xref: /openbmc/linux/drivers/net/ethernet/intel/igc/igc_ptp.c (revision b755c25fbcd568821a3bb0e0d5c2daa5fcb00bba)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3 
4 #include "igc.h"
5 
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14 
15 #define INCVALUE_MASK		0x7fffffff
16 #define ISGN			0x80000000
17 
18 #define IGC_PTP_TX_TIMEOUT		(HZ * 15)
19 
20 #define IGC_PTM_STAT_SLEEP		2
21 #define IGC_PTM_STAT_TIMEOUT		100
22 
23 /* SYSTIM read access for I225 */
24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25 {
26 	struct igc_hw *hw = &adapter->hw;
27 	u32 sec, nsec;
28 
29 	/* The timestamp is latched when SYSTIML is read. */
30 	nsec = rd32(IGC_SYSTIML);
31 	sec = rd32(IGC_SYSTIMH);
32 
33 	ts->tv_sec = sec;
34 	ts->tv_nsec = nsec;
35 }
36 
37 static void igc_ptp_write_i225(struct igc_adapter *adapter,
38 			       const struct timespec64 *ts)
39 {
40 	struct igc_hw *hw = &adapter->hw;
41 
42 	wr32(IGC_SYSTIML, ts->tv_nsec);
43 	wr32(IGC_SYSTIMH, ts->tv_sec);
44 }
45 
46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47 {
48 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49 					       ptp_caps);
50 	struct igc_hw *hw = &igc->hw;
51 	int neg_adj = 0;
52 	u64 rate;
53 	u32 inca;
54 
55 	if (scaled_ppm < 0) {
56 		neg_adj = 1;
57 		scaled_ppm = -scaled_ppm;
58 	}
59 	rate = scaled_ppm;
60 	rate <<= 14;
61 	rate = div_u64(rate, 78125);
62 
63 	inca = rate & INCVALUE_MASK;
64 	if (neg_adj)
65 		inca |= ISGN;
66 
67 	wr32(IGC_TIMINCA, inca);
68 
69 	return 0;
70 }
71 
72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73 {
74 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75 					       ptp_caps);
76 	struct timespec64 now, then = ns_to_timespec64(delta);
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&igc->tmreg_lock, flags);
80 
81 	igc_ptp_read(igc, &now);
82 	now = timespec64_add(now, then);
83 	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84 
85 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86 
87 	return 0;
88 }
89 
90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91 				   struct timespec64 *ts,
92 				   struct ptp_system_timestamp *sts)
93 {
94 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95 					       ptp_caps);
96 	struct igc_hw *hw = &igc->hw;
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(&igc->tmreg_lock, flags);
100 
101 	ptp_read_system_prets(sts);
102 	ts->tv_nsec = rd32(IGC_SYSTIML);
103 	ts->tv_sec = rd32(IGC_SYSTIMH);
104 	ptp_read_system_postts(sts);
105 
106 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107 
108 	return 0;
109 }
110 
111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112 				const struct timespec64 *ts)
113 {
114 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115 					       ptp_caps);
116 	unsigned long flags;
117 
118 	spin_lock_irqsave(&igc->tmreg_lock, flags);
119 
120 	igc_ptp_write_i225(igc, ts);
121 
122 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123 
124 	return 0;
125 }
126 
127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128 {
129 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130 	static const u32 mask[IGC_N_SDP] = {
131 		IGC_CTRL_SDP0_DIR,
132 		IGC_CTRL_SDP1_DIR,
133 		IGC_CTRL_EXT_SDP2_DIR,
134 		IGC_CTRL_EXT_SDP3_DIR,
135 	};
136 
137 	if (input)
138 		*ptr &= ~mask[pin];
139 	else
140 		*ptr |= mask[pin];
141 }
142 
143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144 {
145 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147 	};
148 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150 	};
151 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153 	};
154 	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155 		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156 		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157 	};
158 	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159 		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160 		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161 	};
162 	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163 		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164 		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165 	};
166 	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169 	};
170 	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173 	};
174 	struct igc_hw *hw = &igc->hw;
175 	u32 ctrl, ctrl_ext, tssdp = 0;
176 
177 	ctrl = rd32(IGC_CTRL);
