1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <linux/pci.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40 
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44 	"Copyright(c) 2018 Intel Corporation.";
45 
46 static const struct igc_info *igc_info_tbl[] = {
47 	[board_base] = &igc_base_info,
48 };
49 
50 static const struct pci_device_id igc_pci_tbl[] = {
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_offload_apply(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	/* Let firmware take over control of h/w */
155 	ctrl_ext = rd32(IGC_CTRL_EXT);
156 	wr32(IGC_CTRL_EXT,
157 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
158 }
159 
160 /**
161  * igc_get_hw_control - get control of the h/w from f/w
162  * @adapter: address of board private structure
163  *
164  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
165  * For ASF and Pass Through versions of f/w this means that
166  * the driver is loaded.
167  */
168 static void igc_get_hw_control(struct igc_adapter *adapter)
169 {
170 	struct igc_hw *hw = &adapter->hw;
171 	u32 ctrl_ext;
172 
173 	/* Let firmware know the driver has taken over */
174 	ctrl_ext = rd32(IGC_CTRL_EXT);
175 	wr32(IGC_CTRL_EXT,
176 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
177 }
178 
179 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
180 {
181 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
182 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
183 
184 	dma_unmap_len_set(buf, len, 0);
185 }
186 
187 /**
188  * igc_clean_tx_ring - Free Tx Buffers
189  * @tx_ring: ring to be cleaned
190  */
191 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
192 {
193 	u16 i = tx_ring->next_to_clean;
194 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
195 	u32 xsk_frames = 0;
196 
197 	while (i != tx_ring->next_to_use) {
198 		union igc_adv_tx_desc *eop_desc, *tx_desc;
199 
200 		switch (tx_buffer->type) {
201 		case IGC_TX_BUFFER_TYPE_XSK:
202 			xsk_frames++;
203 			break;
204 		case IGC_TX_BUFFER_TYPE_XDP:
205 			xdp_return_frame(tx_buffer->xdpf);
206 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
207 			break;
208 		case IGC_TX_BUFFER_TYPE_SKB:
209 			dev_kfree_skb_any(tx_buffer->skb);
210 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
211 			break;
212 		default:
213 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
214 			break;
215 		}
216 
217 		/* check for eop_desc to determine the end of the packet */
218 		eop_desc = tx_buffer->next_to_watch;
219 		tx_desc = IGC_TX_DESC(tx_ring, i);
220 
221 		/* unmap remaining buffers */
222 		while (tx_desc != eop_desc) {
223 			tx_buffer++;
224 			tx_desc++;
225 			i++;
226 			if (unlikely(i == tx_ring->count)) {
227 				i = 0;
228 				tx_buffer = tx_ring->tx_buffer_info;
229 				tx_desc = IGC_TX_DESC(tx_ring, 0);
230 			}
231 
232 			/* unmap any remaining paged data */
233 			if (dma_unmap_len(tx_buffer, len))
234 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
235 		}
236 
237 		tx_buffer->next_to_watch = NULL;
238 
239 		/* move us one more past the eop_desc for start of next pkt */
240 		tx_buffer++;
241 		i++;
242 		if (unlikely(i == tx_ring->count)) {
243 			i = 0;
244 			tx_buffer = tx_ring->tx_buffer_info;
245 		}
246 	}
247 
248 	if (tx_ring->xsk_pool && xsk_frames)
249 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
250 
251 	/* reset BQL for queue */
252 	netdev_tx_reset_queue(txring_txq(tx_ring));
253 
254 	/* reset next_to_use and next_to_clean */
255 	tx_ring->next_to_use = 0;
256 	tx_ring->next_to_clean = 0;
257 }
258 
259 /**
260  * igc_free_tx_resources - Free Tx Resources per Queue
261  * @tx_ring: Tx descriptor ring for a specific queue
262  *
263  * Free all transmit software resources
264  */
265 void igc_free_tx_resources(struct igc_ring *tx_ring)
266 {
267 	igc_clean_tx_ring(tx_ring);
268 
269 	vfree(tx_ring->tx_buffer_info);
270 	tx_ring->tx_buffer_info = NULL;
271 
272 	/* if not set, then don't free */
273 	if (!tx_ring->desc)
274 		return;
275 
276 	dma_free_coherent(tx_ring->dev, tx_ring->size,
277 			  tx_ring->desc, tx_ring->dma);
278 
279 	tx_ring->desc = NULL;
280 }
281 
282 /**
283  * igc_free_all_tx_resources - Free Tx Resources for All Queues
284  * @adapter: board private structure
285  *
286  * Free all transmit software resources
287  */
288 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
289 {
290 	int i;
291 
292 	for (i = 0; i < adapter->num_tx_queues; i++)
293 		igc_free_tx_resources(adapter->tx_ring[i]);
294 }
295 
296 /**
297  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
298  * @adapter: board private structure
299  */
300 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
301 {
302 	int i;
303 
304 	for (i = 0; i < adapter->num_tx_queues; i++)
305 		if (adapter->tx_ring[i])
306 			igc_clean_tx_ring(adapter->tx_ring[i]);
307 }
308 
309 /**
310  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
311  * @tx_ring: tx descriptor ring (for a specific queue) to setup
312  *
313  * Return 0 on success, negative on failure
314  */
315 int igc_setup_tx_resources(struct igc_ring *tx_ring)
316 {
317 	struct net_device *ndev = tx_ring->netdev;
318 	struct device *dev = tx_ring->dev;
319 	int size = 0;
320 
321 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
322 	tx_ring->tx_buffer_info = vzalloc(size);
323 	if (!tx_ring->tx_buffer_info)
324 		goto err;
325 
326 	/* round up to nearest 4K */
327 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
328 	tx_ring->size = ALIGN(tx_ring->size, 4096);
329 
330 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
331 					   &tx_ring->dma, GFP_KERNEL);
332 
333 	if (!tx_ring->desc)
334 		goto err;
335 
336 	tx_ring->next_to_use = 0;
337 	tx_ring->next_to_clean = 0;
338 
339 	return 0;
340 
341 err:
342 	vfree(tx_ring->tx_buffer_info);
343 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
344 	return -ENOMEM;
345 }
346 
347 /**
348  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
349  * @adapter: board private structure
350  *
351  * Return 0 on success, negative on failure
352  */
353 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
354 {
355 	struct net_device *dev = adapter->netdev;
356 	int i, err = 0;
357 
358 	for (i = 0; i < adapter->num_tx_queues; i++) {
359 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
360 		if (err) {
361 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
362 			for (i--; i >= 0; i--)
363 				igc_free_tx_resources(adapter->tx_ring[i]);
364 			break;
365 		}
366 	}
367 
368 	return err;
369 }
370 
371 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
372 {
373 	u16 i = rx_ring->next_to_clean;
374 
375 	dev_kfree_skb(rx_ring->skb);
376 	rx_ring->skb = NULL;
377 
378 	/* Free all the Rx ring sk_buffs */
379 	while (i != rx_ring->next_to_alloc) {
380 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
381 
382 		/* Invalidate cache lines that may have been written to by
383 		 * device so that we avoid corrupting memory.
384 		 */
385 		dma_sync_single_range_for_cpu(rx_ring->dev,
386 					      buffer_info->dma,
387 					      buffer_info->page_offset,
388 					      igc_rx_bufsz(rx_ring),
389 					      DMA_FROM_DEVICE);
390 
391 		/* free resources associated with mapping */
392 		dma_unmap_page_attrs(rx_ring->dev,
393 				     buffer_info->dma,
394 				     igc_rx_pg_size(rx_ring),
395 				     DMA_FROM_DEVICE,
396 				     IGC_RX_DMA_ATTR);
397 		__page_frag_cache_drain(buffer_info->page,
398 					buffer_info->pagecnt_bias);
399 
400 		i++;
401 		if (i == rx_ring->count)
402 			i = 0;
403 	}
404 }
405 
406 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
407 {
408 	struct igc_rx_buffer *bi;
409 	u16 i;
410 
411 	for (i = 0; i < ring->count; i++) {
412 		bi = &ring->rx_buffer_info[i];
413 		if (!bi->xdp)
414 			continue;
415 
416 		xsk_buff_free(bi->xdp);
417 		bi->xdp = NULL;
418 	}
419 }
420 
421 /**
422  * igc_clean_rx_ring - Free Rx Buffers per Queue
423  * @ring: ring to free buffers from
424  */
425 static void igc_clean_rx_ring(struct igc_ring *ring)
426 {
427 	if (ring->xsk_pool)
428 		igc_clean_rx_ring_xsk_pool(ring);
429 	else
430 		igc_clean_rx_ring_page_shared(ring);
431 
432 	clear_ring_uses_large_buffer(ring);
433 
434 	ring->next_to_alloc = 0;
435 	ring->next_to_clean = 0;
436 	ring->next_to_use = 0;
437 }
438 
439 /**
440  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
441  * @adapter: board private structure
442  */
443 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
444 {
445 	int i;
446 
447 	for (i = 0; i < adapter->num_rx_queues; i++)
448 		if (adapter->rx_ring[i])
449 			igc_clean_rx_ring(adapter->rx_ring[i]);
450 }
451 
452 /**
453  * igc_free_rx_resources - Free Rx Resources
454  * @rx_ring: ring to clean the resources from
455  *
456  * Free all receive software resources
457  */
458 void igc_free_rx_resources(struct igc_ring *rx_ring)
459 {
460 	igc_clean_rx_ring(rx_ring);
461 
462 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
463 
464 	vfree(rx_ring->rx_buffer_info);
465 	rx_ring->rx_buffer_info = NULL;
466 
467 	/* if not set, then don't free */
468 	if (!rx_ring->desc)
469 		return;
470 
471 	dma_free_coherent(rx_ring->dev, rx_ring->size,
472 			  rx_ring->desc, rx_ring->dma);
473 
474 	rx_ring->desc = NULL;
475 }
476 
477 /**
478  * igc_free_all_rx_resources - Free Rx Resources for All Queues
479  * @adapter: board private structure
480  *
481  * Free all receive software resources
482  */
483 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
484 {
485 	int i;
486 
487 	for (i = 0; i < adapter->num_rx_queues; i++)
488 		igc_free_rx_resources(adapter->rx_ring[i]);
489 }
490 
491 /**
492  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
493  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
494  *
495  * Returns 0 on success, negative on failure
496  */
497 int igc_setup_rx_resources(struct igc_ring *rx_ring)
498 {
499 	struct net_device *ndev = rx_ring->netdev;
500 	struct device *dev = rx_ring->dev;
501 	u8 index = rx_ring->queue_index;
502 	int size, desc_len, res;
503 
504 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
505 			       rx_ring->q_vector->napi.napi_id);
506 	if (res < 0) {
507 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
508 			   index);
509 		return res;
510 	}
511 
512 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
513 	rx_ring->rx_buffer_info = vzalloc(size);
514 	if (!rx_ring->rx_buffer_info)
515 		goto err;
516 
517 	desc_len = sizeof(union igc_adv_rx_desc);
518 
519 	/* Round up to nearest 4K */
520 	rx_ring->size = rx_ring->count * desc_len;
521 	rx_ring->size = ALIGN(rx_ring->size, 4096);
522 
523 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
524 					   &rx_ring->dma, GFP_KERNEL);
525 
526 	if (!rx_ring->desc)
527 		goto err;
528 
529 	rx_ring->next_to_alloc = 0;
530 	rx_ring->next_to_clean = 0;
531 	rx_ring->next_to_use = 0;
532 
533 	return 0;
534 
535 err:
536 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
537 	vfree(rx_ring->rx_buffer_info);
538 	rx_ring->rx_buffer_info = NULL;
539 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
540 	return -ENOMEM;
541 }
542 
543 /**
544  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
545  *                                (Descriptors) for all queues
546  * @adapter: board private structure
547  *
548  * Return 0 on success, negative on failure
549  */
550 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
551 {
552 	struct net_device *dev = adapter->netdev;
553 	int i, err = 0;
554 
555 	for (i = 0; i < adapter->num_rx_queues; i++) {
556 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
557 		if (err) {
558 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
559 			for (i--; i >= 0; i--)
560 				igc_free_rx_resources(adapter->rx_ring[i]);
561 			break;
562 		}
563 	}
564 
565 	return err;
566 }
567 
568 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
569 					      struct igc_ring *ring)
570 {
571 	if (!igc_xdp_is_enabled(adapter) ||
572 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
573 		return NULL;
574 
575 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
576 }
577 
578 /**
579  * igc_configure_rx_ring - Configure a receive ring after Reset
580  * @adapter: board private structure
581  * @ring: receive ring to be configured
582  *
583  * Configure the Rx unit of the MAC after a reset.
584  */
585 static void igc_configure_rx_ring(struct igc_adapter *adapter,
586 				  struct igc_ring *ring)
587 {
588 	struct igc_hw *hw = &adapter->hw;
589 	union igc_adv_rx_desc *rx_desc;
590 	int reg_idx = ring->reg_idx;
591 	u32 srrctl = 0, rxdctl = 0;
592 	u64 rdba = ring->dma;
593 	u32 buf_size;
594 
595 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
596 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
597 	if (ring->xsk_pool) {
598 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
599 						   MEM_TYPE_XSK_BUFF_POOL,
600 						   NULL));
601 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
602 	} else {
603 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
604 						   MEM_TYPE_PAGE_SHARED,
605 						   NULL));
606 	}
607 
608 	if (igc_xdp_is_enabled(adapter))
609 		set_ring_uses_large_buffer(ring);
610 
611 	/* disable the queue */
612 	wr32(IGC_RXDCTL(reg_idx), 0);
613 
614 	/* Set DMA base address registers */
615 	wr32(IGC_RDBAL(reg_idx),
616 	     rdba & 0x00000000ffffffffULL);
617 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
618 	wr32(IGC_RDLEN(reg_idx),
619 	     ring->count * sizeof(union igc_adv_rx_desc));
620 
621 	/* initialize head and tail */
622 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
623 	wr32(IGC_RDH(reg_idx), 0);
624 	writel(0, ring->tail);
625 
626 	/* reset next-to- use/clean to place SW in sync with hardware */
627 	ring->next_to_clean = 0;
628 	ring->next_to_use = 0;
629 
630 	if (ring->xsk_pool)
631 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
632 	else if (ring_uses_large_buffer(ring))
633 		buf_size = IGC_RXBUFFER_3072;
634 	else
635 		buf_size = IGC_RXBUFFER_2048;
636 
637 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
638 	srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
639 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
640 
641 	wr32(IGC_SRRCTL(reg_idx), srrctl);
642 
643 	rxdctl |= IGC_RX_PTHRESH;
644 	rxdctl |= IGC_RX_HTHRESH << 8;
645 	rxdctl |= IGC_RX_WTHRESH << 16;
646 
647 	/* initialize rx_buffer_info */
648 	memset(ring->rx_buffer_info, 0,
649 	       sizeof(struct igc_rx_buffer) * ring->count);
650 
651 	/* initialize Rx descriptor 0 */
652 	rx_desc = IGC_RX_DESC(ring, 0);
653 	rx_desc->wb.upper.length = 0;
654 
655 	/* enable receive descriptor fetching */
656 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
657 
658 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
659 }
660 
661 /**
662  * igc_configure_rx - Configure receive Unit after Reset
663  * @adapter: board private structure
664  *
665  * Configure the Rx unit of the MAC after a reset.
666  */
667 static void igc_configure_rx(struct igc_adapter *adapter)
668 {
669 	int i;
670 
671 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
672 	 * the Base and Length of the Rx Descriptor Ring
673 	 */
674 	for (i = 0; i < adapter->num_rx_queues; i++)
675 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
676 }
677 
678 /**
679  * igc_configure_tx_ring - Configure transmit ring after Reset
680  * @adapter: board private structure
681  * @ring: tx ring to configure
682  *
683  * Configure a transmit ring after a reset.
684  */
685 static void igc_configure_tx_ring(struct igc_adapter *adapter,
686 				  struct igc_ring *ring)
687 {
688 	struct igc_hw *hw = &adapter->hw;
689 	int reg_idx = ring->reg_idx;
690 	u64 tdba = ring->dma;
691 	u32 txdctl = 0;
692 
693 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
694 
695 	/* disable the queue */
696 	wr32(IGC_TXDCTL(reg_idx), 0);
697 	wrfl();
698 	mdelay(10);
699 
700 	wr32(IGC_TDLEN(reg_idx),
701 	     ring->count * sizeof(union igc_adv_tx_desc));
702 	wr32(IGC_TDBAL(reg_idx),
703 	     tdba & 0x00000000ffffffffULL);
704 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
705 
706 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
707 	wr32(IGC_TDH(reg_idx), 0);
708 	writel(0, ring->tail);
709 
710 	txdctl |= IGC_TX_PTHRESH;
711 	txdctl |= IGC_TX_HTHRESH << 8;
712 	txdctl |= IGC_TX_WTHRESH << 16;
713 
714 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
715 	wr32(IGC_TXDCTL(reg_idx), txdctl);
716 }
717 
718 /**
719  * igc_configure_tx - Configure transmit Unit after Reset
720  * @adapter: board private structure
721  *
722  * Configure the Tx unit of the MAC after a reset.
723  */
724 static void igc_configure_tx(struct igc_adapter *adapter)
725 {
726 	int i;
727 
728 	for (i = 0; i < adapter->num_tx_queues; i++)
729 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
730 }
731 
732 /**
733  * igc_setup_mrqc - configure the multiple receive queue control registers
734  * @adapter: Board private structure
735  */
736 static void igc_setup_mrqc(struct igc_adapter *adapter)
737 {
738 	struct igc_hw *hw = &adapter->hw;
739 	u32 j, num_rx_queues;
740 	u32 mrqc, rxcsum;
741 	u32 rss_key[10];
742 
743 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
744 	for (j = 0; j < 10; j++)
745 		wr32(IGC_RSSRK(j), rss_key[j]);
746 
747 	num_rx_queues = adapter->rss_queues;
748 
749 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
750 		for (j = 0; j < IGC_RETA_SIZE; j++)
751 			adapter->rss_indir_tbl[j] =
752 			(j * num_rx_queues) / IGC_RETA_SIZE;
753 		adapter->rss_indir_tbl_init = num_rx_queues;
754 	}
755 	igc_write_rss_indir_tbl(adapter);
756 
757 	/* Disable raw packet checksumming so that RSS hash is placed in
758 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
759 	 * offloads as they are enabled by default
760 	 */
761 	rxcsum = rd32(IGC_RXCSUM);
762 	rxcsum |= IGC_RXCSUM_PCSD;
763 
764 	/* Enable Receive Checksum Offload for SCTP */
765 	rxcsum |= IGC_RXCSUM_CRCOFL;
766 
767 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
768 	wr32(IGC_RXCSUM, rxcsum);
769 
770 	/* Generate RSS hash based on packet types, TCP/UDP
771 	 * port numbers and/or IPv4/v6 src and dst addresses
772 	 */
773 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
774 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
775 	       IGC_MRQC_RSS_FIELD_IPV6 |
776 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
777 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
778 
779 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
780 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
781 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
782 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
783 
784 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
785 
786 	wr32(IGC_MRQC, mrqc);
787 }
788 
789 /**
790  * igc_setup_rctl - configure the receive control registers
791  * @adapter: Board private structure
792  */
793 static void igc_setup_rctl(struct igc_adapter *adapter)
794 {
795 	struct igc_hw *hw = &adapter->hw;
796 	u32 rctl;
797 
798 	rctl = rd32(IGC_RCTL);
799 
800 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
801 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
802 
803 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
804 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
805 
806 	/* enable stripping of CRC. Newer features require
807 	 * that the HW strips the CRC.
808 	 */
809 	rctl |= IGC_RCTL_SECRC;
810 
811 	/* disable store bad packets and clear size bits. */
812 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
813 
814 	/* enable LPE to allow for reception of jumbo frames */
815 	rctl |= IGC_RCTL_LPE;
816 
817 	/* disable queue 0 to prevent tail write w/o re-config */
818 	wr32(IGC_RXDCTL(0), 0);
819 
820 	/* This is useful for sniffing bad packets. */
821 	if (adapter->netdev->features & NETIF_F_RXALL) {
822 		/* UPE and MPE will be handled by normal PROMISC logic
823 		 * in set_rx_mode
824 		 */
825 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
826 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
827 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
828 
829 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
830 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
831 	}
832 
833 	wr32(IGC_RCTL, rctl);
834 }
835 
836 /**
837  * igc_setup_tctl - configure the transmit control registers
838  * @adapter: Board private structure
839  */
840 static void igc_setup_tctl(struct igc_adapter *adapter)
841 {
842 	struct igc_hw *hw = &adapter->hw;
843 	u32 tctl;
844 
845 	/* disable queue 0 which icould be enabled by default */
846 	wr32(IGC_TXDCTL(0), 0);
847 
848 	/* Program the Transmit Control Register */
849 	tctl = rd32(IGC_TCTL);
850 	tctl &= ~IGC_TCTL_CT;
851 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
852 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
853 
854 	/* Enable transmits */
855 	tctl |= IGC_TCTL_EN;
856 
857 	wr32(IGC_TCTL, tctl);
858 }
859 
860 /**
861  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
862  * @adapter: Pointer to adapter where the filter should be set
863  * @index: Filter index
864  * @type: MAC address filter type (source or destination)
865  * @addr: MAC address
866  * @queue: If non-negative, queue assignment feature is enabled and frames
867  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
868  *         assignment is disabled.
869  */
870 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
871 				  enum igc_mac_filter_type type,
872 				  const u8 *addr, int queue)
873 {
874 	struct net_device *dev = adapter->netdev;
875 	struct igc_hw *hw = &adapter->hw;
876 	u32 ral, rah;
877 
878 	if (WARN_ON(index >= hw->mac.rar_entry_count))
879 		return;
880 
881 	ral = le32_to_cpup((__le32 *)(addr));
882 	rah = le16_to_cpup((__le16 *)(addr + 4));
883 
884 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
885 		rah &= ~IGC_RAH_ASEL_MASK;
886 		rah |= IGC_RAH_ASEL_SRC_ADDR;
887 	}
888 
889 	if (queue >= 0) {
890 		rah &= ~IGC_RAH_QSEL_MASK;
891 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
892 		rah |= IGC_RAH_QSEL_ENABLE;
893 	}
894 
895 	rah |= IGC_RAH_AV;
896 
897 	wr32(IGC_RAL(index), ral);
898 	wr32(IGC_RAH(index), rah);
899 
900 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
901 }
902 
903 /**
904  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
905  * @adapter: Pointer to adapter where the filter should be cleared
906  * @index: Filter index
907  */
908 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
909 {
910 	struct net_device *dev = adapter->netdev;
911 	struct igc_hw *hw = &adapter->hw;
912 
913 	if (WARN_ON(index >= hw->mac.rar_entry_count))
914 		return;
915 
916 	wr32(IGC_RAL(index), 0);
917 	wr32(IGC_RAH(index), 0);
918 
919 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
920 }
921 
922 /* Set default MAC address for the PF in the first RAR entry */
923 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
924 {
925 	struct net_device *dev = adapter->netdev;
926 	u8 *addr = adapter->hw.mac.addr;
927 
928 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
929 
930 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
931 }
932 
933 /**
934  * igc_set_mac - Change the Ethernet Address of the NIC
935  * @netdev: network interface device structure
936  * @p: pointer to an address structure
937  *
938  * Returns 0 on success, negative on failure
939  */
940 static int igc_set_mac(struct net_device *netdev, void *p)
941 {
942 	struct igc_adapter *adapter = netdev_priv(netdev);
943 	struct igc_hw *hw = &adapter->hw;
944 	struct sockaddr *addr = p;
945 
946 	if (!is_valid_ether_addr(addr->sa_data))
947 		return -EADDRNOTAVAIL;
948 
949 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
950 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
951 
952 	/* set the correct pool for the new PF MAC address in entry 0 */
953 	igc_set_default_mac_filter(adapter);
954 
955 	return 0;
956 }
957 
958 /**
959  *  igc_write_mc_addr_list - write multicast addresses to MTA
960  *  @netdev: network interface device structure
961  *
962  *  Writes multicast address list to the MTA hash table.
963  *  Returns: -ENOMEM on failure
964  *           0 on no addresses written
965  *           X on writing X addresses to MTA
966  **/
967 static int igc_write_mc_addr_list(struct net_device *netdev)
968 {
969 	struct igc_adapter *adapter = netdev_priv(netdev);
970 	struct igc_hw *hw = &adapter->hw;
971 	struct netdev_hw_addr *ha;
972 	u8  *mta_list;
973 	int i;
974 
975 	if (netdev_mc_empty(netdev)) {
976 		/* nothing to program, so clear mc list */
977 		igc_update_mc_addr_list(hw, NULL, 0);
978 		return 0;
979 	}
980 
981 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
982 	if (!mta_list)
983 		return -ENOMEM;
984 
985 	/* The shared function expects a packed array of only addresses. */
986 	i = 0;
987 	netdev_for_each_mc_addr(ha, netdev)
988 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
989 
990 	igc_update_mc_addr_list(hw, mta_list, i);
991 	kfree(mta_list);
992 
993 	return netdev_mc_count(netdev);
994 }
995 
996 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
997 {
998 	ktime_t cycle_time = adapter->cycle_time;
999 	ktime_t base_time = adapter->base_time;
1000 	u32 launchtime;
1001 
1002 	/* FIXME: when using ETF together with taprio, we may have a
1003 	 * case where 'delta' is larger than the cycle_time, this may
1004 	 * cause problems if we don't read the current value of
1005 	 * IGC_BASET, as the value writen into the launchtime
1006 	 * descriptor field may be misinterpreted.
1007 	 */
1008 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1009 
1010 	return cpu_to_le32(launchtime);
1011 }
1012 
1013 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1014 			    struct igc_tx_buffer *first,
1015 			    u32 vlan_macip_lens, u32 type_tucmd,
1016 			    u32 mss_l4len_idx)
1017 {
1018 	struct igc_adv_tx_context_desc *context_desc;
1019 	u16 i = tx_ring->next_to_use;
1020 
1021 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1022 
1023 	i++;
1024 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1025 
1026 	/* set bits to identify this as an advanced context descriptor */
1027 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1028 
1029 	/* For i225, context index must be unique per ring. */
1030 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1031 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1032 
1033 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1034 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1035 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1036 
1037 	/* We assume there is always a valid Tx time available. Invalid times
1038 	 * should have been handled by the upper layers.
