1 /******************************************************************************* 2 3 Intel 10 Gigabit PCI Express Linux driver 4 Copyright(c) 1999 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #include <linux/pci.h> 29 #include <linux/delay.h> 30 #include <linux/sched.h> 31 #include <linux/netdevice.h> 32 33 #include "ixgbe.h" 34 #include "ixgbe_common.h" 35 #include "ixgbe_phy.h" 36 37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); 38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); 39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); 40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); 41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); 42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 43 u16 count); 44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); 45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw); 48 49 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); 50 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg); 51 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 52 u16 words, u16 *data); 53 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 54 u16 words, u16 *data); 55 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 56 u16 offset); 57 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw); 58 59 /** 60 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow 61 * control 62 * @hw: pointer to hardware structure 63 * 64 * There are several phys that do not support autoneg flow control. This 65 * function check the device id to see if the associated phy supports 66 * autoneg flow control. 67 **/ 68 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw) 69 { 70 71 switch (hw->device_id) { 72 case IXGBE_DEV_ID_X540T: 73 return 0; 74 case IXGBE_DEV_ID_82599_T3_LOM: 75 return 0; 76 default: 77 return IXGBE_ERR_FC_NOT_SUPPORTED; 78 } 79 } 80 81 /** 82 * ixgbe_setup_fc - Set up flow control 83 * @hw: pointer to hardware structure 84 * 85 * Called at init time to set up flow control. 86 **/ 87 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw) 88 { 89 s32 ret_val = 0; 90 u32 reg = 0, reg_bp = 0; 91 u16 reg_cu = 0; 92 93 /* 94 * Validate the requested mode. Strict IEEE mode does not allow 95 * ixgbe_fc_rx_pause because it will cause us to fail at UNH. 96 */ 97 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { 98 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n"); 99 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 100 goto out; 101 } 102 103 /* 104 * 10gig parts do not have a word in the EEPROM to determine the 105 * default flow control setting, so we explicitly set it to full. 106 */ 107 if (hw->fc.requested_mode == ixgbe_fc_default) 108 hw->fc.requested_mode = ixgbe_fc_full; 109 110 /* 111 * Set up the 1G and 10G flow control advertisement registers so the 112 * HW will be able to do fc autoneg once the cable is plugged in. If 113 * we link at 10G, the 1G advertisement is harmless and vice versa. 114 */ 115 switch (hw->phy.media_type) { 116 case ixgbe_media_type_fiber: 117 case ixgbe_media_type_backplane: 118 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 119 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC); 120 break; 121 case ixgbe_media_type_copper: 122 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, 123 MDIO_MMD_AN, ®_cu); 124 break; 125 default: 126 break; 127 } 128 129 /* 130 * The possible values of fc.requested_mode are: 131 * 0: Flow control is completely disabled 132 * 1: Rx flow control is enabled (we can receive pause frames, 133 * but not send pause frames). 134 * 2: Tx flow control is enabled (we can send pause frames but 135 * we do not support receiving pause frames). 136 * 3: Both Rx and Tx flow control (symmetric) are enabled. 137 * other: Invalid. 138 */ 139 switch (hw->fc.requested_mode) { 140 case ixgbe_fc_none: 141 /* Flow control completely disabled by software override. */ 142 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); 143 if (hw->phy.media_type == ixgbe_media_type_backplane) 144 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE | 145 IXGBE_AUTOC_ASM_PAUSE); 146 else if (hw->phy.media_type == ixgbe_media_type_copper) 147 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); 148 break; 149 case ixgbe_fc_tx_pause: 150 /* 151 * Tx Flow control is enabled, and Rx Flow control is 152 * disabled by software override. 153 */ 154 reg |= IXGBE_PCS1GANA_ASM_PAUSE; 155 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE; 156 if (hw->phy.media_type == ixgbe_media_type_backplane) { 157 reg_bp |= IXGBE_AUTOC_ASM_PAUSE; 158 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE; 159 } else if (hw->phy.media_type == ixgbe_media_type_copper) { 160 reg_cu |= IXGBE_TAF_ASM_PAUSE; 161 reg_cu &= ~IXGBE_TAF_SYM_PAUSE; 162 } 163 break; 164 case ixgbe_fc_rx_pause: 165 /* 166 * Rx Flow control is enabled and Tx Flow control is 167 * disabled by software override. Since there really 168 * isn't a way to advertise that we are capable of RX 169 * Pause ONLY, we will advertise that we support both 170 * symmetric and asymmetric Rx PAUSE, as such we fall 171 * through to the fc_full statement. Later, we will 172 * disable the adapter's ability to send PAUSE frames. 173 */ 174 case ixgbe_fc_full: 175 /* Flow control (both Rx and Tx) is enabled by SW override. */ 176 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE; 177 if (hw->phy.media_type == ixgbe_media_type_backplane) 178 reg_bp |= IXGBE_AUTOC_SYM_PAUSE | 179 IXGBE_AUTOC_ASM_PAUSE; 180 else if (hw->phy.media_type == ixgbe_media_type_copper) 181 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE; 182 break; 183 default: 184 hw_dbg(hw, "Flow control param set incorrectly\n"); 185 ret_val = IXGBE_ERR_CONFIG; 186 goto out; 187 break; 188 } 189 190 if (hw->mac.type != ixgbe_mac_X540) { 191 /* 192 * Enable auto-negotiation between the MAC & PHY; 193 * the MAC will advertise clause 37 flow control. 194 */ 195 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); 196 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); 197 198 /* Disable AN timeout */ 199 if (hw->fc.strict_ieee) 200 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; 201 202 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); 203 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg); 204 } 205 206 /* 207 * AUTOC restart handles negotiation of 1G and 10G on backplane 208 * and copper. There is no need to set the PCS1GCTL register. 209 * 210 */ 211 if (hw->phy.media_type == ixgbe_media_type_backplane) { 212 reg_bp |= IXGBE_AUTOC_AN_RESTART; 213 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp); 214 } else if ((hw->phy.media_type == ixgbe_media_type_copper) && 215 (ixgbe_device_supports_autoneg_fc(hw) == 0)) { 216 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, 217 MDIO_MMD_AN, reg_cu); 218 } 219 220 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg); 221 out: 222 return ret_val; 223 } 224 225 /** 226 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx 227 * @hw: pointer to hardware structure 228 * 229 * Starts the hardware by filling the bus info structure and media type, clears 230 * all on chip counters, initializes receive address registers, multicast 231 * table, VLAN filter table, calls routine to set up link and flow control 232 * settings, and leaves transmit and receive units disabled and uninitialized 233 **/ 234 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) 235 { 236 u32 ctrl_ext; 237 238 /* Set the media type */ 239 hw->phy.media_type = hw->mac.ops.get_media_type(hw); 240 241 /* Identify the PHY */ 242 hw->phy.ops.identify(hw); 243 244 /* Clear the VLAN filter table */ 245 hw->mac.ops.clear_vfta(hw); 246 247 /* Clear statistics registers */ 248 hw->mac.ops.clear_hw_cntrs(hw); 249 250 /* Set No Snoop Disable */ 251 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); 252 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; 253 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); 254 IXGBE_WRITE_FLUSH(hw); 255 256 /* Setup flow control */ 257 ixgbe_setup_fc(hw); 258 259 /* Clear adapter stopped flag */ 260 hw->adapter_stopped = false; 261 262 return 0; 263 } 264 265 /** 266 * ixgbe_start_hw_gen2 - Init sequence for common device family 267 * @hw: pointer to hw structure 268 * 269 * Performs the init sequence common to the second generation 270 * of 10 GbE devices. 271 * Devices in the second generation: 272 * 82599 273 * X540 274 **/ 275 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw) 276 { 277 u32 i; 278 u32 regval; 279 280 /* Clear the rate limiters */ 281 for (i = 0; i < hw->mac.max_tx_queues; i++) { 282 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i); 283 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); 284 } 285 IXGBE_WRITE_FLUSH(hw); 286 287 /* Disable relaxed ordering */ 288 for (i = 0; i < hw->mac.max_tx_queues; i++) { 289 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); 290 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN; 291 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); 292 } 293 294 for (i = 0; i < hw->mac.max_rx_queues; i++) { 295 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); 296 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN | 297 IXGBE_DCA_RXCTRL_HEAD_WRO_EN); 298 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); 299 } 300 301 return 0; 302 } 303 304 /** 305 * ixgbe_init_hw_generic - Generic hardware initialization 306 * @hw: pointer to hardware structure 307 * 308 * Initialize the hardware by resetting the hardware, filling the bus info 309 * structure and media type, clears all on chip counters, initializes receive 310 * address registers, multicast table, VLAN filter table, calls routine to set 311 * up link and flow control settings, and leaves transmit and receive units 312 * disabled and uninitialized 313 **/ 314 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) 315 { 316 s32 status; 317 318 /* Reset the hardware */ 319 status = hw->mac.ops.reset_hw(hw); 320 321 if (status == 0) { 322 /* Start the HW */ 323 status = hw->mac.ops.start_hw(hw); 324 } 325 326 return status; 327 } 328 329 /** 330 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters 331 * @hw: pointer to hardware structure 332 * 333 * Clears all hardware statistics counters by reading them from the hardware 334 * Statistics counters are clear on read. 335 **/ 336 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) 337 { 338 u16 i = 0; 339 340 IXGBE_READ_REG(hw, IXGBE_CRCERRS); 341 IXGBE_READ_REG(hw, IXGBE_ILLERRC); 342 IXGBE_READ_REG(hw, IXGBE_ERRBC); 343 IXGBE_READ_REG(hw, IXGBE_MSPDC); 344 for (i = 0; i < 8; i++) 345 IXGBE_READ_REG(hw, IXGBE_MPC(i)); 346 347 IXGBE_READ_REG(hw, IXGBE_MLFC); 348 IXGBE_READ_REG(hw, IXGBE_MRFC); 349 IXGBE_READ_REG(hw, IXGBE_RLEC); 350 IXGBE_READ_REG(hw, IXGBE_LXONTXC); 351 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); 352 if (hw->mac.type >= ixgbe_mac_82599EB) { 353 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT); 354 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT); 355 } else { 356 IXGBE_READ_REG(hw, IXGBE_LXONRXC); 357 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); 358 } 359 360 for (i = 0; i < 8; i++) { 361 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); 362 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); 363 if (hw->mac.type >= ixgbe_mac_82599EB) { 364 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i)); 365 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i)); 366 } else { 367 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); 368 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); 369 } 370 } 371 if (hw->mac.type >= ixgbe_mac_82599EB) 372 for (i = 0; i < 8; i++) 373 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i)); 374 IXGBE_READ_REG(hw, IXGBE_PRC64); 375 IXGBE_READ_REG(hw, IXGBE_PRC127); 376 IXGBE_READ_REG(hw, IXGBE_PRC255); 377 IXGBE_READ_REG(hw, IXGBE_PRC511); 378 IXGBE_READ_REG(hw, IXGBE_PRC1023); 379 IXGBE_READ_REG(hw, IXGBE_PRC1522); 380 IXGBE_READ_REG(hw, IXGBE_GPRC); 381 IXGBE_READ_REG(hw, IXGBE_BPRC); 382 IXGBE_READ_REG(hw, IXGBE_MPRC); 383 IXGBE_READ_REG(hw, IXGBE_GPTC); 384 IXGBE_READ_REG(hw, IXGBE_GORCL); 385 IXGBE_READ_REG(hw, IXGBE_GORCH); 386 IXGBE_READ_REG(hw, IXGBE_GOTCL); 387 IXGBE_READ_REG(hw, IXGBE_GOTCH); 388 if (hw->mac.type == ixgbe_mac_82598EB) 389 for (i = 0; i < 8; i++) 390 IXGBE_READ_REG(hw, IXGBE_RNBC(i)); 391 IXGBE_READ_REG(hw, IXGBE_RUC); 392 IXGBE_READ_REG(hw, IXGBE_RFC); 393 IXGBE_READ_REG(hw, IXGBE_ROC); 394 IXGBE_READ_REG(hw, IXGBE_RJC); 395 IXGBE_READ_REG(hw, IXGBE_MNGPRC); 396 IXGBE_READ_REG(hw, IXGBE_MNGPDC); 397 IXGBE_READ_REG(hw, IXGBE_MNGPTC); 398 IXGBE_READ_REG(hw, IXGBE_TORL); 399 IXGBE_READ_REG(hw, IXGBE_TORH); 400 IXGBE_READ_REG(hw, IXGBE_TPR); 401 IXGBE_READ_REG(hw, IXGBE_TPT); 402 IXGBE_READ_REG(hw, IXGBE_PTC64); 403 IXGBE_READ_REG(hw, IXGBE_PTC127); 404 IXGBE_READ_REG(hw, IXGBE_PTC255); 405 IXGBE_READ_REG(hw, IXGBE_PTC511); 406 IXGBE_READ_REG(hw, IXGBE_PTC1023); 407 IXGBE_READ_REG(hw, IXGBE_PTC1522); 408 IXGBE_READ_REG(hw, IXGBE_MPTC); 409 IXGBE_READ_REG(hw, IXGBE_BPTC); 410 for (i = 0; i < 16; i++) { 411 IXGBE_READ_REG(hw, IXGBE_QPRC(i)); 412 IXGBE_READ_REG(hw, IXGBE_QPTC(i)); 413 if (hw->mac.type >= ixgbe_mac_82599EB) { 414 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i)); 415 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i)); 416 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i)); 417 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i)); 418 IXGBE_READ_REG(hw, IXGBE_QPRDC(i)); 419 } else { 420 IXGBE_READ_REG(hw, IXGBE_QBRC(i)); 421 IXGBE_READ_REG(hw, IXGBE_QBTC(i)); 422 } 423 } 424 425 if (hw->mac.type == ixgbe_mac_X540) { 426 if (hw->phy.id == 0) 427 hw->phy.ops.identify(hw); 428 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i); 429 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i); 430 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i); 431 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i); 432 } 433 434 return 0; 435 } 436 437 /** 438 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM 439 * @hw: pointer to hardware structure 440 * @pba_num: stores the part number string from the EEPROM 441 * @pba_num_size: part number string buffer length 442 * 443 * Reads the part number string from the EEPROM. 