1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
32 
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
36 
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43                                         u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 
49 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
51 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
52 					     u16 words, u16 *data);
53 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
54 					     u16 words, u16 *data);
55 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
56 						 u16 offset);
57 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
58 
59 /**
60  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
61  *  control
62  *  @hw: pointer to hardware structure
63  *
64  *  There are several phys that do not support autoneg flow control. This
65  *  function check the device id to see if the associated phy supports
66  *  autoneg flow control.
67  **/
68 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
69 {
70 
71 	switch (hw->device_id) {
72 	case IXGBE_DEV_ID_X540T:
73 	case IXGBE_DEV_ID_X540T1:
74 		return 0;
75 	case IXGBE_DEV_ID_82599_T3_LOM:
76 		return 0;
77 	default:
78 		return IXGBE_ERR_FC_NOT_SUPPORTED;
79 	}
80 }
81 
82 /**
83  *  ixgbe_setup_fc - Set up flow control
84  *  @hw: pointer to hardware structure
85  *
86  *  Called at init time to set up flow control.
87  **/
88 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
89 {
90 	s32 ret_val = 0;
91 	u32 reg = 0, reg_bp = 0;
92 	u16 reg_cu = 0;
93 
94 	/*
95 	 * Validate the requested mode.  Strict IEEE mode does not allow
96 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
97 	 */
98 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
99 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
100 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
101 		goto out;
102 	}
103 
104 	/*
105 	 * 10gig parts do not have a word in the EEPROM to determine the
106 	 * default flow control setting, so we explicitly set it to full.
107 	 */
108 	if (hw->fc.requested_mode == ixgbe_fc_default)
109 		hw->fc.requested_mode = ixgbe_fc_full;
110 
111 	/*
112 	 * Set up the 1G and 10G flow control advertisement registers so the
113 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
114 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
115 	 */
116 	switch (hw->phy.media_type) {
117 	case ixgbe_media_type_fiber:
118 	case ixgbe_media_type_backplane:
119 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
120 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
121 		break;
122 	case ixgbe_media_type_copper:
123 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
124 					MDIO_MMD_AN, &reg_cu);
125 		break;
126 	default:
127 		break;
128 	}
129 
130 	/*
131 	 * The possible values of fc.requested_mode are:
132 	 * 0: Flow control is completely disabled
133 	 * 1: Rx flow control is enabled (we can receive pause frames,
134 	 *    but not send pause frames).
135 	 * 2: Tx flow control is enabled (we can send pause frames but
136 	 *    we do not support receiving pause frames).
137 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
138 	 * other: Invalid.
139 	 */
140 	switch (hw->fc.requested_mode) {
141 	case ixgbe_fc_none:
142 		/* Flow control completely disabled by software override. */
143 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
144 		if (hw->phy.media_type == ixgbe_media_type_backplane)
145 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
146 				    IXGBE_AUTOC_ASM_PAUSE);
147 		else if (hw->phy.media_type == ixgbe_media_type_copper)
148 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
149 		break;
150 	case ixgbe_fc_tx_pause:
151 		/*
152 		 * Tx Flow control is enabled, and Rx Flow control is
153 		 * disabled by software override.
154 		 */
155 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
156 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
157 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
158 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
159 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
160 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
161 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
162 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
163 		}
164 		break;
165 	case ixgbe_fc_rx_pause:
166 		/*
167 		 * Rx Flow control is enabled and Tx Flow control is
168 		 * disabled by software override. Since there really
169 		 * isn't a way to advertise that we are capable of RX
170 		 * Pause ONLY, we will advertise that we support both
171 		 * symmetric and asymmetric Rx PAUSE, as such we fall
172 		 * through to the fc_full statement.  Later, we will
173 		 * disable the adapter's ability to send PAUSE frames.
174 		 */
175 	case ixgbe_fc_full:
176 		/* Flow control (both Rx and Tx) is enabled by SW override. */
177 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
178 		if (hw->phy.media_type == ixgbe_media_type_backplane)
179 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
180 				  IXGBE_AUTOC_ASM_PAUSE;
181 		else if (hw->phy.media_type == ixgbe_media_type_copper)
182 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
183 		break;
184 	default:
185 		hw_dbg(hw, "Flow control param set incorrectly\n");
186 		ret_val = IXGBE_ERR_CONFIG;
187 		goto out;
188 		break;
189 	}
190 
191 	if (hw->mac.type != ixgbe_mac_X540) {
192 		/*
193 		 * Enable auto-negotiation between the MAC & PHY;
194 		 * the MAC will advertise clause 37 flow control.
195 		 */
196 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
197 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
198 
199 		/* Disable AN timeout */
200 		if (hw->fc.strict_ieee)
201 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
202 
203 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
204 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
205 	}
206 
207 	/*
208 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
209 	 * and copper. There is no need to set the PCS1GCTL register.
210 	 *
211 	 */
212 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
213 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
214 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
215 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
216 		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
217 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
218 				      MDIO_MMD_AN, reg_cu);
219 	}
220 
221 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
222 out:
223 	return ret_val;
224 }
225 
226 /**
227  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
228  *  @hw: pointer to hardware structure
229  *
230  *  Starts the hardware by filling the bus info structure and media type, clears
231  *  all on chip counters, initializes receive address registers, multicast
232  *  table, VLAN filter table, calls routine to set up link and flow control
233  *  settings, and leaves transmit and receive units disabled and uninitialized
234  **/
235 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
236 {
237 	u32 ctrl_ext;
238 
239 	/* Set the media type */
240 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
241 
242 	/* Identify the PHY */
243 	hw->phy.ops.identify(hw);
244 
245 	/* Clear the VLAN filter table */
246 	hw->mac.ops.clear_vfta(hw);
247 
248 	/* Clear statistics registers */
249 	hw->mac.ops.clear_hw_cntrs(hw);
250 
251 	/* Set No Snoop Disable */
252 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
253 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
254 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
255 	IXGBE_WRITE_FLUSH(hw);
256 
257 	/* Setup flow control */
258 	ixgbe_setup_fc(hw);
259 
260 	/* Clear adapter stopped flag */
261 	hw->adapter_stopped = false;
262 
263 	return 0;
264 }
265 
266 /**
267  *  ixgbe_start_hw_gen2 - Init sequence for common device family
268  *  @hw: pointer to hw structure
269  *
270  * Performs the init sequence common to the second generation
271  * of 10 GbE devices.
272  * Devices in the second generation:
273  *     82599
274  *     X540
275  **/
276 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
277 {
278 	u32 i;
279 	u32 regval;
280 
281 	/* Clear the rate limiters */
282 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
283 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
284 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
285 	}
286 	IXGBE_WRITE_FLUSH(hw);
287 
288 	/* Disable relaxed ordering */
289 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
290 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
291 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
292 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
293 	}
294 
295 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
296 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
297 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
298 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
299 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
300 	}
301 
302 	return 0;
303 }
304 
305 /**
306  *  ixgbe_init_hw_generic - Generic hardware initialization
307  *  @hw: pointer to hardware structure
308  *
309  *  Initialize the hardware by resetting the hardware, filling the bus info
310  *  structure and media type, clears all on chip counters, initializes receive
311  *  address registers, multicast table, VLAN filter table, calls routine to set
312  *  up link and flow control settings, and leaves transmit and receive units
313  *  disabled and uninitialized
314  **/
315 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
316 {
317 	s32 status;
318 
319 	/* Reset the hardware */
320 	status = hw->mac.ops.reset_hw(hw);
321 
322 	if (status == 0) {
323 		/* Start the HW */
324 		status = hw->mac.ops.start_hw(hw);
325 	}
326 
327 	return status;
328 }
329 
330 /**
331  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
332  *  @hw: pointer to hardware structure
333  *
334  *  Clears all hardware statistics counters by reading them from the hardware
335  *  Statistics counters are clear on read.
336  **/
337 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
338 {
339 	u16 i = 0;
340 
341 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
342 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
343 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
344 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
345 	for (i = 0; i < 8; i++)
346 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
347 
348 	IXGBE_READ_REG(hw, IXGBE_MLFC);
349 	IXGBE_READ_REG(hw, IXGBE_MRFC);
350 	IXGBE_READ_REG(hw, IXGBE_RLEC);
351 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
352 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
353 	if (hw->mac.type >= ixgbe_mac_82599EB) {
354 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
355 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
356 	} else {
357 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
358 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
359 	}
360 
361 	for (i = 0; i < 8; i++) {
362 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
363 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
364 		if (hw->mac.type >= ixgbe_mac_82599EB) {
365 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
366 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
367 		} else {
368 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
369 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
370 		}
371 	}
372 	if (hw->mac.type >= ixgbe_mac_82599EB)
373 		for (i = 0; i < 8; i++)
374 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
375 	IXGBE_READ_REG(hw, IXGBE_PRC64);
376 	IXGBE_READ_REG(hw, IXGBE_PRC127);
377 	IXGBE_READ_REG(hw, IXGBE_PRC255);
378 	IXGBE_READ_REG(hw, IXGBE_PRC511);
379 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
380 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
381 	IXGBE_READ_REG(hw, IXGBE_GPRC);
382 	IXGBE_READ_REG(hw, IXGBE_BPRC);
383 	IXGBE_READ_REG(hw, IXGBE_MPRC);
384 	IXGBE_READ_REG(hw, IXGBE_GPTC);
385 	IXGBE_READ_REG(hw, IXGBE_GORCL);
386 	IXGBE_READ_REG(hw, IXGBE_GORCH);
387 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
388 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
389 	if (hw->mac.type == ixgbe_mac_82598EB)
390 		for (i = 0; i < 8; i++)
391 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
392 	IXGBE_READ_REG(hw, IXGBE_RUC);
393 	IXGBE_READ_REG(hw, IXGBE_RFC);
394 	IXGBE_READ_REG(hw, IXGBE_ROC);
395 	IXGBE_READ_REG(hw, IXGBE_RJC);
396 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
397 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
398 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
399 	IXGBE_READ_REG(hw, IXGBE_TORL);
400 	IXGBE_READ_REG(hw, IXGBE_TORH);
401 	IXGBE_READ_REG(hw, IXGBE_TPR);
402 	IXGBE_READ_REG(hw, IXGBE_TPT);
403 	IXGBE_READ_REG(hw, IXGBE_PTC64);
404 	IXGBE_READ_REG(hw, IXGBE_PTC127);
405 	IXGBE_READ_REG(hw, IXGBE_PTC255);
406 	IXGBE_READ_REG(hw, IXGBE_PTC511);
407 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
408 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
409 	IXGBE_READ_REG(hw, IXGBE_MPTC);
410 	IXGBE_READ_REG(hw, IXGBE_BPTC);
411 	for (i = 0; i < 16; i++) {
412 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
413 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
414 		if (hw->mac.type >= ixgbe_mac_82599EB) {
415 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
416 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
417 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
418 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
419 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
420 		} else {
421 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
422 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
423 		}
424 	}
425 
426 	if (hw->mac.type == ixgbe_mac_X540) {
427 		if (hw->phy.id == 0)
428 			hw->phy.ops.identify(hw);
429 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
430 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
431 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
432 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
433 	}
434 
435 	return 0;
436 }
437 
438 /**
439  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
440  *  @hw: pointer to hardware structure
441  *  @pba_num: stores the part number string from the EEPROM
442  *  @pba_num_size: part number string buffer length
443  *
444  *  Reads the part number string from the EEPROM.