1039 	 */
1040 	if (tx_ring->launchtime_enable) {
1041 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1042 		ktime_t txtime = first->skb->tstamp;
1043 
1044 		skb_txtime_consumed(first->skb);
1045 		context_desc->launch_time = igc_tx_launchtime(adapter,
1046 							      txtime);
1047 	} else {
1048 		context_desc->launch_time = 0;
1049 	}
1050 }
1051 
1052 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1053 {
1054 	struct sk_buff *skb = first->skb;
1055 	u32 vlan_macip_lens = 0;
1056 	u32 type_tucmd = 0;
1057 
1058 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1059 csum_failed:
1060 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1061 		    !tx_ring->launchtime_enable)
1062 			return;
1063 		goto no_csum;
1064 	}
1065 
1066 	switch (skb->csum_offset) {
1067 	case offsetof(struct tcphdr, check):
1068 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1069 		fallthrough;
1070 	case offsetof(struct udphdr, check):
1071 		break;
1072 	case offsetof(struct sctphdr, checksum):
1073 		/* validate that this is actually an SCTP request */
1074 		if (skb_csum_is_sctp(skb)) {
1075 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1076 			break;
1077 		}
1078 		fallthrough;
1079 	default:
1080 		skb_checksum_help(skb);
1081 		goto csum_failed;
1082 	}
1083 
1084 	/* update TX checksum flag */
1085 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1086 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1087 			  skb_network_offset(skb);
1088 no_csum:
1089 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1090 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1091 
1092 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1093 }
1094 
1095 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1096 {
1097 	struct net_device *netdev = tx_ring->netdev;
1098 
1099 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1100 
1101 	/* memory barriier comment */
1102 	smp_mb();
1103 
1104 	/* We need to check again in a case another CPU has just
1105 	 * made room available.
1106 	 */
1107 	if (igc_desc_unused(tx_ring) < size)
1108 		return -EBUSY;
1109 
1110 	/* A reprieve! */
1111 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1112 
1113 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1114 	tx_ring->tx_stats.restart_queue2++;
1115 	u64_stats_update_end(&tx_ring->tx_syncp2);
1116 
1117 	return 0;
1118 }
1119 
1120 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1121 {
1122 	if (igc_desc_unused(tx_ring) >= size)
1123 		return 0;
1124 	return __igc_maybe_stop_tx(tx_ring, size);
1125 }
1126 
1127 #define IGC_SET_FLAG(_input, _flag, _result) \
1128 	(((_flag) <= (_result)) ?				\
1129 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1130 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1131 
1132 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1133 {
1134 	/* set type for advanced descriptor with frame checksum insertion */
1135 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1136 		       IGC_ADVTXD_DCMD_DEXT |
1137 		       IGC_ADVTXD_DCMD_IFCS;
1138 
1139 	/* set HW vlan bit if vlan is present */
1140 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1141 				 IGC_ADVTXD_DCMD_VLE);
1142 
1143 	/* set segmentation bits for TSO */
1144 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1145 				 (IGC_ADVTXD_DCMD_TSE));
1146 
1147 	/* set timestamp bit if present */
1148 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1149 				 (IGC_ADVTXD_MAC_TSTAMP));
1150 
1151 	/* insert frame checksum */
1152 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1153 
1154 	return cmd_type;
1155 }
1156 
1157 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1158 				 union igc_adv_tx_desc *tx_desc,
1159 				 u32 tx_flags, unsigned int paylen)
1160 {
1161 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1162 
1163 	/* insert L4 checksum */
1164 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1165 			  ((IGC_TXD_POPTS_TXSM << 8) /
1166 			  IGC_TX_FLAGS_CSUM);
1167 
1168 	/* insert IPv4 checksum */
1169 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1170 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1171 			  IGC_TX_FLAGS_IPV4);
1172 
1173 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1174 }
1175 
1176 static int igc_tx_map(struct igc_ring *tx_ring,
1177 		      struct igc_tx_buffer *first,
1178 		      const u8 hdr_len)
1179 {
1180 	struct sk_buff *skb = first->skb;
1181 	struct igc_tx_buffer *tx_buffer;
1182 	union igc_adv_tx_desc *tx_desc;
1183 	u32 tx_flags = first->tx_flags;
1184 	skb_frag_t *frag;
1185 	u16 i = tx_ring->next_to_use;
1186 	unsigned int data_len, size;
1187 	dma_addr_t dma;
1188 	u32 cmd_type;
1189 
1190 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1191 	tx_desc = IGC_TX_DESC(tx_ring, i);
1192 
1193 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1194 
1195 	size = skb_headlen(skb);
1196 	data_len = skb->data_len;
1197 
1198 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1199 
1200 	tx_buffer = first;
1201 
1202 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1203 		if (dma_mapping_error(tx_ring->dev, dma))
1204 			goto dma_error;
1205 
1206 		/* record length, and DMA address */
1207 		dma_unmap_len_set(tx_buffer, len, size);
1208 		dma_unmap_addr_set(tx_buffer, dma, dma);
1209 
1210 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1211 
1212 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1213 			tx_desc->read.cmd_type_len =
1214 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1215 
1216 			i++;
1217 			tx_desc++;
1218 			if (i == tx_ring->count) {
1219 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1220 				i = 0;
1221 			}
1222 			tx_desc->read.olinfo_status = 0;
1223 
1224 			dma += IGC_MAX_DATA_PER_TXD;
1225 			size -= IGC_MAX_DATA_PER_TXD;
1226 
1227 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1228 		}
1229 
1230 		if (likely(!data_len))
1231 			break;
1232 
1233 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1234 
1235 		i++;
1236 		tx_desc++;
1237 		if (i == tx_ring->count) {
1238 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1239 			i = 0;
1240 		}
1241 		tx_desc->read.olinfo_status = 0;
1242 
1243 		size = skb_frag_size(frag);
1244 		data_len -= size;
1245 
1246 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1247 				       size, DMA_TO_DEVICE);
1248 
1249 		tx_buffer = &tx_ring->tx_buffer_info[i];
1250 	}
1251 
1252 	/* write last descriptor with RS and EOP bits */
1253 	cmd_type |= size | IGC_TXD_DCMD;
1254 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1255 
1256 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1257 
1258 	/* set the timestamp */
1259 	first->time_stamp = jiffies;
1260 
1261 	skb_tx_timestamp(skb);
1262 
1263 	/* Force memory writes to complete before letting h/w know there
1264 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1265 	 * memory model archs, such as IA-64).
1266 	 *
1267 	 * We also need this memory barrier to make certain all of the
1268 	 * status bits have been updated before next_to_watch is written.
1269 	 */
1270 	wmb();
1271 
1272 	/* set next_to_watch value indicating a packet is present */
1273 	first->next_to_watch = tx_desc;
1274 
1275 	i++;
1276 	if (i == tx_ring->count)
1277 		i = 0;
1278 
1279 	tx_ring->next_to_use = i;
1280 
1281 	/* Make sure there is space in the ring for the next send. */
1282 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1283 
1284 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1285 		writel(i, tx_ring->tail);
1286 	}
1287 
1288 	return 0;
1289 dma_error:
1290 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1291 	tx_buffer = &tx_ring->tx_buffer_info[i];
1292 
1293 	/* clear dma mappings for failed tx_buffer_info map */
1294 	while (tx_buffer != first) {
1295 		if (dma_unmap_len(tx_buffer, len))
1296 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1297 
1298 		if (i-- == 0)
1299 			i += tx_ring->count;
1300 		tx_buffer = &tx_ring->tx_buffer_info[i];
1301 	}
1302 
1303 	if (dma_unmap_len(tx_buffer, len))
1304 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1305 
1306 	dev_kfree_skb_any(tx_buffer->skb);
1307 	tx_buffer->skb = NULL;
1308 
1309 	tx_ring->next_to_use = i;
1310 
1311 	return -1;
1312 }
1313 
1314 static int igc_tso(struct igc_ring *tx_ring,
1315 		   struct igc_tx_buffer *first,
1316 		   u8 *hdr_len)
1317 {
1318 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1319 	struct sk_buff *skb = first->skb;
1320 	union {
1321 		struct iphdr *v4;
1322 		struct ipv6hdr *v6;
1323 		unsigned char *hdr;
1324 	} ip;
1325 	union {
1326 		struct tcphdr *tcp;
1327 		struct udphdr *udp;
1328 		unsigned char *hdr;
1329 	} l4;
1330 	u32 paylen, l4_offset;
1331 	int err;
1332 
1333 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1334 		return 0;
1335 
1336 	if (!skb_is_gso(skb))
1337 		return 0;
1338 
1339 	err = skb_cow_head(skb, 0);
1340 	if (err < 0)
1341 		return err;
1342 
1343 	ip.hdr = skb_network_header(skb);
1344 	l4.hdr = skb_checksum_start(skb);
1345 
1346 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1347 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1348 
1349 	/* initialize outer IP header fields */
1350 	if (ip.v4->version == 4) {
1351 		unsigned char *csum_start = skb_checksum_start(skb);
1352 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1353 
1354 		/* IP header will have to cancel out any data that
1355 		 * is not a part of the outer IP header
1356 		 */
1357 		ip.v4->check = csum_fold(csum_partial(trans_start,
1358 						      csum_start - trans_start,
1359 						      0));
1360 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1361 
1362 		ip.v4->tot_len = 0;
1363 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1364 				   IGC_TX_FLAGS_CSUM |
1365 				   IGC_TX_FLAGS_IPV4;
1366 	} else {
1367 		ip.v6->payload_len = 0;
1368 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1369 				   IGC_TX_FLAGS_CSUM;
1370 	}
1371 
1372 	/* determine offset of inner transport header */
1373 	l4_offset = l4.hdr - skb->data;
1374 
1375 	/* remove payload length from inner checksum */
1376 	paylen = skb->len - l4_offset;
1377 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1378 		/* compute length of segmentation header */
1379 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1380 		csum_replace_by_diff(&l4.tcp->check,
1381 				     (__force __wsum)htonl(paylen));
1382 	} else {
1383 		/* compute length of segmentation header */
1384 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1385 		csum_replace_by_diff(&l4.udp->check,
1386 				     (__force __wsum)htonl(paylen));
1387 	}
1388 
1389 	/* update gso size and bytecount with header size */
1390 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1391 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1392 
1393 	/* MSS L4LEN IDX */
1394 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1395 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1396 
1397 	/* VLAN MACLEN IPLEN */
1398 	vlan_macip_lens = l4.hdr - ip.hdr;
1399 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1400 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1401 
1402 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1403 			type_tucmd, mss_l4len_idx);
1404 
1405 	return 1;
1406 }
1407 
1408 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1409 				       struct igc_ring *tx_ring)
1410 {
1411 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1412 	__be16 protocol = vlan_get_protocol(skb);
1413 	struct igc_tx_buffer *first;
1414 	u32 tx_flags = 0;
1415 	unsigned short f;
1416 	u8 hdr_len = 0;
1417 	int tso = 0;
1418 
1419 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1420 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1421 	 *	+ 2 desc gap to keep tail from touching head,
1422 	 *	+ 1 desc for context descriptor,
1423 	 * otherwise try next time
1424 	 */
1425 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1426 		count += TXD_USE_COUNT(skb_frag_size(
1427 						&skb_shinfo(skb)->frags[f]));
1428 
1429 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1430 		/* this is a hard error */
1431 		return NETDEV_TX_BUSY;
1432 	}
1433 
1434 	/* record the location of the first descriptor for this packet */
1435 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1436 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1437 	first->skb = skb;
1438 	first->bytecount = skb->len;
1439 	first->gso_segs = 1;
1440 
1441 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1442 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1443 
1444 		/* FIXME: add support for retrieving timestamps from
1445 		 * the other timer registers before skipping the
1446 		 * timestamping request.
1447 		 */
1448 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1449 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1450 					   &adapter->state)) {
1451 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1452 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1453 
1454 			adapter->ptp_tx_skb = skb_get(skb);
1455 			adapter->ptp_tx_start = jiffies;
1456 		} else {
1457 			adapter->tx_hwtstamp_skipped++;
1458 		}
1459 	}
1460 
1461 	if (skb_vlan_tag_present(skb)) {
1462 		tx_flags |= IGC_TX_FLAGS_VLAN;
1463 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1464 	}
1465 
1466 	/* record initial flags and protocol */
1467 	first->tx_flags = tx_flags;
1468 	first->protocol = protocol;
1469 
1470 	tso = igc_tso(tx_ring, first, &hdr_len);
1471 	if (tso < 0)
1472 		goto out_drop;
1473 	else if (!tso)
1474 		igc_tx_csum(tx_ring, first);
1475 
1476 	igc_tx_map(tx_ring, first, hdr_len);
1477 
1478 	return NETDEV_TX_OK;
1479 
1480 out_drop:
1481 	dev_kfree_skb_any(first->skb);
1482 	first->skb = NULL;
1483 
1484 	return NETDEV_TX_OK;
1485 }
1486 
1487 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1488 						    struct sk_buff *skb)
1489 {
1490 	unsigned int r_idx = skb->queue_mapping;
1491 
1492 	if (r_idx >= adapter->num_tx_queues)
1493 		r_idx = r_idx % adapter->num_tx_queues;
1494 
1495 	return adapter->tx_ring[r_idx];
1496 }
1497 
1498 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1499 				  struct net_device *netdev)
1500 {
1501 	struct igc_adapter *adapter = netdev_priv(netdev);
1502 
1503 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1504 	 * in order to meet this minimum size requirement.
1505 	 */
1506 	if (skb->len < 17) {
1507 		if (skb_padto(skb, 17))
1508 			return NETDEV_TX_OK;
1509 		skb->len = 17;
1510 	}
1511 
1512 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1513 }
1514 
1515 static void igc_rx_checksum(struct igc_ring *ring,
1516 			    union igc_adv_rx_desc *rx_desc,
1517 			    struct sk_buff *skb)
1518 {
1519 	skb_checksum_none_assert(skb);
1520 
1521 	/* Ignore Checksum bit is set */
1522 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1523 		return;
1524 
1525 	/* Rx checksum disabled via ethtool */
1526 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1527 		return;
1528 
1529 	/* TCP/UDP checksum error bit is set */
1530 	if (igc_test_staterr(rx_desc,
1531 			     IGC_RXDEXT_STATERR_L4E |
1532 			     IGC_RXDEXT_STATERR_IPE)) {
1533 		/* work around errata with sctp packets where the TCPE aka
1534 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1535 		 * packets (aka let the stack check the crc32c)
1536 		 */
1537 		if (!(skb->len == 60 &&
1538 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1539 			u64_stats_update_begin(&ring->rx_syncp);
1540 			ring->rx_stats.csum_err++;
1541 			u64_stats_update_end(&ring->rx_syncp);
1542 		}
1543 		/* let the stack verify checksum errors */
1544 		return;
1545 	}
1546 	/* It must be a TCP or UDP packet with a valid checksum */
1547 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1548 				      IGC_RXD_STAT_UDPCS))
1549 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1550 
1551 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1552 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1553 }
1554 
1555 static inline void igc_rx_hash(struct igc_ring *ring,
1556 			       union igc_adv_rx_desc *rx_desc,
1557 			       struct sk_buff *skb)
1558 {
1559 	if (ring->netdev->features & NETIF_F_RXHASH)
1560 		skb_set_hash(skb,
1561 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1562 			     PKT_HASH_TYPE_L3);
1563 }
1564 
1565 static void igc_rx_vlan(struct igc_ring *rx_ring,
1566 			union igc_adv_rx_desc *rx_desc,
1567 			struct sk_buff *skb)
1568 {
1569 	struct net_device *dev = rx_ring->netdev;
1570 	u16 vid;
1571 
1572 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1573 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1574 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1575 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1576 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1577 		else
1578 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1579 
1580 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1581 	}
1582 }
1583 
1584 /**
1585  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1586  * @rx_ring: rx descriptor ring packet is being transacted on
1587  * @rx_desc: pointer to the EOP Rx descriptor
1588  * @skb: pointer to current skb being populated
1589  *
1590  * This function checks the ring, descriptor, and packet information in order
1591  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1592  * skb.
1593  */
1594 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1595 				   union igc_adv_rx_desc *rx_desc,
1596 				   struct sk_buff *skb)
1597 {
1598 	igc_rx_hash(rx_ring, rx_desc, skb);
1599 
1600 	igc_rx_checksum(rx_ring, rx_desc, skb);
1601 
1602 	igc_rx_vlan(rx_ring, rx_desc, skb);
1603 
1604 	skb_record_rx_queue(skb, rx_ring->queue_index);
1605 
1606 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1607 }
1608 
1609 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1610 {
1611 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1612 	struct igc_adapter *adapter = netdev_priv(netdev);
1613 	struct igc_hw *hw = &adapter->hw;
1614 	u32 ctrl;
1615 
1616 	ctrl = rd32(IGC_CTRL);
1617 
1618 	if (enable) {
1619 		/* enable VLAN tag insert/strip */
1620 		ctrl |= IGC_CTRL_VME;
1621 	} else {
1622 		/* disable VLAN tag insert/strip */
1623 		ctrl &= ~IGC_CTRL_VME;
1624 	}
1625 	wr32(IGC_CTRL, ctrl);
1626 }
1627 
1628 static void igc_restore_vlan(struct igc_adapter *adapter)
1629 {
1630 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1631 }
1632 
1633 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1634 					       const unsigned int size,
1635 					       int *rx_buffer_pgcnt)
1636 {
1637 	struct igc_rx_buffer *rx_buffer;
1638 
1639 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1640 	*rx_buffer_pgcnt =
1641 #if (PAGE_SIZE < 8192)
1642 		page_count(rx_buffer->page);
1643 #else
1644 		0;
1645 #endif
1646 	prefetchw(rx_buffer->page);
1647 
1648 	/* we are reusing so sync this buffer for CPU use */
1649 	dma_sync_single_range_for_cpu(rx_ring->dev,
1650 				      rx_buffer->dma,
1651 				      rx_buffer->page_offset,
1652 				      size,
1653 				      DMA_FROM_DEVICE);
1654 
1655 	rx_buffer->pagecnt_bias--;
1656 
1657 	return rx_buffer;
1658 }
1659 
1660 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1661 			       unsigned int truesize)
1662 {
1663 #if (PAGE_SIZE < 8192)
1664 	buffer->page_offset ^= truesize;
1665 #else
1666 	buffer->page_offset += truesize;
1667 #endif
1668 }
1669 
1670 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1671 					      unsigned int size)
1672 {
1673 	unsigned int truesize;
1674 
1675 #if (PAGE_SIZE < 8192)
1676 	truesize = igc_rx_pg_size(ring) / 2;
1677 #else
1678 	truesize = ring_uses_build_skb(ring) ?
1679 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1680 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1681 		   SKB_DATA_ALIGN(size);
1682 #endif
1683 	return truesize;
1684 }
1685 
1686 /**
1687  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1688  * @rx_ring: rx descriptor ring to transact packets on
1689  * @rx_buffer: buffer containing page to add
1690  * @skb: sk_buff to place the data into
1691  * @size: size of buffer to be added
1692  *
1693  * This function will add the data contained in rx_buffer->page to the skb.
1694  */
1695 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1696 			    struct igc_rx_buffer *rx_buffer,
1697 			    struct sk_buff *skb,
1698 			    unsigned int size)
1699 {
1700 	unsigned int truesize;
1701 
1702 #if (PAGE_SIZE < 8192)
1703 	truesize = igc_rx_pg_size(rx_ring) / 2;
1704 #else
1705 	truesize = ring_uses_build_skb(rx_ring) ?
1706 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1707 		   SKB_DATA_ALIGN(size);
1708 #endif
1709 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1710 			rx_buffer->page_offset, size, truesize);
1711 
1712 	igc_rx_buffer_flip(rx_buffer, truesize);
1713 }
1714 
1715 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1716 				     struct igc_rx_buffer *rx_buffer,
1717 				     union igc_adv_rx_desc *rx_desc,
1718 				     unsigned int size)
1719 {
1720 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1721 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1722 	struct sk_buff *skb;
1723 
1724 	/* prefetch first cache line of first page */
1725 	net_prefetch(va);
1726 
1727 	/* build an skb around the page buffer */
1728 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1729 	if (unlikely(!skb))
1730 		return NULL;
1731 
1732 	/* update pointers within the skb to store the data */
1733 	skb_reserve(skb, IGC_SKB_PAD);
1734 	__skb_put(skb, size);
1735 
1736 	igc_rx_buffer_flip(rx_buffer, truesize);
1737 	return skb;
1738 }
1739 
1740 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1741 					 struct igc_rx_buffer *rx_buffer,
1742 					 struct xdp_buff *xdp,
1743 					 ktime_t timestamp)
1744 {
1745 	unsigned int size = xdp->data_end - xdp->data;
1746 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1747 	void *va = xdp->data;
1748 	unsigned int headlen;
1749 	struct sk_buff *skb;
1750 
1751 	/* prefetch first cache line of first page */
1752 	net_prefetch(va);
1753 
1754 	/* allocate a skb to store the frags */
1755 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1756 	if (unlikely(!skb))
1757 		return NULL;
1758 
1759 	if (timestamp)
1760 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1761 
1762 	/* Determine available headroom for copy */
1763 	headlen = size;
1764 	if (headlen > IGC_RX_HDR_LEN)
1765 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1766 
1767 	/* align pull length to size of long to optimize memcpy performance */
1768 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1769 
1770 	/* update all of the pointers */
1771 	size -= headlen;
1772 	if (size) {
1773 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1774 				(va + headlen) - page_address(rx_buffer->page),
1775 				size, truesize);
1776 		igc_rx_buffer_flip(rx_buffer, truesize);
1777 	} else {
1778 		rx_buffer->pagecnt_bias++;
1779 	}
1780 
1781 	return skb;
1782 }
1783 
1784 /**
1785  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1786  * @rx_ring: rx descriptor ring to store buffers on
1787  * @old_buff: donor buffer to have page reused
1788  *
1789  * Synchronizes page for reuse by the adapter
1790  */
1791 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1792 			      struct igc_rx_buffer *old_buff)
1793 {
1794 	u16 nta = rx_ring->next_to_alloc;
1795 	struct igc_rx_buffer *new_buff;
1796 
1797 	new_buff = &rx_ring->rx_buffer_info[nta];
1798 
1799 	/* update, and store next to alloc */
1800 	nta++;
1801 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1802 
1803 	/* Transfer page from old buffer to new buffer.
1804 	 * Move each member individually to avoid possible store
1805 	 * forwarding stalls.
1806 	 */
1807 	new_buff->dma		= old_buff->dma;
1808 	new_buff->page		= old_buff->page;
1809 	new_buff->page_offset	= old_buff->page_offset;
1810 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1811 }
1812 
1813 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1814 				  int rx_buffer_pgcnt)
1815 {
1816 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1817 	struct page *page = rx_buffer->page;
1818 
1819 	/* avoid re-using remote and pfmemalloc pages */
1820 	if (!dev_page_is_reusable(page))
1821 		return false;
1822 
1823 #if (PAGE_SIZE < 8192)
1824 	/* if we are only owner of page we can reuse it */
1825 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1826 		return false;
1827 #else
1828 #define IGC_LAST_OFFSET \
1829 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1830 
1831 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1832 		return false;
1833 #endif
1834 
1835 	/* If we have drained the page fragment pool we need to update
1836 	 * the pagecnt_bias and page count so that we fully restock the
1837 	 * number of references the driver holds.
1838 	 */
1839 	if (unlikely(pagecnt_bias == 1)) {
1840 		page_ref_add(page, USHRT_MAX - 1);
1841 		rx_buffer->pagecnt_bias = USHRT_MAX;
1842 	}
1843 
1844 	return true;
1845 }
1846 
1847 /**
1848  * igc_is_non_eop - process handling of non-EOP buffers
1849  * @rx_ring: Rx ring being processed
1850  * @rx_desc: Rx descriptor for current buffer
1851  *
1852  * This function updates next to clean.  If the buffer is an EOP buffer
1853  * this function exits returning false, otherwise it will place the
1854  * sk_buff in the next buffer to be chained and return true indicating
1855  * that this is in fact a non-EOP buffer.
1856  */
1857 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1858 			   union igc_adv_rx_desc *rx_desc)
1859 {
1860 	u32 ntc = rx_ring->next_to_clean + 1;
1861 
1862 	/* fetch, update, and store next to clean */
1863 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1864 	rx_ring->next_to_clean = ntc;
1865 
1866 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1867 
1868 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1869 		return false;
1870 
1871 	return true;
1872 }
1873 
1874 /**
1875  * igc_cleanup_headers - Correct corrupted or empty headers
1876  * @rx_ring: rx descriptor ring packet is being transacted on
1877  * @rx_desc: pointer to the EOP Rx descriptor
1878  * @skb: pointer to current skb being fixed
1879  *
1880  * Address the case where we are pulling data in on pages only
1881  * and as such no data is present in the skb header.
1882  *
1883  * In addition if skb is not at least 60 bytes we need to pad it so that
1884  * it is large enough to qualify as a valid Ethernet frame.
1885  *
1886  * Returns true if an error was encountered and skb was freed.
