1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
32 
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
36 
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43                                         u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 
49 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
51 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
52 					     u16 words, u16 *data);
53 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
54 					     u16 words, u16 *data);
55 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
56 						 u16 offset);
57 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
58 
59 /**
60  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
61  *  control
62  *  @hw: pointer to hardware structure
63  *
64  *  There are several phys that do not support autoneg flow control. This
65  *  function check the device id to see if the associated phy supports
66  *  autoneg flow control.
67  **/
68 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
69 {
70 
71 	switch (hw->device_id) {
72 	case IXGBE_DEV_ID_X540T:
73 		return 0;
74 	case IXGBE_DEV_ID_82599_T3_LOM:
75 		return 0;
76 	default:
77 		return IXGBE_ERR_FC_NOT_SUPPORTED;
78 	}
79 }
80 
81 /**
82  *  ixgbe_setup_fc - Set up flow control
83  *  @hw: pointer to hardware structure
84  *
85  *  Called at init time to set up flow control.
86  **/
87 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
88 {
89 	s32 ret_val = 0;
90 	u32 reg = 0, reg_bp = 0;
91 	u16 reg_cu = 0;
92 
93 	/*
94 	 * Validate the requested mode.  Strict IEEE mode does not allow
95 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
96 	 */
97 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
98 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
99 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
100 		goto out;
101 	}
102 
103 	/*
104 	 * 10gig parts do not have a word in the EEPROM to determine the
105 	 * default flow control setting, so we explicitly set it to full.
106 	 */
107 	if (hw->fc.requested_mode == ixgbe_fc_default)
108 		hw->fc.requested_mode = ixgbe_fc_full;
109 
110 	/*
111 	 * Set up the 1G and 10G flow control advertisement registers so the
112 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
113 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
114 	 */
115 	switch (hw->phy.media_type) {
116 	case ixgbe_media_type_fiber:
117 	case ixgbe_media_type_backplane:
118 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
119 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
120 		break;
121 	case ixgbe_media_type_copper:
122 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
123 					MDIO_MMD_AN, &reg_cu);
124 		break;
125 	default:
126 		break;
127 	}
128 
129 	/*
130 	 * The possible values of fc.requested_mode are:
131 	 * 0: Flow control is completely disabled
132 	 * 1: Rx flow control is enabled (we can receive pause frames,
133 	 *    but not send pause frames).
134 	 * 2: Tx flow control is enabled (we can send pause frames but
135 	 *    we do not support receiving pause frames).
136 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
137 	 * other: Invalid.
138 	 */
139 	switch (hw->fc.requested_mode) {
140 	case ixgbe_fc_none:
141 		/* Flow control completely disabled by software override. */
142 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
143 		if (hw->phy.media_type == ixgbe_media_type_backplane)
144 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
145 				    IXGBE_AUTOC_ASM_PAUSE);
146 		else if (hw->phy.media_type == ixgbe_media_type_copper)
147 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
148 		break;
149 	case ixgbe_fc_tx_pause:
150 		/*
151 		 * Tx Flow control is enabled, and Rx Flow control is
152 		 * disabled by software override.
153 		 */
154 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
155 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
156 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
157 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
158 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
159 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
160 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
161 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
162 		}
163 		break;
164 	case ixgbe_fc_rx_pause:
165 		/*
166 		 * Rx Flow control is enabled and Tx Flow control is
167 		 * disabled by software override. Since there really
168 		 * isn't a way to advertise that we are capable of RX
169 		 * Pause ONLY, we will advertise that we support both
170 		 * symmetric and asymmetric Rx PAUSE, as such we fall
171 		 * through to the fc_full statement.  Later, we will
172 		 * disable the adapter's ability to send PAUSE frames.
173 		 */
174 	case ixgbe_fc_full:
175 		/* Flow control (both Rx and Tx) is enabled by SW override. */
176 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
177 		if (hw->phy.media_type == ixgbe_media_type_backplane)
178 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
179 				  IXGBE_AUTOC_ASM_PAUSE;
180 		else if (hw->phy.media_type == ixgbe_media_type_copper)
181 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
182 		break;
183 	default:
184 		hw_dbg(hw, "Flow control param set incorrectly\n");
185 		ret_val = IXGBE_ERR_CONFIG;
186 		goto out;
187 		break;
188 	}
189 
190 	if (hw->mac.type != ixgbe_mac_X540) {
191 		/*
192 		 * Enable auto-negotiation between the MAC & PHY;
193 		 * the MAC will advertise clause 37 flow control.
194 		 */
195 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
196 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
197 
198 		/* Disable AN timeout */
199 		if (hw->fc.strict_ieee)
200 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
201 
202 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
203 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
204 	}
205 
206 	/*
207 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
208 	 * and copper. There is no need to set the PCS1GCTL register.
209 	 *
210 	 */
211 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
212 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
213 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
214 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
215 		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
216 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
217 				      MDIO_MMD_AN, reg_cu);
218 	}
219 
220 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
221 out:
222 	return ret_val;
223 }
224 
225 /**
226  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
227  *  @hw: pointer to hardware structure
228  *
229  *  Starts the hardware by filling the bus info structure and media type, clears
230  *  all on chip counters, initializes receive address registers, multicast
231  *  table, VLAN filter table, calls routine to set up link and flow control
232  *  settings, and leaves transmit and receive units disabled and uninitialized
233  **/
234 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
235 {
236 	u32 ctrl_ext;
237 
238 	/* Set the media type */
239 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
240 
241 	/* Identify the PHY */
242 	hw->phy.ops.identify(hw);
243 
244 	/* Clear the VLAN filter table */
245 	hw->mac.ops.clear_vfta(hw);
246 
247 	/* Clear statistics registers */
248 	hw->mac.ops.clear_hw_cntrs(hw);
249 
250 	/* Set No Snoop Disable */
251 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
252 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
253 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
254 	IXGBE_WRITE_FLUSH(hw);
255 
256 	/* Setup flow control */
257 	ixgbe_setup_fc(hw);
258 
259 	/* Clear adapter stopped flag */
260 	hw->adapter_stopped = false;
261 
262 	return 0;
263 }
264 
265 /**
266  *  ixgbe_start_hw_gen2 - Init sequence for common device family
267  *  @hw: pointer to hw structure
268  *
269  * Performs the init sequence common to the second generation
270  * of 10 GbE devices.
271  * Devices in the second generation:
272  *     82599
273  *     X540
274  **/
275 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
276 {
277 	u32 i;
278 	u32 regval;
279 
280 	/* Clear the rate limiters */
281 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
282 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
283 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
284 	}
285 	IXGBE_WRITE_FLUSH(hw);
286 
287 	/* Disable relaxed ordering */
288 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
289 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
290 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
291 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
292 	}
293 
294 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
295 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
296 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
297 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
298 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
299 	}
300 
301 	return 0;
302 }
303 
304 /**
305  *  ixgbe_init_hw_generic - Generic hardware initialization
306  *  @hw: pointer to hardware structure
307  *
308  *  Initialize the hardware by resetting the hardware, filling the bus info
309  *  structure and media type, clears all on chip counters, initializes receive
310  *  address registers, multicast table, VLAN filter table, calls routine to set
311  *  up link and flow control settings, and leaves transmit and receive units
312  *  disabled and uninitialized
313  **/
314 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
315 {
316 	s32 status;
317 
318 	/* Reset the hardware */
319 	status = hw->mac.ops.reset_hw(hw);
320 
321 	if (status == 0) {
322 		/* Start the HW */
323 		status = hw->mac.ops.start_hw(hw);
324 	}
325 
326 	return status;
327 }
328 
329 /**
330  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
331  *  @hw: pointer to hardware structure
332  *
333  *  Clears all hardware statistics counters by reading them from the hardware
334  *  Statistics counters are clear on read.
335  **/
336 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
337 {
338 	u16 i = 0;
339 
340 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
341 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
342 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
343 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
344 	for (i = 0; i < 8; i++)
345 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
346 
347 	IXGBE_READ_REG(hw, IXGBE_MLFC);
348 	IXGBE_READ_REG(hw, IXGBE_MRFC);
349 	IXGBE_READ_REG(hw, IXGBE_RLEC);
350 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
351 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
352 	if (hw->mac.type >= ixgbe_mac_82599EB) {
353 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
354 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
355 	} else {
356 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
357 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
358 	}
359 
360 	for (i = 0; i < 8; i++) {
361 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
362 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
363 		if (hw->mac.type >= ixgbe_mac_82599EB) {
364 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
365 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
366 		} else {
367 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
368 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
369 		}
370 	}
371 	if (hw->mac.type >= ixgbe_mac_82599EB)
372 		for (i = 0; i < 8; i++)
373 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
374 	IXGBE_READ_REG(hw, IXGBE_PRC64);
375 	IXGBE_READ_REG(hw, IXGBE_PRC127);
376 	IXGBE_READ_REG(hw, IXGBE_PRC255);
377 	IXGBE_READ_REG(hw, IXGBE_PRC511);
378 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
379 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
380 	IXGBE_READ_REG(hw, IXGBE_GPRC);
381 	IXGBE_READ_REG(hw, IXGBE_BPRC);
382 	IXGBE_READ_REG(hw, IXGBE_MPRC);
383 	IXGBE_READ_REG(hw, IXGBE_GPTC);
384 	IXGBE_READ_REG(hw, IXGBE_GORCL);
385 	IXGBE_READ_REG(hw, IXGBE_GORCH);
386 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
387 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
388 	if (hw->mac.type == ixgbe_mac_82598EB)
389 		for (i = 0; i < 8; i++)
390 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
391 	IXGBE_READ_REG(hw, IXGBE_RUC);
392 	IXGBE_READ_REG(hw, IXGBE_RFC);
393 	IXGBE_READ_REG(hw, IXGBE_ROC);
394 	IXGBE_READ_REG(hw, IXGBE_RJC);
395 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
396 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
397 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
398 	IXGBE_READ_REG(hw, IXGBE_TORL);
399 	IXGBE_READ_REG(hw, IXGBE_TORH);
400 	IXGBE_READ_REG(hw, IXGBE_TPR);
401 	IXGBE_READ_REG(hw, IXGBE_TPT);
402 	IXGBE_READ_REG(hw, IXGBE_PTC64);
403 	IXGBE_READ_REG(hw, IXGBE_PTC127);
404 	IXGBE_READ_REG(hw, IXGBE_PTC255);
405 	IXGBE_READ_REG(hw, IXGBE_PTC511);
406 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
407 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
408 	IXGBE_READ_REG(hw, IXGBE_MPTC);
409 	IXGBE_READ_REG(hw, IXGBE_BPTC);
410 	for (i = 0; i < 16; i++) {
411 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
412 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
413 		if (hw->mac.type >= ixgbe_mac_82599EB) {
414 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
415 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
416 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
417 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
418 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
419 		} else {
420 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
421 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
422 		}
423 	}
424 
425 	if (hw->mac.type == ixgbe_mac_X540) {
426 		if (hw->phy.id == 0)
427 			hw->phy.ops.identify(hw);
428 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
429 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
430 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
431 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
432 	}
433 
434 	return 0;
435 }
436 
437 /**
438  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
439  *  @hw: pointer to hardware structure
440  *  @pba_num: stores the part number string from the EEPROM
441  *  @pba_num_size: part number string buffer length
442  *
443  *  Reads the part number string from the EEPROM.
