1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
32 
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
36 
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43                                         u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 
49 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
51 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
52 					     u16 words, u16 *data);
53 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
54 					     u16 words, u16 *data);
55 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
56 						 u16 offset);
57 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
58 
59 /**
60  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
61  *  control
62  *  @hw: pointer to hardware structure
63  *
64  *  There are several phys that do not support autoneg flow control. This
65  *  function check the device id to see if the associated phy supports
66  *  autoneg flow control.
67  **/
68 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
69 {
70 	bool supported = false;
71 	ixgbe_link_speed speed;
72 	bool link_up;
73 
74 	switch (hw->phy.media_type) {
75 	case ixgbe_media_type_fiber_fixed:
76 	case ixgbe_media_type_fiber:
77 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
78 		/* if link is down, assume supported */
79 		if (link_up)
80 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81 				true : false;
82 		else
83 			supported = true;
84 		break;
85 	case ixgbe_media_type_backplane:
86 		supported = true;
87 		break;
88 	case ixgbe_media_type_copper:
89 		/* only some copper devices support flow control autoneg */
90 		switch (hw->device_id) {
91 		case IXGBE_DEV_ID_82599_T3_LOM:
92 		case IXGBE_DEV_ID_X540T:
93 		case IXGBE_DEV_ID_X540T1:
94 			supported = true;
95 			break;
96 		default:
97 			break;
98 		}
99 	default:
100 		break;
101 	}
102 
103 	return supported;
104 }
105 
106 /**
107  *  ixgbe_setup_fc - Set up flow control
108  *  @hw: pointer to hardware structure
109  *
110  *  Called at init time to set up flow control.
111  **/
112 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
113 {
114 	s32 ret_val = 0;
115 	u32 reg = 0, reg_bp = 0;
116 	u16 reg_cu = 0;
117 	bool got_lock = false;
118 
119 	/*
120 	 * Validate the requested mode.  Strict IEEE mode does not allow
121 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122 	 */
123 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
126 		goto out;
127 	}
128 
129 	/*
130 	 * 10gig parts do not have a word in the EEPROM to determine the
131 	 * default flow control setting, so we explicitly set it to full.
132 	 */
133 	if (hw->fc.requested_mode == ixgbe_fc_default)
134 		hw->fc.requested_mode = ixgbe_fc_full;
135 
136 	/*
137 	 * Set up the 1G and 10G flow control advertisement registers so the
138 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
139 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
140 	 */
141 	switch (hw->phy.media_type) {
142 	case ixgbe_media_type_fiber_fixed:
143 	case ixgbe_media_type_fiber:
144 	case ixgbe_media_type_backplane:
145 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
146 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
147 		break;
148 	case ixgbe_media_type_copper:
149 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
150 					MDIO_MMD_AN, &reg_cu);
151 		break;
152 	default:
153 		break;
154 	}
155 
156 	/*
157 	 * The possible values of fc.requested_mode are:
158 	 * 0: Flow control is completely disabled
159 	 * 1: Rx flow control is enabled (we can receive pause frames,
160 	 *    but not send pause frames).
161 	 * 2: Tx flow control is enabled (we can send pause frames but
162 	 *    we do not support receiving pause frames).
163 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
164 	 * other: Invalid.
165 	 */
166 	switch (hw->fc.requested_mode) {
167 	case ixgbe_fc_none:
168 		/* Flow control completely disabled by software override. */
169 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
170 		if (hw->phy.media_type == ixgbe_media_type_backplane)
171 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
172 				    IXGBE_AUTOC_ASM_PAUSE);
173 		else if (hw->phy.media_type == ixgbe_media_type_copper)
174 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
175 		break;
176 	case ixgbe_fc_tx_pause:
177 		/*
178 		 * Tx Flow control is enabled, and Rx Flow control is
179 		 * disabled by software override.
180 		 */
181 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
182 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
183 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
184 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
185 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
186 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
187 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
188 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
189 		}
190 		break;
191 	case ixgbe_fc_rx_pause:
192 		/*
193 		 * Rx Flow control is enabled and Tx Flow control is
194 		 * disabled by software override. Since there really
195 		 * isn't a way to advertise that we are capable of RX
196 		 * Pause ONLY, we will advertise that we support both
197 		 * symmetric and asymmetric Rx PAUSE, as such we fall
198 		 * through to the fc_full statement.  Later, we will
199 		 * disable the adapter's ability to send PAUSE frames.
200 		 */
201 	case ixgbe_fc_full:
202 		/* Flow control (both Rx and Tx) is enabled by SW override. */
203 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
204 		if (hw->phy.media_type == ixgbe_media_type_backplane)
205 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
206 				  IXGBE_AUTOC_ASM_PAUSE;
207 		else if (hw->phy.media_type == ixgbe_media_type_copper)
208 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
209 		break;
210 	default:
211 		hw_dbg(hw, "Flow control param set incorrectly\n");
212 		ret_val = IXGBE_ERR_CONFIG;
213 		goto out;
214 		break;
215 	}
216 
217 	if (hw->mac.type != ixgbe_mac_X540) {
218 		/*
219 		 * Enable auto-negotiation between the MAC & PHY;
220 		 * the MAC will advertise clause 37 flow control.
221 		 */
222 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
223 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
224 
225 		/* Disable AN timeout */
226 		if (hw->fc.strict_ieee)
227 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
228 
229 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
230 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
231 	}
232 
233 	/*
234 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
235 	 * and copper. There is no need to set the PCS1GCTL register.
236 	 *
237 	 */
238 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
239 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
240 		 * LESM is on, likewise reset_pipeline requries the lock as
241 		 * it also writes AUTOC.
242 		 */
243 		if ((hw->mac.type == ixgbe_mac_82599EB) &&
244 		    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
245 			ret_val = hw->mac.ops.acquire_swfw_sync(hw,
246 							IXGBE_GSSR_MAC_CSR_SM);
247 			if (ret_val)
248 				goto out;
249 
250 			got_lock = true;
251 		}
252 
253 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
254 
255 		if (hw->mac.type == ixgbe_mac_82599EB)
256 			ixgbe_reset_pipeline_82599(hw);
257 
258 		if (got_lock)
259 			hw->mac.ops.release_swfw_sync(hw,
260 						      IXGBE_GSSR_MAC_CSR_SM);
261 
262 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
263 		    ixgbe_device_supports_autoneg_fc(hw)) {
264 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
265 				      MDIO_MMD_AN, reg_cu);
266 	}
267 
268 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
269 out:
270 	return ret_val;
271 }
272 
273 /**
274  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
275  *  @hw: pointer to hardware structure
276  *
277  *  Starts the hardware by filling the bus info structure and media type, clears
278  *  all on chip counters, initializes receive address registers, multicast
279  *  table, VLAN filter table, calls routine to set up link and flow control
280  *  settings, and leaves transmit and receive units disabled and uninitialized
281  **/
282 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
283 {
284 	u32 ctrl_ext;
285 
286 	/* Set the media type */
287 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
288 
289 	/* Identify the PHY */
290 	hw->phy.ops.identify(hw);
291 
292 	/* Clear the VLAN filter table */
293 	hw->mac.ops.clear_vfta(hw);
294 
295 	/* Clear statistics registers */
296 	hw->mac.ops.clear_hw_cntrs(hw);
297 
298 	/* Set No Snoop Disable */
299 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
300 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
301 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
302 	IXGBE_WRITE_FLUSH(hw);
303 
304 	/* Setup flow control */
305 	ixgbe_setup_fc(hw);
306 
307 	/* Clear adapter stopped flag */
308 	hw->adapter_stopped = false;
309 
310 	return 0;
311 }
312 
313 /**
314  *  ixgbe_start_hw_gen2 - Init sequence for common device family
315  *  @hw: pointer to hw structure
316  *
317  * Performs the init sequence common to the second generation
318  * of 10 GbE devices.
319  * Devices in the second generation:
320  *     82599
321  *     X540
322  **/
323 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
324 {
325 	u32 i;
326 	u32 regval;
327 
328 	/* Clear the rate limiters */
329 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
330 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
331 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
332 	}
333 	IXGBE_WRITE_FLUSH(hw);
334 
335 	/* Disable relaxed ordering */
336 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
337 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
338 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
339 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
340 	}
341 
342 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
343 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
344 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
345 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
346 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
347 	}
348 
349 	return 0;
350 }
351 
352 /**
353  *  ixgbe_init_hw_generic - Generic hardware initialization
354  *  @hw: pointer to hardware structure
355  *
356  *  Initialize the hardware by resetting the hardware, filling the bus info
357  *  structure and media type, clears all on chip counters, initializes receive
358  *  address registers, multicast table, VLAN filter table, calls routine to set
359  *  up link and flow control settings, and leaves transmit and receive units
360  *  disabled and uninitialized
361  **/
362 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
363 {
364 	s32 status;
365 
366 	/* Reset the hardware */
367 	status = hw->mac.ops.reset_hw(hw);
368 
369 	if (status == 0) {
370 		/* Start the HW */
371 		status = hw->mac.ops.start_hw(hw);
372 	}
373 
374 	return status;
375 }
376 
377 /**
378  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
379  *  @hw: pointer to hardware structure
380  *
381  *  Clears all hardware statistics counters by reading them from the hardware
382  *  Statistics counters are clear on read.
383  **/
384 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
385 {
386 	u16 i = 0;
387 
388 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
389 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
390 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
391 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
392 	for (i = 0; i < 8; i++)
393 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
394 
395 	IXGBE_READ_REG(hw, IXGBE_MLFC);
396 	IXGBE_READ_REG(hw, IXGBE_MRFC);
397 	IXGBE_READ_REG(hw, IXGBE_RLEC);
398 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
399 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
400 	if (hw->mac.type >= ixgbe_mac_82599EB) {
401 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
402 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
403 	} else {
404 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
405 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
406 	}
407 
408 	for (i = 0; i < 8; i++) {
409 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
410 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
411 		if (hw->mac.type >= ixgbe_mac_82599EB) {
412 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
413 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
414 		} else {
415 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
416 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
417 		}
418 	}
419 	if (hw->mac.type >= ixgbe_mac_82599EB)
420 		for (i = 0; i < 8; i++)
421 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
422 	IXGBE_READ_REG(hw, IXGBE_PRC64);
423 	IXGBE_READ_REG(hw, IXGBE_PRC127);
424 	IXGBE_READ_REG(hw, IXGBE_PRC255);
425 	IXGBE_READ_REG(hw, IXGBE_PRC511);
426 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
427 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
428 	IXGBE_READ_REG(hw, IXGBE_GPRC);
429 	IXGBE_READ_REG(hw, IXGBE_BPRC);
430 	IXGBE_READ_REG(hw, IXGBE_MPRC);
431 	IXGBE_READ_REG(hw, IXGBE_GPTC);
432 	IXGBE_READ_REG(hw, IXGBE_GORCL);
433 	IXGBE_READ_REG(hw, IXGBE_GORCH);
434 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
435 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
436 	if (hw->mac.type == ixgbe_mac_82598EB)
437 		for (i = 0; i < 8; i++)
438 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
439 	IXGBE_READ_REG(hw, IXGBE_RUC);
440 	IXGBE_READ_REG(hw, IXGBE_RFC);
441 	IXGBE_READ_REG(hw, IXGBE_ROC);
442 	IXGBE_READ_REG(hw, IXGBE_RJC);
443 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
444 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
445 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
446 	IXGBE_READ_REG(hw, IXGBE_TORL);
447 	IXGBE_READ_REG(hw, IXGBE_TORH);
448 	IXGBE_READ_REG(hw, IXGBE_TPR);
449 	IXGBE_READ_REG(hw, IXGBE_TPT);
450 	IXGBE_READ_REG(hw, IXGBE_PTC64);
451 	IXGBE_READ_REG(hw, IXGBE_PTC127);
452 	IXGBE_READ_REG(hw, IXGBE_PTC255);
453 	IXGBE_READ_REG(hw, IXGBE_PTC511);
454 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
455 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
456 	IXGBE_READ_REG(hw, IXGBE_MPTC);
457 	IXGBE_READ_REG(hw, IXGBE_BPTC);
458 	for (i = 0; i < 16; i++) {
459 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
460 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
461 		if (hw->mac.type >= ixgbe_mac_82599EB) {
462 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
463 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
464 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
465 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
466 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
467 		} else {
468 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
469 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
470 		}
471 	}
472 
473 	if (hw->mac.type == ixgbe_mac_X540) {
474 		if (hw->phy.id == 0)
475 			hw->phy.ops.identify(hw);
476 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
477 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
478 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
479 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
480 	}
481 
482 	return 0;
483 }
484 
485 /**
486  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
487  *  @hw: pointer to hardware structure
488  *  @pba_num: stores the part number string from the EEPROM
489  *  @pba_num_size: part number string buffer length
490  *
491  *  Reads the part number string from the EEPROM.