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	tssdp = rd32(IGC_TSSDP);
180 
181 	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182 
183 	/* Make sure this pin is not enabled as an input. */
184 	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185 		tssdp &= ~IGC_AUX0_TS_SDP_EN;
186 
187 	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188 		tssdp &= ~IGC_AUX1_TS_SDP_EN;
189 
190 	tssdp &= ~igc_ts_sdp_sel_clr[pin];
191 	if (freq) {
192 		if (chan == 1)
193 			tssdp |= igc_ts_sdp_sel_fc1[pin];
194 		else
195 			tssdp |= igc_ts_sdp_sel_fc0[pin];
196 	} else {
197 		if (chan == 1)
198 			tssdp |= igc_ts_sdp_sel_tt1[pin];
199 		else
200 			tssdp |= igc_ts_sdp_sel_tt0[pin];
201 	}
202 	tssdp |= igc_ts_sdp_en[pin];
203 
204 	wr32(IGC_TSSDP, tssdp);
205 	wr32(IGC_CTRL, ctrl);
206 	wr32(IGC_CTRL_EXT, ctrl_ext);
207 }
208 
209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210 {
211 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213 	};
214 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216 	};
217 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219 	};
220 	struct igc_hw *hw = &igc->hw;
221 	u32 ctrl, ctrl_ext, tssdp = 0;
222 
223 	ctrl = rd32(IGC_CTRL);
224 	ctrl_ext = rd32(IGC_CTRL_EXT);
225 	tssdp = rd32(IGC_TSSDP);
226 
227 	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228 
229 	/* Make sure this pin is not enabled as an output. */
230 	tssdp &= ~igc_ts_sdp_en[pin];
231 
232 	if (chan == 1) {
233 		tssdp &= ~IGC_AUX1_SEL_SDP3;
234 		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235 	} else {
236 		tssdp &= ~IGC_AUX0_SEL_SDP3;
237 		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238 	}
239 
240 	wr32(IGC_TSSDP, tssdp);
241 	wr32(IGC_CTRL, ctrl);
242 	wr32(IGC_CTRL_EXT, ctrl_ext);
243 }
244 
245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246 				       struct ptp_clock_request *rq, int on)
247 {
248 	struct igc_adapter *igc =
249 		container_of(ptp, struct igc_adapter, ptp_caps);
250 	struct igc_hw *hw = &igc->hw;
251 	unsigned long flags;
252 	struct timespec64 ts;
253 	int use_freq = 0, pin = -1;
254 	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255 	s64 ns;
256 
257 	switch (rq->type) {
258 	case PTP_CLK_REQ_EXTTS:
259 		/* Reject requests with unsupported flags */
260 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261 					PTP_RISING_EDGE |
262 					PTP_FALLING_EDGE |
263 					PTP_STRICT_FLAGS))
264 			return -EOPNOTSUPP;
265 
266 		/* Reject requests failing to enable both edges. */
267 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270 			return -EOPNOTSUPP;
271 
272 		if (on) {
273 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274 					   rq->extts.index);
275 			if (pin < 0)
276 				return -EBUSY;
277 		}
278 		if (rq->extts.index == 1) {
279 			tsauxc_mask = IGC_TSAUXC_EN_TS1;
280 			tsim_mask = IGC_TSICR_AUTT1;
281 		} else {
282 			tsauxc_mask = IGC_TSAUXC_EN_TS0;
283 			tsim_mask = IGC_TSICR_AUTT0;
284 		}
285 		spin_lock_irqsave(&igc->tmreg_lock, flags);
286 		tsauxc = rd32(IGC_TSAUXC);
287 		tsim = rd32(IGC_TSIM);
288 		if (on) {
289 			igc_pin_extts(igc, rq->extts.index, pin);
290 			tsauxc |= tsauxc_mask;
291 			tsim |= tsim_mask;
292 		} else {
293 			tsauxc &= ~tsauxc_mask;
294 			tsim &= ~tsim_mask;
295 		}
296 		wr32(IGC_TSAUXC, tsauxc);
297 		wr32(IGC_TSIM, tsim);
298 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299 		return 0;
300 
301 	case PTP_CLK_REQ_PEROUT:
302 		/* Reject requests with unsupported flags */
303 		if (rq->perout.flags)
304 			return -EOPNOTSUPP;
305 
306 		if (on) {
307 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308 					   rq->perout.index);
309 			if (pin < 0)
310 				return -EBUSY;
311 		}
312 		ts.tv_sec = rq->perout.period.sec;
313 		ts.tv_nsec = rq->perout.period.nsec;
314 		ns = timespec64_to_ns(&ts);
315 		ns = ns >> 1;
316 		if (on && (ns <= 70000000LL || ns == 125000000LL ||
317 			   ns == 250000000LL || ns == 500000000LL)) {
318 			if (ns < 8LL)
319 				return -EINVAL;
320 			use_freq = 1;
321 		}
322 		ts = ns_to_timespec64(ns);
323 		if (rq->perout.index == 1) {
324 			if (use_freq) {
325 				tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
326 				tsim_mask = 0;
327 			} else {
328 				tsauxc_mask = IGC_TSAUXC_EN_TT1;
329 				tsim_mask = IGC_TSICR_TT1;
330 			}
331 			trgttiml = IGC_TRGTTIML1;
332 			trgttimh = IGC_TRGTTIMH1;
333 			freqout = IGC_FREQOUT1;
