xref: /openbmc/linux/drivers/net/ethernet/intel/igc/igc_ptp.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3 
4 #include "igc.h"
5 
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14 
15 #define INCVALUE_MASK		0x7fffffff
16 #define ISGN			0x80000000
17 
18 #define IGC_PTP_TX_TIMEOUT		(HZ * 15)
19 
20 #define IGC_PTM_STAT_SLEEP		2
21 #define IGC_PTM_STAT_TIMEOUT		100
22 
23 /* SYSTIM read access for I225 */
24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25 {
26 	struct igc_hw *hw = &adapter->hw;
27 	u32 sec, nsec;
28 
29 	/* The timestamp is latched when SYSTIML is read. */
30 	nsec = rd32(IGC_SYSTIML);
31 	sec = rd32(IGC_SYSTIMH);
32 
33 	ts->tv_sec = sec;
34 	ts->tv_nsec = nsec;
35 }
36 
37 static void igc_ptp_write_i225(struct igc_adapter *adapter,
38 			       const struct timespec64 *ts)
39 {
40 	struct igc_hw *hw = &adapter->hw;
41 
42 	wr32(IGC_SYSTIML, ts->tv_nsec);
43 	wr32(IGC_SYSTIMH, ts->tv_sec);
44 }
45 
46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47 {
48 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49 					       ptp_caps);
50 	struct igc_hw *hw = &igc->hw;
51 	int neg_adj = 0;
52 	u64 rate;
53 	u32 inca;
54 
55 	if (scaled_ppm < 0) {
56 		neg_adj = 1;
57 		scaled_ppm = -scaled_ppm;
58 	}
59 	rate = scaled_ppm;
60 	rate <<= 14;
61 	rate = div_u64(rate, 78125);
62 
63 	inca = rate & INCVALUE_MASK;
64 	if (neg_adj)
65 		inca |= ISGN;
66 
67 	wr32(IGC_TIMINCA, inca);
68 
69 	return 0;
70 }
71 
72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73 {
74 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75 					       ptp_caps);
76 	struct timespec64 now, then = ns_to_timespec64(delta);
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&igc->tmreg_lock, flags);
80 
81 	igc_ptp_read(igc, &now);
82 	now = timespec64_add(now, then);
83 	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84 
85 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86 
87 	return 0;
88 }
89 
90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91 				   struct timespec64 *ts,
92 				   struct ptp_system_timestamp *sts)
93 {
94 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95 					       ptp_caps);
96 	struct igc_hw *hw = &igc->hw;
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(&igc->tmreg_lock, flags);
100 
101 	ptp_read_system_prets(sts);
102 	ts->tv_nsec = rd32(IGC_SYSTIML);
103 	ts->tv_sec = rd32(IGC_SYSTIMH);
104 	ptp_read_system_postts(sts);
105 
106 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107 
108 	return 0;
109 }
110 
111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112 				const struct timespec64 *ts)
113 {
114 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115 					       ptp_caps);
116 	unsigned long flags;
117 
118 	spin_lock_irqsave(&igc->tmreg_lock, flags);
119 
120 	igc_ptp_write_i225(igc, ts);
121 
122 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123 
124 	return 0;
125 }
126 
127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128 {
129 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130 	static const u32 mask[IGC_N_SDP] = {
131 		IGC_CTRL_SDP0_DIR,
132 		IGC_CTRL_SDP1_DIR,
133 		IGC_CTRL_EXT_SDP2_DIR,
134 		IGC_CTRL_EXT_SDP3_DIR,
135 	};
136 
137 	if (input)
138 		*ptr &= ~mask[pin];
139 	else
140 		*ptr |= mask[pin];
141 }
142 
143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144 {
145 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147 	};
148 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150 	};
151 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153 	};
154 	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155 		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156 		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157 	};