445  **/
446 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
447                                   u32 pba_num_size)
448 {
449 	s32 ret_val;
450 	u16 data;
451 	u16 pba_ptr;
452 	u16 offset;
453 	u16 length;
454 
455 	if (pba_num == NULL) {
456 		hw_dbg(hw, "PBA string buffer was null\n");
457 		return IXGBE_ERR_INVALID_ARGUMENT;
458 	}
459 
460 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
461 	if (ret_val) {
462 		hw_dbg(hw, "NVM Read Error\n");
463 		return ret_val;
464 	}
465 
466 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
467 	if (ret_val) {
468 		hw_dbg(hw, "NVM Read Error\n");
469 		return ret_val;
470 	}
471 
472 	/*
473 	 * if data is not ptr guard the PBA must be in legacy format which
474 	 * means pba_ptr is actually our second data word for the PBA number
475 	 * and we can decode it into an ascii string
476 	 */
477 	if (data != IXGBE_PBANUM_PTR_GUARD) {
478 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
479 
480 		/* we will need 11 characters to store the PBA */
481 		if (pba_num_size < 11) {
482 			hw_dbg(hw, "PBA string buffer too small\n");
483 			return IXGBE_ERR_NO_SPACE;
484 		}
485 
486 		/* extract hex string from data and pba_ptr */
487 		pba_num[0] = (data >> 12) & 0xF;
488 		pba_num[1] = (data >> 8) & 0xF;
489 		pba_num[2] = (data >> 4) & 0xF;
490 		pba_num[3] = data & 0xF;
491 		pba_num[4] = (pba_ptr >> 12) & 0xF;
492 		pba_num[5] = (pba_ptr >> 8) & 0xF;
493 		pba_num[6] = '-';
494 		pba_num[7] = 0;
495 		pba_num[8] = (pba_ptr >> 4) & 0xF;
496 		pba_num[9] = pba_ptr & 0xF;
497 
498 		/* put a null character on the end of our string */
499 		pba_num[10] = '\0';
500 
501 		/* switch all the data but the '-' to hex char */
502 		for (offset = 0; offset < 10; offset++) {
503 			if (pba_num[offset] < 0xA)
504 				pba_num[offset] += '0';
505 			else if (pba_num[offset] < 0x10)
506 				pba_num[offset] += 'A' - 0xA;
507 		}
508 
509 		return 0;
510 	}
511 
512 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
513 	if (ret_val) {
514 		hw_dbg(hw, "NVM Read Error\n");
515 		return ret_val;
516 	}
517 
518 	if (length == 0xFFFF || length == 0) {
519 		hw_dbg(hw, "NVM PBA number section invalid length\n");
520 		return IXGBE_ERR_PBA_SECTION;
521 	}
522 
523 	/* check if pba_num buffer is big enough */
524 	if (pba_num_size  < (((u32)length * 2) - 1)) {
525 		hw_dbg(hw, "PBA string buffer too small\n");
526 		return IXGBE_ERR_NO_SPACE;
527 	}
528 
529 	/* trim pba length from start of string */
530 	pba_ptr++;
531 	length--;
532 
533 	for (offset = 0; offset < length; offset++) {
534 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
535 		if (ret_val) {
536 			hw_dbg(hw, "NVM Read Error\n");
537 			return ret_val;
538 		}
539 		pba_num[offset * 2] = (u8)(data >> 8);
540 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
541 	}
542 	pba_num[offset * 2] = '\0';
543 
544 	return 0;
545 }
546 
547 /**
548  *  ixgbe_get_mac_addr_generic - Generic get MAC address
549  *  @hw: pointer to hardware structure
550  *  @mac_addr: Adapter MAC address
551  *
552  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
553  *  A reset of the adapter must be performed prior to calling this function
554  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
555  **/
556 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
557 {
558 	u32 rar_high;
559 	u32 rar_low;
560 	u16 i;
561 
562 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
563 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
564 
565 	for (i = 0; i < 4; i++)
566 		mac_addr[i] = (u8)(rar_low >> (i*8));
567 
568 	for (i = 0; i < 2; i++)
569 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
570 
571 	return 0;
572 }
573 
574 /**
575  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
576  *  @hw: pointer to hardware structure
577  *
578  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
579  **/
580 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
581 {
582 	struct ixgbe_adapter *adapter = hw->back;
583 	struct ixgbe_mac_info *mac = &hw->mac;
584 	u16 link_status;
585 
586 	hw->bus.type = ixgbe_bus_type_pci_express;
587 
588 	/* Get the negotiated link width and speed from PCI config space */
589 	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
590 	                     &link_status);
591 
592 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
593 	case IXGBE_PCI_LINK_WIDTH_1:
594 		hw->bus.width = ixgbe_bus_width_pcie_x1;
595 		break;
596 	case IXGBE_PCI_LINK_WIDTH_2:
597 		hw->bus.width = ixgbe_bus_width_pcie_x2;
598 		break;
599 	case IXGBE_PCI_LINK_WIDTH_4:
600 		hw->bus.width = ixgbe_bus_width_pcie_x4;
601 		break;
602 	case IXGBE_PCI_LINK_WIDTH_8:
603 		hw->bus.width = ixgbe_bus_width_pcie_x8;
604 		break;
605 	default:
606 		hw->bus.width = ixgbe_bus_width_unknown;
607 		break;
608 	}
609 
610 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
611 	case IXGBE_PCI_LINK_SPEED_2500:
612 		hw->bus.speed = ixgbe_bus_speed_2500;
613 		break;
614 	case IXGBE_PCI_LINK_SPEED_5000:
615 		hw->bus.speed = ixgbe_bus_speed_5000;
616 		break;
617 	default:
618 		hw->bus.speed = ixgbe_bus_speed_unknown;
619 		break;
620 	}
621 
622 	mac->ops.set_lan_id(hw);
623 
624 	return 0;
625 }
626 
627 /**
628  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
629  *  @hw: pointer to the HW structure
630  *
631  *  Determines the LAN function id by reading memory-mapped registers
632  *  and swaps the port value if requested.
633  **/
634 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
635 {
636 	struct ixgbe_bus_info *bus = &hw->bus;
637 	u32 reg;
638 
639 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
640 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
641 	bus->lan_id = bus->func;
642 
643 	/* check for a port swap */
644 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
645 	if (reg & IXGBE_FACTPS_LFS)
646 		bus->func ^= 0x1;
647 }
648 
649 /**
650  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
651  *  @hw: pointer to hardware structure
652  *
653  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
654  *  disables transmit and receive units. The adapter_stopped flag is used by
655  *  the shared code and drivers to determine if the adapter is in a stopped
656  *  state and should not touch the hardware.
657  **/
658 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
659 {
660 	u32 reg_val;
661 	u16 i;
662 
663 	/*
664 	 * Set the adapter_stopped flag so other driver functions stop touching
665 	 * the hardware
666 	 */
667 	hw->adapter_stopped = true;
668 
669 	/* Disable the receive unit */
670 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
671 
672 	/* Clear interrupt mask to stop interrupts from being generated */
673 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
674 
675 	/* Clear any pending interrupts, flush previous writes */
676 	IXGBE_READ_REG(hw, IXGBE_EICR);
677 
678 	/* Disable the transmit unit.  Each queue must be disabled. */
679 	for (i = 0; i < hw->mac.max_tx_queues; i++)
680 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
681 
682 	/* Disable the receive unit by stopping each queue */
683 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
684 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
685 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
686 		reg_val |= IXGBE_RXDCTL_SWFLSH;
687 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
688 	}
689 
690 	/* flush all queues disables */
691 	IXGBE_WRITE_FLUSH(hw);
692 	usleep_range(1000, 2000);
693 
694 	/*
695 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
696 	 * access and verify no pending requests
697 	 */
698 	return ixgbe_disable_pcie_master(hw);
699 }
700 
701 /**
702  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
703  *  @hw: pointer to hardware structure
704  *  @index: led number to turn on
705  **/
706 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
707 {
708 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
709 
710 	/* To turn on the LED, set mode to ON. */
711 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
712 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
713 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
714 	IXGBE_WRITE_FLUSH(hw);
715 
716 	return 0;
717 }
718 
719 /**
720  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
721  *  @hw: pointer to hardware structure
722  *  @index: led number to turn off
723  **/
724 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
725 {
726 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
727 
728 	/* To turn off the LED, set mode to OFF. */
729 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
730 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
731 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
732 	IXGBE_WRITE_FLUSH(hw);
733 
734 	return 0;
735 }
736 
737 /**
738  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
739  *  @hw: pointer to hardware structure
740  *
741  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
742  *  ixgbe_hw struct in order to set up EEPROM access.
743  **/
744 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
745 {
746 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
747 	u32 eec;
748 	u16 eeprom_size;
749 
750 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
751 		eeprom->type = ixgbe_eeprom_none;
752 		/* Set default semaphore delay to 10ms which is a well
753 		 * tested value */
754 		eeprom->semaphore_delay = 10;
755 		/* Clear EEPROM page size, it will be initialized as needed */
756 		eeprom->word_page_size = 0;
757 
758 		/*
759 		 * Check for EEPROM present first.
760 		 * If not present leave as none
761 		 */
762 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
763 		if (eec & IXGBE_EEC_PRES) {
764 			eeprom->type = ixgbe_eeprom_spi;
765 
766 			/*
767 			 * SPI EEPROM is assumed here.  This code would need to
768 			 * change if a future EEPROM is not SPI.
769 			 */
770 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
771 					    IXGBE_EEC_SIZE_SHIFT);
772 			eeprom->word_size = 1 << (eeprom_size +
773 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
774 		}
775 
776 		if (eec & IXGBE_EEC_ADDR_SIZE)
777 			eeprom->address_bits = 16;
778 		else
779 			eeprom->address_bits = 8;
780 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
781 			  "%d\n", eeprom->type, eeprom->word_size,
782 			  eeprom->address_bits);
783 	}
784 
785 	return 0;
786 }
787 
788 /**
789  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
790  *  @hw: pointer to hardware structure
791  *  @offset: offset within the EEPROM to write
792  *  @words: number of words
793  *  @data: 16 bit word(s) to write to EEPROM
794  *
795  *  Reads 16 bit word(s) from EEPROM through bit-bang method
796  **/
797 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
798 					       u16 words, u16 *data)
799 {
800 	s32 status = 0;
801 	u16 i, count;
802 
803 	hw->eeprom.ops.init_params(hw);
804 
805 	if (words == 0) {
806 		status = IXGBE_ERR_INVALID_ARGUMENT;
807 		goto out;
808 	}
809 
810 	if (offset + words > hw->eeprom.word_size) {
811 		status = IXGBE_ERR_EEPROM;
812 		goto out;
813 	}
814 
815 	/*
816 	 * The EEPROM page size cannot be queried from the chip. We do lazy
817 	 * initialization. It is worth to do that when we write large buffer.
818 	 */
819 	if ((hw->eeprom.word_page_size == 0) &&
820 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
821 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
822 
823 	/*
824 	 * We cannot hold synchronization semaphores for too long
825 	 * to avoid other entity starvation. However it is more efficient
826 	 * to read in bursts than synchronizing access for each word.
827 	 */
828 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
829 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
830 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
831 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
832 							    count, &data[i]);
833 
834 		if (status != 0)
835 			break;
836 	}
837 
838 out:
839 	return status;
840 }
841 
842 /**
843  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
844  *  @hw: pointer to hardware structure
845  *  @offset: offset within the EEPROM to be written to
846  *  @words: number of word(s)
847  *  @data: 16 bit word(s) to be written to the EEPROM
848  *
849  *  If ixgbe_eeprom_update_checksum is not called after this function, the
850  *  EEPROM will most likely contain an invalid checksum.
851  **/
852 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
853 					      u16 words, u16 *data)
854 {
855 	s32 status;
856 	u16 word;
857 	u16 page_size;
858 	u16 i;
859 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
860 
861 	/* Prepare the EEPROM for writing  */
862 	status = ixgbe_acquire_eeprom(hw);
863 
864 	if (status == 0) {
865 		if (ixgbe_ready_eeprom(hw) != 0) {
866 			ixgbe_release_eeprom(hw);
867 			status = IXGBE_ERR_EEPROM;
868 		}
869 	}
870 
871 	if (status == 0) {
872 		for (i = 0; i < words; i++) {
873 			ixgbe_standby_eeprom(hw);
874 
875 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
876 			ixgbe_shift_out_eeprom_bits(hw,
877 						  IXGBE_EEPROM_WREN_OPCODE_SPI,
878 						  IXGBE_EEPROM_OPCODE_BITS);
879 
880 			ixgbe_standby_eeprom(hw);
881 
882 			/*
883 			 * Some SPI eeproms use the 8th address bit embedded
884 			 * in the opcode
885 			 */
886 			if ((hw->eeprom.address_bits == 8) &&
887 			    ((offset + i) >= 128))
888 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
889 
890 			/* Send the Write command (8-bit opcode + addr) */
891 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
892 						    IXGBE_EEPROM_OPCODE_BITS);
893 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
894 						    hw->eeprom.address_bits);
895 
896 			page_size = hw->eeprom.word_page_size;
897 
898 			/* Send the data in burst via SPI*/
899 			do {
900 				word = data[i];
901 				word = (word >> 8) | (word << 8);
902 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
903 
904 				if (page_size == 0)
905 					break;
906 
907 				/* do not wrap around page */
908 				if (((offset + i) & (page_size - 1)) ==
909 				    (page_size - 1))
910 					break;
911 			} while (++i < words);
912 
913 			ixgbe_standby_eeprom(hw);
914 			usleep_range(10000, 20000);
915 		}
916 		/* Done with writing - release the EEPROM */
917 		ixgbe_release_eeprom(hw);
918 	}
919 
920 	return status;
921 }
922 
923 /**
924  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
925  *  @hw: pointer to hardware structure
926  *  @offset: offset within the EEPROM to be written to
927  *  @data: 16 bit word to be written to the EEPROM
928  *
929  *  If ixgbe_eeprom_update_checksum is not called after this function, the
930  *  EEPROM will most likely contain an invalid checksum.