444  **/
445 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
446                                   u32 pba_num_size)
447 {
448 	s32 ret_val;
449 	u16 data;
450 	u16 pba_ptr;
451 	u16 offset;
452 	u16 length;
453 
454 	if (pba_num == NULL) {
455 		hw_dbg(hw, "PBA string buffer was null\n");
456 		return IXGBE_ERR_INVALID_ARGUMENT;
457 	}
458 
459 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
460 	if (ret_val) {
461 		hw_dbg(hw, "NVM Read Error\n");
462 		return ret_val;
463 	}
464 
465 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
466 	if (ret_val) {
467 		hw_dbg(hw, "NVM Read Error\n");
468 		return ret_val;
469 	}
470 
471 	/*
472 	 * if data is not ptr guard the PBA must be in legacy format which
473 	 * means pba_ptr is actually our second data word for the PBA number
474 	 * and we can decode it into an ascii string
475 	 */
476 	if (data != IXGBE_PBANUM_PTR_GUARD) {
477 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
478 
479 		/* we will need 11 characters to store the PBA */
480 		if (pba_num_size < 11) {
481 			hw_dbg(hw, "PBA string buffer too small\n");
482 			return IXGBE_ERR_NO_SPACE;
483 		}
484 
485 		/* extract hex string from data and pba_ptr */
486 		pba_num[0] = (data >> 12) & 0xF;
487 		pba_num[1] = (data >> 8) & 0xF;
488 		pba_num[2] = (data >> 4) & 0xF;
489 		pba_num[3] = data & 0xF;
490 		pba_num[4] = (pba_ptr >> 12) & 0xF;
491 		pba_num[5] = (pba_ptr >> 8) & 0xF;
492 		pba_num[6] = '-';
493 		pba_num[7] = 0;
494 		pba_num[8] = (pba_ptr >> 4) & 0xF;
495 		pba_num[9] = pba_ptr & 0xF;
496 
497 		/* put a null character on the end of our string */
498 		pba_num[10] = '\0';
499 
500 		/* switch all the data but the '-' to hex char */
501 		for (offset = 0; offset < 10; offset++) {
502 			if (pba_num[offset] < 0xA)
503 				pba_num[offset] += '0';
504 			else if (pba_num[offset] < 0x10)
505 				pba_num[offset] += 'A' - 0xA;
506 		}
507 
508 		return 0;
509 	}
510 
511 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
512 	if (ret_val) {
513 		hw_dbg(hw, "NVM Read Error\n");
514 		return ret_val;
515 	}
516 
517 	if (length == 0xFFFF || length == 0) {
518 		hw_dbg(hw, "NVM PBA number section invalid length\n");
519 		return IXGBE_ERR_PBA_SECTION;
520 	}
521 
522 	/* check if pba_num buffer is big enough */
523 	if (pba_num_size  < (((u32)length * 2) - 1)) {
524 		hw_dbg(hw, "PBA string buffer too small\n");
525 		return IXGBE_ERR_NO_SPACE;
526 	}
527 
528 	/* trim pba length from start of string */
529 	pba_ptr++;
530 	length--;
531 
532 	for (offset = 0; offset < length; offset++) {
533 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
534 		if (ret_val) {
535 			hw_dbg(hw, "NVM Read Error\n");
536 			return ret_val;
537 		}
538 		pba_num[offset * 2] = (u8)(data >> 8);
539 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
540 	}
541 	pba_num[offset * 2] = '\0';
542 
543 	return 0;
544 }
545 
546 /**
547  *  ixgbe_get_mac_addr_generic - Generic get MAC address
548  *  @hw: pointer to hardware structure
549  *  @mac_addr: Adapter MAC address
550  *
551  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
552  *  A reset of the adapter must be performed prior to calling this function
553  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
554  **/
555 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
556 {
557 	u32 rar_high;
558 	u32 rar_low;
559 	u16 i;
560 
561 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
562 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
563 
564 	for (i = 0; i < 4; i++)
565 		mac_addr[i] = (u8)(rar_low >> (i*8));
566 
567 	for (i = 0; i < 2; i++)
568 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
569 
570 	return 0;
571 }
572 
573 /**
574  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
575  *  @hw: pointer to hardware structure
576  *
577  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
578  **/
579 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
580 {
581 	struct ixgbe_adapter *adapter = hw->back;
582 	struct ixgbe_mac_info *mac = &hw->mac;
583 	u16 link_status;
584 
585 	hw->bus.type = ixgbe_bus_type_pci_express;
586 
587 	/* Get the negotiated link width and speed from PCI config space */
588 	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
589 	                     &link_status);
590 
591 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
592 	case IXGBE_PCI_LINK_WIDTH_1:
593 		hw->bus.width = ixgbe_bus_width_pcie_x1;
594 		break;
595 	case IXGBE_PCI_LINK_WIDTH_2:
596 		hw->bus.width = ixgbe_bus_width_pcie_x2;
597 		break;
598 	case IXGBE_PCI_LINK_WIDTH_4:
599 		hw->bus.width = ixgbe_bus_width_pcie_x4;
600 		break;
601 	case IXGBE_PCI_LINK_WIDTH_8:
602 		hw->bus.width = ixgbe_bus_width_pcie_x8;
603 		break;
604 	default:
605 		hw->bus.width = ixgbe_bus_width_unknown;
606 		break;
607 	}
608 
609 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
610 	case IXGBE_PCI_LINK_SPEED_2500:
611 		hw->bus.speed = ixgbe_bus_speed_2500;
612 		break;
613 	case IXGBE_PCI_LINK_SPEED_5000:
614 		hw->bus.speed = ixgbe_bus_speed_5000;
615 		break;
616 	default:
617 		hw->bus.speed = ixgbe_bus_speed_unknown;
618 		break;
619 	}
620 
621 	mac->ops.set_lan_id(hw);
622 
623 	return 0;
624 }
625 
626 /**
627  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
628  *  @hw: pointer to the HW structure
629  *
630  *  Determines the LAN function id by reading memory-mapped registers
631  *  and swaps the port value if requested.
632  **/
633 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
634 {
635 	struct ixgbe_bus_info *bus = &hw->bus;
636 	u32 reg;
637 
638 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
639 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
640 	bus->lan_id = bus->func;
641 
642 	/* check for a port swap */
643 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
644 	if (reg & IXGBE_FACTPS_LFS)
645 		bus->func ^= 0x1;
646 }
647 
648 /**
649  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
650  *  @hw: pointer to hardware structure
651  *
652  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
653  *  disables transmit and receive units. The adapter_stopped flag is used by
654  *  the shared code and drivers to determine if the adapter is in a stopped
655  *  state and should not touch the hardware.
656  **/
657 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
658 {
659 	u32 reg_val;
660 	u16 i;
661 
662 	/*
663 	 * Set the adapter_stopped flag so other driver functions stop touching
664 	 * the hardware
665 	 */
666 	hw->adapter_stopped = true;
667 
668 	/* Disable the receive unit */
669 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
670 
671 	/* Clear interrupt mask to stop interrupts from being generated */
672 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
673 
674 	/* Clear any pending interrupts, flush previous writes */
675 	IXGBE_READ_REG(hw, IXGBE_EICR);
676 
677 	/* Disable the transmit unit.  Each queue must be disabled. */
678 	for (i = 0; i < hw->mac.max_tx_queues; i++)
679 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
680 
681 	/* Disable the receive unit by stopping each queue */
682 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
683 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
684 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
685 		reg_val |= IXGBE_RXDCTL_SWFLSH;
686 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
687 	}
688 
689 	/* flush all queues disables */
690 	IXGBE_WRITE_FLUSH(hw);
691 	usleep_range(1000, 2000);
692 
693 	/*
694 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
695 	 * access and verify no pending requests
696 	 */
697 	return ixgbe_disable_pcie_master(hw);
698 }
699 
700 /**
701  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
702  *  @hw: pointer to hardware structure
703  *  @index: led number to turn on
704  **/
705 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
706 {
707 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
708 
709 	/* To turn on the LED, set mode to ON. */
710 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
711 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
712 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
713 	IXGBE_WRITE_FLUSH(hw);
714 
715 	return 0;
716 }
717 
718 /**
719  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
720  *  @hw: pointer to hardware structure
721  *  @index: led number to turn off
722  **/
723 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
724 {
725 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
726 
727 	/* To turn off the LED, set mode to OFF. */
728 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
729 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
730 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
731 	IXGBE_WRITE_FLUSH(hw);
732 
733 	return 0;
734 }
735 
736 /**
737  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
738  *  @hw: pointer to hardware structure
739  *
740  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
741  *  ixgbe_hw struct in order to set up EEPROM access.
742  **/
743 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
744 {
745 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
746 	u32 eec;
747 	u16 eeprom_size;
748 
749 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
750 		eeprom->type = ixgbe_eeprom_none;
751 		/* Set default semaphore delay to 10ms which is a well
752 		 * tested value */
753 		eeprom->semaphore_delay = 10;
754 		/* Clear EEPROM page size, it will be initialized as needed */
755 		eeprom->word_page_size = 0;
756 
757 		/*
758 		 * Check for EEPROM present first.
759 		 * If not present leave as none
760 		 */
761 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
762 		if (eec & IXGBE_EEC_PRES) {
763 			eeprom->type = ixgbe_eeprom_spi;
764 
765 			/*
766 			 * SPI EEPROM is assumed here.  This code would need to
767 			 * change if a future EEPROM is not SPI.
768 			 */
769 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
770 					    IXGBE_EEC_SIZE_SHIFT);
771 			eeprom->word_size = 1 << (eeprom_size +
772 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
773 		}
774 
775 		if (eec & IXGBE_EEC_ADDR_SIZE)
776 			eeprom->address_bits = 16;
777 		else
778 			eeprom->address_bits = 8;
779 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
780 			  "%d\n", eeprom->type, eeprom->word_size,
781 			  eeprom->address_bits);
782 	}
783 
784 	return 0;
785 }
786 
787 /**
788  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
789  *  @hw: pointer to hardware structure
790  *  @offset: offset within the EEPROM to write
791  *  @words: number of words
792  *  @data: 16 bit word(s) to write to EEPROM
793  *
794  *  Reads 16 bit word(s) from EEPROM through bit-bang method
795  **/
796 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
797 					       u16 words, u16 *data)
798 {
799 	s32 status = 0;
800 	u16 i, count;
801 
802 	hw->eeprom.ops.init_params(hw);
803 
804 	if (words == 0) {
805 		status = IXGBE_ERR_INVALID_ARGUMENT;
806 		goto out;
807 	}
808 
809 	if (offset + words > hw->eeprom.word_size) {
810 		status = IXGBE_ERR_EEPROM;
811 		goto out;
812 	}
813 
814 	/*
815 	 * The EEPROM page size cannot be queried from the chip. We do lazy
816 	 * initialization. It is worth to do that when we write large buffer.
817 	 */
818 	if ((hw->eeprom.word_page_size == 0) &&
819 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
820 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
821 
822 	/*
823 	 * We cannot hold synchronization semaphores for too long
824 	 * to avoid other entity starvation. However it is more efficient
825 	 * to read in bursts than synchronizing access for each word.
826 	 */
827 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
828 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
829 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
830 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
831 							    count, &data[i]);
832 
833 		if (status != 0)
834 			break;
835 	}
836 
837 out:
838 	return status;
839 }
840 
841 /**
842  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
843  *  @hw: pointer to hardware structure
844  *  @offset: offset within the EEPROM to be written to
845  *  @words: number of word(s)
846  *  @data: 16 bit word(s) to be written to the EEPROM
847  *
848  *  If ixgbe_eeprom_update_checksum is not called after this function, the
849  *  EEPROM will most likely contain an invalid checksum.
850  **/
851 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
852 					      u16 words, u16 *data)
853 {
854 	s32 status;
855 	u16 word;
856 	u16 page_size;
857 	u16 i;
858 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
859 
860 	/* Prepare the EEPROM for writing  */
861 	status = ixgbe_acquire_eeprom(hw);
862 
863 	if (status == 0) {
864 		if (ixgbe_ready_eeprom(hw) != 0) {
865 			ixgbe_release_eeprom(hw);
866 			status = IXGBE_ERR_EEPROM;
867 		}
868 	}
869 
870 	if (status == 0) {
871 		for (i = 0; i < words; i++) {
872 			ixgbe_standby_eeprom(hw);
873 
874 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
875 			ixgbe_shift_out_eeprom_bits(hw,
876 						  IXGBE_EEPROM_WREN_OPCODE_SPI,
877 						  IXGBE_EEPROM_OPCODE_BITS);
878 
879 			ixgbe_standby_eeprom(hw);
880 
881 			/*
882 			 * Some SPI eeproms use the 8th address bit embedded
883 			 * in the opcode
884 			 */
885 			if ((hw->eeprom.address_bits == 8) &&
886 			    ((offset + i) >= 128))
887 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
888 
889 			/* Send the Write command (8-bit opcode + addr) */
890 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
891 						    IXGBE_EEPROM_OPCODE_BITS);
892 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
893 						    hw->eeprom.address_bits);
894 
895 			page_size = hw->eeprom.word_page_size;
896 
897 			/* Send the data in burst via SPI*/
898 			do {
899 				word = data[i];
900 				word = (word >> 8) | (word << 8);
901 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
902 
903 				if (page_size == 0)
904 					break;
905 
906 				/* do not wrap around page */
907 				if (((offset + i) & (page_size - 1)) ==
908 				    (page_size - 1))
909 					break;
910 			} while (++i < words);
911 
912 			ixgbe_standby_eeprom(hw);
913 			usleep_range(10000, 20000);
914 		}
915 		/* Done with writing - release the EEPROM */
916 		ixgbe_release_eeprom(hw);
917 	}
918 
919 	return status;
920 }
921 
922 /**
923  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
924  *  @hw: pointer to hardware structure
925  *  @offset: offset within the EEPROM to be written to
926  *  @data: 16 bit word to be written to the EEPROM
927  *
928  *  If ixgbe_eeprom_update_checksum is not called after this function, the
929  *  EEPROM will most likely contain an invalid checksum.
