1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/aer.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/ip.h> 11 #include <linux/pm_runtime.h> 12 #include <net/pkt_sched.h> 13 #include <linux/bpf_trace.h> 14 #include <net/xdp_sock_drv.h> 15 #include <linux/pci.h> 16 17 #include <net/ipv6.h> 18 19 #include "igc.h" 20 #include "igc_hw.h" 21 #include "igc_tsn.h" 22 #include "igc_xdp.h" 23 24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 25 26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 27 28 #define IGC_XDP_PASS 0 29 #define IGC_XDP_CONSUMED BIT(0) 30 #define IGC_XDP_TX BIT(1) 31 #define IGC_XDP_REDIRECT BIT(2) 32 33 static int debug = -1; 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 module_param(debug, int, 0); 39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 40 41 char igc_driver_name[] = "igc"; 42 static const char igc_driver_string[] = DRV_SUMMARY; 43 static const char igc_copyright[] = 44 "Copyright(c) 2018 Intel Corporation."; 45 46 static const struct igc_info *igc_info_tbl[] = { 47 [board_base] = &igc_base_info, 48 }; 49 50 static const struct pci_device_id igc_pci_tbl[] = { 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 66 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 67 /* required last entry */ 68 {0, } 69 }; 70 71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 72 73 enum latency_range { 74 lowest_latency = 0, 75 low_latency = 1, 76 bulk_latency = 2, 77 latency_invalid = 255 78 }; 79 80 void igc_reset(struct igc_adapter *adapter) 81 { 82 struct net_device *dev = adapter->netdev; 83 struct igc_hw *hw = &adapter->hw; 84 struct igc_fc_info *fc = &hw->fc; 85 u32 pba, hwm; 86 87 /* Repartition PBA for greater than 9k MTU if required */ 88 pba = IGC_PBA_34K; 89 90 /* flow control settings 91 * The high water mark must be low enough to fit one full frame 92 * after transmitting the pause frame. As such we must have enough 93 * space to allow for us to complete our current transmit and then 94 * receive the frame that is in progress from the link partner. 95 * Set it to: 96 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 97 */ 98 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 99 100 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 101 fc->low_water = fc->high_water - 16; 102 fc->pause_time = 0xFFFF; 103 fc->send_xon = 1; 104 fc->current_mode = fc->requested_mode; 105 106 hw->mac.ops.reset_hw(hw); 107 108 if (hw->mac.ops.init_hw(hw)) 109 netdev_err(dev, "Error on hardware initialization\n"); 110 111 /* Re-establish EEE setting */ 112 igc_set_eee_i225(hw, true, true, true); 113 114 if (!netif_running(adapter->netdev)) 115 igc_power_down_phy_copper_base(&adapter->hw); 116 117 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 118 wr32(IGC_VET, ETH_P_8021Q); 119 120 /* Re-enable PTP, where applicable. */ 121 igc_ptp_reset(adapter); 122 123 /* Re-enable TSN offloading, where applicable. */ 124 igc_tsn_reset(adapter); 125 126 igc_get_phy_info(hw); 127 } 128 129 /** 130 * igc_power_up_link - Power up the phy link 131 * @adapter: address of board private structure 132 */ 133 static void igc_power_up_link(struct igc_adapter *adapter) 134 { 135 igc_reset_phy(&adapter->hw); 136 137 igc_power_up_phy_copper(&adapter->hw); 138 139 igc_setup_link(&adapter->hw); 140 } 141 142 /** 143 * igc_release_hw_control - release control of the h/w to f/w 144 * @adapter: address of board private structure 145 * 146 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 147 * For ASF and Pass Through versions of f/w this means that the 148 * driver is no longer loaded. 