334 		} else {
335 			if (use_freq) {
336 				tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
337 				tsim_mask = 0;
338 			} else {
339 				tsauxc_mask = IGC_TSAUXC_EN_TT0;
340 				tsim_mask = IGC_TSICR_TT0;
341 			}
342 			trgttiml = IGC_TRGTTIML0;
343 			trgttimh = IGC_TRGTTIMH0;
344 			freqout = IGC_FREQOUT0;
345 		}
346 		spin_lock_irqsave(&igc->tmreg_lock, flags);
347 		tsauxc = rd32(IGC_TSAUXC);
348 		tsim = rd32(IGC_TSIM);
349 		if (rq->perout.index == 1) {
350 			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
351 				    IGC_TSAUXC_ST1);
352 			tsim &= ~IGC_TSICR_TT1;
353 		} else {
354 			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
355 				    IGC_TSAUXC_ST0);
356 			tsim &= ~IGC_TSICR_TT0;
357 		}
358 		if (on) {
359 			struct timespec64 safe_start;
360 			int i = rq->perout.index;
361 
362 			igc_pin_perout(igc, i, pin, use_freq);
363 			igc_ptp_read(igc, &safe_start);
364 
365 			/* PPS output start time is triggered by Target time(TT)
366 			 * register. Programming any past time value into TT
367 			 * register will cause PPS to never start. Need to make
368 			 * sure we program the TT register a time ahead in
369 			 * future. There isn't a stringent need to fire PPS out
370 			 * right away. Adding +2 seconds should take care of
371 			 * corner cases. Let's say if the SYSTIML is close to
372 			 * wrap up and the timer keeps ticking as we program the
373 			 * register, adding +2seconds is safe bet.
374 			 */
375 			safe_start.tv_sec += 2;
376 
377 			if (rq->perout.start.sec < safe_start.tv_sec)
378 				igc->perout[i].start.tv_sec = safe_start.tv_sec;
379 			else
380 				igc->perout[i].start.tv_sec = rq->perout.start.sec;
381 			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
382 			igc->perout[i].period.tv_sec = ts.tv_sec;
383 			igc->perout[i].period.tv_nsec = ts.tv_nsec;
384 			wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
385 			/* For now, always select timer 0 as source. */
386 			wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
387 					     IGC_TT_IO_TIMER_SEL_SYSTIM0));
388 			if (use_freq)
389 				wr32(freqout, ns);
390 			tsauxc |= tsauxc_mask;
391 			tsim |= tsim_mask;
392 		}
393 		wr32(IGC_TSAUXC, tsauxc);
394 		wr32(IGC_TSIM, tsim);
395 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
396 		return 0;
397 
398 	case PTP_CLK_REQ_PPS:
399 		spin_lock_irqsave(&igc->tmreg_lock, flags);
400 		tsim = rd32(IGC_TSIM);
401 		if (on)
402 			tsim |= IGC_TSICR_SYS_WRAP;
403 		else
404 			tsim &= ~IGC_TSICR_SYS_WRAP;
405 		igc->pps_sys_wrap_on = on;
406 		wr32(IGC_TSIM, tsim);
407 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
408 		return 0;
409 
410 	default:
411 		break;
412 	}
413 
414 	return -EOPNOTSUPP;
415 }
416 
417 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
418 			      enum ptp_pin_function func, unsigned int chan)
419 {
420 	switch (func) {
421 	case PTP_PF_NONE:
422 	case PTP_PF_EXTTS:
423 	case PTP_PF_PEROUT:
424 		break;
425 	case PTP_PF_PHYSYNC:
426 		return -1;
427 	}
428 	return 0;
429 }
430 
431 /**
432  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
433  * @adapter: board private structure
434  * @hwtstamps: timestamp structure to update
435  * @systim: unsigned 64bit system time value
436  *
437  * We need to convert the system time value stored in the RX/TXSTMP registers
438  * into a hwtstamp which can be used by the upper level timestamping functions.
439  *
440  * Returns 0 on success.
441  **/
442 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
443 				      struct skb_shared_hwtstamps *hwtstamps,
444 				      u64 systim)
445 {
446 	switch (adapter->hw.mac.type) {
447 	case igc_i225:
448 		memset(hwtstamps, 0, sizeof(*hwtstamps));
449 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
450 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
451 						systim & 0xFFFFFFFF);
452 		break;
453 	default:
454 		return -EINVAL;
455 	}
456 	return 0;
457 }
458 
459 /**
460  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
461  * @adapter: Pointer to adapter the packet buffer belongs to
462  * @buf: Pointer to packet buffer
463  *
464  * This function retrieves the timestamp saved in the beginning of packet
465  * buffer. While two timestamps are available, one in timer0 reference and the
466  * other in timer1 reference, this function considers only the timestamp in
467  * timer0 reference.