930  **/
931 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
932 {
933 	s32 status;
934 
935 	hw->eeprom.ops.init_params(hw);
936 
937 	if (offset >= hw->eeprom.word_size) {
938 		status = IXGBE_ERR_EEPROM;
939 		goto out;
940 	}
941 
942 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
943 
944 out:
945 	return status;
946 }
947 
948 /**
949  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
950  *  @hw: pointer to hardware structure
951  *  @offset: offset within the EEPROM to be read
952  *  @words: number of word(s)
953  *  @data: read 16 bit words(s) from EEPROM
954  *
955  *  Reads 16 bit word(s) from EEPROM through bit-bang method
956  **/
957 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
958 					      u16 words, u16 *data)
959 {
960 	s32 status = 0;
961 	u16 i, count;
962 
963 	hw->eeprom.ops.init_params(hw);
964 
965 	if (words == 0) {
966 		status = IXGBE_ERR_INVALID_ARGUMENT;
967 		goto out;
968 	}
969 
970 	if (offset + words > hw->eeprom.word_size) {
971 		status = IXGBE_ERR_EEPROM;
972 		goto out;
973 	}
974 
975 	/*
976 	 * We cannot hold synchronization semaphores for too long
977 	 * to avoid other entity starvation. However it is more efficient
978 	 * to read in bursts than synchronizing access for each word.
979 	 */
980 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
981 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
982 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
983 
984 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
985 							   count, &data[i]);
986 
987 		if (status != 0)
988 			break;
989 	}
990 
991 out:
992 	return status;
993 }
994 
995 /**
996  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
997  *  @hw: pointer to hardware structure
998  *  @offset: offset within the EEPROM to be read
999  *  @words: number of word(s)
1000  *  @data: read 16 bit word(s) from EEPROM
1001  *
1002  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1003  **/
1004 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1005 					     u16 words, u16 *data)
1006 {
1007 	s32 status;
1008 	u16 word_in;
1009 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1010 	u16 i;
1011 
1012 	/* Prepare the EEPROM for reading  */
1013 	status = ixgbe_acquire_eeprom(hw);
1014 
1015 	if (status == 0) {
1016 		if (ixgbe_ready_eeprom(hw) != 0) {
1017 			ixgbe_release_eeprom(hw);
1018 			status = IXGBE_ERR_EEPROM;
1019 		}
1020 	}
1021 
1022 	if (status == 0) {
1023 		for (i = 0; i < words; i++) {
1024 			ixgbe_standby_eeprom(hw);
1025 			/*
1026 			 * Some SPI eeproms use the 8th address bit embedded
1027 			 * in the opcode
1028 			 */
1029 			if ((hw->eeprom.address_bits == 8) &&
1030 			    ((offset + i) >= 128))
1031 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1032 
1033 			/* Send the READ command (opcode + addr) */
1034 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1035 						    IXGBE_EEPROM_OPCODE_BITS);
1036 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1037 						    hw->eeprom.address_bits);
1038 
1039 			/* Read the data. */
1040 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1041 			data[i] = (word_in >> 8) | (word_in << 8);
1042 		}
1043 
1044 		/* End this read operation */
1045 		ixgbe_release_eeprom(hw);
1046 	}
1047 
1048 	return status;
1049 }
1050 
1051 /**
1052  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1053  *  @hw: pointer to hardware structure
1054  *  @offset: offset within the EEPROM to be read
1055  *  @data: read 16 bit value from EEPROM
1056  *
1057  *  Reads 16 bit value from EEPROM through bit-bang method
1058  **/
1059 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1060 				       u16 *data)
1061 {
1062 	s32 status;
1063 
1064 	hw->eeprom.ops.init_params(hw);
1065 
1066 	if (offset >= hw->eeprom.word_size) {
1067 		status = IXGBE_ERR_EEPROM;
1068 		goto out;
1069 	}
1070 
1071 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1072 
1073 out:
1074 	return status;
1075 }
1076 
1077 /**
1078  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1079  *  @hw: pointer to hardware structure
1080  *  @offset: offset of word in the EEPROM to read
1081  *  @words: number of word(s)
1082  *  @data: 16 bit word(s) from the EEPROM
1083  *
1084  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1085  **/
1086 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1087 				   u16 words, u16 *data)
1088 {
1089 	u32 eerd;
1090 	s32 status = 0;
1091 	u32 i;
1092 
1093 	hw->eeprom.ops.init_params(hw);
1094 
1095 	if (words == 0) {
1096 		status = IXGBE_ERR_INVALID_ARGUMENT;
1097 		goto out;
1098 	}
1099 
1100 	if (offset >= hw->eeprom.word_size) {
1101 		status = IXGBE_ERR_EEPROM;
1102 		goto out;
1103 	}
1104 
1105 	for (i = 0; i < words; i++) {
1106 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1107 		       IXGBE_EEPROM_RW_REG_START;
1108 
1109 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1110 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1111 
1112 		if (status == 0) {
1113 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1114 				   IXGBE_EEPROM_RW_REG_DATA);
1115 		} else {
1116 			hw_dbg(hw, "Eeprom read timed out\n");
1117 			goto out;
1118 		}
1119 	}
1120 out:
1121 	return status;
1122 }
1123 
1124 /**
1125  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1126  *  @hw: pointer to hardware structure
1127  *  @offset: offset within the EEPROM to be used as a scratch pad
1128  *
1129  *  Discover EEPROM page size by writing marching data at given offset.
1130  *  This function is called only when we are writing a new large buffer
1131  *  at given offset so the data would be overwritten anyway.
1132  **/
1133 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1134 						 u16 offset)
1135 {
1136 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1137 	s32 status = 0;
1138 	u16 i;
1139 
1140 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1141 		data[i] = i;
1142 
1143 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1144 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1145 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1146 	hw->eeprom.word_page_size = 0;
1147 	if (status != 0)
1148 		goto out;
1149 
1150 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1151 	if (status != 0)
1152 		goto out;
1153 
1154 	/*
1155 	 * When writing in burst more than the actual page size
1156 	 * EEPROM address wraps around current page.
1157 	 */
1158 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1159 
1160 	hw_dbg(hw, "Detected EEPROM page size = %d words.",
1161 	       hw->eeprom.word_page_size);
1162 out:
1163 	return status;
1164 }
1165 
1166 /**
1167  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1168  *  @hw: pointer to hardware structure
1169  *  @offset: offset of  word in the EEPROM to read
1170  *  @data: word read from the EEPROM
1171  *
1172  *  Reads a 16 bit word from the EEPROM using the EERD register.
1173  **/
1174 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1175 {
1176 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1177 }
1178 
1179 /**
1180  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1181  *  @hw: pointer to hardware structure
1182  *  @offset: offset of  word in the EEPROM to write
1183  *  @words: number of words
1184  *  @data: word(s) write to the EEPROM
1185  *
1186  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1187  **/
1188 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1189 				    u16 words, u16 *data)
1190 {
1191 	u32 eewr;
1192 	s32 status = 0;
1193 	u16 i;
1194 
1195 	hw->eeprom.ops.init_params(hw);
1196 
1197 	if (words == 0) {
1198 		status = IXGBE_ERR_INVALID_ARGUMENT;
1199 		goto out;
1200 	}
1201 
1202 	if (offset >= hw->eeprom.word_size) {
1203 		status = IXGBE_ERR_EEPROM;
1204 		goto out;
1205 	}
1206 
1207 	for (i = 0; i < words; i++) {
1208 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1209 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1210 		       IXGBE_EEPROM_RW_REG_START;
1211 
1212 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1213 		if (status != 0) {
1214 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1215 			goto out;
1216 		}
1217 
1218 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1219 
1220 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1221 		if (status != 0) {
1222 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1223 			goto out;
1224 		}
1225 	}
1226 
1227 out:
1228 	return status;
1229 }
1230 
1231 /**
1232  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1233  *  @hw: pointer to hardware structure
1234  *  @offset: offset of  word in the EEPROM to write
1235  *  @data: word write to the EEPROM
1236  *
1237  *  Write a 16 bit word to the EEPROM using the EEWR register.
1238  **/
1239 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1240 {
1241 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1242 }
1243 
1244 /**
1245  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1246  *  @hw: pointer to hardware structure
1247  *  @ee_reg: EEPROM flag for polling
1248  *
1249  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1250  *  read or write is done respectively.
1251  **/
1252 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1253 {
1254 	u32 i;
1255 	u32 reg;
1256 	s32 status = IXGBE_ERR_EEPROM;
1257 
1258 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1259 		if (ee_reg == IXGBE_NVM_POLL_READ)
1260 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1261 		else
1262 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1263 
1264 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1265 			status = 0;
1266 			break;
1267 		}
1268 		udelay(5);
1269 	}
1270 	return status;
1271 }
1272 
1273 /**
1274  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1275  *  @hw: pointer to hardware structure
1276  *
1277  *  Prepares EEPROM for access using bit-bang method. This function should
1278  *  be called before issuing a command to the EEPROM.
1279  **/
1280 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1281 {
1282 	s32 status = 0;
1283 	u32 eec;
1284 	u32 i;
1285 
1286 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1287 		status = IXGBE_ERR_SWFW_SYNC;
1288 
1289 	if (status == 0) {
1290 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1291 
1292 		/* Request EEPROM Access */
1293 		eec |= IXGBE_EEC_REQ;
1294 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1295 
1296 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1297 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1298 			if (eec & IXGBE_EEC_GNT)
1299 				break;
1300 			udelay(5);
1301 		}
1302 
1303 		/* Release if grant not acquired */
1304 		if (!(eec & IXGBE_EEC_GNT)) {
1305 			eec &= ~IXGBE_EEC_REQ;
1306 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1307 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
1308 
1309 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1310 			status = IXGBE_ERR_EEPROM;
1311 		}
1312 
1313 		/* Setup EEPROM for Read/Write */
1314 		if (status == 0) {
1315 			/* Clear CS and SK */
1316 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1317 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1318 			IXGBE_WRITE_FLUSH(hw);
1319 			udelay(1);
1320 		}
1321 	}
1322 	return status;
1323 }
1324 
1325 /**
1326  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1327  *  @hw: pointer to hardware structure
1328  *
1329  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1330  **/
1331 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1332 {
1333 	s32 status = IXGBE_ERR_EEPROM;
1334 	u32 timeout = 2000;
1335 	u32 i;
1336 	u32 swsm;
1337 
1338 	/* Get SMBI software semaphore between device drivers first */
1339 	for (i = 0; i < timeout; i++) {
1340 		/*
1341 		 * If the SMBI bit is 0 when we read it, then the bit will be
1342 		 * set and we have the semaphore
1343 		 */
1344 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1345 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1346 			status = 0;
1347 			break;
1348 		}
1349 		udelay(50);
1350 	}
1351 
1352 	if (i == timeout) {
1353 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1354 		       "not granted.\n");
1355 		/*
1356 		 * this release is particularly important because our attempts
1357 		 * above to get the semaphore may have succeeded, and if there
1358 		 * was a timeout, we should unconditionally clear the semaphore
1359 		 * bits to free the driver to make progress
1360 		 */
1361 		ixgbe_release_eeprom_semaphore(hw);
1362 
1363 		udelay(50);
1364 		/*
1365 		 * one last try
1366 		 * If the SMBI bit is 0 when we read it, then the bit will be
1367 		 * set and we have the semaphore
1368 		 */
1369 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1370 		if (!(swsm & IXGBE_SWSM_SMBI))
1371 			status = 0;
1372 	}
1373 
1374 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1375 	if (status == 0) {
1376 		for (i = 0; i < timeout; i++) {
1377 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1378 
1379 			/* Set the SW EEPROM semaphore bit to request access */
1380 			swsm |= IXGBE_SWSM_SWESMBI;
1381 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1382 
1383 			/*
1384 			 * If we set the bit successfully then we got the
1385 			 * semaphore.
1386 			 */
1387 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1388 			if (swsm & IXGBE_SWSM_SWESMBI)
1389 				break;
1390 
1391 			udelay(50);
1392 		}
1393 
1394 		/*
1395 		 * Release semaphores and return error if SW EEPROM semaphore
1396 		 * was not granted because we don't have access to the EEPROM
1397 		 */
1398 		if (i >= timeout) {
1399 			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1400 			       "not granted.\n");
1401 			ixgbe_release_eeprom_semaphore(hw);
1402 			status = IXGBE_ERR_EEPROM;
1403 		}
1404 	} else {
1405 		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1406 		       "not granted.\n");
1407 	}
1408 
1409 	return status;
1410 }
1411 
1412 /**
1413  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1414  *  @hw: pointer to hardware structure
1415  *
1416  *  This function clears hardware semaphore bits.