149 */ 150 static void igc_release_hw_control(struct igc_adapter *adapter) 151 { 152 struct igc_hw *hw = &adapter->hw; 153 u32 ctrl_ext; 154 155 if (!pci_device_is_present(adapter->pdev)) 156 return; 157 158 /* Let firmware take over control of h/w */ 159 ctrl_ext = rd32(IGC_CTRL_EXT); 160 wr32(IGC_CTRL_EXT, 161 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 162 } 163 164 /** 165 * igc_get_hw_control - get control of the h/w from f/w 166 * @adapter: address of board private structure 167 * 168 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 169 * For ASF and Pass Through versions of f/w this means that 170 * the driver is loaded. 171 */ 172 static void igc_get_hw_control(struct igc_adapter *adapter) 173 { 174 struct igc_hw *hw = &adapter->hw; 175 u32 ctrl_ext; 176 177 /* Let firmware know the driver has taken over */ 178 ctrl_ext = rd32(IGC_CTRL_EXT); 179 wr32(IGC_CTRL_EXT, 180 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 181 } 182 183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 184 { 185 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 186 dma_unmap_len(buf, len), DMA_TO_DEVICE); 187 188 dma_unmap_len_set(buf, len, 0); 189 } 190 191 /** 192 * igc_clean_tx_ring - Free Tx Buffers 193 * @tx_ring: ring to be cleaned 194 */ 195 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 196 { 197 u16 i = tx_ring->next_to_clean; 198 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 199 u32 xsk_frames = 0; 200 201 while (i != tx_ring->next_to_use) { 202 union igc_adv_tx_desc *eop_desc, *tx_desc; 203 204 switch (tx_buffer->type) { 205 case IGC_TX_BUFFER_TYPE_XSK: 206 xsk_frames++; 207 break; 208 case IGC_TX_BUFFER_TYPE_XDP: 209 xdp_return_frame(tx_buffer->xdpf); 210 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 211 break; 212 case IGC_TX_BUFFER_TYPE_SKB: 213 dev_kfree_skb_any(tx_buffer->skb); 214 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 215 break; 216 default: 217 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 218 break; 219 } 220 221 /* check for eop_desc to determine the end of the packet */ 222 eop_desc = tx_buffer->next_to_watch; 223 tx_desc = IGC_TX_DESC(tx_ring, i); 224 225 /* unmap remaining buffers */ 226 while (tx_desc != eop_desc) { 227 tx_buffer++; 228 tx_desc++; 229 i++; 230 if (unlikely(i == tx_ring->count)) { 231 i = 0; 232 tx_buffer = tx_ring->tx_buffer_info; 233 tx_desc = IGC_TX_DESC(tx_ring, 0); 234 } 235 236 /* unmap any remaining paged data */ 237 if (dma_unmap_len(tx_buffer, len)) 238 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 239 } 240 241 tx_buffer->next_to_watch = NULL; 242 243 /* move us one more past the eop_desc for start of next pkt */ 244 tx_buffer++; 245 i++; 246 if (unlikely(i == tx_ring->count)) { 247 i = 0; 248 tx_buffer = tx_ring->tx_buffer_info; 249 } 250 } 251 252 if (tx_ring->xsk_pool && xsk_frames) 253 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 254 255 /* reset BQL for queue */ 256 netdev_tx_reset_queue(txring_txq(tx_ring)); 257 258 /* reset next_to_use and next_to_clean */ 259 tx_ring->next_to_use = 0; 260 tx_ring->next_to_clean = 0; 261 } 262 263 /** 264 * igc_free_tx_resources - Free Tx Resources per Queue 265 * @tx_ring: Tx descriptor ring for a specific queue 266 * 267 * Free all transmit software resources 268 */ 269 void igc_free_tx_resources(struct igc_ring *tx_ring) 270 { 271 igc_clean_tx_ring(tx_ring); 272 273 vfree(tx_ring->tx_buffer_info); 274 tx_ring->tx_buffer_info = NULL; 275 276 /* if not set, then don't free */ 277 if (!tx_ring->desc) 278 return; 279 280 dma_free_coherent(tx_ring->dev, tx_ring->size, 281 tx_ring->desc, tx_ring->dma); 282 283 tx_ring->desc = NULL; 284 } 285 286 /** 287 * igc_free_all_tx_resources - Free Tx Resources for All Queues 288 * @adapter: board private structure 289 * 290 * Free all transmit software resources 291 */ 292 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 293 { 294 int i; 295 296 for (i = 0; i < adapter->num_tx_queues; i++) 297 igc_free_tx_resources(adapter->tx_ring[i]); 298 } 299 300 /** 301 