1887  */
1888 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1889 				union igc_adv_rx_desc *rx_desc,
1890 				struct sk_buff *skb)
1891 {
1892 	/* XDP packets use error pointer so abort at this point */
1893 	if (IS_ERR(skb))
1894 		return true;
1895 
1896 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1897 		struct net_device *netdev = rx_ring->netdev;
1898 
1899 		if (!(netdev->features & NETIF_F_RXALL)) {
1900 			dev_kfree_skb_any(skb);
1901 			return true;
1902 		}
1903 	}
1904 
1905 	/* if eth_skb_pad returns an error the skb was freed */
1906 	if (eth_skb_pad(skb))
1907 		return true;
1908 
1909 	return false;
1910 }
1911 
1912 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1913 			      struct igc_rx_buffer *rx_buffer,
1914 			      int rx_buffer_pgcnt)
1915 {
1916 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1917 		/* hand second half of page back to the ring */
1918 		igc_reuse_rx_page(rx_ring, rx_buffer);
1919 	} else {
1920 		/* We are not reusing the buffer so unmap it and free
1921 		 * any references we are holding to it
1922 		 */
1923 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1924 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1925 				     IGC_RX_DMA_ATTR);
1926 		__page_frag_cache_drain(rx_buffer->page,
1927 					rx_buffer->pagecnt_bias);
1928 	}
1929 
1930 	/* clear contents of rx_buffer */
1931 	rx_buffer->page = NULL;
1932 }
1933 
1934 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1935 {
1936 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1937 
1938 	if (ring_uses_build_skb(rx_ring))
1939 		return IGC_SKB_PAD;
1940 	if (igc_xdp_is_enabled(adapter))
1941 		return XDP_PACKET_HEADROOM;
1942 
1943 	return 0;
1944 }
1945 
1946 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1947 				  struct igc_rx_buffer *bi)
1948 {
1949 	struct page *page = bi->page;
1950 	dma_addr_t dma;
1951 
1952 	/* since we are recycling buffers we should seldom need to alloc */
1953 	if (likely(page))
1954 		return true;
1955 
1956 	/* alloc new page for storage */
1957 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1958 	if (unlikely(!page)) {
1959 		rx_ring->rx_stats.alloc_failed++;
1960 		return false;
1961 	}
1962 
1963 	/* map page for use */
1964 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1965 				 igc_rx_pg_size(rx_ring),
1966 				 DMA_FROM_DEVICE,
1967 				 IGC_RX_DMA_ATTR);
1968 
1969 	/* if mapping failed free memory back to system since
1970 	 * there isn't much point in holding memory we can't use
1971 	 */
1972 	if (dma_mapping_error(rx_ring->dev, dma)) {
1973 		__free_page(page);
1974 
1975 		rx_ring->rx_stats.alloc_failed++;
1976 		return false;
1977 	}
1978 
1979 	bi->dma = dma;
1980 	bi->page = page;
1981 	bi->page_offset = igc_rx_offset(rx_ring);
1982 	page_ref_add(page, USHRT_MAX - 1);
1983 	bi->pagecnt_bias = USHRT_MAX;
1984 
1985 	return true;
1986 }
1987 
1988 /**
1989  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1990  * @rx_ring: rx descriptor ring
1991  * @cleaned_count: number of buffers to clean
1992  */
1993 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1994 {
1995 	union igc_adv_rx_desc *rx_desc;
1996 	u16 i = rx_ring->next_to_use;
1997 	struct igc_rx_buffer *bi;
1998 	u16 bufsz;
1999 
2000 	/* nothing to do */
2001 	if (!cleaned_count)
2002 		return;
2003 
2004 	rx_desc = IGC_RX_DESC(rx_ring, i);
2005 	bi = &rx_ring->rx_buffer_info[i];
2006 	i -= rx_ring->count;
2007 
2008 	bufsz = igc_rx_bufsz(rx_ring);
2009 
2010 	do {
2011 		if (!igc_alloc_mapped_page(rx_ring, bi))
2012 			break;
2013 
2014 		/* sync the buffer for use by the device */
2015 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2016 						 bi->page_offset, bufsz,
2017 						 DMA_FROM_DEVICE);
2018 
2019 		/* Refresh the desc even if buffer_addrs didn't change
2020 		 * because each write-back erases this info.
2021 		 */
2022 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2023 
2024 		rx_desc++;
2025 		bi++;
2026 		i++;
2027 		if (unlikely(!i)) {
2028 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2029 			bi = rx_ring->rx_buffer_info;
2030 			i -= rx_ring->count;
2031 		}
2032 
2033 		/* clear the length for the next_to_use descriptor */
2034 		rx_desc->wb.upper.length = 0;
2035 
2036 		cleaned_count--;
2037 	} while (cleaned_count);
2038 
2039 	i += rx_ring->count;
2040 
2041 	if (rx_ring->next_to_use != i) {
2042 		/* record the next descriptor to use */
2043 		rx_ring->next_to_use = i;
2044 
2045 		/* update next to alloc since we have filled the ring */
2046 		rx_ring->next_to_alloc = i;
2047 
2048 		/* Force memory writes to complete before letting h/w
2049 		 * know there are new descriptors to fetch.  (Only
2050 		 * applicable for weak-ordered memory model archs,
2051 		 * such as IA-64).
2052 		 */
2053 		wmb();
2054 		writel(i, rx_ring->tail);
2055 	}
2056 }
2057 
2058 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2059 {
2060 	union igc_adv_rx_desc *desc;
2061 	u16 i = ring->next_to_use;
2062 	struct igc_rx_buffer *bi;
2063 	dma_addr_t dma;
2064 	bool ok = true;
2065 
2066 	if (!count)
2067 		return ok;
2068 
2069 	desc = IGC_RX_DESC(ring, i);
2070 	bi = &ring->rx_buffer_info[i];
2071 	i -= ring->count;
2072 
2073 	do {
2074 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2075 		if (!bi->xdp) {
2076 			ok = false;
2077 			break;
2078 		}
2079 
2080 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2081 		desc->read.pkt_addr = cpu_to_le64(dma);
2082 
2083 		desc++;
2084 		bi++;
2085 		i++;
2086 		if (unlikely(!i)) {
2087 			desc = IGC_RX_DESC(ring, 0);
2088 			bi = ring->rx_buffer_info;
2089 			i -= ring->count;
2090 		}
2091 
2092 		/* Clear the length for the next_to_use descriptor. */
2093 		desc->wb.upper.length = 0;
2094 
2095 		count--;
2096 	} while (count);
2097 
2098 	i += ring->count;
2099 
2100 	if (ring->next_to_use != i) {
2101 		ring->next_to_use = i;
2102 
2103 		/* Force memory writes to complete before letting h/w
2104 		 * know there are new descriptors to fetch.  (Only
2105 		 * applicable for weak-ordered memory model archs,
2106 		 * such as IA-64).
2107 		 */
2108 		wmb();
2109 		writel(i, ring->tail);
2110 	}
2111 
2112 	return ok;
2113 }
2114 
2115 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2116 				  struct xdp_frame *xdpf,
2117 				  struct igc_ring *ring)
2118 {
2119 	dma_addr_t dma;
2120 
2121 	dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2122 	if (dma_mapping_error(ring->dev, dma)) {
2123 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2124 		return -ENOMEM;
2125 	}
2126 
2127 	buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2128 	buffer->xdpf = xdpf;
2129 	buffer->protocol = 0;
2130 	buffer->bytecount = xdpf->len;
2131 	buffer->gso_segs = 1;
2132 	buffer->time_stamp = jiffies;
2133 	dma_unmap_len_set(buffer, len, xdpf->len);
2134 	dma_unmap_addr_set(buffer, dma, dma);
2135 	return 0;
2136 }
2137 
2138 /* This function requires __netif_tx_lock is held by the caller. */
2139 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2140 				      struct xdp_frame *xdpf)
2141 {
2142 	struct igc_tx_buffer *buffer;
2143 	union igc_adv_tx_desc *desc;
2144 	u32 cmd_type, olinfo_status;
2145 	int err;
2146 
2147 	if (!igc_desc_unused(ring))
2148 		return -EBUSY;
2149 
2150 	buffer = &ring->tx_buffer_info[ring->next_to_use];
2151 	err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2152 	if (err)
2153 		return err;
2154 
2155 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2156 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2157 		   buffer->bytecount;
2158 	olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2159 
2160 	desc = IGC_TX_DESC(ring, ring->next_to_use);
2161 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2162 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2163 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2164 
2165 	netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2166 
2167 	buffer->next_to_watch = desc;
2168 
2169 	ring->next_to_use++;
2170 	if (ring->next_to_use == ring->count)
2171 		ring->next_to_use = 0;
2172 
2173 	return 0;
2174 }
2175 
2176 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2177 					    int cpu)
2178 {
2179 	int index = cpu;
2180 
2181 	if (unlikely(index < 0))
2182 		index = 0;
2183 
2184 	while (index >= adapter->num_tx_queues)
2185 		index -= adapter->num_tx_queues;
2186 
2187 	return adapter->tx_ring[index];
2188 }
2189 
2190 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2191 {
2192 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2193 	int cpu = smp_processor_id();
2194 	struct netdev_queue *nq;
2195 	struct igc_ring *ring;
2196 	int res;
2197 
2198 	if (unlikely(!xdpf))
2199 		return -EFAULT;
2200 
2201 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2202 	nq = txring_txq(ring);
2203 
2204 	__netif_tx_lock(nq, cpu);
2205 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2206 	__netif_tx_unlock(nq);
2207 	return res;
2208 }
2209 
2210 /* This function assumes rcu_read_lock() is held by the caller. */
2211 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2212 			      struct bpf_prog *prog,
2213 			      struct xdp_buff *xdp)
2214 {
2215 	u32 act = bpf_prog_run_xdp(prog, xdp);
2216 
2217 	switch (act) {
2218 	case XDP_PASS:
2219 		return IGC_XDP_PASS;
2220 	case XDP_TX:
2221 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2222 			goto out_failure;
2223 		return IGC_XDP_TX;
2224 	case XDP_REDIRECT:
2225 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2226 			goto out_failure;
2227 		return IGC_XDP_REDIRECT;
2228 		break;
2229 	default:
2230 		bpf_warn_invalid_xdp_action(act);
2231 		fallthrough;
2232 	case XDP_ABORTED:
2233 out_failure:
2234 		trace_xdp_exception(adapter->netdev, prog, act);
2235 		fallthrough;
2236 	case XDP_DROP:
2237 		return IGC_XDP_CONSUMED;
2238 	}
2239 }
2240 
2241 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2242 					struct xdp_buff *xdp)
2243 {
2244 	struct bpf_prog *prog;
2245 	int res;
2246 
2247 	prog = READ_ONCE(adapter->xdp_prog);
2248 	if (!prog) {
2249 		res = IGC_XDP_PASS;
2250 		goto out;
2251 	}
2252 
2253 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2254 
2255 out:
2256 	return ERR_PTR(-res);
2257 }
2258 
2259 /* This function assumes __netif_tx_lock is held by the caller. */
2260 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2261 {
2262 	/* Once tail pointer is updated, hardware can fetch the descriptors
2263 	 * any time so we issue a write membar here to ensure all memory
2264 	 * writes are complete before the tail pointer is updated.
2265 	 */
2266 	wmb();
2267 	writel(ring->next_to_use, ring->tail);
2268 }
2269 
2270 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2271 {
2272 	int cpu = smp_processor_id();
2273 	struct netdev_queue *nq;
2274 	struct igc_ring *ring;
2275 
2276 	if (status & IGC_XDP_TX) {
2277 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2278 		nq = txring_txq(ring);
2279 
2280 		__netif_tx_lock(nq, cpu);
2281 		igc_flush_tx_descriptors(ring);
2282 		__netif_tx_unlock(nq);
2283 	}
2284 
2285 	if (status & IGC_XDP_REDIRECT)
2286 		xdp_do_flush();
2287 }
2288 
2289 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2290 				unsigned int packets, unsigned int bytes)
2291 {
2292 	struct igc_ring *ring = q_vector->rx.ring;
2293 
2294 	u64_stats_update_begin(&ring->rx_syncp);
2295 	ring->rx_stats.packets += packets;
2296 	ring->rx_stats.bytes += bytes;
2297 	u64_stats_update_end(&ring->rx_syncp);
2298 
2299 	q_vector->rx.total_packets += packets;
2300 	q_vector->rx.total_bytes += bytes;
2301 }
2302 
2303 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2304 {
2305 	unsigned int total_bytes = 0, total_packets = 0;
2306 	struct igc_adapter *adapter = q_vector->adapter;
2307 	struct igc_ring *rx_ring = q_vector->rx.ring;
2308 	struct sk_buff *skb = rx_ring->skb;
2309 	u16 cleaned_count = igc_desc_unused(rx_ring);
2310 	int xdp_status = 0, rx_buffer_pgcnt;
2311 
2312 	while (likely(total_packets < budget)) {
2313 		union igc_adv_rx_desc *rx_desc;
2314 		struct igc_rx_buffer *rx_buffer;
2315 		unsigned int size, truesize;
2316 		ktime_t timestamp = 0;
2317 		struct xdp_buff xdp;
2318 		int pkt_offset = 0;
2319 		void *pktbuf;
2320 
2321 		/* return some buffers to hardware, one at a time is too slow */
2322 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2323 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2324 			cleaned_count = 0;
2325 		}
2326 
2327 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2328 		size = le16_to_cpu(rx_desc->wb.upper.length);
2329 		if (!size)
2330 			break;
2331 
2332 		/* This memory barrier is needed to keep us from reading
2333 		 * any other fields out of the rx_desc until we know the
2334 		 * descriptor has been written back
2335 		 */
2336 		dma_rmb();
2337 
2338 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2339 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2340 
2341 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2342 
2343 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2344 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2345 							pktbuf);
2346 			pkt_offset = IGC_TS_HDR_LEN;
2347 			size -= IGC_TS_HDR_LEN;
2348 		}
2349 
2350 		if (!skb) {
2351 			xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2352 			xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2353 					 igc_rx_offset(rx_ring) + pkt_offset, size, false);
2354 
2355 			skb = igc_xdp_run_prog(adapter, &xdp);
2356 		}
2357 
2358 		if (IS_ERR(skb)) {
2359 			unsigned int xdp_res = -PTR_ERR(skb);
2360 
2361 			switch (xdp_res) {
2362 			case IGC_XDP_CONSUMED:
2363 				rx_buffer->pagecnt_bias++;
2364 				break;
2365 			case IGC_XDP_TX:
2366 			case IGC_XDP_REDIRECT:
2367 				igc_rx_buffer_flip(rx_buffer, truesize);
2368 				xdp_status |= xdp_res;
2369 				break;
2370 			}
2371 
2372 			total_packets++;
2373 			total_bytes += size;
2374 		} else if (skb)
2375 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2376 		else if (ring_uses_build_skb(rx_ring))
2377 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2378 		else
2379 			skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2380 						timestamp);
2381 
2382 		/* exit if we failed to retrieve a buffer */
2383 		if (!skb) {
2384 			rx_ring->rx_stats.alloc_failed++;
2385 			rx_buffer->pagecnt_bias++;
2386 			break;
2387 		}
2388 
2389 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2390 		cleaned_count++;
2391 
2392 		/* fetch next buffer in frame if non-eop */
2393 		if (igc_is_non_eop(rx_ring, rx_desc))
2394 			continue;
2395 
2396 		/* verify the packet layout is correct */
2397 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2398 			skb = NULL;
2399 			continue;
2400 		}
2401 
2402 		/* probably a little skewed due to removing CRC */
2403 		total_bytes += skb->len;
2404 
2405 		/* populate checksum, VLAN, and protocol */
2406 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2407 
2408 		napi_gro_receive(&q_vector->napi, skb);
2409 
2410 		/* reset skb pointer */
2411 		skb = NULL;
2412 
2413 		/* update budget accounting */
2414 		total_packets++;
2415 	}
2416 
2417 	if (xdp_status)
2418 		igc_finalize_xdp(adapter, xdp_status);
2419 
2420 	/* place incomplete frames back on ring for completion */
2421 	rx_ring->skb = skb;
2422 
2423 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2424 
2425 	if (cleaned_count)
2426 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2427 
2428 	return total_packets;
2429 }
2430 
2431 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2432 					    struct xdp_buff *xdp)
2433 {
2434 	unsigned int metasize = xdp->data - xdp->data_meta;
2435 	unsigned int datasize = xdp->data_end - xdp->data;
2436 	unsigned int totalsize = metasize + datasize;
2437 	struct sk_buff *skb;
2438 
2439 	skb = __napi_alloc_skb(&ring->q_vector->napi,
2440 			       xdp->data_end - xdp->data_hard_start,
2441 			       GFP_ATOMIC | __GFP_NOWARN);
2442 	if (unlikely(!skb))
2443 		return NULL;
2444 
2445 	skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
2446 	memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize);
2447 	if (metasize)
2448 		skb_metadata_set(skb, metasize);
2449 
2450 	return skb;
2451 }
2452 
2453 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2454 				union igc_adv_rx_desc *desc,
2455 				struct xdp_buff *xdp,
2456 				ktime_t timestamp)
2457 {
2458 	struct igc_ring *ring = q_vector->rx.ring;
2459 	struct sk_buff *skb;
2460 
2461 	skb = igc_construct_skb_zc(ring, xdp);
2462 	if (!skb) {
2463 		ring->rx_stats.alloc_failed++;
2464 		return;
2465 	}
2466 
2467 	if (timestamp)
2468 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2469 
2470 	if (igc_cleanup_headers(ring, desc, skb))
2471 		return;
2472 
2473 	igc_process_skb_fields(ring, desc, skb);
2474 	napi_gro_receive(&q_vector->napi, skb);
2475 }
2476 
2477 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2478 {
2479 	struct igc_adapter *adapter = q_vector->adapter;
2480 	struct igc_ring *ring = q_vector->rx.ring;
2481 	u16 cleaned_count = igc_desc_unused(ring);
2482 	int total_bytes = 0, total_packets = 0;
2483 	u16 ntc = ring->next_to_clean;
2484 	struct bpf_prog *prog;
2485 	bool failure = false;
2486 	int xdp_status = 0;
2487 
2488 	rcu_read_lock();
2489 
2490 	prog = READ_ONCE(adapter->xdp_prog);
2491 
2492 	while (likely(total_packets < budget)) {
2493 		union igc_adv_rx_desc *desc;
2494 		struct igc_rx_buffer *bi;
2495 		ktime_t timestamp = 0;
2496 		unsigned int size;
2497 		int res;
2498 
2499 		desc = IGC_RX_DESC(ring, ntc);
2500 		size = le16_to_cpu(desc->wb.upper.length);
2501 		if (!size)
2502 			break;
2503 
2504 		/* This memory barrier is needed to keep us from reading
2505 		 * any other fields out of the rx_desc until we know the
2506 		 * descriptor has been written back
2507 		 */
2508 		dma_rmb();
2509 
2510 		bi = &ring->rx_buffer_info[ntc];
2511 
2512 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2513 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2514 							bi->xdp->data);
2515 
2516 			bi->xdp->data += IGC_TS_HDR_LEN;
2517 
2518 			/* HW timestamp has been copied into local variable. Metadata
2519 			 * length when XDP program is called should be 0.
2520 			 */
2521 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2522 			size -= IGC_TS_HDR_LEN;
2523 		}
2524 
2525 		bi->xdp->data_end = bi->xdp->data + size;
2526 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2527 
2528 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2529 		switch (res) {
2530 		case IGC_XDP_PASS:
2531 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2532 			fallthrough;
2533 		case IGC_XDP_CONSUMED:
2534 			xsk_buff_free(bi->xdp);
2535 			break;
2536 		case IGC_XDP_TX:
2537 		case IGC_XDP_REDIRECT:
2538 			xdp_status |= res;
2539 			break;
2540 		}
2541 
2542 		bi->xdp = NULL;
2543 		total_bytes += size;
2544 		total_packets++;
2545 		cleaned_count++;
2546 		ntc++;
2547 		if (ntc == ring->count)
2548 			ntc = 0;
2549 	}
2550 
2551 	ring->next_to_clean = ntc;
2552 	rcu_read_unlock();
2553 
2554 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2555 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2556 
2557 	if (xdp_status)
2558 		igc_finalize_xdp(adapter, xdp_status);
2559 
2560 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2561 
2562 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2563 		if (failure || ring->next_to_clean == ring->next_to_use)
2564 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2565 		else
2566 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2567 		return total_packets;
2568 	}
2569 
2570 	return failure ? budget : total_packets;
2571 }
2572 
2573 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2574 				unsigned int packets, unsigned int bytes)
2575 {
2576 	struct igc_ring *ring = q_vector->tx.ring;
2577 
2578 	u64_stats_update_begin(&ring->tx_syncp);
2579 	ring->tx_stats.bytes += bytes;
2580 	ring->tx_stats.packets += packets;
2581 	u64_stats_update_end(&ring->tx_syncp);
2582 
2583 	q_vector->tx.total_bytes += bytes;
2584 	q_vector->tx.total_packets += packets;
2585 }
2586 
2587 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2588 {
2589 	struct xsk_buff_pool *pool = ring->xsk_pool;
2590 	struct netdev_queue *nq = txring_txq(ring);
2591 	union igc_adv_tx_desc *tx_desc = NULL;
2592 	int cpu = smp_processor_id();
2593 	u16 ntu = ring->next_to_use;
2594 	struct xdp_desc xdp_desc;
2595 	u16 budget;
2596 
2597 	if (!netif_carrier_ok(ring->netdev))
2598 		return;
2599 
2600 	__netif_tx_lock(nq, cpu);
2601 
2602 	budget = igc_desc_unused(ring);
2603 
2604 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2605 		u32 cmd_type, olinfo_status;
2606 		struct igc_tx_buffer *bi;
2607 		dma_addr_t dma;
2608 
2609 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2610 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2611 			   xdp_desc.len;
2612 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2613 
2614 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2615 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2616 
2617 		tx_desc = IGC_TX_DESC(ring, ntu);
2618 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2619 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2620 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2621 
2622 		bi = &ring->tx_buffer_info[ntu];
2623 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2624 		bi->protocol = 0;
2625 		bi->bytecount = xdp_desc.len;
2626 		bi->gso_segs = 1;
2627 		bi->time_stamp = jiffies;
2628 		bi->next_to_watch = tx_desc;
2629 
2630 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2631 
2632 		ntu++;
2633 		if (ntu == ring->count)
2634 			ntu = 0;
2635 	}
2636 
2637 	ring->next_to_use = ntu;
2638 	if (tx_desc) {
2639 		igc_flush_tx_descriptors(ring);
2640 		xsk_tx_release(pool);
2641 	}
2642 
2643 	__netif_tx_unlock(nq);
2644 }
2645 
2646 /**
2647  * igc_clean_tx_irq - Reclaim resources after transmit completes
2648  * @q_vector: pointer to q_vector containing needed info
2649  * @napi_budget: Used to determine if we are in netpoll
2650  *
2651  * returns true if ring is completely cleaned
2652  */
2653 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2654 {
2655 	struct igc_adapter *adapter = q_vector->adapter;
2656 	unsigned int total_bytes = 0, total_packets = 0;
2657 	unsigned int budget = q_vector->tx.work_limit;
2658 	struct igc_ring *tx_ring = q_vector->tx.ring;
2659 	unsigned int i = tx_ring->next_to_clean;
2660 	struct igc_tx_buffer *tx_buffer;
2661 	union igc_adv_tx_desc *tx_desc;
2662 	u32 xsk_frames = 0;
2663 
2664 	if (test_bit(__IGC_DOWN, &adapter->state))
2665 		return true;
2666 
2667 	tx_buffer = &tx_ring->tx_buffer_info[i];
2668 	tx_desc = IGC_TX_DESC(tx_ring, i);
2669 	i -= tx_ring->count;
2670 
2671 	do {
2672 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2673 
2674 		/* if next_to_watch is not set then there is no work pending */
2675 		if (!eop_desc)
2676 			break;
2677 
2678 		/* prevent any other reads prior to eop_desc */
2679 		smp_rmb();
2680 
2681 		/* if DD is not set pending work has not been completed */
2682 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2683 			break;
2684 
2685 		/* clear next_to_watch to prevent false hangs */
2686 		tx_buffer->next_to_watch = NULL;
2687 
2688 		/* update the statistics for this packet */
2689 		total_bytes += tx_buffer->bytecount;
2690 		total_packets += tx_buffer->gso_segs;
2691 
2692 		switch (tx_buffer->type) {
2693 		case IGC_TX_BUFFER_TYPE_XSK:
2694 			xsk_frames++;
2695 			break;
2696 		case IGC_TX_BUFFER_TYPE_XDP:
2697 			xdp_return_frame(tx_buffer->xdpf);
2698 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2699 			break;
2700 		case IGC_TX_BUFFER_TYPE_SKB:
2701 			napi_consume_skb(tx_buffer->skb, napi_budget);
2702 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2703 			break;
2704 		default:
2705 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2706 			break;
2707 		}
2708 
2709 		/* clear last DMA location and unmap remaining buffers */
2710 		while (tx_desc != eop_desc) {
2711 			tx_buffer++;
2712 			tx_desc++;
2713 			i++;
2714 			if (unlikely(!i)) {
2715 				i -= tx_ring->count;
2716 				tx_buffer = tx_ring->tx_buffer_info;
2717 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2718 			}
2719 
2720 			/* unmap any remaining paged data */
2721 			if (dma_unmap_len(tx_buffer, len))
2722 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2723 		}
2724 
2725 		/* move us one more past the eop_desc for start of next pkt */
2726 		tx_buffer++;
2727 		tx_desc++;
2728 		i++;
2729 		if (unlikely(!i)) {
2730 			i -= tx_ring->count;
2731 			tx_buffer = tx_ring->tx_buffer_info;
2732 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2733 		}
2734 
2735 		/* issue prefetch for next Tx descriptor */
2736 		prefetch(tx_desc);
2737 
2738 		/* update budget accounting */
2739 		budget--;
2740 	} while (likely(budget));
2741 
2742 	netdev_tx_completed_queue(txring_txq(tx_ring),
2743 				  total_packets, total_bytes);
2744 
2745 	i += tx_ring->count;
2746 	tx_ring->next_to_clean = i;
2747 
2748 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2749 
2750 	if (tx_ring->xsk_pool) {
2751 		if (xsk_frames)
2752 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2753 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2754 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2755 		igc_xdp_xmit_zc(tx_ring);
2756 	}
2757 
2758 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2759 		struct igc_hw *hw = &adapter->hw;
2760 
2761 		/* Detect a transmit hang in hardware, this serializes the
2762 		 * check with the clearing of time_stamp and movement of i
2763 		 */
2764 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2765 		if (tx_buffer->next_to_watch &&
2766 		    time_after(jiffies, tx_buffer->time_stamp +
2767 		    (adapter->tx_timeout_factor * HZ)) &&
2768 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2769 			/* detected Tx unit hang */
2770 			netdev_err(tx_ring->netdev,
2771 				   "Detected Tx Unit Hang\n"
2772 				   "  Tx Queue             <%d>\n"
2773 				   "  TDH                  <%x>\n"
2774 				   "  TDT                  <%x>\n"
2775 				   "  next_to_use          <%x>\n"
2776 				   "  next_to_clean        <%x>\n"
2777 				   "buffer_info[next_to_clean]\n"
2778 				   "  time_stamp           <%lx>\n"
2779 				   "  next_to_watch        <%p>\n"
2780 				   "  jiffies              <%lx>\n"
2781 				   "  desc.status          <%x>\n",
2782 				   tx_ring->queue_index,
2783 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2784 				   readl(tx_ring->tail),
2785 				   tx_ring->next_to_use,
2786 				   tx_ring->next_to_clean,
2787 				   tx_buffer->time_stamp,
2788 				   tx_buffer->next_to_watch,
2789 				   jiffies,
2790 				   tx_buffer->next_to_watch->wb.status);
2791 			netif_stop_subqueue(tx_ring->netdev,
2792 					    tx_ring->queue_index);
2793 
2794 			/* we are about to reset, no point in enabling stuff */
2795 			return true;
2796 		}
2797 	}
2798 
2799 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2800 	if (unlikely(total_packets &&
2801 		     netif_carrier_ok(tx_ring->netdev) &&
2802 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2803 		/* Make sure that anybody stopping the queue after this
2804 		 * sees the new next_to_clean.
