1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/sched.h>
7 #include <linux/netdevice.h>
8 
9 #include "ixgbe.h"
10 #include "ixgbe_common.h"
11 #include "ixgbe_phy.h"
12 
13 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19 					u16 count);
20 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24 
25 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28 					     u16 words, u16 *data);
29 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30 					     u16 words, u16 *data);
31 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32 						 u16 offset);
33 static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
34 
35 /* Base table for registers values that change by MAC */
36 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37 	IXGBE_MVALS_INIT(8259X)
38 };
39 
40 /**
41  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42  *  control
43  *  @hw: pointer to hardware structure
44  *
45  *  There are several phys that do not support autoneg flow control. This
46  *  function check the device id to see if the associated phy supports
47  *  autoneg flow control.
48  **/
49 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50 {
51 	bool supported = false;
52 	ixgbe_link_speed speed;
53 	bool link_up;
54 
55 	switch (hw->phy.media_type) {
56 	case ixgbe_media_type_fiber:
57 		/* flow control autoneg black list */
58 		switch (hw->device_id) {
59 		case IXGBE_DEV_ID_X550EM_A_SFP:
60 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
61 			supported = false;
62 			break;
63 		default:
64 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
65 			/* if link is down, assume supported */
66 			if (link_up)
67 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
68 			else
69 				supported = true;
70 		}
71 
72 		break;
73 	case ixgbe_media_type_backplane:
74 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
75 			supported = false;
76 		else
77 			supported = true;
78 		break;
79 	case ixgbe_media_type_copper:
80 		/* only some copper devices support flow control autoneg */
81 		switch (hw->device_id) {
82 		case IXGBE_DEV_ID_82599_T3_LOM:
83 		case IXGBE_DEV_ID_X540T:
84 		case IXGBE_DEV_ID_X540T1:
85 		case IXGBE_DEV_ID_X550T:
86 		case IXGBE_DEV_ID_X550T1:
87 		case IXGBE_DEV_ID_X550EM_X_10G_T:
88 		case IXGBE_DEV_ID_X550EM_A_10G_T:
89 		case IXGBE_DEV_ID_X550EM_A_1G_T:
90 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
91 			supported = true;
92 			break;
93 		default:
94 			break;
95 		}
96 		break;
97 	default:
98 		break;
99 	}
100 
101 	if (!supported)
102 		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
103 		       hw->device_id);
104 
105 	return supported;
106 }
107 
108 /**
109  *  ixgbe_setup_fc_generic - Set up flow control
110  *  @hw: pointer to hardware structure
111  *
112  *  Called at init time to set up flow control.
113  **/
114 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
115 {
116 	s32 ret_val = 0;
117 	u32 reg = 0, reg_bp = 0;
118 	u16 reg_cu = 0;
119 	bool locked = false;
120 
121 	/*
122 	 * Validate the requested mode.  Strict IEEE mode does not allow
123 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
124 	 */
125 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
126 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
127 		return -EINVAL;
128 	}
129 
130 	/*
131 	 * 10gig parts do not have a word in the EEPROM to determine the
132 	 * default flow control setting, so we explicitly set it to full.
133 	 */
134 	if (hw->fc.requested_mode == ixgbe_fc_default)
135 		hw->fc.requested_mode = ixgbe_fc_full;
136 
137 	/*
138 	 * Set up the 1G and 10G flow control advertisement registers so the
139 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
140 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
141 	 */
142 	switch (hw->phy.media_type) {
143 	case ixgbe_media_type_backplane:
144 		/* some MAC's need RMW protection on AUTOC */
145 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
146 		if (ret_val)
147 			return ret_val;
148 
149 		fallthrough; /* only backplane uses autoc */
150 	case ixgbe_media_type_fiber:
151 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
152 
153 		break;
154 	case ixgbe_media_type_copper:
155 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
156 					MDIO_MMD_AN, &reg_cu);
157 		break;
158 	default:
159 		break;
160 	}
161 
162 	/*
163 	 * The possible values of fc.requested_mode are:
164 	 * 0: Flow control is completely disabled
165 	 * 1: Rx flow control is enabled (we can receive pause frames,
166 	 *    but not send pause frames).
167 	 * 2: Tx flow control is enabled (we can send pause frames but
168 	 *    we do not support receiving pause frames).
169 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
170 	 * other: Invalid.
171 	 */
172 	switch (hw->fc.requested_mode) {
173 	case ixgbe_fc_none:
174 		/* Flow control completely disabled by software override. */
175 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
176 		if (hw->phy.media_type == ixgbe_media_type_backplane)
177 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
178 				    IXGBE_AUTOC_ASM_PAUSE);
179 		else if (hw->phy.media_type == ixgbe_media_type_copper)
180 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
181 		break;
182 	case ixgbe_fc_tx_pause:
183 		/*
184 		 * Tx Flow control is enabled, and Rx Flow control is
185 		 * disabled by software override.
186 		 */
187 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
188 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
189 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
190 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
191 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
192 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
193 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
194 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
195 		}
196 		break;
197 	case ixgbe_fc_rx_pause:
198 		/*
199 		 * Rx Flow control is enabled and Tx Flow control is
200 		 * disabled by software override. Since there really
201 		 * isn't a way to advertise that we are capable of RX
202 		 * Pause ONLY, we will advertise that we support both
203 		 * symmetric and asymmetric Rx PAUSE, as such we fall
204 		 * through to the fc_full statement.  Later, we will
205 		 * disable the adapter's ability to send PAUSE frames.
206 		 */
207 	case ixgbe_fc_full:
208 		/* Flow control (both Rx and Tx) is enabled by SW override. */
209 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
210 		if (hw->phy.media_type == ixgbe_media_type_backplane)
211 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
212 				  IXGBE_AUTOC_ASM_PAUSE;
213 		else if (hw->phy.media_type == ixgbe_media_type_copper)
214 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
215 		break;
216 	default:
217 		hw_dbg(hw, "Flow control param set incorrectly\n");
218 		return -EIO;
219 	}
220 
221 	if (hw->mac.type != ixgbe_mac_X540) {
222 		/*
223 		 * Enable auto-negotiation between the MAC & PHY;
224 		 * the MAC will advertise clause 37 flow control.
225 		 */
226 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
227 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
228 
229 		/* Disable AN timeout */
230 		if (hw->fc.strict_ieee)
231 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
232 
233 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
234 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
235 	}
236 
237 	/*
238 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
239 	 * and copper. There is no need to set the PCS1GCTL register.
240 	 *
241 	 */
242 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
243 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
244 		 * LESM is on, likewise reset_pipeline requries the lock as
245 		 * it also writes AUTOC.
246 		 */
247 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
248 		if (ret_val)
249 			return ret_val;
250 
251 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
252 		   ixgbe_device_supports_autoneg_fc(hw)) {
253 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
254 				      MDIO_MMD_AN, reg_cu);
255 	}
256 
257 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
258 	return ret_val;
259 }
260 
261 /**
262  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263  *  @hw: pointer to hardware structure
264  *
265  *  Starts the hardware by filling the bus info structure and media type, clears
266  *  all on chip counters, initializes receive address registers, multicast
267  *  table, VLAN filter table, calls routine to set up link and flow control
268  *  settings, and leaves transmit and receive units disabled and uninitialized
269  **/
270 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
271 {
272 	s32 ret_val;
273 	u32 ctrl_ext;
274 	u16 device_caps;
275 
276 	/* Set the media type */
277 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
278 
279 	/* Identify the PHY */
280 	hw->phy.ops.identify(hw);
281 
282 	/* Clear the VLAN filter table */
283 	hw->mac.ops.clear_vfta(hw);
284 
285 	/* Clear statistics registers */
286 	hw->mac.ops.clear_hw_cntrs(hw);
287 
288 	/* Set No Snoop Disable */
289 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
290 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
291 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
292 	IXGBE_WRITE_FLUSH(hw);
293 
294 	/* Setup flow control if method for doing so */
295 	if (hw->mac.ops.setup_fc) {
296 		ret_val = hw->mac.ops.setup_fc(hw);
297 		if (ret_val)
298 			return ret_val;
299 	}
300 
301 	/* Cashe bit indicating need for crosstalk fix */
302 	switch (hw->mac.type) {
303 	case ixgbe_mac_82599EB:
304 	case ixgbe_mac_X550EM_x:
305 	case ixgbe_mac_x550em_a:
306 		hw->mac.ops.get_device_caps(hw, &device_caps);
307 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
308 			hw->need_crosstalk_fix = false;
309 		else
310 			hw->need_crosstalk_fix = true;
311 		break;
312 	default:
313 		hw->need_crosstalk_fix = false;
314 		break;
315 	}
316 
317 	/* Clear adapter stopped flag */
318 	hw->adapter_stopped = false;
319 
320 	return 0;
321 }
322 
323 /**
324  *  ixgbe_start_hw_gen2 - Init sequence for common device family
325  *  @hw: pointer to hw structure
326  *
327  * Performs the init sequence common to the second generation
328  * of 10 GbE devices.
329  * Devices in the second generation:
330  *     82599
331  *     X540
332  **/
333 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
334 {
335 	u32 i;
336 
337 	/* Clear the rate limiters */
338 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
339 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
340 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
341 	}
342 	IXGBE_WRITE_FLUSH(hw);
343 
344 	return 0;
345 }
346 
347 /**
348  *  ixgbe_init_hw_generic - Generic hardware initialization
349  *  @hw: pointer to hardware structure
350  *
351  *  Initialize the hardware by resetting the hardware, filling the bus info
352  *  structure and media type, clears all on chip counters, initializes receive
353  *  address registers, multicast table, VLAN filter table, calls routine to set
354  *  up link and flow control settings, and leaves transmit and receive units
355  *  disabled and uninitialized
356  **/
357 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
358 {
359 	s32 status;
360 
361 	/* Reset the hardware */
362 	status = hw->mac.ops.reset_hw(hw);
363 
364 	if (status == 0) {
365 		/* Start the HW */
366 		status = hw->mac.ops.start_hw(hw);
367 	}
368 
369 	/* Initialize the LED link active for LED blink support */
370 	if (hw->mac.ops.init_led_link_act)
371 		hw->mac.ops.init_led_link_act(hw);
372 
373 	return status;
374 }
375 
376 /**
377  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378  *  @hw: pointer to hardware structure
379  *
380  *  Clears all hardware statistics counters by reading them from the hardware
381  *  Statistics counters are clear on read.
382  **/
383 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
384 {
385 	u16 i = 0;
386 
387 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
388 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
389 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
390 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
391 	for (i = 0; i < 8; i++)
392 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
393 
394 	IXGBE_READ_REG(hw, IXGBE_MLFC);
395 	IXGBE_READ_REG(hw, IXGBE_MRFC);
396 	IXGBE_READ_REG(hw, IXGBE_RLEC);
397 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
398 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
399 	if (hw->mac.type >= ixgbe_mac_82599EB) {
400 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
401 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
402 	} else {
403 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
404 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
405 	}
406 
407 	for (i = 0; i < 8; i++) {
408 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
409 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
410 		if (hw->mac.type >= ixgbe_mac_82599EB) {
411 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
412 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
413 		} else {
414 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
415 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
416 		}
417 	}
418 	if (hw->mac.type >= ixgbe_mac_82599EB)
419 		for (i = 0; i < 8; i++)
420 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
421 	IXGBE_READ_REG(hw, IXGBE_PRC64);
422 	IXGBE_READ_REG(hw, IXGBE_PRC127);
423 	IXGBE_READ_REG(hw, IXGBE_PRC255);
424 	IXGBE_READ_REG(hw, IXGBE_PRC511);
425 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
426 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
427 	IXGBE_READ_REG(hw, IXGBE_GPRC);
428 	IXGBE_READ_REG(hw, IXGBE_BPRC);
429 	IXGBE_READ_REG(hw, IXGBE_MPRC);
430 	IXGBE_READ_REG(hw, IXGBE_GPTC);
431 	IXGBE_READ_REG(hw, IXGBE_GORCL);
432 	IXGBE_READ_REG(hw, IXGBE_GORCH);
433 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
434 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
435 	if (hw->mac.type == ixgbe_mac_82598EB)
436 		for (i = 0; i < 8; i++)
437 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
438 	IXGBE_READ_REG(hw, IXGBE_RUC);
439 	IXGBE_READ_REG(hw, IXGBE_RFC);
440 	IXGBE_READ_REG(hw, IXGBE_ROC);
441 	IXGBE_READ_REG(hw, IXGBE_RJC);
442 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
443 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
444 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
445 	IXGBE_READ_REG(hw, IXGBE_TORL);
446 	IXGBE_READ_REG(hw, IXGBE_TORH);
447 	IXGBE_READ_REG(hw, IXGBE_TPR);
448 	IXGBE_READ_REG(hw, IXGBE_TPT);
449 	IXGBE_READ_REG(hw, IXGBE_PTC64);
450 	IXGBE_READ_REG(hw, IXGBE_PTC127);
451 	IXGBE_READ_REG(hw, IXGBE_PTC255);
452 	IXGBE_READ_REG(hw, IXGBE_PTC511);
453 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
454 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
455 	IXGBE_READ_REG(hw, IXGBE_MPTC);
456 	IXGBE_READ_REG(hw, IXGBE_BPTC);
457 	for (i = 0; i < 16; i++) {
458 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
459 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
460 		if (hw->mac.type >= ixgbe_mac_82599EB) {
461 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
462 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
463 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
464 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
465 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
466 		} else {
467 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
468 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
469 		}
470 	}
471 
472 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
473 		if (hw->phy.id == 0)
474 			hw->phy.ops.identify(hw);
475 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
476 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
477 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
478 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
479 	}
480 
481 	return 0;
482 }
483 
484 /**
485  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486  *  @hw: pointer to hardware structure
487  *  @pba_num: stores the part number string from the EEPROM
488  *  @pba_num_size: part number string buffer length
489  *
490  *  Reads the part number string from the EEPROM.