158 	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159 		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160 		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161 	};
162 	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163 		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164 		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165 	};
166 	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169 	};
170 	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173 	};
174 	struct igc_hw *hw = &igc->hw;
175 	u32 ctrl, ctrl_ext, tssdp = 0;
176 
177 	ctrl = rd32(IGC_CTRL);
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	tssdp = rd32(IGC_TSSDP);
180 
181 	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182 
183 	/* Make sure this pin is not enabled as an input. */
184 	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185 		tssdp &= ~IGC_AUX0_TS_SDP_EN;
186 
187 	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188 		tssdp &= ~IGC_AUX1_TS_SDP_EN;
189 
190 	tssdp &= ~igc_ts_sdp_sel_clr[pin];
191 	if (freq) {
192 		if (chan == 1)
193 			tssdp |= igc_ts_sdp_sel_fc1[pin];
194 		else
195 			tssdp |= igc_ts_sdp_sel_fc0[pin];
196 	} else {
197 		if (chan == 1)
198 			tssdp |= igc_ts_sdp_sel_tt1[pin];
199 		else
200 			tssdp |= igc_ts_sdp_sel_tt0[pin];
201 	}
202 	tssdp |= igc_ts_sdp_en[pin];
203 
204 	wr32(IGC_TSSDP, tssdp);
205 	wr32(IGC_CTRL, ctrl);
206 	wr32(IGC_CTRL_EXT, ctrl_ext);
207 }
208 
209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210 {
211 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213 	};
214 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216 	};
217 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219 	};
220 	struct igc_hw *hw = &igc->hw;
221 	u32 ctrl, ctrl_ext, tssdp = 0;
222 
223 	ctrl = rd32(IGC_CTRL);
224 	ctrl_ext = rd32(IGC_CTRL_EXT);
225 	tssdp = rd32(IGC_TSSDP);
226 
227 	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228 
229 	/* Make sure this pin is not enabled as an output. */
230 	tssdp &= ~igc_ts_sdp_en[pin];
231 
232 	if (chan == 1) {
233 		tssdp &= ~IGC_AUX1_SEL_SDP3;
234 		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235 	} else {
236 		tssdp &= ~IGC_AUX0_SEL_SDP3;
237 		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238 	}
239 
240 	wr32(IGC_TSSDP, tssdp);
241 	wr32(IGC_CTRL, ctrl);
242 	wr32(IGC_CTRL_EXT, ctrl_ext);
243 }
244 
245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246 				       struct ptp_clock_request *rq, int on)
247 {
248 	struct igc_adapter *igc =
249 		container_of(ptp, struct igc_adapter, ptp_caps);
250 	struct igc_hw *hw = &igc->hw;
251 	unsigned long flags;
252 	struct timespec64 ts;
253 	int use_freq = 0, pin = -1;
254 	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255 	s64 ns;
256 
257 	switch (rq->type) {
258 	case PTP_CLK_REQ_EXTTS:
259 		/* Reject requests with unsupported flags */
260 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261 					PTP_RISING_EDGE |
262 					PTP_FALLING_EDGE |
263 					PTP_STRICT_FLAGS))
264 			return -EOPNOTSUPP;
265 
266 		/* Reject requests failing to enable both edges. */
267 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270 			return -EOPNOTSUPP;
271 
272 		if (on) {
273 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274 					   rq->extts.index);
275 			if (pin < 0)
276 				return -EBUSY;
277 		}
278 		if (rq->extts.index == 1) {
279 			tsauxc_mask = IGC_TSAUXC_EN_TS1;
280 			tsim_mask = IGC_TSICR_AUTT1;
281 		} else {
282 			tsauxc_mask = IGC_TSAUXC_EN_TS0;
283 			tsim_mask = IGC_TSICR_AUTT0;
284 		}
285 		spin_lock_irqsave(&igc->tmreg_lock, flags);
286 		tsauxc = rd32(IGC_TSAUXC);
287 		tsim = rd32(IGC_TSIM);
288 		if (on) {
289 			igc_pin_extts(igc, rq->extts.index, pin);
290 			tsauxc |= tsauxc_mask;