492  **/
493 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
494                                   u32 pba_num_size)
495 {
496 	s32 ret_val;
497 	u16 data;
498 	u16 pba_ptr;
499 	u16 offset;
500 	u16 length;
501 
502 	if (pba_num == NULL) {
503 		hw_dbg(hw, "PBA string buffer was null\n");
504 		return IXGBE_ERR_INVALID_ARGUMENT;
505 	}
506 
507 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
508 	if (ret_val) {
509 		hw_dbg(hw, "NVM Read Error\n");
510 		return ret_val;
511 	}
512 
513 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
514 	if (ret_val) {
515 		hw_dbg(hw, "NVM Read Error\n");
516 		return ret_val;
517 	}
518 
519 	/*
520 	 * if data is not ptr guard the PBA must be in legacy format which
521 	 * means pba_ptr is actually our second data word for the PBA number
522 	 * and we can decode it into an ascii string
523 	 */
524 	if (data != IXGBE_PBANUM_PTR_GUARD) {
525 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
526 
527 		/* we will need 11 characters to store the PBA */
528 		if (pba_num_size < 11) {
529 			hw_dbg(hw, "PBA string buffer too small\n");
530 			return IXGBE_ERR_NO_SPACE;
531 		}
532 
533 		/* extract hex string from data and pba_ptr */
534 		pba_num[0] = (data >> 12) & 0xF;
535 		pba_num[1] = (data >> 8) & 0xF;
536 		pba_num[2] = (data >> 4) & 0xF;
537 		pba_num[3] = data & 0xF;
538 		pba_num[4] = (pba_ptr >> 12) & 0xF;
539 		pba_num[5] = (pba_ptr >> 8) & 0xF;
540 		pba_num[6] = '-';
541 		pba_num[7] = 0;
542 		pba_num[8] = (pba_ptr >> 4) & 0xF;
543 		pba_num[9] = pba_ptr & 0xF;
544 
545 		/* put a null character on the end of our string */
546 		pba_num[10] = '\0';
547 
548 		/* switch all the data but the '-' to hex char */
549 		for (offset = 0; offset < 10; offset++) {
550 			if (pba_num[offset] < 0xA)
551 				pba_num[offset] += '0';
552 			else if (pba_num[offset] < 0x10)
553 				pba_num[offset] += 'A' - 0xA;
554 		}
555 
556 		return 0;
557 	}
558 
559 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
560 	if (ret_val) {
561 		hw_dbg(hw, "NVM Read Error\n");
562 		return ret_val;
563 	}
564 
565 	if (length == 0xFFFF || length == 0) {
566 		hw_dbg(hw, "NVM PBA number section invalid length\n");
567 		return IXGBE_ERR_PBA_SECTION;
568 	}
569 
570 	/* check if pba_num buffer is big enough */
571 	if (pba_num_size  < (((u32)length * 2) - 1)) {
572 		hw_dbg(hw, "PBA string buffer too small\n");
573 		return IXGBE_ERR_NO_SPACE;
574 	}
575 
576 	/* trim pba length from start of string */
577 	pba_ptr++;
578 	length--;
579 
580 	for (offset = 0; offset < length; offset++) {
581 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
582 		if (ret_val) {
583 			hw_dbg(hw, "NVM Read Error\n");
584 			return ret_val;
585 		}
586 		pba_num[offset * 2] = (u8)(data >> 8);
587 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
588 	}
589 	pba_num[offset * 2] = '\0';
590 
591 	return 0;
592 }
593 
594 /**
595  *  ixgbe_get_mac_addr_generic - Generic get MAC address
596  *  @hw: pointer to hardware structure
597  *  @mac_addr: Adapter MAC address
598  *
599  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
600  *  A reset of the adapter must be performed prior to calling this function
601  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
602  **/
603 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
604 {
605 	u32 rar_high;
606 	u32 rar_low;
607 	u16 i;
608 
609 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
610 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
611 
612 	for (i = 0; i < 4; i++)
613 		mac_addr[i] = (u8)(rar_low >> (i*8));
614 
615 	for (i = 0; i < 2; i++)
616 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
617 
618 	return 0;
619 }
620 
621 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
622 {
623 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
624 	case IXGBE_PCI_LINK_WIDTH_1:
625 		return ixgbe_bus_width_pcie_x1;
626 	case IXGBE_PCI_LINK_WIDTH_2:
627 		return ixgbe_bus_width_pcie_x2;
628 	case IXGBE_PCI_LINK_WIDTH_4:
629 		return ixgbe_bus_width_pcie_x4;
630 	case IXGBE_PCI_LINK_WIDTH_8:
631 		return ixgbe_bus_width_pcie_x8;
632 	default:
633 		return ixgbe_bus_width_unknown;
634 	}
635 }
636 
637 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
638 {
639 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
640 	case IXGBE_PCI_LINK_SPEED_2500:
641 		return ixgbe_bus_speed_2500;
642 	case IXGBE_PCI_LINK_SPEED_5000:
643 		return ixgbe_bus_speed_5000;
644 	case IXGBE_PCI_LINK_SPEED_8000:
645 		return ixgbe_bus_speed_8000;
646 	default:
647 		return ixgbe_bus_speed_unknown;
648 	}
649 }
650 
651 /**
652  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
653  *  @hw: pointer to hardware structure
654  *
655  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
656  **/
657 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
658 {
659 	struct ixgbe_adapter *adapter = hw->back;
660 	struct ixgbe_mac_info *mac = &hw->mac;
661 	u16 link_status;
662 
663 	hw->bus.type = ixgbe_bus_type_pci_express;
664 
665 	/* Get the negotiated link width and speed from PCI config space */
666 	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
667 	                     &link_status);
668 
669 	hw->bus.width = ixgbe_convert_bus_width(link_status);
670 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
671 
672 	mac->ops.set_lan_id(hw);
673 
674 	return 0;
675 }
676 
677 /**
678  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
679  *  @hw: pointer to the HW structure
680  *
681  *  Determines the LAN function id by reading memory-mapped registers
682  *  and swaps the port value if requested.
683  **/
684 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
685 {
686 	struct ixgbe_bus_info *bus = &hw->bus;
687 	u32 reg;
688 
689 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
690 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
691 	bus->lan_id = bus->func;
692 
693 	/* check for a port swap */
694 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
695 	if (reg & IXGBE_FACTPS_LFS)
696 		bus->func ^= 0x1;
697 }
698 
699 /**
700  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
701  *  @hw: pointer to hardware structure
702  *
703  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
704  *  disables transmit and receive units. The adapter_stopped flag is used by
705  *  the shared code and drivers to determine if the adapter is in a stopped
706  *  state and should not touch the hardware.
707  **/
708 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
709 {
710 	u32 reg_val;
711 	u16 i;
712 
713 	/*
714 	 * Set the adapter_stopped flag so other driver functions stop touching
715 	 * the hardware
716 	 */
717 	hw->adapter_stopped = true;
718 
719 	/* Disable the receive unit */
720 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
721 
722 	/* Clear interrupt mask to stop interrupts from being generated */
723 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
724 
725 	/* Clear any pending interrupts, flush previous writes */
726 	IXGBE_READ_REG(hw, IXGBE_EICR);
727 
728 	/* Disable the transmit unit.  Each queue must be disabled. */
729 	for (i = 0; i < hw->mac.max_tx_queues; i++)
730 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
731 
732 	/* Disable the receive unit by stopping each queue */
733 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
734 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
735 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
736 		reg_val |= IXGBE_RXDCTL_SWFLSH;
737 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
738 	}
739 
740 	/* flush all queues disables */
741 	IXGBE_WRITE_FLUSH(hw);
742 	usleep_range(1000, 2000);
743 
744 	/*
745 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
746 	 * access and verify no pending requests
747 	 */
748 	return ixgbe_disable_pcie_master(hw);
749 }
750 
751 /**
752  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
753  *  @hw: pointer to hardware structure
754  *  @index: led number to turn on
755  **/
756 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
757 {
758 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
759 
760 	/* To turn on the LED, set mode to ON. */
761 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
762 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
763 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
764 	IXGBE_WRITE_FLUSH(hw);
765 
766 	return 0;
767 }
768 
769 /**
770  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
771  *  @hw: pointer to hardware structure
772  *  @index: led number to turn off
773  **/
774 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
775 {
776 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
777 
778 	/* To turn off the LED, set mode to OFF. */
779 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
780 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
781 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
782 	IXGBE_WRITE_FLUSH(hw);
783 
784 	return 0;
785 }
786 
787 /**
788  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
789  *  @hw: pointer to hardware structure
790  *
791  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
792  *  ixgbe_hw struct in order to set up EEPROM access.
793  **/
794 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
795 {
796 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
797 	u32 eec;
798 	u16 eeprom_size;
799 
800 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
801 		eeprom->type = ixgbe_eeprom_none;
802 		/* Set default semaphore delay to 10ms which is a well
803 		 * tested value */
804 		eeprom->semaphore_delay = 10;
805 		/* Clear EEPROM page size, it will be initialized as needed */
806 		eeprom->word_page_size = 0;
807 
808 		/*
809 		 * Check for EEPROM present first.
810 		 * If not present leave as none
811 		 */
812 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
813 		if (eec & IXGBE_EEC_PRES) {
814 			eeprom->type = ixgbe_eeprom_spi;
815 
816 			/*
817 			 * SPI EEPROM is assumed here.  This code would need to
818 			 * change if a future EEPROM is not SPI.
819 			 */
820 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
821 					    IXGBE_EEC_SIZE_SHIFT);
822 			eeprom->word_size = 1 << (eeprom_size +
823 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
824 		}
825 
826 		if (eec & IXGBE_EEC_ADDR_SIZE)
827 			eeprom->address_bits = 16;
828 		else
829 			eeprom->address_bits = 8;
830 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
831 			  "%d\n", eeprom->type, eeprom->word_size,
832 			  eeprom->address_bits);
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
840  *  @hw: pointer to hardware structure
841  *  @offset: offset within the EEPROM to write
842  *  @words: number of words
843  *  @data: 16 bit word(s) to write to EEPROM
844  *
845  *  Reads 16 bit word(s) from EEPROM through bit-bang method
846  **/
847 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
848 					       u16 words, u16 *data)
849 {
850 	s32 status = 0;
851 	u16 i, count;
852 
853 	hw->eeprom.ops.init_params(hw);
854 
855 	if (words == 0) {
856 		status = IXGBE_ERR_INVALID_ARGUMENT;
857 		goto out;
858 	}
859 
860 	if (offset + words > hw->eeprom.word_size) {
861 		status = IXGBE_ERR_EEPROM;
862 		goto out;
863 	}
864 
865 	/*
866 	 * The EEPROM page size cannot be queried from the chip. We do lazy
867 	 * initialization. It is worth to do that when we write large buffer.
868 	 */
869 	if ((hw->eeprom.word_page_size == 0) &&
870 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
871 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
872 
873 	/*
874 	 * We cannot hold synchronization semaphores for too long
875 	 * to avoid other entity starvation. However it is more efficient
876 	 * to read in bursts than synchronizing access for each word.
877 	 */
878 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
879 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
880 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
881 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
882 							    count, &data[i]);
883 
884 		if (status != 0)
885 			break;
886 	}
887 
888 out:
889 	return status;
890 }
891 
892 /**
893  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
894  *  @hw: pointer to hardware structure
895  *  @offset: offset within the EEPROM to be written to
896  *  @words: number of word(s)
897  *  @data: 16 bit word(s) to be written to the EEPROM
898  *
899  *  If ixgbe_eeprom_update_checksum is not called after this function, the
900  *  EEPROM will most likely contain an invalid checksum.
901  **/
902 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
903 					      u16 words, u16 *data)
904 {
905 	s32 status;
906 	u16 word;
907 	u16 page_size;
908 	u16 i;
909 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
910 
911 	/* Prepare the EEPROM for writing  */
912 	status = ixgbe_acquire_eeprom(hw);
913 
914 	if (status == 0) {
915 		if (ixgbe_ready_eeprom(hw) != 0) {
916 			ixgbe_release_eeprom(hw);
917 			status = IXGBE_ERR_EEPROM;
918 		}
919 	}
920 
921 	if (status == 0) {
922 		for (i = 0; i < words; i++) {
923 			ixgbe_standby_eeprom(hw);
924 
925 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
926 			ixgbe_shift_out_eeprom_bits(hw,
927 						  IXGBE_EEPROM_WREN_OPCODE_SPI,
928 						  IXGBE_EEPROM_OPCODE_BITS);
929 
930 			ixgbe_standby_eeprom(hw);
931 
932 			/*
933 			 * Some SPI eeproms use the 8th address bit embedded
934 			 * in the opcode
935 			 */
936 			if ((hw->eeprom.address_bits == 8) &&
937 			    ((offset + i) >= 128))
938 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
939 
940 			/* Send the Write command (8-bit opcode + addr) */
941 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
942 						    IXGBE_EEPROM_OPCODE_BITS);
943 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
944 						    hw->eeprom.address_bits);
945 
946 			page_size = hw->eeprom.word_page_size;
947 
948 			/* Send the data in burst via SPI*/
949 			do {
950 				word = data[i];
951 				word = (word >> 8) | (word << 8);
952 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
953 
954 				if (page_size == 0)
955 					break;
956 
957 				/* do not wrap around page */
958 				if (((offset + i) & (page_size - 1)) ==
959 				    (page_size - 1))
960 					break;
961 			} while (++i < words);
962 
963 			ixgbe_standby_eeprom(hw);
964 			usleep_range(10000, 20000);
965 		}
966 		/* Done with writing - release the EEPROM */
967 		ixgbe_release_eeprom(hw);
968 	}
969 
970 	return status;
971 }
972 
973 /**
974  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
975  *  @hw: pointer to hardware structure
976  *  @offset: offset within the EEPROM to be written to
977  *  @data: 16 bit word to be written to the EEPROM
978  *
979  *  If ixgbe_eeprom_update_checksum is not called after this function, the
980  *  EEPROM will most likely contain an invalid checksum.