2805 		 */
2806 		smp_mb();
2807 		if (__netif_subqueue_stopped(tx_ring->netdev,
2808 					     tx_ring->queue_index) &&
2809 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2810 			netif_wake_subqueue(tx_ring->netdev,
2811 					    tx_ring->queue_index);
2812 
2813 			u64_stats_update_begin(&tx_ring->tx_syncp);
2814 			tx_ring->tx_stats.restart_queue++;
2815 			u64_stats_update_end(&tx_ring->tx_syncp);
2816 		}
2817 	}
2818 
2819 	return !!budget;
2820 }
2821 
2822 static int igc_find_mac_filter(struct igc_adapter *adapter,
2823 			       enum igc_mac_filter_type type, const u8 *addr)
2824 {
2825 	struct igc_hw *hw = &adapter->hw;
2826 	int max_entries = hw->mac.rar_entry_count;
2827 	u32 ral, rah;
2828 	int i;
2829 
2830 	for (i = 0; i < max_entries; i++) {
2831 		ral = rd32(IGC_RAL(i));
2832 		rah = rd32(IGC_RAH(i));
2833 
2834 		if (!(rah & IGC_RAH_AV))
2835 			continue;
2836 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2837 			continue;
2838 		if ((rah & IGC_RAH_RAH_MASK) !=
2839 		    le16_to_cpup((__le16 *)(addr + 4)))
2840 			continue;
2841 		if (ral != le32_to_cpup((__le32 *)(addr)))
2842 			continue;
2843 
2844 		return i;
2845 	}
2846 
2847 	return -1;
2848 }
2849 
2850 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2851 {
2852 	struct igc_hw *hw = &adapter->hw;
2853 	int max_entries = hw->mac.rar_entry_count;
2854 	u32 rah;
2855 	int i;
2856 
2857 	for (i = 0; i < max_entries; i++) {
2858 		rah = rd32(IGC_RAH(i));
2859 
2860 		if (!(rah & IGC_RAH_AV))
2861 			return i;
2862 	}
2863 
2864 	return -1;
2865 }
2866 
2867 /**
2868  * igc_add_mac_filter() - Add MAC address filter
2869  * @adapter: Pointer to adapter where the filter should be added
2870  * @type: MAC address filter type (source or destination)
2871  * @addr: MAC address
2872  * @queue: If non-negative, queue assignment feature is enabled and frames
2873  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2874  *         assignment is disabled.
2875  *
2876  * Return: 0 in case of success, negative errno code otherwise.
2877  */
2878 static int igc_add_mac_filter(struct igc_adapter *adapter,
2879 			      enum igc_mac_filter_type type, const u8 *addr,
2880 			      int queue)
2881 {
2882 	struct net_device *dev = adapter->netdev;
2883 	int index;
2884 
2885 	index = igc_find_mac_filter(adapter, type, addr);
2886 	if (index >= 0)
2887 		goto update_filter;
2888 
2889 	index = igc_get_avail_mac_filter_slot(adapter);
2890 	if (index < 0)
2891 		return -ENOSPC;
2892 
2893 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2894 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2895 		   addr, queue);
2896 
2897 update_filter:
2898 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2899 	return 0;
2900 }
2901 
2902 /**
2903  * igc_del_mac_filter() - Delete MAC address filter
2904  * @adapter: Pointer to adapter where the filter should be deleted from
2905  * @type: MAC address filter type (source or destination)
2906  * @addr: MAC address
2907  */
2908 static void igc_del_mac_filter(struct igc_adapter *adapter,
2909 			       enum igc_mac_filter_type type, const u8 *addr)
2910 {
2911 	struct net_device *dev = adapter->netdev;
2912 	int index;
2913 
2914 	index = igc_find_mac_filter(adapter, type, addr);
2915 	if (index < 0)
2916 		return;
2917 
2918 	if (index == 0) {
2919 		/* If this is the default filter, we don't actually delete it.
2920 		 * We just reset to its default value i.e. disable queue
2921 		 * assignment.
2922 		 */
2923 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2924 
2925 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2926 	} else {
2927 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2928 			   index,
2929 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2930 			   addr);
2931 
2932 		igc_clear_mac_filter_hw(adapter, index);
2933 	}
2934 }
2935 
2936 /**
2937  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2938  * @adapter: Pointer to adapter where the filter should be added
2939  * @prio: VLAN priority value
2940  * @queue: Queue number which matching frames are assigned to
2941  *
2942  * Return: 0 in case of success, negative errno code otherwise.
2943  */
2944 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2945 				    int queue)
2946 {
2947 	struct net_device *dev = adapter->netdev;
2948 	struct igc_hw *hw = &adapter->hw;
2949 	u32 vlanpqf;
2950 
2951 	vlanpqf = rd32(IGC_VLANPQF);
2952 
2953 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2954 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2955 		return -EEXIST;
2956 	}
2957 
2958 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2959 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2960 
2961 	wr32(IGC_VLANPQF, vlanpqf);
2962 
2963 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2964 		   prio, queue);
2965 	return 0;
2966 }
2967 
2968 /**
2969  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2970  * @adapter: Pointer to adapter where the filter should be deleted from
2971  * @prio: VLAN priority value
2972  */
2973 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2974 {
2975 	struct igc_hw *hw = &adapter->hw;
2976 	u32 vlanpqf;
2977 
2978 	vlanpqf = rd32(IGC_VLANPQF);
2979 
2980 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2981 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2982 
2983 	wr32(IGC_VLANPQF, vlanpqf);
2984 
2985 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2986 		   prio);
2987 }
2988 
2989 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2990 {
2991 	struct igc_hw *hw = &adapter->hw;
2992 	int i;
2993 
2994 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2995 		u32 etqf = rd32(IGC_ETQF(i));
2996 
2997 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2998 			return i;
2999 	}
3000 
3001 	return -1;
3002 }
3003 
3004 /**
3005  * igc_add_etype_filter() - Add ethertype filter
3006  * @adapter: Pointer to adapter where the filter should be added
3007  * @etype: Ethertype value
3008  * @queue: If non-negative, queue assignment feature is enabled and frames
3009  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3010  *         assignment is disabled.
3011  *
3012  * Return: 0 in case of success, negative errno code otherwise.
3013  */
3014 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3015 				int queue)
3016 {
3017 	struct igc_hw *hw = &adapter->hw;
3018 	int index;
3019 	u32 etqf;
3020 
3021 	index = igc_get_avail_etype_filter_slot(adapter);
3022 	if (index < 0)
3023 		return -ENOSPC;
3024 
3025 	etqf = rd32(IGC_ETQF(index));
3026 
3027 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3028 	etqf |= etype;
3029 
3030 	if (queue >= 0) {
3031 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3032 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3033 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3034 	}
3035 
3036 	etqf |= IGC_ETQF_FILTER_ENABLE;
3037 
3038 	wr32(IGC_ETQF(index), etqf);
3039 
3040 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3041 		   etype, queue);
3042 	return 0;
3043 }
3044 
3045 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3046 {
3047 	struct igc_hw *hw = &adapter->hw;
3048 	int i;
3049 
3050 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3051 		u32 etqf = rd32(IGC_ETQF(i));
3052 
3053 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3054 			return i;
3055 	}
3056 
3057 	return -1;
3058 }
3059 
3060 /**
3061  * igc_del_etype_filter() - Delete ethertype filter
3062  * @adapter: Pointer to adapter where the filter should be deleted from
3063  * @etype: Ethertype value
3064  */
3065 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3066 {
3067 	struct igc_hw *hw = &adapter->hw;
3068 	int index;
3069 
3070 	index = igc_find_etype_filter(adapter, etype);
3071 	if (index < 0)
3072 		return;
3073 
3074 	wr32(IGC_ETQF(index), 0);
3075 
3076 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3077 		   etype);
3078 }
3079 
3080 static int igc_flex_filter_select(struct igc_adapter *adapter,
3081 				  struct igc_flex_filter *input,
3082 				  u32 *fhft)
3083 {
3084 	struct igc_hw *hw = &adapter->hw;
3085 	u8 fhft_index;
3086 	u32 fhftsl;
3087 
3088 	if (input->index >= MAX_FLEX_FILTER) {
3089 		dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3090 		return -EINVAL;
3091 	}
3092 
3093 	/* Indirect table select register */
3094 	fhftsl = rd32(IGC_FHFTSL);
3095 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3096 	switch (input->index) {
3097 	case 0 ... 7:
3098 		fhftsl |= 0x00;
3099 		break;
3100 	case 8 ... 15:
3101 		fhftsl |= 0x01;
3102 		break;
3103 	case 16 ... 23:
3104 		fhftsl |= 0x02;
3105 		break;
3106 	case 24 ... 31:
3107 		fhftsl |= 0x03;
3108 		break;
3109 	}
3110 	wr32(IGC_FHFTSL, fhftsl);
3111 
3112 	/* Normalize index down to host table register */
3113 	fhft_index = input->index % 8;
3114 
3115 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3116 		IGC_FHFT_EXT(fhft_index - 4);
3117 
3118 	return 0;
3119 }
3120 
3121 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3122 				    struct igc_flex_filter *input)
3123 {
3124 	struct device *dev = &adapter->pdev->dev;
3125 	struct igc_hw *hw = &adapter->hw;
3126 	u8 *data = input->data;
3127 	u8 *mask = input->mask;
3128 	u32 queuing;
3129 	u32 fhft;
3130 	u32 wufc;
3131 	int ret;
3132 	int i;
3133 
3134 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3135 	 * out early to avoid surprises later.
3136 	 */
3137 	if (input->length % 8 != 0) {
3138 		dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3139 		return -EINVAL;
3140 	}
3141 
3142 	/* Select corresponding flex filter register and get base for host table. */
3143 	ret = igc_flex_filter_select(adapter, input, &fhft);
3144 	if (ret)
3145 		return ret;
3146 
3147 	/* When adding a filter globally disable flex filter feature. That is
3148 	 * recommended within the datasheet.
3149 	 */
3150 	wufc = rd32(IGC_WUFC);
3151 	wufc &= ~IGC_WUFC_FLEX_HQ;
3152 	wr32(IGC_WUFC, wufc);
3153 
3154 	/* Configure filter */
3155 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3156 	queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3157 	queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3158 
3159 	if (input->immediate_irq)
3160 		queuing |= IGC_FHFT_IMM_INT;
3161 
3162 	if (input->drop)
3163 		queuing |= IGC_FHFT_DROP;
3164 
3165 	wr32(fhft + 0xFC, queuing);
3166 
3167 	/* Write data (128 byte) and mask (128 bit) */
3168 	for (i = 0; i < 16; ++i) {
3169 		const size_t data_idx = i * 8;
3170 		const size_t row_idx = i * 16;
3171 		u32 dw0 =
3172 			(data[data_idx + 0] << 0) |
3173 			(data[data_idx + 1] << 8) |
3174 			(data[data_idx + 2] << 16) |
3175 			(data[data_idx + 3] << 24);
3176 		u32 dw1 =
3177 			(data[data_idx + 4] << 0) |
3178 			(data[data_idx + 5] << 8) |
3179 			(data[data_idx + 6] << 16) |
3180 			(data[data_idx + 7] << 24);
3181 		u32 tmp;
3182 
3183 		/* Write row: dw0, dw1 and mask */
3184 		wr32(fhft + row_idx, dw0);
3185 		wr32(fhft + row_idx + 4, dw1);
3186 
3187 		/* mask is only valid for MASK(7, 0) */
3188 		tmp = rd32(fhft + row_idx + 8);
3189 		tmp &= ~GENMASK(7, 0);
3190 		tmp |= mask[i];
3191 		wr32(fhft + row_idx + 8, tmp);
3192 	}
3193 
3194 	/* Enable filter. */
3195 	wufc |= IGC_WUFC_FLEX_HQ;
3196 	if (input->index > 8) {
3197 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3198 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3199 
3200 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3201 
3202 		wr32(IGC_WUFC_EXT, wufc_ext);
3203 	} else {
3204 		wufc |= (IGC_WUFC_FLX0 << input->index);
3205 	}
3206 	wr32(IGC_WUFC, wufc);
3207 
3208 	dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3209 		input->index);
3210 
3211 	return 0;
3212 }
3213 
3214 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3215 				      const void *src, unsigned int offset,
3216 				      size_t len, const void *mask)
3217 {
3218 	int i;
3219 
3220 	/* data */
3221 	memcpy(&flex->data[offset], src, len);
3222 
3223 	/* mask */
3224 	for (i = 0; i < len; ++i) {
3225 		const unsigned int idx = i + offset;
3226 		const u8 *ptr = mask;
3227 
3228 		if (mask) {
3229 			if (ptr[i] & 0xff)
3230 				flex->mask[idx / 8] |= BIT(idx % 8);
3231 
3232 			continue;
3233 		}
3234 
3235 		flex->mask[idx / 8] |= BIT(idx % 8);
3236 	}
3237 }
3238 
3239 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3240 {
3241 	struct igc_hw *hw = &adapter->hw;
3242 	u32 wufc, wufc_ext;
3243 	int i;
3244 
3245 	wufc = rd32(IGC_WUFC);
3246 	wufc_ext = rd32(IGC_WUFC_EXT);
3247 
3248 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3249 		if (i < 8) {
3250 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3251 				return i;
3252 		} else {
3253 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3254 				return i;
3255 		}
3256 	}
3257 
3258 	return -ENOSPC;
3259 }
3260 
3261 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3262 {
3263 	struct igc_hw *hw = &adapter->hw;
3264 	u32 wufc, wufc_ext;
3265 
3266 	wufc = rd32(IGC_WUFC);
3267 	wufc_ext = rd32(IGC_WUFC_EXT);
3268 
3269 	if (wufc & IGC_WUFC_FILTER_MASK)
3270 		return true;
3271 
3272 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3273 		return true;
3274 
3275 	return false;
3276 }
3277 
3278 static int igc_add_flex_filter(struct igc_adapter *adapter,
3279 			       struct igc_nfc_rule *rule)
3280 {
3281 	struct igc_flex_filter flex = { };
3282 	struct igc_nfc_filter *filter = &rule->filter;
3283 	unsigned int eth_offset, user_offset;
3284 	int ret, index;
3285 	bool vlan;
3286 
3287 	index = igc_find_avail_flex_filter_slot(adapter);
3288 	if (index < 0)
3289 		return -ENOSPC;
3290 
3291 	/* Construct the flex filter:
3292 	 *  -> dest_mac [6]
3293 	 *  -> src_mac [6]
3294 	 *  -> tpid [2]
3295 	 *  -> vlan tci [2]
3296 	 *  -> ether type [2]
3297 	 *  -> user data [8]
3298 	 *  -> = 26 bytes => 32 length
3299 	 */
3300 	flex.index    = index;
3301 	flex.length   = 32;
3302 	flex.rx_queue = rule->action;
3303 
3304 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3305 	eth_offset = vlan ? 16 : 12;
3306 	user_offset = vlan ? 18 : 14;
3307 
3308 	/* Add destination MAC  */
3309 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3310 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3311 					  ETH_ALEN, NULL);
3312 
3313 	/* Add source MAC */
3314 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3315 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3316 					  ETH_ALEN, NULL);
3317 
3318 	/* Add VLAN etype */
3319 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3320 		igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3321 					  sizeof(filter->vlan_etype),
3322 					  NULL);
3323 
3324 	/* Add VLAN TCI */
3325 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3326 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3327 					  sizeof(filter->vlan_tci), NULL);
3328 
3329 	/* Add Ether type */
3330 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3331 		__be16 etype = cpu_to_be16(filter->etype);
3332 
3333 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3334 					  sizeof(etype), NULL);
3335 	}
3336 
3337 	/* Add user data */
3338 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3339 		igc_flex_filter_add_field(&flex, &filter->user_data,
3340 					  user_offset,
3341 					  sizeof(filter->user_data),
3342 					  filter->user_mask);
3343 
3344 	/* Add it down to the hardware and enable it. */
3345 	ret = igc_write_flex_filter_ll(adapter, &flex);
3346 	if (ret)
3347 		return ret;
3348 
3349 	filter->flex_index = index;
3350 
3351 	return 0;
3352 }
3353 
3354 static void igc_del_flex_filter(struct igc_adapter *adapter,
3355 				u16 reg_index)
3356 {
3357 	struct igc_hw *hw = &adapter->hw;
3358 	u32 wufc;
3359 
3360 	/* Just disable the filter. The filter table itself is kept
3361 	 * intact. Another flex_filter_add() should override the "old" data
3362 	 * then.
3363 	 */
3364 	if (reg_index > 8) {
3365 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3366 
3367 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3368 		wr32(IGC_WUFC_EXT, wufc_ext);
3369 	} else {
3370 		wufc = rd32(IGC_WUFC);
3371 
3372 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3373 		wr32(IGC_WUFC, wufc);
3374 	}
3375 
3376 	if (igc_flex_filter_in_use(adapter))
3377 		return;
3378 
3379 	/* No filters are in use, we may disable flex filters */
3380 	wufc = rd32(IGC_WUFC);
3381 	wufc &= ~IGC_WUFC_FLEX_HQ;
3382 	wr32(IGC_WUFC, wufc);
3383 }
3384 
3385 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3386 			       struct igc_nfc_rule *rule)
3387 {
3388 	int err;
3389 
3390 	if (rule->flex) {
3391 		return igc_add_flex_filter(adapter, rule);
3392 	}
3393 
3394 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3395 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3396 					   rule->action);
3397 		if (err)
3398 			return err;
3399 	}
3400 
3401 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3402 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3403 					 rule->filter.src_addr, rule->action);
3404 		if (err)
3405 			return err;
3406 	}
3407 
3408 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3409 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3410 					 rule->filter.dst_addr, rule->action);
3411 		if (err)
3412 			return err;
3413 	}
3414 
3415 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3416 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3417 			   VLAN_PRIO_SHIFT;
3418 
3419 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3420 		if (err)
3421 			return err;
3422 	}
3423 
3424 	return 0;
3425 }
3426 
3427 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3428 				 const struct igc_nfc_rule *rule)
3429 {
3430 	if (rule->flex) {
3431 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3432 		return;
3433 	}
3434 
3435 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3436 		igc_del_etype_filter(adapter, rule->filter.etype);
3437 
3438 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3439 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3440 			   VLAN_PRIO_SHIFT;
3441 
3442 		igc_del_vlan_prio_filter(adapter, prio);
3443 	}
3444 
3445 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3446 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3447 				   rule->filter.src_addr);
3448 
3449 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3450 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3451 				   rule->filter.dst_addr);
3452 }
3453 
3454 /**
3455  * igc_get_nfc_rule() - Get NFC rule
3456  * @adapter: Pointer to adapter
3457  * @location: Rule location
3458  *
3459  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3460  *
3461  * Return: Pointer to NFC rule at @location. If not found, NULL.
3462  */
3463 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3464 				      u32 location)
3465 {
3466 	struct igc_nfc_rule *rule;
3467 
3468 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3469 		if (rule->location == location)
3470 			return rule;
3471 		if (rule->location > location)
3472 			break;
3473 	}
3474 
3475 	return NULL;
3476 }
3477 
3478 /**
3479  * igc_del_nfc_rule() - Delete NFC rule
3480  * @adapter: Pointer to adapter
3481  * @rule: Pointer to rule to be deleted
3482  *
3483  * Disable NFC rule in hardware and delete it from adapter.
3484  *
3485  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3486  */
3487 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3488 {
3489 	igc_disable_nfc_rule(adapter, rule);
3490 
3491 	list_del(&rule->list);
3492 	adapter->nfc_rule_count--;
3493 
3494 	kfree(rule);
3495 }
3496 
3497 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3498 {
3499 	struct igc_nfc_rule *rule, *tmp;
3500 
3501 	mutex_lock(&adapter->nfc_rule_lock);
3502 
3503 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3504 		igc_del_nfc_rule(adapter, rule);
3505 
3506 	mutex_unlock(&adapter->nfc_rule_lock);
3507 }
3508 
3509 /**
3510  * igc_add_nfc_rule() - Add NFC rule
3511  * @adapter: Pointer to adapter
3512  * @rule: Pointer to rule to be added
3513  *
3514  * Enable NFC rule in hardware and add it to adapter.
3515  *
3516  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3517  *
3518  * Return: 0 on success, negative errno on failure.
3519  */
3520 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3521 {
3522 	struct igc_nfc_rule *pred, *cur;
3523 	int err;
3524 
3525 	err = igc_enable_nfc_rule(adapter, rule);
3526 	if (err)
3527 		return err;
3528 
3529 	pred = NULL;
3530 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3531 		if (cur->location >= rule->location)
3532 			break;
3533 		pred = cur;
3534 	}
3535 
3536 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3537 	adapter->nfc_rule_count++;
3538 	return 0;
3539 }
3540 
3541 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3542 {
3543 	struct igc_nfc_rule *rule;
3544 
3545 	mutex_lock(&adapter->nfc_rule_lock);
3546 
3547 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3548 		igc_enable_nfc_rule(adapter, rule);
3549 
3550 	mutex_unlock(&adapter->nfc_rule_lock);
3551 }
3552 
3553 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3554 {
3555 	struct igc_adapter *adapter = netdev_priv(netdev);
3556 
3557 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3558 }
3559 
3560 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3561 {
3562 	struct igc_adapter *adapter = netdev_priv(netdev);
3563 
3564 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3565 	return 0;
3566 }
3567 
3568 /**
3569  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3570  * @netdev: network interface device structure
3571  *
3572  * The set_rx_mode entry point is called whenever the unicast or multicast
3573  * address lists or the network interface flags are updated.  This routine is
3574  * responsible for configuring the hardware for proper unicast, multicast,
3575  * promiscuous mode, and all-multi behavior.
3576  */
3577 static void igc_set_rx_mode(struct net_device *netdev)
3578 {
3579 	struct igc_adapter *adapter = netdev_priv(netdev);
3580 	struct igc_hw *hw = &adapter->hw;
3581 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3582 	int count;
3583 
3584 	/* Check for Promiscuous and All Multicast modes */
3585 	if (netdev->flags & IFF_PROMISC) {
3586 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3587 	} else {
3588 		if (netdev->flags & IFF_ALLMULTI) {
3589 			rctl |= IGC_RCTL_MPE;
3590 		} else {
3591 			/* Write addresses to the MTA, if the attempt fails
3592 			 * then we should just turn on promiscuous mode so
3593 			 * that we can at least receive multicast traffic
3594 			 */
3595 			count = igc_write_mc_addr_list(netdev);
3596 			if (count < 0)
3597 				rctl |= IGC_RCTL_MPE;
3598 		}
3599 	}
3600 
3601 	/* Write addresses to available RAR registers, if there is not
3602 	 * sufficient space to store all the addresses then enable
3603 	 * unicast promiscuous mode
3604 	 */
3605 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3606 		rctl |= IGC_RCTL_UPE;
3607 
3608 	/* update state of unicast and multicast */
3609 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3610 	wr32(IGC_RCTL, rctl);
3611 
3612 #if (PAGE_SIZE < 8192)
3613 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3614 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3615 #endif
3616 	wr32(IGC_RLPML, rlpml);
3617 }
3618 
3619 /**
3620  * igc_configure - configure the hardware for RX and TX
3621  * @adapter: private board structure
3622  */
3623 static void igc_configure(struct igc_adapter *adapter)
3624 {
3625 	struct net_device *netdev = adapter->netdev;
3626 	int i = 0;
3627 
3628 	igc_get_hw_control(adapter);
3629 	igc_set_rx_mode(netdev);
3630 
3631 	igc_restore_vlan(adapter);
3632 
3633 	igc_setup_tctl(adapter);
3634 	igc_setup_mrqc(adapter);
3635 	igc_setup_rctl(adapter);
3636 
3637 	igc_set_default_mac_filter(adapter);
3638 	igc_restore_nfc_rules(adapter);
3639 
3640 	igc_configure_tx(adapter);
3641 	igc_configure_rx(adapter);
3642 
3643 	igc_rx_fifo_flush_base(&adapter->hw);
3644 
3645 	/* call igc_desc_unused which always leaves
3646 	 * at least 1 descriptor unused to make sure
3647 	 * next_to_use != next_to_clean
3648 	 */
3649 	for (i = 0; i < adapter->num_rx_queues; i++) {
3650 		struct igc_ring *ring = adapter->rx_ring[i];
3651 
3652 		if (ring->xsk_pool)
3653 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3654 		else
3655 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3656 	}
3657 }
3658 
3659 /**
3660  * igc_write_ivar - configure ivar for given MSI-X vector
3661  * @hw: pointer to the HW structure
3662  * @msix_vector: vector number we are allocating to a given ring
3663  * @index: row index of IVAR register to write within IVAR table
3664  * @offset: column offset of in IVAR, should be multiple of 8
3665  *
3666  * The IVAR table consists of 2 columns,
3667  * each containing an cause allocation for an Rx and Tx ring, and a
3668  * variable number of rows depending on the number of queues supported.
