1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3 
4 #include "igc.h"
5 
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14 
15 #define INCVALUE_MASK		0x7fffffff
16 #define ISGN			0x80000000
17 
18 #define IGC_PTP_TX_TIMEOUT		(HZ * 15)
19 
20 #define IGC_PTM_STAT_SLEEP		2
21 #define IGC_PTM_STAT_TIMEOUT		100
22 
23 /* SYSTIM read access for I225 */
24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25 {
26 	struct igc_hw *hw = &adapter->hw;
27 	u32 sec, nsec;
28 
29 	/* The timestamp is latched when SYSTIML is read. */
30 	nsec = rd32(IGC_SYSTIML);
31 	sec = rd32(IGC_SYSTIMH);
32 
33 	ts->tv_sec = sec;
34 	ts->tv_nsec = nsec;
35 }
36 
37 static void igc_ptp_write_i225(struct igc_adapter *adapter,
38 			       const struct timespec64 *ts)
39 {
40 	struct igc_hw *hw = &adapter->hw;
41 
42 	wr32(IGC_SYSTIML, ts->tv_nsec);
43 	wr32(IGC_SYSTIMH, ts->tv_sec);
44 }
45 
46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47 {
48 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49 					       ptp_caps);
50 	struct igc_hw *hw = &igc->hw;
51 	int neg_adj = 0;
52 	u64 rate;
53 	u32 inca;
54 
55 	if (scaled_ppm < 0) {
56 		neg_adj = 1;
57 		scaled_ppm = -scaled_ppm;
58 	}
59 	rate = scaled_ppm;
60 	rate <<= 14;
61 	rate = div_u64(rate, 78125);
62 
63 	inca = rate & INCVALUE_MASK;
64 	if (neg_adj)
65 		inca |= ISGN;
66 
67 	wr32(IGC_TIMINCA, inca);
68 
69 	return 0;
70 }
71 
72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73 {
74 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75 					       ptp_caps);
76 	struct timespec64 now, then = ns_to_timespec64(delta);
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&igc->tmreg_lock, flags);
80 
81 	igc_ptp_read(igc, &now);
82 	now = timespec64_add(now, then);
83 	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84 
85 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86 
87 	return 0;
88 }
89 
90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91 				   struct timespec64 *ts,
92 				   struct ptp_system_timestamp *sts)
93 {
94 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95 					       ptp_caps);
96 	struct igc_hw *hw = &igc->hw;
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(&igc->tmreg_lock, flags);
100 
101 	ptp_read_system_prets(sts);
102 	ts->tv_nsec = rd32(IGC_SYSTIML);
103 	ts->tv_sec = rd32(IGC_SYSTIMH);
104 	ptp_read_system_postts(sts);
105 
106 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107 
108 	return 0;
109 }
110 
111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112 				const struct timespec64 *ts)
113 {
114 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115 					       ptp_caps);
116 	unsigned long flags;
117 
118 	spin_lock_irqsave(&igc->tmreg_lock, flags);
119 
120 	igc_ptp_write_i225(igc, ts);
121 
122 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123 
124 	return 0;
125 }
126 
127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128 {
129 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130 	static const u32 mask[IGC_N_SDP] = {
131 		IGC_CTRL_SDP0_DIR,
132 		IGC_CTRL_SDP1_DIR,
133 		IGC_CTRL_EXT_SDP2_DIR,
134 		IGC_CTRL_EXT_SDP3_DIR,
135 	};
136 
137 	if (input)
138 		*ptr &= ~mask[pin];
139 	else
140 		*ptr |= mask[pin];
141 }
142 
143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144 {
145 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147 	};
148 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150 	};
151 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153 	};
154 	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155 		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156 		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157 	};
158 	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159 		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160 		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161 	};
162 	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163 		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164 		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165 	};
166 	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169 	};