444 **/ 445 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num, 446 u32 pba_num_size) 447 { 448 s32 ret_val; 449 u16 data; 450 u16 pba_ptr; 451 u16 offset; 452 u16 length; 453 454 if (pba_num == NULL) { 455 hw_dbg(hw, "PBA string buffer was null\n"); 456 return IXGBE_ERR_INVALID_ARGUMENT; 457 } 458 459 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); 460 if (ret_val) { 461 hw_dbg(hw, "NVM Read Error\n"); 462 return ret_val; 463 } 464 465 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); 466 if (ret_val) { 467 hw_dbg(hw, "NVM Read Error\n"); 468 return ret_val; 469 } 470 471 /* 472 * if data is not ptr guard the PBA must be in legacy format which 473 * means pba_ptr is actually our second data word for the PBA number 474 * and we can decode it into an ascii string 475 */ 476 if (data != IXGBE_PBANUM_PTR_GUARD) { 477 hw_dbg(hw, "NVM PBA number is not stored as string\n"); 478 479 /* we will need 11 characters to store the PBA */ 480 if (pba_num_size < 11) { 481 hw_dbg(hw, "PBA string buffer too small\n"); 482 return IXGBE_ERR_NO_SPACE; 483 } 484 485 /* extract hex string from data and pba_ptr */ 486 pba_num[0] = (data >> 12) & 0xF; 487 pba_num[1] = (data >> 8) & 0xF; 488 pba_num[2] = (data >> 4) & 0xF; 489 pba_num[3] = data & 0xF; 490 pba_num[4] = (pba_ptr >> 12) & 0xF; 491 pba_num[5] = (pba_ptr >> 8) & 0xF; 492 pba_num[6] = '-'; 493 pba_num[7] = 0; 494 pba_num[8] = (pba_ptr >> 4) & 0xF; 495 pba_num[9] = pba_ptr & 0xF; 496 497 /* put a null character on the end of our string */ 498 pba_num[10] = '\0'; 499 500 /* switch all the data but the '-' to hex char */ 501 for (offset = 0; offset < 10; offset++) { 502 if (pba_num[offset] < 0xA) 503 pba_num[offset] += '0'; 504 else if (pba_num[offset] < 0x10) 505 pba_num[offset] += 'A' - 0xA; 506 } 507 508 return 0; 509 } 510 511 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); 512 if (ret_val) { 513 hw_dbg(hw, "NVM Read Error\n"); 514 return ret_val; 515 } 516 517 if (length == 0xFFFF || length == 0) { 518 hw_dbg(hw, "NVM PBA number section invalid length\n"); 519 return IXGBE_ERR_PBA_SECTION; 520 } 521 522 /* check if pba_num buffer is big enough */ 523 if (pba_num_size < (((u32)length * 2) - 1)) { 524 hw_dbg(hw, "PBA string buffer too small\n"); 525 return IXGBE_ERR_NO_SPACE; 526 } 527 528 /* trim pba length from start of string */ 529 pba_ptr++; 530 length--; 531 532 for (offset = 0; offset < length; offset++) { 533 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data); 534 if (ret_val) { 535 hw_dbg(hw, "NVM Read Error\n"); 536 return ret_val; 537 } 538 pba_num[offset * 2] = (u8)(data >> 8); 539 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF); 540 } 541 pba_num[offset * 2] = '\0'; 542 543 return 0; 544 } 545 546 /** 547 * ixgbe_get_mac_addr_generic - Generic get MAC address 548 * @hw: pointer to hardware structure 549 * @mac_addr: Adapter MAC address 550 * 551 * Reads the adapter's MAC address from first Receive Address Register (RAR0) 552 * A reset of the adapter must be performed prior to calling this function 553 * in order for the MAC address to have been loaded from the EEPROM into RAR0 554 **/ 555 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) 556 { 557 u32 rar_high; 558 u32 rar_low; 559 u16 i; 560 561 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); 562 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); 563 564 for (i = 0; i < 4; i++) 565 mac_addr[i] = (u8)(rar_low >> (i*8)); 566 567 for (i = 0; i < 2; i++) 568 mac_addr[i+4] = (u8)(rar_high >> (i*8)); 569 570 return 0; 571 } 572 573 /** 574 * ixgbe_get_bus_info_generic - Generic set PCI bus info 575 * @hw: pointer to hardware structure 576 * 577 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure 578 **/ 579 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) 580 { 581 struct ixgbe_adapter *adapter = hw->back; 582 struct ixgbe_mac_info *mac = &hw->mac; 583 u16 link_status; 584 585 hw->bus.type = ixgbe_bus_type_pci_express; 586 587 /* Get the negotiated link width and speed from PCI config space */ 588 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS, 589 &link_status); 590 591 switch (link_status & IXGBE_PCI_LINK_WIDTH) { 592 case IXGBE_PCI_LINK_WIDTH_1: 593 hw->bus.width = ixgbe_bus_width_pcie_x1; 594 break; 595 case IXGBE_PCI_LINK_WIDTH_2: 596 hw->bus.width = ixgbe_bus_width_pcie_x2; 597 break; 598 case IXGBE_PCI_LINK_WIDTH_4: 599 hw->bus.width = ixgbe_bus_width_pcie_x4; 600 break; 601 case IXGBE_PCI_LINK_WIDTH_8: 602 hw->bus.width = ixgbe_bus_width_pcie_x8; 603 break; 604 default: 605 hw->bus.width = ixgbe_bus_width_unknown; 606 break; 607 } 608 609 switch (link_status & IXGBE_PCI_LINK_SPEED) { 610 case IXGBE_PCI_LINK_SPEED_2500: 611 hw->bus.speed = ixgbe_bus_speed_2500; 612 break; 613 case IXGBE_PCI_LINK_SPEED_5000: 614 hw->bus.speed = ixgbe_bus_speed_5000; 615 break; 616 default: 617 hw->bus.speed = ixgbe_bus_speed_unknown; 618 break; 619 } 620 621 mac->ops.set_lan_id(hw); 622 623 return 0; 624 } 625 626 /** 627 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 628 * @hw: pointer to the HW structure 629 * 630 * Determines the LAN function id by reading memory-mapped registers 631 * and swaps the port value if requested. 632 **/ 633 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) 634 { 635 struct ixgbe_bus_info *bus = &hw->bus; 636 u32 reg; 637 638 reg = IXGBE_READ_REG(hw, IXGBE_STATUS); 639 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT; 640 bus->lan_id = bus->func; 641 642 /* check for a port swap */ 643 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS); 644 if (reg & IXGBE_FACTPS_LFS) 645 bus->func ^= 0x1; 646 } 647 648 /** 649 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units 650 * @hw: pointer to hardware structure 651 * 652 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, 653 * disables transmit and receive units. The adapter_stopped flag is used by 654 * the shared code and drivers to determine if the adapter is in a stopped 655 * state and should not touch the hardware. 656 **/ 657 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) 658 { 659 u32 reg_val; 660 u16 i; 661 662 /* 663 * Set the adapter_stopped flag so other driver functions stop touching 664 * the hardware 665 */ 666 hw->adapter_stopped = true; 667 668 /* Disable the receive unit */ 669 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0); 670 671 /* Clear interrupt mask to stop interrupts from being generated */ 672 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); 673 674 /* Clear any pending interrupts, flush previous writes */ 675 IXGBE_READ_REG(hw, IXGBE_EICR); 676 677 /* Disable the transmit unit. Each queue must be disabled. */ 678 for (i = 0; i < hw->mac.max_tx_queues; i++) 679 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH); 680 681 /* Disable the receive unit by stopping each queue */ 682 for (i = 0; i < hw->mac.max_rx_queues; i++) { 683 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); 684 reg_val &= ~IXGBE_RXDCTL_ENABLE; 685 reg_val |= IXGBE_RXDCTL_SWFLSH; 686 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); 687 } 688 689 /* flush all queues disables */ 690 IXGBE_WRITE_FLUSH(hw); 691 usleep_range(1000, 2000); 692 693 /* 694 * Prevent the PCI-E bus from from hanging by disabling PCI-E master 695 * access and verify no pending requests 696 */ 697 return ixgbe_disable_pcie_master(hw); 698 } 699 700 /** 701 * ixgbe_led_on_generic - Turns on the software controllable LEDs. 702 * @hw: pointer to hardware structure 703 * @index: led number to turn on 704 **/ 705 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) 706 { 707 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 708 709 /* To turn on the LED, set mode to ON. */ 710 led_reg &= ~IXGBE_LED_MODE_MASK(index); 711 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); 712 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 713 IXGBE_WRITE_FLUSH(hw); 714 715 return 0; 716 } 717 718 /** 719 * ixgbe_led_off_generic - Turns off the software controllable LEDs. 720 * @hw: pointer to hardware structure 721 * @index: led number to turn off 722 **/ 723 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) 724 { 725 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 726 727 /* To turn off the LED, set mode to OFF. */ 728 led_reg &= ~IXGBE_LED_MODE_MASK(index); 729 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); 730 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 731 IXGBE_WRITE_FLUSH(hw); 732 733 return 0; 734 } 735 736 /** 737 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params 738 * @hw: pointer to hardware structure 739 * 740 * Initializes the EEPROM parameters ixgbe_eeprom_info within the 741 * ixgbe_hw struct in order to set up EEPROM access. 742 **/ 743 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) 744 { 745 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 746 u32 eec; 747 u16 eeprom_size; 748 749 if (eeprom->type == ixgbe_eeprom_uninitialized) { 750 eeprom->type = ixgbe_eeprom_none; 751 /* Set default semaphore delay to 10ms which is a well 752 * tested value */ 753 eeprom->semaphore_delay = 10; 754 /* Clear EEPROM page size, it will be initialized as needed */ 755 eeprom->word_page_size = 0; 756 757 /* 758 * Check for EEPROM present first. 759 * If not present leave as none 760 */ 761 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 762 if (eec & IXGBE_EEC_PRES) { 763 eeprom->type = ixgbe_eeprom_spi; 764 765 /* 766 * SPI EEPROM is assumed here. This code would need to 767 * change if a future EEPROM is not SPI. 768 */ 769 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> 770 IXGBE_EEC_SIZE_SHIFT); 771 eeprom->word_size = 1 << (eeprom_size + 772 IXGBE_EEPROM_WORD_SIZE_SHIFT); 773 } 774 775 if (eec & IXGBE_EEC_ADDR_SIZE) 776 eeprom->address_bits = 16; 777 else 778 eeprom->address_bits = 8; 779 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: " 780 "%d\n", eeprom->type, eeprom->word_size, 781 eeprom->address_bits); 782 } 783 784 return 0; 785 } 786 787 /** 788 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang 789 * @hw: pointer to hardware structure 790 * @offset: offset within the EEPROM to write 791 * @words: number of words 792 * @data: 16 bit word(s) to write to EEPROM 793 * 794 * Reads 16 bit word(s) from EEPROM through bit-bang method 795 **/ 796 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 797 u16 words, u16 *data) 798 { 799 s32 status = 0; 800 u16 i, count; 801 802 hw->eeprom.ops.init_params(hw); 803 804 if (words == 0) { 805 status = IXGBE_ERR_INVALID_ARGUMENT; 806 goto out; 807 } 808 809 if (offset + words > hw->eeprom.word_size) { 810 status = IXGBE_ERR_EEPROM; 811 goto out; 812 } 813 814 /* 815 * The EEPROM page size cannot be queried from the chip. We do lazy 816 * initialization. It is worth to do that when we write large buffer. 817 */ 818 if ((hw->eeprom.word_page_size == 0) && 819 (words > IXGBE_EEPROM_PAGE_SIZE_MAX)) 820 ixgbe_detect_eeprom_page_size_generic(hw, offset); 821 822 /* 823 * We cannot hold synchronization semaphores for too long 824 * to avoid other entity starvation. However it is more efficient 825 * to read in bursts than synchronizing access for each word. 826 */ 827 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 828 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 829 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 830 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i, 831 count, &data[i]); 832 833 if (status != 0) 834 break; 835 } 836 837 out: 838 return status; 839 } 840 841 /** 842 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM 843 * @hw: pointer to hardware structure 844 * @offset: offset within the EEPROM to be written to 845 * @words: number of word(s) 846 * @data: 16 bit word(s) to be written to the EEPROM 847 * 848 * If ixgbe_eeprom_update_checksum is not called after this function, the 849 * EEPROM will most likely contain an invalid checksum. 850 **/ 851 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 852 u16 words, u16 *data) 853 { 854 s32 status; 855 u16 word; 856 u16 page_size; 857 u16 i; 858 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; 859 860 /* Prepare the EEPROM for writing */ 861 status = ixgbe_acquire_eeprom(hw); 862 863 if (status == 0) { 864 if (ixgbe_ready_eeprom(hw) != 0) { 865 ixgbe_release_eeprom(hw); 866 status = IXGBE_ERR_EEPROM; 867 } 868 } 869 870 if (status == 0) { 871 for (i = 0; i < words; i++) { 872 ixgbe_standby_eeprom(hw); 873 874 /* Send the WRITE ENABLE command (8 bit opcode ) */ 875 ixgbe_shift_out_eeprom_bits(hw, 876 IXGBE_EEPROM_WREN_OPCODE_SPI, 877 IXGBE_EEPROM_OPCODE_BITS); 878 879 ixgbe_standby_eeprom(hw); 880 881 /* 882 * Some SPI eeproms use the 8th address bit embedded 883 * in the opcode 884 */ 885 if ((hw->eeprom.address_bits == 8) && 886 ((offset + i) >= 128)) 887 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 888 889 /* Send the Write command (8-bit opcode + addr) */ 890 ixgbe_shift_out_eeprom_bits(hw, write_opcode, 891 IXGBE_EEPROM_OPCODE_BITS); 892 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 893 hw->eeprom.address_bits); 894 895 page_size = hw->eeprom.word_page_size; 896 897 /* Send the data in burst via SPI*/ 898 do { 899 word = data[i]; 900 word = (word >> 8) | (word << 8); 901 ixgbe_shift_out_eeprom_bits(hw, word, 16); 902 903 if (page_size == 0) 904 break; 905 906 /* do not wrap around page */ 907 if (((offset + i) & (page_size - 1)) == 908 (page_size - 1)) 909 break; 910 } while (++i < words); 911 912 ixgbe_standby_eeprom(hw); 913 usleep_range(10000, 20000); 914 } 915 /* Done with writing - release the EEPROM */ 916 ixgbe_release_eeprom(hw); 917 } 918 919 return status; 920 } 921 922 /** 923 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM 924 * @hw: pointer to hardware structure 925 * @offset: offset within the EEPROM to be written to 926 * @data: 16 bit word to be written to the EEPROM 927 * 928 * If ixgbe_eeprom_update_checksum is not called after this function, the 929 * EEPROM will most likely contain an invalid checksum. 