981  **/
982 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
983 {
984 	s32 status;
985 
986 	hw->eeprom.ops.init_params(hw);
987 
988 	if (offset >= hw->eeprom.word_size) {
989 		status = IXGBE_ERR_EEPROM;
990 		goto out;
991 	}
992 
993 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
994 
995 out:
996 	return status;
997 }
998 
999 /**
1000  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1001  *  @hw: pointer to hardware structure
1002  *  @offset: offset within the EEPROM to be read
1003  *  @words: number of word(s)
1004  *  @data: read 16 bit words(s) from EEPROM
1005  *
1006  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1007  **/
1008 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1009 					      u16 words, u16 *data)
1010 {
1011 	s32 status = 0;
1012 	u16 i, count;
1013 
1014 	hw->eeprom.ops.init_params(hw);
1015 
1016 	if (words == 0) {
1017 		status = IXGBE_ERR_INVALID_ARGUMENT;
1018 		goto out;
1019 	}
1020 
1021 	if (offset + words > hw->eeprom.word_size) {
1022 		status = IXGBE_ERR_EEPROM;
1023 		goto out;
1024 	}
1025 
1026 	/*
1027 	 * We cannot hold synchronization semaphores for too long
1028 	 * to avoid other entity starvation. However it is more efficient
1029 	 * to read in bursts than synchronizing access for each word.
1030 	 */
1031 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1032 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1033 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1034 
1035 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1036 							   count, &data[i]);
1037 
1038 		if (status != 0)
1039 			break;
1040 	}
1041 
1042 out:
1043 	return status;
1044 }
1045 
1046 /**
1047  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1048  *  @hw: pointer to hardware structure
1049  *  @offset: offset within the EEPROM to be read
1050  *  @words: number of word(s)
1051  *  @data: read 16 bit word(s) from EEPROM
1052  *
1053  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1054  **/
1055 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1056 					     u16 words, u16 *data)
1057 {
1058 	s32 status;
1059 	u16 word_in;
1060 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1061 	u16 i;
1062 
1063 	/* Prepare the EEPROM for reading  */
1064 	status = ixgbe_acquire_eeprom(hw);
1065 
1066 	if (status == 0) {
1067 		if (ixgbe_ready_eeprom(hw) != 0) {
1068 			ixgbe_release_eeprom(hw);
1069 			status = IXGBE_ERR_EEPROM;
1070 		}
1071 	}
1072 
1073 	if (status == 0) {
1074 		for (i = 0; i < words; i++) {
1075 			ixgbe_standby_eeprom(hw);
1076 			/*
1077 			 * Some SPI eeproms use the 8th address bit embedded
1078 			 * in the opcode
1079 			 */
1080 			if ((hw->eeprom.address_bits == 8) &&
1081 			    ((offset + i) >= 128))
1082 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1083 
1084 			/* Send the READ command (opcode + addr) */
1085 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1086 						    IXGBE_EEPROM_OPCODE_BITS);
1087 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1088 						    hw->eeprom.address_bits);
1089 
1090 			/* Read the data. */
1091 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1092 			data[i] = (word_in >> 8) | (word_in << 8);
1093 		}
1094 
1095 		/* End this read operation */
1096 		ixgbe_release_eeprom(hw);
1097 	}
1098 
1099 	return status;
1100 }
1101 
1102 /**
1103  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1104  *  @hw: pointer to hardware structure
1105  *  @offset: offset within the EEPROM to be read
1106  *  @data: read 16 bit value from EEPROM
1107  *
1108  *  Reads 16 bit value from EEPROM through bit-bang method
1109  **/
1110 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1111 				       u16 *data)
1112 {
1113 	s32 status;
1114 
1115 	hw->eeprom.ops.init_params(hw);
1116 
1117 	if (offset >= hw->eeprom.word_size) {
1118 		status = IXGBE_ERR_EEPROM;
1119 		goto out;
1120 	}
1121 
1122 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1123 
1124 out:
1125 	return status;
1126 }
1127 
1128 /**
1129  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1130  *  @hw: pointer to hardware structure
1131  *  @offset: offset of word in the EEPROM to read
1132  *  @words: number of word(s)
1133  *  @data: 16 bit word(s) from the EEPROM
1134  *
1135  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1136  **/
1137 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1138 				   u16 words, u16 *data)
1139 {
1140 	u32 eerd;
1141 	s32 status = 0;
1142 	u32 i;
1143 
1144 	hw->eeprom.ops.init_params(hw);
1145 
1146 	if (words == 0) {
1147 		status = IXGBE_ERR_INVALID_ARGUMENT;
1148 		goto out;
1149 	}
1150 
1151 	if (offset >= hw->eeprom.word_size) {
1152 		status = IXGBE_ERR_EEPROM;
1153 		goto out;
1154 	}
1155 
1156 	for (i = 0; i < words; i++) {
1157 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1158 		       IXGBE_EEPROM_RW_REG_START;
1159 
1160 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1161 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1162 
1163 		if (status == 0) {
1164 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1165 				   IXGBE_EEPROM_RW_REG_DATA);
1166 		} else {
1167 			hw_dbg(hw, "Eeprom read timed out\n");
1168 			goto out;
1169 		}
1170 	}
1171 out:
1172 	return status;
1173 }
1174 
1175 /**
1176  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1177  *  @hw: pointer to hardware structure
1178  *  @offset: offset within the EEPROM to be used as a scratch pad
1179  *
1180  *  Discover EEPROM page size by writing marching data at given offset.
1181  *  This function is called only when we are writing a new large buffer
1182  *  at given offset so the data would be overwritten anyway.
1183  **/
1184 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1185 						 u16 offset)
1186 {
1187 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1188 	s32 status = 0;
1189 	u16 i;
1190 
1191 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1192 		data[i] = i;
1193 
1194 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1195 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1196 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1197 	hw->eeprom.word_page_size = 0;
1198 	if (status != 0)
1199 		goto out;
1200 
1201 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1202 	if (status != 0)
1203 		goto out;
1204 
1205 	/*
1206 	 * When writing in burst more than the actual page size
1207 	 * EEPROM address wraps around current page.
1208 	 */
1209 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1210 
1211 	hw_dbg(hw, "Detected EEPROM page size = %d words.",
1212 	       hw->eeprom.word_page_size);
1213 out:
1214 	return status;
1215 }
1216 
1217 /**
1218  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1219  *  @hw: pointer to hardware structure
1220  *  @offset: offset of  word in the EEPROM to read
1221  *  @data: word read from the EEPROM
1222  *
1223  *  Reads a 16 bit word from the EEPROM using the EERD register.
1224  **/
1225 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1226 {
1227 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1228 }
1229 
1230 /**
1231  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1232  *  @hw: pointer to hardware structure
1233  *  @offset: offset of  word in the EEPROM to write
1234  *  @words: number of words
1235  *  @data: word(s) write to the EEPROM
1236  *
1237  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1238  **/
1239 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1240 				    u16 words, u16 *data)
1241 {
1242 	u32 eewr;
1243 	s32 status = 0;
1244 	u16 i;
1245 
1246 	hw->eeprom.ops.init_params(hw);
1247 
1248 	if (words == 0) {
1249 		status = IXGBE_ERR_INVALID_ARGUMENT;
1250 		goto out;
1251 	}
1252 
1253 	if (offset >= hw->eeprom.word_size) {
1254 		status = IXGBE_ERR_EEPROM;
1255 		goto out;
1256 	}
1257 
1258 	for (i = 0; i < words; i++) {
1259 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1260 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1261 		       IXGBE_EEPROM_RW_REG_START;
1262 
1263 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1264 		if (status != 0) {
1265 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1266 			goto out;
1267 		}
1268 
1269 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1270 
1271 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1272 		if (status != 0) {
1273 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1274 			goto out;
1275 		}
1276 	}
1277 
1278 out:
1279 	return status;
1280 }
1281 
1282 /**
1283  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1284  *  @hw: pointer to hardware structure
1285  *  @offset: offset of  word in the EEPROM to write
1286  *  @data: word write to the EEPROM
1287  *
1288  *  Write a 16 bit word to the EEPROM using the EEWR register.
1289  **/
1290 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1291 {
1292 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1293 }
1294 
1295 /**
1296  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1297  *  @hw: pointer to hardware structure
1298  *  @ee_reg: EEPROM flag for polling
1299  *
1300  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1301  *  read or write is done respectively.
1302  **/
1303 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1304 {
1305 	u32 i;
1306 	u32 reg;
1307 	s32 status = IXGBE_ERR_EEPROM;
1308 
1309 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1310 		if (ee_reg == IXGBE_NVM_POLL_READ)
1311 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1312 		else
1313 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1314 
1315 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1316 			status = 0;
1317 			break;
1318 		}
1319 		udelay(5);
1320 	}
1321 	return status;
1322 }
1323 
1324 /**
1325  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1326  *  @hw: pointer to hardware structure
1327  *
1328  *  Prepares EEPROM for access using bit-bang method. This function should
1329  *  be called before issuing a command to the EEPROM.
1330  **/
1331 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1332 {
1333 	s32 status = 0;
1334 	u32 eec;
1335 	u32 i;
1336 
1337 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1338 		status = IXGBE_ERR_SWFW_SYNC;
1339 
1340 	if (status == 0) {
1341 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1342 
1343 		/* Request EEPROM Access */
1344 		eec |= IXGBE_EEC_REQ;
1345 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1346 
1347 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1348 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1349 			if (eec & IXGBE_EEC_GNT)
1350 				break;
1351 			udelay(5);
1352 		}
1353 
1354 		/* Release if grant not acquired */
1355 		if (!(eec & IXGBE_EEC_GNT)) {
1356 			eec &= ~IXGBE_EEC_REQ;
1357 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1358 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
1359 
1360 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1361 			status = IXGBE_ERR_EEPROM;
1362 		}
1363 
1364 		/* Setup EEPROM for Read/Write */
1365 		if (status == 0) {
1366 			/* Clear CS and SK */
1367 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1368 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1369 			IXGBE_WRITE_FLUSH(hw);
1370 			udelay(1);
1371 		}
1372 	}
1373 	return status;
1374 }
1375 
1376 /**
1377  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1378  *  @hw: pointer to hardware structure
1379  *
1380  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1381  **/
1382 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1383 {
1384 	s32 status = IXGBE_ERR_EEPROM;
1385 	u32 timeout = 2000;
1386 	u32 i;
1387 	u32 swsm;
1388 
1389 	/* Get SMBI software semaphore between device drivers first */
1390 	for (i = 0; i < timeout; i++) {
1391 		/*
1392 		 * If the SMBI bit is 0 when we read it, then the bit will be
1393 		 * set and we have the semaphore
1394 		 */
1395 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1396 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1397 			status = 0;
1398 			break;
1399 		}
1400 		udelay(50);
1401 	}
1402 
1403 	if (i == timeout) {
1404 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1405 		       "not granted.\n");
1406 		/*
1407 		 * this release is particularly important because our attempts
1408 		 * above to get the semaphore may have succeeded, and if there
1409 		 * was a timeout, we should unconditionally clear the semaphore
1410 		 * bits to free the driver to make progress
1411 		 */
1412 		ixgbe_release_eeprom_semaphore(hw);
1413 
1414 		udelay(50);
1415 		/*
1416 		 * one last try
1417 		 * If the SMBI bit is 0 when we read it, then the bit will be
1418 		 * set and we have the semaphore
1419 		 */
1420 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1421 		if (!(swsm & IXGBE_SWSM_SMBI))
1422 			status = 0;
1423 	}
1424 
1425 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1426 	if (status == 0) {
1427 		for (i = 0; i < timeout; i++) {
1428 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1429 
1430 			/* Set the SW EEPROM semaphore bit to request access */
1431 			swsm |= IXGBE_SWSM_SWESMBI;
1432 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1433 
1434 			/*
1435 			 * If we set the bit successfully then we got the
1436 			 * semaphore.
1437 			 */
1438 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1439 			if (swsm & IXGBE_SWSM_SWESMBI)
1440 				break;
1441 
1442 			udelay(50);
1443 		}
1444 
1445 		/*
1446 		 * Release semaphores and return error if SW EEPROM semaphore
1447 		 * was not granted because we don't have access to the EEPROM
1448 		 */
1449 		if (i >= timeout) {
1450 			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1451 			       "not granted.\n");
1452 			ixgbe_release_eeprom_semaphore(hw);
1453 			status = IXGBE_ERR_EEPROM;
1454 		}
1455 	} else {
1456 		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1457 		       "not granted.\n");
1458 	}
1459 
1460 	return status;
1461 }
1462 
1463 /**
1464  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1465  *  @hw: pointer to hardware structure
1466  *
1467  *  This function clears hardware semaphore bits.