170 	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173 	};
174 	struct igc_hw *hw = &igc->hw;
175 	u32 ctrl, ctrl_ext, tssdp = 0;
176 
177 	ctrl = rd32(IGC_CTRL);
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	tssdp = rd32(IGC_TSSDP);
180 
181 	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182 
183 	/* Make sure this pin is not enabled as an input. */
184 	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185 		tssdp &= ~IGC_AUX0_TS_SDP_EN;
186 
187 	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188 		tssdp &= ~IGC_AUX1_TS_SDP_EN;
189 
190 	tssdp &= ~igc_ts_sdp_sel_clr[pin];
191 	if (freq) {
192 		if (chan == 1)
193 			tssdp |= igc_ts_sdp_sel_fc1[pin];
194 		else
195 			tssdp |= igc_ts_sdp_sel_fc0[pin];
196 	} else {
197 		if (chan == 1)
198 			tssdp |= igc_ts_sdp_sel_tt1[pin];
199 		else
200 			tssdp |= igc_ts_sdp_sel_tt0[pin];
201 	}
202 	tssdp |= igc_ts_sdp_en[pin];
203 
204 	wr32(IGC_TSSDP, tssdp);
205 	wr32(IGC_CTRL, ctrl);
206 	wr32(IGC_CTRL_EXT, ctrl_ext);
207 }
208 
209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210 {
211 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213 	};
214 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216 	};
217 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219 	};
220 	struct igc_hw *hw = &igc->hw;
221 	u32 ctrl, ctrl_ext, tssdp = 0;
222 
223 	ctrl = rd32(IGC_CTRL);
224 	ctrl_ext = rd32(IGC_CTRL_EXT);
225 	tssdp = rd32(IGC_TSSDP);
226 
227 	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228 
229 	/* Make sure this pin is not enabled as an output. */
230 	tssdp &= ~igc_ts_sdp_en[pin];
231 
232 	if (chan == 1) {
233 		tssdp &= ~IGC_AUX1_SEL_SDP3;
234 		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235 	} else {
236 		tssdp &= ~IGC_AUX0_SEL_SDP3;
237 		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238 	}
239 
240 	wr32(IGC_TSSDP, tssdp);
241 	wr32(IGC_CTRL, ctrl);
242 	wr32(IGC_CTRL_EXT, ctrl_ext);
243 }
244 
245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246 				       struct ptp_clock_request *rq, int on)
247 {
248 	struct igc_adapter *igc =
249 		container_of(ptp, struct igc_adapter, ptp_caps);
250 	struct igc_hw *hw = &igc->hw;
251 	unsigned long flags;
252 	struct timespec64 ts;
253 	int use_freq = 0, pin = -1;
254 	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255 	s64 ns;
256 
257 	switch (rq->type) {
258 	case PTP_CLK_REQ_EXTTS:
259 		/* Reject requests with unsupported flags */
260 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261 					PTP_RISING_EDGE |
262 					PTP_FALLING_EDGE |
263 					PTP_STRICT_FLAGS))
264 			return -EOPNOTSUPP;
265 
266 		/* Reject requests failing to enable both edges. */
267 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270 			return -EOPNOTSUPP;
271 
272 		if (on) {
273 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274 					   rq->extts.index);
275 			if (pin < 0)
276 				return -EBUSY;
277 		}
278 		if (rq->extts.index == 1) {
279 			tsauxc_mask = IGC_TSAUXC_EN_TS1;
280 			tsim_mask = IGC_TSICR_AUTT1;
281 		} else {
282 			tsauxc_mask = IGC_TSAUXC_EN_TS0;
283 			tsim_mask = IGC_TSICR_AUTT0;
284 		}
285 		spin_lock_irqsave(&igc->tmreg_lock, flags);
286 		tsauxc = rd32(IGC_TSAUXC);
287 		tsim = rd32(IGC_TSIM);
288 		if (on) {
289 			igc_pin_extts(igc, rq->extts.index, pin);
290 			tsauxc |= tsauxc_mask;
291 			tsim |= tsim_mask;
292 		} else {
293 			tsauxc &= ~tsauxc_mask;
294 			tsim &= ~tsim_mask;
295 		}
296 		wr32(IGC_TSAUXC, tsauxc);
297 		wr32(IGC_TSIM, tsim);
298 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299 		return 0;
300 
301 	case PTP_CLK_REQ_PEROUT:
302 		/* Reject requests with unsupported flags */
303 		if (rq->perout.flags)
304 			return -EOPNOTSUPP;
305 
306 		if (on) {
307 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308 					   rq->perout.index);
309 			if (pin < 0)
310 				return -EBUSY;
311 		}
312 		ts.tv_sec = rq->perout.period.sec;
313 		ts.tv_nsec = rq->perout.period.nsec;
314 		ns = timespec64_to_ns(&ts);
315 		ns = ns >> 1;
316 		if (on && (ns <= 70000000LL || ns == 125000000LL ||