930 **/ 931 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 932 { 933 s32 status; 934 935 hw->eeprom.ops.init_params(hw); 936 937 if (offset >= hw->eeprom.word_size) { 938 status = IXGBE_ERR_EEPROM; 939 goto out; 940 } 941 942 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data); 943 944 out: 945 return status; 946 } 947 948 /** 949 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang 950 * @hw: pointer to hardware structure 951 * @offset: offset within the EEPROM to be read 952 * @words: number of word(s) 953 * @data: read 16 bit words(s) from EEPROM 954 * 955 * Reads 16 bit word(s) from EEPROM through bit-bang method 956 **/ 957 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 958 u16 words, u16 *data) 959 { 960 s32 status = 0; 961 u16 i, count; 962 963 hw->eeprom.ops.init_params(hw); 964 965 if (words == 0) { 966 status = IXGBE_ERR_INVALID_ARGUMENT; 967 goto out; 968 } 969 970 if (offset + words > hw->eeprom.word_size) { 971 status = IXGBE_ERR_EEPROM; 972 goto out; 973 } 974 975 /* 976 * We cannot hold synchronization semaphores for too long 977 * to avoid other entity starvation. However it is more efficient 978 * to read in bursts than synchronizing access for each word. 979 */ 980 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 981 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 982 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 983 984 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i, 985 count, &data[i]); 986 987 if (status != 0) 988 break; 989 } 990 991 out: 992 return status; 993 } 994 995 /** 996 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang 997 * @hw: pointer to hardware structure 998 * @offset: offset within the EEPROM to be read 999 * @words: number of word(s) 1000 * @data: read 16 bit word(s) from EEPROM 1001 * 1002 * Reads 16 bit word(s) from EEPROM through bit-bang method 1003 **/ 1004 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 1005 u16 words, u16 *data) 1006 { 1007 s32 status; 1008 u16 word_in; 1009 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; 1010 u16 i; 1011 1012 /* Prepare the EEPROM for reading */ 1013 status = ixgbe_acquire_eeprom(hw); 1014 1015 if (status == 0) { 1016 if (ixgbe_ready_eeprom(hw) != 0) { 1017 ixgbe_release_eeprom(hw); 1018 status = IXGBE_ERR_EEPROM; 1019 } 1020 } 1021 1022 if (status == 0) { 1023 for (i = 0; i < words; i++) { 1024 ixgbe_standby_eeprom(hw); 1025 /* 1026 * Some SPI eeproms use the 8th address bit embedded 1027 * in the opcode 1028 */ 1029 if ((hw->eeprom.address_bits == 8) && 1030 ((offset + i) >= 128)) 1031 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 1032 1033 /* Send the READ command (opcode + addr) */ 1034 ixgbe_shift_out_eeprom_bits(hw, read_opcode, 1035 IXGBE_EEPROM_OPCODE_BITS); 1036 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 1037 hw->eeprom.address_bits); 1038 1039 /* Read the data. */ 1040 word_in = ixgbe_shift_in_eeprom_bits(hw, 16); 1041 data[i] = (word_in >> 8) | (word_in << 8); 1042 } 1043 1044 /* End this read operation */ 1045 ixgbe_release_eeprom(hw); 1046 } 1047 1048 return status; 1049 } 1050 1051 /** 1052 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang 1053 * @hw: pointer to hardware structure 1054 * @offset: offset within the EEPROM to be read 1055 * @data: read 16 bit value from EEPROM 1056 * 1057 * Reads 16 bit value from EEPROM through bit-bang method 1058 **/ 1059 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1060 u16 *data) 1061 { 1062 s32 status; 1063 1064 hw->eeprom.ops.init_params(hw); 1065 1066 if (offset >= hw->eeprom.word_size) { 1067 status = IXGBE_ERR_EEPROM; 1068 goto out; 1069 } 1070 1071 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1072 1073 out: 1074 return status; 1075 } 1076 1077 /** 1078 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD 1079 * @hw: pointer to hardware structure 1080 * @offset: offset of word in the EEPROM to read 1081 * @words: number of word(s) 1082 * @data: 16 bit word(s) from the EEPROM 1083 * 1084 * Reads a 16 bit word(s) from the EEPROM using the EERD register. 1085 **/ 1086 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1087 u16 words, u16 *data) 1088 { 1089 u32 eerd; 1090 s32 status = 0; 1091 u32 i; 1092 1093 hw->eeprom.ops.init_params(hw); 1094 1095 if (words == 0) { 1096 status = IXGBE_ERR_INVALID_ARGUMENT; 1097 goto out; 1098 } 1099 1100 if (offset >= hw->eeprom.word_size) { 1101 status = IXGBE_ERR_EEPROM; 1102 goto out; 1103 } 1104 1105 for (i = 0; i < words; i++) { 1106 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) + 1107 IXGBE_EEPROM_RW_REG_START; 1108 1109 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); 1110 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ); 1111 1112 if (status == 0) { 1113 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >> 1114 IXGBE_EEPROM_RW_REG_DATA); 1115 } else { 1116 hw_dbg(hw, "Eeprom read timed out\n"); 1117 goto out; 1118 } 1119 } 1120 out: 1121 return status; 1122 } 1123 1124 /** 1125 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size 1126 * @hw: pointer to hardware structure 1127 * @offset: offset within the EEPROM to be used as a scratch pad 1128 * 1129 * Discover EEPROM page size by writing marching data at given offset. 1130 * This function is called only when we are writing a new large buffer 1131 * at given offset so the data would be overwritten anyway. 1132 **/ 1133 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 1134 u16 offset) 1135 { 1136 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX]; 1137 s32 status = 0; 1138 u16 i; 1139 1140 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++) 1141 data[i] = i; 1142 1143 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX; 1144 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1145 IXGBE_EEPROM_PAGE_SIZE_MAX, data); 1146 hw->eeprom.word_page_size = 0; 1147 if (status != 0) 1148 goto out; 1149 1150 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1151 if (status != 0) 1152 goto out; 1153 1154 /* 1155 * When writing in burst more than the actual page size 1156 * EEPROM address wraps around current page. 1157 */ 1158 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0]; 1159 1160 hw_dbg(hw, "Detected EEPROM page size = %d words.", 1161 hw->eeprom.word_page_size); 1162 out: 1163 return status; 1164 } 1165 1166 /** 1167 * ixgbe_read_eerd_generic - Read EEPROM word using EERD 1168 * @hw: pointer to hardware structure 1169 * @offset: offset of word in the EEPROM to read 1170 * @data: word read from the EEPROM 1171 * 1172 * Reads a 16 bit word from the EEPROM using the EERD register. 1173 **/ 1174 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) 1175 { 1176 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data); 1177 } 1178 1179 /** 1180 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR 1181 * @hw: pointer to hardware structure 1182 * @offset: offset of word in the EEPROM to write 1183 * @words: number of words 1184 * @data: word(s) write to the EEPROM 1185 * 1186 * Write a 16 bit word(s) to the EEPROM using the EEWR register. 1187 **/ 1188 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1189 u16 words, u16 *data) 1190 { 1191 u32 eewr; 1192 s32 status = 0; 1193 u16 i; 1194 1195 hw->eeprom.ops.init_params(hw); 1196 1197 if (words == 0) { 1198 status = IXGBE_ERR_INVALID_ARGUMENT; 1199 goto out; 1200 } 1201 1202 if (offset >= hw->eeprom.word_size) { 1203 status = IXGBE_ERR_EEPROM; 1204 goto out; 1205 } 1206 1207 for (i = 0; i < words; i++) { 1208 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | 1209 (data[i] << IXGBE_EEPROM_RW_REG_DATA) | 1210 IXGBE_EEPROM_RW_REG_START; 1211 1212 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1213 if (status != 0) { 1214 hw_dbg(hw, "Eeprom write EEWR timed out\n"); 1215 goto out; 1216 } 1217 1218 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr); 1219 1220 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1221 if (status != 0) { 1222 hw_dbg(hw, "Eeprom write EEWR timed out\n"); 1223 goto out; 1224 } 1225 } 1226 1227 out: 1228 return status; 1229 } 1230 1231 /** 1232 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR 1233 * @hw: pointer to hardware structure 1234 * @offset: offset of word in the EEPROM to write 1235 * @data: word write to the EEPROM 1236 * 1237 * Write a 16 bit word to the EEPROM using the EEWR register. 1238 **/ 1239 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 1240 { 1241 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data); 1242 } 1243 1244 /** 1245 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status 1246 * @hw: pointer to hardware structure 1247 * @ee_reg: EEPROM flag for polling 1248 * 1249 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the 1250 * read or write is done respectively. 1251 **/ 1252 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg) 1253 { 1254 u32 i; 1255 u32 reg; 1256 s32 status = IXGBE_ERR_EEPROM; 1257 1258 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) { 1259 if (ee_reg == IXGBE_NVM_POLL_READ) 1260 reg = IXGBE_READ_REG(hw, IXGBE_EERD); 1261 else 1262 reg = IXGBE_READ_REG(hw, IXGBE_EEWR); 1263 1264 if (reg & IXGBE_EEPROM_RW_REG_DONE) { 1265 status = 0; 1266 break; 1267 } 1268 udelay(5); 1269 } 1270 return status; 1271 } 1272 1273 /** 1274 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang 1275 * @hw: pointer to hardware structure 1276 * 1277 * Prepares EEPROM for access using bit-bang method. This function should 1278 * be called before issuing a command to the EEPROM. 1279 **/ 1280 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) 1281 { 1282 s32 status = 0; 1283 u32 eec; 1284 u32 i; 1285 1286 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0) 1287 status = IXGBE_ERR_SWFW_SYNC; 1288 1289 if (status == 0) { 1290 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1291 1292 /* Request EEPROM Access */ 1293 eec |= IXGBE_EEC_REQ; 1294 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1295 1296 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { 1297 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1298 if (eec & IXGBE_EEC_GNT) 1299 break; 1300 udelay(5); 1301 } 1302 1303 /* Release if grant not acquired */ 1304 if (!(eec & IXGBE_EEC_GNT)) { 1305 eec &= ~IXGBE_EEC_REQ; 1306 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1307 hw_dbg(hw, "Could not acquire EEPROM grant\n"); 1308 1309 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 1310 status = IXGBE_ERR_EEPROM; 1311 } 1312 1313 /* Setup EEPROM for Read/Write */ 1314 if (status == 0) { 1315 /* Clear CS and SK */ 1316 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); 1317 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1318 IXGBE_WRITE_FLUSH(hw); 1319 udelay(1); 1320 } 1321 } 1322 return status; 1323 } 1324 1325 /** 1326 * ixgbe_get_eeprom_semaphore - Get hardware semaphore 1327 * @hw: pointer to hardware structure 1328 * 1329 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method 1330 **/ 1331 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) 1332 { 1333 s32 status = IXGBE_ERR_EEPROM; 1334 u32 timeout = 2000; 1335 u32 i; 1336 u32 swsm; 1337 1338 /* Get SMBI software semaphore between device drivers first */ 1339 for (i = 0; i < timeout; i++) { 1340 /* 1341 * If the SMBI bit is 0 when we read it, then the bit will be 1342 * set and we have the semaphore 1343 */ 1344 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1345 if (!(swsm & IXGBE_SWSM_SMBI)) { 1346 status = 0; 1347 break; 1348 } 1349 udelay(50); 1350 } 1351 1352 if (i == timeout) { 1353 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore " 1354 "not granted.\n"); 1355 /* 1356 * this release is particularly important because our attempts 1357 * above to get the semaphore may have succeeded, and if there 1358 * was a timeout, we should unconditionally clear the semaphore 1359 * bits to free the driver to make progress 1360 */ 1361 ixgbe_release_eeprom_semaphore(hw); 1362 1363 udelay(50); 1364 /* 1365 * one last try 1366 * If the SMBI bit is 0 when we read it, then the bit will be 1367 * set and we have the semaphore 1368 */ 1369 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1370 if (!(swsm & IXGBE_SWSM_SMBI)) 1371 status = 0; 1372 } 1373 1374 /* Now get the semaphore between SW/FW through the SWESMBI bit */ 1375 if (status == 0) { 1376 for (i = 0; i < timeout; i++) { 1377 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1378 1379 /* Set the SW EEPROM semaphore bit to request access */ 1380 swsm |= IXGBE_SWSM_SWESMBI; 1381 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); 1382 1383 /* 1384 * If we set the bit successfully then we got the 1385 * semaphore. 1386 */ 1387 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1388 if (swsm & IXGBE_SWSM_SWESMBI) 1389 break; 1390 1391 udelay(50); 1392 } 1393 1394 /* 1395 * Release semaphores and return error if SW EEPROM semaphore 1396 * was not granted because we don't have access to the EEPROM 1397 */ 1398 if (i >= timeout) { 1399 hw_dbg(hw, "SWESMBI Software EEPROM semaphore " 1400 "not granted.\n"); 1401 ixgbe_release_eeprom_semaphore(hw); 1402 status = IXGBE_ERR_EEPROM; 1403 } 1404 } else { 1405 hw_dbg(hw, "Software semaphore SMBI between device drivers " 1406 "not granted.