xref: /openbmc/linux/drivers/net/ethernet/intel/igc/igc_ptp.c (revision bbdd33769d319d1e7bb8fec09124a49b3573a2d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3 
4 #include "igc.h"
5 
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14 
15 #define INCVALUE_MASK		0x7fffffff
16 #define ISGN			0x80000000
17 
18 #define IGC_PTP_TX_TIMEOUT		(HZ * 15)
19 
20 #define IGC_PTM_STAT_SLEEP		2
21 #define IGC_PTM_STAT_TIMEOUT		100
22 
23 /* SYSTIM read access for I225 */
24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25 {
26 	struct igc_hw *hw = &adapter->hw;
27 	u32 sec, nsec;
28 
29 	/* The timestamp is latched when SYSTIML is read. */
30 	nsec = rd32(IGC_SYSTIML);
31 	sec = rd32(IGC_SYSTIMH);
32 
33 	ts->tv_sec = sec;
34 	ts->tv_nsec = nsec;
35 }
36 
37 static void igc_ptp_write_i225(struct igc_adapter *adapter,
38 			       const struct timespec64 *ts)
39 {
40 	struct igc_hw *hw = &adapter->hw;
41 
42 	wr32(IGC_SYSTIML, ts->tv_nsec);
43 	wr32(IGC_SYSTIMH, ts->tv_sec);
44 }
45 
46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47 {
48 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49 					       ptp_caps);
50 	struct igc_hw *hw = &igc->hw;
51 	int neg_adj = 0;
52 	u64 rate;
53 	u32 inca;
54 
55 	if (scaled_ppm < 0) {
56 		neg_adj = 1;
57 		scaled_ppm = -scaled_ppm;
58 	}
59 	rate = scaled_ppm;
60 	rate <<= 14;
61 	rate = div_u64(rate, 78125);
62 
63 	inca = rate & INCVALUE_MASK;
64 	if (neg_adj)
65 		inca |= ISGN;
66 
67 	wr32(IGC_TIMINCA, inca);
68 
69 	return 0;
70 }
71 
72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73 {
74 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75 					       ptp_caps);
76 	struct timespec64 now, then = ns_to_timespec64(delta);
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&igc->tmreg_lock, flags);
80 
81 	igc_ptp_read(igc, &now);
82 	now = timespec64_add(now, then);
83 	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84 
85 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86 
87 	return 0;
88 }
89 
90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91 				   struct timespec64 *ts,
92 				   struct ptp_system_timestamp *sts)
93 {
94 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95 					       ptp_caps);
96 	struct igc_hw *hw = &igc->hw;
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(&igc->tmreg_lock, flags);
100 
101 	ptp_read_system_prets(sts);
102 	ts->tv_nsec = rd32(IGC_SYSTIML);
103 	ts->tv_sec = rd32(IGC_SYSTIMH);
104 	ptp_read_system_postts(sts);
105 
106 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107 
108 	return 0;
109 }
110 
111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112 				const struct timespec64 *ts)
113 {
114 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115 					       ptp_caps);
116 	unsigned long flags;
117 
118 	spin_lock_irqsave(&igc->tmreg_lock, flags);
119 
120 	igc_ptp_write_i225(igc, ts);
121 
122 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123 
124 	return 0;
125 }
126 
127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128 {
129 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130 	static const u32 mask[IGC_N_SDP] = {
131 		IGC_CTRL_SDP0_DIR,
132 		IGC_CTRL_SDP1_DIR,
133 		IGC_CTRL_EXT_SDP2_DIR,
134 		IGC_CTRL_EXT_SDP3_DIR,
135 	};
136 
137 	if (input)
138 		*ptr &= ~mask[pin];
139 	else
140 		*ptr |= mask[pin];
141 }
142 
143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144 {
145 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147 	};
148 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150 	};
151 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153 	};
154 	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155 		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156 		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157 	};