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 302 * @adapter: board private structure 303 */ 304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 305 { 306 int i; 307 308 for (i = 0; i < adapter->num_tx_queues; i++) 309 if (adapter->tx_ring[i]) 310 igc_clean_tx_ring(adapter->tx_ring[i]); 311 } 312 313 /** 314 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 315 * @tx_ring: tx descriptor ring (for a specific queue) to setup 316 * 317 * Return 0 on success, negative on failure 318 */ 319 int igc_setup_tx_resources(struct igc_ring *tx_ring) 320 { 321 struct net_device *ndev = tx_ring->netdev; 322 struct device *dev = tx_ring->dev; 323 int size = 0; 324 325 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 326 tx_ring->tx_buffer_info = vzalloc(size); 327 if (!tx_ring->tx_buffer_info) 328 goto err; 329 330 /* round up to nearest 4K */ 331 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 332 tx_ring->size = ALIGN(tx_ring->size, 4096); 333 334 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 335 &tx_ring->dma, GFP_KERNEL); 336 337 if (!tx_ring->desc) 338 goto err; 339 340 tx_ring->next_to_use = 0; 341 tx_ring->next_to_clean = 0; 342 343 return 0; 344 345 err: 346 vfree(tx_ring->tx_buffer_info); 347 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 348 return -ENOMEM; 349 } 350 351 /** 352 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 353 * @adapter: board private structure 354 * 355 * Return 0 on success, negative on failure 356 */ 357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 358 { 359 struct net_device *dev = adapter->netdev; 360 int i, err = 0; 361 362 for (i = 0; i < adapter->num_tx_queues; i++) { 363 err = igc_setup_tx_resources(adapter->tx_ring[i]); 364 if (err) { 365 netdev_err(dev, "Error on Tx queue %u setup\n", i); 366 for (i--; i >= 0; i--) 367 igc_free_tx_resources(adapter->tx_ring[i]); 368 break; 369 } 370 } 371 372 return err; 373 } 374 375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 376 { 377 u16 i = rx_ring->next_to_clean; 378 379 dev_kfree_skb(rx_ring->skb); 380 rx_ring->skb = NULL; 381 382 /* Free all the Rx ring sk_buffs */ 383 while (i != rx_ring->next_to_alloc) { 384 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 385 386 /* Invalidate cache lines that may have been written to by 387 * device so that we avoid corrupting memory. 388 */ 389 dma_sync_single_range_for_cpu(rx_ring->dev, 390 buffer_info->dma, 391 buffer_info->page_offset, 392 igc_rx_bufsz(rx_ring), 393 DMA_FROM_DEVICE); 394 395 /* free resources associated with mapping */ 396 dma_unmap_page_attrs(rx_ring->dev, 397 buffer_info->dma, 398 igc_rx_pg_size(rx_ring), 399 DMA_FROM_DEVICE, 400 IGC_RX_DMA_ATTR); 401 __page_frag_cache_drain(buffer_info->page, 402 buffer_info->pagecnt_bias); 403 404 i++; 405 if (i == rx_ring->count) 406 i = 0; 407 } 408 } 409 410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 411 { 412 struct igc_rx_buffer *bi; 413 u16 i; 414 415 for (i = 0; i < ring->count; i++) { 416 bi = &ring->rx_buffer_info[i]; 417 if (!bi->xdp) 418 continue; 419 420 xsk_buff_free(bi->xdp); 421 bi->xdp = NULL; 422 } 423 } 424 425 /** 426 * igc_clean_rx_ring - Free Rx Buffers per Queue 427 * @ring: ring to free buffers from 428 */ 429 static void igc_clean_rx_ring(struct igc_ring *ring) 430 { 431 if (ring->xsk_pool) 432 igc_clean_rx_ring_xsk_pool(ring); 433 else 434 igc_clean_rx_ring_page_shared(ring); 435 436 clear_ring_uses_large_buffer(ring); 437 438 ring->next_to_alloc = 0; 439 ring->next_to_clean = 0; 440 ring->next_to_use = 0; 441 } 442 443 /** 444 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 445 * @adapter: board private structure 446 */ 447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 448 { 449 int i; 450 451 for (i = 0; i < adapter->num_rx_queues; i++) 452 if (adapter->rx_ring[i]) 453 igc_clean_rx_ring(adapter->rx_ring[i]); 