317 			   ns == 250000000LL || ns == 500000000LL)) {
318 			if (ns < 8LL)
319 				return -EINVAL;
320 			use_freq = 1;
321 		}
322 		ts = ns_to_timespec64(ns);
323 		if (rq->perout.index == 1) {
324 			if (use_freq) {
325 				tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
326 				tsim_mask = 0;
327 			} else {
328 				tsauxc_mask = IGC_TSAUXC_EN_TT1;
329 				tsim_mask = IGC_TSICR_TT1;
330 			}
331 			trgttiml = IGC_TRGTTIML1;
332 			trgttimh = IGC_TRGTTIMH1;
333 			freqout = IGC_FREQOUT1;
334 		} else {
335 			if (use_freq) {
336 				tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
337 				tsim_mask = 0;
338 			} else {
339 				tsauxc_mask = IGC_TSAUXC_EN_TT0;
340 				tsim_mask = IGC_TSICR_TT0;
341 			}
342 			trgttiml = IGC_TRGTTIML0;
343 			trgttimh = IGC_TRGTTIMH0;
344 			freqout = IGC_FREQOUT0;
345 		}
346 		spin_lock_irqsave(&igc->tmreg_lock, flags);
347 		tsauxc = rd32(IGC_TSAUXC);
348 		tsim = rd32(IGC_TSIM);
349 		if (rq->perout.index == 1) {
350 			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
351 				    IGC_TSAUXC_ST1);
352 			tsim &= ~IGC_TSICR_TT1;
353 		} else {
354 			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
355 				    IGC_TSAUXC_ST0);
356 			tsim &= ~IGC_TSICR_TT0;
357 		}
358 		if (on) {
359 			int i = rq->perout.index;
360 
361 			igc_pin_perout(igc, i, pin, use_freq);
362 			igc->perout[i].start.tv_sec = rq->perout.start.sec;
363 			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
364 			igc->perout[i].period.tv_sec = ts.tv_sec;
365 			igc->perout[i].period.tv_nsec = ts.tv_nsec;
366 			wr32(trgttimh, rq->perout.start.sec);
367 			/* For now, always select timer 0 as source. */
368 			wr32(trgttiml, rq->perout.start.nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
369 			if (use_freq)
370 				wr32(freqout, ns);
371 			tsauxc |= tsauxc_mask;
372 			tsim |= tsim_mask;
373 		}
374 		wr32(IGC_TSAUXC, tsauxc);
375 		wr32(IGC_TSIM, tsim);
376 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
377 		return 0;
378 
379 	case PTP_CLK_REQ_PPS:
380 		spin_lock_irqsave(&igc->tmreg_lock, flags);
381 		tsim = rd32(IGC_TSIM);
382 		if (on)
383 			tsim |= IGC_TSICR_SYS_WRAP;
384 		else
385 			tsim &= ~IGC_TSICR_SYS_WRAP;
386 		igc->pps_sys_wrap_on = on;
387 		wr32(IGC_TSIM, tsim);
388 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
389 		return 0;
390 
391 	default:
392 		break;
393 	}
394 
395 	return -EOPNOTSUPP;
396 }
397 
398 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
399 			      enum ptp_pin_function func, unsigned int chan)
400 {
401 	switch (func) {
402 	case PTP_PF_NONE:
403 	case PTP_PF_EXTTS:
404 	case PTP_PF_PEROUT:
405 		break;
406 	case PTP_PF_PHYSYNC:
407 		return -1;
408 	}
409 	return 0;
410 }
411 
412 /**
413  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
414  * @adapter: board private structure
415  * @hwtstamps: timestamp structure to update
416  * @systim: unsigned 64bit system time value
417  *
418  * We need to convert the system time value stored in the RX/TXSTMP registers
419  * into a hwtstamp which can be used by the upper level timestamping functions.
420  *
421  * Returns 0 on success.
422  **/
423 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
424 				      struct skb_shared_hwtstamps *hwtstamps,
425 				      u64 systim)
426 {
427 	switch (adapter->hw.mac.type) {
428 	case igc_i225:
429 		memset(hwtstamps, 0, sizeof(*hwtstamps));
430 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
431 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
432 						systim & 0xFFFFFFFF);
433 		break;
434 	default:
435 		return -EINVAL;
436 	}
437 	return 0;
438 }
439 
440 /**
441  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
442  * @adapter: Pointer to adapter the packet buffer belongs to
443  * @buf: Pointer to packet buffer
444  *
445  * This function retrieves the timestamp saved in the beginning of packet
446  * buffer. While two timestamps are available, one in timer0 reference and the
447  * other in timer1 reference, this function considers only the timestamp in
448  * timer0 reference.
449  *
450  * Returns timestamp value.
