1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3 
4 #include "igc.h"
5 
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14 
15 #define INCVALUE_MASK		0x7fffffff
16 #define ISGN			0x80000000
17 
18 #define IGC_PTP_TX_TIMEOUT		(HZ * 15)
19 
20 #define IGC_PTM_STAT_SLEEP		2
21 #define IGC_PTM_STAT_TIMEOUT		100
22 
23 /* SYSTIM read access for I225 */
24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25 {
26 	struct igc_hw *hw = &adapter->hw;
27 	u32 sec, nsec;
28 
29 	/* The timestamp is latched when SYSTIML is read. */
30 	nsec = rd32(IGC_SYSTIML);
31 	sec = rd32(IGC_SYSTIMH);
32 
33 	ts->tv_sec = sec;
34 	ts->tv_nsec = nsec;
35 }
36 
37 static void igc_ptp_write_i225(struct igc_adapter *adapter,
38 			       const struct timespec64 *ts)
39 {
40 	struct igc_hw *hw = &adapter->hw;
41 
42 	wr32(IGC_SYSTIML, ts->tv_nsec);
43 	wr32(IGC_SYSTIMH, ts->tv_sec);
44 }
45 
46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47 {
48 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49 					       ptp_caps);
50 	struct igc_hw *hw = &igc->hw;
51 	int neg_adj = 0;
52 	u64 rate;
53 	u32 inca;
54 
55 	if (scaled_ppm < 0) {
56 		neg_adj = 1;
57 		scaled_ppm = -scaled_ppm;
58 	}
59 	rate = scaled_ppm;
60 	rate <<= 14;
61 	rate = div_u64(rate, 78125);
62 
63 	inca = rate & INCVALUE_MASK;
64 	if (neg_adj)
65 		inca |= ISGN;
66 
67 	wr32(IGC_TIMINCA, inca);
68 
69 	return 0;
70 }
71 
72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73 {
74 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75 					       ptp_caps);
76 	struct timespec64 now, then = ns_to_timespec64(delta);
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&igc->tmreg_lock, flags);
80 
81 	igc_ptp_read(igc, &now);
82 	now = timespec64_add(now, then);
83 	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84 
85 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86 
87 	return 0;
88 }
89 
90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91 				   struct timespec64 *ts,
92 				   struct ptp_system_timestamp *sts)
93 {
94 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95 					       ptp_caps);
96 	struct igc_hw *hw = &igc->hw;
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(&igc->tmreg_lock, flags);
100 
101 	ptp_read_system_prets(sts);
102 	ts->tv_nsec = rd32(IGC_SYSTIML);
103 	ts->tv_sec = rd32(IGC_SYSTIMH);
104 	ptp_read_system_postts(sts);
105 
106 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107 
108 	return 0;
109 }
110 
111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112 				const struct timespec64 *ts)
113 {
114 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115 					       ptp_caps);
116 	unsigned long flags;
117 
118 	spin_lock_irqsave(&igc->tmreg_lock, flags);
119 
120 	igc_ptp_write_i225(igc, ts);
121 
122 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123 
124 	return 0;
125 }
126 
127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128 {
129 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130 	static const u32 mask[IGC_N_SDP] = {
131 		IGC_CTRL_SDP0_DIR,
132 		IGC_CTRL_SDP1_DIR,
133 		IGC_CTRL_EXT_SDP2_DIR,
134 		IGC_CTRL_EXT_SDP3_DIR,
135 	};
136 
137 	if (input)
138 		*ptr &= ~mask[pin];
139 	else
140 		*ptr |= mask[pin];
141 }
142 
143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144 {
145 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147 	};
148 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150 	};
151 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153 	};
154 	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155 		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156 		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157 	};
158 	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159 		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160 		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161 	};
162 	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163 		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164 		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165 	};
