1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /**
61  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
62  *  control
63  *  @hw: pointer to hardware structure
64  *
65  *  There are several phys that do not support autoneg flow control. This
66  *  function check the device id to see if the associated phy supports
67  *  autoneg flow control.
68  **/
69 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
70 {
71 	bool supported = false;
72 	ixgbe_link_speed speed;
73 	bool link_up;
74 
75 	switch (hw->phy.media_type) {
76 	case ixgbe_media_type_fiber:
77 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
78 		/* if link is down, assume supported */
79 		if (link_up)
80 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81 				true : false;
82 		else
83 			supported = true;
84 		break;
85 	case ixgbe_media_type_backplane:
86 		supported = true;
87 		break;
88 	case ixgbe_media_type_copper:
89 		/* only some copper devices support flow control autoneg */
90 		switch (hw->device_id) {
91 		case IXGBE_DEV_ID_82599_T3_LOM:
92 		case IXGBE_DEV_ID_X540T:
93 		case IXGBE_DEV_ID_X540T1:
94 			supported = true;
95 			break;
96 		default:
97 			break;
98 		}
99 	default:
100 		break;
101 	}
102 
103 	return supported;
104 }
105 
106 /**
107  *  ixgbe_setup_fc - Set up flow control
108  *  @hw: pointer to hardware structure
109  *
110  *  Called at init time to set up flow control.
111  **/
112 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
113 {
114 	s32 ret_val = 0;
115 	u32 reg = 0, reg_bp = 0;
116 	u16 reg_cu = 0;
117 	bool locked = false;
118 
119 	/*
120 	 * Validate the requested mode.  Strict IEEE mode does not allow
121 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122 	 */
123 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
126 		goto out;
127 	}
128 
129 	/*
130 	 * 10gig parts do not have a word in the EEPROM to determine the
131 	 * default flow control setting, so we explicitly set it to full.
132 	 */
133 	if (hw->fc.requested_mode == ixgbe_fc_default)
134 		hw->fc.requested_mode = ixgbe_fc_full;
135 
136 	/*
137 	 * Set up the 1G and 10G flow control advertisement registers so the
138 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
139 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
140 	 */
141 	switch (hw->phy.media_type) {
142 	case ixgbe_media_type_backplane:
143 		/* some MAC's need RMW protection on AUTOC */
144 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
145 		if (ret_val)
146 			goto out;
147 
148 		/* only backplane uses autoc so fall though */
149 	case ixgbe_media_type_fiber:
150 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
151 
152 		break;
153 	case ixgbe_media_type_copper:
154 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
155 					MDIO_MMD_AN, &reg_cu);
156 		break;
157 	default:
158 		break;
159 	}
160 
161 	/*
162 	 * The possible values of fc.requested_mode are:
163 	 * 0: Flow control is completely disabled
164 	 * 1: Rx flow control is enabled (we can receive pause frames,
165 	 *    but not send pause frames).
166 	 * 2: Tx flow control is enabled (we can send pause frames but
167 	 *    we do not support receiving pause frames).
168 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
169 	 * other: Invalid.
170 	 */
171 	switch (hw->fc.requested_mode) {
172 	case ixgbe_fc_none:
173 		/* Flow control completely disabled by software override. */
174 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
175 		if (hw->phy.media_type == ixgbe_media_type_backplane)
176 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
177 				    IXGBE_AUTOC_ASM_PAUSE);
178 		else if (hw->phy.media_type == ixgbe_media_type_copper)
179 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
180 		break;
181 	case ixgbe_fc_tx_pause:
182 		/*
183 		 * Tx Flow control is enabled, and Rx Flow control is
184 		 * disabled by software override.
185 		 */
186 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
187 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
188 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
189 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
190 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
191 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
192 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
193 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
194 		}
195 		break;
196 	case ixgbe_fc_rx_pause:
197 		/*
198 		 * Rx Flow control is enabled and Tx Flow control is
199 		 * disabled by software override. Since there really
200 		 * isn't a way to advertise that we are capable of RX
201 		 * Pause ONLY, we will advertise that we support both
202 		 * symmetric and asymmetric Rx PAUSE, as such we fall
203 		 * through to the fc_full statement.  Later, we will
204 		 * disable the adapter's ability to send PAUSE frames.
205 		 */
206 	case ixgbe_fc_full:
207 		/* Flow control (both Rx and Tx) is enabled by SW override. */
208 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
209 		if (hw->phy.media_type == ixgbe_media_type_backplane)
210 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
211 				  IXGBE_AUTOC_ASM_PAUSE;
212 		else if (hw->phy.media_type == ixgbe_media_type_copper)
213 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
214 		break;
215 	default:
216 		hw_dbg(hw, "Flow control param set incorrectly\n");
217 		ret_val = IXGBE_ERR_CONFIG;
218 		goto out;
219 		break;
220 	}
221 
222 	if (hw->mac.type != ixgbe_mac_X540) {
223 		/*
224 		 * Enable auto-negotiation between the MAC & PHY;
225 		 * the MAC will advertise clause 37 flow control.
226 		 */
227 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
228 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
229 
230 		/* Disable AN timeout */
231 		if (hw->fc.strict_ieee)
232 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
233 
234 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
235 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
236 	}
237 
238 	/*
239 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
240 	 * and copper. There is no need to set the PCS1GCTL register.
241 	 *
242 	 */
243 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
244 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
245 		 * LESM is on, likewise reset_pipeline requries the lock as
246 		 * it also writes AUTOC.
247 		 */
248 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
249 		if (ret_val)
250 			goto out;
251 
252 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
253 		   ixgbe_device_supports_autoneg_fc(hw)) {
254 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
255 				      MDIO_MMD_AN, reg_cu);
256 	}
257 
258 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
259 out:
260 	return ret_val;
261 }
262 
263 /**
264  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
265  *  @hw: pointer to hardware structure
266  *
267  *  Starts the hardware by filling the bus info structure and media type, clears
268  *  all on chip counters, initializes receive address registers, multicast
269  *  table, VLAN filter table, calls routine to set up link and flow control
270  *  settings, and leaves transmit and receive units disabled and uninitialized
271  **/
272 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
273 {
274 	s32 ret_val;
275 	u32 ctrl_ext;
276 
277 	/* Set the media type */
278 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
279 
280 	/* Identify the PHY */
281 	hw->phy.ops.identify(hw);
282 
283 	/* Clear the VLAN filter table */
284 	hw->mac.ops.clear_vfta(hw);
285 
286 	/* Clear statistics registers */
287 	hw->mac.ops.clear_hw_cntrs(hw);
288 
289 	/* Set No Snoop Disable */
290 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
291 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
292 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
293 	IXGBE_WRITE_FLUSH(hw);
294 
295 	/* Setup flow control */
296 	ret_val = ixgbe_setup_fc(hw);
297 	if (!ret_val)
298 		goto out;
299 
300 	/* Clear adapter stopped flag */
301 	hw->adapter_stopped = false;
302 
303 out:
304 	return ret_val;
305 }
306 
307 /**
308  *  ixgbe_start_hw_gen2 - Init sequence for common device family
309  *  @hw: pointer to hw structure
310  *
311  * Performs the init sequence common to the second generation
312  * of 10 GbE devices.
313  * Devices in the second generation:
314  *     82599
315  *     X540
316  **/
317 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
318 {
319 	u32 i;
320 	u32 regval;
321 
322 	/* Clear the rate limiters */
323 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
324 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
325 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
326 	}
327 	IXGBE_WRITE_FLUSH(hw);
328 
329 	/* Disable relaxed ordering */
330 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
331 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
332 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
333 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
334 	}
335 
336 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
337 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
338 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
339 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
340 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
341 	}
342 
343 	return 0;
344 }
345 
346 /**
347  *  ixgbe_init_hw_generic - Generic hardware initialization
348  *  @hw: pointer to hardware structure
349  *
350  *  Initialize the hardware by resetting the hardware, filling the bus info
351  *  structure and media type, clears all on chip counters, initializes receive
352  *  address registers, multicast table, VLAN filter table, calls routine to set
353  *  up link and flow control settings, and leaves transmit and receive units
354  *  disabled and uninitialized
355  **/
356 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
357 {
358 	s32 status;
359 
360 	/* Reset the hardware */
361 	status = hw->mac.ops.reset_hw(hw);
362 
363 	if (status == 0) {
364 		/* Start the HW */
365 		status = hw->mac.ops.start_hw(hw);
366 	}
367 
368 	return status;
369 }
370 
371 /**
372  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
373  *  @hw: pointer to hardware structure
374  *
375  *  Clears all hardware statistics counters by reading them from the hardware
376  *  Statistics counters are clear on read.
377  **/
378 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
379 {
380 	u16 i = 0;
381 
382 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
383 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
384 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
385 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
386 	for (i = 0; i < 8; i++)
387 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
388 
389 	IXGBE_READ_REG(hw, IXGBE_MLFC);
390 	IXGBE_READ_REG(hw, IXGBE_MRFC);
391 	IXGBE_READ_REG(hw, IXGBE_RLEC);
392 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
393 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
394 	if (hw->mac.type >= ixgbe_mac_82599EB) {
395 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
396 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
397 	} else {
398 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
399 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
400 	}
401 
402 	for (i = 0; i < 8; i++) {
403 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
404 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
405 		if (hw->mac.type >= ixgbe_mac_82599EB) {
406 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
407 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
408 		} else {
409 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
410 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
411 		}
412 	}
413 	if (hw->mac.type >= ixgbe_mac_82599EB)
414 		for (i = 0; i < 8; i++)
415 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
416 	IXGBE_READ_REG(hw, IXGBE_PRC64);
417 	IXGBE_READ_REG(hw, IXGBE_PRC127);
418 	IXGBE_READ_REG(hw, IXGBE_PRC255);
419 	IXGBE_READ_REG(hw, IXGBE_PRC511);
420 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
421 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
422 	IXGBE_READ_REG(hw, IXGBE_GPRC);
423 	IXGBE_READ_REG(hw, IXGBE_BPRC);
424 	IXGBE_READ_REG(hw, IXGBE_MPRC);
425 	IXGBE_READ_REG(hw, IXGBE_GPTC);
426 	IXGBE_READ_REG(hw, IXGBE_GORCL);
427 	IXGBE_READ_REG(hw, IXGBE_GORCH);
428 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
429 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
430 	if (hw->mac.type == ixgbe_mac_82598EB)
431 		for (i = 0; i < 8; i++)
432 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
433 	IXGBE_READ_REG(hw, IXGBE_RUC);
434 	IXGBE_READ_REG(hw, IXGBE_RFC);
435 	IXGBE_READ_REG(hw, IXGBE_ROC);
436 	IXGBE_READ_REG(hw, IXGBE_RJC);
437 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
438 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
439 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
440 	IXGBE_READ_REG(hw, IXGBE_TORL);
441 	IXGBE_READ_REG(hw, IXGBE_TORH);
442 	IXGBE_READ_REG(hw, IXGBE_TPR);
443 	IXGBE_READ_REG(hw, IXGBE_TPT);
444 	IXGBE_READ_REG(hw, IXGBE_PTC64);
445 	IXGBE_READ_REG(hw, IXGBE_PTC127);
446 	IXGBE_READ_REG(hw, IXGBE_PTC255);
447 	IXGBE_READ_REG(hw, IXGBE_PTC511);
448 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
449 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
450 	IXGBE_READ_REG(hw, IXGBE_MPTC);
451 	IXGBE_READ_REG(hw, IXGBE_BPTC);
452 	for (i = 0; i < 16; i++) {
453 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
454 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
455 		if (hw->mac.type >= ixgbe_mac_82599EB) {
456 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
457 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
458 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
459 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
460 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
461 		} else {
462 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
463 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
464 		}
465 	}
466 
467 	if (hw->mac.type == ixgbe_mac_X540) {
468 		if (hw->phy.id == 0)
469 			hw->phy.ops.identify(hw);
470 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
471 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
472 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
473 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
474 	}
475 
476 	return 0;
477 }
478 
479 /**
480  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
481  *  @hw: pointer to hardware structure
482  *  @pba_num: stores the part number string from the EEPROM
483  *  @pba_num_size: part number string buffer length
484  *
485  *  Reads the part number string from the EEPROM.