158 	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159 		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160 		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161 	};
162 	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163 		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164 		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165 	};
166 	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169 	};
170 	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173 	};
174 	struct igc_hw *hw = &igc->hw;
175 	u32 ctrl, ctrl_ext, tssdp = 0;
176 
177 	ctrl = rd32(IGC_CTRL);
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	tssdp = rd32(IGC_TSSDP);
180 
181 	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182 
183 	/* Make sure this pin is not enabled as an input. */
184 	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185 		tssdp &= ~IGC_AUX0_TS_SDP_EN;
186 
187 	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188 		tssdp &= ~IGC_AUX1_TS_SDP_EN;
189 
190 	tssdp &= ~igc_ts_sdp_sel_clr[pin];
191 	if (freq) {
192 		if (chan == 1)
193 			tssdp |= igc_ts_sdp_sel_fc1[pin];
194 		else
195 			tssdp |= igc_ts_sdp_sel_fc0[pin];
196 	} else {
197 		if (chan == 1)
198 			tssdp |= igc_ts_sdp_sel_tt1[pin];
199 		else
200 			tssdp |= igc_ts_sdp_sel_tt0[pin];
201 	}
202 	tssdp |= igc_ts_sdp_en[pin];
203 
204 	wr32(IGC_TSSDP, tssdp);
205 	wr32(IGC_CTRL, ctrl);
206 	wr32(IGC_CTRL_EXT, ctrl_ext);
207 }
208 
209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210 {
211 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213 	};
214 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216 	};
217 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219 	};
220 	struct igc_hw *hw = &igc->hw;
221 	u32 ctrl, ctrl_ext, tssdp = 0;
222 
223 	ctrl = rd32(IGC_CTRL);
224 	ctrl_ext = rd32(IGC_CTRL_EXT);
225 	tssdp = rd32(IGC_TSSDP);
226 
227 	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228 
229 	/* Make sure this pin is not enabled as an output. */
230 	tssdp &= ~igc_ts_sdp_en[pin];
231 
232 	if (chan == 1) {
233 		tssdp &= ~IGC_AUX1_SEL_SDP3;
234 		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235 	} else {
236 		tssdp &= ~IGC_AUX0_SEL_SDP3;
237 		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238 	}
239 
240 	wr32(IGC_TSSDP, tssdp);
241 	wr32(IGC_CTRL, ctrl);
242 	wr32(IGC_CTRL_EXT, ctrl_ext);
243 }
244 
245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246 				       struct ptp_clock_request *rq, int on)
247 {
248 	struct igc_adapter *igc =
249 		container_of(ptp, struct igc_adapter, ptp_caps);
250 	struct igc_hw *hw = &igc->hw;
251 	unsigned long flags;
252 	struct timespec64 ts;
253 	int use_freq = 0, pin = -1;
254 	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255 	s64 ns;
256 
257 	switch (rq->type) {
258 	case PTP_CLK_REQ_EXTTS:
259 		/* Reject requests with unsupported flags */
260 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261 					PTP_RISING_EDGE |
262 					PTP_FALLING_EDGE |
263 					PTP_STRICT_FLAGS))
264 			return -EOPNOTSUPP;
265 
266 		/* Reject requests failing to enable both edges. */
267 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270 			return -EOPNOTSUPP;
271 
272 		if (on) {
273 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274 					   rq->extts.index);
275 			if (pin < 0)
276 				return -EBUSY;
277 		}
278 		if (rq->extts.index == 1) {
279 			tsauxc_mask = IGC_TSAUXC_EN_TS1;
280 			tsim_mask = IGC_TSICR_AUTT1;
281 		} else {
282 			tsauxc_mask = IGC_TSAUXC_EN_TS0;
283 			tsim_mask = IGC_TSICR_AUTT0;
284 		}
285 		spin_lock_irqsave(&igc->tmreg_lock, flags);
286 		tsauxc = rd32(IGC_TSAUXC);
287 		tsim = rd32(IGC_TSIM);
288 		if (on) {
289 			igc_pin_extts(igc, rq->extts.index, pin);
290 			tsauxc |= tsauxc_mask;
291 			tsim |= tsim_mask;
292 		} else {
293 			tsauxc &= ~tsauxc_mask;