166 	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169 	};
170 	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173 	};
174 	struct igc_hw *hw = &igc->hw;
175 	u32 ctrl, ctrl_ext, tssdp = 0;
176 
177 	ctrl = rd32(IGC_CTRL);
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	tssdp = rd32(IGC_TSSDP);
180 
181 	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182 
183 	/* Make sure this pin is not enabled as an input. */
184 	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185 		tssdp &= ~IGC_AUX0_TS_SDP_EN;
186 
187 	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188 		tssdp &= ~IGC_AUX1_TS_SDP_EN;
189 
190 	tssdp &= ~igc_ts_sdp_sel_clr[pin];
191 	if (freq) {
192 		if (chan == 1)
193 			tssdp |= igc_ts_sdp_sel_fc1[pin];
194 		else
195 			tssdp |= igc_ts_sdp_sel_fc0[pin];
196 	} else {
197 		if (chan == 1)
198 			tssdp |= igc_ts_sdp_sel_tt1[pin];
199 		else
200 			tssdp |= igc_ts_sdp_sel_tt0[pin];
201 	}
202 	tssdp |= igc_ts_sdp_en[pin];
203 
204 	wr32(IGC_TSSDP, tssdp);
205 	wr32(IGC_CTRL, ctrl);
206 	wr32(IGC_CTRL_EXT, ctrl_ext);
207 }
208 
209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210 {
211 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213 	};
214 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216 	};
217 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219 	};
220 	struct igc_hw *hw = &igc->hw;
221 	u32 ctrl, ctrl_ext, tssdp = 0;
222 
223 	ctrl = rd32(IGC_CTRL);
224 	ctrl_ext = rd32(IGC_CTRL_EXT);
225 	tssdp = rd32(IGC_TSSDP);
226 
227 	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228 
229 	/* Make sure this pin is not enabled as an output. */
230 	tssdp &= ~igc_ts_sdp_en[pin];
231 
232 	if (chan == 1) {
233 		tssdp &= ~IGC_AUX1_SEL_SDP3;
234 		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235 	} else {
236 		tssdp &= ~IGC_AUX0_SEL_SDP3;
237 		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238 	}
239 
240 	wr32(IGC_TSSDP, tssdp);
241 	wr32(IGC_CTRL, ctrl);
242 	wr32(IGC_CTRL_EXT, ctrl_ext);
243 }
244 
245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246 				       struct ptp_clock_request *rq, int on)
247 {
248 	struct igc_adapter *igc =
249 		container_of(ptp, struct igc_adapter, ptp_caps);
250 	struct igc_hw *hw = &igc->hw;
251 	unsigned long flags;
252 	struct timespec64 ts;
253 	int use_freq = 0, pin = -1;
254 	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255 	s64 ns;
256 
257 	switch (rq->type) {
258 	case PTP_CLK_REQ_EXTTS:
259 		/* Reject requests with unsupported flags */
260 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261 					PTP_RISING_EDGE |
262 					PTP_FALLING_EDGE |
263 					PTP_STRICT_FLAGS))
264 			return -EOPNOTSUPP;
265 
266 		/* Reject requests failing to enable both edges. */
267 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270 			return -EOPNOTSUPP;
271 
272 		if (on) {
273 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274 					   rq->extts.index);
275 			if (pin < 0)
276 				return -EBUSY;
277 		}
278 		if (rq->extts.index == 1) {
279 			tsauxc_mask = IGC_TSAUXC_EN_TS1;
280 			tsim_mask = IGC_TSICR_AUTT1;
281 		} else {
282 			tsauxc_mask = IGC_TSAUXC_EN_TS0;
283 			tsim_mask = IGC_TSICR_AUTT0;
284 		}
285 		spin_lock_irqsave(&igc->tmreg_lock, flags);
286 		tsauxc = rd32(IGC_TSAUXC);
287 		tsim = rd32(IGC_TSIM);
288 		if (on) {
289 			igc_pin_extts(igc, rq->extts.index, pin);
290 			tsauxc |= tsauxc_mask;
291 			tsim |= tsim_mask;
292 		} else {
293 			tsauxc &= ~tsauxc_mask;
294 			tsim &= ~tsim_mask;
295 		}
296 		wr32(IGC_TSAUXC, tsauxc);
297 		wr32(IGC_TSIM, tsim);
298 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299 		return 0;
300 
301 	case PTP_CLK_REQ_PEROUT:
302 		/* Reject requests with unsupported flags */
303 		if (rq->perout.flags)
304 			return -EOPNOTSUPP;
305 
306 		if (on) {
307 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308 					   rq->perout.index);
309 			if (pin < 0)
310 				return -EBUSY;
311 		}
312 		ts.tv_sec = rq->perout.period.sec;
313 		ts.tv_nsec = rq->perout.period.nsec;
314 		ns = timespec64_to_ns(&ts);
315 		ns = ns >> 1;