1468  **/
1469 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1470 {
1471 	u32 swsm;
1472 
1473 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1474 
1475 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1476 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1477 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1478 	IXGBE_WRITE_FLUSH(hw);
1479 }
1480 
1481 /**
1482  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1483  *  @hw: pointer to hardware structure
1484  **/
1485 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1486 {
1487 	s32 status = 0;
1488 	u16 i;
1489 	u8 spi_stat_reg;
1490 
1491 	/*
1492 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1493 	 * EEPROM will signal that the command has been completed by clearing
1494 	 * bit 0 of the internal status register.  If it's not cleared within
1495 	 * 5 milliseconds, then error out.
1496 	 */
1497 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1498 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1499 		                            IXGBE_EEPROM_OPCODE_BITS);
1500 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1501 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1502 			break;
1503 
1504 		udelay(5);
1505 		ixgbe_standby_eeprom(hw);
1506 	}
1507 
1508 	/*
1509 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1510 	 * devices (and only 0-5mSec on 5V devices)
1511 	 */
1512 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1513 		hw_dbg(hw, "SPI EEPROM Status error\n");
1514 		status = IXGBE_ERR_EEPROM;
1515 	}
1516 
1517 	return status;
1518 }
1519 
1520 /**
1521  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1522  *  @hw: pointer to hardware structure
1523  **/
1524 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1525 {
1526 	u32 eec;
1527 
1528 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1529 
1530 	/* Toggle CS to flush commands */
1531 	eec |= IXGBE_EEC_CS;
1532 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1533 	IXGBE_WRITE_FLUSH(hw);
1534 	udelay(1);
1535 	eec &= ~IXGBE_EEC_CS;
1536 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1537 	IXGBE_WRITE_FLUSH(hw);
1538 	udelay(1);
1539 }
1540 
1541 /**
1542  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1543  *  @hw: pointer to hardware structure
1544  *  @data: data to send to the EEPROM
1545  *  @count: number of bits to shift out
1546  **/
1547 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1548                                         u16 count)
1549 {
1550 	u32 eec;
1551 	u32 mask;
1552 	u32 i;
1553 
1554 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1555 
1556 	/*
1557 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1558 	 * one bit at a time.  Determine the starting bit based on count
1559 	 */
1560 	mask = 0x01 << (count - 1);
1561 
1562 	for (i = 0; i < count; i++) {
1563 		/*
1564 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1565 		 * "1", and then raising and then lowering the clock (the SK
1566 		 * bit controls the clock input to the EEPROM).  A "0" is
1567 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1568 		 * raising and then lowering the clock.
1569 		 */
1570 		if (data & mask)
1571 			eec |= IXGBE_EEC_DI;
1572 		else
1573 			eec &= ~IXGBE_EEC_DI;
1574 
1575 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1576 		IXGBE_WRITE_FLUSH(hw);
1577 
1578 		udelay(1);
1579 
1580 		ixgbe_raise_eeprom_clk(hw, &eec);
1581 		ixgbe_lower_eeprom_clk(hw, &eec);
1582 
1583 		/*
1584 		 * Shift mask to signify next bit of data to shift in to the
1585 		 * EEPROM
1586 		 */
1587 		mask = mask >> 1;
1588 	}
1589 
1590 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1591 	eec &= ~IXGBE_EEC_DI;
1592 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1593 	IXGBE_WRITE_FLUSH(hw);
1594 }
1595 
1596 /**
1597  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1598  *  @hw: pointer to hardware structure
1599  **/
1600 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1601 {
1602 	u32 eec;
1603 	u32 i;
1604 	u16 data = 0;
1605 
1606 	/*
1607 	 * In order to read a register from the EEPROM, we need to shift
1608 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1609 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1610 	 * the value of the "DO" bit.  During this "shifting in" process the
1611 	 * "DI" bit should always be clear.
1612 	 */
1613 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1614 
1615 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1616 
1617 	for (i = 0; i < count; i++) {
1618 		data = data << 1;
1619 		ixgbe_raise_eeprom_clk(hw, &eec);
1620 
1621 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1622 
1623 		eec &= ~(IXGBE_EEC_DI);
1624 		if (eec & IXGBE_EEC_DO)
1625 			data |= 1;
1626 
1627 		ixgbe_lower_eeprom_clk(hw, &eec);
1628 	}
1629 
1630 	return data;
1631 }
1632 
1633 /**
1634  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1635  *  @hw: pointer to hardware structure
1636  *  @eec: EEC register's current value
1637  **/
1638 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1639 {
1640 	/*
1641 	 * Raise the clock input to the EEPROM
1642 	 * (setting the SK bit), then delay
1643 	 */
1644 	*eec = *eec | IXGBE_EEC_SK;
1645 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1646 	IXGBE_WRITE_FLUSH(hw);
1647 	udelay(1);
1648 }
1649 
1650 /**
1651  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1652  *  @hw: pointer to hardware structure
1653  *  @eecd: EECD's current value
1654  **/
1655 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1656 {
1657 	/*
1658 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1659 	 * delay
1660 	 */
1661 	*eec = *eec & ~IXGBE_EEC_SK;
1662 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1663 	IXGBE_WRITE_FLUSH(hw);
1664 	udelay(1);
1665 }
1666 
1667 /**
1668  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1669  *  @hw: pointer to hardware structure
1670  **/
1671 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1672 {
1673 	u32 eec;
1674 
1675 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1676 
1677 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1678 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1679 
1680 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1681 	IXGBE_WRITE_FLUSH(hw);
1682 
1683 	udelay(1);
1684 
1685 	/* Stop requesting EEPROM access */
1686 	eec &= ~IXGBE_EEC_REQ;
1687 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1688 
1689 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1690 
1691 	/*
1692 	 * Delay before attempt to obtain semaphore again to allow FW
1693 	 * access. semaphore_delay is in ms we need us for usleep_range
1694 	 */
1695 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1696 		     hw->eeprom.semaphore_delay * 2000);
1697 }
1698 
1699 /**
1700  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1701  *  @hw: pointer to hardware structure
1702  **/
1703 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1704 {
1705 	u16 i;
1706 	u16 j;
1707 	u16 checksum = 0;
1708 	u16 length = 0;
1709 	u16 pointer = 0;
1710 	u16 word = 0;
1711 
1712 	/* Include 0x0-0x3F in the checksum */
1713 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1714 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1715 			hw_dbg(hw, "EEPROM read failed\n");
1716 			break;
1717 		}
1718 		checksum += word;
1719 	}
1720 
1721 	/* Include all data from pointers except for the fw pointer */
1722 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1723 		hw->eeprom.ops.read(hw, i, &pointer);
1724 
1725 		/* Make sure the pointer seems valid */
1726 		if (pointer != 0xFFFF && pointer != 0) {
1727 			hw->eeprom.ops.read(hw, pointer, &length);
1728 
1729 			if (length != 0xFFFF && length != 0) {
1730 				for (j = pointer+1; j <= pointer+length; j++) {
1731 					hw->eeprom.ops.read(hw, j, &word);
1732 					checksum += word;
1733 				}
1734 			}
1735 		}
1736 	}
1737 
1738 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1739 
1740 	return checksum;
1741 }
1742 
1743 /**
1744  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1745  *  @hw: pointer to hardware structure
1746  *  @checksum_val: calculated checksum
1747  *
1748  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1749  *  caller does not need checksum_val, the value can be NULL.
1750  **/
1751 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1752                                            u16 *checksum_val)
1753 {
1754 	s32 status;
1755 	u16 checksum;
1756 	u16 read_checksum = 0;
1757 
1758 	/*
1759 	 * Read the first word from the EEPROM. If this times out or fails, do
1760 	 * not continue or we could be in for a very long wait while every
1761 	 * EEPROM read fails
1762 	 */
1763 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1764 
1765 	if (status == 0) {
1766 		checksum = hw->eeprom.ops.calc_checksum(hw);
1767 
1768 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1769 
1770 		/*
1771 		 * Verify read checksum from EEPROM is the same as
1772 		 * calculated checksum
1773 		 */
1774 		if (read_checksum != checksum)
1775 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1776 
1777 		/* If the user cares, return the calculated checksum */
1778 		if (checksum_val)
1779 			*checksum_val = checksum;
1780 	} else {
1781 		hw_dbg(hw, "EEPROM read failed\n");
1782 	}
1783 
1784 	return status;
1785 }
1786 
1787 /**
1788  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1789  *  @hw: pointer to hardware structure
1790  **/
1791 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1792 {
1793 	s32 status;
1794 	u16 checksum;
1795 
1796 	/*
1797 	 * Read the first word from the EEPROM. If this times out or fails, do
1798 	 * not continue or we could be in for a very long wait while every
1799 	 * EEPROM read fails
1800 	 */
1801 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1802 
1803 	if (status == 0) {
1804 		checksum = hw->eeprom.ops.calc_checksum(hw);
1805 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1806 					      checksum);
1807 	} else {
1808 		hw_dbg(hw, "EEPROM read failed\n");
1809 	}
1810 
1811 	return status;
1812 }
1813 
1814 /**
1815  *  ixgbe_set_rar_generic - Set Rx address register
1816  *  @hw: pointer to hardware structure
1817  *  @index: Receive address register to write
1818  *  @addr: Address to put into receive address register
1819  *  @vmdq: VMDq "set" or "pool" index
1820  *  @enable_addr: set flag that address is active
1821  *
1822  *  Puts an ethernet address into a receive address register.
1823  **/
1824 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1825                           u32 enable_addr)
1826 {
1827 	u32 rar_low, rar_high;
1828 	u32 rar_entries = hw->mac.num_rar_entries;
1829 
1830 	/* Make sure we are using a valid rar index range */
1831 	if (index >= rar_entries) {
1832 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1833 		return IXGBE_ERR_INVALID_ARGUMENT;
1834 	}
1835 
1836 	/* setup VMDq pool selection before this RAR gets enabled */
1837 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1838 
1839 	/*
1840 	 * HW expects these in little endian so we reverse the byte
1841 	 * order from network order (big endian) to little endian
1842 	 */
1843 	rar_low = ((u32)addr[0] |
1844 		   ((u32)addr[1] << 8) |
1845 		   ((u32)addr[2] << 16) |
1846 		   ((u32)addr[3] << 24));
1847 	/*
1848 	 * Some parts put the VMDq setting in the extra RAH bits,
1849 	 * so save everything except the lower 16 bits that hold part
1850 	 * of the address and the address valid bit.
1851 	 */
1852 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1853 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1854 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1855 
1856 	if (enable_addr != 0)
1857 		rar_high |= IXGBE_RAH_AV;
1858 
1859 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1860 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1861 
1862 	return 0;
1863 }
1864 
1865 /**
1866  *  ixgbe_clear_rar_generic - Remove Rx address register
1867  *  @hw: pointer to hardware structure
1868  *  @index: Receive address register to write
1869  *
1870  *  Clears an ethernet address from a receive address register.
1871  **/
1872 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1873 {
1874 	u32 rar_high;
1875 	u32 rar_entries = hw->mac.num_rar_entries;
1876 
1877 	/* Make sure we are using a valid rar index range */
1878 	if (index >= rar_entries) {
1879 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1880 		return IXGBE_ERR_INVALID_ARGUMENT;
1881 	}
1882 
1883 	/*
1884 	 * Some parts put the VMDq setting in the extra RAH bits,
1885 	 * so save everything except the lower 16 bits that hold part
1886 	 * of the address and the address valid bit.
1887 	 */
1888 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1889 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1890 
1891 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1892 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1893 
1894 	/* clear VMDq pool/queue selection for this RAR */
1895 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1896 
1897 	return 0;
1898 }
1899 
1900 /**
1901  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1902  *  @hw: pointer to hardware structure
1903  *
1904  *  Places the MAC address in receive address register 0 and clears the rest
1905  *  of the receive address registers. Clears the multicast table. Assumes
1906  *  the receiver is in reset when the routine is called.
1907  **/
1908 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1909 {
1910 	u32 i;
1911 	u32 rar_entries = hw->mac.num_rar_entries;
1912 
1913 	/*
1914 	 * If the current mac address is valid, assume it is a software override
1915 	 * to the permanent address.
1916 	 * Otherwise, use the permanent address from the eeprom.
1917 	 */
1918 	if (!is_valid_ether_addr(hw->mac.addr)) {
1919 		/* Get the MAC address from the RAR0 for later reference */
1920 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1921 
1922 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1923 	} else {
1924 		/* Setup the receive address. */
1925 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1926 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1927 
1928 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1929 
1930 		/*  clear VMDq pool/queue selection for RAR 0 */
1931 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1932 	}
1933 	hw->addr_ctrl.overflow_promisc = 0;
1934 
1935 	hw->addr_ctrl.rar_used_count = 1;
1936 
1937 	/* Zero out the other receive addresses. */
1938 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1939 	for (i = 1; i < rar_entries; i++) {
1940 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1941 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1942 	}
1943 
1944 	/* Clear the MTA */
1945 	hw->addr_ctrl.mta_in_use = 0;
1946 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1947 
1948 	hw_dbg(hw, " Clearing MTA\n");
1949 	for (i = 0; i < hw->mac.mcft_size; i++)
1950 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1951 
1952 	if (hw->mac.ops.init_uta_tables)
1953 		hw->mac.ops.init_uta_tables(hw);
1954 
1955 	return 0;
1956 }
1957 
1958 /**
1959  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1960  *  @hw: pointer to hardware structure
1961  *  @mc_addr: the multicast address
1962  *
1963  *  Extracts the 12 bits, from a multicast address, to determine which
1964  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1965  *  incoming rx multicast addresses, to determine the bit-vector to check in
1966  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1967  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1968  *  to mc_filter_type.