931  **/
932 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
933 {
934 	s32 status;
935 
936 	hw->eeprom.ops.init_params(hw);
937 
938 	if (offset >= hw->eeprom.word_size) {
939 		status = IXGBE_ERR_EEPROM;
940 		goto out;
941 	}
942 
943 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
944 
945 out:
946 	return status;
947 }
948 
949 /**
950  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
951  *  @hw: pointer to hardware structure
952  *  @offset: offset within the EEPROM to be read
953  *  @words: number of word(s)
954  *  @data: read 16 bit words(s) from EEPROM
955  *
956  *  Reads 16 bit word(s) from EEPROM through bit-bang method
957  **/
958 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
959 					      u16 words, u16 *data)
960 {
961 	s32 status = 0;
962 	u16 i, count;
963 
964 	hw->eeprom.ops.init_params(hw);
965 
966 	if (words == 0) {
967 		status = IXGBE_ERR_INVALID_ARGUMENT;
968 		goto out;
969 	}
970 
971 	if (offset + words > hw->eeprom.word_size) {
972 		status = IXGBE_ERR_EEPROM;
973 		goto out;
974 	}
975 
976 	/*
977 	 * We cannot hold synchronization semaphores for too long
978 	 * to avoid other entity starvation. However it is more efficient
979 	 * to read in bursts than synchronizing access for each word.
980 	 */
981 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
982 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
983 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
984 
985 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
986 							   count, &data[i]);
987 
988 		if (status != 0)
989 			break;
990 	}
991 
992 out:
993 	return status;
994 }
995 
996 /**
997  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
998  *  @hw: pointer to hardware structure
999  *  @offset: offset within the EEPROM to be read
1000  *  @words: number of word(s)
1001  *  @data: read 16 bit word(s) from EEPROM
1002  *
1003  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1004  **/
1005 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1006 					     u16 words, u16 *data)
1007 {
1008 	s32 status;
1009 	u16 word_in;
1010 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1011 	u16 i;
1012 
1013 	/* Prepare the EEPROM for reading  */
1014 	status = ixgbe_acquire_eeprom(hw);
1015 
1016 	if (status == 0) {
1017 		if (ixgbe_ready_eeprom(hw) != 0) {
1018 			ixgbe_release_eeprom(hw);
1019 			status = IXGBE_ERR_EEPROM;
1020 		}
1021 	}
1022 
1023 	if (status == 0) {
1024 		for (i = 0; i < words; i++) {
1025 			ixgbe_standby_eeprom(hw);
1026 			/*
1027 			 * Some SPI eeproms use the 8th address bit embedded
1028 			 * in the opcode
1029 			 */
1030 			if ((hw->eeprom.address_bits == 8) &&
1031 			    ((offset + i) >= 128))
1032 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1033 
1034 			/* Send the READ command (opcode + addr) */
1035 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1036 						    IXGBE_EEPROM_OPCODE_BITS);
1037 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1038 						    hw->eeprom.address_bits);
1039 
1040 			/* Read the data. */
1041 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1042 			data[i] = (word_in >> 8) | (word_in << 8);
1043 		}
1044 
1045 		/* End this read operation */
1046 		ixgbe_release_eeprom(hw);
1047 	}
1048 
1049 	return status;
1050 }
1051 
1052 /**
1053  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1054  *  @hw: pointer to hardware structure
1055  *  @offset: offset within the EEPROM to be read
1056  *  @data: read 16 bit value from EEPROM
1057  *
1058  *  Reads 16 bit value from EEPROM through bit-bang method
1059  **/
1060 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1061 				       u16 *data)
1062 {
1063 	s32 status;
1064 
1065 	hw->eeprom.ops.init_params(hw);
1066 
1067 	if (offset >= hw->eeprom.word_size) {
1068 		status = IXGBE_ERR_EEPROM;
1069 		goto out;
1070 	}
1071 
1072 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1073 
1074 out:
1075 	return status;
1076 }
1077 
1078 /**
1079  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1080  *  @hw: pointer to hardware structure
1081  *  @offset: offset of word in the EEPROM to read
1082  *  @words: number of word(s)
1083  *  @data: 16 bit word(s) from the EEPROM
1084  *
1085  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1086  **/
1087 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1088 				   u16 words, u16 *data)
1089 {
1090 	u32 eerd;
1091 	s32 status = 0;
1092 	u32 i;
1093 
1094 	hw->eeprom.ops.init_params(hw);
1095 
1096 	if (words == 0) {
1097 		status = IXGBE_ERR_INVALID_ARGUMENT;
1098 		goto out;
1099 	}
1100 
1101 	if (offset >= hw->eeprom.word_size) {
1102 		status = IXGBE_ERR_EEPROM;
1103 		goto out;
1104 	}
1105 
1106 	for (i = 0; i < words; i++) {
1107 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1108 		       IXGBE_EEPROM_RW_REG_START;
1109 
1110 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1111 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1112 
1113 		if (status == 0) {
1114 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1115 				   IXGBE_EEPROM_RW_REG_DATA);
1116 		} else {
1117 			hw_dbg(hw, "Eeprom read timed out\n");
1118 			goto out;
1119 		}
1120 	}
1121 out:
1122 	return status;
1123 }
1124 
1125 /**
1126  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1127  *  @hw: pointer to hardware structure
1128  *  @offset: offset within the EEPROM to be used as a scratch pad
1129  *
1130  *  Discover EEPROM page size by writing marching data at given offset.
1131  *  This function is called only when we are writing a new large buffer
1132  *  at given offset so the data would be overwritten anyway.
1133  **/
1134 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1135 						 u16 offset)
1136 {
1137 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1138 	s32 status = 0;
1139 	u16 i;
1140 
1141 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1142 		data[i] = i;
1143 
1144 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1145 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1146 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1147 	hw->eeprom.word_page_size = 0;
1148 	if (status != 0)
1149 		goto out;
1150 
1151 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1152 	if (status != 0)
1153 		goto out;
1154 
1155 	/*
1156 	 * When writing in burst more than the actual page size
1157 	 * EEPROM address wraps around current page.
1158 	 */
1159 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1160 
1161 	hw_dbg(hw, "Detected EEPROM page size = %d words.",
1162 	       hw->eeprom.word_page_size);
1163 out:
1164 	return status;
1165 }
1166 
1167 /**
1168  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1169  *  @hw: pointer to hardware structure
1170  *  @offset: offset of  word in the EEPROM to read
1171  *  @data: word read from the EEPROM
1172  *
1173  *  Reads a 16 bit word from the EEPROM using the EERD register.
1174  **/
1175 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1176 {
1177 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1178 }
1179 
1180 /**
1181  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1182  *  @hw: pointer to hardware structure
1183  *  @offset: offset of  word in the EEPROM to write
1184  *  @words: number of words
1185  *  @data: word(s) write to the EEPROM
1186  *
1187  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1188  **/
1189 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1190 				    u16 words, u16 *data)
1191 {
1192 	u32 eewr;
1193 	s32 status = 0;
1194 	u16 i;
1195 
1196 	hw->eeprom.ops.init_params(hw);
1197 
1198 	if (words == 0) {
1199 		status = IXGBE_ERR_INVALID_ARGUMENT;
1200 		goto out;
1201 	}
1202 
1203 	if (offset >= hw->eeprom.word_size) {
1204 		status = IXGBE_ERR_EEPROM;
1205 		goto out;
1206 	}
1207 
1208 	for (i = 0; i < words; i++) {
1209 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1210 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1211 		       IXGBE_EEPROM_RW_REG_START;
1212 
1213 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1214 		if (status != 0) {
1215 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1216 			goto out;
1217 		}
1218 
1219 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1220 
1221 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1222 		if (status != 0) {
1223 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1224 			goto out;
1225 		}
1226 	}
1227 
1228 out:
1229 	return status;
1230 }
1231 
1232 /**
1233  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1234  *  @hw: pointer to hardware structure
1235  *  @offset: offset of  word in the EEPROM to write
1236  *  @data: word write to the EEPROM
1237  *
1238  *  Write a 16 bit word to the EEPROM using the EEWR register.
1239  **/
1240 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1241 {
1242 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1243 }
1244 
1245 /**
1246  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1247  *  @hw: pointer to hardware structure
1248  *  @ee_reg: EEPROM flag for polling
1249  *
1250  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1251  *  read or write is done respectively.
1252  **/
1253 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1254 {
1255 	u32 i;
1256 	u32 reg;
1257 	s32 status = IXGBE_ERR_EEPROM;
1258 
1259 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1260 		if (ee_reg == IXGBE_NVM_POLL_READ)
1261 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1262 		else
1263 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1264 
1265 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1266 			status = 0;
1267 			break;
1268 		}
1269 		udelay(5);
1270 	}
1271 	return status;
1272 }
1273 
1274 /**
1275  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1276  *  @hw: pointer to hardware structure
1277  *
1278  *  Prepares EEPROM for access using bit-bang method. This function should
1279  *  be called before issuing a command to the EEPROM.
1280  **/
1281 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1282 {
1283 	s32 status = 0;
1284 	u32 eec;
1285 	u32 i;
1286 
1287 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1288 		status = IXGBE_ERR_SWFW_SYNC;
1289 
1290 	if (status == 0) {
1291 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1292 
1293 		/* Request EEPROM Access */
1294 		eec |= IXGBE_EEC_REQ;
1295 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1296 
1297 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1298 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1299 			if (eec & IXGBE_EEC_GNT)
1300 				break;
1301 			udelay(5);
1302 		}
1303 
1304 		/* Release if grant not acquired */
1305 		if (!(eec & IXGBE_EEC_GNT)) {
1306 			eec &= ~IXGBE_EEC_REQ;
1307 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1308 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
1309 
1310 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1311 			status = IXGBE_ERR_EEPROM;
1312 		}
1313 
1314 		/* Setup EEPROM for Read/Write */
1315 		if (status == 0) {
1316 			/* Clear CS and SK */
1317 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1318 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1319 			IXGBE_WRITE_FLUSH(hw);
1320 			udelay(1);
1321 		}
1322 	}
1323 	return status;
1324 }
1325 
1326 /**
1327  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1328  *  @hw: pointer to hardware structure
1329  *
1330  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1331  **/
1332 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1333 {
1334 	s32 status = IXGBE_ERR_EEPROM;
1335 	u32 timeout = 2000;
1336 	u32 i;
1337 	u32 swsm;
1338 
1339 	/* Get SMBI software semaphore between device drivers first */
1340 	for (i = 0; i < timeout; i++) {
1341 		/*
1342 		 * If the SMBI bit is 0 when we read it, then the bit will be
1343 		 * set and we have the semaphore
1344 		 */
1345 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1346 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1347 			status = 0;
1348 			break;
1349 		}
1350 		udelay(50);
1351 	}
1352 
1353 	if (i == timeout) {
1354 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1355 		       "not granted.\n");
1356 		/*
1357 		 * this release is particularly important because our attempts
1358 		 * above to get the semaphore may have succeeded, and if there
1359 		 * was a timeout, we should unconditionally clear the semaphore
1360 		 * bits to free the driver to make progress
1361 		 */
1362 		ixgbe_release_eeprom_semaphore(hw);
1363 
1364 		udelay(50);
1365 		/*
1366 		 * one last try
1367 		 * If the SMBI bit is 0 when we read it, then the bit will be
1368 		 * set and we have the semaphore
1369 		 */
1370 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1371 		if (!(swsm & IXGBE_SWSM_SMBI))
1372 			status = 0;
1373 	}
1374 
1375 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1376 	if (status == 0) {
1377 		for (i = 0; i < timeout; i++) {
1378 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1379 
1380 			/* Set the SW EEPROM semaphore bit to request access */
1381 			swsm |= IXGBE_SWSM_SWESMBI;
1382 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1383 
1384 			/*
1385 			 * If we set the bit successfully then we got the
1386 			 * semaphore.
1387 			 */
1388 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1389 			if (swsm & IXGBE_SWSM_SWESMBI)
1390 				break;
1391 
1392 			udelay(50);
1393 		}
1394 
1395 		/*
1396 		 * Release semaphores and return error if SW EEPROM semaphore
1397 		 * was not granted because we don't have access to the EEPROM
1398 		 */
1399 		if (i >= timeout) {
1400 			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1401 			       "not granted.\n");
1402 			ixgbe_release_eeprom_semaphore(hw);
1403 			status = IXGBE_ERR_EEPROM;
1404 		}
1405 	} else {
1406 		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1407 		       "not granted.\n");
1408 	}
1409 
1410 	return status;
1411 }
1412 
1413 /**
1414  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1415  *  @hw: pointer to hardware structure
1416  *
1417  *  This function clears hardware semaphore bits.