\n"); 1407 } 1408 1409 return status; 1410 } 1411 1412 /** 1413 * ixgbe_release_eeprom_semaphore - Release hardware semaphore 1414 * @hw: pointer to hardware structure 1415 * 1416 * This function clears hardware semaphore bits. 1417 **/ 1418 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) 1419 { 1420 u32 swsm; 1421 1422 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1423 1424 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ 1425 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); 1426 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); 1427 IXGBE_WRITE_FLUSH(hw); 1428 } 1429 1430 /** 1431 * ixgbe_ready_eeprom - Polls for EEPROM ready 1432 * @hw: pointer to hardware structure 1433 **/ 1434 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) 1435 { 1436 s32 status = 0; 1437 u16 i; 1438 u8 spi_stat_reg; 1439 1440 /* 1441 * Read "Status Register" repeatedly until the LSB is cleared. The 1442 * EEPROM will signal that the command has been completed by clearing 1443 * bit 0 of the internal status register. If it's not cleared within 1444 * 5 milliseconds, then error out. 1445 */ 1446 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { 1447 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, 1448 IXGBE_EEPROM_OPCODE_BITS); 1449 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); 1450 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) 1451 break; 1452 1453 udelay(5); 1454 ixgbe_standby_eeprom(hw); 1455 } 1456 1457 /* 1458 * On some parts, SPI write time could vary from 0-20mSec on 3.3V 1459 * devices (and only 0-5mSec on 5V devices) 1460 */ 1461 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { 1462 hw_dbg(hw, "SPI EEPROM Status error\n"); 1463 status = IXGBE_ERR_EEPROM; 1464 } 1465 1466 return status; 1467 } 1468 1469 /** 1470 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state 1471 * @hw: pointer to hardware structure 1472 **/ 1473 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) 1474 { 1475 u32 eec; 1476 1477 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1478 1479 /* Toggle CS to flush commands */ 1480 eec |= IXGBE_EEC_CS; 1481 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1482 IXGBE_WRITE_FLUSH(hw); 1483 udelay(1); 1484 eec &= ~IXGBE_EEC_CS; 1485 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1486 IXGBE_WRITE_FLUSH(hw); 1487 udelay(1); 1488 } 1489 1490 /** 1491 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. 1492 * @hw: pointer to hardware structure 1493 * @data: data to send to the EEPROM 1494 * @count: number of bits to shift out 1495 **/ 1496 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 1497 u16 count) 1498 { 1499 u32 eec; 1500 u32 mask; 1501 u32 i; 1502 1503 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1504 1505 /* 1506 * Mask is used to shift "count" bits of "data" out to the EEPROM 1507 * one bit at a time. Determine the starting bit based on count 1508 */ 1509 mask = 0x01 << (count - 1); 1510 1511 for (i = 0; i < count; i++) { 1512 /* 1513 * A "1" is shifted out to the EEPROM by setting bit "DI" to a 1514 * "1", and then raising and then lowering the clock (the SK 1515 * bit controls the clock input to the EEPROM). A "0" is 1516 * shifted out to the EEPROM by setting "DI" to "0" and then 1517 * raising and then lowering the clock. 1518 */ 1519 if (data & mask) 1520 eec |= IXGBE_EEC_DI; 1521 else 1522 eec &= ~IXGBE_EEC_DI; 1523 1524 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1525 IXGBE_WRITE_FLUSH(hw); 1526 1527 udelay(1); 1528 1529 ixgbe_raise_eeprom_clk(hw, &eec); 1530 ixgbe_lower_eeprom_clk(hw, &eec); 1531 1532 /* 1533 * Shift mask to signify next bit of data to shift in to the 1534 * EEPROM 1535 */ 1536 mask = mask >> 1; 1537 } 1538 1539 /* We leave the "DI" bit set to "0" when we leave this routine. */ 1540 eec &= ~IXGBE_EEC_DI; 1541 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1542 IXGBE_WRITE_FLUSH(hw); 1543 } 1544 1545 /** 1546 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM 1547 * @hw: pointer to hardware structure 1548 **/ 1549 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) 1550 { 1551 u32 eec; 1552 u32 i; 1553 u16 data = 0; 1554 1555 /* 1556 * In order to read a register from the EEPROM, we need to shift 1557 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising 1558 * the clock input to the EEPROM (setting the SK bit), and then reading 1559 * the value of the "DO" bit. During this "shifting in" process the 1560 * "DI" bit should always be clear. 1561 */ 1562 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1563 1564 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); 1565 1566 for (i = 0; i < count; i++) { 1567 data = data << 1; 1568 ixgbe_raise_eeprom_clk(hw, &eec); 1569 1570 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1571 1572 eec &= ~(IXGBE_EEC_DI); 1573 if (eec & IXGBE_EEC_DO) 1574 data |= 1; 1575 1576 ixgbe_lower_eeprom_clk(hw, &eec); 1577 } 1578 1579 return data; 1580 } 1581 1582 /** 1583 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. 1584 * @hw: pointer to hardware structure 1585 * @eec: EEC register's current value 1586 **/ 1587 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 1588 { 1589 /* 1590 * Raise the clock input to the EEPROM 1591 * (setting the SK bit), then delay 1592 */ 1593 *eec = *eec | IXGBE_EEC_SK; 1594 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); 1595 IXGBE_WRITE_FLUSH(hw); 1596 udelay(1); 1597 } 1598 1599 /** 1600 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. 1601 * @hw: pointer to hardware structure 1602 * @eecd: EECD's current value 1603 **/ 1604 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 1605 { 1606 /* 1607 * Lower the clock input to the EEPROM (clearing the SK bit), then 1608 * delay 1609 */ 1610 *eec = *eec & ~IXGBE_EEC_SK; 1611 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); 1612 IXGBE_WRITE_FLUSH(hw); 1613 udelay(1); 1614 } 1615 1616 /** 1617 * ixgbe_release_eeprom - Release EEPROM, release semaphores 1618 * @hw: pointer to hardware structure 1619 **/ 1620 static void ixgbe_release_eeprom(struct ixgbe_hw *hw) 1621 { 1622 u32 eec; 1623 1624 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1625 1626 eec |= IXGBE_EEC_CS; /* Pull CS high */ 1627 eec &= ~IXGBE_EEC_SK; /* Lower SCK */ 1628 1629 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1630 IXGBE_WRITE_FLUSH(hw); 1631 1632 udelay(1); 1633 1634 /* Stop requesting EEPROM access */ 1635 eec &= ~IXGBE_EEC_REQ; 1636 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1637 1638 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 1639 1640 /* 1641 * Delay before attempt to obtain semaphore again to allow FW 1642 * access. semaphore_delay is in ms we need us for usleep_range 1643 */ 1644 usleep_range(hw->eeprom.semaphore_delay * 1000, 1645 hw->eeprom.semaphore_delay * 2000); 1646 } 1647 1648 /** 1649 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum 1650 * @hw: pointer to hardware structure 1651 **/ 1652 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw) 1653 { 1654 u16 i; 1655 u16 j; 1656 u16 checksum = 0; 1657 u16 length = 0; 1658 u16 pointer = 0; 1659 u16 word = 0; 1660 1661 /* Include 0x0-0x3F in the checksum */ 1662 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { 1663 if (hw->eeprom.ops.read(hw, i, &word) != 0) { 1664 hw_dbg(hw, "EEPROM read failed\n"); 1665 break; 1666 } 1667 checksum += word; 1668 } 1669 1670 /* Include all data from pointers except for the fw pointer */ 1671 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { 1672 hw->eeprom.ops.read(hw, i, &pointer); 1673 1674 /* Make sure the pointer seems valid */ 1675 if (pointer != 0xFFFF && pointer != 0) { 1676 hw->eeprom.ops.read(hw, pointer, &length); 1677 1678 if (length != 0xFFFF && length != 0) { 1679 for (j = pointer+1; j <= pointer+length; j++) { 1680 hw->eeprom.ops.read(hw, j, &word); 1681 checksum += word; 1682 } 1683 } 1684 } 1685 } 1686 1687 checksum = (u16)IXGBE_EEPROM_SUM - checksum; 1688 1689 return checksum; 1690 } 1691 1692 /** 1693 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum 1694 * @hw: pointer to hardware structure 1695 * @checksum_val: calculated checksum 1696 * 1697 * Performs checksum calculation and validates the EEPROM checksum. If the 1698 * caller does not need checksum_val, the value can be NULL. 1699 **/ 1700 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, 1701 u16 *checksum_val) 1702 { 1703 s32 status; 1704 u16 checksum; 1705 u16 read_checksum = 0; 1706 1707 /* 1708 * Read the first word from the EEPROM. If this times out or fails, do 1709 * not continue or we could be in for a very long wait while every 1710 * EEPROM read fails 1711 */ 1712 status = hw->eeprom.ops.read(hw, 0, &checksum); 1713 1714 if (status == 0) { 1715 checksum = hw->eeprom.ops.calc_checksum(hw); 1716 1717 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); 1718 1719 /* 1720 * Verify read checksum from EEPROM is the same as 1721 * calculated checksum 1722 */ 1723 if (read_checksum != checksum) 1724 status = IXGBE_ERR_EEPROM_CHECKSUM; 1725 1726 /* If the user cares, return the calculated checksum */ 1727 if (checksum_val) 1728 *checksum_val = checksum; 1729 } else { 1730 hw_dbg(hw, "EEPROM read failed\n"); 1731 } 1732 1733 return status; 1734 } 1735 1736 /** 1737 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum 1738 * @hw: pointer to hardware structure 1739 **/ 1740 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) 1741 { 1742 s32 status; 1743 u16 checksum; 1744 1745 /* 1746 * Read the first word from the EEPROM. If this times out or fails, do 1747 * not continue or we could be in for a very long wait while every 1748 * EEPROM read fails 1749 */ 1750 status = hw->eeprom.ops.read(hw, 0, &checksum); 1751 1752 if (status == 0) { 1753 checksum = hw->eeprom.ops.calc_checksum(hw); 1754 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, 1755 checksum); 1756 } else { 1757 hw_dbg(hw, "EEPROM read failed\n"); 1758 } 1759 1760 return status; 1761 } 1762 1763 /** 1764 * ixgbe_validate_mac_addr - Validate MAC address 1765 * @mac_addr: pointer to MAC address. 1766 * 1767 * Tests a MAC address to ensure it is a valid Individual Address 1768 **/ 1769 s32 ixgbe_validate_mac_addr(u8 *mac_addr) 1770 { 1771 s32 status = 0; 1772 1773 /* Make sure it is not a multicast address */ 1774 if (IXGBE_IS_MULTICAST(mac_addr)) 1775 status = IXGBE_ERR_INVALID_MAC_ADDR; 1776 /* Not a broadcast address */ 1777 else if (IXGBE_IS_BROADCAST(mac_addr)) 1778 status = IXGBE_ERR_INVALID_MAC_ADDR; 1779 /* Reject the zero address */ 1780 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && 1781 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) 1782 status = IXGBE_ERR_INVALID_MAC_ADDR; 1783 1784 return status; 1785 } 1786 1787 /** 1788 * ixgbe_set_rar_generic - Set Rx address register 1789 * @hw: pointer to hardware structure 1790 * @index: Receive address register to write 1791 * @addr: Address to put into receive address register 1792 * @vmdq: VMDq "set" or "pool" index 1793 * @enable_addr: set flag that address is active 1794 * 1795 * Puts an ethernet address into a receive address register. 1796 **/ 1797 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, 1798 u32 enable_addr) 1799 { 1800 u32 rar_low, rar_high; 1801 u32 rar_entries = hw->mac.num_rar_entries; 1802 1803 /* Make sure we are using a valid rar index range */ 1804 if (index >= rar_entries) { 1805 hw_dbg(hw, "RAR index %d is out of range.\n", index); 1806 return IXGBE_ERR_INVALID_ARGUMENT; 1807 } 1808 1809 /* setup VMDq pool selection before this RAR gets enabled */ 1810 hw->mac.ops.set_vmdq(hw, index, vmdq); 1811 1812 /* 1813 * HW expects these in little endian so we reverse the byte 1814 * order from network order (big endian) to little endian 1815 */ 1816 rar_low = ((u32)addr[0] | 1817 ((u32)addr[1] << 8) | 1818 ((u32)addr[2] << 16) | 1819 ((u32)addr[3] << 24)); 1820 /* 1821 * Some parts put the VMDq setting in the extra RAH bits, 1822 * so save everything except the lower 16 bits that hold part 1823 * of the address and the address valid bit. 1824 */ 1825 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 1826 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 1827 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); 1828 1829 if (enable_addr != 0) 1830 rar_high |= IXGBE_RAH_AV; 1831 1832 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); 1833 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 1834 1835 return 0; 1836 } 1837 1838 /** 1839 * ixgbe_clear_rar_generic - Remove Rx address register 1840 * @hw: pointer to hardware structure 1841 * @index: Receive address register to write 1842 * 1843 * Clears an ethernet address from a receive address register. 1844 **/ 1845 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) 1846 { 1847 u32 rar_high; 1848 u32 rar_entries = hw->mac.num_rar_entries; 1849 1850 /* Make sure we are using a valid rar index range */ 1851 if (index >= rar_entries) { 1852 hw_dbg(hw, "RAR index %d is out of range.\n", index); 1853 return IXGBE_ERR_INVALID_ARGUMENT; 1854 } 1855 1856 /* 1857 * Some parts put the VMDq setting in the extra RAH bits, 1858 * so save everything except the lower 16 bits that hold part 1859 * of the address and the address valid bit. 1860 */ 1861 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 1862 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 1863 1864 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); 1865 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 1866 1867 /* clear VMDq pool/queue selection for this RAR */ 1868 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); 1869 1870 return 0; 1871 } 1872 1873 /** 1874 * ixgbe_init_rx_addrs_generic - Initializes receive address filters. 1875 * @hw: pointer to hardware structure 1876 * 1877 * Places the MAC address in receive address register 0 and clears the rest 1878 * of the receive address registers. Clears the multicast table. Assumes 1879 * the receiver is in reset when the routine is called. 1880 **/ 1881 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) 1882 { 1883 u32 i; 1884 u32 rar_entries = hw->mac.num_rar_entries; 1885 1886 /* 1887 * If the current mac address is valid, assume it is a software override 1888 * to the permanent address. 1889 * Otherwise, use the permanent address from the eeprom. 