486  **/
487 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
488 				  u32 pba_num_size)
489 {
490 	s32 ret_val;
491 	u16 data;
492 	u16 pba_ptr;
493 	u16 offset;
494 	u16 length;
495 
496 	if (pba_num == NULL) {
497 		hw_dbg(hw, "PBA string buffer was null\n");
498 		return IXGBE_ERR_INVALID_ARGUMENT;
499 	}
500 
501 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
502 	if (ret_val) {
503 		hw_dbg(hw, "NVM Read Error\n");
504 		return ret_val;
505 	}
506 
507 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
508 	if (ret_val) {
509 		hw_dbg(hw, "NVM Read Error\n");
510 		return ret_val;
511 	}
512 
513 	/*
514 	 * if data is not ptr guard the PBA must be in legacy format which
515 	 * means pba_ptr is actually our second data word for the PBA number
516 	 * and we can decode it into an ascii string
517 	 */
518 	if (data != IXGBE_PBANUM_PTR_GUARD) {
519 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
520 
521 		/* we will need 11 characters to store the PBA */
522 		if (pba_num_size < 11) {
523 			hw_dbg(hw, "PBA string buffer too small\n");
524 			return IXGBE_ERR_NO_SPACE;
525 		}
526 
527 		/* extract hex string from data and pba_ptr */
528 		pba_num[0] = (data >> 12) & 0xF;
529 		pba_num[1] = (data >> 8) & 0xF;
530 		pba_num[2] = (data >> 4) & 0xF;
531 		pba_num[3] = data & 0xF;
532 		pba_num[4] = (pba_ptr >> 12) & 0xF;
533 		pba_num[5] = (pba_ptr >> 8) & 0xF;
534 		pba_num[6] = '-';
535 		pba_num[7] = 0;
536 		pba_num[8] = (pba_ptr >> 4) & 0xF;
537 		pba_num[9] = pba_ptr & 0xF;
538 
539 		/* put a null character on the end of our string */
540 		pba_num[10] = '\0';
541 
542 		/* switch all the data but the '-' to hex char */
543 		for (offset = 0; offset < 10; offset++) {
544 			if (pba_num[offset] < 0xA)
545 				pba_num[offset] += '0';
546 			else if (pba_num[offset] < 0x10)
547 				pba_num[offset] += 'A' - 0xA;
548 		}
549 
550 		return 0;
551 	}
552 
553 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
554 	if (ret_val) {
555 		hw_dbg(hw, "NVM Read Error\n");
556 		return ret_val;
557 	}
558 
559 	if (length == 0xFFFF || length == 0) {
560 		hw_dbg(hw, "NVM PBA number section invalid length\n");
561 		return IXGBE_ERR_PBA_SECTION;
562 	}
563 
564 	/* check if pba_num buffer is big enough */
565 	if (pba_num_size  < (((u32)length * 2) - 1)) {
566 		hw_dbg(hw, "PBA string buffer too small\n");
567 		return IXGBE_ERR_NO_SPACE;
568 	}
569 
570 	/* trim pba length from start of string */
571 	pba_ptr++;
572 	length--;
573 
574 	for (offset = 0; offset < length; offset++) {
575 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
576 		if (ret_val) {
577 			hw_dbg(hw, "NVM Read Error\n");
578 			return ret_val;
579 		}
580 		pba_num[offset * 2] = (u8)(data >> 8);
581 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
582 	}
583 	pba_num[offset * 2] = '\0';
584 
585 	return 0;
586 }
587 
588 /**
589  *  ixgbe_get_mac_addr_generic - Generic get MAC address
590  *  @hw: pointer to hardware structure
591  *  @mac_addr: Adapter MAC address
592  *
593  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
594  *  A reset of the adapter must be performed prior to calling this function
595  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
596  **/
597 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
598 {
599 	u32 rar_high;
600 	u32 rar_low;
601 	u16 i;
602 
603 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
604 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
605 
606 	for (i = 0; i < 4; i++)
607 		mac_addr[i] = (u8)(rar_low >> (i*8));
608 
609 	for (i = 0; i < 2; i++)
610 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
611 
612 	return 0;
613 }
614 
615 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
616 {
617 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
618 	case IXGBE_PCI_LINK_WIDTH_1:
619 		return ixgbe_bus_width_pcie_x1;
620 	case IXGBE_PCI_LINK_WIDTH_2:
621 		return ixgbe_bus_width_pcie_x2;
622 	case IXGBE_PCI_LINK_WIDTH_4:
623 		return ixgbe_bus_width_pcie_x4;
624 	case IXGBE_PCI_LINK_WIDTH_8:
625 		return ixgbe_bus_width_pcie_x8;
626 	default:
627 		return ixgbe_bus_width_unknown;
628 	}
629 }
630 
631 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
632 {
633 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
634 	case IXGBE_PCI_LINK_SPEED_2500:
635 		return ixgbe_bus_speed_2500;
636 	case IXGBE_PCI_LINK_SPEED_5000:
637 		return ixgbe_bus_speed_5000;
638 	case IXGBE_PCI_LINK_SPEED_8000:
639 		return ixgbe_bus_speed_8000;
640 	default:
641 		return ixgbe_bus_speed_unknown;
642 	}
643 }
644 
645 /**
646  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
647  *  @hw: pointer to hardware structure
648  *
649  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
650  **/
651 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
652 {
653 	u16 link_status;
654 
655 	hw->bus.type = ixgbe_bus_type_pci_express;
656 
657 	/* Get the negotiated link width and speed from PCI config space */
658 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
659 
660 	hw->bus.width = ixgbe_convert_bus_width(link_status);
661 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
662 
663 	hw->mac.ops.set_lan_id(hw);
664 
665 	return 0;
666 }
667 
668 /**
669  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
670  *  @hw: pointer to the HW structure
671  *
672  *  Determines the LAN function id by reading memory-mapped registers
673  *  and swaps the port value if requested.
674  **/
675 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
676 {
677 	struct ixgbe_bus_info *bus = &hw->bus;
678 	u32 reg;
679 
680 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
681 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
682 	bus->lan_id = bus->func;
683 
684 	/* check for a port swap */
685 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
686 	if (reg & IXGBE_FACTPS_LFS)
687 		bus->func ^= 0x1;
688 }
689 
690 /**
691  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
692  *  @hw: pointer to hardware structure
693  *
694  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
695  *  disables transmit and receive units. The adapter_stopped flag is used by
696  *  the shared code and drivers to determine if the adapter is in a stopped
697  *  state and should not touch the hardware.
698  **/
699 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
700 {
701 	u32 reg_val;
702 	u16 i;
703 
704 	/*
705 	 * Set the adapter_stopped flag so other driver functions stop touching
706 	 * the hardware
707 	 */
708 	hw->adapter_stopped = true;
709 
710 	/* Disable the receive unit */
711 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
712 
713 	/* Clear interrupt mask to stop interrupts from being generated */
714 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
715 
716 	/* Clear any pending interrupts, flush previous writes */
717 	IXGBE_READ_REG(hw, IXGBE_EICR);
718 
719 	/* Disable the transmit unit.  Each queue must be disabled. */
720 	for (i = 0; i < hw->mac.max_tx_queues; i++)
721 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
722 
723 	/* Disable the receive unit by stopping each queue */
724 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
725 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
726 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
727 		reg_val |= IXGBE_RXDCTL_SWFLSH;
728 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
729 	}
730 
731 	/* flush all queues disables */
732 	IXGBE_WRITE_FLUSH(hw);
733 	usleep_range(1000, 2000);
734 
735 	/*
736 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
737 	 * access and verify no pending requests
738 	 */
739 	return ixgbe_disable_pcie_master(hw);
740 }
741 
742 /**
743  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
744  *  @hw: pointer to hardware structure
745  *  @index: led number to turn on
746  **/
747 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
748 {
749 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
750 
751 	/* To turn on the LED, set mode to ON. */
752 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
753 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
754 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
755 	IXGBE_WRITE_FLUSH(hw);
756 
757 	return 0;
758 }
759 
760 /**
761  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
762  *  @hw: pointer to hardware structure
763  *  @index: led number to turn off
764  **/
765 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
766 {
767 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
768 
769 	/* To turn off the LED, set mode to OFF. */
770 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
771 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
772 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
773 	IXGBE_WRITE_FLUSH(hw);
774 
775 	return 0;
776 }
777 
778 /**
779  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
780  *  @hw: pointer to hardware structure
781  *
782  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
783  *  ixgbe_hw struct in order to set up EEPROM access.
784  **/
785 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
786 {
787 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
788 	u32 eec;
789 	u16 eeprom_size;
790 
791 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
792 		eeprom->type = ixgbe_eeprom_none;
793 		/* Set default semaphore delay to 10ms which is a well
794 		 * tested value */
795 		eeprom->semaphore_delay = 10;
796 		/* Clear EEPROM page size, it will be initialized as needed */
797 		eeprom->word_page_size = 0;
798 
799 		/*
800 		 * Check for EEPROM present first.
801 		 * If not present leave as none
802 		 */
803 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
804 		if (eec & IXGBE_EEC_PRES) {
805 			eeprom->type = ixgbe_eeprom_spi;
806 
807 			/*
808 			 * SPI EEPROM is assumed here.  This code would need to
809 			 * change if a future EEPROM is not SPI.
810 			 */
811 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
812 					    IXGBE_EEC_SIZE_SHIFT);
813 			eeprom->word_size = 1 << (eeprom_size +
814 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
815 		}
816 
817 		if (eec & IXGBE_EEC_ADDR_SIZE)
818 			eeprom->address_bits = 16;
819 		else
820 			eeprom->address_bits = 8;
821 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
822 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
823 	}
824 
825 	return 0;
826 }
827 
828 /**
829  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
830  *  @hw: pointer to hardware structure
831  *  @offset: offset within the EEPROM to write
832  *  @words: number of words
833  *  @data: 16 bit word(s) to write to EEPROM
834  *
835  *  Reads 16 bit word(s) from EEPROM through bit-bang method
836  **/
837 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
838 					       u16 words, u16 *data)
839 {
840 	s32 status = 0;
841 	u16 i, count;
842 
843 	hw->eeprom.ops.init_params(hw);
844 
845 	if (words == 0) {
846 		status = IXGBE_ERR_INVALID_ARGUMENT;
847 		goto out;
848 	}
849 
850 	if (offset + words > hw->eeprom.word_size) {
851 		status = IXGBE_ERR_EEPROM;
852 		goto out;
853 	}
854 
855 	/*
856 	 * The EEPROM page size cannot be queried from the chip. We do lazy
857 	 * initialization. It is worth to do that when we write large buffer.
858 	 */
859 	if ((hw->eeprom.word_page_size == 0) &&
860 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
861 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
862 
863 	/*
864 	 * We cannot hold synchronization semaphores for too long
865 	 * to avoid other entity starvation. However it is more efficient
866 	 * to read in bursts than synchronizing access for each word.
867 	 */
868 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
869 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
870 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
871 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
872 							    count, &data[i]);
873 
874 		if (status != 0)
875 			break;
876 	}
877 
878 out:
879 	return status;
880 }
881 
882 /**
883  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
884  *  @hw: pointer to hardware structure
885  *  @offset: offset within the EEPROM to be written to
886  *  @words: number of word(s)
887  *  @data: 16 bit word(s) to be written to the EEPROM
888  *
889  *  If ixgbe_eeprom_update_checksum is not called after this function, the
890  *  EEPROM will most likely contain an invalid checksum.
891  **/
892 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
893 					      u16 words, u16 *data)
894 {
895 	s32 status;
896 	u16 word;
897 	u16 page_size;
898 	u16 i;
899 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
900 
901 	/* Prepare the EEPROM for writing  */
902 	status = ixgbe_acquire_eeprom(hw);
903 
904 	if (status == 0) {
905 		if (ixgbe_ready_eeprom(hw) != 0) {
906 			ixgbe_release_eeprom(hw);
907 			status = IXGBE_ERR_EEPROM;
908 		}
909 	}
910 
911 	if (status == 0) {
912 		for (i = 0; i < words; i++) {
913 			ixgbe_standby_eeprom(hw);
914 
915 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
916 			ixgbe_shift_out_eeprom_bits(hw,
917 						  IXGBE_EEPROM_WREN_OPCODE_SPI,
918 						  IXGBE_EEPROM_OPCODE_BITS);
919 
920 			ixgbe_standby_eeprom(hw);
921 
922 			/*
923 			 * Some SPI eeproms use the 8th address bit embedded
924 			 * in the opcode
925 			 */
926 			if ((hw->eeprom.address_bits == 8) &&
927 			    ((offset + i) >= 128))
928 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
929 
930 			/* Send the Write command (8-bit opcode + addr) */
931 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
932 						    IXGBE_EEPROM_OPCODE_BITS);
933 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
934 						    hw->eeprom.address_bits);
935 
936 			page_size = hw->eeprom.word_page_size;
937 
938 			/* Send the data in burst via SPI*/
939 			do {
940 				word = data[i];
941 				word = (word >> 8) | (word << 8);
942 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
943 
944 				if (page_size == 0)
945 					break;
946 
947 				/* do not wrap around page */
948 				if (((offset + i) & (page_size - 1)) ==
949 				    (page_size - 1))
950 					break;
951 			} while (++i < words);
952 
953 			ixgbe_standby_eeprom(hw);
954 			usleep_range(10000, 20000);
955 		}
956 		/* Done with writing - release the EEPROM */
957 		ixgbe_release_eeprom(hw);
958 	}
959 
960 	return status;
961 }
962 
963 /**
964  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
965  *  @hw: pointer to hardware structure
966  *  @offset: offset within the EEPROM to be written to
967  *  @data: 16 bit word to be written to the EEPROM
968  *
969  *  If ixgbe_eeprom_update_checksum is not called after this function, the
970  *  EEPROM will most likely contain an invalid checksum.