294 			tsim &= ~tsim_mask;
295 		}
296 		wr32(IGC_TSAUXC, tsauxc);
297 		wr32(IGC_TSIM, tsim);
298 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299 		return 0;
300 
301 	case PTP_CLK_REQ_PEROUT:
302 		/* Reject requests with unsupported flags */
303 		if (rq->perout.flags)
304 			return -EOPNOTSUPP;
305 
306 		if (on) {
307 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308 					   rq->perout.index);
309 			if (pin < 0)
310 				return -EBUSY;
311 		}
312 		ts.tv_sec = rq->perout.period.sec;
313 		ts.tv_nsec = rq->perout.period.nsec;
314 		ns = timespec64_to_ns(&ts);
315 		ns = ns >> 1;
316 		if (on && (ns <= 70000000LL || ns == 125000000LL ||
317 			   ns == 250000000LL || ns == 500000000LL)) {
318 			if (ns < 8LL)
319 				return -EINVAL;
320 			use_freq = 1;
321 		}
322 		ts = ns_to_timespec64(ns);
323 		if (rq->perout.index == 1) {
324 			if (use_freq) {
325 				tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
326 				tsim_mask = 0;
327 			} else {
328 				tsauxc_mask = IGC_TSAUXC_EN_TT1;
329 				tsim_mask = IGC_TSICR_TT1;
330 			}
331 			trgttiml = IGC_TRGTTIML1;
332 			trgttimh = IGC_TRGTTIMH1;
333 			freqout = IGC_FREQOUT1;
334 		} else {
335 			if (use_freq) {
336 				tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
337 				tsim_mask = 0;
338 			} else {
339 				tsauxc_mask = IGC_TSAUXC_EN_TT0;
340 				tsim_mask = IGC_TSICR_TT0;
341 			}
342 			trgttiml = IGC_TRGTTIML0;
343 			trgttimh = IGC_TRGTTIMH0;
344 			freqout = IGC_FREQOUT0;
345 		}
346 		spin_lock_irqsave(&igc->tmreg_lock, flags);
347 		tsauxc = rd32(IGC_TSAUXC);
348 		tsim = rd32(IGC_TSIM);
349 		if (rq->perout.index == 1) {
350 			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
351 				    IGC_TSAUXC_ST1);
352 			tsim &= ~IGC_TSICR_TT1;
353 		} else {
354 			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
355 				    IGC_TSAUXC_ST0);
356 			tsim &= ~IGC_TSICR_TT0;
357 		}
358 		if (on) {
359 			int i = rq->perout.index;
360 
361 			igc_pin_perout(igc, i, pin, use_freq);
362 			igc->perout[i].start.tv_sec = rq->perout.start.sec;
363 			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
364 			igc->perout[i].period.tv_sec = ts.tv_sec;
365 			igc->perout[i].period.tv_nsec = ts.tv_nsec;
366 			wr32(trgttimh, rq->perout.start.sec);
367 			/* For now, always select timer 0 as source. */
368 			wr32(trgttiml, rq->perout.start.nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
369 			if (use_freq)
370 				wr32(freqout, ns);
371 			tsauxc |= tsauxc_mask;
372 			tsim |= tsim_mask;
373 		}
374 		wr32(IGC_TSAUXC, tsauxc);
375 		wr32(IGC_TSIM, tsim);
376 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
377 		return 0;
378 
379 	case PTP_CLK_REQ_PPS:
380 		spin_lock_irqsave(&igc->tmreg_lock, flags);
381 		tsim = rd32(IGC_TSIM);
382 		if (on)
383 			tsim |= IGC_TSICR_SYS_WRAP;
384 		else
385 			tsim &= ~IGC_TSICR_SYS_WRAP;
386 		igc->pps_sys_wrap_on = on;
387 		wr32(IGC_TSIM, tsim);
388 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
389 		return 0;
390 
391 	default:
392 		break;
393 	}
394 
395 	return -EOPNOTSUPP;
396 }
397 
398 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
399 			      enum ptp_pin_function func, unsigned int chan)
400 {
401 	switch (func) {
402 	case PTP_PF_NONE:
403 	case PTP_PF_EXTTS:
404 	case PTP_PF_PEROUT:
405 		break;
406 	case PTP_PF_PHYSYNC:
407 		return -1;
408 	}
409 	return 0;
410 }
411 
412 /**
413  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
414  * @adapter: board private structure
415  * @hwtstamps: timestamp structure to update
416  * @systim: unsigned 64bit system time value
417  *
418  * We need to convert the system time value stored in the RX/TXSTMP registers
419  * into a hwtstamp which can be used by the upper level timestamping functions.
420  *
421  * Returns 0 on success.