316 		if (on && (ns <= 70000000LL || ns == 125000000LL ||
317 			   ns == 250000000LL || ns == 500000000LL)) {
318 			if (ns < 8LL)
319 				return -EINVAL;
320 			use_freq = 1;
321 		}
322 		ts = ns_to_timespec64(ns);
323 		if (rq->perout.index == 1) {
324 			if (use_freq) {
325 				tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
326 				tsim_mask = 0;
327 			} else {
328 				tsauxc_mask = IGC_TSAUXC_EN_TT1;
329 				tsim_mask = IGC_TSICR_TT1;
330 			}
331 			trgttiml = IGC_TRGTTIML1;
332 			trgttimh = IGC_TRGTTIMH1;
333 			freqout = IGC_FREQOUT1;
334 		} else {
335 			if (use_freq) {
336 				tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
337 				tsim_mask = 0;
338 			} else {
339 				tsauxc_mask = IGC_TSAUXC_EN_TT0;
340 				tsim_mask = IGC_TSICR_TT0;
341 			}
342 			trgttiml = IGC_TRGTTIML0;
343 			trgttimh = IGC_TRGTTIMH0;
344 			freqout = IGC_FREQOUT0;
345 		}
346 		spin_lock_irqsave(&igc->tmreg_lock, flags);
347 		tsauxc = rd32(IGC_TSAUXC);
348 		tsim = rd32(IGC_TSIM);
349 		if (rq->perout.index == 1) {
350 			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
351 				    IGC_TSAUXC_ST1);
352 			tsim &= ~IGC_TSICR_TT1;
353 		} else {
354 			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
355 				    IGC_TSAUXC_ST0);
356 			tsim &= ~IGC_TSICR_TT0;
357 		}
358 		if (on) {
359 			int i = rq->perout.index;
360 
361 			igc_pin_perout(igc, i, pin, use_freq);
362 			igc->perout[i].start.tv_sec = rq->perout.start.sec;
363 			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
364 			igc->perout[i].period.tv_sec = ts.tv_sec;
365 			igc->perout[i].period.tv_nsec = ts.tv_nsec;
366 			wr32(trgttimh, rq->perout.start.sec);
367 			/* For now, always select timer 0 as source. */
368 			wr32(trgttiml, rq->perout.start.nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
369 			if (use_freq)
370 				wr32(freqout, ns);
371 			tsauxc |= tsauxc_mask;
372 			tsim |= tsim_mask;
373 		}
374 		wr32(IGC_TSAUXC, tsauxc);
375 		wr32(IGC_TSIM, tsim);
376 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
377 		return 0;
378 
379 	case PTP_CLK_REQ_PPS:
380 		spin_lock_irqsave(&igc->tmreg_lock, flags);
381 		tsim = rd32(IGC_TSIM);
382 		if (on)
383 			tsim |= IGC_TSICR_SYS_WRAP;
384 		else
385 			tsim &= ~IGC_TSICR_SYS_WRAP;
386 		igc->pps_sys_wrap_on = on;
387 		wr32(IGC_TSIM, tsim);
388 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
389 		return 0;
390 
391 	default:
392 		break;
393 	}
394 
395 	return -EOPNOTSUPP;
396 }
397 
398 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
399 			      enum ptp_pin_function func, unsigned int chan)
400 {
401 	switch (func) {
402 	case PTP_PF_NONE:
403 	case PTP_PF_EXTTS:
404 	case PTP_PF_PEROUT:
405 		break;
406 	case PTP_PF_PHYSYNC:
407 		return -1;
408 	}
409 	return 0;
410 }
411 
412 /**
413  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
414  * @adapter: board private structure
415  * @hwtstamps: timestamp structure to update
416  * @systim: unsigned 64bit system time value
417  *
418  * We need to convert the system time value stored in the RX/TXSTMP registers
419  * into a hwtstamp which can be used by the upper level timestamping functions.
420  **/
421 static void igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
422 				       struct skb_shared_hwtstamps *hwtstamps,
423 				       u64 systim)
424 {
425 	switch (adapter->hw.mac.type) {
426 	case igc_i225:
427 		memset(hwtstamps, 0, sizeof(*hwtstamps));
428 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
429 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
430 						systim & 0xFFFFFFFF);
431 		break;
432 	default:
433 		break;
434 	}
435 }
436 
437 /**
438  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
439  * @adapter: Pointer to adapter the packet buffer belongs to
440  * @buf: Pointer to packet buffer
441  *
442  * This function retrieves the timestamp saved in the beginning of packet
443  * buffer. While two timestamps are available, one in timer0 reference and the
444  * other in timer1 reference, this function considers only the timestamp in
445  * timer0 reference.