451  */
452 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
453 {
454 	ktime_t timestamp;
455 	u32 secs, nsecs;
456 	int adjust;
457 
458 	/* Timestamps are saved in little endian at the beginning of the packet
459 	 * buffer following the layout:
460 	 *
461 	 * DWORD: | 0              | 1              | 2              | 3              |
462 	 * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
463 	 *
464 	 * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
465 	 * part of the timestamp.
466 	 */
467 	nsecs = le32_to_cpu(buf[2]);
468 	secs = le32_to_cpu(buf[3]);
469 
470 	timestamp = ktime_set(secs, nsecs);
471 
472 	/* Adjust timestamp for the RX latency based on link speed */
473 	switch (adapter->link_speed) {
474 	case SPEED_10:
475 		adjust = IGC_I225_RX_LATENCY_10;
476 		break;
477 	case SPEED_100:
478 		adjust = IGC_I225_RX_LATENCY_100;
479 		break;
480 	case SPEED_1000:
481 		adjust = IGC_I225_RX_LATENCY_1000;
482 		break;
483 	case SPEED_2500:
484 		adjust = IGC_I225_RX_LATENCY_2500;
485 		break;
486 	default:
487 		adjust = 0;
488 		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
489 		break;
490 	}
491 
492 	return ktime_sub_ns(timestamp, adjust);
493 }
494 
495 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
496 {
497 	struct igc_hw *hw = &adapter->hw;
498 	u32 val;
499 	int i;
500 
501 	wr32(IGC_TSYNCRXCTL, 0);
502 
503 	for (i = 0; i < adapter->num_rx_queues; i++) {
504 		val = rd32(IGC_SRRCTL(i));
505 		val &= ~IGC_SRRCTL_TIMESTAMP;
506 		wr32(IGC_SRRCTL(i), val);
507 	}
508 
509 	val = rd32(IGC_RXPBS);
510 	val &= ~IGC_RXPBS_CFG_TS_EN;
511 	wr32(IGC_RXPBS, val);
512 }
513 
514 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
515 {
516 	struct igc_hw *hw = &adapter->hw;
517 	u32 val;
518 	int i;
519 
520 	val = rd32(IGC_RXPBS);
521 	val |= IGC_RXPBS_CFG_TS_EN;
522 	wr32(IGC_RXPBS, val);
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++) {
525 		val = rd32(IGC_SRRCTL(i));
526 		/* FIXME: For now, only support retrieving RX timestamps from
527 		 * timer 0.
528 		 */
529 		val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
530 		       IGC_SRRCTL_TIMESTAMP;
531 		wr32(IGC_SRRCTL(i), val);
532 	}
533 
534 	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
535 	      IGC_TSYNCRXCTL_RXSYNSIG;
536 	wr32(IGC_TSYNCRXCTL, val);
537 }
538 
539 static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
540 {
541 	unsigned long flags;
542 
543 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
544 
545 	dev_kfree_skb_any(adapter->ptp_tx_skb);
546 	adapter->ptp_tx_skb = NULL;
547 
548 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
549 }
550 
551 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
552 {
553 	struct igc_hw *hw = &adapter->hw;
554 	int i;
555 
556 	/* Clear the flags first to avoid new packets to be enqueued
557 	 * for TX timestamping.
558 	 */
559 	for (i = 0; i < adapter->num_tx_queues; i++) {
560 		struct igc_ring *tx_ring = adapter->tx_ring[i];
561 
562 		clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
563 	}
564 
565 	/* Now we can clean the pending TX timestamp requests. */
566 	igc_ptp_clear_tx_tstamp(adapter);
567 
568 	wr32(IGC_TSYNCTXCTL, 0);
569 }
570 
571 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
572 {
573 	struct igc_hw *hw = &adapter->hw;
574 	int i;
575 
576 	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
577 
578 	/* Read TXSTMP registers to discard any timestamp previously stored. */
579 	rd32(IGC_TXSTMPL);
580 	rd32(IGC_TXSTMPH);
581 
582 	/* The hardware is ready to accept TX timestamp requests,
583 	 * notify the transmit path.
584 	 */
585 	for (i = 0; i < adapter->num_tx_queues; i++) {
586 		struct igc_ring *tx_ring = adapter->tx_ring[i];
587 
588 		set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
589 	}
590 
591 }
592 
593 /**
594  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
595  * @adapter: networking device structure
596  * @config: hwtstamp configuration
597  *
598  * Return: 0 in case of success, negative errno code otherwise.