422  **/
423 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
424 				      struct skb_shared_hwtstamps *hwtstamps,
425 				      u64 systim)
426 {
427 	switch (adapter->hw.mac.type) {
428 	case igc_i225:
429 		memset(hwtstamps, 0, sizeof(*hwtstamps));
430 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
431 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
432 						systim & 0xFFFFFFFF);
433 		break;
434 	default:
435 		return -EINVAL;
436 	}
437 	return 0;
438 }
439 
440 /**
441  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
442  * @adapter: Pointer to adapter the packet buffer belongs to
443  * @buf: Pointer to packet buffer
444  *
445  * This function retrieves the timestamp saved in the beginning of packet
446  * buffer. While two timestamps are available, one in timer0 reference and the
447  * other in timer1 reference, this function considers only the timestamp in
448  * timer0 reference.
449  *
450  * Returns timestamp value.
451  */
452 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
453 {
454 	ktime_t timestamp;
455 	u32 secs, nsecs;
456 	int adjust;
457 
458 	/* Timestamps are saved in little endian at the beginning of the packet
459 	 * buffer following the layout:
460 	 *
461 	 * DWORD: | 0              | 1              | 2              | 3              |
462 	 * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
463 	 *
464 	 * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
465 	 * part of the timestamp.
466 	 */
467 	nsecs = le32_to_cpu(buf[2]);
468 	secs = le32_to_cpu(buf[3]);
469 
470 	timestamp = ktime_set(secs, nsecs);
471 
472 	/* Adjust timestamp for the RX latency based on link speed */
473 	switch (adapter->link_speed) {
474 	case SPEED_10:
475 		adjust = IGC_I225_RX_LATENCY_10;
476 		break;
477 	case SPEED_100:
478 		adjust = IGC_I225_RX_LATENCY_100;
479 		break;
480 	case SPEED_1000:
481 		adjust = IGC_I225_RX_LATENCY_1000;
482 		break;
483 	case SPEED_2500:
484 		adjust = IGC_I225_RX_LATENCY_2500;
485 		break;
486 	default:
487 		adjust = 0;
488 		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
489 		break;
490 	}
491 
492 	return ktime_sub_ns(timestamp, adjust);
493 }
494 
495 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
496 {
497 	struct igc_hw *hw = &adapter->hw;
498 	u32 val;
499 	int i;
500 
501 	wr32(IGC_TSYNCRXCTL, 0);
502 
503 	for (i = 0; i < adapter->num_rx_queues; i++) {
504 		val = rd32(IGC_SRRCTL(i));
505 		val &= ~IGC_SRRCTL_TIMESTAMP;
506 		wr32(IGC_SRRCTL(i), val);
507 	}
508 
509 	val = rd32(IGC_RXPBS);
510 	val &= ~IGC_RXPBS_CFG_TS_EN;
511 	wr32(IGC_RXPBS, val);
512 }
513 
514 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
515 {
516 	struct igc_hw *hw = &adapter->hw;
517 	u32 val;
518 	int i;
519 
520 	val = rd32(IGC_RXPBS);
521 	val |= IGC_RXPBS_CFG_TS_EN;
522 	wr32(IGC_RXPBS, val);
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++) {
525 		val = rd32(IGC_SRRCTL(i));
526 		/* FIXME: For now, only support retrieving RX timestamps from
527 		 * timer 0.
528 		 */
529 		val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
530 		       IGC_SRRCTL_TIMESTAMP;
531 		wr32(IGC_SRRCTL(i), val);
532 	}
533 
534 	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
535 	      IGC_TSYNCRXCTL_RXSYNSIG;
536 	wr32(IGC_TSYNCRXCTL, val);
537 }
538 
539 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
540 {
541 	struct igc_hw *hw = &adapter->hw;
542 
543 	wr32(IGC_TSYNCTXCTL, 0);
544 }
545 
546 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
547 {
548 	struct igc_hw *hw = &adapter->hw;
549 
550 	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
551 
552 	/* Read TXSTMP registers to discard any timestamp previously stored. */
553 	rd32(IGC_TXSTMPL);
554 	rd32(IGC_TXSTMPH);
555 }
556 
557 /**
558  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
559  * @adapter: networking device structure
560  * @config: hwtstamp configuration
561  *
562  * Return: 0 in case of success, negative errno code otherwise.