1418  **/
1419 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1420 {
1421 	u32 swsm;
1422 
1423 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1424 
1425 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1426 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1427 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1428 	IXGBE_WRITE_FLUSH(hw);
1429 }
1430 
1431 /**
1432  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1433  *  @hw: pointer to hardware structure
1434  **/
1435 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1436 {
1437 	s32 status = 0;
1438 	u16 i;
1439 	u8 spi_stat_reg;
1440 
1441 	/*
1442 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1443 	 * EEPROM will signal that the command has been completed by clearing
1444 	 * bit 0 of the internal status register.  If it's not cleared within
1445 	 * 5 milliseconds, then error out.
1446 	 */
1447 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1448 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1449 		                            IXGBE_EEPROM_OPCODE_BITS);
1450 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1451 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1452 			break;
1453 
1454 		udelay(5);
1455 		ixgbe_standby_eeprom(hw);
1456 	}
1457 
1458 	/*
1459 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1460 	 * devices (and only 0-5mSec on 5V devices)
1461 	 */
1462 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1463 		hw_dbg(hw, "SPI EEPROM Status error\n");
1464 		status = IXGBE_ERR_EEPROM;
1465 	}
1466 
1467 	return status;
1468 }
1469 
1470 /**
1471  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1472  *  @hw: pointer to hardware structure
1473  **/
1474 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1475 {
1476 	u32 eec;
1477 
1478 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1479 
1480 	/* Toggle CS to flush commands */
1481 	eec |= IXGBE_EEC_CS;
1482 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1483 	IXGBE_WRITE_FLUSH(hw);
1484 	udelay(1);
1485 	eec &= ~IXGBE_EEC_CS;
1486 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1487 	IXGBE_WRITE_FLUSH(hw);
1488 	udelay(1);
1489 }
1490 
1491 /**
1492  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1493  *  @hw: pointer to hardware structure
1494  *  @data: data to send to the EEPROM
1495  *  @count: number of bits to shift out
1496  **/
1497 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1498                                         u16 count)
1499 {
1500 	u32 eec;
1501 	u32 mask;
1502 	u32 i;
1503 
1504 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1505 
1506 	/*
1507 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1508 	 * one bit at a time.  Determine the starting bit based on count
1509 	 */
1510 	mask = 0x01 << (count - 1);
1511 
1512 	for (i = 0; i < count; i++) {
1513 		/*
1514 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1515 		 * "1", and then raising and then lowering the clock (the SK
1516 		 * bit controls the clock input to the EEPROM).  A "0" is
1517 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1518 		 * raising and then lowering the clock.
1519 		 */
1520 		if (data & mask)
1521 			eec |= IXGBE_EEC_DI;
1522 		else
1523 			eec &= ~IXGBE_EEC_DI;
1524 
1525 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1526 		IXGBE_WRITE_FLUSH(hw);
1527 
1528 		udelay(1);
1529 
1530 		ixgbe_raise_eeprom_clk(hw, &eec);
1531 		ixgbe_lower_eeprom_clk(hw, &eec);
1532 
1533 		/*
1534 		 * Shift mask to signify next bit of data to shift in to the
1535 		 * EEPROM
1536 		 */
1537 		mask = mask >> 1;
1538 	}
1539 
1540 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1541 	eec &= ~IXGBE_EEC_DI;
1542 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1543 	IXGBE_WRITE_FLUSH(hw);
1544 }
1545 
1546 /**
1547  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1548  *  @hw: pointer to hardware structure
1549  **/
1550 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1551 {
1552 	u32 eec;
1553 	u32 i;
1554 	u16 data = 0;
1555 
1556 	/*
1557 	 * In order to read a register from the EEPROM, we need to shift
1558 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1559 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1560 	 * the value of the "DO" bit.  During this "shifting in" process the
1561 	 * "DI" bit should always be clear.
1562 	 */
1563 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1564 
1565 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1566 
1567 	for (i = 0; i < count; i++) {
1568 		data = data << 1;
1569 		ixgbe_raise_eeprom_clk(hw, &eec);
1570 
1571 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1572 
1573 		eec &= ~(IXGBE_EEC_DI);
1574 		if (eec & IXGBE_EEC_DO)
1575 			data |= 1;
1576 
1577 		ixgbe_lower_eeprom_clk(hw, &eec);
1578 	}
1579 
1580 	return data;
1581 }
1582 
1583 /**
1584  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1585  *  @hw: pointer to hardware structure
1586  *  @eec: EEC register's current value
1587  **/
1588 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1589 {
1590 	/*
1591 	 * Raise the clock input to the EEPROM
1592 	 * (setting the SK bit), then delay
1593 	 */
1594 	*eec = *eec | IXGBE_EEC_SK;
1595 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1596 	IXGBE_WRITE_FLUSH(hw);
1597 	udelay(1);
1598 }
1599 
1600 /**
1601  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1602  *  @hw: pointer to hardware structure
1603  *  @eecd: EECD's current value
1604  **/
1605 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1606 {
1607 	/*
1608 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1609 	 * delay
1610 	 */
1611 	*eec = *eec & ~IXGBE_EEC_SK;
1612 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1613 	IXGBE_WRITE_FLUSH(hw);
1614 	udelay(1);
1615 }
1616 
1617 /**
1618  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1619  *  @hw: pointer to hardware structure
1620  **/
1621 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1622 {
1623 	u32 eec;
1624 
1625 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1626 
1627 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1628 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1629 
1630 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1631 	IXGBE_WRITE_FLUSH(hw);
1632 
1633 	udelay(1);
1634 
1635 	/* Stop requesting EEPROM access */
1636 	eec &= ~IXGBE_EEC_REQ;
1637 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1638 
1639 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1640 
1641 	/*
1642 	 * Delay before attempt to obtain semaphore again to allow FW
1643 	 * access. semaphore_delay is in ms we need us for usleep_range
1644 	 */
1645 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1646 		     hw->eeprom.semaphore_delay * 2000);
1647 }
1648 
1649 /**
1650  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1651  *  @hw: pointer to hardware structure
1652  **/
1653 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1654 {
1655 	u16 i;
1656 	u16 j;
1657 	u16 checksum = 0;
1658 	u16 length = 0;
1659 	u16 pointer = 0;
1660 	u16 word = 0;
1661 
1662 	/* Include 0x0-0x3F in the checksum */
1663 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1664 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1665 			hw_dbg(hw, "EEPROM read failed\n");
1666 			break;
1667 		}
1668 		checksum += word;
1669 	}
1670 
1671 	/* Include all data from pointers except for the fw pointer */
1672 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1673 		hw->eeprom.ops.read(hw, i, &pointer);
1674 
1675 		/* Make sure the pointer seems valid */
1676 		if (pointer != 0xFFFF && pointer != 0) {
1677 			hw->eeprom.ops.read(hw, pointer, &length);
1678 
1679 			if (length != 0xFFFF && length != 0) {
1680 				for (j = pointer+1; j <= pointer+length; j++) {
1681 					hw->eeprom.ops.read(hw, j, &word);
1682 					checksum += word;
1683 				}
1684 			}
1685 		}
1686 	}
1687 
1688 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1689 
1690 	return checksum;
1691 }
1692 
1693 /**
1694  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1695  *  @hw: pointer to hardware structure
1696  *  @checksum_val: calculated checksum
1697  *
1698  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1699  *  caller does not need checksum_val, the value can be NULL.
1700  **/
1701 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1702                                            u16 *checksum_val)
1703 {
1704 	s32 status;
1705 	u16 checksum;
1706 	u16 read_checksum = 0;
1707 
1708 	/*
1709 	 * Read the first word from the EEPROM. If this times out or fails, do
1710 	 * not continue or we could be in for a very long wait while every
1711 	 * EEPROM read fails
1712 	 */
1713 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1714 
1715 	if (status == 0) {
1716 		checksum = hw->eeprom.ops.calc_checksum(hw);
1717 
1718 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1719 
1720 		/*
1721 		 * Verify read checksum from EEPROM is the same as
1722 		 * calculated checksum
1723 		 */
1724 		if (read_checksum != checksum)
1725 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1726 
1727 		/* If the user cares, return the calculated checksum */
1728 		if (checksum_val)
1729 			*checksum_val = checksum;
1730 	} else {
1731 		hw_dbg(hw, "EEPROM read failed\n");
1732 	}
1733 
1734 	return status;
1735 }
1736 
1737 /**
1738  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1739  *  @hw: pointer to hardware structure
1740  **/
1741 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1742 {
1743 	s32 status;
1744 	u16 checksum;
1745 
1746 	/*
1747 	 * Read the first word from the EEPROM. If this times out or fails, do
1748 	 * not continue or we could be in for a very long wait while every
1749 	 * EEPROM read fails
1750 	 */
1751 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1752 
1753 	if (status == 0) {
1754 		checksum = hw->eeprom.ops.calc_checksum(hw);
1755 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1756 					      checksum);
1757 	} else {
1758 		hw_dbg(hw, "EEPROM read failed\n");
1759 	}
1760 
1761 	return status;
1762 }
1763 
1764 /**
1765  *  ixgbe_validate_mac_addr - Validate MAC address
1766  *  @mac_addr: pointer to MAC address.
1767  *
1768  *  Tests a MAC address to ensure it is a valid Individual Address
1769  **/
1770 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1771 {
1772 	s32 status = 0;
1773 
1774 	/* Make sure it is not a multicast address */
1775 	if (IXGBE_IS_MULTICAST(mac_addr))
1776 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1777 	/* Not a broadcast address */
1778 	else if (IXGBE_IS_BROADCAST(mac_addr))
1779 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1780 	/* Reject the zero address */
1781 	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1782 	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1783 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1784 
1785 	return status;
1786 }
1787 
1788 /**
1789  *  ixgbe_set_rar_generic - Set Rx address register
1790  *  @hw: pointer to hardware structure
1791  *  @index: Receive address register to write
1792  *  @addr: Address to put into receive address register
1793  *  @vmdq: VMDq "set" or "pool" index
1794  *  @enable_addr: set flag that address is active
1795  *
1796  *  Puts an ethernet address into a receive address register.
1797  **/
1798 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1799                           u32 enable_addr)
1800 {
1801 	u32 rar_low, rar_high;
1802 	u32 rar_entries = hw->mac.num_rar_entries;
1803 
1804 	/* Make sure we are using a valid rar index range */
1805 	if (index >= rar_entries) {
1806 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1807 		return IXGBE_ERR_INVALID_ARGUMENT;
1808 	}
1809 
1810 	/* setup VMDq pool selection before this RAR gets enabled */
1811 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1812 
1813 	/*
1814 	 * HW expects these in little endian so we reverse the byte
1815 	 * order from network order (big endian) to little endian
1816 	 */
1817 	rar_low = ((u32)addr[0] |
1818 		   ((u32)addr[1] << 8) |
1819 		   ((u32)addr[2] << 16) |
1820 		   ((u32)addr[3] << 24));
1821 	/*
1822 	 * Some parts put the VMDq setting in the extra RAH bits,
1823 	 * so save everything except the lower 16 bits that hold part
1824 	 * of the address and the address valid bit.
1825 	 */
1826 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1827 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1828 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1829 
1830 	if (enable_addr != 0)
1831 		rar_high |= IXGBE_RAH_AV;
1832 
1833 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1834 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1835 
1836 	return 0;
1837 }
1838 
1839 /**
1840  *  ixgbe_clear_rar_generic - Remove Rx address register
1841  *  @hw: pointer to hardware structure
1842  *  @index: Receive address register to write
1843  *
1844  *  Clears an ethernet address from a receive address register.
1845  **/
1846 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1847 {
1848 	u32 rar_high;
1849 	u32 rar_entries = hw->mac.num_rar_entries;
1850 
1851 	/* Make sure we are using a valid rar index range */
1852 	if (index >= rar_entries) {
1853 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1854 		return IXGBE_ERR_INVALID_ARGUMENT;
1855 	}
1856 
1857 	/*
1858 	 * Some parts put the VMDq setting in the extra RAH bits,
1859 	 * so save everything except the lower 16 bits that hold part
1860 	 * of the address and the address valid bit.
1861 	 */
1862 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1863 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1864 
1865 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1866 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1867 
1868 	/* clear VMDq pool/queue selection for this RAR */
1869 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1870 
1871 	return 0;
1872 }
1873 
1874 /**
1875  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1876  *  @hw: pointer to hardware structure
1877  *
1878  *  Places the MAC address in receive address register 0 and clears the rest
1879  *  of the receive address registers. Clears the multicast table. Assumes
1880  *  the receiver is in reset when the routine is called.
1881  **/
1882 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1883 {
1884 	u32 i;
1885 	u32 rar_entries = hw->mac.num_rar_entries;
1886 
1887 	/*
1888 	 * If the current mac address is valid, assume it is a software override
1889 	 * to the permanent address.
1890 	 * Otherwise, use the permanent address from the eeprom.