468  *
469  * Returns timestamp value.
470  */
471 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
472 {
473 	ktime_t timestamp;
474 	u32 secs, nsecs;
475 	int adjust;
476 
477 	/* Timestamps are saved in little endian at the beginning of the packet
478 	 * buffer following the layout:
479 	 *
480 	 * DWORD: | 0              | 1              | 2              | 3              |
481 	 * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
482 	 *
483 	 * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
484 	 * part of the timestamp.
485 	 */
486 	nsecs = le32_to_cpu(buf[2]);
487 	secs = le32_to_cpu(buf[3]);
488 
489 	timestamp = ktime_set(secs, nsecs);
490 
491 	/* Adjust timestamp for the RX latency based on link speed */
492 	switch (adapter->link_speed) {
493 	case SPEED_10:
494 		adjust = IGC_I225_RX_LATENCY_10;
495 		break;
496 	case SPEED_100:
497 		adjust = IGC_I225_RX_LATENCY_100;
498 		break;
499 	case SPEED_1000:
500 		adjust = IGC_I225_RX_LATENCY_1000;
501 		break;
502 	case SPEED_2500:
503 		adjust = IGC_I225_RX_LATENCY_2500;
504 		break;
505 	default:
506 		adjust = 0;
507 		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
508 		break;
509 	}
510 
511 	return ktime_sub_ns(timestamp, adjust);
512 }
513 
514 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
515 {
516 	struct igc_hw *hw = &adapter->hw;
517 	u32 val;
518 	int i;
519 
520 	wr32(IGC_TSYNCRXCTL, 0);
521 
522 	for (i = 0; i < adapter->num_rx_queues; i++) {
523 		val = rd32(IGC_SRRCTL(i));
524 		val &= ~IGC_SRRCTL_TIMESTAMP;
525 		wr32(IGC_SRRCTL(i), val);
526 	}
527 
528 	val = rd32(IGC_RXPBS);
529 	val &= ~IGC_RXPBS_CFG_TS_EN;
530 	wr32(IGC_RXPBS, val);
531 }
532 
533 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
534 {
535 	struct igc_hw *hw = &adapter->hw;
536 	u32 val;
537 	int i;
538 
539 	val = rd32(IGC_RXPBS);
540 	val |= IGC_RXPBS_CFG_TS_EN;
541 	wr32(IGC_RXPBS, val);
542 
543 	for (i = 0; i < adapter->num_rx_queues; i++) {
544 		val = rd32(IGC_SRRCTL(i));
545 		/* FIXME: For now, only support retrieving RX timestamps from
546 		 * timer 0.
547 		 */
548 		val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
549 		       IGC_SRRCTL_TIMESTAMP;
550 		wr32(IGC_SRRCTL(i), val);
551 	}
552 
553 	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
554 	      IGC_TSYNCRXCTL_RXSYNSIG;
555 	wr32(IGC_TSYNCRXCTL, val);
556 }
557 
558 static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
559 {
560 	unsigned long flags;
561 
562 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
563 
564 	dev_kfree_skb_any(adapter->ptp_tx_skb);
565 	adapter->ptp_tx_skb = NULL;
566 
567 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
568 }
569 
570 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
571 {
572 	struct igc_hw *hw = &adapter->hw;
573 	int i;
574 
575 	/* Clear the flags first to avoid new packets to be enqueued
576 	 * for TX timestamping.
577 	 */
578 	for (i = 0; i < adapter->num_tx_queues; i++) {
579 		struct igc_ring *tx_ring = adapter->tx_ring[i];
580 
581 		clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
582 	}
583 
584 	/* Now we can clean the pending TX timestamp requests. */
585 	igc_ptp_clear_tx_tstamp(adapter);
586 
587 	wr32(IGC_TSYNCTXCTL, 0);
588 }
589 
590 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
591 {
592 	struct igc_hw *hw = &adapter->hw;
593 	int i;
594 
595 	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
596 
597 	/* Read TXSTMP registers to discard any timestamp previously stored. */
598 	rd32(IGC_TXSTMPL);
599 	rd32(IGC_TXSTMPH);
600 
601 	/* The hardware is ready to accept TX timestamp requests,
602 	 * notify the transmit path.