971  **/
972 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
973 {
974 	s32 status;
975 
976 	hw->eeprom.ops.init_params(hw);
977 
978 	if (offset >= hw->eeprom.word_size) {
979 		status = IXGBE_ERR_EEPROM;
980 		goto out;
981 	}
982 
983 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
984 
985 out:
986 	return status;
987 }
988 
989 /**
990  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
991  *  @hw: pointer to hardware structure
992  *  @offset: offset within the EEPROM to be read
993  *  @words: number of word(s)
994  *  @data: read 16 bit words(s) from EEPROM
995  *
996  *  Reads 16 bit word(s) from EEPROM through bit-bang method
997  **/
998 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
999 					      u16 words, u16 *data)
1000 {
1001 	s32 status = 0;
1002 	u16 i, count;
1003 
1004 	hw->eeprom.ops.init_params(hw);
1005 
1006 	if (words == 0) {
1007 		status = IXGBE_ERR_INVALID_ARGUMENT;
1008 		goto out;
1009 	}
1010 
1011 	if (offset + words > hw->eeprom.word_size) {
1012 		status = IXGBE_ERR_EEPROM;
1013 		goto out;
1014 	}
1015 
1016 	/*
1017 	 * We cannot hold synchronization semaphores for too long
1018 	 * to avoid other entity starvation. However it is more efficient
1019 	 * to read in bursts than synchronizing access for each word.
1020 	 */
1021 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1022 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1023 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1024 
1025 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1026 							   count, &data[i]);
1027 
1028 		if (status != 0)
1029 			break;
1030 	}
1031 
1032 out:
1033 	return status;
1034 }
1035 
1036 /**
1037  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1038  *  @hw: pointer to hardware structure
1039  *  @offset: offset within the EEPROM to be read
1040  *  @words: number of word(s)
1041  *  @data: read 16 bit word(s) from EEPROM
1042  *
1043  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1044  **/
1045 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1046 					     u16 words, u16 *data)
1047 {
1048 	s32 status;
1049 	u16 word_in;
1050 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1051 	u16 i;
1052 
1053 	/* Prepare the EEPROM for reading  */
1054 	status = ixgbe_acquire_eeprom(hw);
1055 
1056 	if (status == 0) {
1057 		if (ixgbe_ready_eeprom(hw) != 0) {
1058 			ixgbe_release_eeprom(hw);
1059 			status = IXGBE_ERR_EEPROM;
1060 		}
1061 	}
1062 
1063 	if (status == 0) {
1064 		for (i = 0; i < words; i++) {
1065 			ixgbe_standby_eeprom(hw);
1066 			/*
1067 			 * Some SPI eeproms use the 8th address bit embedded
1068 			 * in the opcode
1069 			 */
1070 			if ((hw->eeprom.address_bits == 8) &&
1071 			    ((offset + i) >= 128))
1072 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1073 
1074 			/* Send the READ command (opcode + addr) */
1075 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1076 						    IXGBE_EEPROM_OPCODE_BITS);
1077 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1078 						    hw->eeprom.address_bits);
1079 
1080 			/* Read the data. */
1081 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1082 			data[i] = (word_in >> 8) | (word_in << 8);
1083 		}
1084 
1085 		/* End this read operation */
1086 		ixgbe_release_eeprom(hw);
1087 	}
1088 
1089 	return status;
1090 }
1091 
1092 /**
1093  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1094  *  @hw: pointer to hardware structure
1095  *  @offset: offset within the EEPROM to be read
1096  *  @data: read 16 bit value from EEPROM
1097  *
1098  *  Reads 16 bit value from EEPROM through bit-bang method
1099  **/
1100 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1101 				       u16 *data)
1102 {
1103 	s32 status;
1104 
1105 	hw->eeprom.ops.init_params(hw);
1106 
1107 	if (offset >= hw->eeprom.word_size) {
1108 		status = IXGBE_ERR_EEPROM;
1109 		goto out;
1110 	}
1111 
1112 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1113 
1114 out:
1115 	return status;
1116 }
1117 
1118 /**
1119  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1120  *  @hw: pointer to hardware structure
1121  *  @offset: offset of word in the EEPROM to read
1122  *  @words: number of word(s)
1123  *  @data: 16 bit word(s) from the EEPROM
1124  *
1125  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1126  **/
1127 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1128 				   u16 words, u16 *data)
1129 {
1130 	u32 eerd;
1131 	s32 status = 0;
1132 	u32 i;
1133 
1134 	hw->eeprom.ops.init_params(hw);
1135 
1136 	if (words == 0) {
1137 		status = IXGBE_ERR_INVALID_ARGUMENT;
1138 		goto out;
1139 	}
1140 
1141 	if (offset >= hw->eeprom.word_size) {
1142 		status = IXGBE_ERR_EEPROM;
1143 		goto out;
1144 	}
1145 
1146 	for (i = 0; i < words; i++) {
1147 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1148 		       IXGBE_EEPROM_RW_REG_START;
1149 
1150 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1151 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1152 
1153 		if (status == 0) {
1154 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1155 				   IXGBE_EEPROM_RW_REG_DATA);
1156 		} else {
1157 			hw_dbg(hw, "Eeprom read timed out\n");
1158 			goto out;
1159 		}
1160 	}
1161 out:
1162 	return status;
1163 }
1164 
1165 /**
1166  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1167  *  @hw: pointer to hardware structure
1168  *  @offset: offset within the EEPROM to be used as a scratch pad
1169  *
1170  *  Discover EEPROM page size by writing marching data at given offset.
1171  *  This function is called only when we are writing a new large buffer
1172  *  at given offset so the data would be overwritten anyway.
1173  **/
1174 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1175 						 u16 offset)
1176 {
1177 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1178 	s32 status = 0;
1179 	u16 i;
1180 
1181 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1182 		data[i] = i;
1183 
1184 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1185 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1186 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1187 	hw->eeprom.word_page_size = 0;
1188 	if (status != 0)
1189 		goto out;
1190 
1191 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1192 	if (status != 0)
1193 		goto out;
1194 
1195 	/*
1196 	 * When writing in burst more than the actual page size
1197 	 * EEPROM address wraps around current page.
1198 	 */
1199 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1200 
1201 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1202 	       hw->eeprom.word_page_size);
1203 out:
1204 	return status;
1205 }
1206 
1207 /**
1208  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1209  *  @hw: pointer to hardware structure
1210  *  @offset: offset of  word in the EEPROM to read
1211  *  @data: word read from the EEPROM
1212  *
1213  *  Reads a 16 bit word from the EEPROM using the EERD register.
1214  **/
1215 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1216 {
1217 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1218 }
1219 
1220 /**
1221  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1222  *  @hw: pointer to hardware structure
1223  *  @offset: offset of  word in the EEPROM to write
1224  *  @words: number of words
1225  *  @data: word(s) write to the EEPROM
1226  *
1227  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1228  **/
1229 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1230 				    u16 words, u16 *data)
1231 {
1232 	u32 eewr;
1233 	s32 status = 0;
1234 	u16 i;
1235 
1236 	hw->eeprom.ops.init_params(hw);
1237 
1238 	if (words == 0) {
1239 		status = IXGBE_ERR_INVALID_ARGUMENT;
1240 		goto out;
1241 	}
1242 
1243 	if (offset >= hw->eeprom.word_size) {
1244 		status = IXGBE_ERR_EEPROM;
1245 		goto out;
1246 	}
1247 
1248 	for (i = 0; i < words; i++) {
1249 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1250 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1251 		       IXGBE_EEPROM_RW_REG_START;
1252 
1253 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1254 		if (status != 0) {
1255 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1256 			goto out;
1257 		}
1258 
1259 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1260 
1261 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1262 		if (status != 0) {
1263 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1264 			goto out;
1265 		}
1266 	}
1267 
1268 out:
1269 	return status;
1270 }
1271 
1272 /**
1273  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1274  *  @hw: pointer to hardware structure
1275  *  @offset: offset of  word in the EEPROM to write
1276  *  @data: word write to the EEPROM
1277  *
1278  *  Write a 16 bit word to the EEPROM using the EEWR register.
1279  **/
1280 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1281 {
1282 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1283 }
1284 
1285 /**
1286  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1287  *  @hw: pointer to hardware structure
1288  *  @ee_reg: EEPROM flag for polling
1289  *
1290  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1291  *  read or write is done respectively.
1292  **/
1293 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1294 {
1295 	u32 i;
1296 	u32 reg;
1297 	s32 status = IXGBE_ERR_EEPROM;
1298 
1299 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1300 		if (ee_reg == IXGBE_NVM_POLL_READ)
1301 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1302 		else
1303 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1304 
1305 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1306 			status = 0;
1307 			break;
1308 		}
1309 		udelay(5);
1310 	}
1311 	return status;
1312 }
1313 
1314 /**
1315  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1316  *  @hw: pointer to hardware structure
1317  *
1318  *  Prepares EEPROM for access using bit-bang method. This function should
1319  *  be called before issuing a command to the EEPROM.
1320  **/
1321 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1322 {
1323 	s32 status = 0;
1324 	u32 eec;
1325 	u32 i;
1326 
1327 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1328 		status = IXGBE_ERR_SWFW_SYNC;
1329 
1330 	if (status == 0) {
1331 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1332 
1333 		/* Request EEPROM Access */
1334 		eec |= IXGBE_EEC_REQ;
1335 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1336 
1337 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1338 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1339 			if (eec & IXGBE_EEC_GNT)
1340 				break;
1341 			udelay(5);
1342 		}
1343 
1344 		/* Release if grant not acquired */
1345 		if (!(eec & IXGBE_EEC_GNT)) {
1346 			eec &= ~IXGBE_EEC_REQ;
1347 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1348 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
1349 
1350 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1351 			status = IXGBE_ERR_EEPROM;
1352 		}
1353 
1354 		/* Setup EEPROM for Read/Write */
1355 		if (status == 0) {
1356 			/* Clear CS and SK */
1357 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1358 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1359 			IXGBE_WRITE_FLUSH(hw);
1360 			udelay(1);
1361 		}
1362 	}
1363 	return status;
1364 }
1365 
1366 /**
1367  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1368  *  @hw: pointer to hardware structure
1369  *
1370  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1371  **/
1372 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1373 {
1374 	s32 status = IXGBE_ERR_EEPROM;
1375 	u32 timeout = 2000;
1376 	u32 i;
1377 	u32 swsm;
1378 
1379 	/* Get SMBI software semaphore between device drivers first */
1380 	for (i = 0; i < timeout; i++) {
1381 		/*
1382 		 * If the SMBI bit is 0 when we read it, then the bit will be
1383 		 * set and we have the semaphore
1384 		 */
1385 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1386 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1387 			status = 0;
1388 			break;
1389 		}
1390 		udelay(50);
1391 	}
1392 
1393 	if (i == timeout) {
1394 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1395 		/*
1396 		 * this release is particularly important because our attempts
1397 		 * above to get the semaphore may have succeeded, and if there
1398 		 * was a timeout, we should unconditionally clear the semaphore
1399 		 * bits to free the driver to make progress
1400 		 */
1401 		ixgbe_release_eeprom_semaphore(hw);
1402 
1403 		udelay(50);
1404 		/*
1405 		 * one last try
1406 		 * If the SMBI bit is 0 when we read it, then the bit will be
1407 		 * set and we have the semaphore
1408 		 */
1409 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1410 		if (!(swsm & IXGBE_SWSM_SMBI))
1411 			status = 0;
1412 	}
1413 
1414 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1415 	if (status == 0) {
1416 		for (i = 0; i < timeout; i++) {
1417 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1418 
1419 			/* Set the SW EEPROM semaphore bit to request access */
1420 			swsm |= IXGBE_SWSM_SWESMBI;
1421 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1422 
1423 			/*
1424 			 * If we set the bit successfully then we got the
1425 			 * semaphore.
1426 			 */
1427 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1428 			if (swsm & IXGBE_SWSM_SWESMBI)
1429 				break;
1430 
1431 			udelay(50);
1432 		}
1433 
1434 		/*
1435 		 * Release semaphores and return error if SW EEPROM semaphore
1436 		 * was not granted because we don't have access to the EEPROM
1437 		 */
1438 		if (i >= timeout) {
1439 			hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1440 			ixgbe_release_eeprom_semaphore(hw);
1441 			status = IXGBE_ERR_EEPROM;
1442 		}
1443 	} else {
1444 		hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1445 	}
1446 
1447 	return status;
1448 }
1449 
1450 /**
1451  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1452  *  @hw: pointer to hardware structure
1453  *
1454  *  This function clears hardware semaphore bits.
1455  **/
1456 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1457 {
1458 	u32 swsm;
1459 
1460 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1461 
1462 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1463 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1464 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1465 	IXGBE_WRITE_FLUSH(hw);
1466 }
1467 
1468 /**
1469  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1470  *  @hw: pointer to hardware structure
1471  **/
1472 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1473 {
1474 	s32 status = 0;
1475 	u16 i;
1476 	u8 spi_stat_reg;
1477 
1478 	/*
1479 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1480 	 * EEPROM will signal that the command has been completed by clearing
1481 	 * bit 0 of the internal status register.  If it's not cleared within
1482 	 * 5 milliseconds, then error out.