491  **/
492 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
493 				  u32 pba_num_size)
494 {
495 	s32 ret_val;
496 	u16 data;
497 	u16 pba_ptr;
498 	u16 offset;
499 	u16 length;
500 
501 	if (pba_num == NULL) {
502 		hw_dbg(hw, "PBA string buffer was null\n");
503 		return -EINVAL;
504 	}
505 
506 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
507 	if (ret_val) {
508 		hw_dbg(hw, "NVM Read Error\n");
509 		return ret_val;
510 	}
511 
512 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
513 	if (ret_val) {
514 		hw_dbg(hw, "NVM Read Error\n");
515 		return ret_val;
516 	}
517 
518 	/*
519 	 * if data is not ptr guard the PBA must be in legacy format which
520 	 * means pba_ptr is actually our second data word for the PBA number
521 	 * and we can decode it into an ascii string
522 	 */
523 	if (data != IXGBE_PBANUM_PTR_GUARD) {
524 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
525 
526 		/* we will need 11 characters to store the PBA */
527 		if (pba_num_size < 11) {
528 			hw_dbg(hw, "PBA string buffer too small\n");
529 			return -ENOSPC;
530 		}
531 
532 		/* extract hex string from data and pba_ptr */
533 		pba_num[0] = (data >> 12) & 0xF;
534 		pba_num[1] = (data >> 8) & 0xF;
535 		pba_num[2] = (data >> 4) & 0xF;
536 		pba_num[3] = data & 0xF;
537 		pba_num[4] = (pba_ptr >> 12) & 0xF;
538 		pba_num[5] = (pba_ptr >> 8) & 0xF;
539 		pba_num[6] = '-';
540 		pba_num[7] = 0;
541 		pba_num[8] = (pba_ptr >> 4) & 0xF;
542 		pba_num[9] = pba_ptr & 0xF;
543 
544 		/* put a null character on the end of our string */
545 		pba_num[10] = '\0';
546 
547 		/* switch all the data but the '-' to hex char */
548 		for (offset = 0; offset < 10; offset++) {
549 			if (pba_num[offset] < 0xA)
550 				pba_num[offset] += '0';
551 			else if (pba_num[offset] < 0x10)
552 				pba_num[offset] += 'A' - 0xA;
553 		}
554 
555 		return 0;
556 	}
557 
558 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
559 	if (ret_val) {
560 		hw_dbg(hw, "NVM Read Error\n");
561 		return ret_val;
562 	}
563 
564 	if (length == 0xFFFF || length == 0) {
565 		hw_dbg(hw, "NVM PBA number section invalid length\n");
566 		return -EIO;
567 	}
568 
569 	/* check if pba_num buffer is big enough */
570 	if (pba_num_size  < (((u32)length * 2) - 1)) {
571 		hw_dbg(hw, "PBA string buffer too small\n");
572 		return -ENOSPC;
573 	}
574 
575 	/* trim pba length from start of string */
576 	pba_ptr++;
577 	length--;
578 
579 	for (offset = 0; offset < length; offset++) {
580 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
581 		if (ret_val) {
582 			hw_dbg(hw, "NVM Read Error\n");
583 			return ret_val;
584 		}
585 		pba_num[offset * 2] = (u8)(data >> 8);
586 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
587 	}
588 	pba_num[offset * 2] = '\0';
589 
590 	return 0;
591 }
592 
593 /**
594  *  ixgbe_get_mac_addr_generic - Generic get MAC address
595  *  @hw: pointer to hardware structure
596  *  @mac_addr: Adapter MAC address
597  *
598  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
599  *  A reset of the adapter must be performed prior to calling this function
600  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
601  **/
602 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
603 {
604 	u32 rar_high;
605 	u32 rar_low;
606 	u16 i;
607 
608 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
609 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
610 
611 	for (i = 0; i < 4; i++)
612 		mac_addr[i] = (u8)(rar_low >> (i*8));
613 
614 	for (i = 0; i < 2; i++)
615 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
616 
617 	return 0;
618 }
619 
620 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
621 {
622 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
623 	case IXGBE_PCI_LINK_WIDTH_1:
624 		return ixgbe_bus_width_pcie_x1;
625 	case IXGBE_PCI_LINK_WIDTH_2:
626 		return ixgbe_bus_width_pcie_x2;
627 	case IXGBE_PCI_LINK_WIDTH_4:
628 		return ixgbe_bus_width_pcie_x4;
629 	case IXGBE_PCI_LINK_WIDTH_8:
630 		return ixgbe_bus_width_pcie_x8;
631 	default:
632 		return ixgbe_bus_width_unknown;
633 	}
634 }
635 
636 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
637 {
638 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
639 	case IXGBE_PCI_LINK_SPEED_2500:
640 		return ixgbe_bus_speed_2500;
641 	case IXGBE_PCI_LINK_SPEED_5000:
642 		return ixgbe_bus_speed_5000;
643 	case IXGBE_PCI_LINK_SPEED_8000:
644 		return ixgbe_bus_speed_8000;
645 	default:
646 		return ixgbe_bus_speed_unknown;
647 	}
648 }
649 
650 /**
651  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
652  *  @hw: pointer to hardware structure
653  *
654  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
655  **/
656 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
657 {
658 	u16 link_status;
659 
660 	hw->bus.type = ixgbe_bus_type_pci_express;
661 
662 	/* Get the negotiated link width and speed from PCI config space */
663 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
664 
665 	hw->bus.width = ixgbe_convert_bus_width(link_status);
666 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
667 
668 	hw->mac.ops.set_lan_id(hw);
669 
670 	return 0;
671 }
672 
673 /**
674  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675  *  @hw: pointer to the HW structure
676  *
677  *  Determines the LAN function id by reading memory-mapped registers
678  *  and swaps the port value if requested.
679  **/
680 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
681 {
682 	struct ixgbe_bus_info *bus = &hw->bus;
683 	u16 ee_ctrl_4;
684 	u32 reg;
685 
686 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
688 	bus->lan_id = bus->func;
689 
690 	/* check for a port swap */
691 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692 	if (reg & IXGBE_FACTPS_LFS)
693 		bus->func ^= 0x1;
694 
695 	/* Get MAC instance from EEPROM for configuring CS4227 */
696 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
697 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
698 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
699 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
700 	}
701 }
702 
703 /**
704  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705  *  @hw: pointer to hardware structure
706  *
707  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708  *  disables transmit and receive units. The adapter_stopped flag is used by
709  *  the shared code and drivers to determine if the adapter is in a stopped
710  *  state and should not touch the hardware.
711  **/
712 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
713 {
714 	u32 reg_val;
715 	u16 i;
716 
717 	/*
718 	 * Set the adapter_stopped flag so other driver functions stop touching
719 	 * the hardware
720 	 */
721 	hw->adapter_stopped = true;
722 
723 	/* Disable the receive unit */
724 	hw->mac.ops.disable_rx(hw);
725 
726 	/* Clear interrupt mask to stop interrupts from being generated */
727 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
728 
729 	/* Clear any pending interrupts, flush previous writes */
730 	IXGBE_READ_REG(hw, IXGBE_EICR);
731 
732 	/* Disable the transmit unit.  Each queue must be disabled. */
733 	for (i = 0; i < hw->mac.max_tx_queues; i++)
734 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
735 
736 	/* Disable the receive unit by stopping each queue */
737 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
738 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
739 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
740 		reg_val |= IXGBE_RXDCTL_SWFLSH;
741 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
742 	}
743 
744 	/* flush all queues disables */
745 	IXGBE_WRITE_FLUSH(hw);
746 	usleep_range(1000, 2000);
747 
748 	/*
749 	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
750 	 * access and verify no pending requests
751 	 */
752 	return ixgbe_disable_pcie_primary(hw);
753 }
754 
755 /**
756  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757  *  @hw: pointer to hardware structure
758  *
759  *  Store the index for the link active LED. This will be used to support
760  *  blinking the LED.
761  **/
762 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
763 {
764 	struct ixgbe_mac_info *mac = &hw->mac;
765 	u32 led_reg, led_mode;
766 	u16 i;
767 
768 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
769 
770 	/* Get LED link active from the LEDCTL register */
771 	for (i = 0; i < 4; i++) {
772 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
773 
774 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
775 		    IXGBE_LED_LINK_ACTIVE) {
776 			mac->led_link_act = i;
777 			return 0;
778 		}
779 	}
780 
781 	/* If LEDCTL register does not have the LED link active set, then use
782 	 * known MAC defaults.
783 	 */
784 	switch (hw->mac.type) {
785 	case ixgbe_mac_x550em_a:
786 		mac->led_link_act = 0;
787 		break;
788 	case ixgbe_mac_X550EM_x:
789 		mac->led_link_act = 1;
790 		break;
791 	default:
792 		mac->led_link_act = 2;
793 	}
794 
795 	return 0;
796 }
797 
798 /**
799  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
800  *  @hw: pointer to hardware structure
801  *  @index: led number to turn on
802  **/
803 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
804 {
805 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
806 
807 	if (index > 3)
808 		return -EINVAL;
809 
810 	/* To turn on the LED, set mode to ON. */
811 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
812 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
813 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
814 	IXGBE_WRITE_FLUSH(hw);
815 
816 	return 0;
817 }
818 
819 /**
820  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
821  *  @hw: pointer to hardware structure
822  *  @index: led number to turn off
823  **/
824 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
825 {
826 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
827 
828 	if (index > 3)
829 		return -EINVAL;
830 
831 	/* To turn off the LED, set mode to OFF. */
832 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
833 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
834 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
835 	IXGBE_WRITE_FLUSH(hw);
836 
837 	return 0;
838 }
839 
840 /**
841  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842  *  @hw: pointer to hardware structure
843  *
844  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
845  *  ixgbe_hw struct in order to set up EEPROM access.
846  **/
847 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
848 {
849 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
850 	u32 eec;
851 	u16 eeprom_size;
852 
853 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
854 		eeprom->type = ixgbe_eeprom_none;
855 		/* Set default semaphore delay to 10ms which is a well
856 		 * tested value */
857 		eeprom->semaphore_delay = 10;
858 		/* Clear EEPROM page size, it will be initialized as needed */
859 		eeprom->word_page_size = 0;
860 
861 		/*
862 		 * Check for EEPROM present first.
863 		 * If not present leave as none
864 		 */
865 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
866 		if (eec & IXGBE_EEC_PRES) {
867 			eeprom->type = ixgbe_eeprom_spi;
868 
869 			/*
870 			 * SPI EEPROM is assumed here.  This code would need to
871 			 * change if a future EEPROM is not SPI.
872 			 */
873 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
874 					    IXGBE_EEC_SIZE_SHIFT);
875 			eeprom->word_size = BIT(eeprom_size +
876 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
877 		}
878 
879 		if (eec & IXGBE_EEC_ADDR_SIZE)
880 			eeprom->address_bits = 16;
881 		else
882 			eeprom->address_bits = 8;
883 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
884 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
885 	}
886 
887 	return 0;
888 }
889 
890 /**
891  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
892  *  @hw: pointer to hardware structure
893  *  @offset: offset within the EEPROM to write
894  *  @words: number of words
895  *  @data: 16 bit word(s) to write to EEPROM
896  *
897  *  Reads 16 bit word(s) from EEPROM through bit-bang method
898  **/
899 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
900 					       u16 words, u16 *data)
901 {
902 	s32 status;
903 	u16 i, count;
904 
905 	hw->eeprom.ops.init_params(hw);
906 
907 	if (words == 0 || (offset + words > hw->eeprom.word_size))
908 		return -EINVAL;
909 
910 	/*
911 	 * The EEPROM page size cannot be queried from the chip. We do lazy
912 	 * initialization. It is worth to do that when we write large buffer.
913 	 */
914 	if ((hw->eeprom.word_page_size == 0) &&
915 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
916 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
917 
918 	/*
919 	 * We cannot hold synchronization semaphores for too long
920 	 * to avoid other entity starvation. However it is more efficient
921 	 * to read in bursts than synchronizing access for each word.
922 	 */
923 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
924 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
925 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
926 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
927 							    count, &data[i]);
928 
929 		if (status != 0)
930 			break;
931 	}
932 
933 	return status;
934 }
935 
936 /**
937  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
938  *  @hw: pointer to hardware structure
939  *  @offset: offset within the EEPROM to be written to
940  *  @words: number of word(s)
941  *  @data: 16 bit word(s) to be written to the EEPROM
942  *
943  *  If ixgbe_eeprom_update_checksum is not called after this function, the
944  *  EEPROM will most likely contain an invalid checksum.
945  **/
946 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
947 					      u16 words, u16 *data)
948 {
949 	s32 status;
950 	u16 word;
951 	u16 page_size;
952 	u16 i;
953 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
954 
955 	/* Prepare the EEPROM for writing  */
956 	status = ixgbe_acquire_eeprom(hw);
957 	if (status)
958 		return status;
959 
960 	if (ixgbe_ready_eeprom(hw) != 0) {
961 		ixgbe_release_eeprom(hw);
962 		return -EIO;
963 	}
964 
965 	for (i = 0; i < words; i++) {
966 		ixgbe_standby_eeprom(hw);
967 
968 		/* Send the WRITE ENABLE command (8 bit opcode) */
969 		ixgbe_shift_out_eeprom_bits(hw,
970 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
971 					    IXGBE_EEPROM_OPCODE_BITS);
972 
973 		ixgbe_standby_eeprom(hw);
974 
975 		/* Some SPI eeproms use the 8th address bit embedded
976 		 * in the opcode
977 		 */
978 		if ((hw->eeprom.address_bits == 8) &&
979 		    ((offset + i) >= 128))
980 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
981 
982 		/* Send the Write command (8-bit opcode + addr) */
983 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
984 					    IXGBE_EEPROM_OPCODE_BITS);
985 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
986 					    hw->eeprom.address_bits);
987 
988 		page_size = hw->eeprom.word_page_size;
989 
990 		/* Send the data in burst via SPI */
991 		do {
992 			word = data[i];
993 			word = (word >> 8) | (word << 8);
994 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
995 
996 			if (page_size == 0)
997 				break;
998 
999 			/* do not wrap around page */
1000 			if (((offset + i) & (page_size - 1)) ==
1001 			    (page_size - 1))
1002 				break;
1003 		} while (++i < words);
1004 
1005 		ixgbe_standby_eeprom(hw);
1006 		usleep_range(10000, 20000);
1007 	}
1008 	/* Done with writing - release the EEPROM */
1009 	ixgbe_release_eeprom(hw);
1010 
1011 	return 0;
1012 }
1013 
1014 /**
1015  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1016  *  @hw: pointer to hardware structure
1017  *  @offset: offset within the EEPROM to be written to
1018  *  @data: 16 bit word to be written to the EEPROM
1019  *
1020  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1021  *  EEPROM will most likely contain an invalid checksum.
1022  **/
1023 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1024 {
1025 	hw->eeprom.ops.init_params(hw);
1026 
1027 	if (offset >= hw->eeprom.word_size)
1028 		return -EINVAL;
1029 
1030 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1031 }
1032 
1033 /**
1034  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1035  *  @hw: pointer to hardware structure
1036  *  @offset: offset within the EEPROM to be read
1037  *  @words: number of word(s)
1038  *  @data: read 16 bit words(s) from EEPROM
1039  *
1040  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1041  **/
1042 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1043 					      u16 words, u16 *data)
1044 {
1045 	s32 status;
1046 	u16 i, count;
1047 
1048 	hw->eeprom.ops.init_params(hw);
1049 
1050 	if (words == 0 || (offset + words > hw->eeprom.word_size))
1051 		return -EINVAL;
1052 
1053 	/*
1054 	 * We cannot hold synchronization semaphores for too long
1055 	 * to avoid other entity starvation. However it is more efficient
1056 	 * to read in bursts than synchronizing access for each word.