1417  **/
1418 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1419 {
1420 	u32 swsm;
1421 
1422 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1423 
1424 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1425 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1426 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1427 	IXGBE_WRITE_FLUSH(hw);
1428 }
1429 
1430 /**
1431  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1432  *  @hw: pointer to hardware structure
1433  **/
1434 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1435 {
1436 	s32 status = 0;
1437 	u16 i;
1438 	u8 spi_stat_reg;
1439 
1440 	/*
1441 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1442 	 * EEPROM will signal that the command has been completed by clearing
1443 	 * bit 0 of the internal status register.  If it's not cleared within
1444 	 * 5 milliseconds, then error out.
1445 	 */
1446 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1447 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1448 		                            IXGBE_EEPROM_OPCODE_BITS);
1449 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1450 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1451 			break;
1452 
1453 		udelay(5);
1454 		ixgbe_standby_eeprom(hw);
1455 	}
1456 
1457 	/*
1458 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1459 	 * devices (and only 0-5mSec on 5V devices)
1460 	 */
1461 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1462 		hw_dbg(hw, "SPI EEPROM Status error\n");
1463 		status = IXGBE_ERR_EEPROM;
1464 	}
1465 
1466 	return status;
1467 }
1468 
1469 /**
1470  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1471  *  @hw: pointer to hardware structure
1472  **/
1473 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1474 {
1475 	u32 eec;
1476 
1477 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1478 
1479 	/* Toggle CS to flush commands */
1480 	eec |= IXGBE_EEC_CS;
1481 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1482 	IXGBE_WRITE_FLUSH(hw);
1483 	udelay(1);
1484 	eec &= ~IXGBE_EEC_CS;
1485 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1486 	IXGBE_WRITE_FLUSH(hw);
1487 	udelay(1);
1488 }
1489 
1490 /**
1491  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1492  *  @hw: pointer to hardware structure
1493  *  @data: data to send to the EEPROM
1494  *  @count: number of bits to shift out
1495  **/
1496 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1497                                         u16 count)
1498 {
1499 	u32 eec;
1500 	u32 mask;
1501 	u32 i;
1502 
1503 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1504 
1505 	/*
1506 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1507 	 * one bit at a time.  Determine the starting bit based on count
1508 	 */
1509 	mask = 0x01 << (count - 1);
1510 
1511 	for (i = 0; i < count; i++) {
1512 		/*
1513 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1514 		 * "1", and then raising and then lowering the clock (the SK
1515 		 * bit controls the clock input to the EEPROM).  A "0" is
1516 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1517 		 * raising and then lowering the clock.
1518 		 */
1519 		if (data & mask)
1520 			eec |= IXGBE_EEC_DI;
1521 		else
1522 			eec &= ~IXGBE_EEC_DI;
1523 
1524 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1525 		IXGBE_WRITE_FLUSH(hw);
1526 
1527 		udelay(1);
1528 
1529 		ixgbe_raise_eeprom_clk(hw, &eec);
1530 		ixgbe_lower_eeprom_clk(hw, &eec);
1531 
1532 		/*
1533 		 * Shift mask to signify next bit of data to shift in to the
1534 		 * EEPROM
1535 		 */
1536 		mask = mask >> 1;
1537 	}
1538 
1539 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1540 	eec &= ~IXGBE_EEC_DI;
1541 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1542 	IXGBE_WRITE_FLUSH(hw);
1543 }
1544 
1545 /**
1546  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1547  *  @hw: pointer to hardware structure
1548  **/
1549 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1550 {
1551 	u32 eec;
1552 	u32 i;
1553 	u16 data = 0;
1554 
1555 	/*
1556 	 * In order to read a register from the EEPROM, we need to shift
1557 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1558 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1559 	 * the value of the "DO" bit.  During this "shifting in" process the
1560 	 * "DI" bit should always be clear.
1561 	 */
1562 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1563 
1564 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1565 
1566 	for (i = 0; i < count; i++) {
1567 		data = data << 1;
1568 		ixgbe_raise_eeprom_clk(hw, &eec);
1569 
1570 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1571 
1572 		eec &= ~(IXGBE_EEC_DI);
1573 		if (eec & IXGBE_EEC_DO)
1574 			data |= 1;
1575 
1576 		ixgbe_lower_eeprom_clk(hw, &eec);
1577 	}
1578 
1579 	return data;
1580 }
1581 
1582 /**
1583  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1584  *  @hw: pointer to hardware structure
1585  *  @eec: EEC register's current value
1586  **/
1587 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1588 {
1589 	/*
1590 	 * Raise the clock input to the EEPROM
1591 	 * (setting the SK bit), then delay
1592 	 */
1593 	*eec = *eec | IXGBE_EEC_SK;
1594 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1595 	IXGBE_WRITE_FLUSH(hw);
1596 	udelay(1);
1597 }
1598 
1599 /**
1600  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1601  *  @hw: pointer to hardware structure
1602  *  @eecd: EECD's current value
1603  **/
1604 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1605 {
1606 	/*
1607 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1608 	 * delay
1609 	 */
1610 	*eec = *eec & ~IXGBE_EEC_SK;
1611 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1612 	IXGBE_WRITE_FLUSH(hw);
1613 	udelay(1);
1614 }
1615 
1616 /**
1617  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1618  *  @hw: pointer to hardware structure
1619  **/
1620 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1621 {
1622 	u32 eec;
1623 
1624 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1625 
1626 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1627 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1628 
1629 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1630 	IXGBE_WRITE_FLUSH(hw);
1631 
1632 	udelay(1);
1633 
1634 	/* Stop requesting EEPROM access */
1635 	eec &= ~IXGBE_EEC_REQ;
1636 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1637 
1638 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1639 
1640 	/*
1641 	 * Delay before attempt to obtain semaphore again to allow FW
1642 	 * access. semaphore_delay is in ms we need us for usleep_range
1643 	 */
1644 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1645 		     hw->eeprom.semaphore_delay * 2000);
1646 }
1647 
1648 /**
1649  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1650  *  @hw: pointer to hardware structure
1651  **/
1652 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1653 {
1654 	u16 i;
1655 	u16 j;
1656 	u16 checksum = 0;
1657 	u16 length = 0;
1658 	u16 pointer = 0;
1659 	u16 word = 0;
1660 
1661 	/* Include 0x0-0x3F in the checksum */
1662 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1663 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1664 			hw_dbg(hw, "EEPROM read failed\n");
1665 			break;
1666 		}
1667 		checksum += word;
1668 	}
1669 
1670 	/* Include all data from pointers except for the fw pointer */
1671 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1672 		hw->eeprom.ops.read(hw, i, &pointer);
1673 
1674 		/* Make sure the pointer seems valid */
1675 		if (pointer != 0xFFFF && pointer != 0) {
1676 			hw->eeprom.ops.read(hw, pointer, &length);
1677 
1678 			if (length != 0xFFFF && length != 0) {
1679 				for (j = pointer+1; j <= pointer+length; j++) {
1680 					hw->eeprom.ops.read(hw, j, &word);
1681 					checksum += word;
1682 				}
1683 			}
1684 		}
1685 	}
1686 
1687 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1688 
1689 	return checksum;
1690 }
1691 
1692 /**
1693  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1694  *  @hw: pointer to hardware structure
1695  *  @checksum_val: calculated checksum
1696  *
1697  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1698  *  caller does not need checksum_val, the value can be NULL.
1699  **/
1700 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1701                                            u16 *checksum_val)
1702 {
1703 	s32 status;
1704 	u16 checksum;
1705 	u16 read_checksum = 0;
1706 
1707 	/*
1708 	 * Read the first word from the EEPROM. If this times out or fails, do
1709 	 * not continue or we could be in for a very long wait while every
1710 	 * EEPROM read fails
1711 	 */
1712 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1713 
1714 	if (status == 0) {
1715 		checksum = hw->eeprom.ops.calc_checksum(hw);
1716 
1717 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1718 
1719 		/*
1720 		 * Verify read checksum from EEPROM is the same as
1721 		 * calculated checksum
1722 		 */
1723 		if (read_checksum != checksum)
1724 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1725 
1726 		/* If the user cares, return the calculated checksum */
1727 		if (checksum_val)
1728 			*checksum_val = checksum;
1729 	} else {
1730 		hw_dbg(hw, "EEPROM read failed\n");
1731 	}
1732 
1733 	return status;
1734 }
1735 
1736 /**
1737  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1738  *  @hw: pointer to hardware structure
1739  **/
1740 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1741 {
1742 	s32 status;
1743 	u16 checksum;
1744 
1745 	/*
1746 	 * Read the first word from the EEPROM. If this times out or fails, do
1747 	 * not continue or we could be in for a very long wait while every
1748 	 * EEPROM read fails
1749 	 */
1750 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1751 
1752 	if (status == 0) {
1753 		checksum = hw->eeprom.ops.calc_checksum(hw);
1754 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1755 					      checksum);
1756 	} else {
1757 		hw_dbg(hw, "EEPROM read failed\n");
1758 	}
1759 
1760 	return status;
1761 }
1762 
1763 /**
1764  *  ixgbe_validate_mac_addr - Validate MAC address
1765  *  @mac_addr: pointer to MAC address.
1766  *
1767  *  Tests a MAC address to ensure it is a valid Individual Address
1768  **/
1769 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1770 {
1771 	s32 status = 0;
1772 
1773 	/* Make sure it is not a multicast address */
1774 	if (IXGBE_IS_MULTICAST(mac_addr))
1775 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1776 	/* Not a broadcast address */
1777 	else if (IXGBE_IS_BROADCAST(mac_addr))
1778 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1779 	/* Reject the zero address */
1780 	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1781 	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1782 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1783 
1784 	return status;
1785 }
1786 
1787 /**
1788  *  ixgbe_set_rar_generic - Set Rx address register
1789  *  @hw: pointer to hardware structure
1790  *  @index: Receive address register to write
1791  *  @addr: Address to put into receive address register
1792  *  @vmdq: VMDq "set" or "pool" index
1793  *  @enable_addr: set flag that address is active
1794  *
1795  *  Puts an ethernet address into a receive address register.
1796  **/
1797 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1798                           u32 enable_addr)
1799 {
1800 	u32 rar_low, rar_high;
1801 	u32 rar_entries = hw->mac.num_rar_entries;
1802 
1803 	/* Make sure we are using a valid rar index range */
1804 	if (index >= rar_entries) {
1805 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1806 		return IXGBE_ERR_INVALID_ARGUMENT;
1807 	}
1808 
1809 	/* setup VMDq pool selection before this RAR gets enabled */
1810 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1811 
1812 	/*
1813 	 * HW expects these in little endian so we reverse the byte
1814 	 * order from network order (big endian) to little endian
1815 	 */
1816 	rar_low = ((u32)addr[0] |
1817 		   ((u32)addr[1] << 8) |
1818 		   ((u32)addr[2] << 16) |
1819 		   ((u32)addr[3] << 24));
1820 	/*
1821 	 * Some parts put the VMDq setting in the extra RAH bits,
1822 	 * so save everything except the lower 16 bits that hold part
1823 	 * of the address and the address valid bit.
1824 	 */
1825 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1826 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1827 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1828 
1829 	if (enable_addr != 0)
1830 		rar_high |= IXGBE_RAH_AV;
1831 
1832 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1833 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1834 
1835 	return 0;
1836 }
1837 
1838 /**
1839  *  ixgbe_clear_rar_generic - Remove Rx address register
1840  *  @hw: pointer to hardware structure
1841  *  @index: Receive address register to write
1842  *
1843  *  Clears an ethernet address from a receive address register.
1844  **/
1845 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1846 {
1847 	u32 rar_high;
1848 	u32 rar_entries = hw->mac.num_rar_entries;
1849 
1850 	/* Make sure we are using a valid rar index range */
1851 	if (index >= rar_entries) {
1852 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1853 		return IXGBE_ERR_INVALID_ARGUMENT;
1854 	}
1855 
1856 	/*
1857 	 * Some parts put the VMDq setting in the extra RAH bits,
1858 	 * so save everything except the lower 16 bits that hold part
1859 	 * of the address and the address valid bit.
1860 	 */
1861 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1862 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1863 
1864 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1865 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1866 
1867 	/* clear VMDq pool/queue selection for this RAR */
1868 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1869 
1870 	return 0;
1871 }
1872 
1873 /**
1874  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1875  *  @hw: pointer to hardware structure
1876  *
1877  *  Places the MAC address in receive address register 0 and clears the rest
1878  *  of the receive address registers. Clears the multicast table. Assumes
1879  *  the receiver is in reset when the routine is called.
1880  **/
1881 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1882 {
1883 	u32 i;
1884 	u32 rar_entries = hw->mac.num_rar_entries;
1885 
1886 	/*
1887 	 * If the current mac address is valid, assume it is a software override
1888 	 * to the permanent address.