563  */
564 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
565 				      struct hwtstamp_config *config)
566 {
567 	switch (config->tx_type) {
568 	case HWTSTAMP_TX_OFF:
569 		igc_ptp_disable_tx_timestamp(adapter);
570 		break;
571 	case HWTSTAMP_TX_ON:
572 		igc_ptp_enable_tx_timestamp(adapter);
573 		break;
574 	default:
575 		return -ERANGE;
576 	}
577 
578 	switch (config->rx_filter) {
579 	case HWTSTAMP_FILTER_NONE:
580 		igc_ptp_disable_rx_timestamp(adapter);
581 		break;
582 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
583 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
585 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
586 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
587 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
588 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
589 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
590 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
591 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
592 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
593 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
594 	case HWTSTAMP_FILTER_NTP_ALL:
595 	case HWTSTAMP_FILTER_ALL:
596 		igc_ptp_enable_rx_timestamp(adapter);
597 		config->rx_filter = HWTSTAMP_FILTER_ALL;
598 		break;
599 	default:
600 		return -ERANGE;
601 	}
602 
603 	return 0;
604 }
605 
606 static void igc_ptp_tx_timeout(struct igc_adapter *adapter)
607 {
608 	struct igc_hw *hw = &adapter->hw;
609 
610 	dev_kfree_skb_any(adapter->ptp_tx_skb);
611 	adapter->ptp_tx_skb = NULL;
612 	adapter->tx_hwtstamp_timeouts++;
613 	clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
614 	/* Clear the tx valid bit in TSYNCTXCTL register to enable interrupt. */
615 	rd32(IGC_TXSTMPH);
616 	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
617 }
618 
619 void igc_ptp_tx_hang(struct igc_adapter *adapter)
620 {
621 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
622 					      IGC_PTP_TX_TIMEOUT);
623 
624 	if (!test_bit(__IGC_PTP_TX_IN_PROGRESS, &adapter->state))
625 		return;
626 
627 	/* If we haven't received a timestamp within the timeout, it is
628 	 * reasonable to assume that it will never occur, so we can unlock the
629 	 * timestamp bit when this occurs.
630 	 */
631 	if (timeout) {
632 		cancel_work_sync(&adapter->ptp_tx_work);
633 		igc_ptp_tx_timeout(adapter);
634 	}
635 }
636 
637 /**
638  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
639  * @adapter: Board private structure
640  *
641  * If we were asked to do hardware stamping and such a time stamp is
642  * available, then it must have been for this skb here because we only
643  * allow only one such packet into the queue.
644  */
645 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
646 {
647 	struct sk_buff *skb = adapter->ptp_tx_skb;
648 	struct skb_shared_hwtstamps shhwtstamps;
649 	struct igc_hw *hw = &adapter->hw;
650 	int adjust = 0;
651 	u64 regval;
652 
653 	if (WARN_ON_ONCE(!skb))
654 		return;
655 
656 	regval = rd32(IGC_TXSTMPL);
657 	regval |= (u64)rd32(IGC_TXSTMPH) << 32;
658 	if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
659 		return;
660 
661 	switch (adapter->link_speed) {
662 	case SPEED_10:
663 		adjust = IGC_I225_TX_LATENCY_10;
664 		break;
665 	case SPEED_100:
666 		adjust = IGC_I225_TX_LATENCY_100;
667 		break;
668 	case SPEED_1000:
669 		adjust = IGC_I225_TX_LATENCY_1000;
670 		break;
671 	case SPEED_2500:
672 		adjust = IGC_I225_TX_LATENCY_2500;
673 		break;
674 	}
675 
676 	shhwtstamps.hwtstamp =
677 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
678 
679 	/* Clear the lock early before calling skb_tstamp_tx so that
680 	 * applications are not woken up before the lock bit is clear. We use
681 	 * a copy of the skb pointer to ensure other threads can't change it
682 	 * while we're notifying the stack.
683 	 */
684 	adapter->ptp_tx_skb = NULL;
685 	clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
686 
687 	/* Notify the stack and free the skb after we've unlocked */
688 	skb_tstamp_tx(skb, &shhwtstamps);
689 	dev_kfree_skb_any(skb);
690 }
691 
692 /**
693  * igc_ptp_tx_work
694  * @work: pointer to work struct
695  *
696  * This work function polls the TSYNCTXCTL valid bit to determine when a
697  * timestamp has been taken for the current stored skb.