1057 	 */
1058 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1059 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1060 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1061 
1062 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1063 							   count, &data[i]);
1064 
1065 		if (status)
1066 			return status;
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 /**
1073  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1074  *  @hw: pointer to hardware structure
1075  *  @offset: offset within the EEPROM to be read
1076  *  @words: number of word(s)
1077  *  @data: read 16 bit word(s) from EEPROM
1078  *
1079  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1080  **/
1081 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1082 					     u16 words, u16 *data)
1083 {
1084 	s32 status;
1085 	u16 word_in;
1086 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1087 	u16 i;
1088 
1089 	/* Prepare the EEPROM for reading  */
1090 	status = ixgbe_acquire_eeprom(hw);
1091 	if (status)
1092 		return status;
1093 
1094 	if (ixgbe_ready_eeprom(hw) != 0) {
1095 		ixgbe_release_eeprom(hw);
1096 		return -EIO;
1097 	}
1098 
1099 	for (i = 0; i < words; i++) {
1100 		ixgbe_standby_eeprom(hw);
1101 		/* Some SPI eeproms use the 8th address bit embedded
1102 		 * in the opcode
1103 		 */
1104 		if ((hw->eeprom.address_bits == 8) &&
1105 		    ((offset + i) >= 128))
1106 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1107 
1108 		/* Send the READ command (opcode + addr) */
1109 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1110 					    IXGBE_EEPROM_OPCODE_BITS);
1111 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1112 					    hw->eeprom.address_bits);
1113 
1114 		/* Read the data. */
1115 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1116 		data[i] = (word_in >> 8) | (word_in << 8);
1117 	}
1118 
1119 	/* End this read operation */
1120 	ixgbe_release_eeprom(hw);
1121 
1122 	return 0;
1123 }
1124 
1125 /**
1126  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1127  *  @hw: pointer to hardware structure
1128  *  @offset: offset within the EEPROM to be read
1129  *  @data: read 16 bit value from EEPROM
1130  *
1131  *  Reads 16 bit value from EEPROM through bit-bang method
1132  **/
1133 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1134 				       u16 *data)
1135 {
1136 	hw->eeprom.ops.init_params(hw);
1137 
1138 	if (offset >= hw->eeprom.word_size)
1139 		return -EINVAL;
1140 
1141 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1142 }
1143 
1144 /**
1145  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1146  *  @hw: pointer to hardware structure
1147  *  @offset: offset of word in the EEPROM to read
1148  *  @words: number of word(s)
1149  *  @data: 16 bit word(s) from the EEPROM
1150  *
1151  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1152  **/
1153 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1154 				   u16 words, u16 *data)
1155 {
1156 	u32 eerd;
1157 	s32 status;
1158 	u32 i;
1159 
1160 	hw->eeprom.ops.init_params(hw);
1161 
1162 	if (words == 0 || offset >= hw->eeprom.word_size)
1163 		return -EINVAL;
1164 
1165 	for (i = 0; i < words; i++) {
1166 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1167 		       IXGBE_EEPROM_RW_REG_START;
1168 
1169 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1170 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1171 
1172 		if (status == 0) {
1173 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1174 				   IXGBE_EEPROM_RW_REG_DATA);
1175 		} else {
1176 			hw_dbg(hw, "Eeprom read timed out\n");
1177 			return status;
1178 		}
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 /**
1185  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1186  *  @hw: pointer to hardware structure
1187  *  @offset: offset within the EEPROM to be used as a scratch pad
1188  *
1189  *  Discover EEPROM page size by writing marching data at given offset.
1190  *  This function is called only when we are writing a new large buffer
1191  *  at given offset so the data would be overwritten anyway.
1192  **/
1193 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1194 						 u16 offset)
1195 {
1196 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1197 	s32 status;
1198 	u16 i;
1199 
1200 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1201 		data[i] = i;
1202 
1203 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1204 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1205 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1206 	hw->eeprom.word_page_size = 0;
1207 	if (status)
1208 		return status;
1209 
1210 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1211 	if (status)
1212 		return status;
1213 
1214 	/*
1215 	 * When writing in burst more than the actual page size
1216 	 * EEPROM address wraps around current page.
1217 	 */
1218 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1219 
1220 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1221 	       hw->eeprom.word_page_size);
1222 	return 0;
1223 }
1224 
1225 /**
1226  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1227  *  @hw: pointer to hardware structure
1228  *  @offset: offset of  word in the EEPROM to read
1229  *  @data: word read from the EEPROM
1230  *
1231  *  Reads a 16 bit word from the EEPROM using the EERD register.
1232  **/
1233 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1234 {
1235 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1236 }
1237 
1238 /**
1239  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1240  *  @hw: pointer to hardware structure
1241  *  @offset: offset of  word in the EEPROM to write
1242  *  @words: number of words
1243  *  @data: word(s) write to the EEPROM
1244  *
1245  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1246  **/
1247 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1248 				    u16 words, u16 *data)
1249 {
1250 	u32 eewr;
1251 	s32 status;
1252 	u16 i;
1253 
1254 	hw->eeprom.ops.init_params(hw);
1255 
1256 	if (words == 0 || offset >= hw->eeprom.word_size)
1257 		return -EINVAL;
1258 
1259 	for (i = 0; i < words; i++) {
1260 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1261 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1262 		       IXGBE_EEPROM_RW_REG_START;
1263 
1264 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1265 		if (status) {
1266 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1267 			return status;
1268 		}
1269 
1270 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1271 
1272 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1273 		if (status) {
1274 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1275 			return status;
1276 		}
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1284  *  @hw: pointer to hardware structure
1285  *  @offset: offset of  word in the EEPROM to write
1286  *  @data: word write to the EEPROM
1287  *
1288  *  Write a 16 bit word to the EEPROM using the EEWR register.
1289  **/
1290 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1291 {
1292 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1293 }
1294 
1295 /**
1296  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1297  *  @hw: pointer to hardware structure
1298  *  @ee_reg: EEPROM flag for polling
1299  *
1300  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1301  *  read or write is done respectively.
1302  **/
1303 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1304 {
1305 	u32 i;
1306 	u32 reg;
1307 
1308 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1309 		if (ee_reg == IXGBE_NVM_POLL_READ)
1310 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1311 		else
1312 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1313 
1314 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1315 			return 0;
1316 		}
1317 		udelay(5);
1318 	}
1319 	return -EIO;
1320 }
1321 
1322 /**
1323  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1324  *  @hw: pointer to hardware structure
1325  *
1326  *  Prepares EEPROM for access using bit-bang method. This function should
1327  *  be called before issuing a command to the EEPROM.
1328  **/
1329 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1330 {
1331 	u32 eec;
1332 	u32 i;
1333 
1334 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1335 		return -EBUSY;
1336 
1337 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1338 
1339 	/* Request EEPROM Access */
1340 	eec |= IXGBE_EEC_REQ;
1341 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1342 
1343 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1344 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1345 		if (eec & IXGBE_EEC_GNT)
1346 			break;
1347 		udelay(5);
1348 	}
1349 
1350 	/* Release if grant not acquired */
1351 	if (!(eec & IXGBE_EEC_GNT)) {
1352 		eec &= ~IXGBE_EEC_REQ;
1353 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1354 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1355 
1356 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1357 		return -EIO;
1358 	}
1359 
1360 	/* Setup EEPROM for Read/Write */
1361 	/* Clear CS and SK */
1362 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1363 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1364 	IXGBE_WRITE_FLUSH(hw);
1365 	udelay(1);
1366 	return 0;
1367 }
1368 
1369 /**
1370  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1371  *  @hw: pointer to hardware structure
1372  *
1373  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1374  **/
1375 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1376 {
1377 	u32 timeout = 2000;
1378 	u32 i;
1379 	u32 swsm;
1380 
1381 	/* Get SMBI software semaphore between device drivers first */
1382 	for (i = 0; i < timeout; i++) {
1383 		/*
1384 		 * If the SMBI bit is 0 when we read it, then the bit will be
1385 		 * set and we have the semaphore
1386 		 */
1387 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1388 		if (!(swsm & IXGBE_SWSM_SMBI))
1389 			break;
1390 		usleep_range(50, 100);
1391 	}
1392 
1393 	if (i == timeout) {
1394 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1395 		/* this release is particularly important because our attempts
1396 		 * above to get the semaphore may have succeeded, and if there
1397 		 * was a timeout, we should unconditionally clear the semaphore
1398 		 * bits to free the driver to make progress
1399 		 */
1400 		ixgbe_release_eeprom_semaphore(hw);
1401 
1402 		usleep_range(50, 100);
1403 		/* one last try
1404 		 * If the SMBI bit is 0 when we read it, then the bit will be
1405 		 * set and we have the semaphore
1406 		 */
1407 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1408 		if (swsm & IXGBE_SWSM_SMBI) {
1409 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1410 			return -EIO;
1411 		}
1412 	}
1413 
1414 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1415 	for (i = 0; i < timeout; i++) {
1416 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1417 
1418 		/* Set the SW EEPROM semaphore bit to request access */
1419 		swsm |= IXGBE_SWSM_SWESMBI;
1420 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1421 
1422 		/* If we set the bit successfully then we got the
1423 		 * semaphore.
1424 		 */
1425 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1426 		if (swsm & IXGBE_SWSM_SWESMBI)
1427 			break;
1428 
1429 		usleep_range(50, 100);
1430 	}
1431 
1432 	/* Release semaphores and return error if SW EEPROM semaphore
1433 	 * was not granted because we don't have access to the EEPROM
1434 	 */
1435 	if (i >= timeout) {
1436 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1437 		ixgbe_release_eeprom_semaphore(hw);
1438 		return -EIO;
1439 	}
1440 
1441 	return 0;
1442 }
1443 
1444 /**
1445  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1446  *  @hw: pointer to hardware structure
1447  *
1448  *  This function clears hardware semaphore bits.
1449  **/
1450 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1451 {
1452 	u32 swsm;
1453 
1454 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1455 
1456 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1457 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1458 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1459 	IXGBE_WRITE_FLUSH(hw);
1460 }
1461 
1462 /**
1463  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1464  *  @hw: pointer to hardware structure
1465  **/
1466 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1467 {
1468 	u16 i;
1469 	u8 spi_stat_reg;
1470 
1471 	/*
1472 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1473 	 * EEPROM will signal that the command has been completed by clearing
1474 	 * bit 0 of the internal status register.  If it's not cleared within
1475 	 * 5 milliseconds, then error out.
1476 	 */
1477 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1478 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1479 					    IXGBE_EEPROM_OPCODE_BITS);
1480 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1481 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1482 			break;
1483 
1484 		udelay(5);
1485 		ixgbe_standby_eeprom(hw);
1486 	}
1487 
1488 	/*
1489 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1490 	 * devices (and only 0-5mSec on 5V devices)
1491 	 */
1492 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1493 		hw_dbg(hw, "SPI EEPROM Status error\n");
1494 		return -EIO;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 /**
1501  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1502  *  @hw: pointer to hardware structure
1503  **/
1504 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1505 {
1506 	u32 eec;
1507 
1508 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1509 
1510 	/* Toggle CS to flush commands */
1511 	eec |= IXGBE_EEC_CS;
1512 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1513 	IXGBE_WRITE_FLUSH(hw);
1514 	udelay(1);
1515 	eec &= ~IXGBE_EEC_CS;
1516 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1517 	IXGBE_WRITE_FLUSH(hw);
1518 	udelay(1);
1519 }
1520 
1521 /**
1522  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1523  *  @hw: pointer to hardware structure
1524  *  @data: data to send to the EEPROM
1525  *  @count: number of bits to shift out
1526  **/
1527 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1528 					u16 count)
1529 {
1530 	u32 eec;
1531 	u32 mask;
1532 	u32 i;
1533 
1534 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1535 
1536 	/*
1537 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1538 	 * one bit at a time.  Determine the starting bit based on count
1539 	 */
1540 	mask = BIT(count - 1);
1541 
1542 	for (i = 0; i < count; i++) {
1543 		/*
1544 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1545 		 * "1", and then raising and then lowering the clock (the SK
1546 		 * bit controls the clock input to the EEPROM).  A "0" is
1547 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1548 		 * raising and then lowering the clock.
1549 		 */
1550 		if (data & mask)
1551 			eec |= IXGBE_EEC_DI;
1552 		else
1553 			eec &= ~IXGBE_EEC_DI;
1554 
1555 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1556 		IXGBE_WRITE_FLUSH(hw);
1557 
1558 		udelay(1);
1559 
1560 		ixgbe_raise_eeprom_clk(hw, &eec);
1561 		ixgbe_lower_eeprom_clk(hw, &eec);
1562 
1563 		/*
1564 		 * Shift mask to signify next bit of data to shift in to the
1565 		 * EEPROM
1566 		 */
1567 		mask = mask >> 1;
1568 	}
1569 
1570 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1571 	eec &= ~IXGBE_EEC_DI;
1572 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1573 	IXGBE_WRITE_FLUSH(hw);
1574 }
1575 
1576 /**
1577  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1578  *  @hw: pointer to hardware structure
1579  *  @count: number of bits to shift
1580  **/
1581 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1582 {
1583 	u32 eec;
1584 	u32 i;
1585 	u16 data = 0;
1586 
1587 	/*
1588 	 * In order to read a register from the EEPROM, we need to shift
1589 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1590 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1591 	 * the value of the "DO" bit.  During this "shifting in" process the
1592 	 * "DI" bit should always be clear.
1593 	 */
1594 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1595 
1596 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1597 
1598 	for (i = 0; i < count; i++) {
1599 		data = data << 1;
1600 		ixgbe_raise_eeprom_clk(hw, &eec);
1601 
1602 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1603 
1604 		eec &= ~(IXGBE_EEC_DI);
1605 		if (eec & IXGBE_EEC_DO)
1606 			data |= 1;
1607 
1608 		ixgbe_lower_eeprom_clk(hw, &eec);
1609 	}
1610 
1611 	return data;
1612 }
1613 
1614 /**
1615  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1616  *  @hw: pointer to hardware structure
1617  *  @eec: EEC register's current value
1618  **/
1619 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1620 {
1621 	/*
1622 	 * Raise the clock input to the EEPROM
1623 	 * (setting the SK bit), then delay
1624 	 */
1625 	*eec = *eec | IXGBE_EEC_SK;
1626 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1627 	IXGBE_WRITE_FLUSH(hw);
1628 	udelay(1);
1629 }
1630 
1631 /**
1632  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1633  *  @hw: pointer to hardware structure
1634  *  @eec: EEC's current value
1635  **/
1636 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1637 {
1638 	/*
1639 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1640 	 * delay
1641 	 */
1642 	*eec = *eec & ~IXGBE_EEC_SK;
1643 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1644 	IXGBE_WRITE_FLUSH(hw);
1645 	udelay(1);
1646 }
1647 
1648 /**
1649  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1650  *  @hw: pointer to hardware structure
1651  **/
1652 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1653 {
1654 	u32 eec;
1655 
1656 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1657 
1658 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1659 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1660 
1661 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1662 	IXGBE_WRITE_FLUSH(hw);
1663 
1664 	udelay(1);
1665 
1666 	/* Stop requesting EEPROM access */
1667 	eec &= ~IXGBE_EEC_REQ;
1668 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1669 
1670 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1671 
1672 	/*
1673 	 * Delay before attempt to obtain semaphore again to allow FW
1674 	 * access. semaphore_delay is in ms we need us for usleep_range
1675 	 */
1676 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1677 		     hw->eeprom.semaphore_delay * 2000);
1678 }
1679 
1680 /**
1681  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1682  *  @hw: pointer to hardware structure
1683  **/
1684 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1685 {
1686 	u16 i;
1687 	u16 j;
1688 	u16 checksum = 0;
1689 	u16 length = 0;
1690 	u16 pointer = 0;
1691 	u16 word = 0;
1692 
1693 	/* Include 0x0-0x3F in the checksum */
1694 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1695 		if (hw->eeprom.ops.read(hw, i, &word)) {
1696 			hw_dbg(hw, "EEPROM read failed\n");
1697 			break;
1698 		}
1699 		checksum += word;
1700 	}
1701 
1702 	/* Include all data from pointers except for the fw pointer */
1703 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1704 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1705 			hw_dbg(hw, "EEPROM read failed\n");
1706 			return -EIO;
1707 		}
1708 
1709 		/* If the pointer seems invalid */
1710 		if (pointer == 0xFFFF || pointer == 0)
1711 			continue;
1712 
1713 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1714 			hw_dbg(hw, "EEPROM read failed\n");
1715 			return -EIO;
1716 		}
1717 
1718 		if (length == 0xFFFF || length == 0)
1719 			continue;
1720 
1721 		for (j = pointer + 1; j <= pointer + length; j++) {
1722 			if (hw->eeprom.ops.read(hw, j, &word)) {
1723 				hw_dbg(hw, "EEPROM read failed\n");
1724 				return -EIO;
1725 			}
1726 			checksum += word;
1727 		}
1728 	}
1729 
1730 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1731 
1732 	return (s32)checksum;
1733 }
1734 
1735 /**
1736  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1737  *  @hw: pointer to hardware structure
1738  *  @checksum_val: calculated checksum
1739  *
1740  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1741  *  caller does not need checksum_val, the value can be NULL.