1889 	 * Otherwise, use the permanent address from the eeprom.
1890 	 */
1891 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1892 	    IXGBE_ERR_INVALID_MAC_ADDR) {
1893 		/* Get the MAC address from the RAR0 for later reference */
1894 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1895 
1896 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1897 	} else {
1898 		/* Setup the receive address. */
1899 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1900 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1901 
1902 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1903 
1904 		/*  clear VMDq pool/queue selection for RAR 0 */
1905 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1906 	}
1907 	hw->addr_ctrl.overflow_promisc = 0;
1908 
1909 	hw->addr_ctrl.rar_used_count = 1;
1910 
1911 	/* Zero out the other receive addresses. */
1912 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1913 	for (i = 1; i < rar_entries; i++) {
1914 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1915 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1916 	}
1917 
1918 	/* Clear the MTA */
1919 	hw->addr_ctrl.mta_in_use = 0;
1920 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1921 
1922 	hw_dbg(hw, " Clearing MTA\n");
1923 	for (i = 0; i < hw->mac.mcft_size; i++)
1924 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1925 
1926 	if (hw->mac.ops.init_uta_tables)
1927 		hw->mac.ops.init_uta_tables(hw);
1928 
1929 	return 0;
1930 }
1931 
1932 /**
1933  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1934  *  @hw: pointer to hardware structure
1935  *  @mc_addr: the multicast address
1936  *
1937  *  Extracts the 12 bits, from a multicast address, to determine which
1938  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1939  *  incoming rx multicast addresses, to determine the bit-vector to check in
1940  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1941  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1942  *  to mc_filter_type.
1943  **/
1944 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1945 {
1946 	u32 vector = 0;
1947 
1948 	switch (hw->mac.mc_filter_type) {
1949 	case 0:   /* use bits [47:36] of the address */
1950 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1951 		break;
1952 	case 1:   /* use bits [46:35] of the address */
1953 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1954 		break;
1955 	case 2:   /* use bits [45:34] of the address */
1956 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1957 		break;
1958 	case 3:   /* use bits [43:32] of the address */
1959 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1960 		break;
1961 	default:  /* Invalid mc_filter_type */
1962 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1963 		break;
1964 	}
1965 
1966 	/* vector can only be 12-bits or boundary will be exceeded */
1967 	vector &= 0xFFF;
1968 	return vector;
1969 }
1970 
1971 /**
1972  *  ixgbe_set_mta - Set bit-vector in multicast table
1973  *  @hw: pointer to hardware structure
1974  *  @hash_value: Multicast address hash value
1975  *
1976  *  Sets the bit-vector in the multicast table.
1977  **/
1978 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1979 {
1980 	u32 vector;
1981 	u32 vector_bit;
1982 	u32 vector_reg;
1983 
1984 	hw->addr_ctrl.mta_in_use++;
1985 
1986 	vector = ixgbe_mta_vector(hw, mc_addr);
1987 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1988 
1989 	/*
1990 	 * The MTA is a register array of 128 32-bit registers. It is treated
1991 	 * like an array of 4096 bits.  We want to set bit
1992 	 * BitArray[vector_value]. So we figure out what register the bit is
1993 	 * in, read it, OR in the new bit, then write back the new value.  The
1994 	 * register is determined by the upper 7 bits of the vector value and
1995 	 * the bit within that register are determined by the lower 5 bits of
1996 	 * the value.
1997 	 */
1998 	vector_reg = (vector >> 5) & 0x7F;
1999 	vector_bit = vector & 0x1F;
2000 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2001 }
2002 
2003 /**
2004  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2005  *  @hw: pointer to hardware structure
2006  *  @netdev: pointer to net device structure
2007  *
2008  *  The given list replaces any existing list. Clears the MC addrs from receive
2009  *  address registers and the multicast table. Uses unused receive address
2010  *  registers for the first multicast addresses, and hashes the rest into the
2011  *  multicast table.
2012  **/
2013 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2014 				      struct net_device *netdev)
2015 {
2016 	struct netdev_hw_addr *ha;
2017 	u32 i;
2018 
2019 	/*
2020 	 * Set the new number of MC addresses that we are being requested to
2021 	 * use.
2022 	 */
2023 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2024 	hw->addr_ctrl.mta_in_use = 0;
2025 
2026 	/* Clear mta_shadow */
2027 	hw_dbg(hw, " Clearing MTA\n");
2028 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2029 
2030 	/* Update mta shadow */
2031 	netdev_for_each_mc_addr(ha, netdev) {
2032 		hw_dbg(hw, " Adding the multicast addresses:\n");
2033 		ixgbe_set_mta(hw, ha->addr);
2034 	}
2035 
2036 	/* Enable mta */
2037 	for (i = 0; i < hw->mac.mcft_size; i++)
2038 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2039 				      hw->mac.mta_shadow[i]);
2040 
2041 	if (hw->addr_ctrl.mta_in_use > 0)
2042 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2043 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2044 
2045 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2046 	return 0;
2047 }
2048 
2049 /**
2050  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2051  *  @hw: pointer to hardware structure
2052  *
2053  *  Enables multicast address in RAR and the use of the multicast hash table.
2054  **/
2055 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2056 {
2057 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2058 
2059 	if (a->mta_in_use > 0)
2060 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2061 		                hw->mac.mc_filter_type);
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2068  *  @hw: pointer to hardware structure
2069  *
2070  *  Disables multicast address in RAR and the use of the multicast hash table.
2071  **/
2072 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2073 {
2074 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2075 
2076 	if (a->mta_in_use > 0)
2077 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2078 
2079 	return 0;
2080 }
2081 
2082 /**
2083  *  ixgbe_fc_enable_generic - Enable flow control
2084  *  @hw: pointer to hardware structure
2085  *
2086  *  Enable flow control according to the current settings.
2087  **/
2088 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2089 {
2090 	s32 ret_val = 0;
2091 	u32 mflcn_reg, fccfg_reg;
2092 	u32 reg;
2093 	u32 fcrtl, fcrth;
2094 	int i;
2095 
2096 	/*
2097 	 * Validate the water mark configuration for packet buffer 0.  Zero
2098 	 * water marks indicate that the packet buffer was not configured
2099 	 * and the watermarks for packet buffer 0 should always be configured.
2100 	 */
2101 	if (!hw->fc.low_water ||
2102 	    !hw->fc.high_water[0] ||
2103 	    !hw->fc.pause_time) {
2104 		hw_dbg(hw, "Invalid water mark configuration\n");
2105 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2106 		goto out;
2107 	}
2108 
2109 	/* Negotiate the fc mode to use */
2110 	ixgbe_fc_autoneg(hw);
2111 
2112 	/* Disable any previous flow control settings */
2113 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2114 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2115 
2116 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2117 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2118 
2119 	/*
2120 	 * The possible values of fc.current_mode are:
2121 	 * 0: Flow control is completely disabled
2122 	 * 1: Rx flow control is enabled (we can receive pause frames,
2123 	 *    but not send pause frames).
2124 	 * 2: Tx flow control is enabled (we can send pause frames but
2125 	 *    we do not support receiving pause frames).
2126 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2127 	 * other: Invalid.
2128 	 */
2129 	switch (hw->fc.current_mode) {
2130 	case ixgbe_fc_none:
2131 		/*
2132 		 * Flow control is disabled by software override or autoneg.
2133 		 * The code below will actually disable it in the HW.
2134 		 */
2135 		break;
2136 	case ixgbe_fc_rx_pause:
2137 		/*
2138 		 * Rx Flow control is enabled and Tx Flow control is
2139 		 * disabled by software override. Since there really
2140 		 * isn't a way to advertise that we are capable of RX
2141 		 * Pause ONLY, we will advertise that we support both
2142 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2143 		 * disable the adapter's ability to send PAUSE frames.
2144 		 */
2145 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2146 		break;
2147 	case ixgbe_fc_tx_pause:
2148 		/*
2149 		 * Tx Flow control is enabled, and Rx Flow control is
2150 		 * disabled by software override.
2151 		 */
2152 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2153 		break;
2154 	case ixgbe_fc_full:
2155 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2156 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2157 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2158 		break;
2159 	default:
2160 		hw_dbg(hw, "Flow control param set incorrectly\n");
2161 		ret_val = IXGBE_ERR_CONFIG;
2162 		goto out;
2163 		break;
2164 	}
2165 
2166 	/* Set 802.3x based flow control settings. */
2167 	mflcn_reg |= IXGBE_MFLCN_DPF;
2168 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2169 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2170 
2171 	fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2172 
2173 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2174 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2175 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2176 		    hw->fc.high_water[i]) {
2177 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2178 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2179 		} else {
2180 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2181 			/*
2182 			 * In order to prevent Tx hangs when the internal Tx
2183 			 * switch is enabled we must set the high water mark
2184 			 * to the maximum FCRTH value.  This allows the Tx
2185 			 * switch to function even under heavy Rx workloads.
2186 			 */
2187 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2188 		}
2189 
2190 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2191 	}
2192 
2193 	/* Configure pause time (2 TCs per register) */
2194 	reg = hw->fc.pause_time * 0x00010001;
2195 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2196 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2197 
2198 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2199 
2200 out:
2201 	return ret_val;
2202 }
2203 
2204 /**
2205  *  ixgbe_negotiate_fc - Negotiate flow control
2206  *  @hw: pointer to hardware structure
2207  *  @adv_reg: flow control advertised settings
2208  *  @lp_reg: link partner's flow control settings
2209  *  @adv_sym: symmetric pause bit in advertisement
2210  *  @adv_asm: asymmetric pause bit in advertisement
2211  *  @lp_sym: symmetric pause bit in link partner advertisement
2212  *  @lp_asm: asymmetric pause bit in link partner advertisement
2213  *
2214  *  Find the intersection between advertised settings and link partner's
2215  *  advertised settings
2216  **/
2217 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2218 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2219 {
2220 	if ((!(adv_reg)) ||  (!(lp_reg)))
2221 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2222 
2223 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2224 		/*
2225 		 * Now we need to check if the user selected Rx ONLY
2226 		 * of pause frames.  In this case, we had to advertise
2227 		 * FULL flow control because we could not advertise RX
2228 		 * ONLY. Hence, we must now check to see if we need to
2229 		 * turn OFF the TRANSMISSION of PAUSE frames.
2230 		 */
2231 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2232 			hw->fc.current_mode = ixgbe_fc_full;
2233 			hw_dbg(hw, "Flow Control = FULL.\n");
2234 		} else {
2235 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2236 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2237 		}
2238 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2239 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2240 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2241 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2242 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2243 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2244 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2245 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2246 	} else {
2247 		hw->fc.current_mode = ixgbe_fc_none;
2248 		hw_dbg(hw, "Flow Control = NONE.\n");
2249 	}
2250 	return 0;
2251 }
2252 
2253 /**
2254  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2255  *  @hw: pointer to hardware structure
2256  *
2257  *  Enable flow control according on 1 gig fiber.
2258  **/
2259 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2260 {
2261 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2262 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2263 
2264 	/*
2265 	 * On multispeed fiber at 1g, bail out if
2266 	 * - link is up but AN did not complete, or if
2267 	 * - link is up and AN completed but timed out
2268 	 */
2269 
2270 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2271 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2272 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2273 		goto out;
2274 
2275 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2276 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2277 
2278 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2279 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2280 			       IXGBE_PCS1GANA_ASM_PAUSE,
2281 			       IXGBE_PCS1GANA_SYM_PAUSE,
2282 			       IXGBE_PCS1GANA_ASM_PAUSE);
2283 
2284 out:
2285 	return ret_val;
2286 }
2287 
2288 /**
2289  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2290  *  @hw: pointer to hardware structure
2291  *
2292  *  Enable flow control according to IEEE clause 37.
2293  **/
2294 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2295 {
2296 	u32 links2, anlp1_reg, autoc_reg, links;
2297 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2298 
2299 	/*
2300 	 * On backplane, bail out if
2301 	 * - backplane autoneg was not completed, or if
2302 	 * - we are 82599 and link partner is not AN enabled
2303 	 */
2304 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2305 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2306 		goto out;
2307 
2308 	if (hw->mac.type == ixgbe_mac_82599EB) {
2309 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2310 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2311 			goto out;
2312 	}
2313 	/*
2314 	 * Read the 10g AN autoc and LP ability registers and resolve
2315 	 * local flow control settings accordingly
2316 	 */
2317 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2318 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2319 
2320 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2321 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2322 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2323 
2324 out:
2325 	return ret_val;
2326 }
2327 
2328 /**
2329  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2330  *  @hw: pointer to hardware structure
2331  *
2332  *  Enable flow control according to IEEE clause 37.