1891 	 */
1892 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1893 	    IXGBE_ERR_INVALID_MAC_ADDR) {
1894 		/* Get the MAC address from the RAR0 for later reference */
1895 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1896 
1897 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1898 	} else {
1899 		/* Setup the receive address. */
1900 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1901 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1902 
1903 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1904 
1905 		/*  clear VMDq pool/queue selection for RAR 0 */
1906 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1907 	}
1908 	hw->addr_ctrl.overflow_promisc = 0;
1909 
1910 	hw->addr_ctrl.rar_used_count = 1;
1911 
1912 	/* Zero out the other receive addresses. */
1913 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1914 	for (i = 1; i < rar_entries; i++) {
1915 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1916 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1917 	}
1918 
1919 	/* Clear the MTA */
1920 	hw->addr_ctrl.mta_in_use = 0;
1921 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1922 
1923 	hw_dbg(hw, " Clearing MTA\n");
1924 	for (i = 0; i < hw->mac.mcft_size; i++)
1925 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1926 
1927 	if (hw->mac.ops.init_uta_tables)
1928 		hw->mac.ops.init_uta_tables(hw);
1929 
1930 	return 0;
1931 }
1932 
1933 /**
1934  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1935  *  @hw: pointer to hardware structure
1936  *  @mc_addr: the multicast address
1937  *
1938  *  Extracts the 12 bits, from a multicast address, to determine which
1939  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1940  *  incoming rx multicast addresses, to determine the bit-vector to check in
1941  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1942  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1943  *  to mc_filter_type.
1944  **/
1945 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1946 {
1947 	u32 vector = 0;
1948 
1949 	switch (hw->mac.mc_filter_type) {
1950 	case 0:   /* use bits [47:36] of the address */
1951 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1952 		break;
1953 	case 1:   /* use bits [46:35] of the address */
1954 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1955 		break;
1956 	case 2:   /* use bits [45:34] of the address */
1957 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1958 		break;
1959 	case 3:   /* use bits [43:32] of the address */
1960 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1961 		break;
1962 	default:  /* Invalid mc_filter_type */
1963 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1964 		break;
1965 	}
1966 
1967 	/* vector can only be 12-bits or boundary will be exceeded */
1968 	vector &= 0xFFF;
1969 	return vector;
1970 }
1971 
1972 /**
1973  *  ixgbe_set_mta - Set bit-vector in multicast table
1974  *  @hw: pointer to hardware structure
1975  *  @hash_value: Multicast address hash value
1976  *
1977  *  Sets the bit-vector in the multicast table.
1978  **/
1979 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1980 {
1981 	u32 vector;
1982 	u32 vector_bit;
1983 	u32 vector_reg;
1984 
1985 	hw->addr_ctrl.mta_in_use++;
1986 
1987 	vector = ixgbe_mta_vector(hw, mc_addr);
1988 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1989 
1990 	/*
1991 	 * The MTA is a register array of 128 32-bit registers. It is treated
1992 	 * like an array of 4096 bits.  We want to set bit
1993 	 * BitArray[vector_value]. So we figure out what register the bit is
1994 	 * in, read it, OR in the new bit, then write back the new value.  The
1995 	 * register is determined by the upper 7 bits of the vector value and
1996 	 * the bit within that register are determined by the lower 5 bits of
1997 	 * the value.
1998 	 */
1999 	vector_reg = (vector >> 5) & 0x7F;
2000 	vector_bit = vector & 0x1F;
2001 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2002 }
2003 
2004 /**
2005  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2006  *  @hw: pointer to hardware structure
2007  *  @netdev: pointer to net device structure
2008  *
2009  *  The given list replaces any existing list. Clears the MC addrs from receive
2010  *  address registers and the multicast table. Uses unused receive address
2011  *  registers for the first multicast addresses, and hashes the rest into the
2012  *  multicast table.
2013  **/
2014 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2015 				      struct net_device *netdev)
2016 {
2017 	struct netdev_hw_addr *ha;
2018 	u32 i;
2019 
2020 	/*
2021 	 * Set the new number of MC addresses that we are being requested to
2022 	 * use.
2023 	 */
2024 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2025 	hw->addr_ctrl.mta_in_use = 0;
2026 
2027 	/* Clear mta_shadow */
2028 	hw_dbg(hw, " Clearing MTA\n");
2029 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2030 
2031 	/* Update mta shadow */
2032 	netdev_for_each_mc_addr(ha, netdev) {
2033 		hw_dbg(hw, " Adding the multicast addresses:\n");
2034 		ixgbe_set_mta(hw, ha->addr);
2035 	}
2036 
2037 	/* Enable mta */
2038 	for (i = 0; i < hw->mac.mcft_size; i++)
2039 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2040 				      hw->mac.mta_shadow[i]);
2041 
2042 	if (hw->addr_ctrl.mta_in_use > 0)
2043 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2044 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2045 
2046 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2047 	return 0;
2048 }
2049 
2050 /**
2051  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2052  *  @hw: pointer to hardware structure
2053  *
2054  *  Enables multicast address in RAR and the use of the multicast hash table.
2055  **/
2056 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2057 {
2058 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2059 
2060 	if (a->mta_in_use > 0)
2061 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2062 		                hw->mac.mc_filter_type);
2063 
2064 	return 0;
2065 }
2066 
2067 /**
2068  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2069  *  @hw: pointer to hardware structure
2070  *
2071  *  Disables multicast address in RAR and the use of the multicast hash table.
2072  **/
2073 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2074 {
2075 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2076 
2077 	if (a->mta_in_use > 0)
2078 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2079 
2080 	return 0;
2081 }
2082 
2083 /**
2084  *  ixgbe_fc_enable_generic - Enable flow control
2085  *  @hw: pointer to hardware structure
2086  *
2087  *  Enable flow control according to the current settings.
2088  **/
2089 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2090 {
2091 	s32 ret_val = 0;
2092 	u32 mflcn_reg, fccfg_reg;
2093 	u32 reg;
2094 	u32 fcrtl, fcrth;
2095 	int i;
2096 
2097 	/*
2098 	 * Validate the water mark configuration for packet buffer 0.  Zero
2099 	 * water marks indicate that the packet buffer was not configured
2100 	 * and the watermarks for packet buffer 0 should always be configured.
2101 	 */
2102 	if (!hw->fc.low_water ||
2103 	    !hw->fc.high_water[0] ||
2104 	    !hw->fc.pause_time) {
2105 		hw_dbg(hw, "Invalid water mark configuration\n");
2106 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2107 		goto out;
2108 	}
2109 
2110 	/* Negotiate the fc mode to use */
2111 	ixgbe_fc_autoneg(hw);
2112 
2113 	/* Disable any previous flow control settings */
2114 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2115 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2116 
2117 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2118 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2119 
2120 	/*
2121 	 * The possible values of fc.current_mode are:
2122 	 * 0: Flow control is completely disabled
2123 	 * 1: Rx flow control is enabled (we can receive pause frames,
2124 	 *    but not send pause frames).
2125 	 * 2: Tx flow control is enabled (we can send pause frames but
2126 	 *    we do not support receiving pause frames).
2127 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2128 	 * other: Invalid.
2129 	 */
2130 	switch (hw->fc.current_mode) {
2131 	case ixgbe_fc_none:
2132 		/*
2133 		 * Flow control is disabled by software override or autoneg.
2134 		 * The code below will actually disable it in the HW.
2135 		 */
2136 		break;
2137 	case ixgbe_fc_rx_pause:
2138 		/*
2139 		 * Rx Flow control is enabled and Tx Flow control is
2140 		 * disabled by software override. Since there really
2141 		 * isn't a way to advertise that we are capable of RX
2142 		 * Pause ONLY, we will advertise that we support both
2143 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2144 		 * disable the adapter's ability to send PAUSE frames.
2145 		 */
2146 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2147 		break;
2148 	case ixgbe_fc_tx_pause:
2149 		/*
2150 		 * Tx Flow control is enabled, and Rx Flow control is
2151 		 * disabled by software override.
2152 		 */
2153 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2154 		break;
2155 	case ixgbe_fc_full:
2156 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2157 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2158 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2159 		break;
2160 	default:
2161 		hw_dbg(hw, "Flow control param set incorrectly\n");
2162 		ret_val = IXGBE_ERR_CONFIG;
2163 		goto out;
2164 		break;
2165 	}
2166 
2167 	/* Set 802.3x based flow control settings. */
2168 	mflcn_reg |= IXGBE_MFLCN_DPF;
2169 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2170 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2171 
2172 	fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2173 
2174 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2175 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2176 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2177 		    hw->fc.high_water[i]) {
2178 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2179 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2180 		} else {
2181 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2182 			/*
2183 			 * In order to prevent Tx hangs when the internal Tx
2184 			 * switch is enabled we must set the high water mark
2185 			 * to the maximum FCRTH value.  This allows the Tx
2186 			 * switch to function even under heavy Rx workloads.
2187 			 */
2188 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2189 		}
2190 
2191 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2192 	}
2193 
2194 	/* Configure pause time (2 TCs per register) */
2195 	reg = hw->fc.pause_time * 0x00010001;
2196 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2197 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2198 
2199 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2200 
2201 out:
2202 	return ret_val;
2203 }
2204 
2205 /**
2206  *  ixgbe_negotiate_fc - Negotiate flow control
2207  *  @hw: pointer to hardware structure
2208  *  @adv_reg: flow control advertised settings
2209  *  @lp_reg: link partner's flow control settings
2210  *  @adv_sym: symmetric pause bit in advertisement
2211  *  @adv_asm: asymmetric pause bit in advertisement
2212  *  @lp_sym: symmetric pause bit in link partner advertisement
2213  *  @lp_asm: asymmetric pause bit in link partner advertisement
2214  *
2215  *  Find the intersection between advertised settings and link partner's
2216  *  advertised settings
2217  **/
2218 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2219 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2220 {
2221 	if ((!(adv_reg)) ||  (!(lp_reg)))
2222 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2223 
2224 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2225 		/*
2226 		 * Now we need to check if the user selected Rx ONLY
2227 		 * of pause frames.  In this case, we had to advertise
2228 		 * FULL flow control because we could not advertise RX
2229 		 * ONLY. Hence, we must now check to see if we need to
2230 		 * turn OFF the TRANSMISSION of PAUSE frames.
2231 		 */
2232 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2233 			hw->fc.current_mode = ixgbe_fc_full;
2234 			hw_dbg(hw, "Flow Control = FULL.\n");
2235 		} else {
2236 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2237 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2238 		}
2239 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2240 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2241 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2242 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2243 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2244 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2245 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2246 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2247 	} else {
2248 		hw->fc.current_mode = ixgbe_fc_none;
2249 		hw_dbg(hw, "Flow Control = NONE.\n");
2250 	}
2251 	return 0;
2252 }
2253 
2254 /**
2255  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2256  *  @hw: pointer to hardware structure
2257  *
2258  *  Enable flow control according on 1 gig fiber.
2259  **/
2260 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2261 {
2262 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2263 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2264 
2265 	/*
2266 	 * On multispeed fiber at 1g, bail out if
2267 	 * - link is up but AN did not complete, or if
2268 	 * - link is up and AN completed but timed out
2269 	 */
2270 
2271 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2272 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2273 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2274 		goto out;
2275 
2276 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2277 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2278 
2279 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2280 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2281 			       IXGBE_PCS1GANA_ASM_PAUSE,
2282 			       IXGBE_PCS1GANA_SYM_PAUSE,
2283 			       IXGBE_PCS1GANA_ASM_PAUSE);
2284 
2285 out:
2286 	return ret_val;
2287 }
2288 
2289 /**
2290  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2291  *  @hw: pointer to hardware structure
2292  *
2293  *  Enable flow control according to IEEE clause 37.
2294  **/
2295 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2296 {
2297 	u32 links2, anlp1_reg, autoc_reg, links;
2298 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2299 
2300 	/*
2301 	 * On backplane, bail out if
2302 	 * - backplane autoneg was not completed, or if
2303 	 * - we are 82599 and link partner is not AN enabled
2304 	 */
2305 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2306 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2307 		goto out;
2308 
2309 	if (hw->mac.type == ixgbe_mac_82599EB) {
2310 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2311 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2312 			goto out;
2313 	}
2314 	/*
2315 	 * Read the 10g AN autoc and LP ability registers and resolve
2316 	 * local flow control settings accordingly
2317 	 */
2318 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2319 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2320 
2321 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2322 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2323 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2324 
2325 out:
2326 	return ret_val;
2327 }
2328 
2329 /**
2330  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2331  *  @hw: pointer to hardware structure
2332  *
2333  *  Enable flow control according to IEEE clause 37.