1969  **/
1970 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1971 {
1972 	u32 vector = 0;
1973 
1974 	switch (hw->mac.mc_filter_type) {
1975 	case 0:   /* use bits [47:36] of the address */
1976 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1977 		break;
1978 	case 1:   /* use bits [46:35] of the address */
1979 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1980 		break;
1981 	case 2:   /* use bits [45:34] of the address */
1982 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1983 		break;
1984 	case 3:   /* use bits [43:32] of the address */
1985 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1986 		break;
1987 	default:  /* Invalid mc_filter_type */
1988 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1989 		break;
1990 	}
1991 
1992 	/* vector can only be 12-bits or boundary will be exceeded */
1993 	vector &= 0xFFF;
1994 	return vector;
1995 }
1996 
1997 /**
1998  *  ixgbe_set_mta - Set bit-vector in multicast table
1999  *  @hw: pointer to hardware structure
2000  *  @hash_value: Multicast address hash value
2001  *
2002  *  Sets the bit-vector in the multicast table.
2003  **/
2004 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2005 {
2006 	u32 vector;
2007 	u32 vector_bit;
2008 	u32 vector_reg;
2009 
2010 	hw->addr_ctrl.mta_in_use++;
2011 
2012 	vector = ixgbe_mta_vector(hw, mc_addr);
2013 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2014 
2015 	/*
2016 	 * The MTA is a register array of 128 32-bit registers. It is treated
2017 	 * like an array of 4096 bits.  We want to set bit
2018 	 * BitArray[vector_value]. So we figure out what register the bit is
2019 	 * in, read it, OR in the new bit, then write back the new value.  The
2020 	 * register is determined by the upper 7 bits of the vector value and
2021 	 * the bit within that register are determined by the lower 5 bits of
2022 	 * the value.
2023 	 */
2024 	vector_reg = (vector >> 5) & 0x7F;
2025 	vector_bit = vector & 0x1F;
2026 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2027 }
2028 
2029 /**
2030  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2031  *  @hw: pointer to hardware structure
2032  *  @netdev: pointer to net device structure
2033  *
2034  *  The given list replaces any existing list. Clears the MC addrs from receive
2035  *  address registers and the multicast table. Uses unused receive address
2036  *  registers for the first multicast addresses, and hashes the rest into the
2037  *  multicast table.
2038  **/
2039 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2040 				      struct net_device *netdev)
2041 {
2042 	struct netdev_hw_addr *ha;
2043 	u32 i;
2044 
2045 	/*
2046 	 * Set the new number of MC addresses that we are being requested to
2047 	 * use.
2048 	 */
2049 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2050 	hw->addr_ctrl.mta_in_use = 0;
2051 
2052 	/* Clear mta_shadow */
2053 	hw_dbg(hw, " Clearing MTA\n");
2054 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2055 
2056 	/* Update mta shadow */
2057 	netdev_for_each_mc_addr(ha, netdev) {
2058 		hw_dbg(hw, " Adding the multicast addresses:\n");
2059 		ixgbe_set_mta(hw, ha->addr);
2060 	}
2061 
2062 	/* Enable mta */
2063 	for (i = 0; i < hw->mac.mcft_size; i++)
2064 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2065 				      hw->mac.mta_shadow[i]);
2066 
2067 	if (hw->addr_ctrl.mta_in_use > 0)
2068 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2069 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2070 
2071 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2072 	return 0;
2073 }
2074 
2075 /**
2076  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2077  *  @hw: pointer to hardware structure
2078  *
2079  *  Enables multicast address in RAR and the use of the multicast hash table.
2080  **/
2081 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2082 {
2083 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2084 
2085 	if (a->mta_in_use > 0)
2086 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2087 		                hw->mac.mc_filter_type);
2088 
2089 	return 0;
2090 }
2091 
2092 /**
2093  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2094  *  @hw: pointer to hardware structure
2095  *
2096  *  Disables multicast address in RAR and the use of the multicast hash table.
2097  **/
2098 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2099 {
2100 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2101 
2102 	if (a->mta_in_use > 0)
2103 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2104 
2105 	return 0;
2106 }
2107 
2108 /**
2109  *  ixgbe_fc_enable_generic - Enable flow control
2110  *  @hw: pointer to hardware structure
2111  *
2112  *  Enable flow control according to the current settings.
2113  **/
2114 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2115 {
2116 	s32 ret_val = 0;
2117 	u32 mflcn_reg, fccfg_reg;
2118 	u32 reg;
2119 	u32 fcrtl, fcrth;
2120 	int i;
2121 
2122 	/*
2123 	 * Validate the water mark configuration for packet buffer 0.  Zero
2124 	 * water marks indicate that the packet buffer was not configured
2125 	 * and the watermarks for packet buffer 0 should always be configured.
2126 	 */
2127 	if (!hw->fc.low_water ||
2128 	    !hw->fc.high_water[0] ||
2129 	    !hw->fc.pause_time) {
2130 		hw_dbg(hw, "Invalid water mark configuration\n");
2131 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2132 		goto out;
2133 	}
2134 
2135 	/* Negotiate the fc mode to use */
2136 	ixgbe_fc_autoneg(hw);
2137 
2138 	/* Disable any previous flow control settings */
2139 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2140 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2141 
2142 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2143 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2144 
2145 	/*
2146 	 * The possible values of fc.current_mode are:
2147 	 * 0: Flow control is completely disabled
2148 	 * 1: Rx flow control is enabled (we can receive pause frames,
2149 	 *    but not send pause frames).
2150 	 * 2: Tx flow control is enabled (we can send pause frames but
2151 	 *    we do not support receiving pause frames).
2152 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2153 	 * other: Invalid.
2154 	 */
2155 	switch (hw->fc.current_mode) {
2156 	case ixgbe_fc_none:
2157 		/*
2158 		 * Flow control is disabled by software override or autoneg.
2159 		 * The code below will actually disable it in the HW.
2160 		 */
2161 		break;
2162 	case ixgbe_fc_rx_pause:
2163 		/*
2164 		 * Rx Flow control is enabled and Tx Flow control is
2165 		 * disabled by software override. Since there really
2166 		 * isn't a way to advertise that we are capable of RX
2167 		 * Pause ONLY, we will advertise that we support both
2168 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2169 		 * disable the adapter's ability to send PAUSE frames.
2170 		 */
2171 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2172 		break;
2173 	case ixgbe_fc_tx_pause:
2174 		/*
2175 		 * Tx Flow control is enabled, and Rx Flow control is
2176 		 * disabled by software override.
2177 		 */
2178 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2179 		break;
2180 	case ixgbe_fc_full:
2181 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2182 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2183 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2184 		break;
2185 	default:
2186 		hw_dbg(hw, "Flow control param set incorrectly\n");
2187 		ret_val = IXGBE_ERR_CONFIG;
2188 		goto out;
2189 		break;
2190 	}
2191 
2192 	/* Set 802.3x based flow control settings. */
2193 	mflcn_reg |= IXGBE_MFLCN_DPF;
2194 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2195 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2196 
2197 	fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2198 
2199 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2200 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2201 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2202 		    hw->fc.high_water[i]) {
2203 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2204 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2205 		} else {
2206 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2207 			/*
2208 			 * In order to prevent Tx hangs when the internal Tx
2209 			 * switch is enabled we must set the high water mark
2210 			 * to the maximum FCRTH value.  This allows the Tx
2211 			 * switch to function even under heavy Rx workloads.
2212 			 */
2213 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2214 		}
2215 
2216 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2217 	}
2218 
2219 	/* Configure pause time (2 TCs per register) */
2220 	reg = hw->fc.pause_time * 0x00010001;
2221 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2222 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2223 
2224 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2225 
2226 out:
2227 	return ret_val;
2228 }
2229 
2230 /**
2231  *  ixgbe_negotiate_fc - Negotiate flow control
2232  *  @hw: pointer to hardware structure
2233  *  @adv_reg: flow control advertised settings
2234  *  @lp_reg: link partner's flow control settings
2235  *  @adv_sym: symmetric pause bit in advertisement
2236  *  @adv_asm: asymmetric pause bit in advertisement
2237  *  @lp_sym: symmetric pause bit in link partner advertisement
2238  *  @lp_asm: asymmetric pause bit in link partner advertisement
2239  *
2240  *  Find the intersection between advertised settings and link partner's
2241  *  advertised settings
2242  **/
2243 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2244 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2245 {
2246 	if ((!(adv_reg)) ||  (!(lp_reg)))
2247 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2248 
2249 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2250 		/*
2251 		 * Now we need to check if the user selected Rx ONLY
2252 		 * of pause frames.  In this case, we had to advertise
2253 		 * FULL flow control because we could not advertise RX
2254 		 * ONLY. Hence, we must now check to see if we need to
2255 		 * turn OFF the TRANSMISSION of PAUSE frames.
2256 		 */
2257 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2258 			hw->fc.current_mode = ixgbe_fc_full;
2259 			hw_dbg(hw, "Flow Control = FULL.\n");
2260 		} else {
2261 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2262 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2263 		}
2264 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2265 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2266 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2267 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2268 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2269 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2270 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2271 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2272 	} else {
2273 		hw->fc.current_mode = ixgbe_fc_none;
2274 		hw_dbg(hw, "Flow Control = NONE.\n");
2275 	}
2276 	return 0;
2277 }
2278 
2279 /**
2280  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2281  *  @hw: pointer to hardware structure
2282  *
2283  *  Enable flow control according on 1 gig fiber.
2284  **/
2285 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2286 {
2287 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2288 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2289 
2290 	/*
2291 	 * On multispeed fiber at 1g, bail out if
2292 	 * - link is up but AN did not complete, or if
2293 	 * - link is up and AN completed but timed out
2294 	 */
2295 
2296 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2297 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2298 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2299 		goto out;
2300 
2301 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2302 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2303 
2304 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2305 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2306 			       IXGBE_PCS1GANA_ASM_PAUSE,
2307 			       IXGBE_PCS1GANA_SYM_PAUSE,
2308 			       IXGBE_PCS1GANA_ASM_PAUSE);
2309 
2310 out:
2311 	return ret_val;
2312 }
2313 
2314 /**
2315  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2316  *  @hw: pointer to hardware structure
2317  *
2318  *  Enable flow control according to IEEE clause 37.
2319  **/
2320 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2321 {
2322 	u32 links2, anlp1_reg, autoc_reg, links;
2323 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2324 
2325 	/*
2326 	 * On backplane, bail out if
2327 	 * - backplane autoneg was not completed, or if
2328 	 * - we are 82599 and link partner is not AN enabled
2329 	 */
2330 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2331 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2332 		goto out;
2333 
2334 	if (hw->mac.type == ixgbe_mac_82599EB) {
2335 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2336 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2337 			goto out;
2338 	}
2339 	/*
2340 	 * Read the 10g AN autoc and LP ability registers and resolve
2341 	 * local flow control settings accordingly
2342 	 */
2343 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2344 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2345 
2346 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2347 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2348 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2349 
2350 out:
2351 	return ret_val;
2352 }
2353 
2354 /**
2355  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2356  *  @hw: pointer to hardware structure
2357  *
2358  *  Enable flow control according to IEEE clause 37.
2359  **/
2360 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2361 {
2362 	u16 technology_ability_reg = 0;
2363 	u16 lp_technology_ability_reg = 0;
2364 
2365 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2366 			     MDIO_MMD_AN,
2367 			     &technology_ability_reg);
2368 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2369 			     MDIO_MMD_AN,
2370 			     &lp_technology_ability_reg);
2371 
2372 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2373 				  (u32)lp_technology_ability_reg,
2374 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2375 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2376 }
2377 
2378 /**
2379  *  ixgbe_fc_autoneg - Configure flow control
2380  *  @hw: pointer to hardware structure
2381  *
2382  *  Compares our advertised flow control capabilities to those advertised by
2383  *  our link partner, and determines the proper flow control mode to use.
2384  **/
2385 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2386 {
2387 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2388 	ixgbe_link_speed speed;
2389 	bool link_up;
2390 
2391 	/*
2392 	 * AN should have completed when the cable was plugged in.
2393 	 * Look for reasons to bail out.  Bail out if:
2394 	 * - FC autoneg is disabled, or if
2395 	 * - link is not up.
2396 	 *
2397 	 * Since we're being called from an LSC, link is already known to be up.
2398 	 * So use link_up_wait_to_complete=false.