2333  **/
2334 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2335 {
2336 	u16 technology_ability_reg = 0;
2337 	u16 lp_technology_ability_reg = 0;
2338 
2339 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2340 			     MDIO_MMD_AN,
2341 			     &technology_ability_reg);
2342 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2343 			     MDIO_MMD_AN,
2344 			     &lp_technology_ability_reg);
2345 
2346 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2347 				  (u32)lp_technology_ability_reg,
2348 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2349 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2350 }
2351 
2352 /**
2353  *  ixgbe_fc_autoneg - Configure flow control
2354  *  @hw: pointer to hardware structure
2355  *
2356  *  Compares our advertised flow control capabilities to those advertised by
2357  *  our link partner, and determines the proper flow control mode to use.
2358  **/
2359 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2360 {
2361 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2362 	ixgbe_link_speed speed;
2363 	bool link_up;
2364 
2365 	/*
2366 	 * AN should have completed when the cable was plugged in.
2367 	 * Look for reasons to bail out.  Bail out if:
2368 	 * - FC autoneg is disabled, or if
2369 	 * - link is not up.
2370 	 *
2371 	 * Since we're being called from an LSC, link is already known to be up.
2372 	 * So use link_up_wait_to_complete=false.
2373 	 */
2374 	if (hw->fc.disable_fc_autoneg)
2375 		goto out;
2376 
2377 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2378 	if (!link_up)
2379 		goto out;
2380 
2381 	switch (hw->phy.media_type) {
2382 	/* Autoneg flow control on fiber adapters */
2383 	case ixgbe_media_type_fiber:
2384 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2385 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2386 		break;
2387 
2388 	/* Autoneg flow control on backplane adapters */
2389 	case ixgbe_media_type_backplane:
2390 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2391 		break;
2392 
2393 	/* Autoneg flow control on copper adapters */
2394 	case ixgbe_media_type_copper:
2395 		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2396 			ret_val = ixgbe_fc_autoneg_copper(hw);
2397 		break;
2398 
2399 	default:
2400 		break;
2401 	}
2402 
2403 out:
2404 	if (ret_val == 0) {
2405 		hw->fc.fc_was_autonegged = true;
2406 	} else {
2407 		hw->fc.fc_was_autonegged = false;
2408 		hw->fc.current_mode = hw->fc.requested_mode;
2409 	}
2410 }
2411 
2412 /**
2413  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2414  *  @hw: pointer to hardware structure
2415  *
2416  *  Disables PCI-Express master access and verifies there are no pending
2417  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2418  *  bit hasn't caused the master requests to be disabled, else 0
2419  *  is returned signifying master requests disabled.
2420  **/
2421 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2422 {
2423 	struct ixgbe_adapter *adapter = hw->back;
2424 	s32 status = 0;
2425 	u32 i;
2426 	u16 value;
2427 
2428 	/* Always set this bit to ensure any future transactions are blocked */
2429 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2430 
2431 	/* Exit if master requests are blocked */
2432 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2433 		goto out;
2434 
2435 	/* Poll for master request bit to clear */
2436 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2437 		udelay(100);
2438 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2439 			goto out;
2440 	}
2441 
2442 	/*
2443 	 * Two consecutive resets are required via CTRL.RST per datasheet
2444 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2445 	 * of this need.  The first reset prevents new master requests from
2446 	 * being issued by our device.  We then must wait 1usec or more for any
2447 	 * remaining completions from the PCIe bus to trickle in, and then reset
2448 	 * again to clear out any effects they may have had on our device.
2449 	 */
2450 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2451 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2452 
2453 	/*
2454 	 * Before proceeding, make sure that the PCIe block does not have
2455 	 * transactions pending.
2456 	 */
2457 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2458 		udelay(100);
2459 		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2460 							 &value);
2461 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2462 			goto out;
2463 	}
2464 
2465 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2466 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2467 
2468 out:
2469 	return status;
2470 }
2471 
2472 /**
2473  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2474  *  @hw: pointer to hardware structure
2475  *  @mask: Mask to specify which semaphore to acquire
2476  *
2477  *  Acquires the SWFW semaphore through the GSSR register for the specified
2478  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2479  **/
2480 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2481 {
2482 	u32 gssr;
2483 	u32 swmask = mask;
2484 	u32 fwmask = mask << 5;
2485 	s32 timeout = 200;
2486 
2487 	while (timeout) {
2488 		/*
2489 		 * SW EEPROM semaphore bit is used for access to all
2490 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2491 		 */
2492 		if (ixgbe_get_eeprom_semaphore(hw))
2493 			return IXGBE_ERR_SWFW_SYNC;
2494 
2495 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2496 		if (!(gssr & (fwmask | swmask)))
2497 			break;
2498 
2499 		/*
2500 		 * Firmware currently using resource (fwmask) or other software
2501 		 * thread currently using resource (swmask)
2502 		 */
2503 		ixgbe_release_eeprom_semaphore(hw);
2504 		usleep_range(5000, 10000);
2505 		timeout--;
2506 	}
2507 
2508 	if (!timeout) {
2509 		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2510 		return IXGBE_ERR_SWFW_SYNC;
2511 	}
2512 
2513 	gssr |= swmask;
2514 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2515 
2516 	ixgbe_release_eeprom_semaphore(hw);
2517 	return 0;
2518 }
2519 
2520 /**
2521  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2522  *  @hw: pointer to hardware structure
2523  *  @mask: Mask to specify which semaphore to release
2524  *
2525  *  Releases the SWFW semaphore through the GSSR register for the specified
2526  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2527  **/
2528 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2529 {
2530 	u32 gssr;
2531 	u32 swmask = mask;
2532 
2533 	ixgbe_get_eeprom_semaphore(hw);
2534 
2535 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2536 	gssr &= ~swmask;
2537 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2538 
2539 	ixgbe_release_eeprom_semaphore(hw);
2540 }
2541 
2542 /**
2543  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2544  *  @hw: pointer to hardware structure
2545  *
2546  *  Stops the receive data path and waits for the HW to internally
2547  *  empty the Rx security block.
2548  **/
2549 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2550 {
2551 #define IXGBE_MAX_SECRX_POLL 40
2552 	int i;
2553 	int secrxreg;
2554 
2555 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2556 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2557 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2558 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2559 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2560 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2561 			break;
2562 		else
2563 			/* Use interrupt-safe sleep just in case */
2564 			udelay(1000);
2565 	}
2566 
2567 	/* For informational purposes only */
2568 	if (i >= IXGBE_MAX_SECRX_POLL)
2569 		hw_dbg(hw, "Rx unit being enabled before security "
2570 		       "path fully disabled.  Continuing with init.\n");
2571 
2572 	return 0;
2573 
2574 }
2575 
2576 /**
2577  *  ixgbe_enable_rx_buff - Enables the receive data path
2578  *  @hw: pointer to hardware structure
2579  *
2580  *  Enables the receive data path
2581  **/
2582 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2583 {
2584 	int secrxreg;
2585 
2586 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2587 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2588 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2589 	IXGBE_WRITE_FLUSH(hw);
2590 
2591 	return 0;
2592 }
2593 
2594 /**
2595  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2596  *  @hw: pointer to hardware structure
2597  *  @regval: register value to write to RXCTRL
2598  *
2599  *  Enables the Rx DMA unit
2600  **/
2601 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2602 {
2603 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2604 
2605 	return 0;
2606 }
2607 
2608 /**
2609  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2610  *  @hw: pointer to hardware structure
2611  *  @index: led number to blink
2612  **/
2613 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2614 {
2615 	ixgbe_link_speed speed = 0;
2616 	bool link_up = false;
2617 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2618 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2619 
2620 	/*
2621 	 * Link must be up to auto-blink the LEDs;
2622 	 * Force it if link is down.
2623 	 */
2624 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2625 
2626 	if (!link_up) {
2627 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2628 		autoc_reg |= IXGBE_AUTOC_FLU;
2629 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2630 		IXGBE_WRITE_FLUSH(hw);
2631 		usleep_range(10000, 20000);
2632 	}
2633 
2634 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2635 	led_reg |= IXGBE_LED_BLINK(index);
2636 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2637 	IXGBE_WRITE_FLUSH(hw);
2638 
2639 	return 0;
2640 }
2641 
2642 /**
2643  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2644  *  @hw: pointer to hardware structure
2645  *  @index: led number to stop blinking
2646  **/
2647 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2648 {
2649 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2650 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2651 
2652 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2653 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2654 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2655 
2656 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2657 	led_reg &= ~IXGBE_LED_BLINK(index);
2658 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2659 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2660 	IXGBE_WRITE_FLUSH(hw);
2661 
2662 	return 0;
2663 }
2664 
2665 /**
2666  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2667  *  @hw: pointer to hardware structure
2668  *  @san_mac_offset: SAN MAC address offset
2669  *
2670  *  This function will read the EEPROM location for the SAN MAC address
2671  *  pointer, and returns the value at that location.  This is used in both
2672  *  get and set mac_addr routines.
2673  **/
2674 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2675                                         u16 *san_mac_offset)
2676 {
2677 	/*
2678 	 * First read the EEPROM pointer to see if the MAC addresses are
2679 	 * available.
2680 	 */
2681 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2682 
2683 	return 0;
2684 }
2685 
2686 /**
2687  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2688  *  @hw: pointer to hardware structure
2689  *  @san_mac_addr: SAN MAC address
2690  *
2691  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2692  *  per-port, so set_lan_id() must be called before reading the addresses.
2693  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2694  *  upon for non-SFP connections, so we must call it here.
2695  **/
2696 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2697 {
2698 	u16 san_mac_data, san_mac_offset;
2699 	u8 i;
2700 
2701 	/*
2702 	 * First read the EEPROM pointer to see if the MAC addresses are
2703 	 * available.  If they're not, no point in calling set_lan_id() here.
2704 	 */
2705 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2706 
2707 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2708 		/*
2709 		 * No addresses available in this EEPROM.  It's not an
2710 		 * error though, so just wipe the local address and return.
2711 		 */
2712 		for (i = 0; i < 6; i++)
2713 			san_mac_addr[i] = 0xFF;
2714 
2715 		goto san_mac_addr_out;
2716 	}
2717 
2718 	/* make sure we know which port we need to program */
2719 	hw->mac.ops.set_lan_id(hw);
2720 	/* apply the port offset to the address offset */
2721 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2722 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2723 	for (i = 0; i < 3; i++) {
2724 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2725 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2726 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2727 		san_mac_offset++;
2728 	}
2729 
2730 san_mac_addr_out:
2731 	return 0;
2732 }
2733 
2734 /**
2735  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2736  *  @hw: pointer to hardware structure
2737  *
2738  *  Read PCIe configuration space, and get the MSI-X vector count from
2739  *  the capabilities table.