2334  **/
2335 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2336 {
2337 	u16 technology_ability_reg = 0;
2338 	u16 lp_technology_ability_reg = 0;
2339 
2340 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2341 			     MDIO_MMD_AN,
2342 			     &technology_ability_reg);
2343 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2344 			     MDIO_MMD_AN,
2345 			     &lp_technology_ability_reg);
2346 
2347 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2348 				  (u32)lp_technology_ability_reg,
2349 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2350 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2351 }
2352 
2353 /**
2354  *  ixgbe_fc_autoneg - Configure flow control
2355  *  @hw: pointer to hardware structure
2356  *
2357  *  Compares our advertised flow control capabilities to those advertised by
2358  *  our link partner, and determines the proper flow control mode to use.
2359  **/
2360 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2361 {
2362 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2363 	ixgbe_link_speed speed;
2364 	bool link_up;
2365 
2366 	/*
2367 	 * AN should have completed when the cable was plugged in.
2368 	 * Look for reasons to bail out.  Bail out if:
2369 	 * - FC autoneg is disabled, or if
2370 	 * - link is not up.
2371 	 *
2372 	 * Since we're being called from an LSC, link is already known to be up.
2373 	 * So use link_up_wait_to_complete=false.
2374 	 */
2375 	if (hw->fc.disable_fc_autoneg)
2376 		goto out;
2377 
2378 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2379 	if (!link_up)
2380 		goto out;
2381 
2382 	switch (hw->phy.media_type) {
2383 	/* Autoneg flow control on fiber adapters */
2384 	case ixgbe_media_type_fiber:
2385 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2386 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2387 		break;
2388 
2389 	/* Autoneg flow control on backplane adapters */
2390 	case ixgbe_media_type_backplane:
2391 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2392 		break;
2393 
2394 	/* Autoneg flow control on copper adapters */
2395 	case ixgbe_media_type_copper:
2396 		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2397 			ret_val = ixgbe_fc_autoneg_copper(hw);
2398 		break;
2399 
2400 	default:
2401 		break;
2402 	}
2403 
2404 out:
2405 	if (ret_val == 0) {
2406 		hw->fc.fc_was_autonegged = true;
2407 	} else {
2408 		hw->fc.fc_was_autonegged = false;
2409 		hw->fc.current_mode = hw->fc.requested_mode;
2410 	}
2411 }
2412 
2413 /**
2414  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2415  *  @hw: pointer to hardware structure
2416  *
2417  *  Disables PCI-Express master access and verifies there are no pending
2418  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2419  *  bit hasn't caused the master requests to be disabled, else 0
2420  *  is returned signifying master requests disabled.
2421  **/
2422 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2423 {
2424 	struct ixgbe_adapter *adapter = hw->back;
2425 	s32 status = 0;
2426 	u32 i;
2427 	u16 value;
2428 
2429 	/* Always set this bit to ensure any future transactions are blocked */
2430 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2431 
2432 	/* Exit if master requests are blocked */
2433 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2434 		goto out;
2435 
2436 	/* Poll for master request bit to clear */
2437 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2438 		udelay(100);
2439 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2440 			goto out;
2441 	}
2442 
2443 	/*
2444 	 * Two consecutive resets are required via CTRL.RST per datasheet
2445 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2446 	 * of this need.  The first reset prevents new master requests from
2447 	 * being issued by our device.  We then must wait 1usec or more for any
2448 	 * remaining completions from the PCIe bus to trickle in, and then reset
2449 	 * again to clear out any effects they may have had on our device.
2450 	 */
2451 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2452 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2453 
2454 	/*
2455 	 * Before proceeding, make sure that the PCIe block does not have
2456 	 * transactions pending.
2457 	 */
2458 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2459 		udelay(100);
2460 		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2461 							 &value);
2462 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2463 			goto out;
2464 	}
2465 
2466 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2467 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2468 
2469 out:
2470 	return status;
2471 }
2472 
2473 /**
2474  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2475  *  @hw: pointer to hardware structure
2476  *  @mask: Mask to specify which semaphore to acquire
2477  *
2478  *  Acquires the SWFW semaphore through the GSSR register for the specified
2479  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2480  **/
2481 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2482 {
2483 	u32 gssr;
2484 	u32 swmask = mask;
2485 	u32 fwmask = mask << 5;
2486 	s32 timeout = 200;
2487 
2488 	while (timeout) {
2489 		/*
2490 		 * SW EEPROM semaphore bit is used for access to all
2491 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2492 		 */
2493 		if (ixgbe_get_eeprom_semaphore(hw))
2494 			return IXGBE_ERR_SWFW_SYNC;
2495 
2496 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2497 		if (!(gssr & (fwmask | swmask)))
2498 			break;
2499 
2500 		/*
2501 		 * Firmware currently using resource (fwmask) or other software
2502 		 * thread currently using resource (swmask)
2503 		 */
2504 		ixgbe_release_eeprom_semaphore(hw);
2505 		usleep_range(5000, 10000);
2506 		timeout--;
2507 	}
2508 
2509 	if (!timeout) {
2510 		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2511 		return IXGBE_ERR_SWFW_SYNC;
2512 	}
2513 
2514 	gssr |= swmask;
2515 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2516 
2517 	ixgbe_release_eeprom_semaphore(hw);
2518 	return 0;
2519 }
2520 
2521 /**
2522  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2523  *  @hw: pointer to hardware structure
2524  *  @mask: Mask to specify which semaphore to release
2525  *
2526  *  Releases the SWFW semaphore through the GSSR register for the specified
2527  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2528  **/
2529 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2530 {
2531 	u32 gssr;
2532 	u32 swmask = mask;
2533 
2534 	ixgbe_get_eeprom_semaphore(hw);
2535 
2536 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2537 	gssr &= ~swmask;
2538 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2539 
2540 	ixgbe_release_eeprom_semaphore(hw);
2541 }
2542 
2543 /**
2544  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2545  *  @hw: pointer to hardware structure
2546  *
2547  *  Stops the receive data path and waits for the HW to internally
2548  *  empty the Rx security block.
2549  **/
2550 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2551 {
2552 #define IXGBE_MAX_SECRX_POLL 40
2553 	int i;
2554 	int secrxreg;
2555 
2556 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2557 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2558 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2559 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2560 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2561 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2562 			break;
2563 		else
2564 			/* Use interrupt-safe sleep just in case */
2565 			udelay(1000);
2566 	}
2567 
2568 	/* For informational purposes only */
2569 	if (i >= IXGBE_MAX_SECRX_POLL)
2570 		hw_dbg(hw, "Rx unit being enabled before security "
2571 		       "path fully disabled.  Continuing with init.\n");
2572 
2573 	return 0;
2574 
2575 }
2576 
2577 /**
2578  *  ixgbe_enable_rx_buff - Enables the receive data path
2579  *  @hw: pointer to hardware structure
2580  *
2581  *  Enables the receive data path
2582  **/
2583 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2584 {
2585 	int secrxreg;
2586 
2587 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2588 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2589 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2590 	IXGBE_WRITE_FLUSH(hw);
2591 
2592 	return 0;
2593 }
2594 
2595 /**
2596  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2597  *  @hw: pointer to hardware structure
2598  *  @regval: register value to write to RXCTRL
2599  *
2600  *  Enables the Rx DMA unit
2601  **/
2602 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2603 {
2604 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2605 
2606 	return 0;
2607 }
2608 
2609 /**
2610  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2611  *  @hw: pointer to hardware structure
2612  *  @index: led number to blink
2613  **/
2614 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2615 {
2616 	ixgbe_link_speed speed = 0;
2617 	bool link_up = false;
2618 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2619 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2620 
2621 	/*
2622 	 * Link must be up to auto-blink the LEDs;
2623 	 * Force it if link is down.
2624 	 */
2625 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2626 
2627 	if (!link_up) {
2628 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2629 		autoc_reg |= IXGBE_AUTOC_FLU;
2630 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2631 		IXGBE_WRITE_FLUSH(hw);
2632 		usleep_range(10000, 20000);
2633 	}
2634 
2635 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2636 	led_reg |= IXGBE_LED_BLINK(index);
2637 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2638 	IXGBE_WRITE_FLUSH(hw);
2639 
2640 	return 0;
2641 }
2642 
2643 /**
2644  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2645  *  @hw: pointer to hardware structure
2646  *  @index: led number to stop blinking
2647  **/
2648 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2649 {
2650 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2651 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2652 
2653 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2654 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2655 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2656 
2657 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2658 	led_reg &= ~IXGBE_LED_BLINK(index);
2659 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2660 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2661 	IXGBE_WRITE_FLUSH(hw);
2662 
2663 	return 0;
2664 }
2665 
2666 /**
2667  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2668  *  @hw: pointer to hardware structure
2669  *  @san_mac_offset: SAN MAC address offset
2670  *
2671  *  This function will read the EEPROM location for the SAN MAC address
2672  *  pointer, and returns the value at that location.  This is used in both
2673  *  get and set mac_addr routines.
2674  **/
2675 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2676                                         u16 *san_mac_offset)
2677 {
2678 	/*
2679 	 * First read the EEPROM pointer to see if the MAC addresses are
2680 	 * available.
2681 	 */
2682 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2683 
2684 	return 0;
2685 }
2686 
2687 /**
2688  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2689  *  @hw: pointer to hardware structure
2690  *  @san_mac_addr: SAN MAC address
2691  *
2692  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2693  *  per-port, so set_lan_id() must be called before reading the addresses.
2694  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2695  *  upon for non-SFP connections, so we must call it here.
2696  **/
2697 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2698 {
2699 	u16 san_mac_data, san_mac_offset;
2700 	u8 i;
2701 
2702 	/*
2703 	 * First read the EEPROM pointer to see if the MAC addresses are
2704 	 * available.  If they're not, no point in calling set_lan_id() here.
2705 	 */
2706 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2707 
2708 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2709 		/*
2710 		 * No addresses available in this EEPROM.  It's not an
2711 		 * error though, so just wipe the local address and return.
2712 		 */
2713 		for (i = 0; i < 6; i++)
2714 			san_mac_addr[i] = 0xFF;
2715 
2716 		goto san_mac_addr_out;
2717 	}
2718 
2719 	/* make sure we know which port we need to program */
2720 	hw->mac.ops.set_lan_id(hw);
2721 	/* apply the port offset to the address offset */
2722 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2723 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2724 	for (i = 0; i < 3; i++) {
2725 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2726 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2727 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2728 		san_mac_offset++;
2729 	}
2730 
2731 san_mac_addr_out:
2732 	return 0;
2733 }
2734 
2735 /**
2736  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2737  *  @hw: pointer to hardware structure
2738  *
2739  *  Read PCIe configuration space, and get the MSI-X vector count from
2740  *  the capabilities table.
2741  **/
2742 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2743 {
2744 	struct ixgbe_adapter *adapter = hw->back;
2745 	u16 msix_count = 1;
2746 	u16 max_msix_count;
2747 	u16 pcie_offset;
2748 
2749 	switch (hw->mac.type) {
2750 	case ixgbe_mac_82598EB:
2751 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2752 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2753 		break;
2754 	case ixgbe_mac_82599EB:
2755 	case ixgbe_mac_X540:
2756 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2757 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2758 		break;
2759 	default:
2760 		return msix_count;
2761 	}
2762 
2763 	pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
2764 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2765 
2766 	/* MSI-X count is zero-based in HW */
2767 	msix_count++;
2768 
2769 	if (msix_count > max_msix_count)
2770 		msix_count = max_msix_count;
2771 
2772 	return msix_count;
2773 }
2774 
2775 /**
2776  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2777  *  @hw: pointer to hardware struct
2778  *  @rar: receive address register index to disassociate
2779  *  @vmdq: VMDq pool index to remove from the rar
2780  **/
2781 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2782 {
2783 	u32 mpsar_lo, mpsar_hi;
2784 	u32 rar_entries = hw->mac.num_rar_entries;
2785 
2786 	/* Make sure we are using a valid rar index range */
2787 	if (rar >= rar_entries) {
2788 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2789 		return IXGBE_ERR_INVALID_ARGUMENT;
2790 	}
2791 
2792 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2793 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2794 
2795 	if (!mpsar_lo && !mpsar_hi)
2796 		goto done;
2797 
2798 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2799 		if (mpsar_lo) {
2800 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2801 			mpsar_lo = 0;
2802 		}
2803 		if (mpsar_hi) {
2804 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2805 			mpsar_hi = 0;
2806 		}
2807 	} else if (vmdq < 32) {
2808 		mpsar_lo &= ~(1 << vmdq);
2809 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2810 	} else {
2811 		mpsar_hi &= ~(1 << (vmdq - 32));
2812 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2813 	}
2814 
2815 	/* was that the last pool using this rar? */
2816 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2817 		hw->mac.ops.clear_rar(hw, rar);
2818 done:
2819 	return 0;
2820 }
2821 
2822 /**
2823  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2824  *  @hw: pointer to hardware struct
2825  *  @rar: receive address register index to associate with a VMDq index
2826  *  @vmdq: VMDq pool index
2827  **/
2828 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2829 {
2830 	u32 mpsar;
2831 	u32 rar_entries = hw->mac.num_rar_entries;
2832 
2833 	/* Make sure we are using a valid rar index range */
2834 	if (rar >= rar_entries) {
2835 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2836 		return IXGBE_ERR_INVALID_ARGUMENT;
2837 	}
2838 
2839 	if (vmdq < 32) {
2840 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2841 		mpsar |= 1 << vmdq;
2842 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2843 	} else {
2844 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2845 		mpsar |= 1 << (vmdq - 32);
2846 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2847 	}
2848 	return 0;
2849 }
2850 
2851 /**
2852  *  This function should only be involved in the IOV mode.