2399 	 */
2400 	if (hw->fc.disable_fc_autoneg)
2401 		goto out;
2402 
2403 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2404 	if (!link_up)
2405 		goto out;
2406 
2407 	switch (hw->phy.media_type) {
2408 	/* Autoneg flow control on fiber adapters */
2409 	case ixgbe_media_type_fiber_fixed:
2410 	case ixgbe_media_type_fiber:
2411 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2412 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2413 		break;
2414 
2415 	/* Autoneg flow control on backplane adapters */
2416 	case ixgbe_media_type_backplane:
2417 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2418 		break;
2419 
2420 	/* Autoneg flow control on copper adapters */
2421 	case ixgbe_media_type_copper:
2422 		if (ixgbe_device_supports_autoneg_fc(hw))
2423 			ret_val = ixgbe_fc_autoneg_copper(hw);
2424 		break;
2425 
2426 	default:
2427 		break;
2428 	}
2429 
2430 out:
2431 	if (ret_val == 0) {
2432 		hw->fc.fc_was_autonegged = true;
2433 	} else {
2434 		hw->fc.fc_was_autonegged = false;
2435 		hw->fc.current_mode = hw->fc.requested_mode;
2436 	}
2437 }
2438 
2439 /**
2440  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2441  *  @hw: pointer to hardware structure
2442  *
2443  *  Disables PCI-Express master access and verifies there are no pending
2444  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2445  *  bit hasn't caused the master requests to be disabled, else 0
2446  *  is returned signifying master requests disabled.
2447  **/
2448 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2449 {
2450 	struct ixgbe_adapter *adapter = hw->back;
2451 	s32 status = 0;
2452 	u32 i;
2453 	u16 value;
2454 
2455 	/* Always set this bit to ensure any future transactions are blocked */
2456 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2457 
2458 	/* Exit if master requests are blocked */
2459 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2460 		goto out;
2461 
2462 	/* Poll for master request bit to clear */
2463 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2464 		udelay(100);
2465 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2466 			goto out;
2467 	}
2468 
2469 	/*
2470 	 * Two consecutive resets are required via CTRL.RST per datasheet
2471 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2472 	 * of this need.  The first reset prevents new master requests from
2473 	 * being issued by our device.  We then must wait 1usec or more for any
2474 	 * remaining completions from the PCIe bus to trickle in, and then reset
2475 	 * again to clear out any effects they may have had on our device.
2476 	 */
2477 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2478 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2479 
2480 	/*
2481 	 * Before proceeding, make sure that the PCIe block does not have
2482 	 * transactions pending.
2483 	 */
2484 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2485 		udelay(100);
2486 		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2487 							 &value);
2488 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2489 			goto out;
2490 	}
2491 
2492 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2493 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2494 
2495 out:
2496 	return status;
2497 }
2498 
2499 /**
2500  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2501  *  @hw: pointer to hardware structure
2502  *  @mask: Mask to specify which semaphore to acquire
2503  *
2504  *  Acquires the SWFW semaphore through the GSSR register for the specified
2505  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2506  **/
2507 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2508 {
2509 	u32 gssr = 0;
2510 	u32 swmask = mask;
2511 	u32 fwmask = mask << 5;
2512 	u32 timeout = 200;
2513 	u32 i;
2514 
2515 	for (i = 0; i < timeout; i++) {
2516 		/*
2517 		 * SW NVM semaphore bit is used for access to all
2518 		 * SW_FW_SYNC bits (not just NVM)
2519 		 */
2520 		if (ixgbe_get_eeprom_semaphore(hw))
2521 			return IXGBE_ERR_SWFW_SYNC;
2522 
2523 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2524 		if (!(gssr & (fwmask | swmask))) {
2525 			gssr |= swmask;
2526 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2527 			ixgbe_release_eeprom_semaphore(hw);
2528 			return 0;
2529 		} else {
2530 			/* Resource is currently in use by FW or SW */
2531 			ixgbe_release_eeprom_semaphore(hw);
2532 			usleep_range(5000, 10000);
2533 		}
2534 	}
2535 
2536 	/* If time expired clear the bits holding the lock and retry */
2537 	if (gssr & (fwmask | swmask))
2538 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2539 
2540 	usleep_range(5000, 10000);
2541 	return IXGBE_ERR_SWFW_SYNC;
2542 }
2543 
2544 /**
2545  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2546  *  @hw: pointer to hardware structure
2547  *  @mask: Mask to specify which semaphore to release
2548  *
2549  *  Releases the SWFW semaphore through the GSSR register for the specified
2550  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2551  **/
2552 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2553 {
2554 	u32 gssr;
2555 	u32 swmask = mask;
2556 
2557 	ixgbe_get_eeprom_semaphore(hw);
2558 
2559 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2560 	gssr &= ~swmask;
2561 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2562 
2563 	ixgbe_release_eeprom_semaphore(hw);
2564 }
2565 
2566 /**
2567  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2568  *  @hw: pointer to hardware structure
2569  *
2570  *  Stops the receive data path and waits for the HW to internally
2571  *  empty the Rx security block.
2572  **/
2573 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2574 {
2575 #define IXGBE_MAX_SECRX_POLL 40
2576 	int i;
2577 	int secrxreg;
2578 
2579 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2580 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2581 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2582 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2583 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2584 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2585 			break;
2586 		else
2587 			/* Use interrupt-safe sleep just in case */
2588 			udelay(1000);
2589 	}
2590 
2591 	/* For informational purposes only */
2592 	if (i >= IXGBE_MAX_SECRX_POLL)
2593 		hw_dbg(hw, "Rx unit being enabled before security "
2594 		       "path fully disabled.  Continuing with init.\n");
2595 
2596 	return 0;
2597 
2598 }
2599 
2600 /**
2601  *  ixgbe_enable_rx_buff - Enables the receive data path
2602  *  @hw: pointer to hardware structure
2603  *
2604  *  Enables the receive data path
2605  **/
2606 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2607 {
2608 	int secrxreg;
2609 
2610 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2611 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2612 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2613 	IXGBE_WRITE_FLUSH(hw);
2614 
2615 	return 0;
2616 }
2617 
2618 /**
2619  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2620  *  @hw: pointer to hardware structure
2621  *  @regval: register value to write to RXCTRL
2622  *
2623  *  Enables the Rx DMA unit
2624  **/
2625 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2626 {
2627 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2628 
2629 	return 0;
2630 }
2631 
2632 /**
2633  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2634  *  @hw: pointer to hardware structure
2635  *  @index: led number to blink
2636  **/
2637 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2638 {
2639 	ixgbe_link_speed speed = 0;
2640 	bool link_up = false;
2641 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2642 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2643 	s32 ret_val = 0;
2644 
2645 	/*
2646 	 * Link must be up to auto-blink the LEDs;
2647 	 * Force it if link is down.
2648 	 */
2649 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2650 
2651 	if (!link_up) {
2652 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
2653 		 * LESM is on.
2654 		 */
2655 		bool got_lock = false;
2656 
2657 		if ((hw->mac.type == ixgbe_mac_82599EB) &&
2658 		    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2659 			ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2660 							IXGBE_GSSR_MAC_CSR_SM);
2661 			if (ret_val)
2662 				goto out;
2663 
2664 			got_lock = true;
2665 		}
2666 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2667 		autoc_reg |= IXGBE_AUTOC_FLU;
2668 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2669 		IXGBE_WRITE_FLUSH(hw);
2670 
2671 		if (got_lock)
2672 			hw->mac.ops.release_swfw_sync(hw,
2673 						      IXGBE_GSSR_MAC_CSR_SM);
2674 		usleep_range(10000, 20000);
2675 	}
2676 
2677 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2678 	led_reg |= IXGBE_LED_BLINK(index);
2679 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2680 	IXGBE_WRITE_FLUSH(hw);
2681 
2682 out:
2683 	return ret_val;
2684 }
2685 
2686 /**
2687  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2688  *  @hw: pointer to hardware structure
2689  *  @index: led number to stop blinking
2690  **/
2691 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2692 {
2693 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2694 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2695 	s32 ret_val = 0;
2696 	bool got_lock = false;
2697 
2698 	/* Need the SW/FW semaphore around AUTOC writes if 82599 and
2699 	 * LESM is on.
2700 	 */
2701 	if ((hw->mac.type == ixgbe_mac_82599EB) &&
2702 	    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2703 		ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2704 						IXGBE_GSSR_MAC_CSR_SM);
2705 		if (ret_val)
2706 			goto out;
2707 
2708 		got_lock = true;
2709 	}
2710 
2711 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2712 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2713 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2714 
2715 	if (hw->mac.type == ixgbe_mac_82599EB)
2716 		ixgbe_reset_pipeline_82599(hw);
2717 
2718 	if (got_lock)
2719 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
2720 
2721 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2722 	led_reg &= ~IXGBE_LED_BLINK(index);
2723 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2724 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2725 	IXGBE_WRITE_FLUSH(hw);
2726 
2727 out:
2728 	return ret_val;
2729 }
2730 
2731 /**
2732  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2733  *  @hw: pointer to hardware structure
2734  *  @san_mac_offset: SAN MAC address offset
2735  *
2736  *  This function will read the EEPROM location for the SAN MAC address
2737  *  pointer, and returns the value at that location.  This is used in both
2738  *  get and set mac_addr routines.
2739  **/
2740 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2741                                         u16 *san_mac_offset)
2742 {
2743 	s32 ret_val;
2744 
2745 	/*
2746 	 * First read the EEPROM pointer to see if the MAC addresses are
2747 	 * available.
2748 	 */
2749 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2750 				      san_mac_offset);
2751 	if (ret_val)
2752 		hw_err(hw, "eeprom read at offset %d failed\n",
2753 		       IXGBE_SAN_MAC_ADDR_PTR);
2754 
2755 	return ret_val;
2756 }
2757 
2758 /**
2759  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2760  *  @hw: pointer to hardware structure
2761  *  @san_mac_addr: SAN MAC address
2762  *
2763  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2764  *  per-port, so set_lan_id() must be called before reading the addresses.
2765  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2766  *  upon for non-SFP connections, so we must call it here.
2767  **/
2768 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2769 {
2770 	u16 san_mac_data, san_mac_offset;
2771 	u8 i;
2772 	s32 ret_val;
2773 
2774 	/*
2775 	 * First read the EEPROM pointer to see if the MAC addresses are
2776 	 * available.  If they're not, no point in calling set_lan_id() here.
2777 	 */
2778 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2779 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2780 
2781 		goto san_mac_addr_clr;
2782 
2783 	/* make sure we know which port we need to program */
2784 	hw->mac.ops.set_lan_id(hw);
2785 	/* apply the port offset to the address offset */
2786 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2787 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2788 	for (i = 0; i < 3; i++) {
2789 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2790 					      &san_mac_data);
2791 		if (ret_val) {
2792 			hw_err(hw, "eeprom read at offset %d failed\n",
2793 			       san_mac_offset);
2794 			goto san_mac_addr_clr;
2795 		}
2796 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2797 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2798 		san_mac_offset++;
2799 	}
2800 	return 0;
2801 
2802 san_mac_addr_clr:
2803 	/* No addresses available in this EEPROM.  It's not necessarily an
2804 	 * error though, so just wipe the local address and return.
2805 	 */
2806 	for (i = 0; i < 6; i++)
2807 		san_mac_addr[i] = 0xFF;
2808 	return ret_val;
2809 }
2810 
2811 /**
2812  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2813  *  @hw: pointer to hardware structure
2814  *
2815  *  Read PCIe configuration space, and get the MSI-X vector count from
2816  *  the capabilities table.
2817  **/
2818 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2819 {
2820 	struct ixgbe_adapter *adapter = hw->back;
2821 	u16 msix_count = 1;
2822 	u16 max_msix_count;
2823 	u16 pcie_offset;
2824 
2825 	switch (hw->mac.type) {
2826 	case ixgbe_mac_82598EB:
2827 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2828 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2829 		break;
2830 	case ixgbe_mac_82599EB:
2831 	case ixgbe_mac_X540:
2832 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2833 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2834 		break;
2835 	default:
2836 		return msix_count;
2837 	}
2838 
2839 	pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
2840 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2841 
2842 	/* MSI-X count is zero-based in HW */
2843 	msix_count++;
2844 
2845 	if (msix_count > max_msix_count)
2846 		msix_count = max_msix_count;
2847 
2848 	return msix_count;
2849 }
2850 
2851 /**
2852  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2853  *  @hw: pointer to hardware struct
2854  *  @rar: receive address register index to disassociate
2855  *  @vmdq: VMDq pool index to remove from the rar
2856  **/
2857 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2858 {
2859 	u32 mpsar_lo, mpsar_hi;
2860 	u32 rar_entries = hw->mac.num_rar_entries;
2861 
2862 	/* Make sure we are using a valid rar index range */
2863 	if (rar >= rar_entries) {
2864 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2865 		return IXGBE_ERR_INVALID_ARGUMENT;
2866 	}
2867 
2868 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2869 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2870 
2871 	if (!mpsar_lo && !mpsar_hi)
2872 		goto done;
2873 
2874 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2875 		if (mpsar_lo) {
2876 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2877 			mpsar_lo = 0;
2878 		}
2879 		if (mpsar_hi) {
2880 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2881 			mpsar_hi = 0;
2882 		}
2883 	} else if (vmdq < 32) {
2884 		mpsar_lo &= ~(1 << vmdq);
2885 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2886 	} else {
2887 		mpsar_hi &= ~(1 << (vmdq - 32));
2888 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2889 	}
2890 
2891 	/* was that the last pool using this rar? */
2892 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2893 		hw->mac.ops.clear_rar(hw, rar);
2894 done:
2895 	return 0;
2896 }
2897 
2898 /**
2899  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2900  *  @hw: pointer to hardware struct
2901  *  @rar: receive address register index to associate with a VMDq index
2902  *  @vmdq: VMDq pool index
2903  **/
2904 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2905 {
2906 	u32 mpsar;
2907 	u32 rar_entries = hw->mac.num_rar_entries;
2908 
2909 	/* Make sure we are using a valid rar index range */
2910 	if (rar >= rar_entries) {
2911 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2912 		return IXGBE_ERR_INVALID_ARGUMENT;
2913 	}
2914 
2915 	if (vmdq < 32) {
2916 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2917 		mpsar |= 1 << vmdq;
2918 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2919 	} else {
2920 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2921 		mpsar |= 1 << (vmdq - 32);
2922 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2923 	}
2924 	return 0;
2925 }
2926 
2927 /**
2928  *  This function should only be involved in the IOV mode.