3669  */
3670 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3671 			   int index, int offset)
3672 {
3673 	u32 ivar = array_rd32(IGC_IVAR0, index);
3674 
3675 	/* clear any bits that are currently set */
3676 	ivar &= ~((u32)0xFF << offset);
3677 
3678 	/* write vector and valid bit */
3679 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3680 
3681 	array_wr32(IGC_IVAR0, index, ivar);
3682 }
3683 
3684 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3685 {
3686 	struct igc_adapter *adapter = q_vector->adapter;
3687 	struct igc_hw *hw = &adapter->hw;
3688 	int rx_queue = IGC_N0_QUEUE;
3689 	int tx_queue = IGC_N0_QUEUE;
3690 
3691 	if (q_vector->rx.ring)
3692 		rx_queue = q_vector->rx.ring->reg_idx;
3693 	if (q_vector->tx.ring)
3694 		tx_queue = q_vector->tx.ring->reg_idx;
3695 
3696 	switch (hw->mac.type) {
3697 	case igc_i225:
3698 		if (rx_queue > IGC_N0_QUEUE)
3699 			igc_write_ivar(hw, msix_vector,
3700 				       rx_queue >> 1,
3701 				       (rx_queue & 0x1) << 4);
3702 		if (tx_queue > IGC_N0_QUEUE)
3703 			igc_write_ivar(hw, msix_vector,
3704 				       tx_queue >> 1,
3705 				       ((tx_queue & 0x1) << 4) + 8);
3706 		q_vector->eims_value = BIT(msix_vector);
3707 		break;
3708 	default:
3709 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3710 		break;
3711 	}
3712 
3713 	/* add q_vector eims value to global eims_enable_mask */
3714 	adapter->eims_enable_mask |= q_vector->eims_value;
3715 
3716 	/* configure q_vector to set itr on first interrupt */
3717 	q_vector->set_itr = 1;
3718 }
3719 
3720 /**
3721  * igc_configure_msix - Configure MSI-X hardware
3722  * @adapter: Pointer to adapter structure
3723  *
3724  * igc_configure_msix sets up the hardware to properly
3725  * generate MSI-X interrupts.
3726  */
3727 static void igc_configure_msix(struct igc_adapter *adapter)
3728 {
3729 	struct igc_hw *hw = &adapter->hw;
3730 	int i, vector = 0;
3731 	u32 tmp;
3732 
3733 	adapter->eims_enable_mask = 0;
3734 
3735 	/* set vector for other causes, i.e. link changes */
3736 	switch (hw->mac.type) {
3737 	case igc_i225:
3738 		/* Turn on MSI-X capability first, or our settings
3739 		 * won't stick.  And it will take days to debug.
3740 		 */
3741 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3742 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3743 		     IGC_GPIE_NSICR);
3744 
3745 		/* enable msix_other interrupt */
3746 		adapter->eims_other = BIT(vector);
3747 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3748 
3749 		wr32(IGC_IVAR_MISC, tmp);
3750 		break;
3751 	default:
3752 		/* do nothing, since nothing else supports MSI-X */
3753 		break;
3754 	} /* switch (hw->mac.type) */
3755 
3756 	adapter->eims_enable_mask |= adapter->eims_other;
3757 
3758 	for (i = 0; i < adapter->num_q_vectors; i++)
3759 		igc_assign_vector(adapter->q_vector[i], vector++);
3760 
3761 	wrfl();
3762 }
3763 
3764 /**
3765  * igc_irq_enable - Enable default interrupt generation settings
3766  * @adapter: board private structure
3767  */
3768 static void igc_irq_enable(struct igc_adapter *adapter)
3769 {
3770 	struct igc_hw *hw = &adapter->hw;
3771 
3772 	if (adapter->msix_entries) {
3773 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3774 		u32 regval = rd32(IGC_EIAC);
3775 
3776 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3777 		regval = rd32(IGC_EIAM);
3778 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3779 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3780 		wr32(IGC_IMS, ims);
3781 	} else {
3782 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3783 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3784 	}
3785 }
3786 
3787 /**
3788  * igc_irq_disable - Mask off interrupt generation on the NIC
3789  * @adapter: board private structure
3790  */
3791 static void igc_irq_disable(struct igc_adapter *adapter)
3792 {
3793 	struct igc_hw *hw = &adapter->hw;
3794 
3795 	if (adapter->msix_entries) {
3796 		u32 regval = rd32(IGC_EIAM);
3797 
3798 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3799 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3800 		regval = rd32(IGC_EIAC);
3801 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3802 	}
3803 
3804 	wr32(IGC_IAM, 0);
3805 	wr32(IGC_IMC, ~0);
3806 	wrfl();
3807 
3808 	if (adapter->msix_entries) {
3809 		int vector = 0, i;
3810 
3811 		synchronize_irq(adapter->msix_entries[vector++].vector);
3812 
3813 		for (i = 0; i < adapter->num_q_vectors; i++)
3814 			synchronize_irq(adapter->msix_entries[vector++].vector);
3815 	} else {
3816 		synchronize_irq(adapter->pdev->irq);
3817 	}
3818 }
3819 
3820 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3821 			      const u32 max_rss_queues)
3822 {
3823 	/* Determine if we need to pair queues. */
3824 	/* If rss_queues > half of max_rss_queues, pair the queues in
3825 	 * order to conserve interrupts due to limited supply.
3826 	 */
3827 	if (adapter->rss_queues > (max_rss_queues / 2))
3828 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3829 	else
3830 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3831 }
3832 
3833 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3834 {
3835 	return IGC_MAX_RX_QUEUES;
3836 }
3837 
3838 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3839 {
3840 	u32 max_rss_queues;
3841 
3842 	max_rss_queues = igc_get_max_rss_queues(adapter);
3843 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3844 
3845 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3846 }
3847 
3848 /**
3849  * igc_reset_q_vector - Reset config for interrupt vector
3850  * @adapter: board private structure to initialize
3851  * @v_idx: Index of vector to be reset
3852  *
3853  * If NAPI is enabled it will delete any references to the
3854  * NAPI struct. This is preparation for igc_free_q_vector.
3855  */
3856 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3857 {
3858 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3859 
3860 	/* if we're coming from igc_set_interrupt_capability, the vectors are
3861 	 * not yet allocated
3862 	 */
3863 	if (!q_vector)
3864 		return;
3865 
3866 	if (q_vector->tx.ring)
3867 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3868 
3869 	if (q_vector->rx.ring)
3870 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3871 
3872 	netif_napi_del(&q_vector->napi);
3873 }
3874 
3875 /**
3876  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3877  * @adapter: board private structure to initialize
3878  * @v_idx: Index of vector to be freed
3879  *
3880  * This function frees the memory allocated to the q_vector.
3881  */
3882 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3883 {
3884 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3885 
3886 	adapter->q_vector[v_idx] = NULL;
3887 
3888 	/* igc_get_stats64() might access the rings on this vector,
3889 	 * we must wait a grace period before freeing it.
3890 	 */
3891 	if (q_vector)
3892 		kfree_rcu(q_vector, rcu);
3893 }
3894 
3895 /**
3896  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3897  * @adapter: board private structure to initialize
3898  *
3899  * This function frees the memory allocated to the q_vectors.  In addition if
3900  * NAPI is enabled it will delete any references to the NAPI struct prior
3901  * to freeing the q_vector.
3902  */
3903 static void igc_free_q_vectors(struct igc_adapter *adapter)
3904 {
3905 	int v_idx = adapter->num_q_vectors;
3906 
3907 	adapter->num_tx_queues = 0;
3908 	adapter->num_rx_queues = 0;
3909 	adapter->num_q_vectors = 0;
3910 
3911 	while (v_idx--) {
3912 		igc_reset_q_vector(adapter, v_idx);
3913 		igc_free_q_vector(adapter, v_idx);
3914 	}
3915 }
3916 
3917 /**
3918  * igc_update_itr - update the dynamic ITR value based on statistics
3919  * @q_vector: pointer to q_vector
3920  * @ring_container: ring info to update the itr for
3921  *
3922  * Stores a new ITR value based on packets and byte
3923  * counts during the last interrupt.  The advantage of per interrupt
3924  * computation is faster updates and more accurate ITR for the current
3925  * traffic pattern.  Constants in this function were computed
3926  * based on theoretical maximum wire speed and thresholds were set based
3927  * on testing data as well as attempting to minimize response time
3928  * while increasing bulk throughput.
3929  * NOTE: These calculations are only valid when operating in a single-
3930  * queue environment.
3931  */
3932 static void igc_update_itr(struct igc_q_vector *q_vector,
3933 			   struct igc_ring_container *ring_container)
3934 {
3935 	unsigned int packets = ring_container->total_packets;
3936 	unsigned int bytes = ring_container->total_bytes;
3937 	u8 itrval = ring_container->itr;
3938 
3939 	/* no packets, exit with status unchanged */
3940 	if (packets == 0)
3941 		return;
3942 
3943 	switch (itrval) {
3944 	case lowest_latency:
3945 		/* handle TSO and jumbo frames */
3946 		if (bytes / packets > 8000)
3947 			itrval = bulk_latency;
3948 		else if ((packets < 5) && (bytes > 512))
3949 			itrval = low_latency;
3950 		break;
3951 	case low_latency:  /* 50 usec aka 20000 ints/s */
3952 		if (bytes > 10000) {
3953 			/* this if handles the TSO accounting */
3954 			if (bytes / packets > 8000)
3955 				itrval = bulk_latency;
3956 			else if ((packets < 10) || ((bytes / packets) > 1200))
3957 				itrval = bulk_latency;
3958 			else if ((packets > 35))
3959 				itrval = lowest_latency;
3960 		} else if (bytes / packets > 2000) {
3961 			itrval = bulk_latency;
3962 		} else if (packets <= 2 && bytes < 512) {
3963 			itrval = lowest_latency;
3964 		}
3965 		break;
3966 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3967 		if (bytes > 25000) {
3968 			if (packets > 35)
3969 				itrval = low_latency;
3970 		} else if (bytes < 1500) {
3971 			itrval = low_latency;
3972 		}
3973 		break;
3974 	}
3975 
3976 	/* clear work counters since we have the values we need */
3977 	ring_container->total_bytes = 0;
3978 	ring_container->total_packets = 0;
3979 
3980 	/* write updated itr to ring container */
3981 	ring_container->itr = itrval;
3982 }
3983 
3984 static void igc_set_itr(struct igc_q_vector *q_vector)
3985 {
3986 	struct igc_adapter *adapter = q_vector->adapter;
3987 	u32 new_itr = q_vector->itr_val;
3988 	u8 current_itr = 0;
3989 
3990 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3991 	switch (adapter->link_speed) {
3992 	case SPEED_10:
3993 	case SPEED_100:
3994 		current_itr = 0;
3995 		new_itr = IGC_4K_ITR;
3996 		goto set_itr_now;
3997 	default:
3998 		break;
3999 	}
4000 
4001 	igc_update_itr(q_vector, &q_vector->tx);
4002 	igc_update_itr(q_vector, &q_vector->rx);
4003 
4004 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4005 
4006 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4007 	if (current_itr == lowest_latency &&
4008 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4009 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4010 		current_itr = low_latency;
4011 
4012 	switch (current_itr) {
4013 	/* counts and packets in update_itr are dependent on these numbers */
4014 	case lowest_latency:
4015 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4016 		break;
4017 	case low_latency:
4018 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4019 		break;
4020 	case bulk_latency:
4021 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4022 		break;
4023 	default:
4024 		break;
4025 	}
4026 
4027 set_itr_now:
4028 	if (new_itr != q_vector->itr_val) {
4029 		/* this attempts to bias the interrupt rate towards Bulk
4030 		 * by adding intermediate steps when interrupt rate is
4031 		 * increasing
4032 		 */
4033 		new_itr = new_itr > q_vector->itr_val ?
4034 			  max((new_itr * q_vector->itr_val) /
4035 			  (new_itr + (q_vector->itr_val >> 2)),
4036 			  new_itr) : new_itr;
4037 		/* Don't write the value here; it resets the adapter's
4038 		 * internal timer, and causes us to delay far longer than
4039 		 * we should between interrupts.  Instead, we write the ITR
4040 		 * value at the beginning of the next interrupt so the timing
4041 		 * ends up being correct.
4042 		 */
4043 		q_vector->itr_val = new_itr;
4044 		q_vector->set_itr = 1;
4045 	}
4046 }
4047 
4048 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4049 {
4050 	int v_idx = adapter->num_q_vectors;
4051 
4052 	if (adapter->msix_entries) {
4053 		pci_disable_msix(adapter->pdev);
4054 		kfree(adapter->msix_entries);
4055 		adapter->msix_entries = NULL;
4056 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4057 		pci_disable_msi(adapter->pdev);
4058 	}
4059 
4060 	while (v_idx--)
4061 		igc_reset_q_vector(adapter, v_idx);
4062 }
4063 
4064 /**
4065  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4066  * @adapter: Pointer to adapter structure
4067  * @msix: boolean value for MSI-X capability
4068  *
4069  * Attempt to configure interrupts using the best available
4070  * capabilities of the hardware and kernel.
4071  */
4072 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4073 					 bool msix)
4074 {
4075 	int numvecs, i;
4076 	int err;
4077 
4078 	if (!msix)
4079 		goto msi_only;
4080 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4081 
4082 	/* Number of supported queues. */
4083 	adapter->num_rx_queues = adapter->rss_queues;
4084 
4085 	adapter->num_tx_queues = adapter->rss_queues;
4086 
4087 	/* start with one vector for every Rx queue */
4088 	numvecs = adapter->num_rx_queues;
4089 
4090 	/* if Tx handler is separate add 1 for every Tx queue */
4091 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4092 		numvecs += adapter->num_tx_queues;
4093 
4094 	/* store the number of vectors reserved for queues */
4095 	adapter->num_q_vectors = numvecs;
4096 
4097 	/* add 1 vector for link status interrupts */
4098 	numvecs++;
4099 
4100 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4101 					GFP_KERNEL);
4102 
4103 	if (!adapter->msix_entries)
4104 		return;
4105 
4106 	/* populate entry values */
4107 	for (i = 0; i < numvecs; i++)
4108 		adapter->msix_entries[i].entry = i;
4109 
4110 	err = pci_enable_msix_range(adapter->pdev,
4111 				    adapter->msix_entries,
4112 				    numvecs,
4113 				    numvecs);
4114 	if (err > 0)
4115 		return;
4116 
4117 	kfree(adapter->msix_entries);
4118 	adapter->msix_entries = NULL;
4119 
4120 	igc_reset_interrupt_capability(adapter);
4121 
4122 msi_only:
4123 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4124 
4125 	adapter->rss_queues = 1;
4126 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4127 	adapter->num_rx_queues = 1;
4128 	adapter->num_tx_queues = 1;
4129 	adapter->num_q_vectors = 1;
4130 	if (!pci_enable_msi(adapter->pdev))
4131 		adapter->flags |= IGC_FLAG_HAS_MSI;
4132 }
4133 
4134 /**
4135  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4136  * @q_vector: pointer to q_vector
4137  *
4138  * Stores a new ITR value based on strictly on packet size.  This
4139  * algorithm is less sophisticated than that used in igc_update_itr,
4140  * due to the difficulty of synchronizing statistics across multiple
4141  * receive rings.  The divisors and thresholds used by this function
4142  * were determined based on theoretical maximum wire speed and testing
4143  * data, in order to minimize response time while increasing bulk
4144  * throughput.
4145  * NOTE: This function is called only when operating in a multiqueue
4146  * receive environment.
4147  */
4148 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4149 {
4150 	struct igc_adapter *adapter = q_vector->adapter;
4151 	int new_val = q_vector->itr_val;
4152 	int avg_wire_size = 0;
4153 	unsigned int packets;
4154 
4155 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4156 	 * ints/sec - ITR timer value of 120 ticks.
4157 	 */
4158 	switch (adapter->link_speed) {
4159 	case SPEED_10:
4160 	case SPEED_100:
4161 		new_val = IGC_4K_ITR;
4162 		goto set_itr_val;
4163 	default:
4164 		break;
4165 	}
4166 
4167 	packets = q_vector->rx.total_packets;
4168 	if (packets)
4169 		avg_wire_size = q_vector->rx.total_bytes / packets;
4170 
4171 	packets = q_vector->tx.total_packets;
4172 	if (packets)
4173 		avg_wire_size = max_t(u32, avg_wire_size,
4174 				      q_vector->tx.total_bytes / packets);
4175 
4176 	/* if avg_wire_size isn't set no work was done */
4177 	if (!avg_wire_size)
4178 		goto clear_counts;
4179 
4180 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4181 	avg_wire_size += 24;
4182 
4183 	/* Don't starve jumbo frames */
4184 	avg_wire_size = min(avg_wire_size, 3000);
4185 
4186 	/* Give a little boost to mid-size frames */
4187 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4188 		new_val = avg_wire_size / 3;
4189 	else
4190 		new_val = avg_wire_size / 2;
4191 
4192 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4193 	if (new_val < IGC_20K_ITR &&
4194 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4195 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4196 		new_val = IGC_20K_ITR;
4197 
4198 set_itr_val:
4199 	if (new_val != q_vector->itr_val) {
4200 		q_vector->itr_val = new_val;
4201 		q_vector->set_itr = 1;
4202 	}
4203 clear_counts:
4204 	q_vector->rx.total_bytes = 0;
4205 	q_vector->rx.total_packets = 0;
4206 	q_vector->tx.total_bytes = 0;
4207 	q_vector->tx.total_packets = 0;
4208 }
4209 
4210 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4211 {
4212 	struct igc_adapter *adapter = q_vector->adapter;
4213 	struct igc_hw *hw = &adapter->hw;
4214 
4215 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4216 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4217 		if (adapter->num_q_vectors == 1)
4218 			igc_set_itr(q_vector);
4219 		else
4220 			igc_update_ring_itr(q_vector);
4221 	}
4222 
4223 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4224 		if (adapter->msix_entries)
4225 			wr32(IGC_EIMS, q_vector->eims_value);
4226 		else
4227 			igc_irq_enable(adapter);
4228 	}
4229 }
4230 
4231 static void igc_add_ring(struct igc_ring *ring,
4232 			 struct igc_ring_container *head)
4233 {
4234 	head->ring = ring;
4235 	head->count++;
4236 }
4237 
4238 /**
4239  * igc_cache_ring_register - Descriptor ring to register mapping
4240  * @adapter: board private structure to initialize
4241  *
4242  * Once we know the feature-set enabled for the device, we'll cache
4243  * the register offset the descriptor ring is assigned to.
4244  */
4245 static void igc_cache_ring_register(struct igc_adapter *adapter)
4246 {
4247 	int i = 0, j = 0;
4248 
4249 	switch (adapter->hw.mac.type) {
4250 	case igc_i225:
4251 	default:
4252 		for (; i < adapter->num_rx_queues; i++)
4253 			adapter->rx_ring[i]->reg_idx = i;
4254 		for (; j < adapter->num_tx_queues; j++)
4255 			adapter->tx_ring[j]->reg_idx = j;
4256 		break;
4257 	}
4258 }
4259 
4260 /**
4261  * igc_poll - NAPI Rx polling callback
4262  * @napi: napi polling structure
4263  * @budget: count of how many packets we should handle
4264  */
4265 static int igc_poll(struct napi_struct *napi, int budget)
4266 {
4267 	struct igc_q_vector *q_vector = container_of(napi,
4268 						     struct igc_q_vector,
4269 						     napi);
4270 	struct igc_ring *rx_ring = q_vector->rx.ring;
4271 	bool clean_complete = true;
4272 	int work_done = 0;
4273 
4274 	if (q_vector->tx.ring)
4275 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4276 
4277 	if (rx_ring) {
4278 		int cleaned = rx_ring->xsk_pool ?
4279 			      igc_clean_rx_irq_zc(q_vector, budget) :
4280 			      igc_clean_rx_irq(q_vector, budget);
4281 
4282 		work_done += cleaned;
4283 		if (cleaned >= budget)
4284 			clean_complete = false;
4285 	}
4286 
4287 	/* If all work not completed, return budget and keep polling */
4288 	if (!clean_complete)
4289 		return budget;
4290 
4291 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4292 	 * poll us due to busy-polling
4293 	 */
4294 	if (likely(napi_complete_done(napi, work_done)))
4295 		igc_ring_irq_enable(q_vector);
4296 
4297 	return min(work_done, budget - 1);
4298 }
4299 
4300 /**
4301  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4302  * @adapter: board private structure to initialize
4303  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4304  * @v_idx: index of vector in adapter struct
4305  * @txr_count: total number of Tx rings to allocate
4306  * @txr_idx: index of first Tx ring to allocate
4307  * @rxr_count: total number of Rx rings to allocate
4308  * @rxr_idx: index of first Rx ring to allocate
4309  *
4310  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4311  */
4312 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4313 			      unsigned int v_count, unsigned int v_idx,
4314 			      unsigned int txr_count, unsigned int txr_idx,
4315 			      unsigned int rxr_count, unsigned int rxr_idx)
4316 {
4317 	struct igc_q_vector *q_vector;
4318 	struct igc_ring *ring;
4319 	int ring_count;
4320 
4321 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4322 	if (txr_count > 1 || rxr_count > 1)
4323 		return -ENOMEM;
4324 
4325 	ring_count = txr_count + rxr_count;
4326 
4327 	/* allocate q_vector and rings */
4328 	q_vector = adapter->q_vector[v_idx];
4329 	if (!q_vector)
4330 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4331 				   GFP_KERNEL);
4332 	else
4333 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4334 	if (!q_vector)
4335 		return -ENOMEM;
4336 
4337 	/* initialize NAPI */
4338 	netif_napi_add(adapter->netdev, &q_vector->napi,
4339 		       igc_poll, 64);
4340 
4341 	/* tie q_vector and adapter together */
4342 	adapter->q_vector[v_idx] = q_vector;
4343 	q_vector->adapter = adapter;
4344 
4345 	/* initialize work limits */
4346 	q_vector->tx.work_limit = adapter->tx_work_limit;
4347 
4348 	/* initialize ITR configuration */
4349 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4350 	q_vector->itr_val = IGC_START_ITR;
4351 
4352 	/* initialize pointer to rings */
4353 	ring = q_vector->ring;
4354 
4355 	/* initialize ITR */
4356 	if (rxr_count) {
4357 		/* rx or rx/tx vector */
4358 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4359 			q_vector->itr_val = adapter->rx_itr_setting;
4360 	} else {
4361 		/* tx only vector */
4362 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4363 			q_vector->itr_val = adapter->tx_itr_setting;
4364 	}
4365 
4366 	if (txr_count) {
4367 		/* assign generic ring traits */
4368 		ring->dev = &adapter->pdev->dev;
4369 		ring->netdev = adapter->netdev;
4370 
4371 		/* configure backlink on ring */
4372 		ring->q_vector = q_vector;
4373 
4374 		/* update q_vector Tx values */
4375 		igc_add_ring(ring, &q_vector->tx);
4376 
4377 		/* apply Tx specific ring traits */
4378 		ring->count = adapter->tx_ring_count;
4379 		ring->queue_index = txr_idx;
4380 
4381 		/* assign ring to adapter */
4382 		adapter->tx_ring[txr_idx] = ring;
4383 
4384 		/* push pointer to next ring */
4385 		ring++;
4386 	}
4387 
4388 	if (rxr_count) {
4389 		/* assign generic ring traits */
4390 		ring->dev = &adapter->pdev->dev;
4391 		ring->netdev = adapter->netdev;
4392 
4393 		/* configure backlink on ring */
4394 		ring->q_vector = q_vector;
4395 
4396 		/* update q_vector Rx values */
4397 		igc_add_ring(ring, &q_vector->rx);
4398 
4399 		/* apply Rx specific ring traits */
4400 		ring->count = adapter->rx_ring_count;
4401 		ring->queue_index = rxr_idx;
4402 
4403 		/* assign ring to adapter */
4404 		adapter->rx_ring[rxr_idx] = ring;
4405 	}
4406 
4407 	return 0;
4408 }
4409 
4410 /**
4411  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4412  * @adapter: board private structure to initialize
4413  *
4414  * We allocate one q_vector per queue interrupt.  If allocation fails we
4415  * return -ENOMEM.
4416  */
4417 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4418 {
4419 	int rxr_remaining = adapter->num_rx_queues;
4420 	int txr_remaining = adapter->num_tx_queues;
4421 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4422 	int q_vectors = adapter->num_q_vectors;
4423 	int err;
4424 
4425 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4426 		for (; rxr_remaining; v_idx++) {
4427 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4428 						 0, 0, 1, rxr_idx);
4429 
4430 			if (err)
4431 				goto err_out;
4432 
4433 			/* update counts and index */
4434 			rxr_remaining--;
4435 			rxr_idx++;
4436 		}
4437 	}
4438 
4439 	for (; v_idx < q_vectors; v_idx++) {
4440 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4441 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4442 
4443 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4444 					 tqpv, txr_idx, rqpv, rxr_idx);
4445 
4446 		if (err)
4447 			goto err_out;
4448 
4449 		/* update counts and index */
4450 		rxr_remaining -= rqpv;
4451 		txr_remaining -= tqpv;
4452 		rxr_idx++;
4453 		txr_idx++;
4454 	}
4455 
4456 	return 0;
4457 
4458 err_out:
4459 	adapter->num_tx_queues = 0;
4460 	adapter->num_rx_queues = 0;
4461 	adapter->num_q_vectors = 0;
4462 
4463 	while (v_idx--)
4464 		igc_free_q_vector(adapter, v_idx);
4465 
4466 	return -ENOMEM;
4467 }
4468 
4469 /**
4470  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4471  * @adapter: Pointer to adapter structure
4472  * @msix: boolean for MSI-X capability
4473  *
4474  * This function initializes the interrupts and allocates all of the queues.