2853  *  In IOV mode, Default pool is next pool after the number of
2854  *  VFs advertized and not 0.
2855  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2856  *
2857  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2858  *  @hw: pointer to hardware struct
2859  *  @vmdq: VMDq pool index
2860  **/
2861 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2862 {
2863 	u32 rar = hw->mac.san_mac_rar_index;
2864 
2865 	if (vmdq < 32) {
2866 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2867 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2868 	} else {
2869 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2870 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 /**
2877  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2878  *  @hw: pointer to hardware structure
2879  **/
2880 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2881 {
2882 	int i;
2883 
2884 	for (i = 0; i < 128; i++)
2885 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2886 
2887 	return 0;
2888 }
2889 
2890 /**
2891  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2892  *  @hw: pointer to hardware structure
2893  *  @vlan: VLAN id to write to VLAN filter
2894  *
2895  *  return the VLVF index where this VLAN id should be placed
2896  *
2897  **/
2898 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2899 {
2900 	u32 bits = 0;
2901 	u32 first_empty_slot = 0;
2902 	s32 regindex;
2903 
2904 	/* short cut the special case */
2905 	if (vlan == 0)
2906 		return 0;
2907 
2908 	/*
2909 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2910 	  * slot found along the way
2911 	  */
2912 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2913 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2914 		if (!bits && !(first_empty_slot))
2915 			first_empty_slot = regindex;
2916 		else if ((bits & 0x0FFF) == vlan)
2917 			break;
2918 	}
2919 
2920 	/*
2921 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2922 	  * in the VLVF. Else use the first empty VLVF register for this
2923 	  * vlan id.
2924 	  */
2925 	if (regindex >= IXGBE_VLVF_ENTRIES) {
2926 		if (first_empty_slot)
2927 			regindex = first_empty_slot;
2928 		else {
2929 			hw_dbg(hw, "No space in VLVF.\n");
2930 			regindex = IXGBE_ERR_NO_SPACE;
2931 		}
2932 	}
2933 
2934 	return regindex;
2935 }
2936 
2937 /**
2938  *  ixgbe_set_vfta_generic - Set VLAN filter table
2939  *  @hw: pointer to hardware structure
2940  *  @vlan: VLAN id to write to VLAN filter
2941  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2942  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2943  *
2944  *  Turn on/off specified VLAN in the VLAN filter table.
2945  **/
2946 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2947                            bool vlan_on)
2948 {
2949 	s32 regindex;
2950 	u32 bitindex;
2951 	u32 vfta;
2952 	u32 bits;
2953 	u32 vt;
2954 	u32 targetbit;
2955 	bool vfta_changed = false;
2956 
2957 	if (vlan > 4095)
2958 		return IXGBE_ERR_PARAM;
2959 
2960 	/*
2961 	 * this is a 2 part operation - first the VFTA, then the
2962 	 * VLVF and VLVFB if VT Mode is set
2963 	 * We don't write the VFTA until we know the VLVF part succeeded.
2964 	 */
2965 
2966 	/* Part 1
2967 	 * The VFTA is a bitstring made up of 128 32-bit registers
2968 	 * that enable the particular VLAN id, much like the MTA:
2969 	 *    bits[11-5]: which register
2970 	 *    bits[4-0]:  which bit in the register
2971 	 */
2972 	regindex = (vlan >> 5) & 0x7F;
2973 	bitindex = vlan & 0x1F;
2974 	targetbit = (1 << bitindex);
2975 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2976 
2977 	if (vlan_on) {
2978 		if (!(vfta & targetbit)) {
2979 			vfta |= targetbit;
2980 			vfta_changed = true;
2981 		}
2982 	} else {
2983 		if ((vfta & targetbit)) {
2984 			vfta &= ~targetbit;
2985 			vfta_changed = true;
2986 		}
2987 	}
2988 
2989 	/* Part 2
2990 	 * If VT Mode is set
2991 	 *   Either vlan_on
2992 	 *     make sure the vlan is in VLVF
2993 	 *     set the vind bit in the matching VLVFB
2994 	 *   Or !vlan_on
2995 	 *     clear the pool bit and possibly the vind
2996 	 */
2997 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2998 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2999 		s32 vlvf_index;
3000 
3001 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3002 		if (vlvf_index < 0)
3003 			return vlvf_index;
3004 
3005 		if (vlan_on) {
3006 			/* set the pool bit */
3007 			if (vind < 32) {
3008 				bits = IXGBE_READ_REG(hw,
3009 						IXGBE_VLVFB(vlvf_index*2));
3010 				bits |= (1 << vind);
3011 				IXGBE_WRITE_REG(hw,
3012 						IXGBE_VLVFB(vlvf_index*2),
3013 						bits);
3014 			} else {
3015 				bits = IXGBE_READ_REG(hw,
3016 						IXGBE_VLVFB((vlvf_index*2)+1));
3017 				bits |= (1 << (vind-32));
3018 				IXGBE_WRITE_REG(hw,
3019 						IXGBE_VLVFB((vlvf_index*2)+1),
3020 						bits);
3021 			}
3022 		} else {
3023 			/* clear the pool bit */
3024 			if (vind < 32) {
3025 				bits = IXGBE_READ_REG(hw,
3026 						IXGBE_VLVFB(vlvf_index*2));
3027 				bits &= ~(1 << vind);
3028 				IXGBE_WRITE_REG(hw,
3029 						IXGBE_VLVFB(vlvf_index*2),
3030 						bits);
3031 				bits |= IXGBE_READ_REG(hw,
3032 						IXGBE_VLVFB((vlvf_index*2)+1));
3033 			} else {
3034 				bits = IXGBE_READ_REG(hw,
3035 						IXGBE_VLVFB((vlvf_index*2)+1));
3036 				bits &= ~(1 << (vind-32));
3037 				IXGBE_WRITE_REG(hw,
3038 						IXGBE_VLVFB((vlvf_index*2)+1),
3039 						bits);
3040 				bits |= IXGBE_READ_REG(hw,
3041 						IXGBE_VLVFB(vlvf_index*2));
3042 			}
3043 		}
3044 
3045 		/*
3046 		 * If there are still bits set in the VLVFB registers
3047 		 * for the VLAN ID indicated we need to see if the
3048 		 * caller is requesting that we clear the VFTA entry bit.
3049 		 * If the caller has requested that we clear the VFTA
3050 		 * entry bit but there are still pools/VFs using this VLAN
3051 		 * ID entry then ignore the request.  We're not worried
3052 		 * about the case where we're turning the VFTA VLAN ID
3053 		 * entry bit on, only when requested to turn it off as
3054 		 * there may be multiple pools and/or VFs using the
3055 		 * VLAN ID entry.  In that case we cannot clear the
3056 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3057 		 * been cleared.  This will be indicated by "bits" being
3058 		 * zero.
3059 		 */
3060 		if (bits) {
3061 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3062 					(IXGBE_VLVF_VIEN | vlan));
3063 			if (!vlan_on) {
3064 				/* someone wants to clear the vfta entry
3065 				 * but some pools/VFs are still using it.
3066 				 * Ignore it. */
3067 				vfta_changed = false;
3068 			}
3069 		}
3070 		else
3071 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3072 	}
3073 
3074 	if (vfta_changed)
3075 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3076 
3077 	return 0;
3078 }
3079 
3080 /**
3081  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3082  *  @hw: pointer to hardware structure
3083  *
3084  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3085  **/
3086 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3087 {
3088 	u32 offset;
3089 
3090 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3091 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3092 
3093 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3094 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3095 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3096 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 /**
3103  *  ixgbe_check_mac_link_generic - Determine link and speed status
3104  *  @hw: pointer to hardware structure
3105  *  @speed: pointer to link speed
3106  *  @link_up: true when link is up
3107  *  @link_up_wait_to_complete: bool used to wait for link up or not
3108  *
3109  *  Reads the links register to determine if link is up and the current speed
3110  **/
3111 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3112 				 bool *link_up, bool link_up_wait_to_complete)
3113 {
3114 	u32 links_reg, links_orig;
3115 	u32 i;
3116 
3117 	/* clear the old state */
3118 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3119 
3120 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3121 
3122 	if (links_orig != links_reg) {
3123 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3124 		       links_orig, links_reg);
3125 	}
3126 
3127 	if (link_up_wait_to_complete) {
3128 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3129 			if (links_reg & IXGBE_LINKS_UP) {
3130 				*link_up = true;
3131 				break;
3132 			} else {
3133 				*link_up = false;
3134 			}
3135 			msleep(100);
3136 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3137 		}
3138 	} else {
3139 		if (links_reg & IXGBE_LINKS_UP)
3140 			*link_up = true;
3141 		else
3142 			*link_up = false;
3143 	}
3144 
3145 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3146 	    IXGBE_LINKS_SPEED_10G_82599)
3147 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3148 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3149 		 IXGBE_LINKS_SPEED_1G_82599)
3150 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3151 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3152 		 IXGBE_LINKS_SPEED_100_82599)
3153 		*speed = IXGBE_LINK_SPEED_100_FULL;
3154 	else
3155 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3156 
3157 	return 0;
3158 }
3159 
3160 /**
3161  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3162  *  the EEPROM
3163  *  @hw: pointer to hardware structure
3164  *  @wwnn_prefix: the alternative WWNN prefix
3165  *  @wwpn_prefix: the alternative WWPN prefix
3166  *
3167  *  This function will read the EEPROM from the alternative SAN MAC address
3168  *  block to check the support for the alternative WWNN/WWPN prefix support.
3169  **/
3170 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3171                                         u16 *wwpn_prefix)
3172 {
3173 	u16 offset, caps;
3174 	u16 alt_san_mac_blk_offset;
3175 
3176 	/* clear output first */
3177 	*wwnn_prefix = 0xFFFF;
3178 	*wwpn_prefix = 0xFFFF;
3179 
3180 	/* check if alternative SAN MAC is supported */
3181 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3182 	                    &alt_san_mac_blk_offset);
3183 
3184 	if ((alt_san_mac_blk_offset == 0) ||
3185 	    (alt_san_mac_blk_offset == 0xFFFF))
3186 		goto wwn_prefix_out;
3187 
3188 	/* check capability in alternative san mac address block */
3189 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3190 	hw->eeprom.ops.read(hw, offset, &caps);
3191 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3192 		goto wwn_prefix_out;
3193 
3194 	/* get the corresponding prefix for WWNN/WWPN */
3195 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3196 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3197 
3198 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3199 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3200 
3201 wwn_prefix_out:
3202 	return 0;
3203 }
3204 
3205 /**
3206  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3207  *  @hw: pointer to hardware structure
3208  *  @enable: enable or disable switch for anti-spoofing
3209  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3210  *
3211  **/
3212 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3213 {
3214 	int j;
3215 	int pf_target_reg = pf >> 3;
3216 	int pf_target_shift = pf % 8;
3217 	u32 pfvfspoof = 0;
3218 
3219 	if (hw->mac.type == ixgbe_mac_82598EB)
3220 		return;
3221 
3222 	if (enable)
3223 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3224 
3225 	/*
3226 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3227 	 * MAC anti-spoof enables in each register array element.
3228 	 */
3229 	for (j = 0; j < pf_target_reg; j++)
3230 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3231 
3232 	/*
3233 	 * The PF should be allowed to spoof so that it can support
3234 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3235 	 */
3236 	pfvfspoof &= (1 << pf_target_shift) - 1;
3237 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3238 
3239 	/*
3240 	 * Remaining pools belong to the PF so they do not need to have
3241 	 * anti-spoofing enabled.
3242 	 */
3243 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3244 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3245 }
3246 
3247 /**
3248  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3249  *  @hw: pointer to hardware structure
3250  *  @enable: enable or disable switch for VLAN anti-spoofing
3251  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3252  *
3253  **/
3254 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3255 {
3256 	int vf_target_reg = vf >> 3;
3257 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3258 	u32 pfvfspoof;
3259 
3260 	if (hw->mac.type == ixgbe_mac_82598EB)
3261 		return;
3262 
3263 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3264 	if (enable)
3265 		pfvfspoof |= (1 << vf_target_shift);
3266 	else
3267 		pfvfspoof &= ~(1 << vf_target_shift);
3268 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3269 }
3270 
3271 /**
3272  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3273  *  @hw: pointer to hardware structure
3274  *  @device_caps: the EEPROM word with the extra device capabilities
3275  *
3276  *  This function will read the EEPROM location for the device capabilities,
3277  *  and return the word through device_caps.