454 } 455 456 /** 457 * igc_free_rx_resources - Free Rx Resources 458 * @rx_ring: ring to clean the resources from 459 * 460 * Free all receive software resources 461 */ 462 void igc_free_rx_resources(struct igc_ring *rx_ring) 463 { 464 igc_clean_rx_ring(rx_ring); 465 466 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 467 468 vfree(rx_ring->rx_buffer_info); 469 rx_ring->rx_buffer_info = NULL; 470 471 /* if not set, then don't free */ 472 if (!rx_ring->desc) 473 return; 474 475 dma_free_coherent(rx_ring->dev, rx_ring->size, 476 rx_ring->desc, rx_ring->dma); 477 478 rx_ring->desc = NULL; 479 } 480 481 /** 482 * igc_free_all_rx_resources - Free Rx Resources for All Queues 483 * @adapter: board private structure 484 * 485 * Free all receive software resources 486 */ 487 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 488 { 489 int i; 490 491 for (i = 0; i < adapter->num_rx_queues; i++) 492 igc_free_rx_resources(adapter->rx_ring[i]); 493 } 494 495 /** 496 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 497 * @rx_ring: rx descriptor ring (for a specific queue) to setup 498 * 499 * Returns 0 on success, negative on failure 500 */ 501 int igc_setup_rx_resources(struct igc_ring *rx_ring) 502 { 503 struct net_device *ndev = rx_ring->netdev; 504 struct device *dev = rx_ring->dev; 505 u8 index = rx_ring->queue_index; 506 int size, desc_len, res; 507 508 /* XDP RX-queue info */ 509 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 510 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 511 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 512 rx_ring->q_vector->napi.napi_id); 513 if (res < 0) { 514 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 515 index); 516 return res; 517 } 518 519 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 520 rx_ring->rx_buffer_info = vzalloc(size); 521 if (!rx_ring->rx_buffer_info) 522 goto err; 523 524 desc_len = sizeof(union igc_adv_rx_desc); 525 526 /* Round up to nearest 4K */ 527 rx_ring->size = rx_ring->count * desc_len; 528 rx_ring->size = ALIGN(rx_ring->size, 4096); 529 530 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 531 &rx_ring->dma, GFP_KERNEL); 532 533 if (!rx_ring->desc) 534 goto err; 535 536 rx_ring->next_to_alloc = 0; 537 rx_ring->next_to_clean = 0; 538 rx_ring->next_to_use = 0; 539 540 return 0; 541 542 err: 543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 544 vfree(rx_ring->rx_buffer_info); 545 rx_ring->rx_buffer_info = NULL; 546 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 547 return -ENOMEM; 548 } 549 550 /** 551 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 552 * (Descriptors) for all queues 553 * @adapter: board private structure 554 * 555 * Return 0 on success, negative on failure 556 */ 557 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 558 { 559 struct net_device *dev = adapter->netdev; 560 int i, err = 0; 561 562 for (i = 0; i < adapter->num_rx_queues; i++) { 563 err = igc_setup_rx_resources(adapter->rx_ring[i]); 564 if (err) { 565 netdev_err(dev, "Error on Rx queue %u setup\n", i); 566 for (i--; i >= 0; i--) 567 igc_free_rx_resources(adapter->rx_ring[i]); 568 break; 569 } 570 } 571 572 return err; 573 } 574 575 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 576 struct igc_ring *ring) 577 { 578 if (!igc_xdp_is_enabled(adapter) || 579 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 580 return NULL; 581 582 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 583 } 584 585 /** 586 * igc_configure_rx_ring - Configure a receive ring after Reset 587 * @adapter: board private structure 588 * @ring: receive ring to be configured 589 * 590 * Configure the Rx unit of the MAC after a reset. 