1742  **/
1743 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1744 					   u16 *checksum_val)
1745 {
1746 	s32 status;
1747 	u16 checksum;
1748 	u16 read_checksum = 0;
1749 
1750 	/*
1751 	 * Read the first word from the EEPROM. If this times out or fails, do
1752 	 * not continue or we could be in for a very long wait while every
1753 	 * EEPROM read fails
1754 	 */
1755 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1756 	if (status) {
1757 		hw_dbg(hw, "EEPROM read failed\n");
1758 		return status;
1759 	}
1760 
1761 	status = hw->eeprom.ops.calc_checksum(hw);
1762 	if (status < 0)
1763 		return status;
1764 
1765 	checksum = (u16)(status & 0xffff);
1766 
1767 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1768 	if (status) {
1769 		hw_dbg(hw, "EEPROM read failed\n");
1770 		return status;
1771 	}
1772 
1773 	/* Verify read checksum from EEPROM is the same as
1774 	 * calculated checksum
1775 	 */
1776 	if (read_checksum != checksum)
1777 		status = -EIO;
1778 
1779 	/* If the user cares, return the calculated checksum */
1780 	if (checksum_val)
1781 		*checksum_val = checksum;
1782 
1783 	return status;
1784 }
1785 
1786 /**
1787  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1788  *  @hw: pointer to hardware structure
1789  **/
1790 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1791 {
1792 	s32 status;
1793 	u16 checksum;
1794 
1795 	/*
1796 	 * Read the first word from the EEPROM. If this times out or fails, do
1797 	 * not continue or we could be in for a very long wait while every
1798 	 * EEPROM read fails
1799 	 */
1800 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1801 	if (status) {
1802 		hw_dbg(hw, "EEPROM read failed\n");
1803 		return status;
1804 	}
1805 
1806 	status = hw->eeprom.ops.calc_checksum(hw);
1807 	if (status < 0)
1808 		return status;
1809 
1810 	checksum = (u16)(status & 0xffff);
1811 
1812 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1813 
1814 	return status;
1815 }
1816 
1817 /**
1818  *  ixgbe_set_rar_generic - Set Rx address register
1819  *  @hw: pointer to hardware structure
1820  *  @index: Receive address register to write
1821  *  @addr: Address to put into receive address register
1822  *  @vmdq: VMDq "set" or "pool" index
1823  *  @enable_addr: set flag that address is active
1824  *
1825  *  Puts an ethernet address into a receive address register.
1826  **/
1827 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1828 			  u32 enable_addr)
1829 {
1830 	u32 rar_low, rar_high;
1831 	u32 rar_entries = hw->mac.num_rar_entries;
1832 
1833 	/* Make sure we are using a valid rar index range */
1834 	if (index >= rar_entries) {
1835 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1836 		return -EINVAL;
1837 	}
1838 
1839 	/* setup VMDq pool selection before this RAR gets enabled */
1840 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1841 
1842 	/*
1843 	 * HW expects these in little endian so we reverse the byte
1844 	 * order from network order (big endian) to little endian
1845 	 */
1846 	rar_low = ((u32)addr[0] |
1847 		   ((u32)addr[1] << 8) |
1848 		   ((u32)addr[2] << 16) |
1849 		   ((u32)addr[3] << 24));
1850 	/*
1851 	 * Some parts put the VMDq setting in the extra RAH bits,
1852 	 * so save everything except the lower 16 bits that hold part
1853 	 * of the address and the address valid bit.
1854 	 */
1855 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1856 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1857 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1858 
1859 	if (enable_addr != 0)
1860 		rar_high |= IXGBE_RAH_AV;
1861 
1862 	/* Record lower 32 bits of MAC address and then make
1863 	 * sure that write is flushed to hardware before writing
1864 	 * the upper 16 bits and setting the valid bit.
1865 	 */
1866 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1867 	IXGBE_WRITE_FLUSH(hw);
1868 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1869 
1870 	return 0;
1871 }
1872 
1873 /**
1874  *  ixgbe_clear_rar_generic - Remove Rx address register
1875  *  @hw: pointer to hardware structure
1876  *  @index: Receive address register to write
1877  *
1878  *  Clears an ethernet address from a receive address register.
1879  **/
1880 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1881 {
1882 	u32 rar_high;
1883 	u32 rar_entries = hw->mac.num_rar_entries;
1884 
1885 	/* Make sure we are using a valid rar index range */
1886 	if (index >= rar_entries) {
1887 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1888 		return -EINVAL;
1889 	}
1890 
1891 	/*
1892 	 * Some parts put the VMDq setting in the extra RAH bits,
1893 	 * so save everything except the lower 16 bits that hold part
1894 	 * of the address and the address valid bit.
1895 	 */
1896 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1897 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1898 
1899 	/* Clear the address valid bit and upper 16 bits of the address
1900 	 * before clearing the lower bits. This way we aren't updating
1901 	 * a live filter.
1902 	 */
1903 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1904 	IXGBE_WRITE_FLUSH(hw);
1905 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1906 
1907 	/* clear VMDq pool/queue selection for this RAR */
1908 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1909 
1910 	return 0;
1911 }
1912 
1913 /**
1914  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1915  *  @hw: pointer to hardware structure
1916  *
1917  *  Places the MAC address in receive address register 0 and clears the rest
1918  *  of the receive address registers. Clears the multicast table. Assumes
1919  *  the receiver is in reset when the routine is called.
1920  **/
1921 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1922 {
1923 	u32 i;
1924 	u32 rar_entries = hw->mac.num_rar_entries;
1925 
1926 	/*
1927 	 * If the current mac address is valid, assume it is a software override
1928 	 * to the permanent address.
1929 	 * Otherwise, use the permanent address from the eeprom.
1930 	 */
1931 	if (!is_valid_ether_addr(hw->mac.addr)) {
1932 		/* Get the MAC address from the RAR0 for later reference */
1933 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1934 
1935 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1936 	} else {
1937 		/* Setup the receive address. */
1938 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1939 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1940 
1941 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1942 	}
1943 
1944 	/*  clear VMDq pool/queue selection for RAR 0 */
1945 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1946 
1947 	hw->addr_ctrl.overflow_promisc = 0;
1948 
1949 	hw->addr_ctrl.rar_used_count = 1;
1950 
1951 	/* Zero out the other receive addresses. */
1952 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1953 	for (i = 1; i < rar_entries; i++) {
1954 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1955 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1956 	}
1957 
1958 	/* Clear the MTA */
1959 	hw->addr_ctrl.mta_in_use = 0;
1960 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1961 
1962 	hw_dbg(hw, " Clearing MTA\n");
1963 	for (i = 0; i < hw->mac.mcft_size; i++)
1964 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1965 
1966 	if (hw->mac.ops.init_uta_tables)
1967 		hw->mac.ops.init_uta_tables(hw);
1968 
1969 	return 0;
1970 }
1971 
1972 /**
1973  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1974  *  @hw: pointer to hardware structure
1975  *  @mc_addr: the multicast address
1976  *
1977  *  Extracts the 12 bits, from a multicast address, to determine which
1978  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1979  *  incoming rx multicast addresses, to determine the bit-vector to check in
1980  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1981  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1982  *  to mc_filter_type.
1983  **/
1984 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1985 {
1986 	u32 vector = 0;
1987 
1988 	switch (hw->mac.mc_filter_type) {
1989 	case 0:   /* use bits [47:36] of the address */
1990 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1991 		break;
1992 	case 1:   /* use bits [46:35] of the address */
1993 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1994 		break;
1995 	case 2:   /* use bits [45:34] of the address */
1996 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1997 		break;
1998 	case 3:   /* use bits [43:32] of the address */
1999 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2000 		break;
2001 	default:  /* Invalid mc_filter_type */
2002 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2003 		break;
2004 	}
2005 
2006 	/* vector can only be 12-bits or boundary will be exceeded */
2007 	vector &= 0xFFF;
2008 	return vector;
2009 }
2010 
2011 /**
2012  *  ixgbe_set_mta - Set bit-vector in multicast table
2013  *  @hw: pointer to hardware structure
2014  *  @mc_addr: Multicast address
2015  *
2016  *  Sets the bit-vector in the multicast table.
2017  **/
2018 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2019 {
2020 	u32 vector;
2021 	u32 vector_bit;
2022 	u32 vector_reg;
2023 
2024 	hw->addr_ctrl.mta_in_use++;
2025 
2026 	vector = ixgbe_mta_vector(hw, mc_addr);
2027 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2028 
2029 	/*
2030 	 * The MTA is a register array of 128 32-bit registers. It is treated
2031 	 * like an array of 4096 bits.  We want to set bit
2032 	 * BitArray[vector_value]. So we figure out what register the bit is
2033 	 * in, read it, OR in the new bit, then write back the new value.  The
2034 	 * register is determined by the upper 7 bits of the vector value and
2035 	 * the bit within that register are determined by the lower 5 bits of
2036 	 * the value.
2037 	 */
2038 	vector_reg = (vector >> 5) & 0x7F;
2039 	vector_bit = vector & 0x1F;
2040 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2041 }
2042 
2043 /**
2044  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2045  *  @hw: pointer to hardware structure
2046  *  @netdev: pointer to net device structure
2047  *
2048  *  The given list replaces any existing list. Clears the MC addrs from receive
2049  *  address registers and the multicast table. Uses unused receive address
2050  *  registers for the first multicast addresses, and hashes the rest into the
2051  *  multicast table.
2052  **/
2053 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2054 				      struct net_device *netdev)
2055 {
2056 	struct netdev_hw_addr *ha;
2057 	u32 i;
2058 
2059 	/*
2060 	 * Set the new number of MC addresses that we are being requested to
2061 	 * use.
2062 	 */
2063 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2064 	hw->addr_ctrl.mta_in_use = 0;
2065 
2066 	/* Clear mta_shadow */
2067 	hw_dbg(hw, " Clearing MTA\n");
2068 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2069 
2070 	/* Update mta shadow */
2071 	netdev_for_each_mc_addr(ha, netdev) {
2072 		hw_dbg(hw, " Adding the multicast addresses:\n");
2073 		ixgbe_set_mta(hw, ha->addr);
2074 	}
2075 
2076 	/* Enable mta */
2077 	for (i = 0; i < hw->mac.mcft_size; i++)
2078 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2079 				      hw->mac.mta_shadow[i]);
2080 
2081 	if (hw->addr_ctrl.mta_in_use > 0)
2082 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2083 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2084 
2085 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2086 	return 0;
2087 }
2088 
2089 /**
2090  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2091  *  @hw: pointer to hardware structure
2092  *
2093  *  Enables multicast address in RAR and the use of the multicast hash table.
2094  **/
2095 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2096 {
2097 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2098 
2099 	if (a->mta_in_use > 0)
2100 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2101 				hw->mac.mc_filter_type);
2102 
2103 	return 0;
2104 }
2105 
2106 /**
2107  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2108  *  @hw: pointer to hardware structure
2109  *
2110  *  Disables multicast address in RAR and the use of the multicast hash table.
2111  **/
2112 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2113 {
2114 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2115 
2116 	if (a->mta_in_use > 0)
2117 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2118 
2119 	return 0;
2120 }
2121 
2122 /**
2123  *  ixgbe_fc_enable_generic - Enable flow control
2124  *  @hw: pointer to hardware structure
2125  *
2126  *  Enable flow control according to the current settings.
2127  **/
2128 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2129 {
2130 	u32 mflcn_reg, fccfg_reg;
2131 	u32 reg;
2132 	u32 fcrtl, fcrth;
2133 	int i;
2134 
2135 	/* Validate the water mark configuration. */
2136 	if (!hw->fc.pause_time)
2137 		return -EINVAL;
2138 
2139 	/* Low water mark of zero causes XOFF floods */
2140 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2141 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2142 		    hw->fc.high_water[i]) {
2143 			if (!hw->fc.low_water[i] ||
2144 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2145 				hw_dbg(hw, "Invalid water mark configuration\n");
2146 				return -EINVAL;
2147 			}
2148 		}
2149 	}
2150 
2151 	/* Negotiate the fc mode to use */
2152 	hw->mac.ops.fc_autoneg(hw);
2153 
2154 	/* Disable any previous flow control settings */
2155 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2156 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2157 
2158 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2159 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2160 
2161 	/*
2162 	 * The possible values of fc.current_mode are:
2163 	 * 0: Flow control is completely disabled
2164 	 * 1: Rx flow control is enabled (we can receive pause frames,
2165 	 *    but not send pause frames).
2166 	 * 2: Tx flow control is enabled (we can send pause frames but
2167 	 *    we do not support receiving pause frames).
2168 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2169 	 * other: Invalid.
2170 	 */
2171 	switch (hw->fc.current_mode) {
2172 	case ixgbe_fc_none:
2173 		/*
2174 		 * Flow control is disabled by software override or autoneg.
2175 		 * The code below will actually disable it in the HW.
2176 		 */
2177 		break;
2178 	case ixgbe_fc_rx_pause:
2179 		/*
2180 		 * Rx Flow control is enabled and Tx Flow control is
2181 		 * disabled by software override. Since there really
2182 		 * isn't a way to advertise that we are capable of RX
2183 		 * Pause ONLY, we will advertise that we support both
2184 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2185 		 * disable the adapter's ability to send PAUSE frames.
2186 		 */
2187 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2188 		break;
2189 	case ixgbe_fc_tx_pause:
2190 		/*
2191 		 * Tx Flow control is enabled, and Rx Flow control is
2192 		 * disabled by software override.