599  */
600 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
601 				      struct hwtstamp_config *config)
602 {
603 	switch (config->tx_type) {
604 	case HWTSTAMP_TX_OFF:
605 		igc_ptp_disable_tx_timestamp(adapter);
606 		break;
607 	case HWTSTAMP_TX_ON:
608 		igc_ptp_enable_tx_timestamp(adapter);
609 		break;
610 	default:
611 		return -ERANGE;
612 	}
613 
614 	switch (config->rx_filter) {
615 	case HWTSTAMP_FILTER_NONE:
616 		igc_ptp_disable_rx_timestamp(adapter);
617 		break;
618 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
619 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
620 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
621 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
622 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
623 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
624 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
625 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
626 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
627 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
628 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
629 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
630 	case HWTSTAMP_FILTER_NTP_ALL:
631 	case HWTSTAMP_FILTER_ALL:
632 		igc_ptp_enable_rx_timestamp(adapter);
633 		config->rx_filter = HWTSTAMP_FILTER_ALL;
634 		break;
635 	default:
636 		return -ERANGE;
637 	}
638 
639 	return 0;
640 }
641 
642 /* Requires adapter->ptp_tx_lock held by caller. */
643 static void igc_ptp_tx_timeout(struct igc_adapter *adapter)
644 {
645 	struct igc_hw *hw = &adapter->hw;
646 
647 	dev_kfree_skb_any(adapter->ptp_tx_skb);
648 	adapter->ptp_tx_skb = NULL;
649 	adapter->tx_hwtstamp_timeouts++;
650 	/* Clear the tx valid bit in TSYNCTXCTL register to enable interrupt. */
651 	rd32(IGC_TXSTMPH);
652 	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
653 }
654 
655 void igc_ptp_tx_hang(struct igc_adapter *adapter)
656 {
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
660 
661 	if (!adapter->ptp_tx_skb)
662 		goto unlock;
663 
664 	if (time_is_after_jiffies(adapter->ptp_tx_start + IGC_PTP_TX_TIMEOUT))
665 		goto unlock;
666 
667 	igc_ptp_tx_timeout(adapter);
668 
669 unlock:
670 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
671 }
672 
673 /**
674  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
675  * @adapter: Board private structure
676  *
677  * If we were asked to do hardware stamping and such a time stamp is
678  * available, then it must have been for this skb here because we only
679  * allow only one such packet into the queue.
680  *
681  * Context: Expects adapter->ptp_tx_lock to be held by caller.
682  */
683 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
684 {
685 	struct sk_buff *skb = adapter->ptp_tx_skb;
686 	struct skb_shared_hwtstamps shhwtstamps;
687 	struct igc_hw *hw = &adapter->hw;
688 	u32 tsynctxctl;
689 	int adjust = 0;
690 	u64 regval;
691 
692 	if (WARN_ON_ONCE(!skb))
693 		return;
694 
695 	tsynctxctl = rd32(IGC_TSYNCTXCTL);
696 	tsynctxctl &= IGC_TSYNCTXCTL_TXTT_0;
697 	if (tsynctxctl) {
698 		regval = rd32(IGC_TXSTMPL);
699 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
700 	} else {
701 		/* There's a bug in the hardware that could cause
702 		 * missing interrupts for TX timestamping. The issue
703 		 * is that for new interrupts to be triggered, the
704 		 * IGC_TXSTMPH_0 register must be read.
705 		 *
706 		 * To avoid discarding a valid timestamp that just
707 		 * happened at the "wrong" time, we need to confirm
708 		 * that there was no timestamp captured, we do that by
709 		 * assuming that no two timestamps in sequence have
710 		 * the same nanosecond value.
711 		 *
712 		 * So, we read the "low" register, read the "high"
713 		 * register (to latch a new timestamp) and read the
714 		 * "low" register again, if "old" and "new" versions
715 		 * of the "low" register are different, a valid
716 		 * timestamp was captured, we can read the "high"
717 		 * register again.
718 		 */
719 		u32 txstmpl_old, txstmpl_new;
720 
721 		txstmpl_old = rd32(IGC_TXSTMPL);
722 		rd32(IGC_TXSTMPH);
723 		txstmpl_new = rd32(IGC_TXSTMPL);
724 
725 		if (txstmpl_old == txstmpl_new)
726 			return;
727 
728 		regval = txstmpl_new;
729 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
730 	}
731 	if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
732 		return;
733 
734 	switch (adapter->link_speed) {
735 	case SPEED_10:
736 		adjust = IGC_I225_TX_LATENCY_10;
737 		break;
738 	case SPEED_100:
739 		adjust = IGC_I225_TX_LATENCY_100;
740 		break;
741 	case SPEED_1000:
742 		adjust = IGC_I225_TX_LATENCY_1000;
743 		break;
744 	case SPEED_2500:
745 		adjust = IGC_I225_TX_LATENCY_2500;
746 		break;
747 	}
748 
749 	shhwtstamps.hwtstamp =
750 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
751 
752 	adapter->ptp_tx_skb = NULL;
753 
754 	/* Notify the stack and free the skb after we've unlocked */
755 	skb_tstamp_tx(skb, &shhwtstamps);
756 	dev_kfree_skb_any(skb);
757 }
758 
759 /**
760  * igc_ptp_tx_tstamp_event
761  * @adapter: board private structure
762  *
763  * Called when a TX timestamp interrupt happens to retrieve the
764  * timestamp and send it up to the socket.