1483 	 */
1484 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1485 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1486 					    IXGBE_EEPROM_OPCODE_BITS);
1487 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1488 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1489 			break;
1490 
1491 		udelay(5);
1492 		ixgbe_standby_eeprom(hw);
1493 	}
1494 
1495 	/*
1496 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1497 	 * devices (and only 0-5mSec on 5V devices)
1498 	 */
1499 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1500 		hw_dbg(hw, "SPI EEPROM Status error\n");
1501 		status = IXGBE_ERR_EEPROM;
1502 	}
1503 
1504 	return status;
1505 }
1506 
1507 /**
1508  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1509  *  @hw: pointer to hardware structure
1510  **/
1511 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1512 {
1513 	u32 eec;
1514 
1515 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1516 
1517 	/* Toggle CS to flush commands */
1518 	eec |= IXGBE_EEC_CS;
1519 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1520 	IXGBE_WRITE_FLUSH(hw);
1521 	udelay(1);
1522 	eec &= ~IXGBE_EEC_CS;
1523 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1524 	IXGBE_WRITE_FLUSH(hw);
1525 	udelay(1);
1526 }
1527 
1528 /**
1529  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1530  *  @hw: pointer to hardware structure
1531  *  @data: data to send to the EEPROM
1532  *  @count: number of bits to shift out
1533  **/
1534 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1535 					u16 count)
1536 {
1537 	u32 eec;
1538 	u32 mask;
1539 	u32 i;
1540 
1541 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1542 
1543 	/*
1544 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1545 	 * one bit at a time.  Determine the starting bit based on count
1546 	 */
1547 	mask = 0x01 << (count - 1);
1548 
1549 	for (i = 0; i < count; i++) {
1550 		/*
1551 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1552 		 * "1", and then raising and then lowering the clock (the SK
1553 		 * bit controls the clock input to the EEPROM).  A "0" is
1554 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1555 		 * raising and then lowering the clock.
1556 		 */
1557 		if (data & mask)
1558 			eec |= IXGBE_EEC_DI;
1559 		else
1560 			eec &= ~IXGBE_EEC_DI;
1561 
1562 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1563 		IXGBE_WRITE_FLUSH(hw);
1564 
1565 		udelay(1);
1566 
1567 		ixgbe_raise_eeprom_clk(hw, &eec);
1568 		ixgbe_lower_eeprom_clk(hw, &eec);
1569 
1570 		/*
1571 		 * Shift mask to signify next bit of data to shift in to the
1572 		 * EEPROM
1573 		 */
1574 		mask = mask >> 1;
1575 	}
1576 
1577 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1578 	eec &= ~IXGBE_EEC_DI;
1579 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1580 	IXGBE_WRITE_FLUSH(hw);
1581 }
1582 
1583 /**
1584  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1585  *  @hw: pointer to hardware structure
1586  **/
1587 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1588 {
1589 	u32 eec;
1590 	u32 i;
1591 	u16 data = 0;
1592 
1593 	/*
1594 	 * In order to read a register from the EEPROM, we need to shift
1595 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1596 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1597 	 * the value of the "DO" bit.  During this "shifting in" process the
1598 	 * "DI" bit should always be clear.
1599 	 */
1600 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1601 
1602 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1603 
1604 	for (i = 0; i < count; i++) {
1605 		data = data << 1;
1606 		ixgbe_raise_eeprom_clk(hw, &eec);
1607 
1608 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1609 
1610 		eec &= ~(IXGBE_EEC_DI);
1611 		if (eec & IXGBE_EEC_DO)
1612 			data |= 1;
1613 
1614 		ixgbe_lower_eeprom_clk(hw, &eec);
1615 	}
1616 
1617 	return data;
1618 }
1619 
1620 /**
1621  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1622  *  @hw: pointer to hardware structure
1623  *  @eec: EEC register's current value
1624  **/
1625 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1626 {
1627 	/*
1628 	 * Raise the clock input to the EEPROM
1629 	 * (setting the SK bit), then delay
1630 	 */
1631 	*eec = *eec | IXGBE_EEC_SK;
1632 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1633 	IXGBE_WRITE_FLUSH(hw);
1634 	udelay(1);
1635 }
1636 
1637 /**
1638  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1639  *  @hw: pointer to hardware structure
1640  *  @eecd: EECD's current value
1641  **/
1642 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1643 {
1644 	/*
1645 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1646 	 * delay
1647 	 */
1648 	*eec = *eec & ~IXGBE_EEC_SK;
1649 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1650 	IXGBE_WRITE_FLUSH(hw);
1651 	udelay(1);
1652 }
1653 
1654 /**
1655  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1656  *  @hw: pointer to hardware structure
1657  **/
1658 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1659 {
1660 	u32 eec;
1661 
1662 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1663 
1664 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1665 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1666 
1667 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1668 	IXGBE_WRITE_FLUSH(hw);
1669 
1670 	udelay(1);
1671 
1672 	/* Stop requesting EEPROM access */
1673 	eec &= ~IXGBE_EEC_REQ;
1674 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1675 
1676 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1677 
1678 	/*
1679 	 * Delay before attempt to obtain semaphore again to allow FW
1680 	 * access. semaphore_delay is in ms we need us for usleep_range
1681 	 */
1682 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1683 		     hw->eeprom.semaphore_delay * 2000);
1684 }
1685 
1686 /**
1687  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1688  *  @hw: pointer to hardware structure
1689  **/
1690 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1691 {
1692 	u16 i;
1693 	u16 j;
1694 	u16 checksum = 0;
1695 	u16 length = 0;
1696 	u16 pointer = 0;
1697 	u16 word = 0;
1698 
1699 	/* Include 0x0-0x3F in the checksum */
1700 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1701 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1702 			hw_dbg(hw, "EEPROM read failed\n");
1703 			break;
1704 		}
1705 		checksum += word;
1706 	}
1707 
1708 	/* Include all data from pointers except for the fw pointer */
1709 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1710 		hw->eeprom.ops.read(hw, i, &pointer);
1711 
1712 		/* Make sure the pointer seems valid */
1713 		if (pointer != 0xFFFF && pointer != 0) {
1714 			hw->eeprom.ops.read(hw, pointer, &length);
1715 
1716 			if (length != 0xFFFF && length != 0) {
1717 				for (j = pointer+1; j <= pointer+length; j++) {
1718 					hw->eeprom.ops.read(hw, j, &word);
1719 					checksum += word;
1720 				}
1721 			}
1722 		}
1723 	}
1724 
1725 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1726 
1727 	return checksum;
1728 }
1729 
1730 /**
1731  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1732  *  @hw: pointer to hardware structure
1733  *  @checksum_val: calculated checksum
1734  *
1735  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1736  *  caller does not need checksum_val, the value can be NULL.
1737  **/
1738 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1739 					   u16 *checksum_val)
1740 {
1741 	s32 status;
1742 	u16 checksum;
1743 	u16 read_checksum = 0;
1744 
1745 	/*
1746 	 * Read the first word from the EEPROM. If this times out or fails, do
1747 	 * not continue or we could be in for a very long wait while every
1748 	 * EEPROM read fails
1749 	 */
1750 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1751 
1752 	if (status == 0) {
1753 		checksum = hw->eeprom.ops.calc_checksum(hw);
1754 
1755 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1756 
1757 		/*
1758 		 * Verify read checksum from EEPROM is the same as
1759 		 * calculated checksum
1760 		 */
1761 		if (read_checksum != checksum)
1762 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1763 
1764 		/* If the user cares, return the calculated checksum */
1765 		if (checksum_val)
1766 			*checksum_val = checksum;
1767 	} else {
1768 		hw_dbg(hw, "EEPROM read failed\n");
1769 	}
1770 
1771 	return status;
1772 }
1773 
1774 /**
1775  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1776  *  @hw: pointer to hardware structure
1777  **/
1778 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1779 {
1780 	s32 status;
1781 	u16 checksum;
1782 
1783 	/*
1784 	 * Read the first word from the EEPROM. If this times out or fails, do
1785 	 * not continue or we could be in for a very long wait while every
1786 	 * EEPROM read fails
1787 	 */
1788 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1789 
1790 	if (status == 0) {
1791 		checksum = hw->eeprom.ops.calc_checksum(hw);
1792 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1793 					      checksum);
1794 	} else {
1795 		hw_dbg(hw, "EEPROM read failed\n");
1796 	}
1797 
1798 	return status;
1799 }
1800 
1801 /**
1802  *  ixgbe_set_rar_generic - Set Rx address register
1803  *  @hw: pointer to hardware structure
1804  *  @index: Receive address register to write
1805  *  @addr: Address to put into receive address register
1806  *  @vmdq: VMDq "set" or "pool" index
1807  *  @enable_addr: set flag that address is active
1808  *
1809  *  Puts an ethernet address into a receive address register.
1810  **/
1811 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1812 			  u32 enable_addr)
1813 {
1814 	u32 rar_low, rar_high;
1815 	u32 rar_entries = hw->mac.num_rar_entries;
1816 
1817 	/* Make sure we are using a valid rar index range */
1818 	if (index >= rar_entries) {
1819 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1820 		return IXGBE_ERR_INVALID_ARGUMENT;
1821 	}
1822 
1823 	/* setup VMDq pool selection before this RAR gets enabled */
1824 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1825 
1826 	/*
1827 	 * HW expects these in little endian so we reverse the byte
1828 	 * order from network order (big endian) to little endian
1829 	 */
1830 	rar_low = ((u32)addr[0] |
1831 		   ((u32)addr[1] << 8) |
1832 		   ((u32)addr[2] << 16) |
1833 		   ((u32)addr[3] << 24));
1834 	/*
1835 	 * Some parts put the VMDq setting in the extra RAH bits,
1836 	 * so save everything except the lower 16 bits that hold part
1837 	 * of the address and the address valid bit.
1838 	 */
1839 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1840 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1841 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1842 
1843 	if (enable_addr != 0)
1844 		rar_high |= IXGBE_RAH_AV;
1845 
1846 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1847 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1848 
1849 	return 0;
1850 }
1851 
1852 /**
1853  *  ixgbe_clear_rar_generic - Remove Rx address register
1854  *  @hw: pointer to hardware structure
1855  *  @index: Receive address register to write
1856  *
1857  *  Clears an ethernet address from a receive address register.
1858  **/
1859 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1860 {
1861 	u32 rar_high;
1862 	u32 rar_entries = hw->mac.num_rar_entries;
1863 
1864 	/* Make sure we are using a valid rar index range */
1865 	if (index >= rar_entries) {
1866 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1867 		return IXGBE_ERR_INVALID_ARGUMENT;
1868 	}
1869 
1870 	/*
1871 	 * Some parts put the VMDq setting in the extra RAH bits,
1872 	 * so save everything except the lower 16 bits that hold part
1873 	 * of the address and the address valid bit.
1874 	 */
1875 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1876 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1877 
1878 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1879 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1880 
1881 	/* clear VMDq pool/queue selection for this RAR */
1882 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1889  *  @hw: pointer to hardware structure
1890  *
1891  *  Places the MAC address in receive address register 0 and clears the rest
1892  *  of the receive address registers. Clears the multicast table. Assumes
1893  *  the receiver is in reset when the routine is called.
1894  **/
1895 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1896 {
1897 	u32 i;
1898 	u32 rar_entries = hw->mac.num_rar_entries;
1899 
1900 	/*
1901 	 * If the current mac address is valid, assume it is a software override
1902 	 * to the permanent address.
1903 	 * Otherwise, use the permanent address from the eeprom.
1904 	 */
1905 	if (!is_valid_ether_addr(hw->mac.addr)) {
1906 		/* Get the MAC address from the RAR0 for later reference */
1907 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1908 
1909 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1910 	} else {
1911 		/* Setup the receive address. */
1912 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1913 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1914 
1915 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1916 
1917 		/*  clear VMDq pool/queue selection for RAR 0 */
1918 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1919 	}
1920 	hw->addr_ctrl.overflow_promisc = 0;
1921 
1922 	hw->addr_ctrl.rar_used_count = 1;
1923 
1924 	/* Zero out the other receive addresses. */
1925 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1926 	for (i = 1; i < rar_entries; i++) {
1927 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1928 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1929 	}
1930 
1931 	/* Clear the MTA */
1932 	hw->addr_ctrl.mta_in_use = 0;
1933 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1934 
1935 	hw_dbg(hw, " Clearing MTA\n");
1936 	for (i = 0; i < hw->mac.mcft_size; i++)
1937 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1938 
1939 	if (hw->mac.ops.init_uta_tables)
1940 		hw->mac.ops.init_uta_tables(hw);
1941 
1942 	return 0;
1943 }
1944 
1945 /**
1946  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1947  *  @hw: pointer to hardware structure
1948  *  @mc_addr: the multicast address
1949  *
1950  *  Extracts the 12 bits, from a multicast address, to determine which
1951  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1952  *  incoming rx multicast addresses, to determine the bit-vector to check in
1953  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1954  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1955  *  to mc_filter_type.
1956  **/
1957 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1958 {
1959 	u32 vector = 0;
1960 
1961 	switch (hw->mac.mc_filter_type) {
1962 	case 0:   /* use bits [47:36] of the address */
1963 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1964 		break;
1965 	case 1:   /* use bits [46:35] of the address */
1966 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1967 		break;
1968 	case 2:   /* use bits [45:34] of the address */
1969 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1970 		break;
1971 	case 3:   /* use bits [43:32] of the address */
1972 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1973 		break;
1974 	default:  /* Invalid mc_filter_type */
1975 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1976 		break;
1977 	}
1978 
1979 	/* vector can only be 12-bits or boundary will be exceeded */
1980 	vector &= 0xFFF;
1981 	return vector;
1982 }
1983 
1984 /**
1985  *  ixgbe_set_mta - Set bit-vector in multicast table
1986  *  @hw: pointer to hardware structure
1987  *  @hash_value: Multicast address hash value
1988  *
1989  *  Sets the bit-vector in the multicast table.