698  */
699 static void igc_ptp_tx_work(struct work_struct *work)
700 {
701 	struct igc_adapter *adapter = container_of(work, struct igc_adapter,
702 						   ptp_tx_work);
703 	struct igc_hw *hw = &adapter->hw;
704 	u32 tsynctxctl;
705 
706 	if (!test_bit(__IGC_PTP_TX_IN_PROGRESS, &adapter->state))
707 		return;
708 
709 	tsynctxctl = rd32(IGC_TSYNCTXCTL);
710 	if (WARN_ON_ONCE(!(tsynctxctl & IGC_TSYNCTXCTL_TXTT_0)))
711 		return;
712 
713 	igc_ptp_tx_hwtstamp(adapter);
714 }
715 
716 /**
717  * igc_ptp_set_ts_config - set hardware time stamping config
718  * @netdev: network interface device structure
719  * @ifr: interface request data
720  *
721  **/
722 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
723 {
724 	struct igc_adapter *adapter = netdev_priv(netdev);
725 	struct hwtstamp_config config;
726 	int err;
727 
728 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
729 		return -EFAULT;
730 
731 	err = igc_ptp_set_timestamp_mode(adapter, &config);
732 	if (err)
733 		return err;
734 
735 	/* save these settings for future reference */
736 	memcpy(&adapter->tstamp_config, &config,
737 	       sizeof(adapter->tstamp_config));
738 
739 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
740 		-EFAULT : 0;
741 }
742 
743 /**
744  * igc_ptp_get_ts_config - get hardware time stamping config
745  * @netdev: network interface device structure
746  * @ifr: interface request data
747  *
748  * Get the hwtstamp_config settings to return to the user. Rather than attempt
749  * to deconstruct the settings from the registers, just return a shadow copy
750  * of the last known settings.
751  **/
752 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
753 {
754 	struct igc_adapter *adapter = netdev_priv(netdev);
755 	struct hwtstamp_config *config = &adapter->tstamp_config;
756 
757 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
758 		-EFAULT : 0;
759 }
760 
761 /* The two conditions below must be met for cross timestamping via
762  * PCIe PTM:
763  *
764  * 1. We have an way to convert the timestamps in the PTM messages
765  *    to something related to the system clocks (right now, only
766  *    X86 systems with support for the Always Running Timer allow that);
767  *
768  * 2. We have PTM enabled in the path from the device to the PCIe root port.
769  */
770 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
771 {
772 	if (!IS_ENABLED(CONFIG_X86_TSC))
773 		return false;
774 
775 	/* FIXME: it was noticed that enabling support for PCIe PTM in
776 	 * some i225-V models could cause lockups when bringing the
777 	 * interface up/down. There should be no downsides to
778 	 * disabling crosstimestamping support for i225-V, as it
779 	 * doesn't have any PTP support. That way we gain some time
780 	 * while root causing the issue.
781 	 */
782 	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
783 		return false;
784 
785 	return pcie_ptm_enabled(adapter->pdev);
786 }
787 
788 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
789 {
790 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
791 	return convert_art_ns_to_tsc(tstamp);
792 #else
793 	return (struct system_counterval_t) { };
794 #endif
795 }
796 
797 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
798 {
799 	struct net_device *netdev = adapter->netdev;
800 
801 	switch (ptm_stat) {
802 	case IGC_PTM_STAT_RET_ERR:
803 		netdev_err(netdev, "PTM Error: Root port timeout\n");
804 		break;
805 	case IGC_PTM_STAT_BAD_PTM_RES:
806 		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
807 		break;
808 	case IGC_PTM_STAT_T4M1_OVFL:
809 		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
810 		break;
811 	case IGC_PTM_STAT_ADJUST_1ST:
812 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
813 		break;
814 	case IGC_PTM_STAT_ADJUST_CYC:
815 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
816 		break;
817 	default:
818 		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
819 		break;
820 	}
821 }
822 
823 static int igc_phc_get_syncdevicetime(ktime_t *device,
824 				      struct system_counterval_t *system,
825 				      void *ctx)
826 {
827 	u32 stat, t2_curr_h, t2_curr_l, ctrl;
828 	struct igc_adapter *adapter = ctx;
829 	struct igc_hw *hw = &adapter->hw;
830 	int err, count = 100;
831 	ktime_t t1, t2_curr;
832 
833 	/* Get a snapshot of system clocks to use as historic value. */
834 	ktime_get_snapshot(&adapter->snapshot);
835 
836 	do {
837 		/* Doing this in a loop because in the event of a
838 		 * badly timed (ha!) system clock adjustment, we may
839 		 * get PTM errors from the PCI root, but these errors
840 		 * are transitory. Repeating the process returns valid
841 		 * data eventually.