291 			tsim |= tsim_mask;
292 		} else {
293 			tsauxc &= ~tsauxc_mask;
294 			tsim &= ~tsim_mask;
295 		}
296 		wr32(IGC_TSAUXC, tsauxc);
297 		wr32(IGC_TSIM, tsim);
298 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299 		return 0;
300 
301 	case PTP_CLK_REQ_PEROUT:
302 		/* Reject requests with unsupported flags */
303 		if (rq->perout.flags)
304 			return -EOPNOTSUPP;
305 
306 		if (on) {
307 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308 					   rq->perout.index);
309 			if (pin < 0)
310 				return -EBUSY;
311 		}
312 		ts.tv_sec = rq->perout.period.sec;
313 		ts.tv_nsec = rq->perout.period.nsec;
314 		ns = timespec64_to_ns(&ts);
315 		ns = ns >> 1;
316 		if (on && (ns <= 70000000LL || ns == 125000000LL ||
317 			   ns == 250000000LL || ns == 500000000LL)) {
318 			if (ns < 8LL)
319 				return -EINVAL;
320 			use_freq = 1;
321 		}
322 		ts = ns_to_timespec64(ns);
323 		if (rq->perout.index == 1) {
324 			if (use_freq) {
325 				tsauxc_mask = IGC_TSAUXC_EN_CLK1;
326 				tsim_mask = 0;
327 			} else {
328 				tsauxc_mask = IGC_TSAUXC_EN_TT1;
329 				tsim_mask = IGC_TSICR_TT1;
330 			}
331 			trgttiml = IGC_TRGTTIML1;
332 			trgttimh = IGC_TRGTTIMH1;
333 			freqout = IGC_FREQOUT1;
334 		} else {
335 			if (use_freq) {
336 				tsauxc_mask = IGC_TSAUXC_EN_CLK0;
337 				tsim_mask = 0;
338 			} else {
339 				tsauxc_mask = IGC_TSAUXC_EN_TT0;
340 				tsim_mask = IGC_TSICR_TT0;
341 			}
342 			trgttiml = IGC_TRGTTIML0;
343 			trgttimh = IGC_TRGTTIMH0;
344 			freqout = IGC_FREQOUT0;
345 		}
346 		spin_lock_irqsave(&igc->tmreg_lock, flags);
347 		tsauxc = rd32(IGC_TSAUXC);
348 		tsim = rd32(IGC_TSIM);
349 		if (rq->perout.index == 1) {
350 			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1);
351 			tsim &= ~IGC_TSICR_TT1;
352 		} else {
353 			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0);
354 			tsim &= ~IGC_TSICR_TT0;
355 		}
356 		if (on) {
357 			int i = rq->perout.index;
358 
359 			igc_pin_perout(igc, i, pin, use_freq);
360 			igc->perout[i].start.tv_sec = rq->perout.start.sec;
361 			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
362 			igc->perout[i].period.tv_sec = ts.tv_sec;
363 			igc->perout[i].period.tv_nsec = ts.tv_nsec;
364 			wr32(trgttimh, rq->perout.start.sec);
365 			/* For now, always select timer 0 as source. */
366 			wr32(trgttiml, rq->perout.start.nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
367 			if (use_freq)
368 				wr32(freqout, ns);
369 			tsauxc |= tsauxc_mask;
370 			tsim |= tsim_mask;
371 		}
372 		wr32(IGC_TSAUXC, tsauxc);
373 		wr32(IGC_TSIM, tsim);
374 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
375 		return 0;
376 
377 	case PTP_CLK_REQ_PPS:
378 		spin_lock_irqsave(&igc->tmreg_lock, flags);
379 		tsim = rd32(IGC_TSIM);
380 		if (on)
381 			tsim |= IGC_TSICR_SYS_WRAP;
382 		else
383 			tsim &= ~IGC_TSICR_SYS_WRAP;
384 		igc->pps_sys_wrap_on = on;
385 		wr32(IGC_TSIM, tsim);
386 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
387 		return 0;
388 
389 	default:
390 		break;
391 	}
392 
393 	return -EOPNOTSUPP;
394 }
395 
396 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
397 			      enum ptp_pin_function func, unsigned int chan)
398 {
399 	switch (func) {
400 	case PTP_PF_NONE:
401 	case PTP_PF_EXTTS:
402 	case PTP_PF_PEROUT:
403 		break;
404 	case PTP_PF_PHYSYNC:
405 		return -1;
406 	}
407 	return 0;
408 }
409 
410 /**
411  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
412  * @adapter: board private structure
413  * @hwtstamps: timestamp structure to update
414  * @systim: unsigned 64bit system time value
415  *
416  * We need to convert the system time value stored in the RX/TXSTMP registers
417  * into a hwtstamp which can be used by the upper level timestamping functions.
