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3633 
3634 	/* Check that the host interface is enabled. */
3635 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3636 	if (!(hicr & IXGBE_HICR_EN)) {
3637 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3638 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3639 	}
3640 
3641 	/* Calculate length in DWORDs. We must be DWORD aligned */
3642 	if (length % sizeof(u32)) {
3643 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3644 		return IXGBE_ERR_INVALID_ARGUMENT;
3645 	}
3646 
3647 	dword_len = length >> 2;
3648 
3649 	/* The device driver writes the relevant command block
3650 	 * into the ram area.
3651 	 */
3652 	for (i = 0; i < dword_len; i++)
3653 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3654 				      i, cpu_to_le32(buffer[i]));
3655 
3656 	/* Setting this bit tells the ARC that a new command is pending. */
3657 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3658 
3659 	for (i = 0; i < timeout; i++) {
3660 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3661 		if (!(hicr & IXGBE_HICR_C))
3662 			break;
3663 		usleep_range(1000, 2000);
3664 	}
3665 
3666 	/* Check command successful completion. */
3667 	if ((timeout && i == timeout) ||
3668 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3669 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3670 
3671 	return 0;
3672 }
3673 
3674 /**
3675  *  ixgbe_host_interface_command - Issue command to manageability block
3676  *  @hw: pointer to the HW structure
3677  *  @buffer: contains the command to write and where the return status will
3678  *           be placed
3679  *  @length: length of buffer, must be multiple of 4 bytes
3680  *  @timeout: time in ms to wait for command completion
3681  *  @return_data: read and return data from the buffer (true) or not (false)
3682  *  Needed because FW structures are big endian and decoding of
3683  *  these fields can be 8 bit or 16 bit based on command. Decoding
3684  *  is not easily understood without making a table of commands.
3685  *  So we will leave this up to the caller to read back the data
3686  *  in these cases.
3687  *
3688  *  Communicates with the manageability block.  On success return 0
3689  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3690  **/
3691 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3692 				 u32 length, u32 timeout,
3693 				 bool return_data)
3694 {
3695 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3696 	union {
3697 		struct ixgbe_hic_hdr hdr;
3698 		u32 u32arr[1];
3699 	} *bp = buffer;
3700 	u16 buf_len, dword_len;
3701 	s32 status;
3702 	u32 bi;
3703 
3704 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3705 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3706 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3707 	}
3708 	/* Take management host interface semaphore */
3709 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3710 	if (status)
3711 		return status;
3712 
3713 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3714 	if (status)
3715 		goto rel_out;
3716 
3717 	if (!return_data)
3718 		goto rel_out;
3719 
3720 	/* Calculate length in DWORDs */
3721 	dword_len = hdr_size >> 2;
3722 
3723 	/* first pull in the header so we know the buffer length */
3724 	for (bi = 0; bi < dword_len; bi++) {
3725 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3726 		le32_to_cpus(&bp->u32arr[bi]);
3727 	}
3728 
3729 	/* If there is any thing in data position pull it in */
3730 	buf_len = bp->hdr.buf_len;
3731 	if (!buf_len)
3732 		goto rel_out;
3733 
3734 	if (length < round_up(buf_len, 4) + hdr_size) {
3735 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3736 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3737 		goto rel_out;
3738 	}
3739 
3740 	/* Calculate length in DWORDs, add 3 for odd lengths */
3741 	dword_len = (buf_len + 3) >> 2;
3742 
3743 	/* Pull in the rest of the buffer (bi is where we left off) */
3744 	for (; bi <= dword_len; bi++) {
3745 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3746 		le32_to_cpus(&bp->u32arr[bi]);
3747 	}
3748 
3749 rel_out:
3750 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3751 
3752 	return status;
3753 }
3754 
3755 /**
3756  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3757  *  @hw: pointer to the HW structure
3758  *  @maj: driver version major number
3759  *  @min: driver version minor number
3760  *  @build: driver version build number
3761  *  @sub: driver version sub build number
3762  *  @len: length of driver_ver string
3763  *  @driver_ver: driver string
3764  *
3765  *  Sends driver version number to firmware through the manageability
3766  *  block.  On success return 0
3767  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3768  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3769  **/
3770 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3771 				 u8 build, u8 sub, __always_unused u16 len,
3772 				 __always_unused const char *driver_ver)
3773 {
3774 	struct ixgbe_hic_drv_info fw_cmd;
3775 	int i;
3776 	s32 ret_val;
3777 
3778 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3779 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3780 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3781 	fw_cmd.port_num = hw->bus.func;
3782 	fw_cmd.ver_maj = maj;
3783 	fw_cmd.ver_min = min;
3784 	fw_cmd.ver_build = build;
3785 	fw_cmd.ver_sub = sub;
3786 	fw_cmd.hdr.checksum = 0;
3787 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3788 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3789 	fw_cmd.pad = 0;
3790 	fw_cmd.pad2 = 0;
3791 
3792 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3793 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3794 						       sizeof(fw_cmd),
3795 						       IXGBE_HI_COMMAND_TIMEOUT,
3796 						       true);
3797 		if (ret_val != 0)
3798 			continue;
3799 
3800 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3801 		    FW_CEM_RESP_STATUS_SUCCESS)
3802 			ret_val = 0;
3803 		else
3804 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3805 
3806 		break;
3807 	}
3808 
3809 	return ret_val;
3810 }
3811 
3812 /**
3813  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3814  * @hw: pointer to the hardware structure
3815  *
3816  * The 82599 and x540 MACs can experience issues if TX work is still pending
3817  * when a reset occurs.  This function prevents this by flushing the PCIe
3818  * buffers on the system.