603 	 */
604 	for (i = 0; i < adapter->num_tx_queues; i++) {
605 		struct igc_ring *tx_ring = adapter->tx_ring[i];
606 
607 		set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
608 	}
609 
610 }
611 
612 /**
613  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
614  * @adapter: networking device structure
615  * @config: hwtstamp configuration
616  *
617  * Return: 0 in case of success, negative errno code otherwise.
618  */
619 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
620 				      struct hwtstamp_config *config)
621 {
622 	switch (config->tx_type) {
623 	case HWTSTAMP_TX_OFF:
624 		igc_ptp_disable_tx_timestamp(adapter);
625 		break;
626 	case HWTSTAMP_TX_ON:
627 		igc_ptp_enable_tx_timestamp(adapter);
628 		break;
629 	default:
630 		return -ERANGE;
631 	}
632 
633 	switch (config->rx_filter) {
634 	case HWTSTAMP_FILTER_NONE:
635 		igc_ptp_disable_rx_timestamp(adapter);
636 		break;
637 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
638 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
639 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
640 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
641 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
642 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
643 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
644 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
645 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
646 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
647 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
648 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
649 	case HWTSTAMP_FILTER_NTP_ALL:
650 	case HWTSTAMP_FILTER_ALL:
651 		igc_ptp_enable_rx_timestamp(adapter);
652 		config->rx_filter = HWTSTAMP_FILTER_ALL;
653 		break;
654 	default:
655 		return -ERANGE;
656 	}
657 
658 	return 0;
659 }
660 
661 /* Requires adapter->ptp_tx_lock held by caller. */
662 static void igc_ptp_tx_timeout(struct igc_adapter *adapter)
663 {
664 	struct igc_hw *hw = &adapter->hw;
665 
666 	dev_kfree_skb_any(adapter->ptp_tx_skb);
667 	adapter->ptp_tx_skb = NULL;
668 	adapter->tx_hwtstamp_timeouts++;
669 	/* Clear the tx valid bit in TSYNCTXCTL register to enable interrupt. */
670 	rd32(IGC_TXSTMPH);
671 	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
672 }
673 
674 void igc_ptp_tx_hang(struct igc_adapter *adapter)
675 {
676 	unsigned long flags;
677 
678 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
679 
680 	if (!adapter->ptp_tx_skb)
681 		goto unlock;
682 
683 	if (time_is_after_jiffies(adapter->ptp_tx_start + IGC_PTP_TX_TIMEOUT))
684 		goto unlock;
685 
686 	igc_ptp_tx_timeout(adapter);
687 
688 unlock:
689 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
690 }
691 
692 /**
693  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
694  * @adapter: Board private structure
695  *
696  * If we were asked to do hardware stamping and such a time stamp is
697  * available, then it must have been for this skb here because we only
698  * allow only one such packet into the queue.
699  *
700  * Context: Expects adapter->ptp_tx_lock to be held by caller.
701  */
702 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
703 {
704 	struct sk_buff *skb = adapter->ptp_tx_skb;
705 	struct skb_shared_hwtstamps shhwtstamps;
706 	struct igc_hw *hw = &adapter->hw;
707 	u32 tsynctxctl;
708 	int adjust = 0;
709 	u64 regval;
710 
711 	if (WARN_ON_ONCE(!skb))
712 		return;
713 
714 	tsynctxctl = rd32(IGC_TSYNCTXCTL);
715 	tsynctxctl &= IGC_TSYNCTXCTL_TXTT_0;
716 	if (tsynctxctl) {
717 		regval = rd32(IGC_TXSTMPL);
718 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
719 	} else {
720 		/* There's a bug in the hardware that could cause
721 		 * missing interrupts for TX timestamping. The issue
722 		 * is that for new interrupts to be triggered, the
723 		 * IGC_TXSTMPH_0 register must be read.
724 		 *
725 		 * To avoid discarding a valid timestamp that just
726 		 * happened at the "wrong" time, we need to confirm
727 		 * that there was no timestamp captured, we do that by
728 		 * assuming that no two timestamps in sequence have
729 		 * the same nanosecond value.
730 		 *
731 		 * So, we read the "low" register, read the "high"
732 		 * register (to latch a new timestamp) and read the
733 		 * "low" register again, if "old" and "new" versions
734 		 * of the "low" register are different, a valid
735 		 * timestamp was captured, we can read the "high"
736 		 * register again.