2740  **/
2741 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2742 {
2743 	struct ixgbe_adapter *adapter = hw->back;
2744 	u16 msix_count = 1;
2745 	u16 max_msix_count;
2746 	u16 pcie_offset;
2747 
2748 	switch (hw->mac.type) {
2749 	case ixgbe_mac_82598EB:
2750 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2751 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2752 		break;
2753 	case ixgbe_mac_82599EB:
2754 	case ixgbe_mac_X540:
2755 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2756 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2757 		break;
2758 	default:
2759 		return msix_count;
2760 	}
2761 
2762 	pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
2763 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2764 
2765 	/* MSI-X count is zero-based in HW */
2766 	msix_count++;
2767 
2768 	if (msix_count > max_msix_count)
2769 		msix_count = max_msix_count;
2770 
2771 	return msix_count;
2772 }
2773 
2774 /**
2775  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2776  *  @hw: pointer to hardware struct
2777  *  @rar: receive address register index to disassociate
2778  *  @vmdq: VMDq pool index to remove from the rar
2779  **/
2780 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2781 {
2782 	u32 mpsar_lo, mpsar_hi;
2783 	u32 rar_entries = hw->mac.num_rar_entries;
2784 
2785 	/* Make sure we are using a valid rar index range */
2786 	if (rar >= rar_entries) {
2787 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2788 		return IXGBE_ERR_INVALID_ARGUMENT;
2789 	}
2790 
2791 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2792 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2793 
2794 	if (!mpsar_lo && !mpsar_hi)
2795 		goto done;
2796 
2797 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2798 		if (mpsar_lo) {
2799 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2800 			mpsar_lo = 0;
2801 		}
2802 		if (mpsar_hi) {
2803 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2804 			mpsar_hi = 0;
2805 		}
2806 	} else if (vmdq < 32) {
2807 		mpsar_lo &= ~(1 << vmdq);
2808 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2809 	} else {
2810 		mpsar_hi &= ~(1 << (vmdq - 32));
2811 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2812 	}
2813 
2814 	/* was that the last pool using this rar? */
2815 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2816 		hw->mac.ops.clear_rar(hw, rar);
2817 done:
2818 	return 0;
2819 }
2820 
2821 /**
2822  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2823  *  @hw: pointer to hardware struct
2824  *  @rar: receive address register index to associate with a VMDq index
2825  *  @vmdq: VMDq pool index
2826  **/
2827 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2828 {
2829 	u32 mpsar;
2830 	u32 rar_entries = hw->mac.num_rar_entries;
2831 
2832 	/* Make sure we are using a valid rar index range */
2833 	if (rar >= rar_entries) {
2834 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2835 		return IXGBE_ERR_INVALID_ARGUMENT;
2836 	}
2837 
2838 	if (vmdq < 32) {
2839 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2840 		mpsar |= 1 << vmdq;
2841 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2842 	} else {
2843 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2844 		mpsar |= 1 << (vmdq - 32);
2845 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2846 	}
2847 	return 0;
2848 }
2849 
2850 /**
2851  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2852  *  @hw: pointer to hardware structure
2853  **/
2854 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2855 {
2856 	int i;
2857 
2858 	for (i = 0; i < 128; i++)
2859 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2860 
2861 	return 0;
2862 }
2863 
2864 /**
2865  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2866  *  @hw: pointer to hardware structure
2867  *  @vlan: VLAN id to write to VLAN filter
2868  *
2869  *  return the VLVF index where this VLAN id should be placed
2870  *
2871  **/
2872 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2873 {
2874 	u32 bits = 0;
2875 	u32 first_empty_slot = 0;
2876 	s32 regindex;
2877 
2878 	/* short cut the special case */
2879 	if (vlan == 0)
2880 		return 0;
2881 
2882 	/*
2883 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2884 	  * slot found along the way
2885 	  */
2886 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2887 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2888 		if (!bits && !(first_empty_slot))
2889 			first_empty_slot = regindex;
2890 		else if ((bits & 0x0FFF) == vlan)
2891 			break;
2892 	}
2893 
2894 	/*
2895 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2896 	  * in the VLVF. Else use the first empty VLVF register for this
2897 	  * vlan id.
2898 	  */
2899 	if (regindex >= IXGBE_VLVF_ENTRIES) {
2900 		if (first_empty_slot)
2901 			regindex = first_empty_slot;
2902 		else {
2903 			hw_dbg(hw, "No space in VLVF.\n");
2904 			regindex = IXGBE_ERR_NO_SPACE;
2905 		}
2906 	}
2907 
2908 	return regindex;
2909 }
2910 
2911 /**
2912  *  ixgbe_set_vfta_generic - Set VLAN filter table
2913  *  @hw: pointer to hardware structure
2914  *  @vlan: VLAN id to write to VLAN filter
2915  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2916  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2917  *
2918  *  Turn on/off specified VLAN in the VLAN filter table.
2919  **/
2920 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2921                            bool vlan_on)
2922 {
2923 	s32 regindex;
2924 	u32 bitindex;
2925 	u32 vfta;
2926 	u32 bits;
2927 	u32 vt;
2928 	u32 targetbit;
2929 	bool vfta_changed = false;
2930 
2931 	if (vlan > 4095)
2932 		return IXGBE_ERR_PARAM;
2933 
2934 	/*
2935 	 * this is a 2 part operation - first the VFTA, then the
2936 	 * VLVF and VLVFB if VT Mode is set
2937 	 * We don't write the VFTA until we know the VLVF part succeeded.
2938 	 */
2939 
2940 	/* Part 1
2941 	 * The VFTA is a bitstring made up of 128 32-bit registers
2942 	 * that enable the particular VLAN id, much like the MTA:
2943 	 *    bits[11-5]: which register
2944 	 *    bits[4-0]:  which bit in the register
2945 	 */
2946 	regindex = (vlan >> 5) & 0x7F;
2947 	bitindex = vlan & 0x1F;
2948 	targetbit = (1 << bitindex);
2949 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2950 
2951 	if (vlan_on) {
2952 		if (!(vfta & targetbit)) {
2953 			vfta |= targetbit;
2954 			vfta_changed = true;
2955 		}
2956 	} else {
2957 		if ((vfta & targetbit)) {
2958 			vfta &= ~targetbit;
2959 			vfta_changed = true;
2960 		}
2961 	}
2962 
2963 	/* Part 2
2964 	 * If VT Mode is set
2965 	 *   Either vlan_on
2966 	 *     make sure the vlan is in VLVF
2967 	 *     set the vind bit in the matching VLVFB
2968 	 *   Or !vlan_on
2969 	 *     clear the pool bit and possibly the vind
2970 	 */
2971 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2972 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2973 		s32 vlvf_index;
2974 
2975 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2976 		if (vlvf_index < 0)
2977 			return vlvf_index;
2978 
2979 		if (vlan_on) {
2980 			/* set the pool bit */
2981 			if (vind < 32) {
2982 				bits = IXGBE_READ_REG(hw,
2983 						IXGBE_VLVFB(vlvf_index*2));
2984 				bits |= (1 << vind);
2985 				IXGBE_WRITE_REG(hw,
2986 						IXGBE_VLVFB(vlvf_index*2),
2987 						bits);
2988 			} else {
2989 				bits = IXGBE_READ_REG(hw,
2990 						IXGBE_VLVFB((vlvf_index*2)+1));
2991 				bits |= (1 << (vind-32));
2992 				IXGBE_WRITE_REG(hw,
2993 						IXGBE_VLVFB((vlvf_index*2)+1),
2994 						bits);
2995 			}
2996 		} else {
2997 			/* clear the pool bit */
2998 			if (vind < 32) {
2999 				bits = IXGBE_READ_REG(hw,
3000 						IXGBE_VLVFB(vlvf_index*2));
3001 				bits &= ~(1 << vind);
3002 				IXGBE_WRITE_REG(hw,
3003 						IXGBE_VLVFB(vlvf_index*2),
3004 						bits);
3005 				bits |= IXGBE_READ_REG(hw,
3006 						IXGBE_VLVFB((vlvf_index*2)+1));
3007 			} else {
3008 				bits = IXGBE_READ_REG(hw,
3009 						IXGBE_VLVFB((vlvf_index*2)+1));
3010 				bits &= ~(1 << (vind-32));
3011 				IXGBE_WRITE_REG(hw,
3012 						IXGBE_VLVFB((vlvf_index*2)+1),
3013 						bits);
3014 				bits |= IXGBE_READ_REG(hw,
3015 						IXGBE_VLVFB(vlvf_index*2));
3016 			}
3017 		}
3018 
3019 		/*
3020 		 * If there are still bits set in the VLVFB registers
3021 		 * for the VLAN ID indicated we need to see if the
3022 		 * caller is requesting that we clear the VFTA entry bit.
3023 		 * If the caller has requested that we clear the VFTA
3024 		 * entry bit but there are still pools/VFs using this VLAN
3025 		 * ID entry then ignore the request.  We're not worried
3026 		 * about the case where we're turning the VFTA VLAN ID
3027 		 * entry bit on, only when requested to turn it off as
3028 		 * there may be multiple pools and/or VFs using the
3029 		 * VLAN ID entry.  In that case we cannot clear the
3030 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3031 		 * been cleared.  This will be indicated by "bits" being
3032 		 * zero.
3033 		 */
3034 		if (bits) {
3035 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3036 					(IXGBE_VLVF_VIEN | vlan));
3037 			if (!vlan_on) {
3038 				/* someone wants to clear the vfta entry
3039 				 * but some pools/VFs are still using it.
3040 				 * Ignore it. */
3041 				vfta_changed = false;
3042 			}
3043 		}
3044 		else
3045 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3046 	}
3047 
3048 	if (vfta_changed)
3049 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3050 
3051 	return 0;
3052 }
3053 
3054 /**
3055  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3056  *  @hw: pointer to hardware structure
3057  *
3058  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3059  **/
3060 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3061 {
3062 	u32 offset;
3063 
3064 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3065 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3066 
3067 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3068 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3069 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3070 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 /**
3077  *  ixgbe_check_mac_link_generic - Determine link and speed status
3078  *  @hw: pointer to hardware structure
3079  *  @speed: pointer to link speed
3080  *  @link_up: true when link is up
3081  *  @link_up_wait_to_complete: bool used to wait for link up or not
3082  *
3083  *  Reads the links register to determine if link is up and the current speed
3084  **/
3085 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3086 				 bool *link_up, bool link_up_wait_to_complete)
3087 {
3088 	u32 links_reg, links_orig;
3089 	u32 i;
3090 
3091 	/* clear the old state */
3092 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3093 
3094 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3095 
3096 	if (links_orig != links_reg) {
3097 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3098 		       links_orig, links_reg);
3099 	}
3100 
3101 	if (link_up_wait_to_complete) {
3102 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3103 			if (links_reg & IXGBE_LINKS_UP) {
3104 				*link_up = true;
3105 				break;
3106 			} else {
3107 				*link_up = false;
3108 			}
3109 			msleep(100);
3110 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3111 		}
3112 	} else {
3113 		if (links_reg & IXGBE_LINKS_UP)
3114 			*link_up = true;
3115 		else
3116 			*link_up = false;
3117 	}
3118 
3119 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3120 	    IXGBE_LINKS_SPEED_10G_82599)
3121 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3122 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3123 		 IXGBE_LINKS_SPEED_1G_82599)
3124 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3125 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3126 		 IXGBE_LINKS_SPEED_100_82599)
3127 		*speed = IXGBE_LINK_SPEED_100_FULL;
3128 	else
3129 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3130 
3131 	return 0;
3132 }
3133 
3134 /**
3135  *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
3136  *  the EEPROM
3137  *  @hw: pointer to hardware structure
3138  *  @wwnn_prefix: the alternative WWNN prefix
3139  *  @wwpn_prefix: the alternative WWPN prefix
3140  *
3141  *  This function will read the EEPROM from the alternative SAN MAC address
3142  *  block to check the support for the alternative WWNN/WWPN prefix support.
3143  **/
3144 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3145                                         u16 *wwpn_prefix)
3146 {
3147 	u16 offset, caps;
3148 	u16 alt_san_mac_blk_offset;
3149 
3150 	/* clear output first */
3151 	*wwnn_prefix = 0xFFFF;
3152 	*wwpn_prefix = 0xFFFF;
3153 
3154 	/* check if alternative SAN MAC is supported */
3155 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3156 	                    &alt_san_mac_blk_offset);
3157 
3158 	if ((alt_san_mac_blk_offset == 0) ||
3159 	    (alt_san_mac_blk_offset == 0xFFFF))
3160 		goto wwn_prefix_out;
3161 
3162 	/* check capability in alternative san mac address block */
3163 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3164 	hw->eeprom.ops.read(hw, offset, &caps);
3165 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3166 		goto wwn_prefix_out;
3167 
3168 	/* get the corresponding prefix for WWNN/WWPN */
3169 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3170 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3171 
3172 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3173 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3174 
3175 wwn_prefix_out:
3176 	return 0;
3177 }
3178 
3179 /**
3180  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3181  *  @hw: pointer to hardware structure
3182  *  @enable: enable or disable switch for anti-spoofing
3183  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3184  *
3185  **/
3186 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3187 {
3188 	int j;
3189 	int pf_target_reg = pf >> 3;
3190 	int pf_target_shift = pf % 8;
3191 	u32 pfvfspoof = 0;
3192 
3193 	if (hw->mac.type == ixgbe_mac_82598EB)
3194 		return;
3195 
3196 	if (enable)
3197 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3198 
3199 	/*
3200 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3201 	 * MAC anti-spoof enables in each register array element.
3202 	 */
3203 	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3204 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3205 
3206 	/* If not enabling anti-spoofing then done */
3207 	if (!enable)
3208 		return;
3209 
3210 	/*
3211 	 * The PF should be allowed to spoof so that it can support
3212 	 * emulation mode NICs.  Reset the bit assigned to the PF
3213 	 */
3214 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3215 	pfvfspoof ^= (1 << pf_target_shift);
3216 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3217 }
3218 
3219 /**
3220  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3221  *  @hw: pointer to hardware structure
3222  *  @enable: enable or disable switch for VLAN anti-spoofing
3223  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3224  *
3225  **/
3226 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3227 {
3228 	int vf_target_reg = vf >> 3;
3229 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3230 	u32 pfvfspoof;
3231 
3232 	if (hw->mac.type == ixgbe_mac_82598EB)
3233 		return;
3234 
3235 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3236 	if (enable)
3237 		pfvfspoof |= (1 << vf_target_shift);
3238 	else
3239 		pfvfspoof &= ~(1 << vf_target_shift);
3240 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3241 }
3242 
3243 /**
3244  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3245  *  @hw: pointer to hardware structure
3246  *  @device_caps: the EEPROM word with the extra device capabilities
3247  *
3248  *  This function will read the EEPROM location for the device capabilities,
3249  *  and return the word through device_caps.