765  */
766 void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
767 {
768 	unsigned long flags;
769 
770 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
771 
772 	if (!adapter->ptp_tx_skb)
773 		goto unlock;
774 
775 	igc_ptp_tx_hwtstamp(adapter);
776 
777 unlock:
778 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
779 }
780 
781 /**
782  * igc_ptp_set_ts_config - set hardware time stamping config
783  * @netdev: network interface device structure
784  * @ifr: interface request data
785  *
786  **/
787 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
788 {
789 	struct igc_adapter *adapter = netdev_priv(netdev);
790 	struct hwtstamp_config config;
791 	int err;
792 
793 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
794 		return -EFAULT;
795 
796 	err = igc_ptp_set_timestamp_mode(adapter, &config);
797 	if (err)
798 		return err;
799 
800 	/* save these settings for future reference */
801 	memcpy(&adapter->tstamp_config, &config,
802 	       sizeof(adapter->tstamp_config));
803 
804 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
805 		-EFAULT : 0;
806 }
807 
808 /**
809  * igc_ptp_get_ts_config - get hardware time stamping config
810  * @netdev: network interface device structure
811  * @ifr: interface request data
812  *
813  * Get the hwtstamp_config settings to return to the user. Rather than attempt
814  * to deconstruct the settings from the registers, just return a shadow copy
815  * of the last known settings.
816  **/
817 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
818 {
819 	struct igc_adapter *adapter = netdev_priv(netdev);
820 	struct hwtstamp_config *config = &adapter->tstamp_config;
821 
822 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
823 		-EFAULT : 0;
824 }
825 
826 /* The two conditions below must be met for cross timestamping via
827  * PCIe PTM:
828  *
829  * 1. We have an way to convert the timestamps in the PTM messages
830  *    to something related to the system clocks (right now, only
831  *    X86 systems with support for the Always Running Timer allow that);
832  *
833  * 2. We have PTM enabled in the path from the device to the PCIe root port.
834  */
835 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
836 {
837 	if (!IS_ENABLED(CONFIG_X86_TSC))
838 		return false;
839 
840 	/* FIXME: it was noticed that enabling support for PCIe PTM in
841 	 * some i225-V models could cause lockups when bringing the
842 	 * interface up/down. There should be no downsides to
843 	 * disabling crosstimestamping support for i225-V, as it
844 	 * doesn't have any PTP support. That way we gain some time
845 	 * while root causing the issue.
846 	 */
847 	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
848 		return false;
849 
850 	return pcie_ptm_enabled(adapter->pdev);
851 }
852 
853 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
854 {
855 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
856 	return convert_art_ns_to_tsc(tstamp);
857 #else
858 	return (struct system_counterval_t) { };
859 #endif
860 }
861 
862 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
863 {
864 	struct net_device *netdev = adapter->netdev;
865 
866 	switch (ptm_stat) {
867 	case IGC_PTM_STAT_RET_ERR:
868 		netdev_err(netdev, "PTM Error: Root port timeout\n");
869 		break;
870 	case IGC_PTM_STAT_BAD_PTM_RES:
871 		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
872 		break;
873 	case IGC_PTM_STAT_T4M1_OVFL:
874 		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
875 		break;
876 	case IGC_PTM_STAT_ADJUST_1ST:
877 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
878 		break;
879 	case IGC_PTM_STAT_ADJUST_CYC:
880 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
881 		break;
882 	default:
883 		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
884 		break;
885 	}
886 }
887 
888 static int igc_phc_get_syncdevicetime(ktime_t *device,
889 				      struct system_counterval_t *system,
890 				      void *ctx)
891 {
892 	u32 stat, t2_curr_h, t2_curr_l, ctrl;
893 	struct igc_adapter *adapter = ctx;
894 	struct igc_hw *hw = &adapter->hw;
895 	int err, count = 100;
896 	ktime_t t1, t2_curr;
897 
898 	/* Get a snapshot of system clocks to use as historic value. */
899 	ktime_get_snapshot(&adapter->snapshot);
900 
901 	do {
902 		/* Doing this in a loop because in the event of a
903 		 * badly timed (ha!) system clock adjustment, we may
904 		 * get PTM errors from the PCI root, but these errors
905 		 * are transitory. Repeating the process returns valid
906 		 * data eventually.