737 		 */
738 		u32 txstmpl_old, txstmpl_new;
739 
740 		txstmpl_old = rd32(IGC_TXSTMPL);
741 		rd32(IGC_TXSTMPH);
742 		txstmpl_new = rd32(IGC_TXSTMPL);
743 
744 		if (txstmpl_old == txstmpl_new)
745 			return;
746 
747 		regval = txstmpl_new;
748 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
749 	}
750 	if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
751 		return;
752 
753 	switch (adapter->link_speed) {
754 	case SPEED_10:
755 		adjust = IGC_I225_TX_LATENCY_10;
756 		break;
757 	case SPEED_100:
758 		adjust = IGC_I225_TX_LATENCY_100;
759 		break;
760 	case SPEED_1000:
761 		adjust = IGC_I225_TX_LATENCY_1000;
762 		break;
763 	case SPEED_2500:
764 		adjust = IGC_I225_TX_LATENCY_2500;
765 		break;
766 	}
767 
768 	shhwtstamps.hwtstamp =
769 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
770 
771 	adapter->ptp_tx_skb = NULL;
772 
773 	/* Notify the stack and free the skb after we've unlocked */
774 	skb_tstamp_tx(skb, &shhwtstamps);
775 	dev_kfree_skb_any(skb);
776 }
777 
778 /**
779  * igc_ptp_tx_tstamp_event
780  * @adapter: board private structure
781  *
782  * Called when a TX timestamp interrupt happens to retrieve the
783  * timestamp and send it up to the socket.
784  */
785 void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
786 {
787 	unsigned long flags;
788 
789 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
790 
791 	if (!adapter->ptp_tx_skb)
792 		goto unlock;
793 
794 	igc_ptp_tx_hwtstamp(adapter);
795 
796 unlock:
797 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
798 }
799 
800 /**
801  * igc_ptp_set_ts_config - set hardware time stamping config
802  * @netdev: network interface device structure
803  * @ifr: interface request data
804  *
805  **/
806 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
807 {
808 	struct igc_adapter *adapter = netdev_priv(netdev);
809 	struct hwtstamp_config config;
810 	int err;
811 
812 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
813 		return -EFAULT;
814 
815 	err = igc_ptp_set_timestamp_mode(adapter, &config);
816 	if (err)
817 		return err;
818 
819 	/* save these settings for future reference */
820 	memcpy(&adapter->tstamp_config, &config,
821 	       sizeof(adapter->tstamp_config));
822 
823 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
824 		-EFAULT : 0;
825 }
826 
827 /**
828  * igc_ptp_get_ts_config - get hardware time stamping config
829  * @netdev: network interface device structure
830  * @ifr: interface request data
831  *
832  * Get the hwtstamp_config settings to return to the user. Rather than attempt
833  * to deconstruct the settings from the registers, just return a shadow copy
834  * of the last known settings.
835  **/
836 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
837 {
838 	struct igc_adapter *adapter = netdev_priv(netdev);
839 	struct hwtstamp_config *config = &adapter->tstamp_config;
840 
841 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
842 		-EFAULT : 0;
843 }
844 
845 /* The two conditions below must be met for cross timestamping via
846  * PCIe PTM:
847  *
848  * 1. We have an way to convert the timestamps in the PTM messages
849  *    to something related to the system clocks (right now, only
850  *    X86 systems with support for the Always Running Timer allow that);
851  *
852  * 2. We have PTM enabled in the path from the device to the PCIe root port.
853  */
854 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
855 {
856 	if (!IS_ENABLED(CONFIG_X86_TSC))
857 		return false;
858 
859 	/* FIXME: it was noticed that enabling support for PCIe PTM in
860 	 * some i225-V models could cause lockups when bringing the
861 	 * interface up/down. There should be no downsides to
862 	 * disabling crosstimestamping support for i225-V, as it
863 	 * doesn't have any PTP support. That way we gain some time
864 	 * while root causing the issue.
865 	 */
866 	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
867 		return false;
868 
869 	return pcie_ptm_enabled(adapter->pdev);
870 }
871 
872 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
873 {
874 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
875 	return convert_art_ns_to_tsc(tstamp);
876 #else
877 	return (struct system_counterval_t) { };
878 #endif
879 }
880 
881 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
882 {
883 	struct net_device *netdev = adapter->netdev;
884 
885 	switch (ptm_stat) {
886 	case IGC_PTM_STAT_RET_ERR:
887 		netdev_err(netdev, "PTM Error: Root port timeout\n");
888 		break;
889 	case IGC_PTM_STAT_BAD_PTM_RES:
890 		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
891 		break;
892 	case IGC_PTM_STAT_T4M1_OVFL:
893 		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
894 		break;
895 	case IGC_PTM_STAT_ADJUST_1ST:
896 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
897 		break;
898 	case IGC_PTM_STAT_ADJUST_CYC:
899 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
900 		break;
901 	default:
902 		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
903 		break;
904 	}
905 }
906 
907 static int igc_phc_get_syncdevicetime(ktime_t *device,
908 				      struct system_counterval_t *system,
909 				      void *ctx)
910 {
911 	u32 stat, t2_curr_h, t2_curr_l, ctrl;
912 	struct igc_adapter *adapter = ctx;
913 	struct igc_hw *hw = &adapter->hw;
914 	int err, count = 100;
915 	ktime_t t1, t2_curr;
916 
917 	/* Get a snapshot of system clocks to use as historic value. */
918 	ktime_get_snapshot(&adapter->snapshot);
919 
920 	do {
921 		/* Doing this in a loop because in the event of a
922 		 * badly timed (ha!) system clock adjustment, we may
923 		 * get PTM errors from the PCI root, but these errors
924 		 * are transitory. Repeating the process returns valid
925 		 * data eventually.