2193 		 */
2194 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2195 		break;
2196 	case ixgbe_fc_full:
2197 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2198 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2199 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2200 		break;
2201 	default:
2202 		hw_dbg(hw, "Flow control param set incorrectly\n");
2203 		return -EIO;
2204 	}
2205 
2206 	/* Set 802.3x based flow control settings. */
2207 	mflcn_reg |= IXGBE_MFLCN_DPF;
2208 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2209 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2210 
2211 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2212 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2213 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2214 		    hw->fc.high_water[i]) {
2215 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2216 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2217 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2218 		} else {
2219 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2220 			/*
2221 			 * In order to prevent Tx hangs when the internal Tx
2222 			 * switch is enabled we must set the high water mark
2223 			 * to the Rx packet buffer size - 24KB.  This allows
2224 			 * the Tx switch to function even under heavy Rx
2225 			 * workloads.
2226 			 */
2227 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2228 		}
2229 
2230 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2231 	}
2232 
2233 	/* Configure pause time (2 TCs per register) */
2234 	reg = hw->fc.pause_time * 0x00010001U;
2235 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2236 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2237 
2238 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2239 
2240 	return 0;
2241 }
2242 
2243 /**
2244  *  ixgbe_negotiate_fc - Negotiate flow control
2245  *  @hw: pointer to hardware structure
2246  *  @adv_reg: flow control advertised settings
2247  *  @lp_reg: link partner's flow control settings
2248  *  @adv_sym: symmetric pause bit in advertisement
2249  *  @adv_asm: asymmetric pause bit in advertisement
2250  *  @lp_sym: symmetric pause bit in link partner advertisement
2251  *  @lp_asm: asymmetric pause bit in link partner advertisement
2252  *
2253  *  Find the intersection between advertised settings and link partner's
2254  *  advertised settings
2255  **/
2256 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2257 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2258 {
2259 	if ((!(adv_reg)) ||  (!(lp_reg)))
2260 		return -EINVAL;
2261 
2262 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2263 		/*
2264 		 * Now we need to check if the user selected Rx ONLY
2265 		 * of pause frames.  In this case, we had to advertise
2266 		 * FULL flow control because we could not advertise RX
2267 		 * ONLY. Hence, we must now check to see if we need to
2268 		 * turn OFF the TRANSMISSION of PAUSE frames.
2269 		 */
2270 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2271 			hw->fc.current_mode = ixgbe_fc_full;
2272 			hw_dbg(hw, "Flow Control = FULL.\n");
2273 		} else {
2274 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2275 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2276 		}
2277 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2278 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2279 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2280 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2281 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2282 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2283 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2284 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2285 	} else {
2286 		hw->fc.current_mode = ixgbe_fc_none;
2287 		hw_dbg(hw, "Flow Control = NONE.\n");
2288 	}
2289 	return 0;
2290 }
2291 
2292 /**
2293  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2294  *  @hw: pointer to hardware structure
2295  *
2296  *  Enable flow control according on 1 gig fiber.
2297  **/
2298 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2299 {
2300 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2301 	s32 ret_val;
2302 
2303 	/*
2304 	 * On multispeed fiber at 1g, bail out if
2305 	 * - link is up but AN did not complete, or if
2306 	 * - link is up and AN completed but timed out
2307 	 */
2308 
2309 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2310 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2311 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2312 		return -EIO;
2313 
2314 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2315 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2316 
2317 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2318 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2319 			       IXGBE_PCS1GANA_ASM_PAUSE,
2320 			       IXGBE_PCS1GANA_SYM_PAUSE,
2321 			       IXGBE_PCS1GANA_ASM_PAUSE);
2322 
2323 	return ret_val;
2324 }
2325 
2326 /**
2327  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2328  *  @hw: pointer to hardware structure
2329  *
2330  *  Enable flow control according to IEEE clause 37.
2331  **/
2332 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2333 {
2334 	u32 links2, anlp1_reg, autoc_reg, links;
2335 	s32 ret_val;
2336 
2337 	/*
2338 	 * On backplane, bail out if
2339 	 * - backplane autoneg was not completed, or if
2340 	 * - we are 82599 and link partner is not AN enabled
2341 	 */
2342 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2343 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2344 		return -EIO;
2345 
2346 	if (hw->mac.type == ixgbe_mac_82599EB) {
2347 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2348 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2349 			return -EIO;
2350 	}
2351 	/*
2352 	 * Read the 10g AN autoc and LP ability registers and resolve
2353 	 * local flow control settings accordingly
2354 	 */
2355 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2356 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2357 
2358 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2359 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2360 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2361 
2362 	return ret_val;
2363 }
2364 
2365 /**
2366  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2367  *  @hw: pointer to hardware structure
2368  *
2369  *  Enable flow control according to IEEE clause 37.
2370  **/
2371 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2372 {
2373 	u16 technology_ability_reg = 0;
2374 	u16 lp_technology_ability_reg = 0;
2375 
2376 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2377 			     MDIO_MMD_AN,
2378 			     &technology_ability_reg);
2379 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2380 			     MDIO_MMD_AN,
2381 			     &lp_technology_ability_reg);
2382 
2383 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2384 				  (u32)lp_technology_ability_reg,
2385 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2386 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2387 }
2388 
2389 /**
2390  *  ixgbe_fc_autoneg - Configure flow control
2391  *  @hw: pointer to hardware structure
2392  *
2393  *  Compares our advertised flow control capabilities to those advertised by
2394  *  our link partner, and determines the proper flow control mode to use.
2395  **/
2396 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2397 {
2398 	ixgbe_link_speed speed;
2399 	s32 ret_val = -EIO;
2400 	bool link_up;
2401 
2402 	/*
2403 	 * AN should have completed when the cable was plugged in.
2404 	 * Look for reasons to bail out.  Bail out if:
2405 	 * - FC autoneg is disabled, or if
2406 	 * - link is not up.
2407 	 *
2408 	 * Since we're being called from an LSC, link is already known to be up.
2409 	 * So use link_up_wait_to_complete=false.
2410 	 */
2411 	if (hw->fc.disable_fc_autoneg)
2412 		goto out;
2413 
2414 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2415 	if (!link_up)
2416 		goto out;
2417 
2418 	switch (hw->phy.media_type) {
2419 	/* Autoneg flow control on fiber adapters */
2420 	case ixgbe_media_type_fiber:
2421 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2422 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2423 		break;
2424 
2425 	/* Autoneg flow control on backplane adapters */
2426 	case ixgbe_media_type_backplane:
2427 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2428 		break;
2429 
2430 	/* Autoneg flow control on copper adapters */
2431 	case ixgbe_media_type_copper:
2432 		if (ixgbe_device_supports_autoneg_fc(hw))
2433 			ret_val = ixgbe_fc_autoneg_copper(hw);
2434 		break;
2435 
2436 	default:
2437 		break;
2438 	}
2439 
2440 out:
2441 	if (ret_val == 0) {
2442 		hw->fc.fc_was_autonegged = true;
2443 	} else {
2444 		hw->fc.fc_was_autonegged = false;
2445 		hw->fc.current_mode = hw->fc.requested_mode;
2446 	}
2447 }
2448 
2449 /**
2450  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2451  * @hw: pointer to hardware structure
2452  *
2453  * System-wide timeout range is encoded in PCIe Device Control2 register.
2454  *
2455  *  Add 10% to specified maximum and return the number of times to poll for
2456  *  completion timeout, in units of 100 microsec.  Never return less than
2457  *  800 = 80 millisec.
2458  **/
2459 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2460 {
2461 	s16 devctl2;
2462 	u32 pollcnt;
2463 
2464 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2465 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2466 
2467 	switch (devctl2) {
2468 	case IXGBE_PCIDEVCTRL2_65_130ms:
2469 		 pollcnt = 1300;         /* 130 millisec */
2470 		break;
2471 	case IXGBE_PCIDEVCTRL2_260_520ms:
2472 		pollcnt = 5200;         /* 520 millisec */
2473 		break;
2474 	case IXGBE_PCIDEVCTRL2_1_2s:
2475 		pollcnt = 20000;        /* 2 sec */
2476 		break;
2477 	case IXGBE_PCIDEVCTRL2_4_8s:
2478 		pollcnt = 80000;        /* 8 sec */
2479 		break;
2480 	case IXGBE_PCIDEVCTRL2_17_34s:
2481 		pollcnt = 34000;        /* 34 sec */
2482 		break;
2483 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2484 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2485 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2486 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2487 	default:
2488 		pollcnt = 800;          /* 80 millisec minimum */
2489 		break;
2490 	}
2491 
2492 	/* add 10% to spec maximum */
2493 	return (pollcnt * 11) / 10;
2494 }
2495 
2496 /**
2497  *  ixgbe_disable_pcie_primary - Disable PCI-express primary access
2498  *  @hw: pointer to hardware structure
2499  *
2500  *  Disables PCI-Express primary access and verifies there are no pending
2501  *  requests. -EALREADY is returned if primary disable
2502  *  bit hasn't caused the primary requests to be disabled, else 0
2503  *  is returned signifying primary requests disabled.
2504  **/
2505 static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2506 {
2507 	u32 i, poll;
2508 	u16 value;
2509 
2510 	/* Always set this bit to ensure any future transactions are blocked */
2511 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2512 
2513 	/* Poll for bit to read as set */
2514 	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2515 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2516 			break;
2517 		usleep_range(100, 120);
2518 	}
2519 	if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2520 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2521 		goto gio_disable_fail;
2522 	}
2523 
2524 	/* Exit if primary requests are blocked */
2525 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2526 	    ixgbe_removed(hw->hw_addr))
2527 		return 0;
2528 
2529 	/* Poll for primary request bit to clear */
2530 	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2531 		udelay(100);
2532 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2533 			return 0;
2534 	}
2535 
2536 	/*
2537 	 * Two consecutive resets are required via CTRL.RST per datasheet
2538 	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
2539 	 * of this need.  The first reset prevents new primary requests from
2540 	 * being issued by our device.  We then must wait 1usec or more for any
2541 	 * remaining completions from the PCIe bus to trickle in, and then reset
2542 	 * again to clear out any effects they may have had on our device.
2543 	 */
2544 	hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2545 gio_disable_fail:
2546 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2547 
2548 	if (hw->mac.type >= ixgbe_mac_X550)
2549 		return 0;
2550 
2551 	/*
2552 	 * Before proceeding, make sure that the PCIe block does not have
2553 	 * transactions pending.
2554 	 */
2555 	poll = ixgbe_pcie_timeout_poll(hw);
2556 	for (i = 0; i < poll; i++) {
2557 		udelay(100);
2558 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2559 		if (ixgbe_removed(hw->hw_addr))
2560 			return 0;
2561 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2562 			return 0;
2563 	}
2564 
2565 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2566 	return -EALREADY;
2567 }
2568 
2569 /**
2570  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2571  *  @hw: pointer to hardware structure
2572  *  @mask: Mask to specify which semaphore to acquire
2573  *
2574  *  Acquires the SWFW semaphore through the GSSR register for the specified
2575  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2576  **/
2577 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2578 {
2579 	u32 gssr = 0;
2580 	u32 swmask = mask;
2581 	u32 fwmask = mask << 5;
2582 	u32 timeout = 200;
2583 	u32 i;
2584 
2585 	for (i = 0; i < timeout; i++) {
2586 		/*
2587 		 * SW NVM semaphore bit is used for access to all
2588 		 * SW_FW_SYNC bits (not just NVM)
2589 		 */
2590 		if (ixgbe_get_eeprom_semaphore(hw))
2591 			return -EBUSY;
2592 
2593 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2594 		if (!(gssr & (fwmask | swmask))) {
2595 			gssr |= swmask;
2596 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2597 			ixgbe_release_eeprom_semaphore(hw);
2598 			return 0;
2599 		} else {
2600 			/* Resource is currently in use by FW or SW */
2601 			ixgbe_release_eeprom_semaphore(hw);
2602 			usleep_range(5000, 10000);
2603 		}
2604 	}
2605 
2606 	/* If time expired clear the bits holding the lock and retry */
2607 	if (gssr & (fwmask | swmask))
2608 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2609 
2610 	usleep_range(5000, 10000);
2611 	return -EBUSY;
2612 }
2613 
2614 /**
2615  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2616  *  @hw: pointer to hardware structure
2617  *  @mask: Mask to specify which semaphore to release
2618  *
2619  *  Releases the SWFW semaphore through the GSSR register for the specified
2620  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2621  **/
2622 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2623 {
2624 	u32 gssr;
2625 	u32 swmask = mask;
2626 
2627 	ixgbe_get_eeprom_semaphore(hw);
2628 
2629 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2630 	gssr &= ~swmask;
2631 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2632 
2633 	ixgbe_release_eeprom_semaphore(hw);
2634 }
2635 
2636 /**
2637  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2638  * @hw: pointer to hardware structure
2639  * @reg_val: Value we read from AUTOC
2640  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2641  *	    true in this the generic case.
2642  *
2643  * The default case requires no protection so just to the register read.
2644  **/
2645 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2646 {
2647 	*locked = false;
2648 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2649 	return 0;
2650 }
2651 
2652 /**
2653  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2654  * @hw: pointer to hardware structure
2655  * @reg_val: value to write to AUTOC
2656  * @locked: bool to indicate whether the SW/FW lock was already taken by
2657  *	    previous read.
2658  **/
2659 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2660 {
2661 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2662 	return 0;
2663 }
2664 
2665 /**
2666  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2667  *  @hw: pointer to hardware structure
2668  *
2669  *  Stops the receive data path and waits for the HW to internally
2670  *  empty the Rx security block.
2671  **/
2672 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2673 {
2674 #define IXGBE_MAX_SECRX_POLL 40
2675 	int i;
2676 	int secrxreg;
2677 
2678 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2679 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2680 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2681 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2682 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2683 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2684 			break;
2685 		else
2686 			/* Use interrupt-safe sleep just in case */
2687 			udelay(1000);
2688 	}
2689 
2690 	/* For informational purposes only */
2691 	if (i >= IXGBE_MAX_SECRX_POLL)
2692 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2693 
2694 	return 0;
2695 
2696 }
2697 
2698 /**
2699  *  ixgbe_enable_rx_buff_generic - Enables the receive data path
2700  *  @hw: pointer to hardware structure
2701  *
2702  *  Enables the receive data path
2703  **/
2704 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2705 {
2706 	u32 secrxreg;
2707 
2708 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2709 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2710 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2711 	IXGBE_WRITE_FLUSH(hw);
2712 
2713 	return 0;
2714 }
2715 
2716 /**
2717  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2718  *  @hw: pointer to hardware structure
2719  *  @regval: register value to write to RXCTRL
2720  *
2721  *  Enables the Rx DMA unit
2722  **/
2723 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2724 {
2725 	if (regval & IXGBE_RXCTRL_RXEN)
2726 		hw->mac.ops.enable_rx(hw);
2727 	else
2728 		hw->mac.ops.disable_rx(hw);
2729 
2730 	return 0;
2731 }
2732 
2733 /**
2734  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2735  *  @hw: pointer to hardware structure
2736  *  @index: led number to blink
2737  **/
2738 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2739 {
2740 	ixgbe_link_speed speed = 0;
2741 	bool link_up = false;
2742 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2743 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2744 	bool locked = false;
2745 	s32 ret_val;
2746 
2747 	if (index > 3)
2748 		return -EINVAL;
2749 
2750 	/*
2751 	 * Link must be up to auto-blink the LEDs;
2752 	 * Force it if link is down.