842 		 */
843 
844 		/* To "manually" start the PTM cycle we need to clear and
845 		 * then set again the TRIG bit.
846 		 */
847 		ctrl = rd32(IGC_PTM_CTRL);
848 		ctrl &= ~IGC_PTM_CTRL_TRIG;
849 		wr32(IGC_PTM_CTRL, ctrl);
850 		ctrl |= IGC_PTM_CTRL_TRIG;
851 		wr32(IGC_PTM_CTRL, ctrl);
852 
853 		/* The cycle only starts "for real" when software notifies
854 		 * that it has read the registers, this is done by setting
855 		 * VALID bit.
856 		 */
857 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
858 
859 		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
860 					 stat, IGC_PTM_STAT_SLEEP,
861 					 IGC_PTM_STAT_TIMEOUT);
862 		if (err < 0) {
863 			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
864 			return err;
865 		}
866 
867 		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
868 			break;
869 
870 		if (stat & ~IGC_PTM_STAT_VALID) {
871 			/* An error occurred, log it. */
872 			igc_ptm_log_error(adapter, stat);
873 			/* The STAT register is write-1-to-clear (W1C),
874 			 * so write the previous error status to clear it.
875 			 */
876 			wr32(IGC_PTM_STAT, stat);
877 			continue;
878 		}
879 	} while (--count);
880 
881 	if (!count) {
882 		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
883 		return -ETIMEDOUT;
884 	}
885 
886 	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
887 
888 	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
889 	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
890 
891 	/* FIXME: When the register that tells the endianness of the
892 	 * PTM registers are implemented, check them here and add the
893 	 * appropriate conversion.
894 	 */
895 	t2_curr_h = swab32(t2_curr_h);
896 
897 	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
898 
899 	*device = t1;
900 	*system = igc_device_tstamp_to_system(t2_curr);
901 
902 	return 0;
903 }
904 
905 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
906 				  struct system_device_crosststamp *cts)
907 {
908 	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
909 						   ptp_caps);
910 
911 	return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
912 					     adapter, &adapter->snapshot, cts);
913 }
914 
915 /**
916  * igc_ptp_init - Initialize PTP functionality
917  * @adapter: Board private structure
918  *
919  * This function is called at device probe to initialize the PTP
920  * functionality.
921  */
922 void igc_ptp_init(struct igc_adapter *adapter)
923 {
924 	struct net_device *netdev = adapter->netdev;
925 	struct igc_hw *hw = &adapter->hw;
926 	int i;
927 
928 	switch (hw->mac.type) {
929 	case igc_i225:
930 		for (i = 0; i < IGC_N_SDP; i++) {
931 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
932 
933 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
934 			ppd->index = i;
935 			ppd->func = PTP_PF_NONE;
936 		}
937 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
938 		adapter->ptp_caps.owner = THIS_MODULE;
939 		adapter->ptp_caps.max_adj = 62499999;
940 		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
941 		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
942 		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
943 		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
944 		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
945 		adapter->ptp_caps.pps = 1;
946 		adapter->ptp_caps.pin_config = adapter->sdp_config;
947 		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
948 		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
949 		adapter->ptp_caps.n_pins = IGC_N_SDP;
950 		adapter->ptp_caps.verify = igc_ptp_verify_pin;
951 
952 		if (!igc_is_crosststamp_supported(adapter))
953 			break;
954 
955 		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
956 		break;
957 	default:
958 		adapter->ptp_clock = NULL;
959 		return;
960 	}
961 
962 	spin_lock_init(&adapter->tmreg_lock);
963 	INIT_WORK(&adapter->ptp_tx_work, igc_ptp_tx_work);
964 
965 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
966 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
967 
968 	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
969 	adapter->ptp_reset_start = ktime_get();
970 
971 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
972 						&adapter->pdev->dev);
973 	if (IS_ERR(adapter->ptp_clock)) {
974 		adapter->ptp_clock = NULL;
975 		netdev_err(netdev, "ptp_clock_register failed\n");
976 	} else if (adapter->ptp_clock) {
977 		netdev_info(netdev, "PHC added\n");
978 		adapter->ptp_flags |= IGC_PTP_ENABLED;
979 	}
980 }
981 
982 static void igc_ptp_time_save(struct igc_adapter *adapter)
983 {
984 	igc_ptp_read(adapter, &adapter->prev_ptp_time);
985 	adapter->ptp_reset_start = ktime_get();
986 }
987 
988 static void igc_ptp_time_restore(struct igc_adapter *adapter)
989 {
990 	struct timespec64 ts = adapter->prev_ptp_time;
991 	ktime_t delta;
992 
993 	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
994 
995 	timespec64_add_ns(&ts, ktime_to_ns(delta));
996 
997 	igc_ptp_write_i225(adapter, &ts);
998 }
999 
1000 static void igc_ptm_stop(struct igc_adapter *adapter)
1001 {
1002 	struct igc_hw *hw = &adapter->hw;
1003 	u32 ctrl;
1004 
1005 	ctrl = rd32(IGC_PTM_CTRL);
1006 	ctrl &= ~IGC_PTM_CTRL_EN;
1007 
1008 	wr32(IGC_PTM_CTRL, ctrl);
1009 }
1010 
1011 /**
1012  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1013  * @adapter: Board private structure
1014  *
1015  * This function stops the overflow check work and PTP Tx timestamp work, and
1016  * will prepare the device for OS suspend.