926 		 */
927 
928 		/* To "manually" start the PTM cycle we need to clear and
929 		 * then set again the TRIG bit.
930 		 */
931 		ctrl = rd32(IGC_PTM_CTRL);
932 		ctrl &= ~IGC_PTM_CTRL_TRIG;
933 		wr32(IGC_PTM_CTRL, ctrl);
934 		ctrl |= IGC_PTM_CTRL_TRIG;
935 		wr32(IGC_PTM_CTRL, ctrl);
936 
937 		/* The cycle only starts "for real" when software notifies
938 		 * that it has read the registers, this is done by setting
939 		 * VALID bit.
940 		 */
941 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
942 
943 		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
944 					 stat, IGC_PTM_STAT_SLEEP,
945 					 IGC_PTM_STAT_TIMEOUT);
946 		if (err < 0) {
947 			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
948 			return err;
949 		}
950 
951 		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
952 			break;
953 
954 		if (stat & ~IGC_PTM_STAT_VALID) {
955 			/* An error occurred, log it. */
956 			igc_ptm_log_error(adapter, stat);
957 			/* The STAT register is write-1-to-clear (W1C),
958 			 * so write the previous error status to clear it.
959 			 */
960 			wr32(IGC_PTM_STAT, stat);
961 			continue;
962 		}
963 	} while (--count);
964 
965 	if (!count) {
966 		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
967 		return -ETIMEDOUT;
968 	}
969 
970 	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
971 
972 	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
973 	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
974 
975 	/* FIXME: When the register that tells the endianness of the
976 	 * PTM registers are implemented, check them here and add the
977 	 * appropriate conversion.
978 	 */
979 	t2_curr_h = swab32(t2_curr_h);
980 
981 	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
982 
983 	*device = t1;
984 	*system = igc_device_tstamp_to_system(t2_curr);
985 
986 	return 0;
987 }
988 
989 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
990 				  struct system_device_crosststamp *cts)
991 {
992 	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
993 						   ptp_caps);
994 
995 	return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
996 					     adapter, &adapter->snapshot, cts);
997 }
998 
999 /**
1000  * igc_ptp_init - Initialize PTP functionality
1001  * @adapter: Board private structure
1002  *
1003  * This function is called at device probe to initialize the PTP
1004  * functionality.
1005  */
1006 void igc_ptp_init(struct igc_adapter *adapter)
1007 {
1008 	struct net_device *netdev = adapter->netdev;
1009 	struct igc_hw *hw = &adapter->hw;
1010 	int i;
1011 
1012 	switch (hw->mac.type) {
1013 	case igc_i225:
1014 		for (i = 0; i < IGC_N_SDP; i++) {
1015 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1016 
1017 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1018 			ppd->index = i;
1019 			ppd->func = PTP_PF_NONE;
1020 		}
1021 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1022 		adapter->ptp_caps.owner = THIS_MODULE;
1023 		adapter->ptp_caps.max_adj = 62499999;
1024 		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1025 		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1026 		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1027 		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1028 		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1029 		adapter->ptp_caps.pps = 1;
1030 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1031 		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1032 		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1033 		adapter->ptp_caps.n_pins = IGC_N_SDP;
1034 		adapter->ptp_caps.verify = igc_ptp_verify_pin;
1035 
1036 		if (!igc_is_crosststamp_supported(adapter))
1037 			break;
1038 
1039 		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1040 		break;
1041 	default:
1042 		adapter->ptp_clock = NULL;
1043 		return;
1044 	}
1045 
1046 	spin_lock_init(&adapter->ptp_tx_lock);
1047 	spin_lock_init(&adapter->tmreg_lock);
1048 
1049 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1050 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1051 
1052 	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1053 	adapter->ptp_reset_start = ktime_get();
1054 
1055 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1056 						&adapter->pdev->dev);