4475  */
4476 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4477 {
4478 	struct net_device *dev = adapter->netdev;
4479 	int err = 0;
4480 
4481 	igc_set_interrupt_capability(adapter, msix);
4482 
4483 	err = igc_alloc_q_vectors(adapter);
4484 	if (err) {
4485 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4486 		goto err_alloc_q_vectors;
4487 	}
4488 
4489 	igc_cache_ring_register(adapter);
4490 
4491 	return 0;
4492 
4493 err_alloc_q_vectors:
4494 	igc_reset_interrupt_capability(adapter);
4495 	return err;
4496 }
4497 
4498 /**
4499  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4500  * @adapter: board private structure to initialize
4501  *
4502  * igc_sw_init initializes the Adapter private data structure.
4503  * Fields are initialized based on PCI device information and
4504  * OS network device settings (MTU size).
4505  */
4506 static int igc_sw_init(struct igc_adapter *adapter)
4507 {
4508 	struct net_device *netdev = adapter->netdev;
4509 	struct pci_dev *pdev = adapter->pdev;
4510 	struct igc_hw *hw = &adapter->hw;
4511 
4512 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4513 
4514 	/* set default ring sizes */
4515 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4516 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4517 
4518 	/* set default ITR values */
4519 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4520 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4521 
4522 	/* set default work limits */
4523 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4524 
4525 	/* adjust max frame to be at least the size of a standard frame */
4526 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4527 				VLAN_HLEN;
4528 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4529 
4530 	mutex_init(&adapter->nfc_rule_lock);
4531 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4532 	adapter->nfc_rule_count = 0;
4533 
4534 	spin_lock_init(&adapter->stats64_lock);
4535 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4536 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4537 
4538 	igc_init_queue_configuration(adapter);
4539 
4540 	/* This call may decrease the number of queues */
4541 	if (igc_init_interrupt_scheme(adapter, true)) {
4542 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4543 		return -ENOMEM;
4544 	}
4545 
4546 	/* Explicitly disable IRQ since the NIC can be in any state. */
4547 	igc_irq_disable(adapter);
4548 
4549 	set_bit(__IGC_DOWN, &adapter->state);
4550 
4551 	return 0;
4552 }
4553 
4554 /**
4555  * igc_up - Open the interface and prepare it to handle traffic
4556  * @adapter: board private structure
4557  */
4558 void igc_up(struct igc_adapter *adapter)
4559 {
4560 	struct igc_hw *hw = &adapter->hw;
4561 	int i = 0;
4562 
4563 	/* hardware has been reset, we need to reload some things */
4564 	igc_configure(adapter);
4565 
4566 	clear_bit(__IGC_DOWN, &adapter->state);
4567 
4568 	for (i = 0; i < adapter->num_q_vectors; i++)
4569 		napi_enable(&adapter->q_vector[i]->napi);
4570 
4571 	if (adapter->msix_entries)
4572 		igc_configure_msix(adapter);
4573 	else
4574 		igc_assign_vector(adapter->q_vector[0], 0);
4575 
4576 	/* Clear any pending interrupts. */
4577 	rd32(IGC_ICR);
4578 	igc_irq_enable(adapter);
4579 
4580 	netif_tx_start_all_queues(adapter->netdev);
4581 
4582 	/* start the watchdog. */
4583 	hw->mac.get_link_status = true;
4584 	schedule_work(&adapter->watchdog_task);
4585 }
4586 
4587 /**
4588  * igc_update_stats - Update the board statistics counters
4589  * @adapter: board private structure
4590  */
4591 void igc_update_stats(struct igc_adapter *adapter)
4592 {
4593 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4594 	struct pci_dev *pdev = adapter->pdev;
4595 	struct igc_hw *hw = &adapter->hw;
4596 	u64 _bytes, _packets;
4597 	u64 bytes, packets;
4598 	unsigned int start;
4599 	u32 mpc;
4600 	int i;
4601 
4602 	/* Prevent stats update while adapter is being reset, or if the pci
4603 	 * connection is down.
4604 	 */
4605 	if (adapter->link_speed == 0)
4606 		return;
4607 	if (pci_channel_offline(pdev))
4608 		return;
4609 
4610 	packets = 0;
4611 	bytes = 0;
4612 
4613 	rcu_read_lock();
4614 	for (i = 0; i < adapter->num_rx_queues; i++) {
4615 		struct igc_ring *ring = adapter->rx_ring[i];
4616 		u32 rqdpc = rd32(IGC_RQDPC(i));
4617 
4618 		if (hw->mac.type >= igc_i225)
4619 			wr32(IGC_RQDPC(i), 0);
4620 
4621 		if (rqdpc) {
4622 			ring->rx_stats.drops += rqdpc;
4623 			net_stats->rx_fifo_errors += rqdpc;
4624 		}
4625 
4626 		do {
4627 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4628 			_bytes = ring->rx_stats.bytes;
4629 			_packets = ring->rx_stats.packets;
4630 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4631 		bytes += _bytes;
4632 		packets += _packets;
4633 	}
4634 
4635 	net_stats->rx_bytes = bytes;
4636 	net_stats->rx_packets = packets;
4637 
4638 	packets = 0;
4639 	bytes = 0;
4640 	for (i = 0; i < adapter->num_tx_queues; i++) {
4641 		struct igc_ring *ring = adapter->tx_ring[i];
4642 
4643 		do {
4644 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4645 			_bytes = ring->tx_stats.bytes;
4646 			_packets = ring->tx_stats.packets;
4647 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4648 		bytes += _bytes;
4649 		packets += _packets;
4650 	}
4651 	net_stats->tx_bytes = bytes;
4652 	net_stats->tx_packets = packets;
4653 	rcu_read_unlock();
4654 
4655 	/* read stats registers */
4656 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4657 	adapter->stats.gprc += rd32(IGC_GPRC);
4658 	adapter->stats.gorc += rd32(IGC_GORCL);
4659 	rd32(IGC_GORCH); /* clear GORCL */
4660 	adapter->stats.bprc += rd32(IGC_BPRC);
4661 	adapter->stats.mprc += rd32(IGC_MPRC);
4662 	adapter->stats.roc += rd32(IGC_ROC);
4663 
4664 	adapter->stats.prc64 += rd32(IGC_PRC64);
4665 	adapter->stats.prc127 += rd32(IGC_PRC127);
4666 	adapter->stats.prc255 += rd32(IGC_PRC255);
4667 	adapter->stats.prc511 += rd32(IGC_PRC511);
4668 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4669 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4670 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4671 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4672 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4673 
4674 	mpc = rd32(IGC_MPC);
4675 	adapter->stats.mpc += mpc;
4676 	net_stats->rx_fifo_errors += mpc;
4677 	adapter->stats.scc += rd32(IGC_SCC);
4678 	adapter->stats.ecol += rd32(IGC_ECOL);
4679 	adapter->stats.mcc += rd32(IGC_MCC);
4680 	adapter->stats.latecol += rd32(IGC_LATECOL);
4681 	adapter->stats.dc += rd32(IGC_DC);
4682 	adapter->stats.rlec += rd32(IGC_RLEC);
4683 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4684 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4685 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4686 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4687 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4688 	adapter->stats.gptc += rd32(IGC_GPTC);
4689 	adapter->stats.gotc += rd32(IGC_GOTCL);
4690 	rd32(IGC_GOTCH); /* clear GOTCL */
4691 	adapter->stats.rnbc += rd32(IGC_RNBC);
4692 	adapter->stats.ruc += rd32(IGC_RUC);
4693 	adapter->stats.rfc += rd32(IGC_RFC);
4694 	adapter->stats.rjc += rd32(IGC_RJC);
4695 	adapter->stats.tor += rd32(IGC_TORH);
4696 	adapter->stats.tot += rd32(IGC_TOTH);
4697 	adapter->stats.tpr += rd32(IGC_TPR);
4698 
4699 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4700 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4701 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4702 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4703 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4704 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4705 
4706 	adapter->stats.mptc += rd32(IGC_MPTC);
4707 	adapter->stats.bptc += rd32(IGC_BPTC);
4708 
4709 	adapter->stats.tpt += rd32(IGC_TPT);
4710 	adapter->stats.colc += rd32(IGC_COLC);
4711 	adapter->stats.colc += rd32(IGC_RERC);
4712 
4713 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4714 
4715 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4716 
4717 	adapter->stats.iac += rd32(IGC_IAC);
4718 
4719 	/* Fill out the OS statistics structure */
4720 	net_stats->multicast = adapter->stats.mprc;
4721 	net_stats->collisions = adapter->stats.colc;
4722 
4723 	/* Rx Errors */
4724 
4725 	/* RLEC on some newer hardware can be incorrect so build
4726 	 * our own version based on RUC and ROC
4727 	 */
4728 	net_stats->rx_errors = adapter->stats.rxerrc +
4729 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4730 		adapter->stats.ruc + adapter->stats.roc +
4731 		adapter->stats.cexterr;
4732 	net_stats->rx_length_errors = adapter->stats.ruc +
4733 				      adapter->stats.roc;
4734 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4735 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4736 	net_stats->rx_missed_errors = adapter->stats.mpc;
4737 
4738 	/* Tx Errors */
4739 	net_stats->tx_errors = adapter->stats.ecol +
4740 			       adapter->stats.latecol;
4741 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4742 	net_stats->tx_window_errors = adapter->stats.latecol;
4743 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4744 
4745 	/* Tx Dropped needs to be maintained elsewhere */
4746 
4747 	/* Management Stats */
4748 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4749 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4750 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4751 }
4752 
4753 /**
4754  * igc_down - Close the interface
4755  * @adapter: board private structure
4756  */
4757 void igc_down(struct igc_adapter *adapter)
4758 {
4759 	struct net_device *netdev = adapter->netdev;
4760 	struct igc_hw *hw = &adapter->hw;
4761 	u32 tctl, rctl;
4762 	int i = 0;
4763 
4764 	set_bit(__IGC_DOWN, &adapter->state);
4765 
4766 	igc_ptp_suspend(adapter);
4767 
4768 	/* disable receives in the hardware */
4769 	rctl = rd32(IGC_RCTL);
4770 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4771 	/* flush and sleep below */
4772 
4773 	/* set trans_start so we don't get spurious watchdogs during reset */
4774 	netif_trans_update(netdev);
4775 
4776 	netif_carrier_off(netdev);
4777 	netif_tx_stop_all_queues(netdev);
4778 
4779 	/* disable transmits in the hardware */
4780 	tctl = rd32(IGC_TCTL);
4781 	tctl &= ~IGC_TCTL_EN;
4782 	wr32(IGC_TCTL, tctl);
4783 	/* flush both disables and wait for them to finish */
4784 	wrfl();
4785 	usleep_range(10000, 20000);
4786 
4787 	igc_irq_disable(adapter);
4788 
4789 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4790 
4791 	for (i = 0; i < adapter->num_q_vectors; i++) {
4792 		if (adapter->q_vector[i]) {
4793 			napi_synchronize(&adapter->q_vector[i]->napi);
4794 			napi_disable(&adapter->q_vector[i]->napi);
4795 		}
4796 	}
4797 
4798 	del_timer_sync(&adapter->watchdog_timer);
4799 	del_timer_sync(&adapter->phy_info_timer);
4800 
4801 	/* record the stats before reset*/
4802 	spin_lock(&adapter->stats64_lock);
4803 	igc_update_stats(adapter);
4804 	spin_unlock(&adapter->stats64_lock);
4805 
4806 	adapter->link_speed = 0;
4807 	adapter->link_duplex = 0;
4808 
4809 	if (!pci_channel_offline(adapter->pdev))
4810 		igc_reset(adapter);
4811 
4812 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
4813 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4814 
4815 	igc_clean_all_tx_rings(adapter);
4816 	igc_clean_all_rx_rings(adapter);
4817 }
4818 
4819 void igc_reinit_locked(struct igc_adapter *adapter)
4820 {
4821 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4822 		usleep_range(1000, 2000);
4823 	igc_down(adapter);
4824 	igc_up(adapter);
4825 	clear_bit(__IGC_RESETTING, &adapter->state);
4826 }
4827 
4828 static void igc_reset_task(struct work_struct *work)
4829 {
4830 	struct igc_adapter *adapter;
4831 
4832 	adapter = container_of(work, struct igc_adapter, reset_task);
4833 
4834 	rtnl_lock();
4835 	/* If we're already down or resetting, just bail */
4836 	if (test_bit(__IGC_DOWN, &adapter->state) ||
4837 	    test_bit(__IGC_RESETTING, &adapter->state)) {
4838 		rtnl_unlock();
4839 		return;
4840 	}
4841 
4842 	igc_rings_dump(adapter);
4843 	igc_regs_dump(adapter);
4844 	netdev_err(adapter->netdev, "Reset adapter\n");
4845 	igc_reinit_locked(adapter);
4846 	rtnl_unlock();
4847 }
4848 
4849 /**
4850  * igc_change_mtu - Change the Maximum Transfer Unit
4851  * @netdev: network interface device structure
4852  * @new_mtu: new value for maximum frame size
4853  *
4854  * Returns 0 on success, negative on failure
4855  */
4856 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4857 {
4858 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4859 	struct igc_adapter *adapter = netdev_priv(netdev);
4860 
4861 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4862 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4863 		return -EINVAL;
4864 	}
4865 
4866 	/* adjust max frame to be at least the size of a standard frame */
4867 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4868 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4869 
4870 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4871 		usleep_range(1000, 2000);
4872 
4873 	/* igc_down has a dependency on max_frame_size */
4874 	adapter->max_frame_size = max_frame;
4875 
4876 	if (netif_running(netdev))
4877 		igc_down(adapter);
4878 
4879 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4880 	netdev->mtu = new_mtu;
4881 
4882 	if (netif_running(netdev))
4883 		igc_up(adapter);
4884 	else
4885 		igc_reset(adapter);
4886 
4887 	clear_bit(__IGC_RESETTING, &adapter->state);
4888 
4889 	return 0;
4890 }
4891 
4892 /**
4893  * igc_get_stats64 - Get System Network Statistics
4894  * @netdev: network interface device structure
4895  * @stats: rtnl_link_stats64 pointer
4896  *
4897  * Returns the address of the device statistics structure.
4898  * The statistics are updated here and also from the timer callback.
4899  */
4900 static void igc_get_stats64(struct net_device *netdev,
4901 			    struct rtnl_link_stats64 *stats)
4902 {
4903 	struct igc_adapter *adapter = netdev_priv(netdev);
4904 
4905 	spin_lock(&adapter->stats64_lock);
4906 	if (!test_bit(__IGC_RESETTING, &adapter->state))
4907 		igc_update_stats(adapter);
4908 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4909 	spin_unlock(&adapter->stats64_lock);
4910 }
4911 
4912 static netdev_features_t igc_fix_features(struct net_device *netdev,
4913 					  netdev_features_t features)
4914 {
4915 	/* Since there is no support for separate Rx/Tx vlan accel
4916 	 * enable/disable make sure Tx flag is always in same state as Rx.
4917 	 */
4918 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4919 		features |= NETIF_F_HW_VLAN_CTAG_TX;
4920 	else
4921 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4922 
4923 	return features;
4924 }
4925 
4926 static int igc_set_features(struct net_device *netdev,
4927 			    netdev_features_t features)
4928 {
4929 	netdev_features_t changed = netdev->features ^ features;
4930 	struct igc_adapter *adapter = netdev_priv(netdev);
4931 
4932 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4933 		igc_vlan_mode(netdev, features);
4934 
4935 	/* Add VLAN support */
4936 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4937 		return 0;
4938 
4939 	if (!(features & NETIF_F_NTUPLE))
4940 		igc_flush_nfc_rules(adapter);
4941 
4942 	netdev->features = features;
4943 
4944 	if (netif_running(netdev))
4945 		igc_reinit_locked(adapter);
4946 	else
4947 		igc_reset(adapter);
4948 
4949 	return 1;
4950 }
4951 
4952 static netdev_features_t
4953 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4954 		   netdev_features_t features)
4955 {
4956 	unsigned int network_hdr_len, mac_hdr_len;
4957 
4958 	/* Make certain the headers can be described by a context descriptor */
4959 	mac_hdr_len = skb_network_header(skb) - skb->data;
4960 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4961 		return features & ~(NETIF_F_HW_CSUM |
4962 				    NETIF_F_SCTP_CRC |
4963 				    NETIF_F_HW_VLAN_CTAG_TX |
4964 				    NETIF_F_TSO |
4965 				    NETIF_F_TSO6);
4966 
4967 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4968 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4969 		return features & ~(NETIF_F_HW_CSUM |
4970 				    NETIF_F_SCTP_CRC |
4971 				    NETIF_F_TSO |
4972 				    NETIF_F_TSO6);
4973 
4974 	/* We can only support IPv4 TSO in tunnels if we can mangle the
4975 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4976 	 */
4977 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4978 		features &= ~NETIF_F_TSO;
4979 
4980 	return features;
4981 }
4982 
4983 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4984 {
4985 	u32 ack, tsauxc, sec, nsec, tsicr;
4986 	struct igc_hw *hw = &adapter->hw;
4987 	struct ptp_clock_event event;
4988 	struct timespec64 ts;
4989 
4990 	tsicr = rd32(IGC_TSICR);
4991 	ack = 0;
4992 
4993 	if (tsicr & IGC_TSICR_SYS_WRAP) {
4994 		event.type = PTP_CLOCK_PPS;
4995 		if (adapter->ptp_caps.pps)
4996 			ptp_clock_event(adapter->ptp_clock, &event);
4997 		ack |= IGC_TSICR_SYS_WRAP;
4998 	}
4999 
5000 	if (tsicr & IGC_TSICR_TXTS) {
5001 		/* retrieve hardware timestamp */
5002 		schedule_work(&adapter->ptp_tx_work);
5003 		ack |= IGC_TSICR_TXTS;
5004 	}
5005 
5006 	if (tsicr & IGC_TSICR_TT0) {
5007 		spin_lock(&adapter->tmreg_lock);
5008 		ts = timespec64_add(adapter->perout[0].start,
5009 				    adapter->perout[0].period);
5010 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5011 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5012 		tsauxc = rd32(IGC_TSAUXC);
5013 		tsauxc |= IGC_TSAUXC_EN_TT0;
5014 		wr32(IGC_TSAUXC, tsauxc);
5015 		adapter->perout[0].start = ts;
5016 		spin_unlock(&adapter->tmreg_lock);
5017 		ack |= IGC_TSICR_TT0;
5018 	}
5019 
5020 	if (tsicr & IGC_TSICR_TT1) {
5021 		spin_lock(&adapter->tmreg_lock);
5022 		ts = timespec64_add(adapter->perout[1].start,
5023 				    adapter->perout[1].period);
5024 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5025 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5026 		tsauxc = rd32(IGC_TSAUXC);
5027 		tsauxc |= IGC_TSAUXC_EN_TT1;
5028 		wr32(IGC_TSAUXC, tsauxc);
5029 		adapter->perout[1].start = ts;
5030 		spin_unlock(&adapter->tmreg_lock);
5031 		ack |= IGC_TSICR_TT1;
5032 	}
5033 
5034 	if (tsicr & IGC_TSICR_AUTT0) {
5035 		nsec = rd32(IGC_AUXSTMPL0);
5036 		sec  = rd32(IGC_AUXSTMPH0);
5037 		event.type = PTP_CLOCK_EXTTS;
5038 		event.index = 0;
5039 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5040 		ptp_clock_event(adapter->ptp_clock, &event);
5041 		ack |= IGC_TSICR_AUTT0;
5042 	}
5043 
5044 	if (tsicr & IGC_TSICR_AUTT1) {
5045 		nsec = rd32(IGC_AUXSTMPL1);
5046 		sec  = rd32(IGC_AUXSTMPH1);
5047 		event.type = PTP_CLOCK_EXTTS;
5048 		event.index = 1;
5049 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5050 		ptp_clock_event(adapter->ptp_clock, &event);
5051 		ack |= IGC_TSICR_AUTT1;
5052 	}
5053 
5054 	/* acknowledge the interrupts */
5055 	wr32(IGC_TSICR, ack);
5056 }
5057 
5058 /**
5059  * igc_msix_other - msix other interrupt handler
5060  * @irq: interrupt number
5061  * @data: pointer to a q_vector
5062  */
5063 static irqreturn_t igc_msix_other(int irq, void *data)
5064 {
5065 	struct igc_adapter *adapter = data;
5066 	struct igc_hw *hw = &adapter->hw;
5067 	u32 icr = rd32(IGC_ICR);
5068 
5069 	/* reading ICR causes bit 31 of EICR to be cleared */
5070 	if (icr & IGC_ICR_DRSTA)
5071 		schedule_work(&adapter->reset_task);
5072 
5073 	if (icr & IGC_ICR_DOUTSYNC) {
5074 		/* HW is reporting DMA is out of sync */
5075 		adapter->stats.doosync++;
5076 	}
5077 
5078 	if (icr & IGC_ICR_LSC) {
5079 		hw->mac.get_link_status = true;
5080 		/* guard against interrupt when we're going down */
5081 		if (!test_bit(__IGC_DOWN, &adapter->state))
5082 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5083 	}
5084 
5085 	if (icr & IGC_ICR_TS)
5086 		igc_tsync_interrupt(adapter);
5087 
5088 	wr32(IGC_EIMS, adapter->eims_other);
5089 
5090 	return IRQ_HANDLED;
5091 }
5092 
5093 static void igc_write_itr(struct igc_q_vector *q_vector)
5094 {
5095 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5096 
5097 	if (!q_vector->set_itr)
5098 		return;
5099 
5100 	if (!itr_val)
5101 		itr_val = IGC_ITR_VAL_MASK;
5102 
5103 	itr_val |= IGC_EITR_CNT_IGNR;
5104 
5105 	writel(itr_val, q_vector->itr_register);
5106 	q_vector->set_itr = 0;
5107 }
5108 
5109 static irqreturn_t igc_msix_ring(int irq, void *data)
5110 {
5111 	struct igc_q_vector *q_vector = data;
5112 
5113 	/* Write the ITR value calculated from the previous interrupt. */
5114 	igc_write_itr(q_vector);
5115 
5116 	napi_schedule(&q_vector->napi);
5117 
5118 	return IRQ_HANDLED;
5119 }
5120 
5121 /**
5122  * igc_request_msix - Initialize MSI-X interrupts
5123  * @adapter: Pointer to adapter structure
5124  *
5125  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5126  * kernel.
5127  */
5128 static int igc_request_msix(struct igc_adapter *adapter)
5129 {
5130 	unsigned int num_q_vectors = adapter->num_q_vectors;
5131 	int i = 0, err = 0, vector = 0, free_vector = 0;
5132 	struct net_device *netdev = adapter->netdev;
5133 
5134 	err = request_irq(adapter->msix_entries[vector].vector,
5135 			  &igc_msix_other, 0, netdev->name, adapter);
5136 	if (err)
5137 		goto err_out;
5138 
5139 	if (num_q_vectors > MAX_Q_VECTORS) {
5140 		num_q_vectors = MAX_Q_VECTORS;
5141 		dev_warn(&adapter->pdev->dev,
5142 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5143 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5144 	}
5145 	for (i = 0; i < num_q_vectors; i++) {
5146 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5147 
5148 		vector++;
5149 
5150 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5151 
5152 		if (q_vector->rx.ring && q_vector->tx.ring)
5153 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5154 				q_vector->rx.ring->queue_index);
5155 		else if (q_vector->tx.ring)
5156 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5157 				q_vector->tx.ring->queue_index);
5158 		else if (q_vector->rx.ring)
5159 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5160 				q_vector->rx.ring->queue_index);
5161 		else
5162 			sprintf(q_vector->name, "%s-unused", netdev->name);
5163 
5164 		err = request_irq(adapter->msix_entries[vector].vector,
5165 				  igc_msix_ring, 0, q_vector->name,
5166 				  q_vector);
5167 		if (err)
5168 			goto err_free;
5169 	}
5170 
5171 	igc_configure_msix(adapter);
5172 	return 0;
5173 
5174 err_free:
5175 	/* free already assigned IRQs */
5176 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5177 
5178 	vector--;
5179 	for (i = 0; i < vector; i++) {
5180 		free_irq(adapter->msix_entries[free_vector++].vector,
5181 			 adapter->q_vector[i]);
5182 	}
5183 err_out:
5184 	return err;
5185 }
5186 
5187 /**
5188  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5189  * @adapter: Pointer to adapter structure
5190  *
5191  * This function resets the device so that it has 0 rx queues, tx queues, and
5192  * MSI-X interrupts allocated.