3819  **/
3820 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3821 {
3822 	u32 gcr_ext, hlreg0, i, poll;
3823 	u16 value;
3824 
3825 	/*
3826 	 * If double reset is not requested then all transactions should
3827 	 * already be clear and as such there is no work to do
3828 	 */
3829 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3830 		return;
3831 
3832 	/*
3833 	 * Set loopback enable to prevent any transmits from being sent
3834 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3835 	 * has already been cleared.
3836 	 */
3837 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3838 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3839 
3840 	/* wait for a last completion before clearing buffers */
3841 	IXGBE_WRITE_FLUSH(hw);
3842 	usleep_range(3000, 6000);
3843 
3844 	/* Before proceeding, make sure that the PCIe block does not have
3845 	 * transactions pending.
3846 	 */
3847 	poll = ixgbe_pcie_timeout_poll(hw);
3848 	for (i = 0; i < poll; i++) {
3849 		usleep_range(100, 200);
3850 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3851 		if (ixgbe_removed(hw->hw_addr))
3852 			break;
3853 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3854 			break;
3855 	}
3856 
3857 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3858 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3859 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3860 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3861 
3862 	/* Flush all writes and allow 20usec for all transactions to clear */
3863 	IXGBE_WRITE_FLUSH(hw);
3864 	udelay(20);
3865 
3866 	/* restore previous register values */
3867 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3868 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3869 }
3870 
3871 static const u8 ixgbe_emc_temp_data[4] = {
3872 	IXGBE_EMC_INTERNAL_DATA,
3873 	IXGBE_EMC_DIODE1_DATA,
3874 	IXGBE_EMC_DIODE2_DATA,
3875 	IXGBE_EMC_DIODE3_DATA
3876 };
3877 static const u8 ixgbe_emc_therm_limit[4] = {
3878 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3879 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3880 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3881 	IXGBE_EMC_DIODE3_THERM_LIMIT
3882 };
3883 
3884 /**
3885  *  ixgbe_get_ets_data - Extracts the ETS bit data
3886  *  @hw: pointer to hardware structure
3887  *  @ets_cfg: extected ETS data
3888  *  @ets_offset: offset of ETS data
3889  *
3890  *  Returns error code.
3891  **/
3892 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3893 			      u16 *ets_offset)
3894 {
3895 	s32 status;
3896 
3897 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3898 	if (status)
3899 		return status;
3900 
3901 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3902 		return IXGBE_NOT_IMPLEMENTED;
3903 
3904 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3905 	if (status)
3906 		return status;
3907 
3908 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3909 		return IXGBE_NOT_IMPLEMENTED;
3910 
3911 	return 0;
3912 }
3913 
3914 /**
3915  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3916  *  @hw: pointer to hardware structure
3917  *
3918  *  Returns the thermal sensor data structure
3919  **/
3920 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3921 {
3922 	s32 status;
3923 	u16 ets_offset;
3924 	u16 ets_cfg;
3925 	u16 ets_sensor;
3926 	u8  num_sensors;
3927 	u8  i;
3928 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3929 
3930 	/* Only support thermal sensors attached to physical port 0 */
3931 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3932 		return IXGBE_NOT_IMPLEMENTED;
3933 
3934 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3935 	if (status)
3936 		return status;
3937 
3938 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3939 	if (num_sensors > IXGBE_MAX_SENSORS)
3940 		num_sensors = IXGBE_MAX_SENSORS;
3941 
3942 	for (i = 0; i < num_sensors; i++) {
3943 		u8  sensor_index;
3944 		u8  sensor_location;
3945 
3946 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3947 					     &ets_sensor);
3948 		if (status)
3949 			return status;
3950 
3951 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3952 				IXGBE_ETS_DATA_INDEX_SHIFT);
3953 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3954 				   IXGBE_ETS_DATA_LOC_SHIFT);
3955 
3956 		if (sensor_location != 0) {
3957 			status = hw->phy.ops.read_i2c_byte(hw,
3958 					ixgbe_emc_temp_data[sensor_index],
3959 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3960 					&data->sensor[i].temp);
3961 			if (status)
3962 				return status;
3963 		}
3964 	}
3965 
3966 	return 0;
3967 }
3968 
3969 /**
3970  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3971  * @hw: pointer to hardware structure
3972  *
3973  * Inits the thermal sensor thresholds according to the NVM map
3974  * and save off the threshold and location values into mac.thermal_sensor_data
3975  **/
3976 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3977 {
3978 	s32 status;
3979 	u16 ets_offset;
3980 	u16 ets_cfg;
3981 	u16 ets_sensor;
3982 	u8  low_thresh_delta;
3983 	u8  num_sensors;
3984 	u8  therm_limit;
3985 	u8  i;
3986 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3987 
3988 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3989 
3990 	/* Only support thermal sensors attached to physical port 0 */