1890 */ 1891 if (ixgbe_validate_mac_addr(hw->mac.addr) == 1892 IXGBE_ERR_INVALID_MAC_ADDR) { 1893 /* Get the MAC address from the RAR0 for later reference */ 1894 hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 1895 1896 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr); 1897 } else { 1898 /* Setup the receive address. */ 1899 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n"); 1900 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr); 1901 1902 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); 1903 1904 /* clear VMDq pool/queue selection for RAR 0 */ 1905 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL); 1906 } 1907 hw->addr_ctrl.overflow_promisc = 0; 1908 1909 hw->addr_ctrl.rar_used_count = 1; 1910 1911 /* Zero out the other receive addresses. */ 1912 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1); 1913 for (i = 1; i < rar_entries; i++) { 1914 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); 1915 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); 1916 } 1917 1918 /* Clear the MTA */ 1919 hw->addr_ctrl.mta_in_use = 0; 1920 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 1921 1922 hw_dbg(hw, " Clearing MTA\n"); 1923 for (i = 0; i < hw->mac.mcft_size; i++) 1924 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); 1925 1926 if (hw->mac.ops.init_uta_tables) 1927 hw->mac.ops.init_uta_tables(hw); 1928 1929 return 0; 1930 } 1931 1932 /** 1933 * ixgbe_mta_vector - Determines bit-vector in multicast table to set 1934 * @hw: pointer to hardware structure 1935 * @mc_addr: the multicast address 1936 * 1937 * Extracts the 12 bits, from a multicast address, to determine which 1938 * bit-vector to set in the multicast table. The hardware uses 12 bits, from 1939 * incoming rx multicast addresses, to determine the bit-vector to check in 1940 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set 1941 * by the MO field of the MCSTCTRL. The MO field is set during initialization 1942 * to mc_filter_type. 1943 **/ 1944 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) 1945 { 1946 u32 vector = 0; 1947 1948 switch (hw->mac.mc_filter_type) { 1949 case 0: /* use bits [47:36] of the address */ 1950 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 1951 break; 1952 case 1: /* use bits [46:35] of the address */ 1953 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 1954 break; 1955 case 2: /* use bits [45:34] of the address */ 1956 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 1957 break; 1958 case 3: /* use bits [43:32] of the address */ 1959 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 1960 break; 1961 default: /* Invalid mc_filter_type */ 1962 hw_dbg(hw, "MC filter type param set incorrectly\n"); 1963 break; 1964 } 1965 1966 /* vector can only be 12-bits or boundary will be exceeded */ 1967 vector &= 0xFFF; 1968 return vector; 1969 } 1970 1971 /** 1972 * ixgbe_set_mta - Set bit-vector in multicast table 1973 * @hw: pointer to hardware structure 1974 * @hash_value: Multicast address hash value 1975 * 1976 * Sets the bit-vector in the multicast table. 1977 **/ 1978 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) 1979 { 1980 u32 vector; 1981 u32 vector_bit; 1982 u32 vector_reg; 1983 1984 hw->addr_ctrl.mta_in_use++; 1985 1986 vector = ixgbe_mta_vector(hw, mc_addr); 1987 hw_dbg(hw, " bit-vector = 0x%03X\n", vector); 1988 1989 /* 1990 * The MTA is a register array of 128 32-bit registers. It is treated 1991 * like an array of 4096 bits. We want to set bit 1992 * BitArray[vector_value]. So we figure out what register the bit is 1993 * in, read it, OR in the new bit, then write back the new value. The 1994 * register is determined by the upper 7 bits of the vector value and 1995 * the bit within that register are determined by the lower 5 bits of 1996 * the value. 1997 */ 1998 vector_reg = (vector >> 5) & 0x7F; 1999 vector_bit = vector & 0x1F; 2000 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit); 2001 } 2002 2003 /** 2004 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses 2005 * @hw: pointer to hardware structure 2006 * @netdev: pointer to net device structure 2007 * 2008 * The given list replaces any existing list. Clears the MC addrs from receive 2009 * address registers and the multicast table. Uses unused receive address 2010 * registers for the first multicast addresses, and hashes the rest into the 2011 * multicast table. 2012 **/ 2013 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, 2014 struct net_device *netdev) 2015 { 2016 struct netdev_hw_addr *ha; 2017 u32 i; 2018 2019 /* 2020 * Set the new number of MC addresses that we are being requested to 2021 * use. 2022 */ 2023 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); 2024 hw->addr_ctrl.mta_in_use = 0; 2025 2026 /* Clear mta_shadow */ 2027 hw_dbg(hw, " Clearing MTA\n"); 2028 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 2029 2030 /* Update mta shadow */ 2031 netdev_for_each_mc_addr(ha, netdev) { 2032 hw_dbg(hw, " Adding the multicast addresses:\n"); 2033 ixgbe_set_mta(hw, ha->addr); 2034 } 2035 2036 /* Enable mta */ 2037 for (i = 0; i < hw->mac.mcft_size; i++) 2038 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i, 2039 hw->mac.mta_shadow[i]); 2040 2041 if (hw->addr_ctrl.mta_in_use > 0) 2042 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, 2043 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); 2044 2045 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n"); 2046 return 0; 2047 } 2048 2049 /** 2050 * ixgbe_enable_mc_generic - Enable multicast address in RAR 2051 * @hw: pointer to hardware structure 2052 * 2053 * Enables multicast address in RAR and the use of the multicast hash table. 2054 **/ 2055 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) 2056 { 2057 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2058 2059 if (a->mta_in_use > 0) 2060 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | 2061 hw->mac.mc_filter_type); 2062 2063 return 0; 2064 } 2065 2066 /** 2067 * ixgbe_disable_mc_generic - Disable multicast address in RAR 2068 * @hw: pointer to hardware structure 2069 * 2070 * Disables multicast address in RAR and the use of the multicast hash table. 2071 **/ 2072 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) 2073 { 2074 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2075 2076 if (a->mta_in_use > 0) 2077 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 2078 2079 return 0; 2080 } 2081 2082 /** 2083 * ixgbe_fc_enable_generic - Enable flow control 2084 * @hw: pointer to hardware structure 2085 * 2086 * Enable flow control according to the current settings. 2087 **/ 2088 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw) 2089 { 2090 s32 ret_val = 0; 2091 u32 mflcn_reg, fccfg_reg; 2092 u32 reg; 2093 u32 fcrtl, fcrth; 2094 int i; 2095 2096 /* 2097 * Validate the water mark configuration for packet buffer 0. Zero 2098 * water marks indicate that the packet buffer was not configured 2099 * and the watermarks for packet buffer 0 should always be configured. 2100 */ 2101 if (!hw->fc.low_water || 2102 !hw->fc.high_water[0] || 2103 !hw->fc.pause_time) { 2104 hw_dbg(hw, "Invalid water mark configuration\n"); 2105 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 2106 goto out; 2107 } 2108 2109 /* Negotiate the fc mode to use */ 2110 ixgbe_fc_autoneg(hw); 2111 2112 /* Disable any previous flow control settings */ 2113 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); 2114 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE); 2115 2116 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); 2117 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); 2118 2119 /* 2120 * The possible values of fc.current_mode are: 2121 * 0: Flow control is completely disabled 2122 * 1: Rx flow control is enabled (we can receive pause frames, 2123 * but not send pause frames). 2124 * 2: Tx flow control is enabled (we can send pause frames but 2125 * we do not support receiving pause frames). 2126 * 3: Both Rx and Tx flow control (symmetric) are enabled. 2127 * other: Invalid. 2128 */ 2129 switch (hw->fc.current_mode) { 2130 case ixgbe_fc_none: 2131 /* 2132 * Flow control is disabled by software override or autoneg. 2133 * The code below will actually disable it in the HW. 2134 */ 2135 break; 2136 case ixgbe_fc_rx_pause: 2137 /* 2138 * Rx Flow control is enabled and Tx Flow control is 2139 * disabled by software override. Since there really 2140 * isn't a way to advertise that we are capable of RX 2141 * Pause ONLY, we will advertise that we support both 2142 * symmetric and asymmetric Rx PAUSE. Later, we will 2143 * disable the adapter's ability to send PAUSE frames. 2144 */ 2145 mflcn_reg |= IXGBE_MFLCN_RFCE; 2146 break; 2147 case ixgbe_fc_tx_pause: 2148 /* 2149 * Tx Flow control is enabled, and Rx Flow control is 2150 * disabled by software override. 2151 */ 2152 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2153 break; 2154 case ixgbe_fc_full: 2155 /* Flow control (both Rx and Tx) is enabled by SW override. */ 2156 mflcn_reg |= IXGBE_MFLCN_RFCE; 2157 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2158 break; 2159 default: 2160 hw_dbg(hw, "Flow control param set incorrectly\n"); 2161 ret_val = IXGBE_ERR_CONFIG; 2162 goto out; 2163 break; 2164 } 2165 2166 /* Set 802.3x based flow control settings. */ 2167 mflcn_reg |= IXGBE_MFLCN_DPF; 2168 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); 2169 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); 2170 2171 fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE; 2172 2173 /* Set up and enable Rx high/low water mark thresholds, enable XON. */ 2174 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) { 2175 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2176 hw->fc.high_water[i]) { 2177 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl); 2178 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN; 2179 } else { 2180 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0); 2181 /* 2182 * In order to prevent Tx hangs when the internal Tx 2183 * switch is enabled we must set the high water mark 2184 * to the maximum FCRTH value. This allows the Tx 2185 * switch to function even under heavy Rx workloads. 2186 */ 2187 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32; 2188 } 2189 2190 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth); 2191 } 2192 2193 /* Configure pause time (2 TCs per register) */ 2194 reg = hw->fc.pause_time * 0x00010001; 2195 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++) 2196 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg); 2197 2198 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2); 2199 2200 out: 2201 return ret_val; 2202 } 2203 2204 /** 2205 * ixgbe_negotiate_fc - Negotiate flow control 2206 * @hw: pointer to hardware structure 2207 * @adv_reg: flow control advertised settings 2208 * @lp_reg: link partner's flow control settings 2209 * @adv_sym: symmetric pause bit in advertisement 2210 * @adv_asm: asymmetric pause bit in advertisement 2211 * @lp_sym: symmetric pause bit in link partner advertisement 2212 * @lp_asm: asymmetric pause bit in link partner advertisement 2213 * 2214 * Find the intersection between advertised settings and link partner's 2215 * advertised settings 2216 **/ 2217 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg, 2218 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm) 2219 { 2220 if ((!(adv_reg)) || (!(lp_reg))) 2221 return IXGBE_ERR_FC_NOT_NEGOTIATED; 2222 2223 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) { 2224 /* 2225 * Now we need to check if the user selected Rx ONLY 2226 * of pause frames. In this case, we had to advertise 2227 * FULL flow control because we could not advertise RX 2228 * ONLY. Hence, we must now check to see if we need to 2229 * turn OFF the TRANSMISSION of PAUSE frames. 2230 */ 2231 if (hw->fc.requested_mode == ixgbe_fc_full) { 2232 hw->fc.current_mode = ixgbe_fc_full; 2233 hw_dbg(hw, "Flow Control = FULL.\n"); 2234 } else { 2235 hw->fc.current_mode = ixgbe_fc_rx_pause; 2236 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n"); 2237 } 2238 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) && 2239 (lp_reg & lp_sym) && (lp_reg & lp_asm)) { 2240 hw->fc.current_mode = ixgbe_fc_tx_pause; 2241 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n"); 2242 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) && 2243 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) { 2244 hw->fc.current_mode = ixgbe_fc_rx_pause; 2245 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n"); 2246 } else { 2247 hw->fc.current_mode = ixgbe_fc_none; 2248 hw_dbg(hw, "Flow Control = NONE.\n"); 2249 } 2250 return 0; 2251 } 2252 2253 /** 2254 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber 2255 * @hw: pointer to hardware structure 2256 * 2257 * Enable flow control according on 1 gig fiber. 2258 **/ 2259 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw) 2260 { 2261 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat; 2262 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 2263 2264 /* 2265 * On multispeed fiber at 1g, bail out if 2266 * - link is up but AN did not complete, or if 2267 * - link is up and AN completed but timed out 2268 */ 2269 2270 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); 2271 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || 2272 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) 2273 goto out; 2274 2275 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 2276 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); 2277 2278 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg, 2279 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE, 2280 IXGBE_PCS1GANA_ASM_PAUSE, 2281 IXGBE_PCS1GANA_SYM_PAUSE, 2282 IXGBE_PCS1GANA_ASM_PAUSE); 2283 2284 out: 2285 return ret_val; 2286 } 2287 2288 /** 2289 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37 2290 * @hw: pointer to hardware structure 2291 * 2292 * Enable flow control according to IEEE clause 37. 2293 **/ 2294 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw) 2295 { 2296 u32 links2, anlp1_reg, autoc_reg, links; 2297 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 2298 2299 /* 2300 * On backplane, bail out if 2301 * - backplane autoneg was not completed, or if 2302 * - we are 82599 and link partner is not AN enabled 2303 */ 2304 links = IXGBE_READ_REG(hw, IXGBE_LINKS); 2305 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) 2306 goto out; 2307 2308 if (hw->mac.type == ixgbe_mac_82599EB) { 2309 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2); 2310 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) 2311 goto out; 2312 } 2313 /* 2314 * Read the 10g AN autoc and LP ability registers and resolve 2315 * local flow control settings accordingly 2316 */ 2317 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 2318 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1); 2319 2320 ret_val = ixgbe_negotiate_fc(hw, autoc_reg, 2321 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE, 2322 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE); 2323 2324 out: 2325 return ret_val; 2326 } 2327 2328 /** 2329 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37 2330 * @hw: pointer to hardware structure 2331 * 2332 * Enable flow control according to IEEE clause 37. 