418  **/
419 static void igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
420 				       struct skb_shared_hwtstamps *hwtstamps,
421 				       u64 systim)
422 {
423 	switch (adapter->hw.mac.type) {
424 	case igc_i225:
425 		memset(hwtstamps, 0, sizeof(*hwtstamps));
426 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
427 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
428 						systim & 0xFFFFFFFF);
429 		break;
430 	default:
431 		break;
432 	}
433 }
434 
435 /**
436  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
437  * @adapter: Pointer to adapter the packet buffer belongs to
438  * @buf: Pointer to packet buffer
439  *
440  * This function retrieves the timestamp saved in the beginning of packet
441  * buffer. While two timestamps are available, one in timer0 reference and the
442  * other in timer1 reference, this function considers only the timestamp in
443  * timer0 reference.
444  *
445  * Returns timestamp value.
446  */
447 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
448 {
449 	ktime_t timestamp;
450 	u32 secs, nsecs;
451 	int adjust;
452 
453 	/* Timestamps are saved in little endian at the beginning of the packet
454 	 * buffer following the layout:
455 	 *
456 	 * DWORD: | 0              | 1              | 2              | 3              |
457 	 * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
458 	 *
459 	 * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
460 	 * part of the timestamp.
461 	 */
462 	nsecs = le32_to_cpu(buf[2]);
463 	secs = le32_to_cpu(buf[3]);
464 
465 	timestamp = ktime_set(secs, nsecs);
466 
467 	/* Adjust timestamp for the RX latency based on link speed */
468 	switch (adapter->link_speed) {
469 	case SPEED_10:
470 		adjust = IGC_I225_RX_LATENCY_10;
471 		break;
472 	case SPEED_100:
473 		adjust = IGC_I225_RX_LATENCY_100;
474 		break;
475 	case SPEED_1000:
476 		adjust = IGC_I225_RX_LATENCY_1000;
477 		break;
478 	case SPEED_2500:
479 		adjust = IGC_I225_RX_LATENCY_2500;
480 		break;
481 	default:
482 		adjust = 0;
483 		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
484 		break;
485 	}
486 
487 	return ktime_sub_ns(timestamp, adjust);
488 }
489 
490 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
491 {
492 	struct igc_hw *hw = &adapter->hw;
493 	u32 val;
494 	int i;
495 
496 	wr32(IGC_TSYNCRXCTL, 0);
497 
498 	for (i = 0; i < adapter->num_rx_queues; i++) {
499 		val = rd32(IGC_SRRCTL(i));
500 		val &= ~IGC_SRRCTL_TIMESTAMP;
501 		wr32(IGC_SRRCTL(i), val);
502 	}
503 
504 	val = rd32(IGC_RXPBS);
505 	val &= ~IGC_RXPBS_CFG_TS_EN;
506 	wr32(IGC_RXPBS, val);
507 }
508 
509 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
510 {
511 	struct igc_hw *hw = &adapter->hw;
512 	u32 val;
513 	int i;
514 
515 	val = rd32(IGC_RXPBS);
516 	val |= IGC_RXPBS_CFG_TS_EN;
517 	wr32(IGC_RXPBS, val);
518 
519 	for (i = 0; i < adapter->num_rx_queues; i++) {
520 		val = rd32(IGC_SRRCTL(i));
521 		/* FIXME: For now, only support retrieving RX timestamps from
522 		 * timer 0.
523 		 */
524 		val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
525 		       IGC_SRRCTL_TIMESTAMP;
526 		wr32(IGC_SRRCTL(i), val);
527 	}
528 
529 	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
530 	      IGC_TSYNCRXCTL_RXSYNSIG;
531 	wr32(IGC_TSYNCRXCTL, val);
532 }
533 
534 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
535 {
536 	struct igc_hw *hw = &adapter->hw;
537 
538 	wr32(IGC_TSYNCTXCTL, 0);
539 }
540 
541 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
542 {
543 	struct igc_hw *hw = &adapter->hw;
544 
545 	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
546 
547 	/* Read TXSTMP registers to discard any timestamp previously stored. */
548 	rd32(IGC_TXSTMPL);
549 	rd32(IGC_TXSTMPH);
550 }
551 
552 /**
553  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
554  * @adapter: networking device structure
555  * @config: hwtstamp configuration
556  *
557  * Return: 0 in case of success, negative errno code otherwise.