1990  **/
1991 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1992 {
1993 	u32 vector;
1994 	u32 vector_bit;
1995 	u32 vector_reg;
1996 
1997 	hw->addr_ctrl.mta_in_use++;
1998 
1999 	vector = ixgbe_mta_vector(hw, mc_addr);
2000 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2001 
2002 	/*
2003 	 * The MTA is a register array of 128 32-bit registers. It is treated
2004 	 * like an array of 4096 bits.  We want to set bit
2005 	 * BitArray[vector_value]. So we figure out what register the bit is
2006 	 * in, read it, OR in the new bit, then write back the new value.  The
2007 	 * register is determined by the upper 7 bits of the vector value and
2008 	 * the bit within that register are determined by the lower 5 bits of
2009 	 * the value.
2010 	 */
2011 	vector_reg = (vector >> 5) & 0x7F;
2012 	vector_bit = vector & 0x1F;
2013 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2014 }
2015 
2016 /**
2017  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2018  *  @hw: pointer to hardware structure
2019  *  @netdev: pointer to net device structure
2020  *
2021  *  The given list replaces any existing list. Clears the MC addrs from receive
2022  *  address registers and the multicast table. Uses unused receive address
2023  *  registers for the first multicast addresses, and hashes the rest into the
2024  *  multicast table.
2025  **/
2026 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2027 				      struct net_device *netdev)
2028 {
2029 	struct netdev_hw_addr *ha;
2030 	u32 i;
2031 
2032 	/*
2033 	 * Set the new number of MC addresses that we are being requested to
2034 	 * use.
2035 	 */
2036 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2037 	hw->addr_ctrl.mta_in_use = 0;
2038 
2039 	/* Clear mta_shadow */
2040 	hw_dbg(hw, " Clearing MTA\n");
2041 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2042 
2043 	/* Update mta shadow */
2044 	netdev_for_each_mc_addr(ha, netdev) {
2045 		hw_dbg(hw, " Adding the multicast addresses:\n");
2046 		ixgbe_set_mta(hw, ha->addr);
2047 	}
2048 
2049 	/* Enable mta */
2050 	for (i = 0; i < hw->mac.mcft_size; i++)
2051 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2052 				      hw->mac.mta_shadow[i]);
2053 
2054 	if (hw->addr_ctrl.mta_in_use > 0)
2055 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2056 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2057 
2058 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2059 	return 0;
2060 }
2061 
2062 /**
2063  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2064  *  @hw: pointer to hardware structure
2065  *
2066  *  Enables multicast address in RAR and the use of the multicast hash table.
2067  **/
2068 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2069 {
2070 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2071 
2072 	if (a->mta_in_use > 0)
2073 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2074 				hw->mac.mc_filter_type);
2075 
2076 	return 0;
2077 }
2078 
2079 /**
2080  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2081  *  @hw: pointer to hardware structure
2082  *
2083  *  Disables multicast address in RAR and the use of the multicast hash table.
2084  **/
2085 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2086 {
2087 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2088 
2089 	if (a->mta_in_use > 0)
2090 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2091 
2092 	return 0;
2093 }
2094 
2095 /**
2096  *  ixgbe_fc_enable_generic - Enable flow control
2097  *  @hw: pointer to hardware structure
2098  *
2099  *  Enable flow control according to the current settings.
2100  **/
2101 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2102 {
2103 	s32 ret_val = 0;
2104 	u32 mflcn_reg, fccfg_reg;
2105 	u32 reg;
2106 	u32 fcrtl, fcrth;
2107 	int i;
2108 
2109 	/* Validate the water mark configuration. */
2110 	if (!hw->fc.pause_time) {
2111 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2112 		goto out;
2113 	}
2114 
2115 	/* Low water mark of zero causes XOFF floods */
2116 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2117 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2118 		    hw->fc.high_water[i]) {
2119 			if (!hw->fc.low_water[i] ||
2120 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2121 				hw_dbg(hw, "Invalid water mark configuration\n");
2122 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2123 				goto out;
2124 			}
2125 		}
2126 	}
2127 
2128 	/* Negotiate the fc mode to use */
2129 	ixgbe_fc_autoneg(hw);
2130 
2131 	/* Disable any previous flow control settings */
2132 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2133 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2134 
2135 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2136 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2137 
2138 	/*
2139 	 * The possible values of fc.current_mode are:
2140 	 * 0: Flow control is completely disabled
2141 	 * 1: Rx flow control is enabled (we can receive pause frames,
2142 	 *    but not send pause frames).
2143 	 * 2: Tx flow control is enabled (we can send pause frames but
2144 	 *    we do not support receiving pause frames).
2145 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2146 	 * other: Invalid.
2147 	 */
2148 	switch (hw->fc.current_mode) {
2149 	case ixgbe_fc_none:
2150 		/*
2151 		 * Flow control is disabled by software override or autoneg.
2152 		 * The code below will actually disable it in the HW.
2153 		 */
2154 		break;
2155 	case ixgbe_fc_rx_pause:
2156 		/*
2157 		 * Rx Flow control is enabled and Tx Flow control is
2158 		 * disabled by software override. Since there really
2159 		 * isn't a way to advertise that we are capable of RX
2160 		 * Pause ONLY, we will advertise that we support both
2161 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2162 		 * disable the adapter's ability to send PAUSE frames.
2163 		 */
2164 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2165 		break;
2166 	case ixgbe_fc_tx_pause:
2167 		/*
2168 		 * Tx Flow control is enabled, and Rx Flow control is
2169 		 * disabled by software override.
2170 		 */
2171 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2172 		break;
2173 	case ixgbe_fc_full:
2174 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2175 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2176 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2177 		break;
2178 	default:
2179 		hw_dbg(hw, "Flow control param set incorrectly\n");
2180 		ret_val = IXGBE_ERR_CONFIG;
2181 		goto out;
2182 		break;
2183 	}
2184 
2185 	/* Set 802.3x based flow control settings. */
2186 	mflcn_reg |= IXGBE_MFLCN_DPF;
2187 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2188 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2189 
2190 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2191 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2192 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2193 		    hw->fc.high_water[i]) {
2194 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2195 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2196 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2197 		} else {
2198 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2199 			/*
2200 			 * In order to prevent Tx hangs when the internal Tx
2201 			 * switch is enabled we must set the high water mark
2202 			 * to the maximum FCRTH value.  This allows the Tx
2203 			 * switch to function even under heavy Rx workloads.
2204 			 */
2205 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2206 		}
2207 
2208 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2209 	}
2210 
2211 	/* Configure pause time (2 TCs per register) */
2212 	reg = hw->fc.pause_time * 0x00010001;
2213 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2214 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2215 
2216 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2217 
2218 out:
2219 	return ret_val;
2220 }
2221 
2222 /**
2223  *  ixgbe_negotiate_fc - Negotiate flow control
2224  *  @hw: pointer to hardware structure
2225  *  @adv_reg: flow control advertised settings
2226  *  @lp_reg: link partner's flow control settings
2227  *  @adv_sym: symmetric pause bit in advertisement
2228  *  @adv_asm: asymmetric pause bit in advertisement
2229  *  @lp_sym: symmetric pause bit in link partner advertisement
2230  *  @lp_asm: asymmetric pause bit in link partner advertisement
2231  *
2232  *  Find the intersection between advertised settings and link partner's
2233  *  advertised settings
2234  **/
2235 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2236 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2237 {
2238 	if ((!(adv_reg)) ||  (!(lp_reg)))
2239 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2240 
2241 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2242 		/*
2243 		 * Now we need to check if the user selected Rx ONLY
2244 		 * of pause frames.  In this case, we had to advertise
2245 		 * FULL flow control because we could not advertise RX
2246 		 * ONLY. Hence, we must now check to see if we need to
2247 		 * turn OFF the TRANSMISSION of PAUSE frames.
2248 		 */
2249 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2250 			hw->fc.current_mode = ixgbe_fc_full;
2251 			hw_dbg(hw, "Flow Control = FULL.\n");
2252 		} else {
2253 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2254 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2255 		}
2256 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2257 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2258 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2259 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2260 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2261 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2262 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2263 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2264 	} else {
2265 		hw->fc.current_mode = ixgbe_fc_none;
2266 		hw_dbg(hw, "Flow Control = NONE.\n");
2267 	}
2268 	return 0;
2269 }
2270 
2271 /**
2272  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2273  *  @hw: pointer to hardware structure
2274  *
2275  *  Enable flow control according on 1 gig fiber.
2276  **/
2277 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2278 {
2279 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2280 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2281 
2282 	/*
2283 	 * On multispeed fiber at 1g, bail out if
2284 	 * - link is up but AN did not complete, or if
2285 	 * - link is up and AN completed but timed out
2286 	 */
2287 
2288 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2289 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2290 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2291 		goto out;
2292 
2293 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2294 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2295 
2296 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2297 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2298 			       IXGBE_PCS1GANA_ASM_PAUSE,
2299 			       IXGBE_PCS1GANA_SYM_PAUSE,
2300 			       IXGBE_PCS1GANA_ASM_PAUSE);
2301 
2302 out:
2303 	return ret_val;
2304 }
2305 
2306 /**
2307  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2308  *  @hw: pointer to hardware structure
2309  *
2310  *  Enable flow control according to IEEE clause 37.
2311  **/
2312 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2313 {
2314 	u32 links2, anlp1_reg, autoc_reg, links;
2315 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2316 
2317 	/*
2318 	 * On backplane, bail out if
2319 	 * - backplane autoneg was not completed, or if
2320 	 * - we are 82599 and link partner is not AN enabled
2321 	 */
2322 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2323 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2324 		goto out;
2325 
2326 	if (hw->mac.type == ixgbe_mac_82599EB) {
2327 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2328 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2329 			goto out;
2330 	}
2331 	/*
2332 	 * Read the 10g AN autoc and LP ability registers and resolve
2333 	 * local flow control settings accordingly
2334 	 */
2335 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2336 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2337 
2338 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2339 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2340 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2341 
2342 out:
2343 	return ret_val;
2344 }
2345 
2346 /**
2347  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2348  *  @hw: pointer to hardware structure
2349  *
2350  *  Enable flow control according to IEEE clause 37.
2351  **/
2352 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2353 {
2354 	u16 technology_ability_reg = 0;
2355 	u16 lp_technology_ability_reg = 0;
2356 
2357 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2358 			     MDIO_MMD_AN,
2359 			     &technology_ability_reg);
2360 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2361 			     MDIO_MMD_AN,
2362 			     &lp_technology_ability_reg);
2363 
2364 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2365 				  (u32)lp_technology_ability_reg,
2366 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2367 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2368 }
2369 
2370 /**
2371  *  ixgbe_fc_autoneg - Configure flow control
2372  *  @hw: pointer to hardware structure
2373  *
2374  *  Compares our advertised flow control capabilities to those advertised by
2375  *  our link partner, and determines the proper flow control mode to use.
2376  **/
2377 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2378 {
2379 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2380 	ixgbe_link_speed speed;
2381 	bool link_up;
2382 
2383 	/*
2384 	 * AN should have completed when the cable was plugged in.
2385 	 * Look for reasons to bail out.  Bail out if:
2386 	 * - FC autoneg is disabled, or if
2387 	 * - link is not up.
2388 	 *
2389 	 * Since we're being called from an LSC, link is already known to be up.
2390 	 * So use link_up_wait_to_complete=false.
2391 	 */
2392 	if (hw->fc.disable_fc_autoneg)
2393 		goto out;
2394 
2395 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2396 	if (!link_up)
2397 		goto out;
2398 
2399 	switch (hw->phy.media_type) {
2400 	/* Autoneg flow control on fiber adapters */
2401 	case ixgbe_media_type_fiber:
2402 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2403 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2404 		break;
2405 
2406 	/* Autoneg flow control on backplane adapters */
2407 	case ixgbe_media_type_backplane:
2408 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2409 		break;
2410 
2411 	/* Autoneg flow control on copper adapters */
2412 	case ixgbe_media_type_copper:
2413 		if (ixgbe_device_supports_autoneg_fc(hw))
2414 			ret_val = ixgbe_fc_autoneg_copper(hw);
2415 		break;
2416 
2417 	default:
2418 		break;
2419 	}
2420 
2421 out:
2422 	if (ret_val == 0) {
2423 		hw->fc.fc_was_autonegged = true;
2424 	} else {
2425 		hw->fc.fc_was_autonegged = false;
2426 		hw->fc.current_mode = hw->fc.requested_mode;
2427 	}
2428 }
2429 
2430 /**
2431  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2432  * @hw: pointer to hardware structure
2433  *
2434  * System-wide timeout range is encoded in PCIe Device Control2 register.
2435  *
2436  *  Add 10% to specified maximum and return the number of times to poll for
2437  *  completion timeout, in units of 100 microsec.  Never return less than
2438  *  800 = 80 millisec.