2333 **/ 2334 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw) 2335 { 2336 u16 technology_ability_reg = 0; 2337 u16 lp_technology_ability_reg = 0; 2338 2339 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, 2340 MDIO_MMD_AN, 2341 &technology_ability_reg); 2342 hw->phy.ops.read_reg(hw, MDIO_AN_LPA, 2343 MDIO_MMD_AN, 2344 &lp_technology_ability_reg); 2345 2346 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg, 2347 (u32)lp_technology_ability_reg, 2348 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE, 2349 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE); 2350 } 2351 2352 /** 2353 * ixgbe_fc_autoneg - Configure flow control 2354 * @hw: pointer to hardware structure 2355 * 2356 * Compares our advertised flow control capabilities to those advertised by 2357 * our link partner, and determines the proper flow control mode to use. 2358 **/ 2359 void ixgbe_fc_autoneg(struct ixgbe_hw *hw) 2360 { 2361 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 2362 ixgbe_link_speed speed; 2363 bool link_up; 2364 2365 /* 2366 * AN should have completed when the cable was plugged in. 2367 * Look for reasons to bail out. Bail out if: 2368 * - FC autoneg is disabled, or if 2369 * - link is not up. 2370 * 2371 * Since we're being called from an LSC, link is already known to be up. 2372 * So use link_up_wait_to_complete=false. 2373 */ 2374 if (hw->fc.disable_fc_autoneg) 2375 goto out; 2376 2377 hw->mac.ops.check_link(hw, &speed, &link_up, false); 2378 if (!link_up) 2379 goto out; 2380 2381 switch (hw->phy.media_type) { 2382 /* Autoneg flow control on fiber adapters */ 2383 case ixgbe_media_type_fiber: 2384 if (speed == IXGBE_LINK_SPEED_1GB_FULL) 2385 ret_val = ixgbe_fc_autoneg_fiber(hw); 2386 break; 2387 2388 /* Autoneg flow control on backplane adapters */ 2389 case ixgbe_media_type_backplane: 2390 ret_val = ixgbe_fc_autoneg_backplane(hw); 2391 break; 2392 2393 /* Autoneg flow control on copper adapters */ 2394 case ixgbe_media_type_copper: 2395 if (ixgbe_device_supports_autoneg_fc(hw) == 0) 2396 ret_val = ixgbe_fc_autoneg_copper(hw); 2397 break; 2398 2399 default: 2400 break; 2401 } 2402 2403 out: 2404 if (ret_val == 0) { 2405 hw->fc.fc_was_autonegged = true; 2406 } else { 2407 hw->fc.fc_was_autonegged = false; 2408 hw->fc.current_mode = hw->fc.requested_mode; 2409 } 2410 } 2411 2412 /** 2413 * ixgbe_disable_pcie_master - Disable PCI-express master access 2414 * @hw: pointer to hardware structure 2415 * 2416 * Disables PCI-Express master access and verifies there are no pending 2417 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable 2418 * bit hasn't caused the master requests to be disabled, else 0 2419 * is returned signifying master requests disabled. 2420 **/ 2421 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw) 2422 { 2423 struct ixgbe_adapter *adapter = hw->back; 2424 s32 status = 0; 2425 u32 i; 2426 u16 value; 2427 2428 /* Always set this bit to ensure any future transactions are blocked */ 2429 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS); 2430 2431 /* Exit if master requests are blocked */ 2432 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) 2433 goto out; 2434 2435 /* Poll for master request bit to clear */ 2436 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { 2437 udelay(100); 2438 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) 2439 goto out; 2440 } 2441 2442 /* 2443 * Two consecutive resets are required via CTRL.RST per datasheet 2444 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine 2445 * of this need. The first reset prevents new master requests from 2446 * being issued by our device. We then must wait 1usec or more for any 2447 * remaining completions from the PCIe bus to trickle in, and then reset 2448 * again to clear out any effects they may have had on our device. 2449 */ 2450 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n"); 2451 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; 2452 2453 /* 2454 * Before proceeding, make sure that the PCIe block does not have 2455 * transactions pending. 2456 */ 2457 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { 2458 udelay(100); 2459 pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS, 2460 &value); 2461 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) 2462 goto out; 2463 } 2464 2465 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n"); 2466 status = IXGBE_ERR_MASTER_REQUESTS_PENDING; 2467 2468 out: 2469 return status; 2470 } 2471 2472 /** 2473 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore 2474 * @hw: pointer to hardware structure 2475 * @mask: Mask to specify which semaphore to acquire 2476 * 2477 * Acquires the SWFW semaphore through the GSSR register for the specified 2478 * function (CSR, PHY0, PHY1, EEPROM, Flash) 2479 **/ 2480 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask) 2481 { 2482 u32 gssr; 2483 u32 swmask = mask; 2484 u32 fwmask = mask << 5; 2485 s32 timeout = 200; 2486 2487 while (timeout) { 2488 /* 2489 * SW EEPROM semaphore bit is used for access to all 2490 * SW_FW_SYNC/GSSR bits (not just EEPROM) 2491 */ 2492 if (ixgbe_get_eeprom_semaphore(hw)) 2493 return IXGBE_ERR_SWFW_SYNC; 2494 2495 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 2496 if (!(gssr & (fwmask | swmask))) 2497 break; 2498 2499 /* 2500 * Firmware currently using resource (fwmask) or other software 2501 * thread currently using resource (swmask) 2502 */ 2503 ixgbe_release_eeprom_semaphore(hw); 2504 usleep_range(5000, 10000); 2505 timeout--; 2506 } 2507 2508 if (!timeout) { 2509 hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n"); 2510 return IXGBE_ERR_SWFW_SYNC; 2511 } 2512 2513 gssr |= swmask; 2514 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 2515 2516 ixgbe_release_eeprom_semaphore(hw); 2517 return 0; 2518 } 2519 2520 /** 2521 * ixgbe_release_swfw_sync - Release SWFW semaphore 2522 * @hw: pointer to hardware structure 2523 * @mask: Mask to specify which semaphore to release 2524 * 2525 * Releases the SWFW semaphore through the GSSR register for the specified 2526 * function (CSR, PHY0, PHY1, EEPROM, Flash) 2527 **/ 2528 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask) 2529 { 2530 u32 gssr; 2531 u32 swmask = mask; 2532 2533 ixgbe_get_eeprom_semaphore(hw); 2534 2535 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 2536 gssr &= ~swmask; 2537 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 2538 2539 ixgbe_release_eeprom_semaphore(hw); 2540 } 2541 2542 /** 2543 * ixgbe_disable_rx_buff_generic - Stops the receive data path 2544 * @hw: pointer to hardware structure 2545 * 2546 * Stops the receive data path and waits for the HW to internally 2547 * empty the Rx security block. 2548 **/ 2549 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw) 2550 { 2551 #define IXGBE_MAX_SECRX_POLL 40 2552 int i; 2553 int secrxreg; 2554 2555 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 2556 secrxreg |= IXGBE_SECRXCTRL_RX_DIS; 2557 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 2558 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) { 2559 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT); 2560 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY) 2561 break; 2562 else 2563 /* Use interrupt-safe sleep just in case */ 2564 udelay(1000); 2565 } 2566 2567 /* For informational purposes only */ 2568 if (i >= IXGBE_MAX_SECRX_POLL) 2569 hw_dbg(hw, "Rx unit being enabled before security " 2570 "path fully disabled. Continuing with init.\n"); 2571 2572 return 0; 2573 2574 } 2575 2576 /** 2577 * ixgbe_enable_rx_buff - Enables the receive data path 2578 * @hw: pointer to hardware structure 2579 * 2580 * Enables the receive data path 2581 **/ 2582 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw) 2583 { 2584 int secrxreg; 2585 2586 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 2587 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS; 2588 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 2589 IXGBE_WRITE_FLUSH(hw); 2590 2591 return 0; 2592 } 2593 2594 /** 2595 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit 2596 * @hw: pointer to hardware structure 2597 * @regval: register value to write to RXCTRL 2598 * 2599 * Enables the Rx DMA unit 2600 **/ 2601 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval) 2602 { 2603 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval); 2604 2605 return 0; 2606 } 2607 2608 /** 2609 * ixgbe_blink_led_start_generic - Blink LED based on index. 2610 * @hw: pointer to hardware structure 2611 * @index: led number to blink 2612 **/ 2613 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index) 2614 { 2615 ixgbe_link_speed speed = 0; 2616 bool link_up = false; 2617 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 2618 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 2619 2620 /* 2621 * Link must be up to auto-blink the LEDs; 2622 * Force it if link is down. 2623 */ 2624 hw->mac.ops.check_link(hw, &speed, &link_up, false); 2625 2626 if (!link_up) { 2627 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 2628 autoc_reg |= IXGBE_AUTOC_FLU; 2629 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); 2630 IXGBE_WRITE_FLUSH(hw); 2631 usleep_range(10000, 20000); 2632 } 2633 2634 led_reg &= ~IXGBE_LED_MODE_MASK(index); 2635 led_reg |= IXGBE_LED_BLINK(index); 2636 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 2637 IXGBE_WRITE_FLUSH(hw); 2638 2639 return 0; 2640 } 2641 2642 /** 2643 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index. 2644 * @hw: pointer to hardware structure 2645 * @index: led number to stop blinking 2646 **/ 2647 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index) 2648 { 2649 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 2650 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 2651 2652 autoc_reg &= ~IXGBE_AUTOC_FLU; 2653 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 2654 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); 2655 2656 led_reg &= ~IXGBE_LED_MODE_MASK(index); 2657 led_reg &= ~IXGBE_LED_BLINK(index); 2658 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); 2659 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 2660 IXGBE_WRITE_FLUSH(hw); 2661 2662 return 0; 2663 } 2664 2665 /** 2666 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM 2667 * @hw: pointer to hardware structure 2668 * @san_mac_offset: SAN MAC address offset 2669 * 2670 * This function will read the EEPROM location for the SAN MAC address 2671 * pointer, and returns the value at that location. This is used in both 2672 * get and set mac_addr routines. 2673 **/ 2674 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, 2675 u16 *san_mac_offset) 2676 { 2677 /* 2678 * First read the EEPROM pointer to see if the MAC addresses are 2679 * available. 2680 */ 2681 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset); 2682 2683 return 0; 2684 } 2685 2686 /** 2687 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM 2688 * @hw: pointer to hardware structure 2689 * @san_mac_addr: SAN MAC address 2690 * 2691 * Reads the SAN MAC address from the EEPROM, if it's available. This is 2692 * per-port, so set_lan_id() must be called before reading the addresses. 2693 * set_lan_id() is called by identify_sfp(), but this cannot be relied 2694 * upon for non-SFP connections, so we must call it here. 2695 **/ 2696 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) 2697 { 2698 u16 san_mac_data, san_mac_offset; 2699 u8 i; 2700 2701 /* 2702 * First read the EEPROM pointer to see if the MAC addresses are 2703 * available. If they're not, no point in calling set_lan_id() here. 2704 */ 2705 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); 2706 2707 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) { 2708 /* 2709 * No addresses available in this EEPROM. It's not an 2710 * error though, so just wipe the local address and return. 2711 */ 2712 for (i = 0; i < 6; i++) 2713 san_mac_addr[i] = 0xFF; 2714 2715 goto san_mac_addr_out; 2716 } 2717 2718 /* make sure we know which port we need to program */ 2719 hw->mac.ops.set_lan_id(hw); 2720 /* apply the port offset to the address offset */ 2721 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : 2722 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); 2723 for (i = 0; i < 3; i++) { 2724 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data); 2725 san_mac_addr[i * 2] = (u8)(san_mac_data); 2726 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8); 2727 san_mac_offset++; 2728 } 2729 2730 san_mac_addr_out: 2731 return 0; 2732 } 2733 2734 /** 2735 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count 2736 * @hw: pointer to hardware structure 2737 * 2738 * Read PCIe configuration space, and get the MSI-X vector count from 2739 * the capabilities table. 2740 **/ 2741 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw) 2742 { 2743 struct ixgbe_adapter *adapter = hw->back; 2744 u16 msix_count = 1; 2745 u16 max_msix_count; 2746 u16 pcie_offset; 2747 2748 switch (hw->mac.type) { 2749 case ixgbe_mac_82598EB: 2750 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS; 2751 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598; 2752 break; 2753 case ixgbe_mac_82599EB: 2754 case ixgbe_mac_X540: 2755 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS; 2756 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599; 2757 break; 2758 default: 2759 return msix_count; 2760 } 2761 2762 pci_read_config_word(adapter->pdev, pcie_offset, &msix_count); 2763 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; 2764 2765 /* MSI-X count is zero-based in HW */ 2766 msix_count++; 2767 2768 if (msix_count > max_msix_count) 2769 msix_count = max_msix_count; 2770 2771 return msix_count; 2772 } 2773 2774 /** 2775 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address 2776 * @hw: pointer to hardware struct 2777 * @rar: receive address register index to disassociate 2778 * @vmdq: VMDq pool index to remove from the rar 2779 **/ 2780 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 2781 { 2782 u32 mpsar_lo, mpsar_hi; 2783 u32 rar_entries = hw->mac.num_rar_entries; 2784 2785 /* Make sure we are using a valid rar index range */ 2786 if (rar >= rar_entries) { 2787 hw_dbg(hw, "RAR index %d is out of range.