446  *
447  * Returns timestamp value.
448  */
449 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
450 {
451 	ktime_t timestamp;
452 	u32 secs, nsecs;
453 	int adjust;
454 
455 	/* Timestamps are saved in little endian at the beginning of the packet
456 	 * buffer following the layout:
457 	 *
458 	 * DWORD: | 0              | 1              | 2              | 3              |
459 	 * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
460 	 *
461 	 * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
462 	 * part of the timestamp.
463 	 */
464 	nsecs = le32_to_cpu(buf[2]);
465 	secs = le32_to_cpu(buf[3]);
466 
467 	timestamp = ktime_set(secs, nsecs);
468 
469 	/* Adjust timestamp for the RX latency based on link speed */
470 	switch (adapter->link_speed) {
471 	case SPEED_10:
472 		adjust = IGC_I225_RX_LATENCY_10;
473 		break;
474 	case SPEED_100:
475 		adjust = IGC_I225_RX_LATENCY_100;
476 		break;
477 	case SPEED_1000:
478 		adjust = IGC_I225_RX_LATENCY_1000;
479 		break;
480 	case SPEED_2500:
481 		adjust = IGC_I225_RX_LATENCY_2500;
482 		break;
483 	default:
484 		adjust = 0;
485 		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
486 		break;
487 	}
488 
489 	return ktime_sub_ns(timestamp, adjust);
490 }
491 
492 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
493 {
494 	struct igc_hw *hw = &adapter->hw;
495 	u32 val;
496 	int i;
497 
498 	wr32(IGC_TSYNCRXCTL, 0);
499 
500 	for (i = 0; i < adapter->num_rx_queues; i++) {
501 		val = rd32(IGC_SRRCTL(i));
502 		val &= ~IGC_SRRCTL_TIMESTAMP;
503 		wr32(IGC_SRRCTL(i), val);
504 	}
505 
506 	val = rd32(IGC_RXPBS);
507 	val &= ~IGC_RXPBS_CFG_TS_EN;
508 	wr32(IGC_RXPBS, val);
509 }
510 
511 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
512 {
513 	struct igc_hw *hw = &adapter->hw;
514 	u32 val;
515 	int i;
516 
517 	val = rd32(IGC_RXPBS);
518 	val |= IGC_RXPBS_CFG_TS_EN;
519 	wr32(IGC_RXPBS, val);
520 
521 	for (i = 0; i < adapter->num_rx_queues; i++) {
522 		val = rd32(IGC_SRRCTL(i));
523 		/* FIXME: For now, only support retrieving RX timestamps from
524 		 * timer 0.
525 		 */
526 		val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
527 		       IGC_SRRCTL_TIMESTAMP;
528 		wr32(IGC_SRRCTL(i), val);
529 	}
530 
531 	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
532 	      IGC_TSYNCRXCTL_RXSYNSIG;
533 	wr32(IGC_TSYNCRXCTL, val);
534 }
535 
536 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
537 {
538 	struct igc_hw *hw = &adapter->hw;
539 
540 	wr32(IGC_TSYNCTXCTL, 0);
541 }
542 
543 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
544 {
545 	struct igc_hw *hw = &adapter->hw;
546 
547 	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
548 
549 	/* Read TXSTMP registers to discard any timestamp previously stored. */
550 	rd32(IGC_TXSTMPL);
551 	rd32(IGC_TXSTMPH);
552 }
553 
554 /**
555  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
556  * @adapter: networking device structure
557  * @config: hwtstamp configuration
558  *
559  * Return: 0 in case of success, negative errno code otherwise.