2439  **/
2440 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2441 {
2442 	s16 devctl2;
2443 	u32 pollcnt;
2444 
2445 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2446 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2447 
2448 	switch (devctl2) {
2449 	case IXGBE_PCIDEVCTRL2_65_130ms:
2450 		 pollcnt = 1300;         /* 130 millisec */
2451 		break;
2452 	case IXGBE_PCIDEVCTRL2_260_520ms:
2453 		pollcnt = 5200;         /* 520 millisec */
2454 		break;
2455 	case IXGBE_PCIDEVCTRL2_1_2s:
2456 		pollcnt = 20000;        /* 2 sec */
2457 		break;
2458 	case IXGBE_PCIDEVCTRL2_4_8s:
2459 		pollcnt = 80000;        /* 8 sec */
2460 		break;
2461 	case IXGBE_PCIDEVCTRL2_17_34s:
2462 		pollcnt = 34000;        /* 34 sec */
2463 		break;
2464 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2465 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2466 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2467 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2468 	default:
2469 		pollcnt = 800;          /* 80 millisec minimum */
2470 		break;
2471 	}
2472 
2473 	/* add 10% to spec maximum */
2474 	return (pollcnt * 11) / 10;
2475 }
2476 
2477 /**
2478  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2479  *  @hw: pointer to hardware structure
2480  *
2481  *  Disables PCI-Express master access and verifies there are no pending
2482  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2483  *  bit hasn't caused the master requests to be disabled, else 0
2484  *  is returned signifying master requests disabled.
2485  **/
2486 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2487 {
2488 	s32 status = 0;
2489 	u32 i, poll;
2490 	u16 value;
2491 
2492 	/* Always set this bit to ensure any future transactions are blocked */
2493 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2494 
2495 	/* Exit if master requests are blocked */
2496 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2497 	    ixgbe_removed(hw->hw_addr))
2498 		goto out;
2499 
2500 	/* Poll for master request bit to clear */
2501 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2502 		udelay(100);
2503 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2504 			goto out;
2505 	}
2506 
2507 	/*
2508 	 * Two consecutive resets are required via CTRL.RST per datasheet
2509 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2510 	 * of this need.  The first reset prevents new master requests from
2511 	 * being issued by our device.  We then must wait 1usec or more for any
2512 	 * remaining completions from the PCIe bus to trickle in, and then reset
2513 	 * again to clear out any effects they may have had on our device.
2514 	 */
2515 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2516 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2517 
2518 	/*
2519 	 * Before proceeding, make sure that the PCIe block does not have
2520 	 * transactions pending.
2521 	 */
2522 	poll = ixgbe_pcie_timeout_poll(hw);
2523 	for (i = 0; i < poll; i++) {
2524 		udelay(100);
2525 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2526 		if (ixgbe_removed(hw->hw_addr))
2527 			goto out;
2528 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2529 			goto out;
2530 	}
2531 
2532 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2533 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2534 
2535 out:
2536 	return status;
2537 }
2538 
2539 /**
2540  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2541  *  @hw: pointer to hardware structure
2542  *  @mask: Mask to specify which semaphore to acquire
2543  *
2544  *  Acquires the SWFW semaphore through the GSSR register for the specified
2545  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2546  **/
2547 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2548 {
2549 	u32 gssr = 0;
2550 	u32 swmask = mask;
2551 	u32 fwmask = mask << 5;
2552 	u32 timeout = 200;
2553 	u32 i;
2554 
2555 	for (i = 0; i < timeout; i++) {
2556 		/*
2557 		 * SW NVM semaphore bit is used for access to all
2558 		 * SW_FW_SYNC bits (not just NVM)
2559 		 */
2560 		if (ixgbe_get_eeprom_semaphore(hw))
2561 			return IXGBE_ERR_SWFW_SYNC;
2562 
2563 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2564 		if (!(gssr & (fwmask | swmask))) {
2565 			gssr |= swmask;
2566 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2567 			ixgbe_release_eeprom_semaphore(hw);
2568 			return 0;
2569 		} else {
2570 			/* Resource is currently in use by FW or SW */
2571 			ixgbe_release_eeprom_semaphore(hw);
2572 			usleep_range(5000, 10000);
2573 		}
2574 	}
2575 
2576 	/* If time expired clear the bits holding the lock and retry */
2577 	if (gssr & (fwmask | swmask))
2578 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2579 
2580 	usleep_range(5000, 10000);
2581 	return IXGBE_ERR_SWFW_SYNC;
2582 }
2583 
2584 /**
2585  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2586  *  @hw: pointer to hardware structure
2587  *  @mask: Mask to specify which semaphore to release
2588  *
2589  *  Releases the SWFW semaphore through the GSSR register for the specified
2590  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2591  **/
2592 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2593 {
2594 	u32 gssr;
2595 	u32 swmask = mask;
2596 
2597 	ixgbe_get_eeprom_semaphore(hw);
2598 
2599 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2600 	gssr &= ~swmask;
2601 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2602 
2603 	ixgbe_release_eeprom_semaphore(hw);
2604 }
2605 
2606 /**
2607  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2608  * @hw: pointer to hardware structure
2609  * @reg_val: Value we read from AUTOC
2610  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2611  *	    true in this the generic case.
2612  *
2613  * The default case requires no protection so just to the register read.
2614  **/
2615 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2616 {
2617 	*locked = false;
2618 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2619 	return 0;
2620 }
2621 
2622 /**
2623  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2624  * @hw: pointer to hardware structure
2625  * @reg_val: value to write to AUTOC
2626  * @locked: bool to indicate whether the SW/FW lock was already taken by
2627  *	    previous read.
2628  **/
2629 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2630 {
2631 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2632 	return 0;
2633 }
2634 
2635 /**
2636  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2637  *  @hw: pointer to hardware structure
2638  *
2639  *  Stops the receive data path and waits for the HW to internally
2640  *  empty the Rx security block.
2641  **/
2642 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2643 {
2644 #define IXGBE_MAX_SECRX_POLL 40
2645 	int i;
2646 	int secrxreg;
2647 
2648 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2649 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2650 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2651 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2652 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2653 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2654 			break;
2655 		else
2656 			/* Use interrupt-safe sleep just in case */
2657 			udelay(1000);
2658 	}
2659 
2660 	/* For informational purposes only */
2661 	if (i >= IXGBE_MAX_SECRX_POLL)
2662 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2663 
2664 	return 0;
2665 
2666 }
2667 
2668 /**
2669  *  ixgbe_enable_rx_buff - Enables the receive data path
2670  *  @hw: pointer to hardware structure
2671  *
2672  *  Enables the receive data path
2673  **/
2674 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2675 {
2676 	int secrxreg;
2677 
2678 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2679 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2680 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2681 	IXGBE_WRITE_FLUSH(hw);
2682 
2683 	return 0;
2684 }
2685 
2686 /**
2687  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2688  *  @hw: pointer to hardware structure
2689  *  @regval: register value to write to RXCTRL
2690  *
2691  *  Enables the Rx DMA unit
2692  **/
2693 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2694 {
2695 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2696 
2697 	return 0;
2698 }
2699 
2700 /**
2701  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2702  *  @hw: pointer to hardware structure
2703  *  @index: led number to blink
2704  **/
2705 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2706 {
2707 	ixgbe_link_speed speed = 0;
2708 	bool link_up = false;
2709 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2710 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2711 	s32 ret_val = 0;
2712 	bool locked = false;
2713 
2714 	/*
2715 	 * Link must be up to auto-blink the LEDs;
2716 	 * Force it if link is down.
2717 	 */
2718 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2719 
2720 	if (!link_up) {
2721 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2722 		if (ret_val)
2723 			goto out;
2724 
2725 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2726 		autoc_reg |= IXGBE_AUTOC_FLU;
2727 
2728 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2729 		if (ret_val)
2730 			goto out;
2731 
2732 		IXGBE_WRITE_FLUSH(hw);
2733 
2734 		usleep_range(10000, 20000);
2735 	}
2736 
2737 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2738 	led_reg |= IXGBE_LED_BLINK(index);
2739 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2740 	IXGBE_WRITE_FLUSH(hw);
2741 
2742 out:
2743 	return ret_val;
2744 }
2745 
2746 /**
2747  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2748  *  @hw: pointer to hardware structure
2749  *  @index: led number to stop blinking
2750  **/
2751 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2752 {
2753 	u32 autoc_reg = 0;
2754 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2755 	s32 ret_val = 0;
2756 	bool locked = false;
2757 
2758 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2759 	if (ret_val)
2760 		goto out;
2761 
2762 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2763 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2764 
2765 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2766 	if (ret_val)
2767 		goto out;
2768 
2769 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2770 	led_reg &= ~IXGBE_LED_BLINK(index);
2771 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2772 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2773 	IXGBE_WRITE_FLUSH(hw);
2774 
2775 out:
2776 	return ret_val;
2777 }
2778 
2779 /**
2780  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2781  *  @hw: pointer to hardware structure
2782  *  @san_mac_offset: SAN MAC address offset
2783  *
2784  *  This function will read the EEPROM location for the SAN MAC address
2785  *  pointer, and returns the value at that location.  This is used in both
2786  *  get and set mac_addr routines.
2787  **/
2788 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2789 					u16 *san_mac_offset)
2790 {
2791 	s32 ret_val;
2792 
2793 	/*
2794 	 * First read the EEPROM pointer to see if the MAC addresses are
2795 	 * available.
2796 	 */
2797 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2798 				      san_mac_offset);
2799 	if (ret_val)
2800 		hw_err(hw, "eeprom read at offset %d failed\n",
2801 		       IXGBE_SAN_MAC_ADDR_PTR);
2802 
2803 	return ret_val;
2804 }
2805 
2806 /**
2807  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2808  *  @hw: pointer to hardware structure
2809  *  @san_mac_addr: SAN MAC address
2810  *
2811  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2812  *  per-port, so set_lan_id() must be called before reading the addresses.
2813  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2814  *  upon for non-SFP connections, so we must call it here.
2815  **/
2816 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2817 {
2818 	u16 san_mac_data, san_mac_offset;
2819 	u8 i;
2820 	s32 ret_val;
2821 
2822 	/*
2823 	 * First read the EEPROM pointer to see if the MAC addresses are
2824 	 * available.  If they're not, no point in calling set_lan_id() here.
2825 	 */
2826 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2827 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2828 
2829 		goto san_mac_addr_clr;
2830 
2831 	/* make sure we know which port we need to program */
2832 	hw->mac.ops.set_lan_id(hw);
2833 	/* apply the port offset to the address offset */
2834 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2835 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2836 	for (i = 0; i < 3; i++) {
2837 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2838 					      &san_mac_data);
2839 		if (ret_val) {
2840 			hw_err(hw, "eeprom read at offset %d failed\n",
2841 			       san_mac_offset);
2842 			goto san_mac_addr_clr;
2843 		}
2844 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2845 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2846 		san_mac_offset++;
2847 	}
2848 	return 0;
2849 
2850 san_mac_addr_clr:
2851 	/* No addresses available in this EEPROM.  It's not necessarily an
2852 	 * error though, so just wipe the local address and return.
2853 	 */
2854 	for (i = 0; i < 6; i++)
2855 		san_mac_addr[i] = 0xFF;
2856 	return ret_val;
2857 }
2858 
2859 /**
2860  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2861  *  @hw: pointer to hardware structure
2862  *
2863  *  Read PCIe configuration space, and get the MSI-X vector count from
2864  *  the capabilities table.
2865  **/
2866 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2867 {
2868 	u16 msix_count = 1;
2869 	u16 max_msix_count;
2870 	u16 pcie_offset;
2871 
2872 	switch (hw->mac.type) {
2873 	case ixgbe_mac_82598EB:
2874 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2875 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2876 		break;
2877 	case ixgbe_mac_82599EB:
2878 	case ixgbe_mac_X540:
2879 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2880 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2881 		break;
2882 	default:
2883 		return msix_count;
2884 	}
2885 
2886 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2887 	if (ixgbe_removed(hw->hw_addr))
2888 		msix_count = 0;
2889 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2890 
2891 	/* MSI-X count is zero-based in HW */
2892 	msix_count++;
2893 
2894 	if (msix_count > max_msix_count)
2895 		msix_count = max_msix_count;
2896 
2897 	return msix_count;
2898 }
2899 
2900 /**
2901  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2902  *  @hw: pointer to hardware struct
2903  *  @rar: receive address register index to disassociate
2904  *  @vmdq: VMDq pool index to remove from the rar
2905  **/
2906 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2907 {
2908 	u32 mpsar_lo, mpsar_hi;
2909 	u32 rar_entries = hw->mac.num_rar_entries;
2910 
2911 	/* Make sure we are using a valid rar index range */
2912 	if (rar >= rar_entries) {
2913 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2914 		return IXGBE_ERR_INVALID_ARGUMENT;
2915 	}
2916 
2917 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2918 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2919 
2920 	if (ixgbe_removed(hw->hw_addr))
2921 		goto done;
2922 
2923 	if (!mpsar_lo && !mpsar_hi)
2924 		goto done;
2925 
2926 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2927 		if (mpsar_lo) {
2928 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2929 			mpsar_lo = 0;
2930 		}
2931 		if (mpsar_hi) {
2932 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2933 			mpsar_hi = 0;
2934 		}
2935 	} else if (vmdq < 32) {
2936 		mpsar_lo &= ~(1 << vmdq);
2937 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2938 	} else {
2939 		mpsar_hi &= ~(1 << (vmdq - 32));
2940 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2941 	}
2942 
2943 	/* was that the last pool using this rar? */
2944 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2945 		hw->mac.ops.clear_rar(hw, rar);
2946 done:
2947 	return 0;
2948 }
2949 
2950 /**
2951  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2952  *  @hw: pointer to hardware struct
2953  *  @rar: receive address register index to associate with a VMDq index
2954  *  @vmdq: VMDq pool index
2955  **/
2956 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2957 {
2958 	u32 mpsar;
2959 	u32 rar_entries = hw->mac.num_rar_entries;
2960 
2961 	/* Make sure we are using a valid rar index range */
2962 	if (rar >= rar_entries) {
2963 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2964 		return IXGBE_ERR_INVALID_ARGUMENT;
2965 	}
2966 
2967 	if (vmdq < 32) {
2968 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2969 		mpsar |= 1 << vmdq;
2970 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2971 	} else {
2972 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2973 		mpsar |= 1 << (vmdq - 32);
2974 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2975 	}
2976 	return 0;
2977 }
2978 
2979 /**
2980  *  This function should only be involved in the IOV mode.