3991 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3992 		return IXGBE_NOT_IMPLEMENTED;
3993 
3994 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3995 	if (status)
3996 		return status;
3997 
3998 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3999 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
4000 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4001 	if (num_sensors > IXGBE_MAX_SENSORS)
4002 		num_sensors = IXGBE_MAX_SENSORS;
4003 
4004 	for (i = 0; i < num_sensors; i++) {
4005 		u8  sensor_index;
4006 		u8  sensor_location;
4007 
4008 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4009 			hw_err(hw, "eeprom read at offset %d failed\n",
4010 			       ets_offset + 1 + i);
4011 			continue;
4012 		}
4013 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4014 				IXGBE_ETS_DATA_INDEX_SHIFT);
4015 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4016 				   IXGBE_ETS_DATA_LOC_SHIFT);
4017 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4018 
4019 		hw->phy.ops.write_i2c_byte(hw,
4020 			ixgbe_emc_therm_limit[sensor_index],
4021 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4022 
4023 		if (sensor_location == 0)
4024 			continue;
4025 
4026 		data->sensor[i].location = sensor_location;
4027 		data->sensor[i].caution_thresh = therm_limit;
4028 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4029 	}
4030 
4031 	return 0;
4032 }
4033 
4034 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4035 {
4036 	u32 rxctrl;
4037 
4038 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4039 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4040 		if (hw->mac.type != ixgbe_mac_82598EB) {
4041 			u32 pfdtxgswc;
4042 
4043 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4044 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4045 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4046 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4047 				hw->mac.set_lben = true;
4048 			} else {
4049 				hw->mac.set_lben = false;
4050 			}
4051 		}
4052 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4053 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4054 	}
4055 }
4056 
4057 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4058 {
4059 	u32 rxctrl;
4060 
4061 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4062 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4063 
4064 	if (hw->mac.type != ixgbe_mac_82598EB) {
4065 		if (hw->mac.set_lben) {
4066 			u32 pfdtxgswc;
4067 
4068 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4069 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4070 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4071 			hw->mac.set_lben = false;
4072 		}
4073 	}
4074 }
4075 
4076 /** ixgbe_mng_present - returns true when management capability is present
4077  * @hw: pointer to hardware structure
4078  **/
4079 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4080 {
4081 	u32 fwsm;
4082 
4083 	if (hw->mac.type < ixgbe_mac_82599EB)
4084 		return false;
4085 
4086 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4087 	fwsm &= IXGBE_FWSM_MODE_MASK;
4088 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
4089 }
4090 
4091 /**
4092  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4093  *  @hw: pointer to hardware structure
4094  *  @speed: new link speed
4095  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4096  *
4097  *  Set the link speed in the MAC and/or PHY register and restarts link.
4098  */
4099 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4100 					  ixgbe_link_speed speed,
4101 					  bool autoneg_wait_to_complete)
4102 {
4103 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4104 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4105 	s32 status = 0;
4106 	u32 speedcnt = 0;
4107 	u32 i = 0;
4108 	bool autoneg, link_up = false;
4109 
4110 	/* Mask off requested but non-supported speeds */
4111 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4112 	if (status)
4113 		return status;
4114 
4115 	speed &= link_speed;
4116 
4117 	/* Try each speed one by one, highest priority first.  We do this in
4118 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4119 	 */
4120 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4121 		speedcnt++;
4122 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4123 
4124 		/* Set the module link speed */
4125 		switch (hw->phy.media_type) {
4126 		case ixgbe_media_type_fiber:
4127 			hw->mac.ops.set_rate_select_speed(hw,
4128 						    IXGBE_LINK_SPEED_10GB_FULL);
4129 			break;
4130 		case ixgbe_media_type_fiber_qsfp:
4131 			/* QSFP module automatically detects MAC link speed */
4132 			break;
4133 		default:
4134 			hw_dbg(hw, "Unexpected media type\n");
4135 			break;
4136 		}
4137 
4138 		/* Allow module to change analog characteristics (1G->10G) */
4139 		msleep(40);
4140 
4141 		status = hw->mac.ops.setup_mac_link(hw,
4142 						    IXGBE_LINK_SPEED_10GB_FULL,
4143 						    autoneg_wait_to_complete);
4144 		if (status)
4145 			return status;
4146 
4147 		/* Flap the Tx laser if it has not already been done */
4148 		if (hw->mac.ops.flap_tx_laser)
4149 			hw->mac.ops.flap_tx_laser(hw);
4150 
4151 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4152 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4153 		 * attempted.  82599 uses the same timing for 10g SFI.