560  */
561 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
562 				      struct hwtstamp_config *config)
563 {
564 	switch (config->tx_type) {
565 	case HWTSTAMP_TX_OFF:
566 		igc_ptp_disable_tx_timestamp(adapter);
567 		break;
568 	case HWTSTAMP_TX_ON:
569 		igc_ptp_enable_tx_timestamp(adapter);
570 		break;
571 	default:
572 		return -ERANGE;
573 	}
574 
575 	switch (config->rx_filter) {
576 	case HWTSTAMP_FILTER_NONE:
577 		igc_ptp_disable_rx_timestamp(adapter);
578 		break;
579 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
580 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
581 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
582 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
583 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
584 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
585 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
586 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
587 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
588 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
589 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
590 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
591 	case HWTSTAMP_FILTER_NTP_ALL:
592 	case HWTSTAMP_FILTER_ALL:
593 		igc_ptp_enable_rx_timestamp(adapter);
594 		config->rx_filter = HWTSTAMP_FILTER_ALL;
595 		break;
596 	default:
597 		return -ERANGE;
598 	}
599 
600 	return 0;
601 }
602 
603 static void igc_ptp_tx_timeout(struct igc_adapter *adapter)
604 {
605 	struct igc_hw *hw = &adapter->hw;
606 
607 	dev_kfree_skb_any(adapter->ptp_tx_skb);
608 	adapter->ptp_tx_skb = NULL;
609 	adapter->tx_hwtstamp_timeouts++;
610 	clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
611 	/* Clear the tx valid bit in TSYNCTXCTL register to enable interrupt. */
612 	rd32(IGC_TXSTMPH);
613 	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
614 }
615 
616 void igc_ptp_tx_hang(struct igc_adapter *adapter)
617 {
618 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
619 					      IGC_PTP_TX_TIMEOUT);
620 
621 	if (!test_bit(__IGC_PTP_TX_IN_PROGRESS, &adapter->state))
622 		return;
623 
624 	/* If we haven't received a timestamp within the timeout, it is
625 	 * reasonable to assume that it will never occur, so we can unlock the
626 	 * timestamp bit when this occurs.
627 	 */
628 	if (timeout) {
629 		cancel_work_sync(&adapter->ptp_tx_work);
630 		igc_ptp_tx_timeout(adapter);
631 	}
632 }
633 
634 /**
635  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
636  * @adapter: Board private structure
637  *
638  * If we were asked to do hardware stamping and such a time stamp is
639  * available, then it must have been for this skb here because we only
640  * allow only one such packet into the queue.
641  */
642 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
643 {
644 	struct sk_buff *skb = adapter->ptp_tx_skb;
645 	struct skb_shared_hwtstamps shhwtstamps;
646 	struct igc_hw *hw = &adapter->hw;
647 	int adjust = 0;
648 	u64 regval;
649 
650 	if (WARN_ON_ONCE(!skb))
651 		return;
652 
653 	regval = rd32(IGC_TXSTMPL);
654 	regval |= (u64)rd32(IGC_TXSTMPH) << 32;
655 	igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
656 
657 	switch (adapter->link_speed) {
658 	case SPEED_10:
659 		adjust = IGC_I225_TX_LATENCY_10;
660 		break;
661 	case SPEED_100:
662 		adjust = IGC_I225_TX_LATENCY_100;
663 		break;
664 	case SPEED_1000:
665 		adjust = IGC_I225_TX_LATENCY_1000;
666 		break;
667 	case SPEED_2500:
668 		adjust = IGC_I225_TX_LATENCY_2500;
669 		break;
670 	}
671 
672 	shhwtstamps.hwtstamp =
673 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
674 
675 	/* Clear the lock early before calling skb_tstamp_tx so that
676 	 * applications are not woken up before the lock bit is clear. We use
677 	 * a copy of the skb pointer to ensure other threads can't change it
678 	 * while we're notifying the stack.
679 	 */
680 	adapter->ptp_tx_skb = NULL;
681 	clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
682 
683 	/* Notify the stack and free the skb after we've unlocked */
684 	skb_tstamp_tx(skb, &shhwtstamps);
685 	dev_kfree_skb_any(skb);
686 }
687 
688 /**
689  * igc_ptp_tx_work
690  * @work: pointer to work struct
691  *
692  * This work function polls the TSYNCTXCTL valid bit to determine when a
693  * timestamp has been taken for the current stored skb.