2981  *  In IOV mode, Default pool is next pool after the number of
2982  *  VFs advertized and not 0.
2983  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2984  *
2985  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2986  *  @hw: pointer to hardware struct
2987  *  @vmdq: VMDq pool index
2988  **/
2989 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2990 {
2991 	u32 rar = hw->mac.san_mac_rar_index;
2992 
2993 	if (vmdq < 32) {
2994 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2995 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2996 	} else {
2997 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2998 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2999 	}
3000 
3001 	return 0;
3002 }
3003 
3004 /**
3005  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3006  *  @hw: pointer to hardware structure
3007  **/
3008 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3009 {
3010 	int i;
3011 
3012 	for (i = 0; i < 128; i++)
3013 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3014 
3015 	return 0;
3016 }
3017 
3018 /**
3019  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3020  *  @hw: pointer to hardware structure
3021  *  @vlan: VLAN id to write to VLAN filter
3022  *
3023  *  return the VLVF index where this VLAN id should be placed
3024  *
3025  **/
3026 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3027 {
3028 	u32 bits = 0;
3029 	u32 first_empty_slot = 0;
3030 	s32 regindex;
3031 
3032 	/* short cut the special case */
3033 	if (vlan == 0)
3034 		return 0;
3035 
3036 	/*
3037 	  * Search for the vlan id in the VLVF entries. Save off the first empty
3038 	  * slot found along the way
3039 	  */
3040 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3041 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3042 		if (!bits && !(first_empty_slot))
3043 			first_empty_slot = regindex;
3044 		else if ((bits & 0x0FFF) == vlan)
3045 			break;
3046 	}
3047 
3048 	/*
3049 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3050 	  * in the VLVF. Else use the first empty VLVF register for this
3051 	  * vlan id.
3052 	  */
3053 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3054 		if (first_empty_slot)
3055 			regindex = first_empty_slot;
3056 		else {
3057 			hw_dbg(hw, "No space in VLVF.\n");
3058 			regindex = IXGBE_ERR_NO_SPACE;
3059 		}
3060 	}
3061 
3062 	return regindex;
3063 }
3064 
3065 /**
3066  *  ixgbe_set_vfta_generic - Set VLAN filter table
3067  *  @hw: pointer to hardware structure
3068  *  @vlan: VLAN id to write to VLAN filter
3069  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3070  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3071  *
3072  *  Turn on/off specified VLAN in the VLAN filter table.
3073  **/
3074 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3075 			   bool vlan_on)
3076 {
3077 	s32 regindex;
3078 	u32 bitindex;
3079 	u32 vfta;
3080 	u32 bits;
3081 	u32 vt;
3082 	u32 targetbit;
3083 	bool vfta_changed = false;
3084 
3085 	if (vlan > 4095)
3086 		return IXGBE_ERR_PARAM;
3087 
3088 	/*
3089 	 * this is a 2 part operation - first the VFTA, then the
3090 	 * VLVF and VLVFB if VT Mode is set
3091 	 * We don't write the VFTA until we know the VLVF part succeeded.
3092 	 */
3093 
3094 	/* Part 1
3095 	 * The VFTA is a bitstring made up of 128 32-bit registers
3096 	 * that enable the particular VLAN id, much like the MTA:
3097 	 *    bits[11-5]: which register
3098 	 *    bits[4-0]:  which bit in the register
3099 	 */
3100 	regindex = (vlan >> 5) & 0x7F;
3101 	bitindex = vlan & 0x1F;
3102 	targetbit = (1 << bitindex);
3103 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3104 
3105 	if (vlan_on) {
3106 		if (!(vfta & targetbit)) {
3107 			vfta |= targetbit;
3108 			vfta_changed = true;
3109 		}
3110 	} else {
3111 		if ((vfta & targetbit)) {
3112 			vfta &= ~targetbit;
3113 			vfta_changed = true;
3114 		}
3115 	}
3116 
3117 	/* Part 2
3118 	 * If VT Mode is set
3119 	 *   Either vlan_on
3120 	 *     make sure the vlan is in VLVF
3121 	 *     set the vind bit in the matching VLVFB
3122 	 *   Or !vlan_on
3123 	 *     clear the pool bit and possibly the vind
3124 	 */
3125 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3126 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3127 		s32 vlvf_index;
3128 
3129 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3130 		if (vlvf_index < 0)
3131 			return vlvf_index;
3132 
3133 		if (vlan_on) {
3134 			/* set the pool bit */
3135 			if (vind < 32) {
3136 				bits = IXGBE_READ_REG(hw,
3137 						IXGBE_VLVFB(vlvf_index*2));
3138 				bits |= (1 << vind);
3139 				IXGBE_WRITE_REG(hw,
3140 						IXGBE_VLVFB(vlvf_index*2),
3141 						bits);
3142 			} else {
3143 				bits = IXGBE_READ_REG(hw,
3144 						IXGBE_VLVFB((vlvf_index*2)+1));
3145 				bits |= (1 << (vind-32));
3146 				IXGBE_WRITE_REG(hw,
3147 						IXGBE_VLVFB((vlvf_index*2)+1),
3148 						bits);
3149 			}
3150 		} else {
3151 			/* clear the pool bit */
3152 			if (vind < 32) {
3153 				bits = IXGBE_READ_REG(hw,
3154 						IXGBE_VLVFB(vlvf_index*2));
3155 				bits &= ~(1 << vind);
3156 				IXGBE_WRITE_REG(hw,
3157 						IXGBE_VLVFB(vlvf_index*2),
3158 						bits);
3159 				bits |= IXGBE_READ_REG(hw,
3160 						IXGBE_VLVFB((vlvf_index*2)+1));
3161 			} else {
3162 				bits = IXGBE_READ_REG(hw,
3163 						IXGBE_VLVFB((vlvf_index*2)+1));
3164 				bits &= ~(1 << (vind-32));
3165 				IXGBE_WRITE_REG(hw,
3166 						IXGBE_VLVFB((vlvf_index*2)+1),
3167 						bits);
3168 				bits |= IXGBE_READ_REG(hw,
3169 						IXGBE_VLVFB(vlvf_index*2));
3170 			}
3171 		}
3172 
3173 		/*
3174 		 * If there are still bits set in the VLVFB registers
3175 		 * for the VLAN ID indicated we need to see if the
3176 		 * caller is requesting that we clear the VFTA entry bit.
3177 		 * If the caller has requested that we clear the VFTA
3178 		 * entry bit but there are still pools/VFs using this VLAN
3179 		 * ID entry then ignore the request.  We're not worried
3180 		 * about the case where we're turning the VFTA VLAN ID
3181 		 * entry bit on, only when requested to turn it off as
3182 		 * there may be multiple pools and/or VFs using the
3183 		 * VLAN ID entry.  In that case we cannot clear the
3184 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3185 		 * been cleared.  This will be indicated by "bits" being
3186 		 * zero.
3187 		 */
3188 		if (bits) {
3189 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3190 					(IXGBE_VLVF_VIEN | vlan));
3191 			if (!vlan_on) {
3192 				/* someone wants to clear the vfta entry
3193 				 * but some pools/VFs are still using it.
3194 				 * Ignore it. */
3195 				vfta_changed = false;
3196 			}
3197 		} else {
3198 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3199 		}
3200 	}
3201 
3202 	if (vfta_changed)
3203 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3204 
3205 	return 0;
3206 }
3207 
3208 /**
3209  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3210  *  @hw: pointer to hardware structure
3211  *
3212  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3213  **/
3214 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3215 {
3216 	u32 offset;
3217 
3218 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3219 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3220 
3221 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3222 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3223 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3224 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3225 	}
3226 
3227 	return 0;
3228 }
3229 
3230 /**
3231  *  ixgbe_check_mac_link_generic - Determine link and speed status
3232  *  @hw: pointer to hardware structure
3233  *  @speed: pointer to link speed
3234  *  @link_up: true when link is up
3235  *  @link_up_wait_to_complete: bool used to wait for link up or not
3236  *
3237  *  Reads the links register to determine if link is up and the current speed
3238  **/
3239 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3240 				 bool *link_up, bool link_up_wait_to_complete)
3241 {
3242 	u32 links_reg, links_orig;
3243 	u32 i;
3244 
3245 	/* clear the old state */
3246 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3247 
3248 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3249 
3250 	if (links_orig != links_reg) {
3251 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3252 		       links_orig, links_reg);
3253 	}
3254 
3255 	if (link_up_wait_to_complete) {
3256 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3257 			if (links_reg & IXGBE_LINKS_UP) {
3258 				*link_up = true;
3259 				break;
3260 			} else {
3261 				*link_up = false;
3262 			}
3263 			msleep(100);
3264 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3265 		}
3266 	} else {
3267 		if (links_reg & IXGBE_LINKS_UP)
3268 			*link_up = true;
3269 		else
3270 			*link_up = false;
3271 	}
3272 
3273 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3274 	    IXGBE_LINKS_SPEED_10G_82599)
3275 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3276 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3277 		 IXGBE_LINKS_SPEED_1G_82599)
3278 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3279 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3280 		 IXGBE_LINKS_SPEED_100_82599)
3281 		*speed = IXGBE_LINK_SPEED_100_FULL;
3282 	else
3283 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3284 
3285 	return 0;
3286 }
3287 
3288 /**
3289  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3290  *  the EEPROM
3291  *  @hw: pointer to hardware structure
3292  *  @wwnn_prefix: the alternative WWNN prefix
3293  *  @wwpn_prefix: the alternative WWPN prefix
3294  *
3295  *  This function will read the EEPROM from the alternative SAN MAC address
3296  *  block to check the support for the alternative WWNN/WWPN prefix support.
3297  **/
3298 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3299 					u16 *wwpn_prefix)
3300 {
3301 	u16 offset, caps;
3302 	u16 alt_san_mac_blk_offset;
3303 
3304 	/* clear output first */
3305 	*wwnn_prefix = 0xFFFF;
3306 	*wwpn_prefix = 0xFFFF;
3307 
3308 	/* check if alternative SAN MAC is supported */
3309 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3310 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3311 		goto wwn_prefix_err;
3312 
3313 	if ((alt_san_mac_blk_offset == 0) ||
3314 	    (alt_san_mac_blk_offset == 0xFFFF))
3315 		goto wwn_prefix_out;
3316 
3317 	/* check capability in alternative san mac address block */
3318 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3319 	if (hw->eeprom.ops.read(hw, offset, &caps))
3320 		goto wwn_prefix_err;
3321 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3322 		goto wwn_prefix_out;
3323 
3324 	/* get the corresponding prefix for WWNN/WWPN */
3325 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3326 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3327 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3328 
3329 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3330 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3331 		goto wwn_prefix_err;
3332 
3333 wwn_prefix_out:
3334 	return 0;
3335 
3336 wwn_prefix_err:
3337 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3338 	return 0;
3339 }
3340 
3341 /**
3342  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3343  *  @hw: pointer to hardware structure
3344  *  @enable: enable or disable switch for anti-spoofing
3345  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3346  *
3347  **/
3348 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3349 {
3350 	int j;
3351 	int pf_target_reg = pf >> 3;
3352 	int pf_target_shift = pf % 8;
3353 	u32 pfvfspoof = 0;
3354 
3355 	if (hw->mac.type == ixgbe_mac_82598EB)
3356 		return;
3357 
3358 	if (enable)
3359 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3360 
3361 	/*
3362 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3363 	 * MAC anti-spoof enables in each register array element.
3364 	 */
3365 	for (j = 0; j < pf_target_reg; j++)
3366 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3367 
3368 	/*
3369 	 * The PF should be allowed to spoof so that it can support
3370 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3371 	 */
3372 	pfvfspoof &= (1 << pf_target_shift) - 1;
3373 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3374 
3375 	/*
3376 	 * Remaining pools belong to the PF so they do not need to have
3377 	 * anti-spoofing enabled.