5193  */
5194 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5195 {
5196 	igc_free_q_vectors(adapter);
5197 	igc_reset_interrupt_capability(adapter);
5198 }
5199 
5200 /* Need to wait a few seconds after link up to get diagnostic information from
5201  * the phy
5202  */
5203 static void igc_update_phy_info(struct timer_list *t)
5204 {
5205 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5206 
5207 	igc_get_phy_info(&adapter->hw);
5208 }
5209 
5210 /**
5211  * igc_has_link - check shared code for link and determine up/down
5212  * @adapter: pointer to driver private info
5213  */
5214 bool igc_has_link(struct igc_adapter *adapter)
5215 {
5216 	struct igc_hw *hw = &adapter->hw;
5217 	bool link_active = false;
5218 
5219 	/* get_link_status is set on LSC (link status) interrupt or
5220 	 * rx sequence error interrupt.  get_link_status will stay
5221 	 * false until the igc_check_for_link establishes link
5222 	 * for copper adapters ONLY
5223 	 */
5224 	if (!hw->mac.get_link_status)
5225 		return true;
5226 	hw->mac.ops.check_for_link(hw);
5227 	link_active = !hw->mac.get_link_status;
5228 
5229 	if (hw->mac.type == igc_i225) {
5230 		if (!netif_carrier_ok(adapter->netdev)) {
5231 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5232 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5233 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5234 			adapter->link_check_timeout = jiffies;
5235 		}
5236 	}
5237 
5238 	return link_active;
5239 }
5240 
5241 /**
5242  * igc_watchdog - Timer Call-back
5243  * @t: timer for the watchdog
5244  */
5245 static void igc_watchdog(struct timer_list *t)
5246 {
5247 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5248 	/* Do the rest outside of interrupt context */
5249 	schedule_work(&adapter->watchdog_task);
5250 }
5251 
5252 static void igc_watchdog_task(struct work_struct *work)
5253 {
5254 	struct igc_adapter *adapter = container_of(work,
5255 						   struct igc_adapter,
5256 						   watchdog_task);
5257 	struct net_device *netdev = adapter->netdev;
5258 	struct igc_hw *hw = &adapter->hw;
5259 	struct igc_phy_info *phy = &hw->phy;
5260 	u16 phy_data, retry_count = 20;
5261 	u32 link;
5262 	int i;
5263 
5264 	link = igc_has_link(adapter);
5265 
5266 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5267 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5268 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5269 		else
5270 			link = false;
5271 	}
5272 
5273 	if (link) {
5274 		/* Cancel scheduled suspend requests. */
5275 		pm_runtime_resume(netdev->dev.parent);
5276 
5277 		if (!netif_carrier_ok(netdev)) {
5278 			u32 ctrl;
5279 
5280 			hw->mac.ops.get_speed_and_duplex(hw,
5281 							 &adapter->link_speed,
5282 							 &adapter->link_duplex);
5283 
5284 			ctrl = rd32(IGC_CTRL);
5285 			/* Link status message must follow this format */
5286 			netdev_info(netdev,
5287 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5288 				    adapter->link_speed,
5289 				    adapter->link_duplex == FULL_DUPLEX ?
5290 				    "Full" : "Half",
5291 				    (ctrl & IGC_CTRL_TFCE) &&
5292 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5293 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5294 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5295 
5296 			/* disable EEE if enabled */
5297 			if ((adapter->flags & IGC_FLAG_EEE) &&
5298 			    adapter->link_duplex == HALF_DUPLEX) {
5299 				netdev_info(netdev,
5300 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5301 				adapter->hw.dev_spec._base.eee_enable = false;
5302 				adapter->flags &= ~IGC_FLAG_EEE;
5303 			}
5304 
5305 			/* check if SmartSpeed worked */
5306 			igc_check_downshift(hw);
5307 			if (phy->speed_downgraded)
5308 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5309 
5310 			/* adjust timeout factor according to speed/duplex */
5311 			adapter->tx_timeout_factor = 1;
5312 			switch (adapter->link_speed) {
5313 			case SPEED_10:
5314 				adapter->tx_timeout_factor = 14;
5315 				break;
5316 			case SPEED_100:
5317 			case SPEED_1000:
5318 			case SPEED_2500:
5319 				adapter->tx_timeout_factor = 7;
5320 				break;
5321 			}
5322 
5323 			if (adapter->link_speed != SPEED_1000)
5324 				goto no_wait;
5325 
5326 			/* wait for Remote receiver status OK */
5327 retry_read_status:
5328 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5329 					      &phy_data)) {
5330 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5331 				    retry_count) {
5332 					msleep(100);
5333 					retry_count--;
5334 					goto retry_read_status;
5335 				} else if (!retry_count) {
5336 					netdev_err(netdev, "exceed max 2 second\n");
5337 				}
5338 			} else {
5339 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5340 			}
5341 no_wait:
5342 			netif_carrier_on(netdev);
5343 
5344 			/* link state has changed, schedule phy info update */
5345 			if (!test_bit(__IGC_DOWN, &adapter->state))
5346 				mod_timer(&adapter->phy_info_timer,
5347 					  round_jiffies(jiffies + 2 * HZ));
5348 		}
5349 	} else {
5350 		if (netif_carrier_ok(netdev)) {
5351 			adapter->link_speed = 0;
5352 			adapter->link_duplex = 0;
5353 
5354 			/* Links status message must follow this format */
5355 			netdev_info(netdev, "NIC Link is Down\n");
5356 			netif_carrier_off(netdev);
5357 
5358 			/* link state has changed, schedule phy info update */
5359 			if (!test_bit(__IGC_DOWN, &adapter->state))
5360 				mod_timer(&adapter->phy_info_timer,
5361 					  round_jiffies(jiffies + 2 * HZ));
5362 
5363 			/* link is down, time to check for alternate media */
5364 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5365 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5366 					schedule_work(&adapter->reset_task);
5367 					/* return immediately */
5368 					return;
5369 				}
5370 			}
5371 			pm_schedule_suspend(netdev->dev.parent,
5372 					    MSEC_PER_SEC * 5);
5373 
5374 		/* also check for alternate media here */
5375 		} else if (!netif_carrier_ok(netdev) &&
5376 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5377 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5378 				schedule_work(&adapter->reset_task);
5379 				/* return immediately */
5380 				return;
5381 			}
5382 		}
5383 	}
5384 
5385 	spin_lock(&adapter->stats64_lock);
5386 	igc_update_stats(adapter);
5387 	spin_unlock(&adapter->stats64_lock);
5388 
5389 	for (i = 0; i < adapter->num_tx_queues; i++) {
5390 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5391 
5392 		if (!netif_carrier_ok(netdev)) {
5393 			/* We've lost link, so the controller stops DMA,
5394 			 * but we've got queued Tx work that's never going
5395 			 * to get done, so reset controller to flush Tx.
5396 			 * (Do the reset outside of interrupt context).
5397 			 */
5398 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5399 				adapter->tx_timeout_count++;
5400 				schedule_work(&adapter->reset_task);
5401 				/* return immediately since reset is imminent */
5402 				return;
5403 			}
5404 		}
5405 
5406 		/* Force detection of hung controller every watchdog period */
5407 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5408 	}
5409 
5410 	/* Cause software interrupt to ensure Rx ring is cleaned */
5411 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5412 		u32 eics = 0;
5413 
5414 		for (i = 0; i < adapter->num_q_vectors; i++)
5415 			eics |= adapter->q_vector[i]->eims_value;
5416 		wr32(IGC_EICS, eics);
5417 	} else {
5418 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5419 	}
5420 
5421 	igc_ptp_tx_hang(adapter);
5422 
5423 	/* Reset the timer */
5424 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5425 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5426 			mod_timer(&adapter->watchdog_timer,
5427 				  round_jiffies(jiffies +  HZ));
5428 		else
5429 			mod_timer(&adapter->watchdog_timer,
5430 				  round_jiffies(jiffies + 2 * HZ));
5431 	}
5432 }
5433 
5434 /**
5435  * igc_intr_msi - Interrupt Handler
5436  * @irq: interrupt number
5437  * @data: pointer to a network interface device structure
5438  */
5439 static irqreturn_t igc_intr_msi(int irq, void *data)
5440 {
5441 	struct igc_adapter *adapter = data;
5442 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5443 	struct igc_hw *hw = &adapter->hw;
5444 	/* read ICR disables interrupts using IAM */
5445 	u32 icr = rd32(IGC_ICR);
5446 
5447 	igc_write_itr(q_vector);
5448 
5449 	if (icr & IGC_ICR_DRSTA)
5450 		schedule_work(&adapter->reset_task);
5451 
5452 	if (icr & IGC_ICR_DOUTSYNC) {
5453 		/* HW is reporting DMA is out of sync */
5454 		adapter->stats.doosync++;
5455 	}
5456 
5457 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5458 		hw->mac.get_link_status = true;
5459 		if (!test_bit(__IGC_DOWN, &adapter->state))
5460 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5461 	}
5462 
5463 	napi_schedule(&q_vector->napi);
5464 
5465 	return IRQ_HANDLED;
5466 }
5467 
5468 /**
5469  * igc_intr - Legacy Interrupt Handler
5470  * @irq: interrupt number
5471  * @data: pointer to a network interface device structure
5472  */
5473 static irqreturn_t igc_intr(int irq, void *data)
5474 {
5475 	struct igc_adapter *adapter = data;
5476 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5477 	struct igc_hw *hw = &adapter->hw;
5478 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5479 	 * need for the IMC write
5480 	 */
5481 	u32 icr = rd32(IGC_ICR);
5482 
5483 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5484 	 * not set, then the adapter didn't send an interrupt
5485 	 */
5486 	if (!(icr & IGC_ICR_INT_ASSERTED))
5487 		return IRQ_NONE;
5488 
5489 	igc_write_itr(q_vector);
5490 
5491 	if (icr & IGC_ICR_DRSTA)
5492 		schedule_work(&adapter->reset_task);
5493 
5494 	if (icr & IGC_ICR_DOUTSYNC) {
5495 		/* HW is reporting DMA is out of sync */
5496 		adapter->stats.doosync++;
5497 	}
5498 
5499 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5500 		hw->mac.get_link_status = true;
5501 		/* guard against interrupt when we're going down */
5502 		if (!test_bit(__IGC_DOWN, &adapter->state))
5503 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5504 	}
5505 
5506 	napi_schedule(&q_vector->napi);
5507 
5508 	return IRQ_HANDLED;
5509 }
5510 
5511 static void igc_free_irq(struct igc_adapter *adapter)
5512 {
5513 	if (adapter->msix_entries) {
5514 		int vector = 0, i;
5515 
5516 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5517 
5518 		for (i = 0; i < adapter->num_q_vectors; i++)
5519 			free_irq(adapter->msix_entries[vector++].vector,
5520 				 adapter->q_vector[i]);
5521 	} else {
5522 		free_irq(adapter->pdev->irq, adapter);
5523 	}
5524 }
5525 
5526 /**
5527  * igc_request_irq - initialize interrupts
5528  * @adapter: Pointer to adapter structure
5529  *
5530  * Attempts to configure interrupts using the best available
5531  * capabilities of the hardware and kernel.
5532  */
5533 static int igc_request_irq(struct igc_adapter *adapter)
5534 {
5535 	struct net_device *netdev = adapter->netdev;
5536 	struct pci_dev *pdev = adapter->pdev;
5537 	int err = 0;
5538 
5539 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5540 		err = igc_request_msix(adapter);
5541 		if (!err)
5542 			goto request_done;
5543 		/* fall back to MSI */
5544 		igc_free_all_tx_resources(adapter);
5545 		igc_free_all_rx_resources(adapter);
5546 
5547 		igc_clear_interrupt_scheme(adapter);
5548 		err = igc_init_interrupt_scheme(adapter, false);
5549 		if (err)
5550 			goto request_done;
5551 		igc_setup_all_tx_resources(adapter);
5552 		igc_setup_all_rx_resources(adapter);
5553 		igc_configure(adapter);
5554 	}
5555 
5556 	igc_assign_vector(adapter->q_vector[0], 0);
5557 
5558 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5559 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5560 				  netdev->name, adapter);
5561 		if (!err)
5562 			goto request_done;
5563 
5564 		/* fall back to legacy interrupts */
5565 		igc_reset_interrupt_capability(adapter);
5566 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5567 	}
5568 
5569 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5570 			  netdev->name, adapter);
5571 
5572 	if (err)
5573 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5574 
5575 request_done:
5576 	return err;
5577 }
5578 
5579 /**
5580  * __igc_open - Called when a network interface is made active
5581  * @netdev: network interface device structure
5582  * @resuming: boolean indicating if the device is resuming
5583  *
5584  * Returns 0 on success, negative value on failure
5585  *
5586  * The open entry point is called when a network interface is made
5587  * active by the system (IFF_UP).  At this point all resources needed
5588  * for transmit and receive operations are allocated, the interrupt
5589  * handler is registered with the OS, the watchdog timer is started,
5590  * and the stack is notified that the interface is ready.
5591  */
5592 static int __igc_open(struct net_device *netdev, bool resuming)
5593 {
5594 	struct igc_adapter *adapter = netdev_priv(netdev);
5595 	struct pci_dev *pdev = adapter->pdev;
5596 	struct igc_hw *hw = &adapter->hw;
5597 	int err = 0;
5598 	int i = 0;
5599 
5600 	/* disallow open during test */
5601 
5602 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5603 		WARN_ON(resuming);
5604 		return -EBUSY;
5605 	}
5606 
5607 	if (!resuming)
5608 		pm_runtime_get_sync(&pdev->dev);
5609 
5610 	netif_carrier_off(netdev);
5611 
5612 	/* allocate transmit descriptors */
5613 	err = igc_setup_all_tx_resources(adapter);
5614 	if (err)
5615 		goto err_setup_tx;
5616 
5617 	/* allocate receive descriptors */
5618 	err = igc_setup_all_rx_resources(adapter);
5619 	if (err)
5620 		goto err_setup_rx;
5621 
5622 	igc_power_up_link(adapter);
5623 
5624 	igc_configure(adapter);
5625 
5626 	err = igc_request_irq(adapter);
5627 	if (err)
5628 		goto err_req_irq;
5629 
5630 	/* Notify the stack of the actual queue counts. */
5631 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5632 	if (err)
5633 		goto err_set_queues;
5634 
5635 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5636 	if (err)
5637 		goto err_set_queues;
5638 
5639 	clear_bit(__IGC_DOWN, &adapter->state);
5640 
5641 	for (i = 0; i < adapter->num_q_vectors; i++)
5642 		napi_enable(&adapter->q_vector[i]->napi);
5643 
5644 	/* Clear any pending interrupts. */
5645 	rd32(IGC_ICR);
5646 	igc_irq_enable(adapter);
5647 
5648 	if (!resuming)
5649 		pm_runtime_put(&pdev->dev);
5650 
5651 	netif_tx_start_all_queues(netdev);
5652 
5653 	/* start the watchdog. */
5654 	hw->mac.get_link_status = true;
5655 	schedule_work(&adapter->watchdog_task);
5656 
5657 	return IGC_SUCCESS;
5658 
5659 err_set_queues:
5660 	igc_free_irq(adapter);
5661 err_req_irq:
5662 	igc_release_hw_control(adapter);
5663 	igc_power_down_phy_copper_base(&adapter->hw);
5664 	igc_free_all_rx_resources(adapter);
5665 err_setup_rx:
5666 	igc_free_all_tx_resources(adapter);
5667 err_setup_tx:
5668 	igc_reset(adapter);
5669 	if (!resuming)
5670 		pm_runtime_put(&pdev->dev);
5671 
5672 	return err;
5673 }
5674 
5675 int igc_open(struct net_device *netdev)
5676 {
5677 	return __igc_open(netdev, false);
5678 }
5679 
5680 /**
5681  * __igc_close - Disables a network interface
5682  * @netdev: network interface device structure
5683  * @suspending: boolean indicating the device is suspending
5684  *
5685  * Returns 0, this is not allowed to fail
5686  *
5687  * The close entry point is called when an interface is de-activated
5688  * by the OS.  The hardware is still under the driver's control, but
5689  * needs to be disabled.  A global MAC reset is issued to stop the
5690  * hardware, and all transmit and receive resources are freed.
5691  */
5692 static int __igc_close(struct net_device *netdev, bool suspending)
5693 {
5694 	struct igc_adapter *adapter = netdev_priv(netdev);
5695 	struct pci_dev *pdev = adapter->pdev;
5696 
5697 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5698 
5699 	if (!suspending)
5700 		pm_runtime_get_sync(&pdev->dev);
5701 
5702 	igc_down(adapter);
5703 
5704 	igc_release_hw_control(adapter);
5705 
5706 	igc_free_irq(adapter);
5707 
5708 	igc_free_all_tx_resources(adapter);
5709 	igc_free_all_rx_resources(adapter);
5710 
5711 	if (!suspending)
5712 		pm_runtime_put_sync(&pdev->dev);
5713 
5714 	return 0;
5715 }
5716 
5717 int igc_close(struct net_device *netdev)
5718 {
5719 	if (netif_device_present(netdev) || netdev->dismantle)
5720 		return __igc_close(netdev, false);
5721 	return 0;
5722 }
5723 
5724 /**
5725  * igc_ioctl - Access the hwtstamp interface
5726  * @netdev: network interface device structure
5727  * @ifr: interface request data
5728  * @cmd: ioctl command
5729  **/
5730 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5731 {
5732 	switch (cmd) {
5733 	case SIOCGHWTSTAMP:
5734 		return igc_ptp_get_ts_config(netdev, ifr);
5735 	case SIOCSHWTSTAMP:
5736 		return igc_ptp_set_ts_config(netdev, ifr);
5737 	default:
5738 		return -EOPNOTSUPP;
5739 	}
5740 }
5741 
5742 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5743 				      bool enable)
5744 {
5745 	struct igc_ring *ring;
5746 	int i;
5747 
5748 	if (queue < 0 || queue >= adapter->num_tx_queues)
5749 		return -EINVAL;
5750 
5751 	ring = adapter->tx_ring[queue];
5752 	ring->launchtime_enable = enable;
5753 
5754 	if (adapter->base_time)
5755 		return 0;
5756 
5757 	adapter->cycle_time = NSEC_PER_SEC;
5758 
5759 	for (i = 0; i < adapter->num_tx_queues; i++) {
5760 		ring = adapter->tx_ring[i];
5761 		ring->start_time = 0;
5762 		ring->end_time = NSEC_PER_SEC;
5763 	}
5764 
5765 	return 0;
5766 }
5767 
5768 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5769 {
5770 	struct timespec64 b;
5771 
5772 	b = ktime_to_timespec64(base_time);
5773 
5774 	return timespec64_compare(now, &b) > 0;
5775 }
5776 
5777 static bool validate_schedule(struct igc_adapter *adapter,
5778 			      const struct tc_taprio_qopt_offload *qopt)
5779 {
5780 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
5781 	struct timespec64 now;
5782 	size_t n;
5783 
5784 	if (qopt->cycle_time_extension)
5785 		return false;
5786 
5787 	igc_ptp_read(adapter, &now);
5788 
5789 	/* If we program the controller's BASET registers with a time
5790 	 * in the future, it will hold all the packets until that
5791 	 * time, causing a lot of TX Hangs, so to avoid that, we
5792 	 * reject schedules that would start in the future.
5793 	 */
5794 	if (!is_base_time_past(qopt->base_time, &now))
5795 		return false;
5796 
5797 	for (n = 0; n < qopt->num_entries; n++) {
5798 		const struct tc_taprio_sched_entry *e;
5799 		int i;
5800 
5801 		e = &qopt->entries[n];
5802 
5803 		/* i225 only supports "global" frame preemption
5804 		 * settings.
5805 		 */
5806 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
5807 			return false;
5808 
5809 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5810 			if (e->gate_mask & BIT(i))
5811 				queue_uses[i]++;
5812 
5813 			if (queue_uses[i] > 1)
5814 				return false;
5815 		}
5816 	}
5817 
5818 	return true;
5819 }
5820 
5821 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5822 				     struct tc_etf_qopt_offload *qopt)
5823 {
5824 	struct igc_hw *hw = &adapter->hw;
5825 	int err;
5826 
5827 	if (hw->mac.type != igc_i225)
5828 		return -EOPNOTSUPP;
5829 
5830 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5831 	if (err)
5832 		return err;
5833 
5834 	return igc_tsn_offload_apply(adapter);
5835 }
5836 
5837 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5838 				 struct tc_taprio_qopt_offload *qopt)
5839 {
5840 	u32 start_time = 0, end_time = 0;
5841 	size_t n;
5842 
5843 	if (!qopt->enable) {
5844 		adapter->base_time = 0;
5845 		return 0;
5846 	}
5847 
5848 	if (adapter->base_time)
5849 		return -EALREADY;
5850 
5851 	if (!validate_schedule(adapter, qopt))
5852 		return -EINVAL;
5853 
5854 	adapter->cycle_time = qopt->cycle_time;
5855 	adapter->base_time = qopt->base_time;
5856 
5857 	/* FIXME: be a little smarter about cases when the gate for a
5858 	 * queue stays open for more than one entry.
5859 	 */
5860 	for (n = 0; n < qopt->num_entries; n++) {
5861 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
5862 		int i;
5863 
5864 		end_time += e->interval;
5865 
5866 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5867 			struct igc_ring *ring = adapter->tx_ring[i];
5868 
5869 			if (!(e->gate_mask & BIT(i)))
5870 				continue;
5871 
5872 			ring->start_time = start_time;
5873 			ring->end_time = end_time;
5874 		}
5875 
5876 		start_time += e->interval;
5877 	}
5878 
5879 	return 0;
5880 }
5881 
5882 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5883 					 struct tc_taprio_qopt_offload *qopt)
5884 {
5885 	struct igc_hw *hw = &adapter->hw;
5886 	int err;
5887 
5888 	if (hw->mac.type != igc_i225)
5889 		return -EOPNOTSUPP;
5890 
5891 	err = igc_save_qbv_schedule(adapter, qopt);
5892 	if (err)
5893 		return err;
5894 
5895 	return igc_tsn_offload_apply(adapter);
5896 }
5897 
5898 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5899 			void *type_data)
5900 {
5901 	struct igc_adapter *adapter = netdev_priv(dev);
5902 
5903 	switch (type) {
5904 	case TC_SETUP_QDISC_TAPRIO:
5905 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5906 
5907 	case TC_SETUP_QDISC_ETF:
5908 		return igc_tsn_enable_launchtime(adapter, type_data);
5909 
5910 	default:
5911 		return -EOPNOTSUPP;
5912 	}
5913 }
5914 
5915 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5916 {
5917 	struct igc_adapter *adapter = netdev_priv(dev);
5918 
5919 	switch (bpf->command) {
5920 	case XDP_SETUP_PROG:
5921 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5922 	case XDP_SETUP_XSK_POOL:
5923 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
5924 					  bpf->xsk.queue_id);
5925 	default:
5926 		return -EOPNOTSUPP;
5927 	}
5928 }
5929 
5930 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5931 			struct xdp_frame **frames, u32 flags)
5932 {
5933 	struct igc_adapter *adapter = netdev_priv(dev);
5934 	int cpu = smp_processor_id();
5935 	struct netdev_queue *nq;
5936 	struct igc_ring *ring;
5937 	int i, drops;
5938 
5939 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5940 		return -ENETDOWN;
5941 
5942 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5943 		return -EINVAL;
5944 
5945 	ring = igc_xdp_get_tx_ring(adapter, cpu);
5946 	nq = txring_txq(ring);
5947 
5948 	__netif_tx_lock(nq, cpu);
5949 
5950 	drops = 0;
5951 	for (i = 0; i < num_frames; i++) {
5952 		int err;
5953 		struct xdp_frame *xdpf = frames[i];
5954 
5955 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
5956 		if (err) {
5957 			xdp_return_frame_rx_napi(xdpf);
5958 			drops++;
5959 		}
5960 	}
5961 
5962 	if (flags & XDP_XMIT_FLUSH)
5963 		igc_flush_tx_descriptors(ring);
5964 
5965 	__netif_tx_unlock(nq);
5966 
5967 	return num_frames - drops;
5968 }
5969 
5970 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
5971 					struct igc_q_vector *q_vector)
5972 {
5973 	struct igc_hw *hw = &adapter->hw;
5974 	u32 eics = 0;
5975 
5976 	eics |= q_vector->eims_value;
5977 	wr32(IGC_EICS, eics);
5978 }
5979 
5980 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
5981 {
5982 	struct igc_adapter *adapter = netdev_priv(dev);
5983 	struct igc_q_vector *q_vector;
5984 	struct igc_ring *ring;
5985 
5986 	if (test_bit(__IGC_DOWN, &adapter->state))
5987 		return -ENETDOWN;
5988 
5989 	if (!igc_xdp_is_enabled(adapter))
5990 		return -ENXIO;
5991 
5992 	if (queue_id >= adapter->num_rx_queues)
5993 		return -EINVAL;
5994 
5995 	ring = adapter->rx_ring[queue_id];
5996 
5997 	if (!ring->xsk_pool)
5998 		return -ENXIO;
5999 
6000 	q_vector = adapter->q_vector[queue_id];
6001 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6002 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6003 
6004 	return 0;
6005 }
6006 
6007 static const struct net_device_ops igc_netdev_ops = {
6008 	.ndo_open		= igc_open,
6009 	.ndo_stop		= igc_close,
6010 	.ndo_start_xmit		= igc_xmit_frame,
6011 	.ndo_set_rx_mode	= igc_set_rx_mode,
6012 	.ndo_set_mac_address	= igc_set_mac,
6013 	.ndo_change_mtu		= igc_change_mtu,
6014 	.ndo_get_stats64	= igc_get_stats64,
6015 	.ndo_fix_features	= igc_fix_features,
6016 	.ndo_set_features	= igc_set_features,
6017 	.ndo_features_check	= igc_features_check,
6018 	.ndo_eth_ioctl		= igc_ioctl,
6019 	.ndo_setup_tc		= igc_setup_tc,
6020 	.ndo_bpf		= igc_bpf,
6021 	.ndo_xdp_xmit		= igc_xdp_xmit,
6022 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6023 };
6024 
6025 /* PCIe configuration access */
6026 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6027 {
6028 	struct igc_adapter *adapter = hw->back;
6029 
6030 	pci_read_config_word(adapter->pdev, reg, value);
6031 }
6032 
6033 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6034 {
6035 	struct igc_adapter *adapter = hw->back;
6036 
6037 	pci_write_config_word(adapter->pdev, reg, *value);
6038 }
6039 
6040 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6041 {
6042 	struct igc_adapter *adapter = hw->back;
6043 
6044 	if (!pci_is_pcie(adapter->pdev))
6045 		return -IGC_ERR_CONFIG;
6046 
6047 	pcie_capability_read_word(adapter->pdev, reg, value);
6048 
6049 	return IGC_SUCCESS;
6050 }
6051 
6052 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6053 {
6054 	struct igc_adapter *adapter = hw->back;
6055 
6056 	if (!pci_is_pcie(adapter->pdev))
6057 		return -IGC_ERR_CONFIG;
6058 
6059 	pcie_capability_write_word(adapter->pdev, reg, *value);
6060 
6061 	return IGC_SUCCESS;
6062 }
6063 
6064 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6065 {
6066 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6067 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6068 	u32 value = 0;
6069 
6070 	value = readl(&hw_addr[reg]);
6071 
6072 	/* reads should not return all F's */
6073 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6074 		struct net_device *netdev = igc->netdev;
6075 
6076 		hw->hw_addr = NULL;
6077 		netif_device_detach(netdev);
6078 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6079 		WARN(pci_device_is_present(igc->pdev),
6080 		     "igc: Failed to read reg 0x%x!\n", reg);
6081 	}
6082 
6083 	return value;
6084 }
6085 
6086 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
6087 {
6088 	struct igc_mac_info *mac = &adapter->hw.mac;
6089 
6090 	mac->autoneg = false;
6091 
6092 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6093 	 * for the switch() below to work
6094 	 */
6095 	if ((spd & 1) || (dplx & ~1))
6096 		goto err_inval;
6097 
6098 	switch (spd + dplx) {
6099 	case SPEED_10 + DUPLEX_HALF:
6100 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6101 		break;
6102 	case SPEED_10 + DUPLEX_FULL:
6103 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6104 		break;
6105 	case SPEED_100 + DUPLEX_HALF:
6106 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6107 		break;
6108 	case SPEED_100 + DUPLEX_FULL:
6109 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6110 		break;
6111 	case SPEED_1000 + DUPLEX_FULL:
6112 		mac->autoneg = true;
6113 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6114 		break;
6115 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6116 		goto err_inval;
6117 	case SPEED_2500 + DUPLEX_FULL:
6118 		mac->autoneg = true;
6119 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
6120 		break;
6121 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
6122 	default:
6123 		goto err_inval;
6124 	}
6125 
6126 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6127 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6128 
6129 	return 0;
6130 
6131 err_inval:
6132 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
6133 	return -EINVAL;
6134 }
6135 
6136 /**
6137  * igc_probe - Device Initialization Routine
6138  * @pdev: PCI device information struct
6139  * @ent: entry in igc_pci_tbl
6140  *
6141  * Returns 0 on success, negative on failure
6142  *
6143  * igc_probe initializes an adapter identified by a pci_dev structure.