558  */
559 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
560 				      struct hwtstamp_config *config)
561 {
562 	switch (config->tx_type) {
563 	case HWTSTAMP_TX_OFF:
564 		igc_ptp_disable_tx_timestamp(adapter);
565 		break;
566 	case HWTSTAMP_TX_ON:
567 		igc_ptp_enable_tx_timestamp(adapter);
568 		break;
569 	default:
570 		return -ERANGE;
571 	}
572 
573 	switch (config->rx_filter) {
574 	case HWTSTAMP_FILTER_NONE:
575 		igc_ptp_disable_rx_timestamp(adapter);
576 		break;
577 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
578 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
579 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
580 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
581 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
582 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
583 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
584 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
585 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
586 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
587 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
588 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
589 	case HWTSTAMP_FILTER_NTP_ALL:
590 	case HWTSTAMP_FILTER_ALL:
591 		igc_ptp_enable_rx_timestamp(adapter);
592 		config->rx_filter = HWTSTAMP_FILTER_ALL;
593 		break;
594 	default:
595 		return -ERANGE;
596 	}
597 
598 	return 0;
599 }
600 
601 static void igc_ptp_tx_timeout(struct igc_adapter *adapter)
602 {
603 	struct igc_hw *hw = &adapter->hw;
604 
605 	dev_kfree_skb_any(adapter->ptp_tx_skb);
606 	adapter->ptp_tx_skb = NULL;
607 	adapter->tx_hwtstamp_timeouts++;
608 	clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
609 	/* Clear the tx valid bit in TSYNCTXCTL register to enable interrupt. */
610 	rd32(IGC_TXSTMPH);
611 	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
612 }
613 
614 void igc_ptp_tx_hang(struct igc_adapter *adapter)
615 {
616 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
617 					      IGC_PTP_TX_TIMEOUT);
618 
619 	if (!test_bit(__IGC_PTP_TX_IN_PROGRESS, &adapter->state))
620 		return;
621 
622 	/* If we haven't received a timestamp within the timeout, it is
623 	 * reasonable to assume that it will never occur, so we can unlock the
624 	 * timestamp bit when this occurs.
625 	 */
626 	if (timeout) {
627 		cancel_work_sync(&adapter->ptp_tx_work);
628 		igc_ptp_tx_timeout(adapter);
629 	}
630 }
631 
632 /**
633  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
634  * @adapter: Board private structure
635  *
636  * If we were asked to do hardware stamping and such a time stamp is
637  * available, then it must have been for this skb here because we only
638  * allow only one such packet into the queue.
639  */
640 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
641 {
642 	struct sk_buff *skb = adapter->ptp_tx_skb;
643 	struct skb_shared_hwtstamps shhwtstamps;
644 	struct igc_hw *hw = &adapter->hw;
645 	int adjust = 0;
646 	u64 regval;
647 
648 	if (WARN_ON_ONCE(!skb))
649 		return;
650 
651 	regval = rd32(IGC_TXSTMPL);
652 	regval |= (u64)rd32(IGC_TXSTMPH) << 32;
653 	igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
654 
655 	switch (adapter->link_speed) {
656 	case SPEED_10:
657 		adjust = IGC_I225_TX_LATENCY_10;
658 		break;
659 	case SPEED_100:
660 		adjust = IGC_I225_TX_LATENCY_100;
661 		break;
662 	case SPEED_1000:
663 		adjust = IGC_I225_TX_LATENCY_1000;
664 		break;
665 	case SPEED_2500:
666 		adjust = IGC_I225_TX_LATENCY_2500;
667 		break;
668 	}
669 
670 	shhwtstamps.hwtstamp =
671 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
672 
673 	/* Clear the lock early before calling skb_tstamp_tx so that
674 	 * applications are not woken up before the lock bit is clear. We use
675 	 * a copy of the skb pointer to ensure other threads can't change it
676 	 * while we're notifying the stack.
677 	 */
678 	adapter->ptp_tx_skb = NULL;
679 	clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
680 
681 	/* Notify the stack and free the skb after we've unlocked */
682 	skb_tstamp_tx(skb, &shhwtstamps);
683 	dev_kfree_skb_any(skb);
684 }
685 
686 /**
687  * igc_ptp_tx_work
688  * @work: pointer to work struct
689  *
690  * This work function polls the TSYNCTXCTL valid bit to determine when a
691  * timestamp has been taken for the current stored skb.