\n", rar); 2788 return IXGBE_ERR_INVALID_ARGUMENT; 2789 } 2790 2791 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 2792 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 2793 2794 if (!mpsar_lo && !mpsar_hi) 2795 goto done; 2796 2797 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { 2798 if (mpsar_lo) { 2799 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 2800 mpsar_lo = 0; 2801 } 2802 if (mpsar_hi) { 2803 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 2804 mpsar_hi = 0; 2805 } 2806 } else if (vmdq < 32) { 2807 mpsar_lo &= ~(1 << vmdq); 2808 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); 2809 } else { 2810 mpsar_hi &= ~(1 << (vmdq - 32)); 2811 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); 2812 } 2813 2814 /* was that the last pool using this rar? */ 2815 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) 2816 hw->mac.ops.clear_rar(hw, rar); 2817 done: 2818 return 0; 2819 } 2820 2821 /** 2822 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address 2823 * @hw: pointer to hardware struct 2824 * @rar: receive address register index to associate with a VMDq index 2825 * @vmdq: VMDq pool index 2826 **/ 2827 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 2828 { 2829 u32 mpsar; 2830 u32 rar_entries = hw->mac.num_rar_entries; 2831 2832 /* Make sure we are using a valid rar index range */ 2833 if (rar >= rar_entries) { 2834 hw_dbg(hw, "RAR index %d is out of range.\n", rar); 2835 return IXGBE_ERR_INVALID_ARGUMENT; 2836 } 2837 2838 if (vmdq < 32) { 2839 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 2840 mpsar |= 1 << vmdq; 2841 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); 2842 } else { 2843 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 2844 mpsar |= 1 << (vmdq - 32); 2845 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); 2846 } 2847 return 0; 2848 } 2849 2850 /** 2851 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array 2852 * @hw: pointer to hardware structure 2853 **/ 2854 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw) 2855 { 2856 int i; 2857 2858 for (i = 0; i < 128; i++) 2859 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); 2860 2861 return 0; 2862 } 2863 2864 /** 2865 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot 2866 * @hw: pointer to hardware structure 2867 * @vlan: VLAN id to write to VLAN filter 2868 * 2869 * return the VLVF index where this VLAN id should be placed 2870 * 2871 **/ 2872 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan) 2873 { 2874 u32 bits = 0; 2875 u32 first_empty_slot = 0; 2876 s32 regindex; 2877 2878 /* short cut the special case */ 2879 if (vlan == 0) 2880 return 0; 2881 2882 /* 2883 * Search for the vlan id in the VLVF entries. Save off the first empty 2884 * slot found along the way 2885 */ 2886 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) { 2887 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); 2888 if (!bits && !(first_empty_slot)) 2889 first_empty_slot = regindex; 2890 else if ((bits & 0x0FFF) == vlan) 2891 break; 2892 } 2893 2894 /* 2895 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan 2896 * in the VLVF. Else use the first empty VLVF register for this 2897 * vlan id. 2898 */ 2899 if (regindex >= IXGBE_VLVF_ENTRIES) { 2900 if (first_empty_slot) 2901 regindex = first_empty_slot; 2902 else { 2903 hw_dbg(hw, "No space in VLVF.\n"); 2904 regindex = IXGBE_ERR_NO_SPACE; 2905 } 2906 } 2907 2908 return regindex; 2909 } 2910 2911 /** 2912 * ixgbe_set_vfta_generic - Set VLAN filter table 2913 * @hw: pointer to hardware structure 2914 * @vlan: VLAN id to write to VLAN filter 2915 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 2916 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 2917 * 2918 * Turn on/off specified VLAN in the VLAN filter table. 2919 **/ 2920 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, 2921 bool vlan_on) 2922 { 2923 s32 regindex; 2924 u32 bitindex; 2925 u32 vfta; 2926 u32 bits; 2927 u32 vt; 2928 u32 targetbit; 2929 bool vfta_changed = false; 2930 2931 if (vlan > 4095) 2932 return IXGBE_ERR_PARAM; 2933 2934 /* 2935 * this is a 2 part operation - first the VFTA, then the 2936 * VLVF and VLVFB if VT Mode is set 2937 * We don't write the VFTA until we know the VLVF part succeeded. 2938 */ 2939 2940 /* Part 1 2941 * The VFTA is a bitstring made up of 128 32-bit registers 2942 * that enable the particular VLAN id, much like the MTA: 2943 * bits[11-5]: which register 2944 * bits[4-0]: which bit in the register 2945 */ 2946 regindex = (vlan >> 5) & 0x7F; 2947 bitindex = vlan & 0x1F; 2948 targetbit = (1 << bitindex); 2949 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex)); 2950 2951 if (vlan_on) { 2952 if (!(vfta & targetbit)) { 2953 vfta |= targetbit; 2954 vfta_changed = true; 2955 } 2956 } else { 2957 if ((vfta & targetbit)) { 2958 vfta &= ~targetbit; 2959 vfta_changed = true; 2960 } 2961 } 2962 2963 /* Part 2 2964 * If VT Mode is set 2965 * Either vlan_on 2966 * make sure the vlan is in VLVF 2967 * set the vind bit in the matching VLVFB 2968 * Or !vlan_on 2969 * clear the pool bit and possibly the vind 2970 */ 2971 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL); 2972 if (vt & IXGBE_VT_CTL_VT_ENABLE) { 2973 s32 vlvf_index; 2974 2975 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan); 2976 if (vlvf_index < 0) 2977 return vlvf_index; 2978 2979 if (vlan_on) { 2980 /* set the pool bit */ 2981 if (vind < 32) { 2982 bits = IXGBE_READ_REG(hw, 2983 IXGBE_VLVFB(vlvf_index*2)); 2984 bits |= (1 << vind); 2985 IXGBE_WRITE_REG(hw, 2986 IXGBE_VLVFB(vlvf_index*2), 2987 bits); 2988 } else { 2989 bits = IXGBE_READ_REG(hw, 2990 IXGBE_VLVFB((vlvf_index*2)+1)); 2991 bits |= (1 << (vind-32)); 2992 IXGBE_WRITE_REG(hw, 2993 IXGBE_VLVFB((vlvf_index*2)+1), 2994 bits); 2995 } 2996 } else { 2997 /* clear the pool bit */ 2998 if (vind < 32) { 2999 bits = IXGBE_READ_REG(hw, 3000 IXGBE_VLVFB(vlvf_index*2)); 3001 bits &= ~(1 << vind); 3002 IXGBE_WRITE_REG(hw, 3003 IXGBE_VLVFB(vlvf_index*2), 3004 bits); 3005 bits |= IXGBE_READ_REG(hw, 3006 IXGBE_VLVFB((vlvf_index*2)+1)); 3007 } else { 3008 bits = IXGBE_READ_REG(hw, 3009 IXGBE_VLVFB((vlvf_index*2)+1)); 3010 bits &= ~(1 << (vind-32)); 3011 IXGBE_WRITE_REG(hw, 3012 IXGBE_VLVFB((vlvf_index*2)+1), 3013 bits); 3014 bits |= IXGBE_READ_REG(hw, 3015 IXGBE_VLVFB(vlvf_index*2)); 3016 } 3017 } 3018 3019 /* 3020 * If there are still bits set in the VLVFB registers 3021 * for the VLAN ID indicated we need to see if the 3022 * caller is requesting that we clear the VFTA entry bit. 3023 * If the caller has requested that we clear the VFTA 3024 * entry bit but there are still pools/VFs using this VLAN 3025 * ID entry then ignore the request. We're not worried 3026 * about the case where we're turning the VFTA VLAN ID 3027 * entry bit on, only when requested to turn it off as 3028 * there may be multiple pools and/or VFs using the 3029 * VLAN ID entry. In that case we cannot clear the 3030 * VFTA bit until all pools/VFs using that VLAN ID have also 3031 * been cleared. This will be indicated by "bits" being 3032 * zero. 3033 */ 3034 if (bits) { 3035 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 3036 (IXGBE_VLVF_VIEN | vlan)); 3037 if (!vlan_on) { 3038 /* someone wants to clear the vfta entry 3039 * but some pools/VFs are still using it. 3040 * Ignore it. */ 3041 vfta_changed = false; 3042 } 3043 } 3044 else 3045 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0); 3046 } 3047 3048 if (vfta_changed) 3049 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta); 3050 3051 return 0; 3052 } 3053 3054 /** 3055 * ixgbe_clear_vfta_generic - Clear VLAN filter table 3056 * @hw: pointer to hardware structure 3057 * 3058 * Clears the VLAN filer table, and the VMDq index associated with the filter 3059 **/ 3060 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw) 3061 { 3062 u32 offset; 3063 3064 for (offset = 0; offset < hw->mac.vft_size; offset++) 3065 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); 3066 3067 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { 3068 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); 3069 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0); 3070 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0); 3071 } 3072 3073 return 0; 3074 } 3075 3076 /** 3077 * ixgbe_check_mac_link_generic - Determine link and speed status 3078 * @hw: pointer to hardware structure 3079 * @speed: pointer to link speed 3080 * @link_up: true when link is up 3081 * @link_up_wait_to_complete: bool used to wait for link up or not 3082 * 3083 * Reads the links register to determine if link is up and the current speed 3084 **/ 3085 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, 3086 bool *link_up, bool link_up_wait_to_complete) 3087 { 3088 u32 links_reg, links_orig; 3089 u32 i; 3090 3091 /* clear the old state */ 3092 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS); 3093 3094 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 3095 3096 if (links_orig != links_reg) { 3097 hw_dbg(hw, "LINKS changed from %08X to %08X\n", 3098 links_orig, links_reg); 3099 } 3100 3101 if (link_up_wait_to_complete) { 3102 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) { 3103 if (links_reg & IXGBE_LINKS_UP) { 3104 *link_up = true; 3105 break; 3106 } else { 3107 *link_up = false; 3108 } 3109 msleep(100); 3110 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 3111 } 3112 } else { 3113 if (links_reg & IXGBE_LINKS_UP) 3114 *link_up = true; 3115 else 3116 *link_up = false; 3117 } 3118 3119 if ((links_reg & IXGBE_LINKS_SPEED_82599) == 3120 IXGBE_LINKS_SPEED_10G_82599) 3121 *speed = IXGBE_LINK_SPEED_10GB_FULL; 3122 else if ((links_reg & IXGBE_LINKS_SPEED_82599) == 3123 IXGBE_LINKS_SPEED_1G_82599) 3124 *speed = IXGBE_LINK_SPEED_1GB_FULL; 3125 else if ((links_reg & IXGBE_LINKS_SPEED_82599) == 3126 IXGBE_LINKS_SPEED_100_82599) 3127 *speed = IXGBE_LINK_SPEED_100_FULL; 3128 else 3129 *speed = IXGBE_LINK_SPEED_UNKNOWN; 3130 3131 return 0; 3132 } 3133 3134 /** 3135 * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from 3136 * the EEPROM 3137 * @hw: pointer to hardware structure 3138 * @wwnn_prefix: the alternative WWNN prefix 3139 * @wwpn_prefix: the alternative WWPN prefix 3140 * 3141 * This function will read the EEPROM from the alternative SAN MAC address 3142 * block to check the support for the alternative WWNN/WWPN prefix support. 3143 **/ 3144 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix, 3145 u16 *wwpn_prefix) 3146 { 3147 u16 offset, caps; 3148 u16 alt_san_mac_blk_offset; 3149 3150 /* clear output first */ 3151 *wwnn_prefix = 0xFFFF; 3152 *wwpn_prefix = 0xFFFF; 3153 3154 /* check if alternative SAN MAC is supported */ 3155 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR, 3156 &alt_san_mac_blk_offset); 3157 3158 if ((alt_san_mac_blk_offset == 0) || 3159 (alt_san_mac_blk_offset == 0xFFFF)) 3160 goto wwn_prefix_out; 3161 3162 /* check capability in alternative san mac address block */ 3163 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET; 3164 hw->eeprom.ops.read(hw, offset, &caps); 3165 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN)) 3166 goto wwn_prefix_out; 3167 3168 /* get the corresponding prefix for WWNN/WWPN */ 3169 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET; 3170 hw->eeprom.ops.read(hw, offset, wwnn_prefix); 3171 3172 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET; 3173 hw->eeprom.ops.read(hw, offset, wwpn_prefix); 3174 3175 wwn_prefix_out: 3176 return 0; 3177 } 3178 3179 /** 3180 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing 3181 * @hw: pointer to hardware structure 3182 * @enable: enable or disable switch for anti-spoofing 3183 * @pf: Physical Function pool - do not enable anti-spoofing for the PF 3184 * 3185 **/ 3186 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf) 3187 { 3188 int j; 3189 int pf_target_reg = pf >> 3; 3190 int pf_target_shift = pf % 8; 3191 u32 pfvfspoof = 0; 3192 3193 if (hw->mac.type == ixgbe_mac_82598EB) 3194 return; 3195 3196 if (enable) 3197 pfvfspoof = IXGBE_SPOOF_MACAS_MASK; 3198 3199 /* 3200 * PFVFSPOOF register array is size 8 with 8 bits assigned to 3201 * MAC anti-spoof enables in each register array element. 3202 */ 3203 for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++) 3204 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof); 3205 3206 /* If not enabling anti-spoofing then done */ 3207 if (!enable) 3208 return; 3209 3210 /* 3211 * The PF should be allowed to spoof so that it can support 3212 * emulation mode NICs. Reset the bit assigned to the PF 3213 */ 3214 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg)); 3215 pfvfspoof ^= (1 << pf_target_shift); 3216 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof); 3217 } 3218 3219 /** 3220 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing 3221 * @hw: pointer to hardware structure 3222 * @enable: enable or disable switch for VLAN anti-spoofing 3223 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing 3224 * 3225 **/ 3226 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) 3227 { 3228 int vf_target_reg = vf >> 3; 3229 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT; 3230 u32 pfvfspoof; 3231 3232 if (hw->mac.type == ixgbe_mac_82598EB) 3233 return; 3234 3235 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); 3236 if (enable) 3237 pfvfspoof |= (1 << vf_target_shift); 3238 else 3239 pfvfspoof &= ~(1 << vf_target_shift); 3240 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); 3241 } 3242 3243 /** 3244 * ixgbe_get_device_caps_generic - Get additional device capabilities 3245 * @hw: pointer to hardware structure 3246 * @device_caps: the EEPROM word with the extra device capabilities 3247 * 3248 * This function will read the EEPROM location for the device capabilities, 3249 * and return the word through device_caps. 3250 **/ 3251 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps) 3252 { 3253 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); 3254 3255 return 0; 3256 } 3257 3258 /** 3259 * ixgbe_set_rxpba_generic - Initialize RX packet buffer 3260 * @hw: pointer to hardware structure 3261 * @num_pb: number of packet buffers to allocate 3262 * @headroom: reserve n KB of headroom 3263 * @strategy: packet buffer allocation strategy 3264 **/ 3265 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, 3266 int num_pb, 3267 u32 headroom, 3268 int strategy) 3269 { 3270 u32 pbsize = hw->mac.rx_pb_size; 3271 int i = 0; 3272 u32 rxpktsize, txpktsize, txpbthresh; 3273 3274 /* Reserve headroom */ 3275 pbsize -= headroom; 3276 3277 if (!num_pb) 3278 num_pb = 1; 3279 3280 /* Divide remaining packet buffer space amongst the number 3281 * of packet buffers requested using supplied strategy. 