907 		 */
908 
909 		/* To "manually" start the PTM cycle we need to clear and
910 		 * then set again the TRIG bit.
911 		 */
912 		ctrl = rd32(IGC_PTM_CTRL);
913 		ctrl &= ~IGC_PTM_CTRL_TRIG;
914 		wr32(IGC_PTM_CTRL, ctrl);
915 		ctrl |= IGC_PTM_CTRL_TRIG;
916 		wr32(IGC_PTM_CTRL, ctrl);
917 
918 		/* The cycle only starts "for real" when software notifies
919 		 * that it has read the registers, this is done by setting
920 		 * VALID bit.
921 		 */
922 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
923 
924 		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
925 					 stat, IGC_PTM_STAT_SLEEP,
926 					 IGC_PTM_STAT_TIMEOUT);
927 		if (err < 0) {
928 			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
929 			return err;
930 		}
931 
932 		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
933 			break;
934 
935 		if (stat & ~IGC_PTM_STAT_VALID) {
936 			/* An error occurred, log it. */
937 			igc_ptm_log_error(adapter, stat);
938 			/* The STAT register is write-1-to-clear (W1C),
939 			 * so write the previous error status to clear it.
940 			 */
941 			wr32(IGC_PTM_STAT, stat);
942 			continue;
943 		}
944 	} while (--count);
945 
946 	if (!count) {
947 		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
948 		return -ETIMEDOUT;
949 	}
950 
951 	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
952 
953 	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
954 	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
955 
956 	/* FIXME: When the register that tells the endianness of the
957 	 * PTM registers are implemented, check them here and add the
958 	 * appropriate conversion.
959 	 */
960 	t2_curr_h = swab32(t2_curr_h);
961 
962 	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
963 
964 	*device = t1;
965 	*system = igc_device_tstamp_to_system(t2_curr);
966 
967 	return 0;
968 }
969 
970 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
971 				  struct system_device_crosststamp *cts)
972 {
973 	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
974 						   ptp_caps);
975 
976 	return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
977 					     adapter, &adapter->snapshot, cts);
978 }
979 
980 /**
981  * igc_ptp_init - Initialize PTP functionality
982  * @adapter: Board private structure
983  *
984  * This function is called at device probe to initialize the PTP
985  * functionality.
986  */
987 void igc_ptp_init(struct igc_adapter *adapter)
988 {
989 	struct net_device *netdev = adapter->netdev;
990 	struct igc_hw *hw = &adapter->hw;
991 	int i;
992 
993 	switch (hw->mac.type) {
994 	case igc_i225:
995 		for (i = 0; i < IGC_N_SDP; i++) {
996 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
997 
998 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
999 			ppd->index = i;
1000 			ppd->func = PTP_PF_NONE;
1001 		}
1002 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1003 		adapter->ptp_caps.owner = THIS_MODULE;
1004 		adapter->ptp_caps.max_adj = 62499999;
1005 		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1006 		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1007 		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1008 		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1009 		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1010 		adapter->ptp_caps.pps = 1;
1011 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1012 		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1013 		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1014 		adapter->ptp_caps.n_pins = IGC_N_SDP;
1015 		adapter->ptp_caps.verify = igc_ptp_verify_pin;
1016 
1017 		if (!igc_is_crosststamp_supported(adapter))
1018 			break;
1019 
1020 		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1021 		break;
1022 	default:
1023 		adapter->ptp_clock = NULL;
1024 		return;
1025 	}
1026 
1027 	spin_lock_init(&adapter->ptp_tx_lock);
1028 	spin_lock_init(&adapter->tmreg_lock);
1029 
1030 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1031 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1032 
1033 	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1034 	adapter->ptp_reset_start = ktime_get();
1035 
1036 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1037 						&adapter->pdev->dev);