692  */
693 static void igc_ptp_tx_work(struct work_struct *work)
694 {
695 	struct igc_adapter *adapter = container_of(work, struct igc_adapter,
696 						   ptp_tx_work);
697 	struct igc_hw *hw = &adapter->hw;
698 	u32 tsynctxctl;
699 
700 	if (!test_bit(__IGC_PTP_TX_IN_PROGRESS, &adapter->state))
701 		return;
702 
703 	tsynctxctl = rd32(IGC_TSYNCTXCTL);
704 	if (WARN_ON_ONCE(!(tsynctxctl & IGC_TSYNCTXCTL_TXTT_0)))
705 		return;
706 
707 	igc_ptp_tx_hwtstamp(adapter);
708 }
709 
710 /**
711  * igc_ptp_set_ts_config - set hardware time stamping config
712  * @netdev: network interface device structure
713  * @ifr: interface request data
714  *
715  **/
716 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
717 {
718 	struct igc_adapter *adapter = netdev_priv(netdev);
719 	struct hwtstamp_config config;
720 	int err;
721 
722 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
723 		return -EFAULT;
724 
725 	err = igc_ptp_set_timestamp_mode(adapter, &config);
726 	if (err)
727 		return err;
728 
729 	/* save these settings for future reference */
730 	memcpy(&adapter->tstamp_config, &config,
731 	       sizeof(adapter->tstamp_config));
732 
733 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
734 		-EFAULT : 0;
735 }
736 
737 /**
738  * igc_ptp_get_ts_config - get hardware time stamping config
739  * @netdev: network interface device structure
740  * @ifr: interface request data
741  *
742  * Get the hwtstamp_config settings to return to the user. Rather than attempt
743  * to deconstruct the settings from the registers, just return a shadow copy
744  * of the last known settings.
745  **/
746 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
747 {
748 	struct igc_adapter *adapter = netdev_priv(netdev);
749 	struct hwtstamp_config *config = &adapter->tstamp_config;
750 
751 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
752 		-EFAULT : 0;
753 }
754 
755 /* The two conditions below must be met for cross timestamping via
756  * PCIe PTM:
757  *
758  * 1. We have an way to convert the timestamps in the PTM messages
759  *    to something related to the system clocks (right now, only
760  *    X86 systems with support for the Always Running Timer allow that);
761  *
762  * 2. We have PTM enabled in the path from the device to the PCIe root port.
763  */
764 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
765 {
766 	if (!IS_ENABLED(CONFIG_X86_TSC))
767 		return false;
768 
769 	/* FIXME: it was noticed that enabling support for PCIe PTM in
770 	 * some i225-V models could cause lockups when bringing the
771 	 * interface up/down. There should be no downsides to
772 	 * disabling crosstimestamping support for i225-V, as it
773 	 * doesn't have any PTP support. That way we gain some time
774 	 * while root causing the issue.
775 	 */
776 	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
777 		return false;
778 
779 	return pcie_ptm_enabled(adapter->pdev);
780 }
781 
782 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
783 {
784 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
785 	return convert_art_ns_to_tsc(tstamp);
786 #else
787 	return (struct system_counterval_t) { };
788 #endif
789 }
790 
791 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
792 {
793 	struct net_device *netdev = adapter->netdev;
794 
795 	switch (ptm_stat) {
796 	case IGC_PTM_STAT_RET_ERR:
797 		netdev_err(netdev, "PTM Error: Root port timeout\n");
798 		break;
799 	case IGC_PTM_STAT_BAD_PTM_RES:
800 		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
801 		break;
802 	case IGC_PTM_STAT_T4M1_OVFL:
803 		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
804 		break;
805 	case IGC_PTM_STAT_ADJUST_1ST:
806 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
807 		break;
808 	case IGC_PTM_STAT_ADJUST_CYC:
809 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
810 		break;
811 	default:
812 		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
813 		break;
814 	}
815 }
816 
817 static int igc_phc_get_syncdevicetime(ktime_t *device,
818 				      struct system_counterval_t *system,
819 				      void *ctx)
820 {
821 	u32 stat, t2_curr_h, t2_curr_l, ctrl;
822 	struct igc_adapter *adapter = ctx;
823 	struct igc_hw *hw = &adapter->hw;
824 	int err, count = 100;
825 	ktime_t t1, t2_curr;
826 
827 	/* Get a snapshot of system clocks to use as historic value. */
828 	ktime_get_snapshot(&adapter->snapshot);
829 
830 	do {
831 		/* Doing this in a loop because in the event of a
832 		 * badly timed (ha!) system clock adjustment, we may
833 		 * get PTM errors from the PCI root, but these errors
834 		 * are transitory. Repeating the process returns valid
835 		 * data eventually.