2753 	 */
2754 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2755 
2756 	if (!link_up) {
2757 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2758 		if (ret_val)
2759 			return ret_val;
2760 
2761 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2762 		autoc_reg |= IXGBE_AUTOC_FLU;
2763 
2764 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2765 		if (ret_val)
2766 			return ret_val;
2767 
2768 		IXGBE_WRITE_FLUSH(hw);
2769 
2770 		usleep_range(10000, 20000);
2771 	}
2772 
2773 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2774 	led_reg |= IXGBE_LED_BLINK(index);
2775 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2776 	IXGBE_WRITE_FLUSH(hw);
2777 
2778 	return 0;
2779 }
2780 
2781 /**
2782  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2783  *  @hw: pointer to hardware structure
2784  *  @index: led number to stop blinking
2785  **/
2786 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2787 {
2788 	u32 autoc_reg = 0;
2789 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2790 	bool locked = false;
2791 	s32 ret_val;
2792 
2793 	if (index > 3)
2794 		return -EINVAL;
2795 
2796 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2797 	if (ret_val)
2798 		return ret_val;
2799 
2800 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2801 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2802 
2803 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2804 	if (ret_val)
2805 		return ret_val;
2806 
2807 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2808 	led_reg &= ~IXGBE_LED_BLINK(index);
2809 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2810 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2811 	IXGBE_WRITE_FLUSH(hw);
2812 
2813 	return 0;
2814 }
2815 
2816 /**
2817  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2818  *  @hw: pointer to hardware structure
2819  *  @san_mac_offset: SAN MAC address offset
2820  *
2821  *  This function will read the EEPROM location for the SAN MAC address
2822  *  pointer, and returns the value at that location.  This is used in both
2823  *  get and set mac_addr routines.
2824  **/
2825 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2826 					u16 *san_mac_offset)
2827 {
2828 	s32 ret_val;
2829 
2830 	/*
2831 	 * First read the EEPROM pointer to see if the MAC addresses are
2832 	 * available.
2833 	 */
2834 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2835 				      san_mac_offset);
2836 	if (ret_val)
2837 		hw_err(hw, "eeprom read at offset %d failed\n",
2838 		       IXGBE_SAN_MAC_ADDR_PTR);
2839 
2840 	return ret_val;
2841 }
2842 
2843 /**
2844  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2845  *  @hw: pointer to hardware structure
2846  *  @san_mac_addr: SAN MAC address
2847  *
2848  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2849  *  per-port, so set_lan_id() must be called before reading the addresses.
2850  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2851  *  upon for non-SFP connections, so we must call it here.
2852  **/
2853 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2854 {
2855 	u16 san_mac_data, san_mac_offset;
2856 	u8 i;
2857 	s32 ret_val;
2858 
2859 	/*
2860 	 * First read the EEPROM pointer to see if the MAC addresses are
2861 	 * available.  If they're not, no point in calling set_lan_id() here.
2862 	 */
2863 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2864 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2865 
2866 		goto san_mac_addr_clr;
2867 
2868 	/* make sure we know which port we need to program */
2869 	hw->mac.ops.set_lan_id(hw);
2870 	/* apply the port offset to the address offset */
2871 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2872 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2873 	for (i = 0; i < 3; i++) {
2874 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2875 					      &san_mac_data);
2876 		if (ret_val) {
2877 			hw_err(hw, "eeprom read at offset %d failed\n",
2878 			       san_mac_offset);
2879 			goto san_mac_addr_clr;
2880 		}
2881 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2882 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2883 		san_mac_offset++;
2884 	}
2885 	return 0;
2886 
2887 san_mac_addr_clr:
2888 	/* No addresses available in this EEPROM.  It's not necessarily an
2889 	 * error though, so just wipe the local address and return.
2890 	 */
2891 	for (i = 0; i < 6; i++)
2892 		san_mac_addr[i] = 0xFF;
2893 	return ret_val;
2894 }
2895 
2896 /**
2897  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2898  *  @hw: pointer to hardware structure
2899  *
2900  *  Read PCIe configuration space, and get the MSI-X vector count from
2901  *  the capabilities table.
2902  **/
2903 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2904 {
2905 	u16 msix_count;
2906 	u16 max_msix_count;
2907 	u16 pcie_offset;
2908 
2909 	switch (hw->mac.type) {
2910 	case ixgbe_mac_82598EB:
2911 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2912 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2913 		break;
2914 	case ixgbe_mac_82599EB:
2915 	case ixgbe_mac_X540:
2916 	case ixgbe_mac_X550:
2917 	case ixgbe_mac_X550EM_x:
2918 	case ixgbe_mac_x550em_a:
2919 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2920 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2921 		break;
2922 	default:
2923 		return 1;
2924 	}
2925 
2926 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2927 	if (ixgbe_removed(hw->hw_addr))
2928 		msix_count = 0;
2929 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2930 
2931 	/* MSI-X count is zero-based in HW */
2932 	msix_count++;
2933 
2934 	if (msix_count > max_msix_count)
2935 		msix_count = max_msix_count;
2936 
2937 	return msix_count;
2938 }
2939 
2940 /**
2941  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2942  *  @hw: pointer to hardware struct
2943  *  @rar: receive address register index to disassociate
2944  *  @vmdq: VMDq pool index to remove from the rar
2945  **/
2946 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2947 {
2948 	u32 mpsar_lo, mpsar_hi;
2949 	u32 rar_entries = hw->mac.num_rar_entries;
2950 
2951 	/* Make sure we are using a valid rar index range */
2952 	if (rar >= rar_entries) {
2953 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2954 		return -EINVAL;
2955 	}
2956 
2957 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2958 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2959 
2960 	if (ixgbe_removed(hw->hw_addr))
2961 		return 0;
2962 
2963 	if (!mpsar_lo && !mpsar_hi)
2964 		return 0;
2965 
2966 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2967 		if (mpsar_lo) {
2968 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2969 			mpsar_lo = 0;
2970 		}
2971 		if (mpsar_hi) {
2972 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2973 			mpsar_hi = 0;
2974 		}
2975 	} else if (vmdq < 32) {
2976 		mpsar_lo &= ~BIT(vmdq);
2977 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2978 	} else {
2979 		mpsar_hi &= ~BIT(vmdq - 32);
2980 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2981 	}
2982 
2983 	/* was that the last pool using this rar? */
2984 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2985 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2986 		hw->mac.ops.clear_rar(hw, rar);
2987 
2988 	return 0;
2989 }
2990 
2991 /**
2992  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2993  *  @hw: pointer to hardware struct
2994  *  @rar: receive address register index to associate with a VMDq index
2995  *  @vmdq: VMDq pool index
2996  **/
2997 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2998 {
2999 	u32 mpsar;
3000 	u32 rar_entries = hw->mac.num_rar_entries;
3001 
3002 	/* Make sure we are using a valid rar index range */
3003 	if (rar >= rar_entries) {
3004 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3005 		return -EINVAL;
3006 	}
3007 
3008 	if (vmdq < 32) {
3009 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3010 		mpsar |= BIT(vmdq);
3011 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3012 	} else {
3013 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3014 		mpsar |= BIT(vmdq - 32);
3015 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3016 	}
3017 	return 0;
3018 }
3019 
3020 /**
3021  *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3022  *  @hw: pointer to hardware struct
3023  *  @vmdq: VMDq pool index
3024  *
3025  *  This function should only be involved in the IOV mode.
3026  *  In IOV mode, Default pool is next pool after the number of
3027  *  VFs advertized and not 0.
3028  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3029  **/
3030 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3031 {
3032 	u32 rar = hw->mac.san_mac_rar_index;
3033 
3034 	if (vmdq < 32) {
3035 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3036 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3037 	} else {
3038 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3039 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 /**
3046  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3047  *  @hw: pointer to hardware structure
3048  **/
3049 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3050 {
3051 	int i;
3052 
3053 	for (i = 0; i < 128; i++)
3054 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3055 
3056 	return 0;
3057 }
3058 
3059 /**
3060  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3061  *  @hw: pointer to hardware structure
3062  *  @vlan: VLAN id to write to VLAN filter
3063  *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3064  *		  vlanid not found
3065  *
3066  *  return the VLVF index where this VLAN id should be placed
3067  *
3068  **/
3069 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3070 {
3071 	s32 regindex, first_empty_slot;
3072 	u32 bits;
3073 
3074 	/* short cut the special case */
3075 	if (vlan == 0)
3076 		return 0;
3077 
3078 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3079 	 * will simply bypass the VLVF if there are no entries present in the
3080 	 * VLVF that contain our VLAN
3081 	 */
3082 	first_empty_slot = vlvf_bypass ? -ENOSPC : 0;
3083 
3084 	/* add VLAN enable bit for comparison */
3085 	vlan |= IXGBE_VLVF_VIEN;
3086 
3087 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3088 	 * slot found along the way.
3089 	 *
3090 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3091 	 */
3092 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3093 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3094 		if (bits == vlan)
3095 			return regindex;
3096 		if (!first_empty_slot && !bits)
3097 			first_empty_slot = regindex;
3098 	}
3099 
3100 	/* If we are here then we didn't find the VLAN.  Return first empty
3101 	 * slot we found during our search, else error.
3102 	 */
3103 	if (!first_empty_slot)
3104 		hw_dbg(hw, "No space in VLVF.\n");
3105 
3106 	return first_empty_slot ? : -ENOSPC;
3107 }
3108 
3109 /**
3110  *  ixgbe_set_vfta_generic - Set VLAN filter table
3111  *  @hw: pointer to hardware structure
3112  *  @vlan: VLAN id to write to VLAN filter
3113  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3114  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3115  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3116  *
3117  *  Turn on/off specified VLAN in the VLAN filter table.
3118  **/
3119 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3120 			   bool vlan_on, bool vlvf_bypass)
3121 {
3122 	u32 regidx, vfta_delta, vfta, bits;
3123 	s32 vlvf_index;
3124 
3125 	if ((vlan > 4095) || (vind > 63))
3126 		return -EINVAL;
3127 
3128 	/*
3129 	 * this is a 2 part operation - first the VFTA, then the
3130 	 * VLVF and VLVFB if VT Mode is set
3131 	 * We don't write the VFTA until we know the VLVF part succeeded.
3132 	 */
3133 
3134 	/* Part 1
3135 	 * The VFTA is a bitstring made up of 128 32-bit registers
3136 	 * that enable the particular VLAN id, much like the MTA:
3137 	 *    bits[11-5]: which register
3138 	 *    bits[4-0]:  which bit in the register
3139 	 */
3140 	regidx = vlan / 32;
3141 	vfta_delta = BIT(vlan % 32);
3142 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3143 
3144 	/* vfta_delta represents the difference between the current value
3145 	 * of vfta and the value we want in the register.  Since the diff
3146 	 * is an XOR mask we can just update vfta using an XOR.
3147 	 */
3148 	vfta_delta &= vlan_on ? ~vfta : vfta;
3149 	vfta ^= vfta_delta;
3150 
3151 	/* Part 2
3152 	 * If VT Mode is set
3153 	 *   Either vlan_on
3154 	 *     make sure the vlan is in VLVF
3155 	 *     set the vind bit in the matching VLVFB
3156 	 *   Or !vlan_on
3157 	 *     clear the pool bit and possibly the vind
3158 	 */
3159 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3160 		goto vfta_update;
3161 
3162 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3163 	if (vlvf_index < 0) {
3164 		if (vlvf_bypass)
3165 			goto vfta_update;
3166 		return vlvf_index;
3167 	}
3168 
3169 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3170 
3171 	/* set the pool bit */
3172 	bits |= BIT(vind % 32);
3173 	if (vlan_on)
3174 		goto vlvf_update;
3175 
3176 	/* clear the pool bit */
3177 	bits ^= BIT(vind % 32);
3178 
3179 	if (!bits &&
3180 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3181 		/* Clear VFTA first, then disable VLVF.  Otherwise
3182 		 * we run the risk of stray packets leaking into
3183 		 * the PF via the default pool
3184 		 */
3185 		if (vfta_delta)
3186 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3187 
3188 		/* disable VLVF and clear remaining bit from pool */
3189 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3190 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3191 
3192 		return 0;
3193 	}
3194 
3195 	/* If there are still bits set in the VLVFB registers
3196 	 * for the VLAN ID indicated we need to see if the
3197 	 * caller is requesting that we clear the VFTA entry bit.
3198 	 * If the caller has requested that we clear the VFTA
3199 	 * entry bit but there are still pools/VFs using this VLAN
3200 	 * ID entry then ignore the request.  We're not worried
3201 	 * about the case where we're turning the VFTA VLAN ID
3202 	 * entry bit on, only when requested to turn it off as
3203 	 * there may be multiple pools and/or VFs using the
3204 	 * VLAN ID entry.  In that case we cannot clear the
3205 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3206 	 * been cleared.  This will be indicated by "bits" being
3207 	 * zero.
3208 	 */
3209 	vfta_delta = 0;
3210 
3211 vlvf_update:
3212 	/* record pool change and enable VLAN ID if not already enabled */
3213 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3214 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3215 
3216 vfta_update:
3217 	/* Update VFTA now that we are ready for traffic */
3218 	if (vfta_delta)
3219 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3220 
3221 	return 0;
3222 }
3223 
3224 /**
3225  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3226  *  @hw: pointer to hardware structure
3227  *
3228  *  Clears the VLAN filter table, and the VMDq index associated with the filter
3229  **/
3230 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3231 {
3232 	u32 offset;
3233 
3234 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3235 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3236 
3237 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3238 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3239 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3240 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3241 	}
3242 
3243 	return 0;
3244 }
3245 
3246 /**
3247  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3248  *  @hw: pointer to hardware structure
3249  *
3250  *  Contains the logic to identify if we need to verify link for the
3251  *  crosstalk fix
3252  **/
3253 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3254 {
3255 	/* Does FW say we need the fix */
3256 	if (!hw->need_crosstalk_fix)
3257 		return false;
3258 
3259 	/* Only consider SFP+ PHYs i.e. media type fiber */
3260 	switch (hw->mac.ops.get_media_type(hw)) {
3261 	case ixgbe_media_type_fiber:
3262 	case ixgbe_media_type_fiber_qsfp:
3263 		break;
3264 	default:
3265 		return false;
3266 	}
3267 
3268 	return true;
3269 }
3270 
3271 /**
3272  *  ixgbe_check_mac_link_generic - Determine link and speed status
3273  *  @hw: pointer to hardware structure
3274  *  @speed: pointer to link speed
3275  *  @link_up: true when link is up
3276  *  @link_up_wait_to_complete: bool used to wait for link up or not
3277  *
3278  *  Reads the links register to determine if link is up and the current speed
3279  **/
3280 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3281 				 bool *link_up, bool link_up_wait_to_complete)
3282 {
3283 	bool crosstalk_fix_active = ixgbe_need_crosstalk_fix(hw);
3284 	u32 links_reg, links_orig;
3285 	u32 i;
3286 
3287 	/* If Crosstalk fix enabled do the sanity check of making sure
3288 	 * the SFP+ cage is full.