2929  *  In IOV mode, Default pool is next pool after the number of
2930  *  VFs advertized and not 0.
2931  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2932  *
2933  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2934  *  @hw: pointer to hardware struct
2935  *  @vmdq: VMDq pool index
2936  **/
2937 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2938 {
2939 	u32 rar = hw->mac.san_mac_rar_index;
2940 
2941 	if (vmdq < 32) {
2942 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2943 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2944 	} else {
2945 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2946 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 /**
2953  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2954  *  @hw: pointer to hardware structure
2955  **/
2956 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2957 {
2958 	int i;
2959 
2960 	for (i = 0; i < 128; i++)
2961 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2962 
2963 	return 0;
2964 }
2965 
2966 /**
2967  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2968  *  @hw: pointer to hardware structure
2969  *  @vlan: VLAN id to write to VLAN filter
2970  *
2971  *  return the VLVF index where this VLAN id should be placed
2972  *
2973  **/
2974 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2975 {
2976 	u32 bits = 0;
2977 	u32 first_empty_slot = 0;
2978 	s32 regindex;
2979 
2980 	/* short cut the special case */
2981 	if (vlan == 0)
2982 		return 0;
2983 
2984 	/*
2985 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2986 	  * slot found along the way
2987 	  */
2988 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2989 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2990 		if (!bits && !(first_empty_slot))
2991 			first_empty_slot = regindex;
2992 		else if ((bits & 0x0FFF) == vlan)
2993 			break;
2994 	}
2995 
2996 	/*
2997 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2998 	  * in the VLVF. Else use the first empty VLVF register for this
2999 	  * vlan id.
3000 	  */
3001 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3002 		if (first_empty_slot)
3003 			regindex = first_empty_slot;
3004 		else {
3005 			hw_dbg(hw, "No space in VLVF.\n");
3006 			regindex = IXGBE_ERR_NO_SPACE;
3007 		}
3008 	}
3009 
3010 	return regindex;
3011 }
3012 
3013 /**
3014  *  ixgbe_set_vfta_generic - Set VLAN filter table
3015  *  @hw: pointer to hardware structure
3016  *  @vlan: VLAN id to write to VLAN filter
3017  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3018  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3019  *
3020  *  Turn on/off specified VLAN in the VLAN filter table.
3021  **/
3022 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3023                            bool vlan_on)
3024 {
3025 	s32 regindex;
3026 	u32 bitindex;
3027 	u32 vfta;
3028 	u32 bits;
3029 	u32 vt;
3030 	u32 targetbit;
3031 	bool vfta_changed = false;
3032 
3033 	if (vlan > 4095)
3034 		return IXGBE_ERR_PARAM;
3035 
3036 	/*
3037 	 * this is a 2 part operation - first the VFTA, then the
3038 	 * VLVF and VLVFB if VT Mode is set
3039 	 * We don't write the VFTA until we know the VLVF part succeeded.
3040 	 */
3041 
3042 	/* Part 1
3043 	 * The VFTA is a bitstring made up of 128 32-bit registers
3044 	 * that enable the particular VLAN id, much like the MTA:
3045 	 *    bits[11-5]: which register
3046 	 *    bits[4-0]:  which bit in the register
3047 	 */
3048 	regindex = (vlan >> 5) & 0x7F;
3049 	bitindex = vlan & 0x1F;
3050 	targetbit = (1 << bitindex);
3051 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3052 
3053 	if (vlan_on) {
3054 		if (!(vfta & targetbit)) {
3055 			vfta |= targetbit;
3056 			vfta_changed = true;
3057 		}
3058 	} else {
3059 		if ((vfta & targetbit)) {
3060 			vfta &= ~targetbit;
3061 			vfta_changed = true;
3062 		}
3063 	}
3064 
3065 	/* Part 2
3066 	 * If VT Mode is set
3067 	 *   Either vlan_on
3068 	 *     make sure the vlan is in VLVF
3069 	 *     set the vind bit in the matching VLVFB
3070 	 *   Or !vlan_on
3071 	 *     clear the pool bit and possibly the vind
3072 	 */
3073 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3074 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3075 		s32 vlvf_index;
3076 
3077 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3078 		if (vlvf_index < 0)
3079 			return vlvf_index;
3080 
3081 		if (vlan_on) {
3082 			/* set the pool bit */
3083 			if (vind < 32) {
3084 				bits = IXGBE_READ_REG(hw,
3085 						IXGBE_VLVFB(vlvf_index*2));
3086 				bits |= (1 << vind);
3087 				IXGBE_WRITE_REG(hw,
3088 						IXGBE_VLVFB(vlvf_index*2),
3089 						bits);
3090 			} else {
3091 				bits = IXGBE_READ_REG(hw,
3092 						IXGBE_VLVFB((vlvf_index*2)+1));
3093 				bits |= (1 << (vind-32));
3094 				IXGBE_WRITE_REG(hw,
3095 						IXGBE_VLVFB((vlvf_index*2)+1),
3096 						bits);
3097 			}
3098 		} else {
3099 			/* clear the pool bit */
3100 			if (vind < 32) {
3101 				bits = IXGBE_READ_REG(hw,
3102 						IXGBE_VLVFB(vlvf_index*2));
3103 				bits &= ~(1 << vind);
3104 				IXGBE_WRITE_REG(hw,
3105 						IXGBE_VLVFB(vlvf_index*2),
3106 						bits);
3107 				bits |= IXGBE_READ_REG(hw,
3108 						IXGBE_VLVFB((vlvf_index*2)+1));
3109 			} else {
3110 				bits = IXGBE_READ_REG(hw,
3111 						IXGBE_VLVFB((vlvf_index*2)+1));
3112 				bits &= ~(1 << (vind-32));
3113 				IXGBE_WRITE_REG(hw,
3114 						IXGBE_VLVFB((vlvf_index*2)+1),
3115 						bits);
3116 				bits |= IXGBE_READ_REG(hw,
3117 						IXGBE_VLVFB(vlvf_index*2));
3118 			}
3119 		}
3120 
3121 		/*
3122 		 * If there are still bits set in the VLVFB registers
3123 		 * for the VLAN ID indicated we need to see if the
3124 		 * caller is requesting that we clear the VFTA entry bit.
3125 		 * If the caller has requested that we clear the VFTA
3126 		 * entry bit but there are still pools/VFs using this VLAN
3127 		 * ID entry then ignore the request.  We're not worried
3128 		 * about the case where we're turning the VFTA VLAN ID
3129 		 * entry bit on, only when requested to turn it off as
3130 		 * there may be multiple pools and/or VFs using the
3131 		 * VLAN ID entry.  In that case we cannot clear the
3132 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3133 		 * been cleared.  This will be indicated by "bits" being
3134 		 * zero.
3135 		 */
3136 		if (bits) {
3137 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3138 					(IXGBE_VLVF_VIEN | vlan));
3139 			if (!vlan_on) {
3140 				/* someone wants to clear the vfta entry
3141 				 * but some pools/VFs are still using it.
3142 				 * Ignore it. */
3143 				vfta_changed = false;
3144 			}
3145 		}
3146 		else
3147 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3148 	}
3149 
3150 	if (vfta_changed)
3151 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3152 
3153 	return 0;
3154 }
3155 
3156 /**
3157  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3158  *  @hw: pointer to hardware structure
3159  *
3160  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3161  **/
3162 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3163 {
3164 	u32 offset;
3165 
3166 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3167 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3168 
3169 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3170 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3171 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3172 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3173 	}
3174 
3175 	return 0;
3176 }
3177 
3178 /**
3179  *  ixgbe_check_mac_link_generic - Determine link and speed status
3180  *  @hw: pointer to hardware structure
3181  *  @speed: pointer to link speed
3182  *  @link_up: true when link is up
3183  *  @link_up_wait_to_complete: bool used to wait for link up or not
3184  *
3185  *  Reads the links register to determine if link is up and the current speed
3186  **/
3187 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3188 				 bool *link_up, bool link_up_wait_to_complete)
3189 {
3190 	u32 links_reg, links_orig;
3191 	u32 i;
3192 
3193 	/* clear the old state */
3194 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3195 
3196 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3197 
3198 	if (links_orig != links_reg) {
3199 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3200 		       links_orig, links_reg);
3201 	}
3202 
3203 	if (link_up_wait_to_complete) {
3204 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3205 			if (links_reg & IXGBE_LINKS_UP) {
3206 				*link_up = true;
3207 				break;
3208 			} else {
3209 				*link_up = false;
3210 			}
3211 			msleep(100);
3212 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3213 		}
3214 	} else {
3215 		if (links_reg & IXGBE_LINKS_UP)
3216 			*link_up = true;
3217 		else
3218 			*link_up = false;
3219 	}
3220 
3221 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3222 	    IXGBE_LINKS_SPEED_10G_82599)
3223 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3224 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3225 		 IXGBE_LINKS_SPEED_1G_82599)
3226 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3227 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3228 		 IXGBE_LINKS_SPEED_100_82599)
3229 		*speed = IXGBE_LINK_SPEED_100_FULL;
3230 	else
3231 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3232 
3233 	return 0;
3234 }
3235 
3236 /**
3237  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3238  *  the EEPROM
3239  *  @hw: pointer to hardware structure
3240  *  @wwnn_prefix: the alternative WWNN prefix
3241  *  @wwpn_prefix: the alternative WWPN prefix
3242  *
3243  *  This function will read the EEPROM from the alternative SAN MAC address
3244  *  block to check the support for the alternative WWNN/WWPN prefix support.
3245  **/
3246 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3247                                         u16 *wwpn_prefix)
3248 {
3249 	u16 offset, caps;
3250 	u16 alt_san_mac_blk_offset;
3251 
3252 	/* clear output first */
3253 	*wwnn_prefix = 0xFFFF;
3254 	*wwpn_prefix = 0xFFFF;
3255 
3256 	/* check if alternative SAN MAC is supported */
3257 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3258 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3259 		goto wwn_prefix_err;
3260 
3261 	if ((alt_san_mac_blk_offset == 0) ||
3262 	    (alt_san_mac_blk_offset == 0xFFFF))
3263 		goto wwn_prefix_out;
3264 
3265 	/* check capability in alternative san mac address block */
3266 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3267 	if (hw->eeprom.ops.read(hw, offset, &caps))
3268 		goto wwn_prefix_err;
3269 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3270 		goto wwn_prefix_out;
3271 
3272 	/* get the corresponding prefix for WWNN/WWPN */
3273 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3274 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3275 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3276 
3277 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3278 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3279 		goto wwn_prefix_err;
3280 
3281 wwn_prefix_out:
3282 	return 0;
3283 
3284 wwn_prefix_err:
3285 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3286 	return 0;
3287 }
3288 
3289 /**
3290  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3291  *  @hw: pointer to hardware structure
3292  *  @enable: enable or disable switch for anti-spoofing
3293  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3294  *
3295  **/
3296 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3297 {
3298 	int j;
3299 	int pf_target_reg = pf >> 3;
3300 	int pf_target_shift = pf % 8;
3301 	u32 pfvfspoof = 0;
3302 
3303 	if (hw->mac.type == ixgbe_mac_82598EB)
3304 		return;
3305 
3306 	if (enable)
3307 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3308 
3309 	/*
3310 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3311 	 * MAC anti-spoof enables in each register array element.
3312 	 */
3313 	for (j = 0; j < pf_target_reg; j++)
3314 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3315 
3316 	/*
3317 	 * The PF should be allowed to spoof so that it can support
3318 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3319 	 */
3320 	pfvfspoof &= (1 << pf_target_shift) - 1;
3321 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3322 
3323 	/*
3324 	 * Remaining pools belong to the PF so they do not need to have
3325 	 * anti-spoofing enabled.