836 		 */
837 
838 		/* To "manually" start the PTM cycle we need to clear and
839 		 * then set again the TRIG bit.
840 		 */
841 		ctrl = rd32(IGC_PTM_CTRL);
842 		ctrl &= ~IGC_PTM_CTRL_TRIG;
843 		wr32(IGC_PTM_CTRL, ctrl);
844 		ctrl |= IGC_PTM_CTRL_TRIG;
845 		wr32(IGC_PTM_CTRL, ctrl);
846 
847 		/* The cycle only starts "for real" when software notifies
848 		 * that it has read the registers, this is done by setting
849 		 * VALID bit.
850 		 */
851 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
852 
853 		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
854 					 stat, IGC_PTM_STAT_SLEEP,
855 					 IGC_PTM_STAT_TIMEOUT);
856 		if (err < 0) {
857 			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
858 			return err;
859 		}
860 
861 		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
862 			break;
863 
864 		if (stat & ~IGC_PTM_STAT_VALID) {
865 			/* An error occurred, log it. */
866 			igc_ptm_log_error(adapter, stat);
867 			/* The STAT register is write-1-to-clear (W1C),
868 			 * so write the previous error status to clear it.
869 			 */
870 			wr32(IGC_PTM_STAT, stat);
871 			continue;
872 		}
873 	} while (--count);
874 
875 	if (!count) {
876 		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
877 		return -ETIMEDOUT;
878 	}
879 
880 	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
881 
882 	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
883 	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
884 
885 	/* FIXME: When the register that tells the endianness of the
886 	 * PTM registers are implemented, check them here and add the
887 	 * appropriate conversion.
888 	 */
889 	t2_curr_h = swab32(t2_curr_h);
890 
891 	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
892 
893 	*device = t1;
894 	*system = igc_device_tstamp_to_system(t2_curr);
895 
896 	return 0;
897 }
898 
899 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
900 				  struct system_device_crosststamp *cts)
901 {
902 	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
903 						   ptp_caps);
904 
905 	return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
906 					     adapter, &adapter->snapshot, cts);
907 }
908 
909 /**
910  * igc_ptp_init - Initialize PTP functionality
911  * @adapter: Board private structure
912  *
913  * This function is called at device probe to initialize the PTP
914  * functionality.
915  */
916 void igc_ptp_init(struct igc_adapter *adapter)
917 {
918 	struct net_device *netdev = adapter->netdev;
919 	struct igc_hw *hw = &adapter->hw;
920 	int i;
921 
922 	switch (hw->mac.type) {
923 	case igc_i225:
924 		for (i = 0; i < IGC_N_SDP; i++) {
925 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
926 
927 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
928 			ppd->index = i;
929 			ppd->func = PTP_PF_NONE;
930 		}
931 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
932 		adapter->ptp_caps.owner = THIS_MODULE;
933 		adapter->ptp_caps.max_adj = 62499999;
934 		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
935 		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
936 		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
937 		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
938 		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
939 		adapter->ptp_caps.pps = 1;
940 		adapter->ptp_caps.pin_config = adapter->sdp_config;
941 		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
942 		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
943 		adapter->ptp_caps.n_pins = IGC_N_SDP;
944 		adapter->ptp_caps.verify = igc_ptp_verify_pin;
945 
946 		if (!igc_is_crosststamp_supported(adapter))
947 			break;
948 
949 		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
950 		break;
951 	default:
952 		adapter->ptp_clock = NULL;
953 		return;
954 	}
955 
956 	spin_lock_init(&adapter->tmreg_lock);
957 	INIT_WORK(&adapter->ptp_tx_work, igc_ptp_tx_work);
958 
959 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
960 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
961 
962 	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
963 	adapter->ptp_reset_start = ktime_get();
964 
965 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
966 						&adapter->pdev->dev);
967 	if (IS_ERR(adapter->ptp_clock)) {
968 		adapter->ptp_clock = NULL;
969 		netdev_err(netdev, "ptp_clock_register failed\n");
970 	} else if (adapter->ptp_clock) {
971 		netdev_info(netdev, "PHC added\n");
972 		adapter->ptp_flags |= IGC_PTP_ENABLED;
973 	}
974 }
975 
976 static void igc_ptp_time_save(struct igc_adapter *adapter)
977 {
978 	igc_ptp_read(adapter, &adapter->prev_ptp_time);
979 	adapter->ptp_reset_start = ktime_get();
980 }
981 
982 static void igc_ptp_time_restore(struct igc_adapter *adapter)
983 {
984 	struct timespec64 ts = adapter->prev_ptp_time;
985 	ktime_t delta;
986 
987 	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
988 
989 	timespec64_add_ns(&ts, ktime_to_ns(delta));
990 
991 	igc_ptp_write_i225(adapter, &ts);
992 }
993 
994 static void igc_ptm_stop(struct igc_adapter *adapter)
995 {
996 	struct igc_hw *hw = &adapter->hw;
997 	u32 ctrl;
998 
999 	ctrl = rd32(IGC_PTM_CTRL);
1000 	ctrl &= ~IGC_PTM_CTRL_EN;
1001 
1002 	wr32(IGC_PTM_CTRL, ctrl);
1003 }
1004 
1005 /**
1006  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1007  * @adapter: Board private structure
1008  *
1009  * This function stops the overflow check work and PTP Tx timestamp work, and
1010  * will prepare the device for OS suspend.