1038 	if (IS_ERR(adapter->ptp_clock)) {
1039 		adapter->ptp_clock = NULL;
1040 		netdev_err(netdev, "ptp_clock_register failed\n");
1041 	} else if (adapter->ptp_clock) {
1042 		netdev_info(netdev, "PHC added\n");
1043 		adapter->ptp_flags |= IGC_PTP_ENABLED;
1044 	}
1045 }
1046 
1047 static void igc_ptp_time_save(struct igc_adapter *adapter)
1048 {
1049 	igc_ptp_read(adapter, &adapter->prev_ptp_time);
1050 	adapter->ptp_reset_start = ktime_get();
1051 }
1052 
1053 static void igc_ptp_time_restore(struct igc_adapter *adapter)
1054 {
1055 	struct timespec64 ts = adapter->prev_ptp_time;
1056 	ktime_t delta;
1057 
1058 	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1059 
1060 	timespec64_add_ns(&ts, ktime_to_ns(delta));
1061 
1062 	igc_ptp_write_i225(adapter, &ts);
1063 }
1064 
1065 static void igc_ptm_stop(struct igc_adapter *adapter)
1066 {
1067 	struct igc_hw *hw = &adapter->hw;
1068 	u32 ctrl;
1069 
1070 	ctrl = rd32(IGC_PTM_CTRL);
1071 	ctrl &= ~IGC_PTM_CTRL_EN;
1072 
1073 	wr32(IGC_PTM_CTRL, ctrl);
1074 }
1075 
1076 /**
1077  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1078  * @adapter: Board private structure
1079  *
1080  * This function stops the overflow check work and PTP Tx timestamp work, and
1081  * will prepare the device for OS suspend.
1082  */
1083 void igc_ptp_suspend(struct igc_adapter *adapter)
1084 {
1085 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1086 		return;
1087 
1088 	igc_ptp_clear_tx_tstamp(adapter);
1089 
1090 	if (pci_device_is_present(adapter->pdev)) {
1091 		igc_ptp_time_save(adapter);
1092 		igc_ptm_stop(adapter);
1093 	}
1094 }
1095 
1096 /**
1097  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1098  * @adapter: Board private structure.
1099  *
1100  * This function stops the PTP support and cancels the delayed work.
1101  **/
1102 void igc_ptp_stop(struct igc_adapter *adapter)
1103 {
1104 	igc_ptp_suspend(adapter);
1105 
1106 	if (adapter->ptp_clock) {
1107 		ptp_clock_unregister(adapter->ptp_clock);
1108 		netdev_info(adapter->netdev, "PHC removed\n");
1109 		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1110 	}
1111 }
1112 
1113 /**
1114  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1115  * @adapter: Board private structure.
1116  *
1117  * This function handles the reset work required to re-enable the PTP device.
1118  **/
1119 void igc_ptp_reset(struct igc_adapter *adapter)
1120 {
1121 	struct igc_hw *hw = &adapter->hw;
1122 	u32 cycle_ctrl, ctrl;
1123 	unsigned long flags;
1124 	u32 timadj;
1125 
1126 	/* reset the tstamp_config */
1127 	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1128 
1129 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1130 
1131 	switch (adapter->hw.mac.type) {
1132 	case igc_i225:
1133 		timadj = rd32(IGC_TIMADJ);
1134 		timadj |= IGC_TIMADJ_ADJUST_METH;
1135 		wr32(IGC_TIMADJ, timadj);
1136 
1137 		wr32(IGC_TSAUXC, 0x0);
1138 		wr32(IGC_TSSDP, 0x0);
1139 		wr32(IGC_TSIM,
1140 		     IGC_TSICR_INTERRUPTS |
1141 		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1142 		wr32(IGC_IMS, IGC_IMS_TS);
1143 
1144 		if (!igc_is_crosststamp_supported(adapter))
1145 			break;
1146 
1147 		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1148 		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1149 
1150 		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1151 
1152 		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1153 
1154 		ctrl = IGC_PTM_CTRL_EN |
1155 			IGC_PTM_CTRL_START_NOW |
1156 			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1157 			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1158 			IGC_PTM_CTRL_TRIG;
1159 
1160 		wr32(IGC_PTM_CTRL, ctrl);
1161 
1162 		/* Force the first cycle to run. */
1163 		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1164 
1165 		break;
1166 	default:
1167 		/* No work to do. */
1168 		goto out;
1169 	}
1170 
1171 	/* Re-initialize the timer. */
1172 	if (hw->mac.type == igc_i225) {
1173 		igc_ptp_time_restore(adapter);
1174 	} else {
1175 		timecounter_init(&adapter->tc, &adapter->cc,
1176 				 ktime_to_ns(ktime_get_real()));
1177 	}
1178 out:
1179 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1180 
1181 	wrfl();
1182 }
1183