6144  * The OS initialization, configuring the adapter private structure,
6145  * and a hardware reset occur.
6146  */
6147 static int igc_probe(struct pci_dev *pdev,
6148 		     const struct pci_device_id *ent)
6149 {
6150 	struct igc_adapter *adapter;
6151 	struct net_device *netdev;
6152 	struct igc_hw *hw;
6153 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6154 	int err, pci_using_dac;
6155 
6156 	err = pci_enable_device_mem(pdev);
6157 	if (err)
6158 		return err;
6159 
6160 	pci_using_dac = 0;
6161 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6162 	if (!err) {
6163 		pci_using_dac = 1;
6164 	} else {
6165 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6166 		if (err) {
6167 			dev_err(&pdev->dev,
6168 				"No usable DMA configuration, aborting\n");
6169 			goto err_dma;
6170 		}
6171 	}
6172 
6173 	err = pci_request_mem_regions(pdev, igc_driver_name);
6174 	if (err)
6175 		goto err_pci_reg;
6176 
6177 	pci_enable_pcie_error_reporting(pdev);
6178 
6179 	err = pci_enable_ptm(pdev, NULL);
6180 	if (err < 0)
6181 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6182 
6183 	pci_set_master(pdev);
6184 
6185 	err = -ENOMEM;
6186 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6187 				   IGC_MAX_TX_QUEUES);
6188 
6189 	if (!netdev)
6190 		goto err_alloc_etherdev;
6191 
6192 	SET_NETDEV_DEV(netdev, &pdev->dev);
6193 
6194 	pci_set_drvdata(pdev, netdev);
6195 	adapter = netdev_priv(netdev);
6196 	adapter->netdev = netdev;
6197 	adapter->pdev = pdev;
6198 	hw = &adapter->hw;
6199 	hw->back = adapter;
6200 	adapter->port_num = hw->bus.func;
6201 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6202 
6203 	err = pci_save_state(pdev);
6204 	if (err)
6205 		goto err_ioremap;
6206 
6207 	err = -EIO;
6208 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6209 				   pci_resource_len(pdev, 0));
6210 	if (!adapter->io_addr)
6211 		goto err_ioremap;
6212 
6213 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6214 	hw->hw_addr = adapter->io_addr;
6215 
6216 	netdev->netdev_ops = &igc_netdev_ops;
6217 	igc_ethtool_set_ops(netdev);
6218 	netdev->watchdog_timeo = 5 * HZ;
6219 
6220 	netdev->mem_start = pci_resource_start(pdev, 0);
6221 	netdev->mem_end = pci_resource_end(pdev, 0);
6222 
6223 	/* PCI config space info */
6224 	hw->vendor_id = pdev->vendor;
6225 	hw->device_id = pdev->device;
6226 	hw->revision_id = pdev->revision;
6227 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6228 	hw->subsystem_device_id = pdev->subsystem_device;
6229 
6230 	/* Copy the default MAC and PHY function pointers */
6231 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6232 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6233 
6234 	/* Initialize skew-specific constants */
6235 	err = ei->get_invariants(hw);
6236 	if (err)
6237 		goto err_sw_init;
6238 
6239 	/* Add supported features to the features list*/
6240 	netdev->features |= NETIF_F_SG;
6241 	netdev->features |= NETIF_F_TSO;
6242 	netdev->features |= NETIF_F_TSO6;
6243 	netdev->features |= NETIF_F_TSO_ECN;
6244 	netdev->features |= NETIF_F_RXCSUM;
6245 	netdev->features |= NETIF_F_HW_CSUM;
6246 	netdev->features |= NETIF_F_SCTP_CRC;
6247 	netdev->features |= NETIF_F_HW_TC;
6248 
6249 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6250 				  NETIF_F_GSO_GRE_CSUM | \
6251 				  NETIF_F_GSO_IPXIP4 | \
6252 				  NETIF_F_GSO_IPXIP6 | \
6253 				  NETIF_F_GSO_UDP_TUNNEL | \
6254 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6255 
6256 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6257 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6258 
6259 	/* setup the private structure */
6260 	err = igc_sw_init(adapter);
6261 	if (err)
6262 		goto err_sw_init;
6263 
6264 	/* copy netdev features into list of user selectable features */
6265 	netdev->hw_features |= NETIF_F_NTUPLE;
6266 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6267 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6268 	netdev->hw_features |= netdev->features;
6269 
6270 	if (pci_using_dac)
6271 		netdev->features |= NETIF_F_HIGHDMA;
6272 
6273 	netdev->vlan_features |= netdev->features;
6274 
6275 	/* MTU range: 68 - 9216 */
6276 	netdev->min_mtu = ETH_MIN_MTU;
6277 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6278 
6279 	/* before reading the NVM, reset the controller to put the device in a
6280 	 * known good starting state
6281 	 */
6282 	hw->mac.ops.reset_hw(hw);
6283 
6284 	if (igc_get_flash_presence_i225(hw)) {
6285 		if (hw->nvm.ops.validate(hw) < 0) {
6286 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6287 			err = -EIO;
6288 			goto err_eeprom;
6289 		}
6290 	}
6291 
6292 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6293 		/* copy the MAC address out of the NVM */
6294 		if (hw->mac.ops.read_mac_addr(hw))
6295 			dev_err(&pdev->dev, "NVM Read Error\n");
6296 	}
6297 
6298 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
6299 
6300 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6301 		dev_err(&pdev->dev, "Invalid MAC Address\n");
6302 		err = -EIO;
6303 		goto err_eeprom;
6304 	}
6305 
6306 	/* configure RXPBSIZE and TXPBSIZE */
6307 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6308 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6309 
6310 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6311 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6312 
6313 	INIT_WORK(&adapter->reset_task, igc_reset_task);
6314 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6315 
6316 	/* Initialize link properties that are user-changeable */
6317 	adapter->fc_autoneg = true;
6318 	hw->mac.autoneg = true;
6319 	hw->phy.autoneg_advertised = 0xaf;
6320 
6321 	hw->fc.requested_mode = igc_fc_default;
6322 	hw->fc.current_mode = igc_fc_default;
6323 
6324 	/* By default, support wake on port A */
6325 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6326 
6327 	/* initialize the wol settings based on the eeprom settings */
6328 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6329 		adapter->wol |= IGC_WUFC_MAG;
6330 
6331 	device_set_wakeup_enable(&adapter->pdev->dev,
6332 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6333 
6334 	igc_ptp_init(adapter);
6335 
6336 	/* reset the hardware with the new settings */
6337 	igc_reset(adapter);
6338 
6339 	/* let the f/w know that the h/w is now under the control of the
6340 	 * driver.
6341 	 */
6342 	igc_get_hw_control(adapter);
6343 
6344 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6345 	err = register_netdev(netdev);
6346 	if (err)
6347 		goto err_register;
6348 
6349 	 /* carrier off reporting is important to ethtool even BEFORE open */
6350 	netif_carrier_off(netdev);
6351 
6352 	/* Check if Media Autosense is enabled */
6353 	adapter->ei = *ei;
6354 
6355 	/* print pcie link status and MAC address */
6356 	pcie_print_link_status(pdev);
6357 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6358 
6359 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6360 	/* Disable EEE for internal PHY devices */
6361 	hw->dev_spec._base.eee_enable = false;
6362 	adapter->flags &= ~IGC_FLAG_EEE;
6363 	igc_set_eee_i225(hw, false, false, false);
6364 
6365 	pm_runtime_put_noidle(&pdev->dev);
6366 
6367 	return 0;
6368 
6369 err_register:
6370 	igc_release_hw_control(adapter);
6371 err_eeprom:
6372 	if (!igc_check_reset_block(hw))
6373 		igc_reset_phy(hw);
6374 err_sw_init:
6375 	igc_clear_interrupt_scheme(adapter);
6376 	iounmap(adapter->io_addr);
6377 err_ioremap:
6378 	free_netdev(netdev);
6379 err_alloc_etherdev:
6380 	pci_disable_pcie_error_reporting(pdev);
6381 	pci_release_mem_regions(pdev);
6382 err_pci_reg:
6383 err_dma:
6384 	pci_disable_device(pdev);
6385 	return err;
6386 }
6387 
6388 /**
6389  * igc_remove - Device Removal Routine
6390  * @pdev: PCI device information struct
6391  *
6392  * igc_remove is called by the PCI subsystem to alert the driver
6393  * that it should release a PCI device.  This could be caused by a
6394  * Hot-Plug event, or because the driver is going to be removed from
6395  * memory.
6396  */
6397 static void igc_remove(struct pci_dev *pdev)
6398 {
6399 	struct net_device *netdev = pci_get_drvdata(pdev);
6400 	struct igc_adapter *adapter = netdev_priv(netdev);
6401 
6402 	pm_runtime_get_noresume(&pdev->dev);
6403 
6404 	igc_flush_nfc_rules(adapter);
6405 
6406 	igc_ptp_stop(adapter);
6407 
6408 	set_bit(__IGC_DOWN, &adapter->state);
6409 
6410 	del_timer_sync(&adapter->watchdog_timer);
6411 	del_timer_sync(&adapter->phy_info_timer);
6412 
6413 	cancel_work_sync(&adapter->reset_task);
6414 	cancel_work_sync(&adapter->watchdog_task);
6415 
6416 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6417 	 * would have already happened in close and is redundant.
6418 	 */
6419 	igc_release_hw_control(adapter);
6420 	unregister_netdev(netdev);
6421 
6422 	igc_clear_interrupt_scheme(adapter);
6423 	pci_iounmap(pdev, adapter->io_addr);
6424 	pci_release_mem_regions(pdev);
6425 
6426 	free_netdev(netdev);
6427 
6428 	pci_disable_pcie_error_reporting(pdev);
6429 
6430 	pci_disable_device(pdev);
6431 }
6432 
6433 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6434 			  bool runtime)
6435 {
6436 	struct net_device *netdev = pci_get_drvdata(pdev);
6437 	struct igc_adapter *adapter = netdev_priv(netdev);
6438 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6439 	struct igc_hw *hw = &adapter->hw;
6440 	u32 ctrl, rctl, status;
6441 	bool wake;
6442 
6443 	rtnl_lock();
6444 	netif_device_detach(netdev);
6445 
6446 	if (netif_running(netdev))
6447 		__igc_close(netdev, true);
6448 
6449 	igc_ptp_suspend(adapter);
6450 
6451 	igc_clear_interrupt_scheme(adapter);
6452 	rtnl_unlock();
6453 
6454 	status = rd32(IGC_STATUS);
6455 	if (status & IGC_STATUS_LU)
6456 		wufc &= ~IGC_WUFC_LNKC;
6457 
6458 	if (wufc) {
6459 		igc_setup_rctl(adapter);
6460 		igc_set_rx_mode(netdev);
6461 
6462 		/* turn on all-multi mode if wake on multicast is enabled */
6463 		if (wufc & IGC_WUFC_MC) {
6464 			rctl = rd32(IGC_RCTL);
6465 			rctl |= IGC_RCTL_MPE;
6466 			wr32(IGC_RCTL, rctl);
6467 		}
6468 
6469 		ctrl = rd32(IGC_CTRL);
6470 		ctrl |= IGC_CTRL_ADVD3WUC;
6471 		wr32(IGC_CTRL, ctrl);
6472 
6473 		/* Allow time for pending master requests to run */
6474 		igc_disable_pcie_master(hw);
6475 
6476 		wr32(IGC_WUC, IGC_WUC_PME_EN);
6477 		wr32(IGC_WUFC, wufc);
6478 	} else {
6479 		wr32(IGC_WUC, 0);
6480 		wr32(IGC_WUFC, 0);
6481 	}
6482 
6483 	wake = wufc || adapter->en_mng_pt;
6484 	if (!wake)
6485 		igc_power_down_phy_copper_base(&adapter->hw);
6486 	else
6487 		igc_power_up_link(adapter);
6488 
6489 	if (enable_wake)
6490 		*enable_wake = wake;
6491 
6492 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6493 	 * would have already happened in close and is redundant.
6494 	 */
6495 	igc_release_hw_control(adapter);
6496 
6497 	pci_disable_device(pdev);
6498 
6499 	return 0;
6500 }
6501 
6502 #ifdef CONFIG_PM
6503 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6504 {
6505 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6506 }
6507 
6508 static void igc_deliver_wake_packet(struct net_device *netdev)
6509 {
6510 	struct igc_adapter *adapter = netdev_priv(netdev);
6511 	struct igc_hw *hw = &adapter->hw;
6512 	struct sk_buff *skb;
6513 	u32 wupl;
6514 
6515 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6516 
6517 	/* WUPM stores only the first 128 bytes of the wake packet.
6518 	 * Read the packet only if we have the whole thing.
6519 	 */
6520 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6521 		return;
6522 
6523 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6524 	if (!skb)
6525 		return;
6526 
6527 	skb_put(skb, wupl);
6528 
6529 	/* Ensure reads are 32-bit aligned */
6530 	wupl = roundup(wupl, 4);
6531 
6532 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6533 
6534 	skb->protocol = eth_type_trans(skb, netdev);
6535 	netif_rx(skb);
6536 }
6537 
6538 static int __maybe_unused igc_resume(struct device *dev)
6539 {
6540 	struct pci_dev *pdev = to_pci_dev(dev);
6541 	struct net_device *netdev = pci_get_drvdata(pdev);
6542 	struct igc_adapter *adapter = netdev_priv(netdev);
6543 	struct igc_hw *hw = &adapter->hw;
6544 	u32 err, val;
6545 
6546 	pci_set_power_state(pdev, PCI_D0);
6547 	pci_restore_state(pdev);
6548 	pci_save_state(pdev);
6549 
6550 	if (!pci_device_is_present(pdev))
6551 		return -ENODEV;
6552 	err = pci_enable_device_mem(pdev);
6553 	if (err) {
6554 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6555 		return err;
6556 	}
6557 	pci_set_master(pdev);
6558 
6559 	pci_enable_wake(pdev, PCI_D3hot, 0);
6560 	pci_enable_wake(pdev, PCI_D3cold, 0);
6561 
6562 	if (igc_init_interrupt_scheme(adapter, true)) {
6563 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6564 		return -ENOMEM;
6565 	}
6566 
6567 	igc_reset(adapter);
6568 
6569 	/* let the f/w know that the h/w is now under the control of the
6570 	 * driver.
6571 	 */
6572 	igc_get_hw_control(adapter);
6573 
6574 	val = rd32(IGC_WUS);
6575 	if (val & WAKE_PKT_WUS)
6576 		igc_deliver_wake_packet(netdev);
6577 
6578 	wr32(IGC_WUS, ~0);
6579 
6580 	rtnl_lock();
6581 	if (!err && netif_running(netdev))
6582 		err = __igc_open(netdev, true);
6583 
6584 	if (!err)
6585 		netif_device_attach(netdev);
6586 	rtnl_unlock();
6587 
6588 	return err;
6589 }
6590 
6591 static int __maybe_unused igc_runtime_resume(struct device *dev)
6592 {
6593 	return igc_resume(dev);
6594 }
6595 
6596 static int __maybe_unused igc_suspend(struct device *dev)
6597 {
6598 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6599 }
6600 
6601 static int __maybe_unused igc_runtime_idle(struct device *dev)
6602 {
6603 	struct net_device *netdev = dev_get_drvdata(dev);
6604 	struct igc_adapter *adapter = netdev_priv(netdev);
6605 
6606 	if (!igc_has_link(adapter))
6607 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6608 
6609 	return -EBUSY;
6610 }
6611 #endif /* CONFIG_PM */
6612 
6613 static void igc_shutdown(struct pci_dev *pdev)
6614 {
6615 	bool wake;
6616 
6617 	__igc_shutdown(pdev, &wake, 0);
6618 
6619 	if (system_state == SYSTEM_POWER_OFF) {
6620 		pci_wake_from_d3(pdev, wake);
6621 		pci_set_power_state(pdev, PCI_D3hot);
6622 	}
6623 }
6624 
6625 /**
6626  *  igc_io_error_detected - called when PCI error is detected
6627  *  @pdev: Pointer to PCI device
6628  *  @state: The current PCI connection state
6629  *
6630  *  This function is called after a PCI bus error affecting
6631  *  this device has been detected.
6632  **/
6633 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6634 					      pci_channel_state_t state)
6635 {
6636 	struct net_device *netdev = pci_get_drvdata(pdev);
6637 	struct igc_adapter *adapter = netdev_priv(netdev);
6638 
6639 	netif_device_detach(netdev);
6640 
6641 	if (state == pci_channel_io_perm_failure)
6642 		return PCI_ERS_RESULT_DISCONNECT;
6643 
6644 	if (netif_running(netdev))
6645 		igc_down(adapter);
6646 	pci_disable_device(pdev);
6647 
6648 	/* Request a slot reset. */
6649 	return PCI_ERS_RESULT_NEED_RESET;
6650 }
6651 
6652 /**
6653  *  igc_io_slot_reset - called after the PCI bus has been reset.
6654  *  @pdev: Pointer to PCI device
6655  *
6656  *  Restart the card from scratch, as if from a cold-boot. Implementation
6657  *  resembles the first-half of the igc_resume routine.
6658  **/
6659 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6660 {
6661 	struct net_device *netdev = pci_get_drvdata(pdev);
6662 	struct igc_adapter *adapter = netdev_priv(netdev);
6663 	struct igc_hw *hw = &adapter->hw;
6664 	pci_ers_result_t result;
6665 
6666 	if (pci_enable_device_mem(pdev)) {
6667 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6668 		result = PCI_ERS_RESULT_DISCONNECT;
6669 	} else {
6670 		pci_set_master(pdev);
6671 		pci_restore_state(pdev);
6672 		pci_save_state(pdev);
6673 
6674 		pci_enable_wake(pdev, PCI_D3hot, 0);
6675 		pci_enable_wake(pdev, PCI_D3cold, 0);
6676 
6677 		/* In case of PCI error, adapter loses its HW address
6678 		 * so we should re-assign it here.
6679 		 */
6680 		hw->hw_addr = adapter->io_addr;
6681 
6682 		igc_reset(adapter);
6683 		wr32(IGC_WUS, ~0);
6684 		result = PCI_ERS_RESULT_RECOVERED;
6685 	}
6686 
6687 	return result;
6688 }
6689 
6690 /**
6691  *  igc_io_resume - called when traffic can start to flow again.
6692  *  @pdev: Pointer to PCI device
6693  *
6694  *  This callback is called when the error recovery driver tells us that
6695  *  its OK to resume normal operation. Implementation resembles the
6696  *  second-half of the igc_resume routine.
6697  */
6698 static void igc_io_resume(struct pci_dev *pdev)
6699 {
6700 	struct net_device *netdev = pci_get_drvdata(pdev);
6701 	struct igc_adapter *adapter = netdev_priv(netdev);
6702 
6703 	rtnl_lock();
6704 	if (netif_running(netdev)) {
6705 		if (igc_open(netdev)) {
6706 			netdev_err(netdev, "igc_open failed after reset\n");
6707 			return;
6708 		}
6709 	}
6710 
6711 	netif_device_attach(netdev);
6712 
6713 	/* let the f/w know that the h/w is now under the control of the
6714 	 * driver.
6715 	 */
6716 	igc_get_hw_control(adapter);
6717 	rtnl_unlock();
6718 }
6719 
6720 static const struct pci_error_handlers igc_err_handler = {
6721 	.error_detected = igc_io_error_detected,
6722 	.slot_reset = igc_io_slot_reset,
6723 	.resume = igc_io_resume,
6724 };
6725 
6726 #ifdef CONFIG_PM
6727 static const struct dev_pm_ops igc_pm_ops = {
6728 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6729 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6730 			   igc_runtime_idle)
6731 };
6732 #endif
6733 
6734 static struct pci_driver igc_driver = {
6735 	.name     = igc_driver_name,
6736 	.id_table = igc_pci_tbl,
6737 	.probe    = igc_probe,
6738 	.remove   = igc_remove,
6739 #ifdef CONFIG_PM
6740 	.driver.pm = &igc_pm_ops,
6741 #endif
6742 	.shutdown = igc_shutdown,
6743 	.err_handler = &igc_err_handler,
6744 };
6745 
6746 /**
6747  * igc_reinit_queues - return error
6748  * @adapter: pointer to adapter structure
6749  */
6750 int igc_reinit_queues(struct igc_adapter *adapter)
6751 {
6752 	struct net_device *netdev = adapter->netdev;
6753 	int err = 0;
6754 
6755 	if (netif_running(netdev))
6756 		igc_close(netdev);
6757 
6758 	igc_reset_interrupt_capability(adapter);
6759 
6760 	if (igc_init_interrupt_scheme(adapter, true)) {
6761 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6762 		return -ENOMEM;
6763 	}
6764 
6765 	if (netif_running(netdev))
6766 		err = igc_open(netdev);
6767 
6768 	return err;
6769 }
6770 
6771 /**
6772  * igc_get_hw_dev - return device
6773  * @hw: pointer to hardware structure
6774  *
6775  * used by hardware layer to print debugging information
6776  */
6777 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6778 {
6779 	struct igc_adapter *adapter = hw->back;
6780 
6781 	return adapter->netdev;
6782 }
6783 
6784 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6785 {
6786 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6787 	u8 idx = ring->reg_idx;
6788 	u32 rxdctl;
6789 
6790 	rxdctl = rd32(IGC_RXDCTL(idx));
6791 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6792 	rxdctl |= IGC_RXDCTL_SWFLUSH;
6793 	wr32(IGC_RXDCTL(idx), rxdctl);
6794 }
6795 
6796 void igc_disable_rx_ring(struct igc_ring *ring)
6797 {
6798 	igc_disable_rx_ring_hw(ring);
6799 	igc_clean_rx_ring(ring);
6800 }
6801 
6802 void igc_enable_rx_ring(struct igc_ring *ring)
6803 {
6804 	struct igc_adapter *adapter = ring->q_vector->adapter;
6805 
6806 	igc_configure_rx_ring(adapter, ring);
6807 
6808 	if (ring->xsk_pool)
6809 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6810 	else
6811 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6812 }
6813 
6814 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6815 {
6816 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6817 	u8 idx = ring->reg_idx;
6818 	u32 txdctl;
6819 
6820 	txdctl = rd32(IGC_TXDCTL(idx));
6821 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6822 	txdctl |= IGC_TXDCTL_SWFLUSH;
6823 	wr32(IGC_TXDCTL(idx), txdctl);
6824 }
6825 
6826 void igc_disable_tx_ring(struct igc_ring *ring)
6827 {
6828 	igc_disable_tx_ring_hw(ring);
6829 	igc_clean_tx_ring(ring);
6830 }
6831 
6832 void igc_enable_tx_ring(struct igc_ring *ring)
6833 {
6834 	struct igc_adapter *adapter = ring->q_vector->adapter;
6835 
6836 	igc_configure_tx_ring(adapter, ring);
6837 }
6838 
6839 /**
6840  * igc_init_module - Driver Registration Routine
6841  *
6842  * igc_init_module is the first routine called when the driver is
6843  * loaded. All it does is register with the PCI subsystem.
6844  */
6845 static int __init igc_init_module(void)
6846 {
6847 	int ret;
6848 
6849 	pr_info("%s\n", igc_driver_string);
6850 	pr_info("%s\n", igc_copyright);
6851 
6852 	ret = pci_register_driver(&igc_driver);
6853 	return ret;
6854 }
6855 
6856 module_init(igc_init_module);
6857 
6858 /**
6859  * igc_exit_module - Driver Exit Cleanup Routine
6860  *
6861  * igc_exit_module is called just before the driver is removed
6862  * from memory.
6863  */
6864 static void __exit igc_exit_module(void)
6865 {
6866 	pci_unregister_driver(&igc_driver);
6867 }
6868 
6869 module_exit(igc_exit_module);
6870 /* igc_main.c */
6871