1011  */
1012 void igc_ptp_suspend(struct igc_adapter *adapter)
1013 {
1014 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1015 		return;
1016 
1017 	cancel_work_sync(&adapter->ptp_tx_work);
1018 	dev_kfree_skb_any(adapter->ptp_tx_skb);
1019 	adapter->ptp_tx_skb = NULL;
1020 	clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
1021 
1022 	if (pci_device_is_present(adapter->pdev)) {
1023 		igc_ptp_time_save(adapter);
1024 		igc_ptm_stop(adapter);
1025 	}
1026 }
1027 
1028 /**
1029  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1030  * @adapter: Board private structure.
1031  *
1032  * This function stops the PTP support and cancels the delayed work.
1033  **/
1034 void igc_ptp_stop(struct igc_adapter *adapter)
1035 {
1036 	igc_ptp_suspend(adapter);
1037 
1038 	if (adapter->ptp_clock) {
1039 		ptp_clock_unregister(adapter->ptp_clock);
1040 		netdev_info(adapter->netdev, "PHC removed\n");
1041 		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1042 	}
1043 }
1044 
1045 /**
1046  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1047  * @adapter: Board private structure.
1048  *
1049  * This function handles the reset work required to re-enable the PTP device.
1050  **/
1051 void igc_ptp_reset(struct igc_adapter *adapter)
1052 {
1053 	struct igc_hw *hw = &adapter->hw;
1054 	u32 cycle_ctrl, ctrl;
1055 	unsigned long flags;
1056 	u32 timadj;
1057 
1058 	/* reset the tstamp_config */
1059 	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1060 
1061 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1062 
1063 	switch (adapter->hw.mac.type) {
1064 	case igc_i225:
1065 		timadj = rd32(IGC_TIMADJ);
1066 		timadj |= IGC_TIMADJ_ADJUST_METH;
1067 		wr32(IGC_TIMADJ, timadj);
1068 
1069 		wr32(IGC_TSAUXC, 0x0);
1070 		wr32(IGC_TSSDP, 0x0);
1071 		wr32(IGC_TSIM,
1072 		     IGC_TSICR_INTERRUPTS |
1073 		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1074 		wr32(IGC_IMS, IGC_IMS_TS);
1075 
1076 		if (!igc_is_crosststamp_supported(adapter))
1077 			break;
1078 
1079 		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1080 		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1081 
1082 		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1083 
1084 		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1085 
1086 		ctrl = IGC_PTM_CTRL_EN |
1087 			IGC_PTM_CTRL_START_NOW |
1088 			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1089 			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1090 			IGC_PTM_CTRL_TRIG;
1091 
1092 		wr32(IGC_PTM_CTRL, ctrl);
1093 
1094 		/* Force the first cycle to run. */
1095 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1096 
1097 		break;
1098 	default:
1099 		/* No work to do. */
1100 		goto out;
1101 	}
1102 
1103 	/* Re-initialize the timer. */
1104 	if (hw->mac.type == igc_i225) {
1105 		igc_ptp_time_restore(adapter);
1106 	} else {
1107 		timecounter_init(&adapter->tc, &adapter->cc,
1108 				 ktime_to_ns(ktime_get_real()));
1109 	}
1110 out:
1111 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1112 
1113 	wrfl();
1114 }
1115