4154 		 */
4155 		for (i = 0; i < 5; i++) {
4156 			/* Wait for the link partner to also set speed */
4157 			msleep(100);
4158 
4159 			/* If we have link, just jump out */
4160 			status = hw->mac.ops.check_link(hw, &link_speed,
4161 							&link_up, false);
4162 			if (status)
4163 				return status;
4164 
4165 			if (link_up)
4166 				goto out;
4167 		}
4168 	}
4169 
4170 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4171 		speedcnt++;
4172 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4173 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4174 
4175 		/* Set the module link speed */
4176 		switch (hw->phy.media_type) {
4177 		case ixgbe_media_type_fiber:
4178 			hw->mac.ops.set_rate_select_speed(hw,
4179 						     IXGBE_LINK_SPEED_1GB_FULL);
4180 			break;
4181 		case ixgbe_media_type_fiber_qsfp:
4182 			/* QSFP module automatically detects link speed */
4183 			break;
4184 		default:
4185 			hw_dbg(hw, "Unexpected media type\n");
4186 			break;
4187 		}
4188 
4189 		/* Allow module to change analog characteristics (10G->1G) */
4190 		msleep(40);
4191 
4192 		status = hw->mac.ops.setup_mac_link(hw,
4193 						    IXGBE_LINK_SPEED_1GB_FULL,
4194 						    autoneg_wait_to_complete);
4195 		if (status)
4196 			return status;
4197 
4198 		/* Flap the Tx laser if it has not already been done */
4199 		if (hw->mac.ops.flap_tx_laser)
4200 			hw->mac.ops.flap_tx_laser(hw);
4201 
4202 		/* Wait for the link partner to also set speed */
4203 		msleep(100);
4204 
4205 		/* If we have link, just jump out */
4206 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4207 						false);
4208 		if (status)
4209 			return status;
4210 
4211 		if (link_up)
4212 			goto out;
4213 	}
4214 
4215 	/* We didn't get link.  Configure back to the highest speed we tried,
4216 	 * (if there was more than one).  We call ourselves back with just the
4217 	 * single highest speed that the user requested.
4218 	 */
4219 	if (speedcnt > 1)
4220 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4221 						      highest_link_speed,
4222 						      autoneg_wait_to_complete);
4223 
4224 out:
4225 	/* Set autoneg_advertised value based on input link speed */
4226 	hw->phy.autoneg_advertised = 0;
4227 
4228 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4229 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4230 
4231 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4232 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4233 
4234 	return status;
4235 }
4236 
4237 /**
4238  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4239  *  @hw: pointer to hardware structure
4240  *  @speed: link speed to set
4241  *
4242  *  Set module link speed via the soft rate select.
4243  */
4244 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4245 				      ixgbe_link_speed speed)
4246 {
4247 	s32 status;
4248 	u8 rs, eeprom_data;
4249 
4250 	switch (speed) {
4251 	case IXGBE_LINK_SPEED_10GB_FULL:
4252 		/* one bit mask same as setting on */
4253 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4254 		break;
4255 	case IXGBE_LINK_SPEED_1GB_FULL:
4256 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4257 		break;
4258 	default:
4259 		hw_dbg(hw, "Invalid fixed module speed\n");
4260 		return;
4261 	}
4262 
4263 	/* Set RS0 */
4264 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4265 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4266 					   &eeprom_data);
4267 	if (status) {
4268 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4269 		return;
4270 	}
4271 
4272 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4273 
4274 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4275 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4276 					    eeprom_data);
4277 	if (status) {
4278 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4279 		return;
4280 	}
4281 
4282 	/* Set RS1 */
4283 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4284 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4285 					   &eeprom_data);
4286 	if (status) {
4287 		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4288 		return;
4289 	}
4290 
4291 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4292 
4293 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4294 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4295 					    eeprom_data);
4296 	if (status) {
4297 		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4298 		return;
4299 	}
4300 }
4301