3250  **/
3251 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3252 {
3253 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3254 
3255 	return 0;
3256 }
3257 
3258 /**
3259  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3260  * @hw: pointer to hardware structure
3261  * @num_pb: number of packet buffers to allocate
3262  * @headroom: reserve n KB of headroom
3263  * @strategy: packet buffer allocation strategy
3264  **/
3265 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3266 			     int num_pb,
3267 			     u32 headroom,
3268 			     int strategy)
3269 {
3270 	u32 pbsize = hw->mac.rx_pb_size;
3271 	int i = 0;
3272 	u32 rxpktsize, txpktsize, txpbthresh;
3273 
3274 	/* Reserve headroom */
3275 	pbsize -= headroom;
3276 
3277 	if (!num_pb)
3278 		num_pb = 1;
3279 
3280 	/* Divide remaining packet buffer space amongst the number
3281 	 * of packet buffers requested using supplied strategy.
3282 	 */
3283 	switch (strategy) {
3284 	case (PBA_STRATEGY_WEIGHTED):
3285 		/* pba_80_48 strategy weight first half of packet buffer with
3286 		 * 5/8 of the packet buffer space.
3287 		 */
3288 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3289 		pbsize -= rxpktsize * (num_pb / 2);
3290 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3291 		for (; i < (num_pb / 2); i++)
3292 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3293 		/* Fall through to configure remaining packet buffers */
3294 	case (PBA_STRATEGY_EQUAL):
3295 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3296 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3297 		for (; i < num_pb; i++)
3298 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3299 		break;
3300 	default:
3301 		break;
3302 	}
3303 
3304 	/*
3305 	 * Setup Tx packet buffer and threshold equally for all TCs
3306 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3307 	 * 10 since the largest packet we support is just over 9K.
3308 	 */
3309 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3310 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3311 	for (i = 0; i < num_pb; i++) {
3312 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3313 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3314 	}
3315 
3316 	/* Clear unused TCs, if any, to zero buffer size*/
3317 	for (; i < IXGBE_MAX_PB; i++) {
3318 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3319 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3320 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3321 	}
3322 }
3323 
3324 /**
3325  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3326  *  @buffer: pointer to EEPROM
3327  *  @length: size of EEPROM to calculate a checksum for
3328  *  Calculates the checksum for some buffer on a specified length.  The
3329  *  checksum calculated is returned.
3330  **/
3331 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3332 {
3333 	u32 i;
3334 	u8 sum = 0;
3335 
3336 	if (!buffer)
3337 		return 0;
3338 
3339 	for (i = 0; i < length; i++)
3340 		sum += buffer[i];
3341 
3342 	return (u8) (0 - sum);
3343 }
3344 
3345 /**
3346  *  ixgbe_host_interface_command - Issue command to manageability block
3347  *  @hw: pointer to the HW structure
3348  *  @buffer: contains the command to write and where the return status will
3349  *           be placed
3350  *  @length: length of buffer, must be multiple of 4 bytes
3351  *
3352  *  Communicates with the manageability block.  On success return 0
3353  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3354  **/
3355 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3356 					u32 length)
3357 {
3358 	u32 hicr, i, bi;
3359 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3360 	u8 buf_len, dword_len;
3361 
3362 	s32 ret_val = 0;
3363 
3364 	if (length == 0 || length & 0x3 ||
3365 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3366 		hw_dbg(hw, "Buffer length failure.\n");
3367 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3368 		goto out;
3369 	}
3370 
3371 	/* Check that the host interface is enabled. */
3372 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3373 	if ((hicr & IXGBE_HICR_EN) == 0) {
3374 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3375 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3376 		goto out;
3377 	}
3378 
3379 	/* Calculate length in DWORDs */
3380 	dword_len = length >> 2;
3381 
3382 	/*
3383 	 * The device driver writes the relevant command block
3384 	 * into the ram area.
3385 	 */
3386 	for (i = 0; i < dword_len; i++)
3387 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3388 				      i, cpu_to_le32(buffer[i]));
3389 
3390 	/* Setting this bit tells the ARC that a new command is pending. */
3391 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3392 
3393 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3394 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3395 		if (!(hicr & IXGBE_HICR_C))
3396 			break;
3397 		usleep_range(1000, 2000);
3398 	}
3399 
3400 	/* Check command successful completion. */
3401 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3402 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3403 		hw_dbg(hw, "Command has failed with no status valid.\n");
3404 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3405 		goto out;
3406 	}
3407 
3408 	/* Calculate length in DWORDs */
3409 	dword_len = hdr_size >> 2;
3410 
3411 	/* first pull in the header so we know the buffer length */
3412 	for (bi = 0; bi < dword_len; bi++) {
3413 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3414 		le32_to_cpus(&buffer[bi]);
3415 	}
3416 
3417 	/* If there is any thing in data position pull it in */
3418 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3419 	if (buf_len == 0)
3420 		goto out;
3421 
3422 	if (length < (buf_len + hdr_size)) {
3423 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3424 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3425 		goto out;
3426 	}
3427 
3428 	/* Calculate length in DWORDs, add 3 for odd lengths */
3429 	dword_len = (buf_len + 3) >> 2;
3430 
3431 	/* Pull in the rest of the buffer (bi is where we left off)*/
3432 	for (; bi <= dword_len; bi++) {
3433 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3434 		le32_to_cpus(&buffer[bi]);
3435 	}
3436 
3437 out:
3438 	return ret_val;
3439 }
3440 
3441 /**
3442  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3443  *  @hw: pointer to the HW structure
3444  *  @maj: driver version major number
3445  *  @min: driver version minor number
3446  *  @build: driver version build number
3447  *  @sub: driver version sub build number
3448  *
3449  *  Sends driver version number to firmware through the manageability
3450  *  block.  On success return 0
3451  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3452  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3453  **/
3454 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3455 				 u8 build, u8 sub)
3456 {
3457 	struct ixgbe_hic_drv_info fw_cmd;
3458 	int i;
3459 	s32 ret_val = 0;
3460 
3461 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3462 		ret_val = IXGBE_ERR_SWFW_SYNC;
3463 		goto out;
3464 	}
3465 
3466 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3467 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3468 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3469 	fw_cmd.port_num = (u8)hw->bus.func;
3470 	fw_cmd.ver_maj = maj;
3471 	fw_cmd.ver_min = min;
3472 	fw_cmd.ver_build = build;
3473 	fw_cmd.ver_sub = sub;
3474 	fw_cmd.hdr.checksum = 0;
3475 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3476 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3477 	fw_cmd.pad = 0;
3478 	fw_cmd.pad2 = 0;
3479 
3480 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3481 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3482 						       sizeof(fw_cmd));
3483 		if (ret_val != 0)
3484 			continue;
3485 
3486 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3487 		    FW_CEM_RESP_STATUS_SUCCESS)
3488 			ret_val = 0;
3489 		else
3490 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3491 
3492 		break;
3493 	}
3494 
3495 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3496 out:
3497 	return ret_val;
3498 }
3499 
3500 /**
3501  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3502  * @hw: pointer to the hardware structure
3503  *
3504  * The 82599 and x540 MACs can experience issues if TX work is still pending
3505  * when a reset occurs.  This function prevents this by flushing the PCIe
3506  * buffers on the system.
3507  **/
3508 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3509 {
3510 	u32 gcr_ext, hlreg0;
3511 
3512 	/*
3513 	 * If double reset is not requested then all transactions should
3514 	 * already be clear and as such there is no work to do
3515 	 */
3516 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3517 		return;
3518 
3519 	/*
3520 	 * Set loopback enable to prevent any transmits from being sent
3521 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3522 	 * has already been cleared.
3523 	 */
3524 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3525 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3526 
3527 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3528 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3529 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3530 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3531 
3532 	/* Flush all writes and allow 20usec for all transactions to clear */
3533 	IXGBE_WRITE_FLUSH(hw);
3534 	udelay(20);
3535 
3536 	/* restore previous register values */
3537 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3538 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3539 }
3540 
3541 static const u8 ixgbe_emc_temp_data[4] = {
3542 	IXGBE_EMC_INTERNAL_DATA,
3543 	IXGBE_EMC_DIODE1_DATA,
3544 	IXGBE_EMC_DIODE2_DATA,
3545 	IXGBE_EMC_DIODE3_DATA
3546 };
3547 static const u8 ixgbe_emc_therm_limit[4] = {
3548 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3549 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3550 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3551 	IXGBE_EMC_DIODE3_THERM_LIMIT
3552 };
3553 
3554 /**
3555  *  ixgbe_get_ets_data - Extracts the ETS bit data
3556  *  @hw: pointer to hardware structure
3557  *  @ets_cfg: extected ETS data
3558  *  @ets_offset: offset of ETS data
3559  *
3560  *  Returns error code.
3561  **/
3562 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3563 			      u16 *ets_offset)
3564 {
3565 	s32 status = 0;
3566 
3567 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3568 	if (status)
3569 		goto out;
3570 
3571 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3572 		status = IXGBE_NOT_IMPLEMENTED;
3573 		goto out;
3574 	}
3575 
3576 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3577 	if (status)
3578 		goto out;
3579 
3580 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3581 		status = IXGBE_NOT_IMPLEMENTED;
3582 		goto out;
3583 	}
3584 
3585 out:
3586 	return status;
3587 }
3588 
3589 /**
3590  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3591  *  @hw: pointer to hardware structure
3592  *
3593  *  Returns the thermal sensor data structure
3594  **/
3595 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3596 {
3597 	s32 status = 0;
3598 	u16 ets_offset;
3599 	u16 ets_cfg;
3600 	u16 ets_sensor;
3601 	u8  num_sensors;
3602 	u8  i;
3603 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3604 
3605 	/* Only support thermal sensors attached to physical port 0 */
3606 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3607 		status = IXGBE_NOT_IMPLEMENTED;
3608 		goto out;
3609 	}
3610 
3611 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3612 	if (status)
3613 		goto out;
3614 
3615 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3616 	if (num_sensors > IXGBE_MAX_SENSORS)
3617 		num_sensors = IXGBE_MAX_SENSORS;
3618 
3619 	for (i = 0; i < num_sensors; i++) {
3620 		u8  sensor_index;
3621 		u8  sensor_location;
3622 
3623 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3624 					     &ets_sensor);
3625 		if (status)
3626 			goto out;
3627 
3628 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3629 				IXGBE_ETS_DATA_INDEX_SHIFT);
3630 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3631 				   IXGBE_ETS_DATA_LOC_SHIFT);
3632 
3633 		if (sensor_location != 0) {
3634 			status = hw->phy.ops.read_i2c_byte(hw,
3635 					ixgbe_emc_temp_data[sensor_index],
3636 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3637 					&data->sensor[i].temp);
3638 			if (status)
3639 				goto out;
3640 		}
3641 	}
3642 out:
3643 	return status;
3644 }
3645 
3646 /**
3647  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3648  * @hw: pointer to hardware structure
3649  *
3650  * Inits the thermal sensor thresholds according to the NVM map
3651  * and save off the threshold and location values into mac.thermal_sensor_data
3652  **/
3653 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3654 {
3655 	s32 status = 0;
3656 	u16 ets_offset;
3657 	u16 ets_cfg;
3658 	u16 ets_sensor;
3659 	u8  low_thresh_delta;
3660 	u8  num_sensors;
3661 	u8  therm_limit;
3662 	u8  i;
3663 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3664 
3665 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3666 
3667 	/* Only support thermal sensors attached to physical port 0 */
3668 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3669 		status = IXGBE_NOT_IMPLEMENTED;
3670 		goto out;
3671 	}
3672 
3673 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3674 	if (status)
3675 		goto out;
3676 
3677 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3678 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3679 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3680 	if (num_sensors > IXGBE_MAX_SENSORS)
3681 		num_sensors = IXGBE_MAX_SENSORS;
3682 
3683 	for (i = 0; i < num_sensors; i++) {
3684 		u8  sensor_index;
3685 		u8  sensor_location;
3686 
3687 		hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
3688 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3689 				IXGBE_ETS_DATA_INDEX_SHIFT);
3690 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3691 				   IXGBE_ETS_DATA_LOC_SHIFT);
3692 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3693 
3694 		hw->phy.ops.write_i2c_byte(hw,
3695 			ixgbe_emc_therm_limit[sensor_index],
3696 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3697 
3698 		if (sensor_location == 0)
3699 			continue;
3700 
3701 		data->sensor[i].location = sensor_location;
3702 		data->sensor[i].caution_thresh = therm_limit;
3703 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3704 	}
3705 out:
3706 	return status;
3707 }
3708 
3709