3282 */ 3283 switch (strategy) { 3284 case (PBA_STRATEGY_WEIGHTED): 3285 /* pba_80_48 strategy weight first half of packet buffer with 3286 * 5/8 of the packet buffer space. 3287 */ 3288 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8)); 3289 pbsize -= rxpktsize * (num_pb / 2); 3290 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT; 3291 for (; i < (num_pb / 2); i++) 3292 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 3293 /* Fall through to configure remaining packet buffers */ 3294 case (PBA_STRATEGY_EQUAL): 3295 /* Divide the remaining Rx packet buffer evenly among the TCs */ 3296 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT; 3297 for (; i < num_pb; i++) 3298 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 3299 break; 3300 default: 3301 break; 3302 } 3303 3304 /* 3305 * Setup Tx packet buffer and threshold equally for all TCs 3306 * TXPBTHRESH register is set in K so divide by 1024 and subtract 3307 * 10 since the largest packet we support is just over 9K. 3308 */ 3309 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb; 3310 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX; 3311 for (i = 0; i < num_pb; i++) { 3312 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize); 3313 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh); 3314 } 3315 3316 /* Clear unused TCs, if any, to zero buffer size*/ 3317 for (; i < IXGBE_MAX_PB; i++) { 3318 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); 3319 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0); 3320 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0); 3321 } 3322 } 3323 3324 /** 3325 * ixgbe_calculate_checksum - Calculate checksum for buffer 3326 * @buffer: pointer to EEPROM 3327 * @length: size of EEPROM to calculate a checksum for 3328 * Calculates the checksum for some buffer on a specified length. The 3329 * checksum calculated is returned. 3330 **/ 3331 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length) 3332 { 3333 u32 i; 3334 u8 sum = 0; 3335 3336 if (!buffer) 3337 return 0; 3338 3339 for (i = 0; i < length; i++) 3340 sum += buffer[i]; 3341 3342 return (u8) (0 - sum); 3343 } 3344 3345 /** 3346 * ixgbe_host_interface_command - Issue command to manageability block 3347 * @hw: pointer to the HW structure 3348 * @buffer: contains the command to write and where the return status will 3349 * be placed 3350 * @length: length of buffer, must be multiple of 4 bytes 3351 * 3352 * Communicates with the manageability block. On success return 0 3353 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND. 3354 **/ 3355 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer, 3356 u32 length) 3357 { 3358 u32 hicr, i, bi; 3359 u32 hdr_size = sizeof(struct ixgbe_hic_hdr); 3360 u8 buf_len, dword_len; 3361 3362 s32 ret_val = 0; 3363 3364 if (length == 0 || length & 0x3 || 3365 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { 3366 hw_dbg(hw, "Buffer length failure.\n"); 3367 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 3368 goto out; 3369 } 3370 3371 /* Check that the host interface is enabled. */ 3372 hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 3373 if ((hicr & IXGBE_HICR_EN) == 0) { 3374 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n"); 3375 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 3376 goto out; 3377 } 3378 3379 /* Calculate length in DWORDs */ 3380 dword_len = length >> 2; 3381 3382 /* 3383 * The device driver writes the relevant command block 3384 * into the ram area. 3385 */ 3386 for (i = 0; i < dword_len; i++) 3387 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG, 3388 i, cpu_to_le32(buffer[i])); 3389 3390 /* Setting this bit tells the ARC that a new command is pending. */ 3391 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C); 3392 3393 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) { 3394 hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 3395 if (!(hicr & IXGBE_HICR_C)) 3396 break; 3397 usleep_range(1000, 2000); 3398 } 3399 3400 /* Check command successful completion. */ 3401 if (i == IXGBE_HI_COMMAND_TIMEOUT || 3402 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) { 3403 hw_dbg(hw, "Command has failed with no status valid.\n"); 3404 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 3405 goto out; 3406 } 3407 3408 /* Calculate length in DWORDs */ 3409 dword_len = hdr_size >> 2; 3410 3411 /* first pull in the header so we know the buffer length */ 3412 for (bi = 0; bi < dword_len; bi++) { 3413 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 3414 le32_to_cpus(&buffer[bi]); 3415 } 3416 3417 /* If there is any thing in data position pull it in */ 3418 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len; 3419 if (buf_len == 0) 3420 goto out; 3421 3422 if (length < (buf_len + hdr_size)) { 3423 hw_dbg(hw, "Buffer not large enough for reply message.\n"); 3424 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 3425 goto out; 3426 } 3427 3428 /* Calculate length in DWORDs, add 3 for odd lengths */ 3429 dword_len = (buf_len + 3) >> 2; 3430 3431 /* Pull in the rest of the buffer (bi is where we left off)*/ 3432 for (; bi <= dword_len; bi++) { 3433 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 3434 le32_to_cpus(&buffer[bi]); 3435 } 3436 3437 out: 3438 return ret_val; 3439 } 3440 3441 /** 3442 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware 3443 * @hw: pointer to the HW structure 3444 * @maj: driver version major number 3445 * @min: driver version minor number 3446 * @build: driver version build number 3447 * @sub: driver version sub build number 3448 * 3449 * Sends driver version number to firmware through the manageability 3450 * block. On success return 0 3451 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring 3452 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 3453 **/ 3454 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min, 3455 u8 build, u8 sub) 3456 { 3457 struct ixgbe_hic_drv_info fw_cmd; 3458 int i; 3459 s32 ret_val = 0; 3460 3461 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) { 3462 ret_val = IXGBE_ERR_SWFW_SYNC; 3463 goto out; 3464 } 3465 3466 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO; 3467 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN; 3468 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED; 3469 fw_cmd.port_num = (u8)hw->bus.func; 3470 fw_cmd.ver_maj = maj; 3471 fw_cmd.ver_min = min; 3472 fw_cmd.ver_build = build; 3473 fw_cmd.ver_sub = sub; 3474 fw_cmd.hdr.checksum = 0; 3475 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd, 3476 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len)); 3477 fw_cmd.pad = 0; 3478 fw_cmd.pad2 = 0; 3479 3480 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) { 3481 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd, 3482 sizeof(fw_cmd)); 3483 if (ret_val != 0) 3484 continue; 3485 3486 if (fw_cmd.hdr.cmd_or_resp.ret_status == 3487 FW_CEM_RESP_STATUS_SUCCESS) 3488 ret_val = 0; 3489 else 3490 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 3491 3492 break; 3493 } 3494 3495 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); 3496 out: 3497 return ret_val; 3498 } 3499 3500 /** 3501 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo 3502 * @hw: pointer to the hardware structure 3503 * 3504 * The 82599 and x540 MACs can experience issues if TX work is still pending 3505 * when a reset occurs. This function prevents this by flushing the PCIe 3506 * buffers on the system. 3507 **/ 3508 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw) 3509 { 3510 u32 gcr_ext, hlreg0; 3511 3512 /* 3513 * If double reset is not requested then all transactions should 3514 * already be clear and as such there is no work to do 3515 */ 3516 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED)) 3517 return; 3518 3519 /* 3520 * Set loopback enable to prevent any transmits from being sent 3521 * should the link come up. This assumes that the RXCTRL.RXEN bit 3522 * has already been cleared. 3523 */ 3524 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0); 3525 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK); 3526 3527 /* initiate cleaning flow for buffers in the PCIe transaction layer */ 3528 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT); 3529 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, 3530 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR); 3531 3532 /* Flush all writes and allow 20usec for all transactions to clear */ 3533 IXGBE_WRITE_FLUSH(hw); 3534 udelay(20); 3535 3536 /* restore previous register values */ 3537 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext); 3538 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0); 3539 } 3540 3541 static const u8 ixgbe_emc_temp_data[4] = { 3542 IXGBE_EMC_INTERNAL_DATA, 3543 IXGBE_EMC_DIODE1_DATA, 3544 IXGBE_EMC_DIODE2_DATA, 3545 IXGBE_EMC_DIODE3_DATA 3546 }; 3547 static const u8 ixgbe_emc_therm_limit[4] = { 3548 IXGBE_EMC_INTERNAL_THERM_LIMIT, 3549 IXGBE_EMC_DIODE1_THERM_LIMIT, 3550 IXGBE_EMC_DIODE2_THERM_LIMIT, 3551 IXGBE_EMC_DIODE3_THERM_LIMIT 3552 }; 3553 3554 /** 3555 * ixgbe_get_ets_data - Extracts the ETS bit data 3556 * @hw: pointer to hardware structure 3557 * @ets_cfg: extected ETS data 3558 * @ets_offset: offset of ETS data 3559 * 3560 * Returns error code. 3561 **/ 3562 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg, 3563 u16 *ets_offset) 3564 { 3565 s32 status = 0; 3566 3567 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset); 3568 if (status) 3569 goto out; 3570 3571 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) { 3572 status = IXGBE_NOT_IMPLEMENTED; 3573 goto out; 3574 } 3575 3576 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg); 3577 if (status) 3578 goto out; 3579 3580 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) { 3581 status = IXGBE_NOT_IMPLEMENTED; 3582 goto out; 3583 } 3584 3585 out: 3586 return status; 3587 } 3588 3589 /** 3590 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data 3591 * @hw: pointer to hardware structure 3592 * 3593 * Returns the thermal sensor data structure 3594 **/ 3595 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw) 3596 { 3597 s32 status = 0; 3598 u16 ets_offset; 3599 u16 ets_cfg; 3600 u16 ets_sensor; 3601 u8 num_sensors; 3602 u8 i; 3603 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 3604 3605 /* Only support thermal sensors attached to physical port 0 */ 3606 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) { 3607 status = IXGBE_NOT_IMPLEMENTED; 3608 goto out; 3609 } 3610 3611 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset); 3612 if (status) 3613 goto out; 3614 3615 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); 3616 if (num_sensors > IXGBE_MAX_SENSORS) 3617 num_sensors = IXGBE_MAX_SENSORS; 3618 3619 for (i = 0; i < num_sensors; i++) { 3620 u8 sensor_index; 3621 u8 sensor_location; 3622 3623 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i), 3624 &ets_sensor); 3625 if (status) 3626 goto out; 3627 3628 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >> 3629 IXGBE_ETS_DATA_INDEX_SHIFT); 3630 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >> 3631 IXGBE_ETS_DATA_LOC_SHIFT); 3632 3633 if (sensor_location != 0) { 3634 status = hw->phy.ops.read_i2c_byte(hw, 3635 ixgbe_emc_temp_data[sensor_index], 3636 IXGBE_I2C_THERMAL_SENSOR_ADDR, 3637 &data->sensor[i].temp); 3638 if (status) 3639 goto out; 3640 } 3641 } 3642 out: 3643 return status; 3644 } 3645 3646 /** 3647 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds 3648 * @hw: pointer to hardware structure 3649 * 3650 * Inits the thermal sensor thresholds according to the NVM map 3651 * and save off the threshold and location values into mac.thermal_sensor_data 3652 **/ 3653 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw) 3654 { 3655 s32 status = 0; 3656 u16 ets_offset; 3657 u16 ets_cfg; 3658 u16 ets_sensor; 3659 u8 low_thresh_delta; 3660 u8 num_sensors; 3661 u8 therm_limit; 3662 u8 i; 3663 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 3664 3665 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data)); 3666 3667 /* Only support thermal sensors attached to physical port 0 */ 3668 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) { 3669 status = IXGBE_NOT_IMPLEMENTED; 3670 goto out; 3671 } 3672 3673 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset); 3674 if (status) 3675 goto out; 3676 3677 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >> 3678 IXGBE_ETS_LTHRES_DELTA_SHIFT); 3679 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); 3680 if (num_sensors > IXGBE_MAX_SENSORS) 3681 num_sensors = IXGBE_MAX_SENSORS; 3682 3683 for (i = 0; i < num_sensors; i++) { 3684 u8 sensor_index; 3685 u8 sensor_location; 3686 3687 hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor); 3688 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >> 3689 IXGBE_ETS_DATA_INDEX_SHIFT); 3690 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >> 3691 IXGBE_ETS_DATA_LOC_SHIFT); 3692 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK; 3693 3694 hw->phy.ops.write_i2c_byte(hw, 3695 ixgbe_emc_therm_limit[sensor_index], 3696 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit); 3697 3698 if (sensor_location == 0) 3699 continue; 3700 3701 data->sensor[i].location = sensor_location; 3702 data->sensor[i].caution_thresh = therm_limit; 3703 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta; 3704 } 3705 out: 3706 return status; 3707 } 3708 3709