694  */
695 static void igc_ptp_tx_work(struct work_struct *work)
696 {
697 	struct igc_adapter *adapter = container_of(work, struct igc_adapter,
698 						   ptp_tx_work);
699 	struct igc_hw *hw = &adapter->hw;
700 	u32 tsynctxctl;
701 
702 	if (!test_bit(__IGC_PTP_TX_IN_PROGRESS, &adapter->state))
703 		return;
704 
705 	tsynctxctl = rd32(IGC_TSYNCTXCTL);
706 	if (WARN_ON_ONCE(!(tsynctxctl & IGC_TSYNCTXCTL_TXTT_0)))
707 		return;
708 
709 	igc_ptp_tx_hwtstamp(adapter);
710 }
711 
712 /**
713  * igc_ptp_set_ts_config - set hardware time stamping config
714  * @netdev: network interface device structure
715  * @ifr: interface request data
716  *
717  **/
718 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
719 {
720 	struct igc_adapter *adapter = netdev_priv(netdev);
721 	struct hwtstamp_config config;
722 	int err;
723 
724 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
725 		return -EFAULT;
726 
727 	err = igc_ptp_set_timestamp_mode(adapter, &config);
728 	if (err)
729 		return err;
730 
731 	/* save these settings for future reference */
732 	memcpy(&adapter->tstamp_config, &config,
733 	       sizeof(adapter->tstamp_config));
734 
735 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
736 		-EFAULT : 0;
737 }
738 
739 /**
740  * igc_ptp_get_ts_config - get hardware time stamping config
741  * @netdev: network interface device structure
742  * @ifr: interface request data
743  *
744  * Get the hwtstamp_config settings to return to the user. Rather than attempt
745  * to deconstruct the settings from the registers, just return a shadow copy
746  * of the last known settings.
747  **/
748 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
749 {
750 	struct igc_adapter *adapter = netdev_priv(netdev);
751 	struct hwtstamp_config *config = &adapter->tstamp_config;
752 
753 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
754 		-EFAULT : 0;
755 }
756 
757 /* The two conditions below must be met for cross timestamping via
758  * PCIe PTM:
759  *
760  * 1. We have an way to convert the timestamps in the PTM messages
761  *    to something related to the system clocks (right now, only
762  *    X86 systems with support for the Always Running Timer allow that);
763  *
764  * 2. We have PTM enabled in the path from the device to the PCIe root port.
765  */
766 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
767 {
768 	if (!IS_ENABLED(CONFIG_X86_TSC))
769 		return false;
770 
771 	/* FIXME: it was noticed that enabling support for PCIe PTM in
772 	 * some i225-V models could cause lockups when bringing the
773 	 * interface up/down. There should be no downsides to
774 	 * disabling crosstimestamping support for i225-V, as it
775 	 * doesn't have any PTP support. That way we gain some time
776 	 * while root causing the issue.
777 	 */
778 	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
779 		return false;
780 
781 	return pcie_ptm_enabled(adapter->pdev);
782 }
783 
784 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
785 {
786 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
787 	return convert_art_ns_to_tsc(tstamp);
788 #else
789 	return (struct system_counterval_t) { };
790 #endif
791 }
792 
793 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
794 {
795 	struct net_device *netdev = adapter->netdev;
796 
797 	switch (ptm_stat) {
798 	case IGC_PTM_STAT_RET_ERR:
799 		netdev_err(netdev, "PTM Error: Root port timeout\n");
800 		break;
801 	case IGC_PTM_STAT_BAD_PTM_RES:
802 		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
803 		break;
804 	case IGC_PTM_STAT_T4M1_OVFL:
805 		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
806 		break;
807 	case IGC_PTM_STAT_ADJUST_1ST:
808 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
809 		break;
810 	case IGC_PTM_STAT_ADJUST_CYC:
811 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
812 		break;
813 	default:
814 		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
815 		break;
816 	}
817 }
818 
819 static int igc_phc_get_syncdevicetime(ktime_t *device,
820 				      struct system_counterval_t *system,
821 				      void *ctx)
822 {
823 	u32 stat, t2_curr_h, t2_curr_l, ctrl;
824 	struct igc_adapter *adapter = ctx;
825 	struct igc_hw *hw = &adapter->hw;
826 	int err, count = 100;
827 	ktime_t t1, t2_curr;
828 
829 	/* Get a snapshot of system clocks to use as historic value. */
830 	ktime_get_snapshot(&adapter->snapshot);
831 
832 	do {
833 		/* Doing this in a loop because in the event of a
834 		 * badly timed (ha!) system clock adjustment, we may
835 		 * get PTM errors from the PCI root, but these errors
836 		 * are transitory. Repeating the process returns valid
837 		 * data eventually.