3289 	 */
3290 	if (crosstalk_fix_active) {
3291 		u32 sfp_cage_full;
3292 
3293 		switch (hw->mac.type) {
3294 		case ixgbe_mac_82599EB:
3295 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3296 					IXGBE_ESDP_SDP2;
3297 			break;
3298 		case ixgbe_mac_X550EM_x:
3299 		case ixgbe_mac_x550em_a:
3300 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3301 					IXGBE_ESDP_SDP0;
3302 			break;
3303 		default:
3304 			/* sanity check - No SFP+ devices here */
3305 			sfp_cage_full = false;
3306 			break;
3307 		}
3308 
3309 		if (!sfp_cage_full) {
3310 			*link_up = false;
3311 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3312 			return 0;
3313 		}
3314 	}
3315 
3316 	/* clear the old state */
3317 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3318 
3319 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3320 
3321 	if (links_orig != links_reg) {
3322 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3323 		       links_orig, links_reg);
3324 	}
3325 
3326 	if (link_up_wait_to_complete) {
3327 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3328 			if (links_reg & IXGBE_LINKS_UP) {
3329 				*link_up = true;
3330 				break;
3331 			} else {
3332 				*link_up = false;
3333 			}
3334 			msleep(100);
3335 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3336 		}
3337 	} else {
3338 		if (links_reg & IXGBE_LINKS_UP) {
3339 			if (crosstalk_fix_active) {
3340 				/* Check the link state again after a delay
3341 				 * to filter out spurious link up
3342 				 * notifications.
3343 				 */
3344 				mdelay(5);
3345 				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3346 				if (!(links_reg & IXGBE_LINKS_UP)) {
3347 					*link_up = false;
3348 					*speed = IXGBE_LINK_SPEED_UNKNOWN;
3349 					return 0;
3350 				}
3351 			}
3352 			*link_up = true;
3353 		} else {
3354 			*link_up = false;
3355 		}
3356 	}
3357 
3358 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3359 	case IXGBE_LINKS_SPEED_10G_82599:
3360 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3361 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3362 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3363 		else
3364 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3365 		break;
3366 	case IXGBE_LINKS_SPEED_1G_82599:
3367 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3368 		break;
3369 	case IXGBE_LINKS_SPEED_100_82599:
3370 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3371 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3372 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3373 		else
3374 			*speed = IXGBE_LINK_SPEED_100_FULL;
3375 		break;
3376 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3377 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3378 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3379 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3380 			*speed = IXGBE_LINK_SPEED_10_FULL;
3381 		}
3382 		break;
3383 	default:
3384 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3385 	}
3386 
3387 	return 0;
3388 }
3389 
3390 /**
3391  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3392  *  the EEPROM
3393  *  @hw: pointer to hardware structure
3394  *  @wwnn_prefix: the alternative WWNN prefix
3395  *  @wwpn_prefix: the alternative WWPN prefix
3396  *
3397  *  This function will read the EEPROM from the alternative SAN MAC address
3398  *  block to check the support for the alternative WWNN/WWPN prefix support.
3399  **/
3400 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3401 					u16 *wwpn_prefix)
3402 {
3403 	u16 offset, caps;
3404 	u16 alt_san_mac_blk_offset;
3405 
3406 	/* clear output first */
3407 	*wwnn_prefix = 0xFFFF;
3408 	*wwpn_prefix = 0xFFFF;
3409 
3410 	/* check if alternative SAN MAC is supported */
3411 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3412 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3413 		goto wwn_prefix_err;
3414 
3415 	if ((alt_san_mac_blk_offset == 0) ||
3416 	    (alt_san_mac_blk_offset == 0xFFFF))
3417 		return 0;
3418 
3419 	/* check capability in alternative san mac address block */
3420 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3421 	if (hw->eeprom.ops.read(hw, offset, &caps))
3422 		goto wwn_prefix_err;
3423 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3424 		return 0;
3425 
3426 	/* get the corresponding prefix for WWNN/WWPN */
3427 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3428 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3429 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3430 
3431 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3432 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3433 		goto wwn_prefix_err;
3434 
3435 	return 0;
3436 
3437 wwn_prefix_err:
3438 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3439 	return 0;
3440 }
3441 
3442 /**
3443  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3444  *  @hw: pointer to hardware structure
3445  *  @enable: enable or disable switch for MAC anti-spoofing
3446  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3447  *
3448  **/
3449 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3450 {
3451 	int vf_target_reg = vf >> 3;
3452 	int vf_target_shift = vf % 8;
3453 	u32 pfvfspoof;
3454 
3455 	if (hw->mac.type == ixgbe_mac_82598EB)
3456 		return;
3457 
3458 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3459 	if (enable)
3460 		pfvfspoof |= BIT(vf_target_shift);
3461 	else
3462 		pfvfspoof &= ~BIT(vf_target_shift);
3463 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3464 }
3465 
3466 /**
3467  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3468  *  @hw: pointer to hardware structure
3469  *  @enable: enable or disable switch for VLAN anti-spoofing
3470  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3471  *
3472  **/
3473 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3474 {
3475 	int vf_target_reg = vf >> 3;
3476 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3477 	u32 pfvfspoof;
3478 
3479 	if (hw->mac.type == ixgbe_mac_82598EB)
3480 		return;
3481 
3482 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3483 	if (enable)
3484 		pfvfspoof |= BIT(vf_target_shift);
3485 	else
3486 		pfvfspoof &= ~BIT(vf_target_shift);
3487 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3488 }
3489 
3490 /**
3491  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3492  *  @hw: pointer to hardware structure
3493  *  @device_caps: the EEPROM word with the extra device capabilities
3494  *
3495  *  This function will read the EEPROM location for the device capabilities,
3496  *  and return the word through device_caps.
3497  **/
3498 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3499 {
3500 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3501 
3502 	return 0;
3503 }
3504 
3505 /**
3506  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3507  * @hw: pointer to hardware structure
3508  * @num_pb: number of packet buffers to allocate
3509  * @headroom: reserve n KB of headroom
3510  * @strategy: packet buffer allocation strategy
3511  **/
3512 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3513 			     int num_pb,
3514 			     u32 headroom,
3515 			     int strategy)
3516 {
3517 	u32 pbsize = hw->mac.rx_pb_size;
3518 	int i = 0;
3519 	u32 rxpktsize, txpktsize, txpbthresh;
3520 
3521 	/* Reserve headroom */
3522 	pbsize -= headroom;
3523 
3524 	if (!num_pb)
3525 		num_pb = 1;
3526 
3527 	/* Divide remaining packet buffer space amongst the number
3528 	 * of packet buffers requested using supplied strategy.
3529 	 */
3530 	switch (strategy) {
3531 	case (PBA_STRATEGY_WEIGHTED):
3532 		/* pba_80_48 strategy weight first half of packet buffer with
3533 		 * 5/8 of the packet buffer space.
3534 		 */
3535 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3536 		pbsize -= rxpktsize * (num_pb / 2);
3537 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3538 		for (; i < (num_pb / 2); i++)
3539 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3540 		fallthrough; /* configure remaining packet buffers */
3541 	case (PBA_STRATEGY_EQUAL):
3542 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3543 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3544 		for (; i < num_pb; i++)
3545 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3546 		break;
3547 	default:
3548 		break;
3549 	}
3550 
3551 	/*
3552 	 * Setup Tx packet buffer and threshold equally for all TCs
3553 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3554 	 * 10 since the largest packet we support is just over 9K.
3555 	 */
3556 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3557 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3558 	for (i = 0; i < num_pb; i++) {
3559 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3560 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3561 	}
3562 
3563 	/* Clear unused TCs, if any, to zero buffer size*/
3564 	for (; i < IXGBE_MAX_PB; i++) {
3565 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3566 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3567 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3568 	}
3569 }
3570 
3571 /**
3572  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3573  *  @buffer: pointer to EEPROM
3574  *  @length: size of EEPROM to calculate a checksum for
3575  *
3576  *  Calculates the checksum for some buffer on a specified length.  The
3577  *  checksum calculated is returned.
3578  **/
3579 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3580 {
3581 	u32 i;
3582 	u8 sum = 0;
3583 
3584 	if (!buffer)
3585 		return 0;
3586 
3587 	for (i = 0; i < length; i++)
3588 		sum += buffer[i];
3589 
3590 	return (u8) (0 - sum);
3591 }
3592 
3593 /**
3594  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3595  *  @hw: pointer to the HW structure
3596  *  @buffer: command to write and where the return status will be placed
3597  *  @length: length of buffer, must be multiple of 4 bytes
3598  *  @timeout: time in ms to wait for command completion
3599  *
3600  *  Communicates with the manageability block. On success return 0
3601  *  else returns semaphore error when encountering an error acquiring
3602  *  semaphore, -EINVAL when incorrect parameters passed or -EIO when
3603  *  command fails.
3604  *
3605  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3606  *  by the caller.
3607  **/
3608 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3609 		       u32 timeout)
3610 {
3611 	u32 hicr, i, fwsts;
3612 	u16 dword_len;
3613 
3614 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3615 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3616 		return -EINVAL;
3617 	}
3618 
3619 	/* Set bit 9 of FWSTS clearing FW reset indication */
3620 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3621 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3622 
3623 	/* Check that the host interface is enabled. */
3624 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3625 	if (!(hicr & IXGBE_HICR_EN)) {
3626 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3627 		return -EIO;
3628 	}
3629 
3630 	/* Calculate length in DWORDs. We must be DWORD aligned */
3631 	if (length % sizeof(u32)) {
3632 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3633 		return -EINVAL;
3634 	}
3635 
3636 	dword_len = length >> 2;
3637 
3638 	/* The device driver writes the relevant command block
3639 	 * into the ram area.
3640 	 */
3641 	for (i = 0; i < dword_len; i++)
3642 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3643 				      i, (__force u32)cpu_to_le32(buffer[i]));
3644 
3645 	/* Setting this bit tells the ARC that a new command is pending. */
3646 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3647 
3648 	for (i = 0; i < timeout; i++) {
3649 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3650 		if (!(hicr & IXGBE_HICR_C))
3651 			break;
3652 		usleep_range(1000, 2000);
3653 	}
3654 
3655 	/* Check command successful completion. */
3656 	if ((timeout && i == timeout) ||
3657 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3658 		return -EIO;
3659 
3660 	return 0;
3661 }
3662 
3663 /**
3664  *  ixgbe_host_interface_command - Issue command to manageability block
3665  *  @hw: pointer to the HW structure
3666  *  @buffer: contains the command to write and where the return status will
3667  *           be placed
3668  *  @length: length of buffer, must be multiple of 4 bytes
3669  *  @timeout: time in ms to wait for command completion
3670  *  @return_data: read and return data from the buffer (true) or not (false)
3671  *  Needed because FW structures are big endian and decoding of
3672  *  these fields can be 8 bit or 16 bit based on command. Decoding
3673  *  is not easily understood without making a table of commands.
3674  *  So we will leave this up to the caller to read back the data
3675  *  in these cases.
3676  *
3677  *  Communicates with the manageability block.  On success return 0
3678  *  else return -EIO or -EINVAL.
3679  **/
3680 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3681 				 u32 length, u32 timeout,
3682 				 bool return_data)
3683 {
3684 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3685 	struct ixgbe_hic_hdr *hdr = buffer;
3686 	u32 *u32arr = buffer;
3687 	u16 buf_len, dword_len;
3688 	s32 status;
3689 	u32 bi;
3690 
3691 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3692 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3693 		return -EINVAL;
3694 	}
3695 	/* Take management host interface semaphore */
3696 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3697 	if (status)
3698 		return status;
3699 
3700 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3701 	if (status)
3702 		goto rel_out;
3703 
3704 	if (!return_data)
3705 		goto rel_out;
3706 
3707 	/* Calculate length in DWORDs */
3708 	dword_len = hdr_size >> 2;
3709 
3710 	/* first pull in the header so we know the buffer length */
3711 	for (bi = 0; bi < dword_len; bi++) {
3712 		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3713 		le32_to_cpus(&u32arr[bi]);
3714 	}
3715 
3716 	/* If there is any thing in data position pull it in */
3717 	buf_len = hdr->buf_len;
3718 	if (!buf_len)
3719 		goto rel_out;
3720 
3721 	if (length < round_up(buf_len, 4) + hdr_size) {
3722 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3723 		status = -EIO;
3724 		goto rel_out;
3725 	}
3726 
3727 	/* Calculate length in DWORDs, add 3 for odd lengths */
3728 	dword_len = (buf_len + 3) >> 2;
3729 
3730 	/* Pull in the rest of the buffer (bi is where we left off) */
3731 	for (; bi <= dword_len; bi++) {
3732 		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3733 		le32_to_cpus(&u32arr[bi]);
3734 	}
3735 
3736 rel_out:
3737 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3738 
3739 	return status;
3740 }
3741 
3742 /**
3743  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3744  *  @hw: pointer to the HW structure
3745  *  @maj: driver version major number
3746  *  @min: driver version minor number
3747  *  @build: driver version build number
3748  *  @sub: driver version sub build number
3749  *  @len: length of driver_ver string
3750  *  @driver_ver: driver string
3751  *
3752  *  Sends driver version number to firmware through the manageability
3753  *  block.  On success return 0
3754  *  else returns -EBUSY when encountering an error acquiring
3755  *  semaphore or -EIO when command fails.
3756  **/
3757 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3758 				 u8 build, u8 sub, __always_unused u16 len,
3759 				 __always_unused const char *driver_ver)
3760 {
3761 	struct ixgbe_hic_drv_info fw_cmd;
3762 	int i;
3763 	s32 ret_val;
3764 
3765 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3766 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3767 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3768 	fw_cmd.port_num = hw->bus.func;
3769 	fw_cmd.ver_maj = maj;
3770 	fw_cmd.ver_min = min;
3771 	fw_cmd.ver_build = build;
3772 	fw_cmd.ver_sub = sub;
3773 	fw_cmd.hdr.checksum = 0;
3774 	fw_cmd.pad = 0;
3775 	fw_cmd.pad2 = 0;
3776 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3777 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3778 
3779 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3780 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3781 						       sizeof(fw_cmd),
3782 						       IXGBE_HI_COMMAND_TIMEOUT,
3783 						       true);
3784 		if (ret_val != 0)
3785 			continue;
3786 
3787 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3788 		    FW_CEM_RESP_STATUS_SUCCESS)
3789 			ret_val = 0;
3790 		else
3791 			ret_val = -EIO;
3792 
3793 		break;
3794 	}
3795 
3796 	return ret_val;
3797 }
3798 
3799 /**
3800  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3801  * @hw: pointer to the hardware structure
3802  *
3803  * The 82599 and x540 MACs can experience issues if TX work is still pending
3804  * when a reset occurs.  This function prevents this by flushing the PCIe
3805  * buffers on the system.
3806  **/
3807 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3808 {
3809 	u32 gcr_ext, hlreg0, i, poll;
3810 	u16 value;
3811 
3812 	/*
3813 	 * If double reset is not requested then all transactions should
3814 	 * already be clear and as such there is no work to do
3815 	 */
3816 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3817 		return;
3818 
3819 	/*
3820 	 * Set loopback enable to prevent any transmits from being sent
3821 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3822 	 * has already been cleared.