1017  */
1018 void igc_ptp_suspend(struct igc_adapter *adapter)
1019 {
1020 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1021 		return;
1022 
1023 	cancel_work_sync(&adapter->ptp_tx_work);
1024 	dev_kfree_skb_any(adapter->ptp_tx_skb);
1025 	adapter->ptp_tx_skb = NULL;
1026 	clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
1027 
1028 	if (pci_device_is_present(adapter->pdev)) {
1029 		igc_ptp_time_save(adapter);
1030 		igc_ptm_stop(adapter);
1031 	}
1032 }
1033 
1034 /**
1035  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1036  * @adapter: Board private structure.
1037  *
1038  * This function stops the PTP support and cancels the delayed work.
1039  **/
1040 void igc_ptp_stop(struct igc_adapter *adapter)
1041 {
1042 	igc_ptp_suspend(adapter);
1043 
1044 	if (adapter->ptp_clock) {
1045 		ptp_clock_unregister(adapter->ptp_clock);
1046 		netdev_info(adapter->netdev, "PHC removed\n");
1047 		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1048 	}
1049 }
1050 
1051 /**
1052  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1053  * @adapter: Board private structure.
1054  *
1055  * This function handles the reset work required to re-enable the PTP device.
1056  **/
1057 void igc_ptp_reset(struct igc_adapter *adapter)
1058 {
1059 	struct igc_hw *hw = &adapter->hw;
1060 	u32 cycle_ctrl, ctrl;
1061 	unsigned long flags;
1062 	u32 timadj;
1063 
1064 	/* reset the tstamp_config */
1065 	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1066 
1067 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1068 
1069 	switch (adapter->hw.mac.type) {
1070 	case igc_i225:
1071 		timadj = rd32(IGC_TIMADJ);
1072 		timadj |= IGC_TIMADJ_ADJUST_METH;
1073 		wr32(IGC_TIMADJ, timadj);
1074 
1075 		wr32(IGC_TSAUXC, 0x0);
1076 		wr32(IGC_TSSDP, 0x0);
1077 		wr32(IGC_TSIM,
1078 		     IGC_TSICR_INTERRUPTS |
1079 		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1080 		wr32(IGC_IMS, IGC_IMS_TS);
1081 
1082 		if (!igc_is_crosststamp_supported(adapter))
1083 			break;
1084 
1085 		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1086 		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1087 
1088 		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1089 
1090 		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1091 
1092 		ctrl = IGC_PTM_CTRL_EN |
1093 			IGC_PTM_CTRL_START_NOW |
1094 			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1095 			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1096 			IGC_PTM_CTRL_TRIG;
1097 
1098 		wr32(IGC_PTM_CTRL, ctrl);
1099 
1100 		/* Force the first cycle to run. */
1101 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1102 
1103 		break;
1104 	default:
1105 		/* No work to do. */
1106 		goto out;
1107 	}
1108 
1109 	/* Re-initialize the timer. */
1110 	if (hw->mac.type == igc_i225) {
1111 		igc_ptp_time_restore(adapter);
1112 	} else {
1113 		timecounter_init(&adapter->tc, &adapter->cc,
1114 				 ktime_to_ns(ktime_get_real()));
1115 	}
1116 out:
1117 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1118 
1119 	wrfl();
1120 }
1121