3378 	 */
3379 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3380 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3381 }
3382 
3383 /**
3384  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3385  *  @hw: pointer to hardware structure
3386  *  @enable: enable or disable switch for VLAN anti-spoofing
3387  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3388  *
3389  **/
3390 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3391 {
3392 	int vf_target_reg = vf >> 3;
3393 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3394 	u32 pfvfspoof;
3395 
3396 	if (hw->mac.type == ixgbe_mac_82598EB)
3397 		return;
3398 
3399 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3400 	if (enable)
3401 		pfvfspoof |= (1 << vf_target_shift);
3402 	else
3403 		pfvfspoof &= ~(1 << vf_target_shift);
3404 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3405 }
3406 
3407 /**
3408  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3409  *  @hw: pointer to hardware structure
3410  *  @device_caps: the EEPROM word with the extra device capabilities
3411  *
3412  *  This function will read the EEPROM location for the device capabilities,
3413  *  and return the word through device_caps.
3414  **/
3415 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3416 {
3417 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3418 
3419 	return 0;
3420 }
3421 
3422 /**
3423  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3424  * @hw: pointer to hardware structure
3425  * @num_pb: number of packet buffers to allocate
3426  * @headroom: reserve n KB of headroom
3427  * @strategy: packet buffer allocation strategy
3428  **/
3429 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3430 			     int num_pb,
3431 			     u32 headroom,
3432 			     int strategy)
3433 {
3434 	u32 pbsize = hw->mac.rx_pb_size;
3435 	int i = 0;
3436 	u32 rxpktsize, txpktsize, txpbthresh;
3437 
3438 	/* Reserve headroom */
3439 	pbsize -= headroom;
3440 
3441 	if (!num_pb)
3442 		num_pb = 1;
3443 
3444 	/* Divide remaining packet buffer space amongst the number
3445 	 * of packet buffers requested using supplied strategy.
3446 	 */
3447 	switch (strategy) {
3448 	case (PBA_STRATEGY_WEIGHTED):
3449 		/* pba_80_48 strategy weight first half of packet buffer with
3450 		 * 5/8 of the packet buffer space.
3451 		 */
3452 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3453 		pbsize -= rxpktsize * (num_pb / 2);
3454 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3455 		for (; i < (num_pb / 2); i++)
3456 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3457 		/* Fall through to configure remaining packet buffers */
3458 	case (PBA_STRATEGY_EQUAL):
3459 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3460 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3461 		for (; i < num_pb; i++)
3462 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3463 		break;
3464 	default:
3465 		break;
3466 	}
3467 
3468 	/*
3469 	 * Setup Tx packet buffer and threshold equally for all TCs
3470 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3471 	 * 10 since the largest packet we support is just over 9K.
3472 	 */
3473 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3474 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3475 	for (i = 0; i < num_pb; i++) {
3476 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3477 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3478 	}
3479 
3480 	/* Clear unused TCs, if any, to zero buffer size*/
3481 	for (; i < IXGBE_MAX_PB; i++) {
3482 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3483 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3484 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3485 	}
3486 }
3487 
3488 /**
3489  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3490  *  @buffer: pointer to EEPROM
3491  *  @length: size of EEPROM to calculate a checksum for
3492  *
3493  *  Calculates the checksum for some buffer on a specified length.  The
3494  *  checksum calculated is returned.
3495  **/
3496 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3497 {
3498 	u32 i;
3499 	u8 sum = 0;
3500 
3501 	if (!buffer)
3502 		return 0;
3503 
3504 	for (i = 0; i < length; i++)
3505 		sum += buffer[i];
3506 
3507 	return (u8) (0 - sum);
3508 }
3509 
3510 /**
3511  *  ixgbe_host_interface_command - Issue command to manageability block
3512  *  @hw: pointer to the HW structure
3513  *  @buffer: contains the command to write and where the return status will
3514  *           be placed
3515  *  @length: length of buffer, must be multiple of 4 bytes
3516  *
3517  *  Communicates with the manageability block.  On success return 0
3518  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3519  **/
3520 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3521 					u32 length)
3522 {
3523 	u32 hicr, i, bi;
3524 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3525 	u8 buf_len, dword_len;
3526 
3527 	s32 ret_val = 0;
3528 
3529 	if (length == 0 || length & 0x3 ||
3530 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3531 		hw_dbg(hw, "Buffer length failure.\n");
3532 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3533 		goto out;
3534 	}
3535 
3536 	/* Check that the host interface is enabled. */
3537 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3538 	if ((hicr & IXGBE_HICR_EN) == 0) {
3539 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3540 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3541 		goto out;
3542 	}
3543 
3544 	/* Calculate length in DWORDs */
3545 	dword_len = length >> 2;
3546 
3547 	/*
3548 	 * The device driver writes the relevant command block
3549 	 * into the ram area.
3550 	 */
3551 	for (i = 0; i < dword_len; i++)
3552 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3553 				      i, cpu_to_le32(buffer[i]));
3554 
3555 	/* Setting this bit tells the ARC that a new command is pending. */
3556 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3557 
3558 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3559 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3560 		if (!(hicr & IXGBE_HICR_C))
3561 			break;
3562 		usleep_range(1000, 2000);
3563 	}
3564 
3565 	/* Check command successful completion. */
3566 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3567 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3568 		hw_dbg(hw, "Command has failed with no status valid.\n");
3569 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3570 		goto out;
3571 	}
3572 
3573 	/* Calculate length in DWORDs */
3574 	dword_len = hdr_size >> 2;
3575 
3576 	/* first pull in the header so we know the buffer length */
3577 	for (bi = 0; bi < dword_len; bi++) {
3578 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3579 		le32_to_cpus(&buffer[bi]);
3580 	}
3581 
3582 	/* If there is any thing in data position pull it in */
3583 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3584 	if (buf_len == 0)
3585 		goto out;
3586 
3587 	if (length < (buf_len + hdr_size)) {
3588 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3589 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3590 		goto out;
3591 	}
3592 
3593 	/* Calculate length in DWORDs, add 3 for odd lengths */
3594 	dword_len = (buf_len + 3) >> 2;
3595 
3596 	/* Pull in the rest of the buffer (bi is where we left off)*/
3597 	for (; bi <= dword_len; bi++) {
3598 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3599 		le32_to_cpus(&buffer[bi]);
3600 	}
3601 
3602 out:
3603 	return ret_val;
3604 }
3605 
3606 /**
3607  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3608  *  @hw: pointer to the HW structure
3609  *  @maj: driver version major number
3610  *  @min: driver version minor number
3611  *  @build: driver version build number
3612  *  @sub: driver version sub build number
3613  *
3614  *  Sends driver version number to firmware through the manageability
3615  *  block.  On success return 0
3616  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3617  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3618  **/
3619 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3620 				 u8 build, u8 sub)
3621 {
3622 	struct ixgbe_hic_drv_info fw_cmd;
3623 	int i;
3624 	s32 ret_val = 0;
3625 
3626 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3627 		ret_val = IXGBE_ERR_SWFW_SYNC;
3628 		goto out;
3629 	}
3630 
3631 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3632 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3633 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3634 	fw_cmd.port_num = (u8)hw->bus.func;
3635 	fw_cmd.ver_maj = maj;
3636 	fw_cmd.ver_min = min;
3637 	fw_cmd.ver_build = build;
3638 	fw_cmd.ver_sub = sub;
3639 	fw_cmd.hdr.checksum = 0;
3640 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3641 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3642 	fw_cmd.pad = 0;
3643 	fw_cmd.pad2 = 0;
3644 
3645 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3646 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3647 						       sizeof(fw_cmd));
3648 		if (ret_val != 0)
3649 			continue;
3650 
3651 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3652 		    FW_CEM_RESP_STATUS_SUCCESS)
3653 			ret_val = 0;
3654 		else
3655 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3656 
3657 		break;
3658 	}
3659 
3660 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3661 out:
3662 	return ret_val;
3663 }
3664 
3665 /**
3666  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3667  * @hw: pointer to the hardware structure
3668  *
3669  * The 82599 and x540 MACs can experience issues if TX work is still pending
3670  * when a reset occurs.  This function prevents this by flushing the PCIe
3671  * buffers on the system.
3672  **/
3673 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3674 {
3675 	u32 gcr_ext, hlreg0;
3676 
3677 	/*
3678 	 * If double reset is not requested then all transactions should
3679 	 * already be clear and as such there is no work to do
3680 	 */
3681 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3682 		return;
3683 
3684 	/*
3685 	 * Set loopback enable to prevent any transmits from being sent
3686 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3687 	 * has already been cleared.
3688 	 */
3689 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3690 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3691 
3692 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3693 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3694 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3695 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3696 
3697 	/* Flush all writes and allow 20usec for all transactions to clear */
3698 	IXGBE_WRITE_FLUSH(hw);
3699 	udelay(20);
3700 
3701 	/* restore previous register values */
3702 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3703 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3704 }
3705 
3706 static const u8 ixgbe_emc_temp_data[4] = {
3707 	IXGBE_EMC_INTERNAL_DATA,
3708 	IXGBE_EMC_DIODE1_DATA,
3709 	IXGBE_EMC_DIODE2_DATA,
3710 	IXGBE_EMC_DIODE3_DATA
3711 };
3712 static const u8 ixgbe_emc_therm_limit[4] = {
3713 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3714 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3715 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3716 	IXGBE_EMC_DIODE3_THERM_LIMIT
3717 };
3718 
3719 /**
3720  *  ixgbe_get_ets_data - Extracts the ETS bit data
3721  *  @hw: pointer to hardware structure
3722  *  @ets_cfg: extected ETS data
3723  *  @ets_offset: offset of ETS data
3724  *
3725  *  Returns error code.
3726  **/
3727 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3728 			      u16 *ets_offset)
3729 {
3730 	s32 status = 0;
3731 
3732 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3733 	if (status)
3734 		goto out;
3735 
3736 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3737 		status = IXGBE_NOT_IMPLEMENTED;
3738 		goto out;
3739 	}
3740 
3741 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3742 	if (status)
3743 		goto out;
3744 
3745 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3746 		status = IXGBE_NOT_IMPLEMENTED;
3747 		goto out;
3748 	}
3749 
3750 out:
3751 	return status;
3752 }
3753 
3754 /**
3755  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3756  *  @hw: pointer to hardware structure
3757  *
3758  *  Returns the thermal sensor data structure
3759  **/
3760 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3761 {
3762 	s32 status = 0;
3763 	u16 ets_offset;
3764 	u16 ets_cfg;
3765 	u16 ets_sensor;
3766 	u8  num_sensors;
3767 	u8  i;
3768 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3769 
3770 	/* Only support thermal sensors attached to physical port 0 */
3771 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3772 		status = IXGBE_NOT_IMPLEMENTED;
3773 		goto out;
3774 	}
3775 
3776 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3777 	if (status)
3778 		goto out;
3779 
3780 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3781 	if (num_sensors > IXGBE_MAX_SENSORS)
3782 		num_sensors = IXGBE_MAX_SENSORS;
3783 
3784 	for (i = 0; i < num_sensors; i++) {
3785 		u8  sensor_index;
3786 		u8  sensor_location;
3787 
3788 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3789 					     &ets_sensor);
3790 		if (status)
3791 			goto out;
3792 
3793 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3794 				IXGBE_ETS_DATA_INDEX_SHIFT);
3795 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3796 				   IXGBE_ETS_DATA_LOC_SHIFT);
3797 
3798 		if (sensor_location != 0) {
3799 			status = hw->phy.ops.read_i2c_byte(hw,
3800 					ixgbe_emc_temp_data[sensor_index],
3801 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3802 					&data->sensor[i].temp);
3803 			if (status)
3804 				goto out;
3805 		}
3806 	}
3807 out:
3808 	return status;
3809 }
3810 
3811 /**
3812  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3813  * @hw: pointer to hardware structure
3814  *
3815  * Inits the thermal sensor thresholds according to the NVM map
3816  * and save off the threshold and location values into mac.thermal_sensor_data
3817  **/
3818 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3819 {
3820 	s32 status = 0;
3821 	u16 ets_offset;
3822 	u16 ets_cfg;
3823 	u16 ets_sensor;
3824 	u8  low_thresh_delta;
3825 	u8  num_sensors;
3826 	u8  therm_limit;
3827 	u8  i;
3828 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3829 
3830 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3831 
3832 	/* Only support thermal sensors attached to physical port 0 */
3833 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3834 		status = IXGBE_NOT_IMPLEMENTED;
3835 		goto out;
3836 	}
3837 
3838 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3839 	if (status)
3840 		goto out;
3841 
3842 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3843 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3844 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3845 	if (num_sensors > IXGBE_MAX_SENSORS)
3846 		num_sensors = IXGBE_MAX_SENSORS;
3847 
3848 	for (i = 0; i < num_sensors; i++) {
3849 		u8  sensor_index;
3850 		u8  sensor_location;
3851 
3852 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3853 			hw_err(hw, "eeprom read at offset %d failed\n",
3854 			       ets_offset + 1 + i);
3855 			continue;
3856 		}
3857 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3858 				IXGBE_ETS_DATA_INDEX_SHIFT);
3859 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3860 				   IXGBE_ETS_DATA_LOC_SHIFT);
3861 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3862 
3863 		hw->phy.ops.write_i2c_byte(hw,
3864 			ixgbe_emc_therm_limit[sensor_index],
3865 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3866 
3867 		if (sensor_location == 0)
3868 			continue;
3869 
3870 		data->sensor[i].location = sensor_location;
3871 		data->sensor[i].caution_thresh = therm_limit;
3872 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3873 	}
3874 out:
3875 	return status;
3876 }
3877 
3878