838 		 */
839 
840 		/* To "manually" start the PTM cycle we need to clear and
841 		 * then set again the TRIG bit.
842 		 */
843 		ctrl = rd32(IGC_PTM_CTRL);
844 		ctrl &= ~IGC_PTM_CTRL_TRIG;
845 		wr32(IGC_PTM_CTRL, ctrl);
846 		ctrl |= IGC_PTM_CTRL_TRIG;
847 		wr32(IGC_PTM_CTRL, ctrl);
848 
849 		/* The cycle only starts "for real" when software notifies
850 		 * that it has read the registers, this is done by setting
851 		 * VALID bit.
852 		 */
853 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
854 
855 		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
856 					 stat, IGC_PTM_STAT_SLEEP,
857 					 IGC_PTM_STAT_TIMEOUT);
858 		if (err < 0) {
859 			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
860 			return err;
861 		}
862 
863 		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
864 			break;
865 
866 		if (stat & ~IGC_PTM_STAT_VALID) {
867 			/* An error occurred, log it. */
868 			igc_ptm_log_error(adapter, stat);
869 			/* The STAT register is write-1-to-clear (W1C),
870 			 * so write the previous error status to clear it.
871 			 */
872 			wr32(IGC_PTM_STAT, stat);
873 			continue;
874 		}
875 	} while (--count);
876 
877 	if (!count) {
878 		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
879 		return -ETIMEDOUT;
880 	}
881 
882 	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
883 
884 	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
885 	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
886 
887 	/* FIXME: When the register that tells the endianness of the
888 	 * PTM registers are implemented, check them here and add the
889 	 * appropriate conversion.
890 	 */
891 	t2_curr_h = swab32(t2_curr_h);
892 
893 	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
894 
895 	*device = t1;
896 	*system = igc_device_tstamp_to_system(t2_curr);
897 
898 	return 0;
899 }
900 
901 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
902 				  struct system_device_crosststamp *cts)
903 {
904 	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
905 						   ptp_caps);
906 
907 	return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
908 					     adapter, &adapter->snapshot, cts);
909 }
910 
911 /**
912  * igc_ptp_init - Initialize PTP functionality
913  * @adapter: Board private structure
914  *
915  * This function is called at device probe to initialize the PTP
916  * functionality.
917  */
918 void igc_ptp_init(struct igc_adapter *adapter)
919 {
920 	struct net_device *netdev = adapter->netdev;
921 	struct igc_hw *hw = &adapter->hw;
922 	int i;
923 
924 	switch (hw->mac.type) {
925 	case igc_i225:
926 		for (i = 0; i < IGC_N_SDP; i++) {
927 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
928 
929 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
930 			ppd->index = i;
931 			ppd->func = PTP_PF_NONE;
932 		}
933 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
934 		adapter->ptp_caps.owner = THIS_MODULE;
935 		adapter->ptp_caps.max_adj = 62499999;
936 		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
937 		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
938 		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
939 		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
940 		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
941 		adapter->ptp_caps.pps = 1;
942 		adapter->ptp_caps.pin_config = adapter->sdp_config;
943 		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
944 		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
945 		adapter->ptp_caps.n_pins = IGC_N_SDP;
946 		adapter->ptp_caps.verify = igc_ptp_verify_pin;
947 
948 		if (!igc_is_crosststamp_supported(adapter))
949 			break;
950 
951 		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
952 		break;
953 	default:
954 		adapter->ptp_clock = NULL;
955 		return;
956 	}
957 
958 	spin_lock_init(&adapter->tmreg_lock);
959 	INIT_WORK(&adapter->ptp_tx_work, igc_ptp_tx_work);
960 
961 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
962 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
963 
964 	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
965 	adapter->ptp_reset_start = ktime_get();
966 
967 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
968 						&adapter->pdev->dev);
969 	if (IS_ERR(adapter->ptp_clock)) {
970 		adapter->ptp_clock = NULL;
971 		netdev_err(netdev, "ptp_clock_register failed\n");
972 	} else if (adapter->ptp_clock) {
973 		netdev_info(netdev, "PHC added\n");
974 		adapter->ptp_flags |= IGC_PTP_ENABLED;
975 	}
976 }
977 
978 static void igc_ptp_time_save(struct igc_adapter *adapter)
979 {
980 	igc_ptp_read(adapter, &adapter->prev_ptp_time);
981 	adapter->ptp_reset_start = ktime_get();
982 }
983 
984 static void igc_ptp_time_restore(struct igc_adapter *adapter)
985 {
986 	struct timespec64 ts = adapter->prev_ptp_time;
987 	ktime_t delta;
988 
989 	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
990 
991 	timespec64_add_ns(&ts, ktime_to_ns(delta));
992 
993 	igc_ptp_write_i225(adapter, &ts);
994 }
995 
996 static void igc_ptm_stop(struct igc_adapter *adapter)
997 {
998 	struct igc_hw *hw = &adapter->hw;
999 	u32 ctrl;
1000 
1001 	ctrl = rd32(IGC_PTM_CTRL);
1002 	ctrl &= ~IGC_PTM_CTRL_EN;
1003 
1004 	wr32(IGC_PTM_CTRL, ctrl);
1005 }
1006 
1007 /**
1008  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1009  * @adapter: Board private structure
1010  *
1011  * This function stops the overflow check work and PTP Tx timestamp work, and
1012  * will prepare the device for OS suspend.