1057 	if (IS_ERR(adapter->ptp_clock)) {
1058 		adapter->ptp_clock = NULL;
1059 		netdev_err(netdev, "ptp_clock_register failed\n");
1060 	} else if (adapter->ptp_clock) {
1061 		netdev_info(netdev, "PHC added\n");
1062 		adapter->ptp_flags |= IGC_PTP_ENABLED;
1063 	}
1064 }
1065 
1066 static void igc_ptp_time_save(struct igc_adapter *adapter)
1067 {
1068 	igc_ptp_read(adapter, &adapter->prev_ptp_time);
1069 	adapter->ptp_reset_start = ktime_get();
1070 }
1071 
1072 static void igc_ptp_time_restore(struct igc_adapter *adapter)
1073 {
1074 	struct timespec64 ts = adapter->prev_ptp_time;
1075 	ktime_t delta;
1076 
1077 	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1078 
1079 	timespec64_add_ns(&ts, ktime_to_ns(delta));
1080 
1081 	igc_ptp_write_i225(adapter, &ts);
1082 }
1083 
1084 static void igc_ptm_stop(struct igc_adapter *adapter)
1085 {
1086 	struct igc_hw *hw = &adapter->hw;
1087 	u32 ctrl;
1088 
1089 	ctrl = rd32(IGC_PTM_CTRL);
1090 	ctrl &= ~IGC_PTM_CTRL_EN;
1091 
1092 	wr32(IGC_PTM_CTRL, ctrl);
1093 }
1094 
1095 /**
1096  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1097  * @adapter: Board private structure
1098  *
1099  * This function stops the overflow check work and PTP Tx timestamp work, and
1100  * will prepare the device for OS suspend.
1101  */
1102 void igc_ptp_suspend(struct igc_adapter *adapter)
1103 {
1104 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1105 		return;
1106 
1107 	igc_ptp_clear_tx_tstamp(adapter);
1108 
1109 	if (pci_device_is_present(adapter->pdev)) {
1110 		igc_ptp_time_save(adapter);
1111 		igc_ptm_stop(adapter);
1112 	}
1113 }
1114 
1115 /**
1116  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1117  * @adapter: Board private structure.
1118  *
1119  * This function stops the PTP support and cancels the delayed work.
1120  **/
1121 void igc_ptp_stop(struct igc_adapter *adapter)
1122 {
1123 	igc_ptp_suspend(adapter);
1124 
1125 	if (adapter->ptp_clock) {
1126 		ptp_clock_unregister(adapter->ptp_clock);
1127 		netdev_info(adapter->netdev, "PHC removed\n");
1128 		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1129 	}
1130 }
1131 
1132 /**
1133  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1134  * @adapter: Board private structure.
1135  *
1136  * This function handles the reset work required to re-enable the PTP device.
1137  **/
1138 void igc_ptp_reset(struct igc_adapter *adapter)
1139 {
1140 	struct igc_hw *hw = &adapter->hw;
1141 	u32 cycle_ctrl, ctrl;
1142 	unsigned long flags;
1143 	u32 timadj;
1144 
1145 	/* reset the tstamp_config */
1146 	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1147 
1148 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1149 
1150 	switch (adapter->hw.mac.type) {
1151 	case igc_i225:
1152 		timadj = rd32(IGC_TIMADJ);
1153 		timadj |= IGC_TIMADJ_ADJUST_METH;
1154 		wr32(IGC_TIMADJ, timadj);
1155 
1156 		wr32(IGC_TSAUXC, 0x0);
1157 		wr32(IGC_TSSDP, 0x0);
1158 		wr32(IGC_TSIM,
1159 		     IGC_TSICR_INTERRUPTS |
1160 		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1161 		wr32(IGC_IMS, IGC_IMS_TS);
1162 
1163 		if (!igc_is_crosststamp_supported(adapter))
1164 			break;
1165 
1166 		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1167 		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1168 
1169 		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1170 
1171 		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1172 
1173 		ctrl = IGC_PTM_CTRL_EN |
1174 			IGC_PTM_CTRL_START_NOW |
1175 			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1176 			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1177 			IGC_PTM_CTRL_TRIG;
1178 
1179 		wr32(IGC_PTM_CTRL, ctrl);
1180 
1181 		/* Force the first cycle to run. */
1182 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1183 
1184 		break;
1185 	default:
1186 		/* No work to do. */
1187 		goto out;
1188 	}
1189 
1190 	/* Re-initialize the timer. */
1191 	if (hw->mac.type == igc_i225) {
1192 		igc_ptp_time_restore(adapter);
1193 	} else {
1194 		timecounter_init(&adapter->tc, &adapter->cc,
1195 				 ktime_to_ns(ktime_get_real()));
1196 	}
1197 out:
1198 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1199 
1200 	wrfl();
1201 }
1202