3278  **/
3279 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3280 {
3281 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3282 
3283 	return 0;
3284 }
3285 
3286 /**
3287  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3288  * @hw: pointer to hardware structure
3289  * @num_pb: number of packet buffers to allocate
3290  * @headroom: reserve n KB of headroom
3291  * @strategy: packet buffer allocation strategy
3292  **/
3293 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3294 			     int num_pb,
3295 			     u32 headroom,
3296 			     int strategy)
3297 {
3298 	u32 pbsize = hw->mac.rx_pb_size;
3299 	int i = 0;
3300 	u32 rxpktsize, txpktsize, txpbthresh;
3301 
3302 	/* Reserve headroom */
3303 	pbsize -= headroom;
3304 
3305 	if (!num_pb)
3306 		num_pb = 1;
3307 
3308 	/* Divide remaining packet buffer space amongst the number
3309 	 * of packet buffers requested using supplied strategy.
3310 	 */
3311 	switch (strategy) {
3312 	case (PBA_STRATEGY_WEIGHTED):
3313 		/* pba_80_48 strategy weight first half of packet buffer with
3314 		 * 5/8 of the packet buffer space.
3315 		 */
3316 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3317 		pbsize -= rxpktsize * (num_pb / 2);
3318 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3319 		for (; i < (num_pb / 2); i++)
3320 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3321 		/* Fall through to configure remaining packet buffers */
3322 	case (PBA_STRATEGY_EQUAL):
3323 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3324 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3325 		for (; i < num_pb; i++)
3326 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3327 		break;
3328 	default:
3329 		break;
3330 	}
3331 
3332 	/*
3333 	 * Setup Tx packet buffer and threshold equally for all TCs
3334 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3335 	 * 10 since the largest packet we support is just over 9K.
3336 	 */
3337 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3338 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3339 	for (i = 0; i < num_pb; i++) {
3340 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3341 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3342 	}
3343 
3344 	/* Clear unused TCs, if any, to zero buffer size*/
3345 	for (; i < IXGBE_MAX_PB; i++) {
3346 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3347 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3348 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3349 	}
3350 }
3351 
3352 /**
3353  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3354  *  @buffer: pointer to EEPROM
3355  *  @length: size of EEPROM to calculate a checksum for
3356  *
3357  *  Calculates the checksum for some buffer on a specified length.  The
3358  *  checksum calculated is returned.
3359  **/
3360 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3361 {
3362 	u32 i;
3363 	u8 sum = 0;
3364 
3365 	if (!buffer)
3366 		return 0;
3367 
3368 	for (i = 0; i < length; i++)
3369 		sum += buffer[i];
3370 
3371 	return (u8) (0 - sum);
3372 }
3373 
3374 /**
3375  *  ixgbe_host_interface_command - Issue command to manageability block
3376  *  @hw: pointer to the HW structure
3377  *  @buffer: contains the command to write and where the return status will
3378  *           be placed
3379  *  @length: length of buffer, must be multiple of 4 bytes
3380  *
3381  *  Communicates with the manageability block.  On success return 0
3382  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3383  **/
3384 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3385 					u32 length)
3386 {
3387 	u32 hicr, i, bi;
3388 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3389 	u8 buf_len, dword_len;
3390 
3391 	s32 ret_val = 0;
3392 
3393 	if (length == 0 || length & 0x3 ||
3394 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3395 		hw_dbg(hw, "Buffer length failure.\n");
3396 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3397 		goto out;
3398 	}
3399 
3400 	/* Check that the host interface is enabled. */
3401 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3402 	if ((hicr & IXGBE_HICR_EN) == 0) {
3403 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3404 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3405 		goto out;
3406 	}
3407 
3408 	/* Calculate length in DWORDs */
3409 	dword_len = length >> 2;
3410 
3411 	/*
3412 	 * The device driver writes the relevant command block
3413 	 * into the ram area.
3414 	 */
3415 	for (i = 0; i < dword_len; i++)
3416 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3417 				      i, cpu_to_le32(buffer[i]));
3418 
3419 	/* Setting this bit tells the ARC that a new command is pending. */
3420 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3421 
3422 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3423 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3424 		if (!(hicr & IXGBE_HICR_C))
3425 			break;
3426 		usleep_range(1000, 2000);
3427 	}
3428 
3429 	/* Check command successful completion. */
3430 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3431 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3432 		hw_dbg(hw, "Command has failed with no status valid.\n");
3433 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3434 		goto out;
3435 	}
3436 
3437 	/* Calculate length in DWORDs */
3438 	dword_len = hdr_size >> 2;
3439 
3440 	/* first pull in the header so we know the buffer length */
3441 	for (bi = 0; bi < dword_len; bi++) {
3442 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3443 		le32_to_cpus(&buffer[bi]);
3444 	}
3445 
3446 	/* If there is any thing in data position pull it in */
3447 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3448 	if (buf_len == 0)
3449 		goto out;
3450 
3451 	if (length < (buf_len + hdr_size)) {
3452 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3453 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3454 		goto out;
3455 	}
3456 
3457 	/* Calculate length in DWORDs, add 3 for odd lengths */
3458 	dword_len = (buf_len + 3) >> 2;
3459 
3460 	/* Pull in the rest of the buffer (bi is where we left off)*/
3461 	for (; bi <= dword_len; bi++) {
3462 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3463 		le32_to_cpus(&buffer[bi]);
3464 	}
3465 
3466 out:
3467 	return ret_val;
3468 }
3469 
3470 /**
3471  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3472  *  @hw: pointer to the HW structure
3473  *  @maj: driver version major number
3474  *  @min: driver version minor number
3475  *  @build: driver version build number
3476  *  @sub: driver version sub build number
3477  *
3478  *  Sends driver version number to firmware through the manageability
3479  *  block.  On success return 0
3480  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3481  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3482  **/
3483 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3484 				 u8 build, u8 sub)
3485 {
3486 	struct ixgbe_hic_drv_info fw_cmd;
3487 	int i;
3488 	s32 ret_val = 0;
3489 
3490 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3491 		ret_val = IXGBE_ERR_SWFW_SYNC;
3492 		goto out;
3493 	}
3494 
3495 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3496 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3497 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3498 	fw_cmd.port_num = (u8)hw->bus.func;
3499 	fw_cmd.ver_maj = maj;
3500 	fw_cmd.ver_min = min;
3501 	fw_cmd.ver_build = build;
3502 	fw_cmd.ver_sub = sub;
3503 	fw_cmd.hdr.checksum = 0;
3504 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3505 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3506 	fw_cmd.pad = 0;
3507 	fw_cmd.pad2 = 0;
3508 
3509 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3510 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3511 						       sizeof(fw_cmd));
3512 		if (ret_val != 0)
3513 			continue;
3514 
3515 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3516 		    FW_CEM_RESP_STATUS_SUCCESS)
3517 			ret_val = 0;
3518 		else
3519 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3520 
3521 		break;
3522 	}
3523 
3524 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3525 out:
3526 	return ret_val;
3527 }
3528 
3529 /**
3530  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3531  * @hw: pointer to the hardware structure
3532  *
3533  * The 82599 and x540 MACs can experience issues if TX work is still pending
3534  * when a reset occurs.  This function prevents this by flushing the PCIe
3535  * buffers on the system.
3536  **/
3537 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3538 {
3539 	u32 gcr_ext, hlreg0;
3540 
3541 	/*
3542 	 * If double reset is not requested then all transactions should
3543 	 * already be clear and as such there is no work to do
3544 	 */
3545 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3546 		return;
3547 
3548 	/*
3549 	 * Set loopback enable to prevent any transmits from being sent
3550 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3551 	 * has already been cleared.
3552 	 */
3553 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3554 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3555 
3556 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3557 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3558 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3559 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3560 
3561 	/* Flush all writes and allow 20usec for all transactions to clear */
3562 	IXGBE_WRITE_FLUSH(hw);
3563 	udelay(20);
3564 
3565 	/* restore previous register values */
3566 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3567 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3568 }
3569 
3570 static const u8 ixgbe_emc_temp_data[4] = {
3571 	IXGBE_EMC_INTERNAL_DATA,
3572 	IXGBE_EMC_DIODE1_DATA,
3573 	IXGBE_EMC_DIODE2_DATA,
3574 	IXGBE_EMC_DIODE3_DATA
3575 };
3576 static const u8 ixgbe_emc_therm_limit[4] = {
3577 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3578 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3579 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3580 	IXGBE_EMC_DIODE3_THERM_LIMIT
3581 };
3582 
3583 /**
3584  *  ixgbe_get_ets_data - Extracts the ETS bit data
3585  *  @hw: pointer to hardware structure
3586  *  @ets_cfg: extected ETS data
3587  *  @ets_offset: offset of ETS data
3588  *
3589  *  Returns error code.
3590  **/
3591 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3592 			      u16 *ets_offset)
3593 {
3594 	s32 status = 0;
3595 
3596 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3597 	if (status)
3598 		goto out;
3599 
3600 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3601 		status = IXGBE_NOT_IMPLEMENTED;
3602 		goto out;
3603 	}
3604 
3605 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3606 	if (status)
3607 		goto out;
3608 
3609 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3610 		status = IXGBE_NOT_IMPLEMENTED;
3611 		goto out;
3612 	}
3613 
3614 out:
3615 	return status;
3616 }
3617 
3618 /**
3619  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3620  *  @hw: pointer to hardware structure
3621  *
3622  *  Returns the thermal sensor data structure
3623  **/
3624 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3625 {
3626 	s32 status = 0;
3627 	u16 ets_offset;
3628 	u16 ets_cfg;
3629 	u16 ets_sensor;
3630 	u8  num_sensors;
3631 	u8  i;
3632 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3633 
3634 	/* Only support thermal sensors attached to physical port 0 */
3635 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3636 		status = IXGBE_NOT_IMPLEMENTED;
3637 		goto out;
3638 	}
3639 
3640 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3641 	if (status)
3642 		goto out;
3643 
3644 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3645 	if (num_sensors > IXGBE_MAX_SENSORS)
3646 		num_sensors = IXGBE_MAX_SENSORS;
3647 
3648 	for (i = 0; i < num_sensors; i++) {
3649 		u8  sensor_index;
3650 		u8  sensor_location;
3651 
3652 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3653 					     &ets_sensor);
3654 		if (status)
3655 			goto out;
3656 
3657 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3658 				IXGBE_ETS_DATA_INDEX_SHIFT);
3659 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3660 				   IXGBE_ETS_DATA_LOC_SHIFT);
3661 
3662 		if (sensor_location != 0) {
3663 			status = hw->phy.ops.read_i2c_byte(hw,
3664 					ixgbe_emc_temp_data[sensor_index],
3665 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3666 					&data->sensor[i].temp);
3667 			if (status)
3668 				goto out;
3669 		}
3670 	}
3671 out:
3672 	return status;
3673 }
3674 
3675 /**
3676  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3677  * @hw: pointer to hardware structure
3678  *
3679  * Inits the thermal sensor thresholds according to the NVM map
3680  * and save off the threshold and location values into mac.thermal_sensor_data
3681  **/
3682 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3683 {
3684 	s32 status = 0;
3685 	u16 ets_offset;
3686 	u16 ets_cfg;
3687 	u16 ets_sensor;
3688 	u8  low_thresh_delta;
3689 	u8  num_sensors;
3690 	u8  therm_limit;
3691 	u8  i;
3692 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3693 
3694 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3695 
3696 	/* Only support thermal sensors attached to physical port 0 */
3697 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3698 		status = IXGBE_NOT_IMPLEMENTED;
3699 		goto out;
3700 	}
3701 
3702 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3703 	if (status)
3704 		goto out;
3705 
3706 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3707 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3708 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3709 	if (num_sensors > IXGBE_MAX_SENSORS)
3710 		num_sensors = IXGBE_MAX_SENSORS;
3711 
3712 	for (i = 0; i < num_sensors; i++) {
3713 		u8  sensor_index;
3714 		u8  sensor_location;
3715 
3716 		hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
3717 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3718 				IXGBE_ETS_DATA_INDEX_SHIFT);
3719 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3720 				   IXGBE_ETS_DATA_LOC_SHIFT);
3721 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3722 
3723 		hw->phy.ops.write_i2c_byte(hw,
3724 			ixgbe_emc_therm_limit[sensor_index],
3725 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3726 
3727 		if (sensor_location == 0)
3728 			continue;
3729 
3730 		data->sensor[i].location = sensor_location;
3731 		data->sensor[i].caution_thresh = therm_limit;
3732 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3733 	}
3734 out:
3735 	return status;
3736 }
3737 
3738