3326 	 */
3327 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3328 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3329 }
3330 
3331 /**
3332  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3333  *  @hw: pointer to hardware structure
3334  *  @enable: enable or disable switch for VLAN anti-spoofing
3335  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3336  *
3337  **/
3338 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3339 {
3340 	int vf_target_reg = vf >> 3;
3341 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3342 	u32 pfvfspoof;
3343 
3344 	if (hw->mac.type == ixgbe_mac_82598EB)
3345 		return;
3346 
3347 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3348 	if (enable)
3349 		pfvfspoof |= (1 << vf_target_shift);
3350 	else
3351 		pfvfspoof &= ~(1 << vf_target_shift);
3352 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3353 }
3354 
3355 /**
3356  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3357  *  @hw: pointer to hardware structure
3358  *  @device_caps: the EEPROM word with the extra device capabilities
3359  *
3360  *  This function will read the EEPROM location for the device capabilities,
3361  *  and return the word through device_caps.
3362  **/
3363 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3364 {
3365 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3366 
3367 	return 0;
3368 }
3369 
3370 /**
3371  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3372  * @hw: pointer to hardware structure
3373  * @num_pb: number of packet buffers to allocate
3374  * @headroom: reserve n KB of headroom
3375  * @strategy: packet buffer allocation strategy
3376  **/
3377 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3378 			     int num_pb,
3379 			     u32 headroom,
3380 			     int strategy)
3381 {
3382 	u32 pbsize = hw->mac.rx_pb_size;
3383 	int i = 0;
3384 	u32 rxpktsize, txpktsize, txpbthresh;
3385 
3386 	/* Reserve headroom */
3387 	pbsize -= headroom;
3388 
3389 	if (!num_pb)
3390 		num_pb = 1;
3391 
3392 	/* Divide remaining packet buffer space amongst the number
3393 	 * of packet buffers requested using supplied strategy.
3394 	 */
3395 	switch (strategy) {
3396 	case (PBA_STRATEGY_WEIGHTED):
3397 		/* pba_80_48 strategy weight first half of packet buffer with
3398 		 * 5/8 of the packet buffer space.
3399 		 */
3400 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3401 		pbsize -= rxpktsize * (num_pb / 2);
3402 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3403 		for (; i < (num_pb / 2); i++)
3404 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3405 		/* Fall through to configure remaining packet buffers */
3406 	case (PBA_STRATEGY_EQUAL):
3407 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3408 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3409 		for (; i < num_pb; i++)
3410 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3411 		break;
3412 	default:
3413 		break;
3414 	}
3415 
3416 	/*
3417 	 * Setup Tx packet buffer and threshold equally for all TCs
3418 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3419 	 * 10 since the largest packet we support is just over 9K.
3420 	 */
3421 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3422 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3423 	for (i = 0; i < num_pb; i++) {
3424 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3425 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3426 	}
3427 
3428 	/* Clear unused TCs, if any, to zero buffer size*/
3429 	for (; i < IXGBE_MAX_PB; i++) {
3430 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3431 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3432 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3433 	}
3434 }
3435 
3436 /**
3437  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3438  *  @buffer: pointer to EEPROM
3439  *  @length: size of EEPROM to calculate a checksum for
3440  *
3441  *  Calculates the checksum for some buffer on a specified length.  The
3442  *  checksum calculated is returned.
3443  **/
3444 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3445 {
3446 	u32 i;
3447 	u8 sum = 0;
3448 
3449 	if (!buffer)
3450 		return 0;
3451 
3452 	for (i = 0; i < length; i++)
3453 		sum += buffer[i];
3454 
3455 	return (u8) (0 - sum);
3456 }
3457 
3458 /**
3459  *  ixgbe_host_interface_command - Issue command to manageability block
3460  *  @hw: pointer to the HW structure
3461  *  @buffer: contains the command to write and where the return status will
3462  *           be placed
3463  *  @length: length of buffer, must be multiple of 4 bytes
3464  *
3465  *  Communicates with the manageability block.  On success return 0
3466  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3467  **/
3468 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3469 					u32 length)
3470 {
3471 	u32 hicr, i, bi;
3472 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3473 	u8 buf_len, dword_len;
3474 
3475 	s32 ret_val = 0;
3476 
3477 	if (length == 0 || length & 0x3 ||
3478 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3479 		hw_dbg(hw, "Buffer length failure.\n");
3480 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3481 		goto out;
3482 	}
3483 
3484 	/* Check that the host interface is enabled. */
3485 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3486 	if ((hicr & IXGBE_HICR_EN) == 0) {
3487 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3488 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3489 		goto out;
3490 	}
3491 
3492 	/* Calculate length in DWORDs */
3493 	dword_len = length >> 2;
3494 
3495 	/*
3496 	 * The device driver writes the relevant command block
3497 	 * into the ram area.
3498 	 */
3499 	for (i = 0; i < dword_len; i++)
3500 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3501 				      i, cpu_to_le32(buffer[i]));
3502 
3503 	/* Setting this bit tells the ARC that a new command is pending. */
3504 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3505 
3506 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3507 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3508 		if (!(hicr & IXGBE_HICR_C))
3509 			break;
3510 		usleep_range(1000, 2000);
3511 	}
3512 
3513 	/* Check command successful completion. */
3514 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3515 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3516 		hw_dbg(hw, "Command has failed with no status valid.\n");
3517 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3518 		goto out;
3519 	}
3520 
3521 	/* Calculate length in DWORDs */
3522 	dword_len = hdr_size >> 2;
3523 
3524 	/* first pull in the header so we know the buffer length */
3525 	for (bi = 0; bi < dword_len; bi++) {
3526 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3527 		le32_to_cpus(&buffer[bi]);
3528 	}
3529 
3530 	/* If there is any thing in data position pull it in */
3531 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3532 	if (buf_len == 0)
3533 		goto out;
3534 
3535 	if (length < (buf_len + hdr_size)) {
3536 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3537 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3538 		goto out;
3539 	}
3540 
3541 	/* Calculate length in DWORDs, add 3 for odd lengths */
3542 	dword_len = (buf_len + 3) >> 2;
3543 
3544 	/* Pull in the rest of the buffer (bi is where we left off)*/
3545 	for (; bi <= dword_len; bi++) {
3546 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3547 		le32_to_cpus(&buffer[bi]);
3548 	}
3549 
3550 out:
3551 	return ret_val;
3552 }
3553 
3554 /**
3555  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3556  *  @hw: pointer to the HW structure
3557  *  @maj: driver version major number
3558  *  @min: driver version minor number
3559  *  @build: driver version build number
3560  *  @sub: driver version sub build number
3561  *
3562  *  Sends driver version number to firmware through the manageability
3563  *  block.  On success return 0
3564  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3565  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3566  **/
3567 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3568 				 u8 build, u8 sub)
3569 {
3570 	struct ixgbe_hic_drv_info fw_cmd;
3571 	int i;
3572 	s32 ret_val = 0;
3573 
3574 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3575 		ret_val = IXGBE_ERR_SWFW_SYNC;
3576 		goto out;
3577 	}
3578 
3579 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3580 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3581 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3582 	fw_cmd.port_num = (u8)hw->bus.func;
3583 	fw_cmd.ver_maj = maj;
3584 	fw_cmd.ver_min = min;
3585 	fw_cmd.ver_build = build;
3586 	fw_cmd.ver_sub = sub;
3587 	fw_cmd.hdr.checksum = 0;
3588 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3589 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3590 	fw_cmd.pad = 0;
3591 	fw_cmd.pad2 = 0;
3592 
3593 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3594 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3595 						       sizeof(fw_cmd));
3596 		if (ret_val != 0)
3597 			continue;
3598 
3599 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3600 		    FW_CEM_RESP_STATUS_SUCCESS)
3601 			ret_val = 0;
3602 		else
3603 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3604 
3605 		break;
3606 	}
3607 
3608 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3609 out:
3610 	return ret_val;
3611 }
3612 
3613 /**
3614  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3615  * @hw: pointer to the hardware structure
3616  *
3617  * The 82599 and x540 MACs can experience issues if TX work is still pending
3618  * when a reset occurs.  This function prevents this by flushing the PCIe
3619  * buffers on the system.
3620  **/
3621 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3622 {
3623 	u32 gcr_ext, hlreg0;
3624 
3625 	/*
3626 	 * If double reset is not requested then all transactions should
3627 	 * already be clear and as such there is no work to do
3628 	 */
3629 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3630 		return;
3631 
3632 	/*
3633 	 * Set loopback enable to prevent any transmits from being sent
3634 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3635 	 * has already been cleared.
3636 	 */
3637 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3638 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3639 
3640 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3641 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3642 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3643 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3644 
3645 	/* Flush all writes and allow 20usec for all transactions to clear */
3646 	IXGBE_WRITE_FLUSH(hw);
3647 	udelay(20);
3648 
3649 	/* restore previous register values */
3650 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3651 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3652 }
3653 
3654 static const u8 ixgbe_emc_temp_data[4] = {
3655 	IXGBE_EMC_INTERNAL_DATA,
3656 	IXGBE_EMC_DIODE1_DATA,
3657 	IXGBE_EMC_DIODE2_DATA,
3658 	IXGBE_EMC_DIODE3_DATA
3659 };
3660 static const u8 ixgbe_emc_therm_limit[4] = {
3661 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3662 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3663 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3664 	IXGBE_EMC_DIODE3_THERM_LIMIT
3665 };
3666 
3667 /**
3668  *  ixgbe_get_ets_data - Extracts the ETS bit data
3669  *  @hw: pointer to hardware structure
3670  *  @ets_cfg: extected ETS data
3671  *  @ets_offset: offset of ETS data
3672  *
3673  *  Returns error code.
3674  **/
3675 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3676 			      u16 *ets_offset)
3677 {
3678 	s32 status = 0;
3679 
3680 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3681 	if (status)
3682 		goto out;
3683 
3684 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3685 		status = IXGBE_NOT_IMPLEMENTED;
3686 		goto out;
3687 	}
3688 
3689 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3690 	if (status)
3691 		goto out;
3692 
3693 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3694 		status = IXGBE_NOT_IMPLEMENTED;
3695 		goto out;
3696 	}
3697 
3698 out:
3699 	return status;
3700 }
3701 
3702 /**
3703  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3704  *  @hw: pointer to hardware structure
3705  *
3706  *  Returns the thermal sensor data structure
3707  **/
3708 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3709 {
3710 	s32 status = 0;
3711 	u16 ets_offset;
3712 	u16 ets_cfg;
3713 	u16 ets_sensor;
3714 	u8  num_sensors;
3715 	u8  i;
3716 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3717 
3718 	/* Only support thermal sensors attached to physical port 0 */
3719 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3720 		status = IXGBE_NOT_IMPLEMENTED;
3721 		goto out;
3722 	}
3723 
3724 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3725 	if (status)
3726 		goto out;
3727 
3728 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3729 	if (num_sensors > IXGBE_MAX_SENSORS)
3730 		num_sensors = IXGBE_MAX_SENSORS;
3731 
3732 	for (i = 0; i < num_sensors; i++) {
3733 		u8  sensor_index;
3734 		u8  sensor_location;
3735 
3736 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3737 					     &ets_sensor);
3738 		if (status)
3739 			goto out;
3740 
3741 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3742 				IXGBE_ETS_DATA_INDEX_SHIFT);
3743 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3744 				   IXGBE_ETS_DATA_LOC_SHIFT);
3745 
3746 		if (sensor_location != 0) {
3747 			status = hw->phy.ops.read_i2c_byte(hw,
3748 					ixgbe_emc_temp_data[sensor_index],
3749 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3750 					&data->sensor[i].temp);
3751 			if (status)
3752 				goto out;
3753 		}
3754 	}
3755 out:
3756 	return status;
3757 }
3758 
3759 /**
3760  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3761  * @hw: pointer to hardware structure
3762  *
3763  * Inits the thermal sensor thresholds according to the NVM map
3764  * and save off the threshold and location values into mac.thermal_sensor_data
3765  **/
3766 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3767 {
3768 	s32 status = 0;
3769 	u16 ets_offset;
3770 	u16 ets_cfg;
3771 	u16 ets_sensor;
3772 	u8  low_thresh_delta;
3773 	u8  num_sensors;
3774 	u8  therm_limit;
3775 	u8  i;
3776 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3777 
3778 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3779 
3780 	/* Only support thermal sensors attached to physical port 0 */
3781 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3782 		status = IXGBE_NOT_IMPLEMENTED;
3783 		goto out;
3784 	}
3785 
3786 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3787 	if (status)
3788 		goto out;
3789 
3790 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3791 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3792 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3793 	if (num_sensors > IXGBE_MAX_SENSORS)
3794 		num_sensors = IXGBE_MAX_SENSORS;
3795 
3796 	for (i = 0; i < num_sensors; i++) {
3797 		u8  sensor_index;
3798 		u8  sensor_location;
3799 
3800 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3801 			hw_err(hw, "eeprom read at offset %d failed\n",
3802 			       ets_offset + 1 + i);
3803 			continue;
3804 		}
3805 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3806 				IXGBE_ETS_DATA_INDEX_SHIFT);
3807 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3808 				   IXGBE_ETS_DATA_LOC_SHIFT);
3809 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3810 
3811 		hw->phy.ops.write_i2c_byte(hw,
3812 			ixgbe_emc_therm_limit[sensor_index],
3813 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3814 
3815 		if (sensor_location == 0)
3816 			continue;
3817 
3818 		data->sensor[i].location = sensor_location;
3819 		data->sensor[i].caution_thresh = therm_limit;
3820 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3821 	}
3822 out:
3823 	return status;
3824 }
3825 
3826