1013  */
1014 void igc_ptp_suspend(struct igc_adapter *adapter)
1015 {
1016 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1017 		return;
1018 
1019 	cancel_work_sync(&adapter->ptp_tx_work);
1020 	dev_kfree_skb_any(adapter->ptp_tx_skb);
1021 	adapter->ptp_tx_skb = NULL;
1022 	clear_bit_unlock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state);
1023 
1024 	if (pci_device_is_present(adapter->pdev)) {
1025 		igc_ptp_time_save(adapter);
1026 		igc_ptm_stop(adapter);
1027 	}
1028 }
1029 
1030 /**
1031  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1032  * @adapter: Board private structure.
1033  *
1034  * This function stops the PTP support and cancels the delayed work.
1035  **/
1036 void igc_ptp_stop(struct igc_adapter *adapter)
1037 {
1038 	igc_ptp_suspend(adapter);
1039 
1040 	if (adapter->ptp_clock) {
1041 		ptp_clock_unregister(adapter->ptp_clock);
1042 		netdev_info(adapter->netdev, "PHC removed\n");
1043 		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1044 	}
1045 }
1046 
1047 /**
1048  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1049  * @adapter: Board private structure.
1050  *
1051  * This function handles the reset work required to re-enable the PTP device.
1052  **/
1053 void igc_ptp_reset(struct igc_adapter *adapter)
1054 {
1055 	struct igc_hw *hw = &adapter->hw;
1056 	u32 cycle_ctrl, ctrl;
1057 	unsigned long flags;
1058 	u32 timadj;
1059 
1060 	/* reset the tstamp_config */
1061 	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1062 
1063 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1064 
1065 	switch (adapter->hw.mac.type) {
1066 	case igc_i225:
1067 		timadj = rd32(IGC_TIMADJ);
1068 		timadj |= IGC_TIMADJ_ADJUST_METH;
1069 		wr32(IGC_TIMADJ, timadj);
1070 
1071 		wr32(IGC_TSAUXC, 0x0);
1072 		wr32(IGC_TSSDP, 0x0);
1073 		wr32(IGC_TSIM,
1074 		     IGC_TSICR_INTERRUPTS |
1075 		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1076 		wr32(IGC_IMS, IGC_IMS_TS);
1077 
1078 		if (!igc_is_crosststamp_supported(adapter))
1079 			break;
1080 
1081 		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1082 		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1083 
1084 		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1085 
1086 		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1087 
1088 		ctrl = IGC_PTM_CTRL_EN |
1089 			IGC_PTM_CTRL_START_NOW |
1090 			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1091 			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1092 			IGC_PTM_CTRL_TRIG;
1093 
1094 		wr32(IGC_PTM_CTRL, ctrl);
1095 
1096 		/* Force the first cycle to run. */
1097 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1098 
1099 		break;
1100 	default:
1101 		/* No work to do. */
1102 		goto out;
1103 	}
1104 
1105 	/* Re-initialize the timer. */
1106 	if (hw->mac.type == igc_i225) {
1107 		igc_ptp_time_restore(adapter);
1108 	} else {
1109 		timecounter_init(&adapter->tc, &adapter->cc,
1110 				 ktime_to_ns(ktime_get_real()));
1111 	}
1112 out:
1113 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1114 
1115 	wrfl();
1116 }
1117