3823 	 */
3824 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3825 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3826 
3827 	/* wait for a last completion before clearing buffers */
3828 	IXGBE_WRITE_FLUSH(hw);
3829 	usleep_range(3000, 6000);
3830 
3831 	/* Before proceeding, make sure that the PCIe block does not have
3832 	 * transactions pending.
3833 	 */
3834 	poll = ixgbe_pcie_timeout_poll(hw);
3835 	for (i = 0; i < poll; i++) {
3836 		usleep_range(100, 200);
3837 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3838 		if (ixgbe_removed(hw->hw_addr))
3839 			break;
3840 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3841 			break;
3842 	}
3843 
3844 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3845 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3846 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3847 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3848 
3849 	/* Flush all writes and allow 20usec for all transactions to clear */
3850 	IXGBE_WRITE_FLUSH(hw);
3851 	udelay(20);
3852 
3853 	/* restore previous register values */
3854 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3855 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3856 }
3857 
3858 static const u8 ixgbe_emc_temp_data[4] = {
3859 	IXGBE_EMC_INTERNAL_DATA,
3860 	IXGBE_EMC_DIODE1_DATA,
3861 	IXGBE_EMC_DIODE2_DATA,
3862 	IXGBE_EMC_DIODE3_DATA
3863 };
3864 static const u8 ixgbe_emc_therm_limit[4] = {
3865 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3866 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3867 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3868 	IXGBE_EMC_DIODE3_THERM_LIMIT
3869 };
3870 
3871 /**
3872  *  ixgbe_get_ets_data - Extracts the ETS bit data
3873  *  @hw: pointer to hardware structure
3874  *  @ets_cfg: extected ETS data
3875  *  @ets_offset: offset of ETS data
3876  *
3877  *  Returns error code.
3878  **/
3879 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3880 			      u16 *ets_offset)
3881 {
3882 	s32 status;
3883 
3884 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3885 	if (status)
3886 		return status;
3887 
3888 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3889 		return -EOPNOTSUPP;
3890 
3891 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3892 	if (status)
3893 		return status;
3894 
3895 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3896 		return -EOPNOTSUPP;
3897 
3898 	return 0;
3899 }
3900 
3901 /**
3902  *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3903  *  @hw: pointer to hardware structure
3904  *
3905  *  Returns the thermal sensor data structure
3906  **/
3907 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3908 {
3909 	s32 status;
3910 	u16 ets_offset;
3911 	u16 ets_cfg;
3912 	u16 ets_sensor;
3913 	u8  num_sensors;
3914 	u8  i;
3915 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3916 
3917 	/* Only support thermal sensors attached to physical port 0 */
3918 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3919 		return -EOPNOTSUPP;
3920 
3921 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3922 	if (status)
3923 		return status;
3924 
3925 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3926 	if (num_sensors > IXGBE_MAX_SENSORS)
3927 		num_sensors = IXGBE_MAX_SENSORS;
3928 
3929 	for (i = 0; i < num_sensors; i++) {
3930 		u8  sensor_index;
3931 		u8  sensor_location;
3932 
3933 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3934 					     &ets_sensor);
3935 		if (status)
3936 			return status;
3937 
3938 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3939 				IXGBE_ETS_DATA_INDEX_SHIFT);
3940 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3941 				   IXGBE_ETS_DATA_LOC_SHIFT);
3942 
3943 		if (sensor_location != 0) {
3944 			status = hw->phy.ops.read_i2c_byte(hw,
3945 					ixgbe_emc_temp_data[sensor_index],
3946 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3947 					&data->sensor[i].temp);
3948 			if (status)
3949 				return status;
3950 		}
3951 	}
3952 
3953 	return 0;
3954 }
3955 
3956 /**
3957  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3958  * @hw: pointer to hardware structure
3959  *
3960  * Inits the thermal sensor thresholds according to the NVM map
3961  * and save off the threshold and location values into mac.thermal_sensor_data
3962  **/
3963 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3964 {
3965 	s32 status;
3966 	u16 ets_offset;
3967 	u16 ets_cfg;
3968 	u16 ets_sensor;
3969 	u8  low_thresh_delta;
3970 	u8  num_sensors;
3971 	u8  therm_limit;
3972 	u8  i;
3973 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3974 
3975 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3976 
3977 	/* Only support thermal sensors attached to physical port 0 */
3978 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3979 		return -EOPNOTSUPP;
3980 
3981 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3982 	if (status)
3983 		return status;
3984 
3985 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3986 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3987 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3988 	if (num_sensors > IXGBE_MAX_SENSORS)
3989 		num_sensors = IXGBE_MAX_SENSORS;
3990 
3991 	for (i = 0; i < num_sensors; i++) {
3992 		u8  sensor_index;
3993 		u8  sensor_location;
3994 
3995 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3996 			hw_err(hw, "eeprom read at offset %d failed\n",
3997 			       ets_offset + 1 + i);
3998 			continue;
3999 		}
4000 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4001 				IXGBE_ETS_DATA_INDEX_SHIFT);
4002 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4003 				   IXGBE_ETS_DATA_LOC_SHIFT);
4004 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4005 
4006 		hw->phy.ops.write_i2c_byte(hw,
4007 			ixgbe_emc_therm_limit[sensor_index],
4008 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4009 
4010 		if (sensor_location == 0)
4011 			continue;
4012 
4013 		data->sensor[i].location = sensor_location;
4014 		data->sensor[i].caution_thresh = therm_limit;
4015 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 /**
4022  *  ixgbe_get_orom_version - Return option ROM from EEPROM
4023  *
4024  *  @hw: pointer to hardware structure
4025  *  @nvm_ver: pointer to output structure
4026  *
4027  *  if valid option ROM version, nvm_ver->or_valid set to true
4028  *  else nvm_ver->or_valid is false.
4029  **/
4030 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4031 			    struct ixgbe_nvm_version *nvm_ver)
4032 {
4033 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4034 
4035 	nvm_ver->or_valid = false;
4036 	/* Option Rom may or may not be present.  Start with pointer */
4037 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4038 
4039 	/* make sure offset is valid */
4040 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4041 		return;
4042 
4043 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4044 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4045 
4046 	/* option rom exists and is valid */
4047 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4048 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4049 	    eeprom_cfg_blkh == NVM_VER_INVALID)
4050 		return;
4051 
4052 	nvm_ver->or_valid = true;
4053 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4054 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4055 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4056 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4057 }
4058 
4059 /**
4060  *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4061  *  @hw: pointer to hardware structure
4062  *  @nvm_ver: pointer to output structure
4063  *
4064  *  if valid OEM product version, nvm_ver->oem_valid set to true
4065  *  else nvm_ver->oem_valid is false.
4066  **/
4067 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4068 				struct ixgbe_nvm_version *nvm_ver)
4069 {
4070 	u16 rel_num, prod_ver, mod_len, cap, offset;
4071 
4072 	nvm_ver->oem_valid = false;
4073 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4074 
4075 	/* Return is offset to OEM Product Version block is invalid */
4076 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4077 		return;
4078 
4079 	/* Read product version block */
4080 	hw->eeprom.ops.read(hw, offset, &mod_len);
4081 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4082 
4083 	/* Return if OEM product version block is invalid */
4084 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4085 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4086 		return;
4087 
4088 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4089 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4090 
4091 	/* Return if version is invalid */
4092 	if ((rel_num | prod_ver) == 0x0 ||
4093 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4094 		return;
4095 
4096 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4097 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4098 	nvm_ver->oem_release = rel_num;
4099 	nvm_ver->oem_valid = true;
4100 }
4101 
4102 /**
4103  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4104  *
4105  *  @hw: pointer to hardware structure
4106  *  @nvm_ver: pointer to output structure
4107  *
4108  *  word read errors will return 0xFFFF
4109  **/
4110 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4111 		      struct ixgbe_nvm_version *nvm_ver)
4112 {
4113 	u16 etk_id_l, etk_id_h;
4114 
4115 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4116 		etk_id_l = NVM_VER_INVALID;
4117 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4118 		etk_id_h = NVM_VER_INVALID;
4119 
4120 	/* The word order for the version format is determined by high order
4121 	 * word bit 15.
4122 	 */
4123 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4124 		nvm_ver->etk_id = etk_id_h;
4125 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4126 	} else {
4127 		nvm_ver->etk_id = etk_id_l;
4128 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4129 	}
4130 }
4131 
4132 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4133 {
4134 	u32 rxctrl;
4135 
4136 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4137 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4138 		if (hw->mac.type != ixgbe_mac_82598EB) {
4139 			u32 pfdtxgswc;
4140 
4141 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4142 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4143 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4144 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4145 				hw->mac.set_lben = true;
4146 			} else {
4147 				hw->mac.set_lben = false;
4148 			}
4149 		}
4150 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4151 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4152 	}
4153 }
4154 
4155 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4156 {
4157 	u32 rxctrl;
4158 
4159 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4160 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4161 
4162 	if (hw->mac.type != ixgbe_mac_82598EB) {
4163 		if (hw->mac.set_lben) {
4164 			u32 pfdtxgswc;
4165 
4166 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4167 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4168 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4169 			hw->mac.set_lben = false;
4170 		}
4171 	}
4172 }
4173 
4174 /** ixgbe_mng_present - returns true when management capability is present
4175  * @hw: pointer to hardware structure
4176  **/
4177 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4178 {
4179 	u32 fwsm;
4180 
4181 	if (hw->mac.type < ixgbe_mac_82599EB)
4182 		return false;
4183 
4184 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4185 
4186 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4187 }
4188 
4189 /**
4190  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4191  *  @hw: pointer to hardware structure
4192  *  @speed: new link speed
4193  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4194  *
4195  *  Set the link speed in the MAC and/or PHY register and restarts link.
4196  */
4197 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4198 					  ixgbe_link_speed speed,
4199 					  bool autoneg_wait_to_complete)
4200 {
4201 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4202 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4203 	s32 status = 0;
4204 	u32 speedcnt = 0;
4205 	u32 i = 0;
4206 	bool autoneg, link_up = false;
4207 
4208 	/* Mask off requested but non-supported speeds */
4209 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4210 	if (status)
4211 		return status;
4212 
4213 	speed &= link_speed;
4214 
4215 	/* Try each speed one by one, highest priority first.  We do this in
4216 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4217 	 */
4218 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4219 		speedcnt++;
4220 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4221 
4222 		/* Set the module link speed */
4223 		switch (hw->phy.media_type) {
4224 		case ixgbe_media_type_fiber:
4225 			hw->mac.ops.set_rate_select_speed(hw,
4226 						    IXGBE_LINK_SPEED_10GB_FULL);
4227 			break;
4228 		case ixgbe_media_type_fiber_qsfp:
4229 			/* QSFP module automatically detects MAC link speed */
4230 			break;
4231 		default:
4232 			hw_dbg(hw, "Unexpected media type\n");
4233 			break;
4234 		}
4235 
4236 		/* Allow module to change analog characteristics (1G->10G) */
4237 		msleep(40);
4238 
4239 		status = hw->mac.ops.setup_mac_link(hw,
4240 						    IXGBE_LINK_SPEED_10GB_FULL,
4241 						    autoneg_wait_to_complete);
4242 		if (status)
4243 			return status;
4244 
4245 		/* Flap the Tx laser if it has not already been done */
4246 		if (hw->mac.ops.flap_tx_laser)
4247 			hw->mac.ops.flap_tx_laser(hw);
4248 
4249 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4250 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4251 		 * attempted.  82599 uses the same timing for 10g SFI.
4252 		 */
4253 		for (i = 0; i < 5; i++) {
4254 			/* Wait for the link partner to also set speed */
4255 			msleep(100);
4256 
4257 			/* If we have link, just jump out */
4258 			status = hw->mac.ops.check_link(hw, &link_speed,
4259 							&link_up, false);
4260 			if (status)
4261 				return status;
4262 
4263 			if (link_up)
4264 				goto out;
4265 		}
4266 	}
4267 
4268 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4269 		speedcnt++;
4270 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4271 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4272 
4273 		/* Set the module link speed */
4274 		switch (hw->phy.media_type) {
4275 		case ixgbe_media_type_fiber:
4276 			hw->mac.ops.set_rate_select_speed(hw,
4277 						     IXGBE_LINK_SPEED_1GB_FULL);
4278 			break;
4279 		case ixgbe_media_type_fiber_qsfp:
4280 			/* QSFP module automatically detects link speed */
4281 			break;
4282 		default:
4283 			hw_dbg(hw, "Unexpected media type\n");
4284 			break;
4285 		}
4286 
4287 		/* Allow module to change analog characteristics (10G->1G) */
4288 		msleep(40);
4289 
4290 		status = hw->mac.ops.setup_mac_link(hw,
4291 						    IXGBE_LINK_SPEED_1GB_FULL,
4292 						    autoneg_wait_to_complete);
4293 		if (status)
4294 			return status;
4295 
4296 		/* Flap the Tx laser if it has not already been done */
4297 		if (hw->mac.ops.flap_tx_laser)
4298 			hw->mac.ops.flap_tx_laser(hw);
4299 
4300 		/* Wait for the link partner to also set speed */
4301 		msleep(100);
4302 
4303 		/* If we have link, just jump out */
4304 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4305 						false);
4306 		if (status)
4307 			return status;
4308 
4309 		if (link_up)
4310 			goto out;
4311 	}
4312 
4313 	/* We didn't get link.  Configure back to the highest speed we tried,
4314 	 * (if there was more than one).  We call ourselves back with just the
4315 	 * single highest speed that the user requested.
4316 	 */
4317 	if (speedcnt > 1)
4318 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4319 						      highest_link_speed,
4320 						      autoneg_wait_to_complete);
4321 
4322 out:
4323 	/* Set autoneg_advertised value based on input link speed */
4324 	hw->phy.autoneg_advertised = 0;
4325 
4326 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4327 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4328 
4329 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4330 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4331 
4332 	return status;
4333 }
4334 
4335 /**
4336  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4337  *  @hw: pointer to hardware structure
4338  *  @speed: link speed to set
4339  *
4340  *  Set module link speed via the soft rate select.
4341  */
4342 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4343 				      ixgbe_link_speed speed)
4344 {
4345 	s32 status;
4346 	u8 rs, eeprom_data;
4347 
4348 	switch (speed) {
4349 	case IXGBE_LINK_SPEED_10GB_FULL:
4350 		/* one bit mask same as setting on */
4351 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4352 		break;
4353 	case IXGBE_LINK_SPEED_1GB_FULL:
4354 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4355 		break;
4356 	default:
4357 		hw_dbg(hw, "Invalid fixed module speed\n");
4358 		return;
4359 	}
4360 
4361 	/* Set RS0 */
4362 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4363 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4364 					   &eeprom_data);
4365 	if (status) {
4366 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4367 		return;
4368 	}
4369 
4370 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4371 
4372 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4373 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4374 					    eeprom_data);
4375 	if (status) {
4376 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4377 		return;
4378 	}
4379 
4380 	/* Set RS1 */
4381 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4382 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4383 					   &eeprom_data);
4384 	if (status) {
4385 		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4386 		return;
4387 	}
4388 
4389 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4390 
4391 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4392 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4393 					    eeprom_data);
4394 	if (status) {
4395 		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4396 		return;
4397 	}
4398 }
4399