591 */ 592 static void igc_configure_rx_ring(struct igc_adapter *adapter, 593 struct igc_ring *ring) 594 { 595 struct igc_hw *hw = &adapter->hw; 596 union igc_adv_rx_desc *rx_desc; 597 int reg_idx = ring->reg_idx; 598 u32 srrctl = 0, rxdctl = 0; 599 u64 rdba = ring->dma; 600 u32 buf_size; 601 602 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 603 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 604 if (ring->xsk_pool) { 605 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 606 MEM_TYPE_XSK_BUFF_POOL, 607 NULL)); 608 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 609 } else { 610 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 611 MEM_TYPE_PAGE_SHARED, 612 NULL)); 613 } 614 615 if (igc_xdp_is_enabled(adapter)) 616 set_ring_uses_large_buffer(ring); 617 618 /* disable the queue */ 619 wr32(IGC_RXDCTL(reg_idx), 0); 620 621 /* Set DMA base address registers */ 622 wr32(IGC_RDBAL(reg_idx), 623 rdba & 0x00000000ffffffffULL); 624 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 625 wr32(IGC_RDLEN(reg_idx), 626 ring->count * sizeof(union igc_adv_rx_desc)); 627 628 /* initialize head and tail */ 629 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 630 wr32(IGC_RDH(reg_idx), 0); 631 writel(0, ring->tail); 632 633 /* reset next-to- use/clean to place SW in sync with hardware */ 634 ring->next_to_clean = 0; 635 ring->next_to_use = 0; 636 637 if (ring->xsk_pool) 638 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 639 else if (ring_uses_large_buffer(ring)) 640 buf_size = IGC_RXBUFFER_3072; 641 else 642 buf_size = IGC_RXBUFFER_2048; 643 644 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; 645 srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT; 646 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 647 648 wr32(IGC_SRRCTL(reg_idx), srrctl); 649 650 rxdctl |= IGC_RX_PTHRESH; 651 rxdctl |= IGC_RX_HTHRESH << 8; 652 rxdctl |= IGC_RX_WTHRESH << 16; 653 654 /* initialize rx_buffer_info */ 655 memset(ring->rx_buffer_info, 0, 656 sizeof(struct igc_rx_buffer) * ring->count); 657 658 /* initialize Rx descriptor 0 */ 659 rx_desc = IGC_RX_DESC(ring, 0); 660 rx_desc->wb.upper.length = 0; 661 662 /* enable receive descriptor fetching */ 663 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 664 665 wr32(IGC_RXDCTL(reg_idx), rxdctl); 666 } 667 668 /** 669 * igc_configure_rx - Configure receive Unit after Reset 670 * @adapter: board private structure 671 * 672 * Configure the Rx unit of the MAC after a reset. 673 */ 674 static void igc_configure_rx(struct igc_adapter *adapter) 675 { 676 int i; 677 678 /* Setup the HW Rx Head and Tail Descriptor Pointers and 679 * the Base and Length of the Rx Descriptor Ring 680 */ 681 for (i = 0; i < adapter->num_rx_queues; i++) 682 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 683 } 684 685 /** 686 * igc_configure_tx_ring - Configure transmit ring after Reset 687 * @adapter: board private structure 688 * @ring: tx ring to configure 689 * 690 * Configure a transmit ring after a reset. 691 */ 692 static void igc_configure_tx_ring(struct igc_adapter *adapter, 693 struct igc_ring *ring) 694 { 695 struct igc_hw *hw = &adapter->hw; 696 int reg_idx = ring->reg_idx; 697 u64 tdba = ring->dma; 698 u32 txdctl = 0; 699 700 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 701 702 /* disable the queue */ 703 wr32(IGC_TXDCTL(reg_idx), 0); 704 wrfl(); 705 mdelay(10); 706 707 wr32(IGC_TDLEN(reg_idx), 708 ring->count * sizeof(union igc_adv_tx_desc)); 709 wr32(IGC_TDBAL(reg_idx), 710 tdba & 0x00000000ffffffffULL); 711 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 712 713 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 714 wr32(IGC_TDH(reg_idx), 0); 715 writel(0, ring->tail); 716 717 txdctl |= IGC_TX_PTHRESH; 718 txdctl |= IGC_TX_HTHRESH << 8; 719 txdctl |= IGC_TX_WTHRESH << 16; 720 721 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 722 wr32(IGC_TXDCTL(reg_idx), txdctl); 723 } 724 725 /** 726 * igc_configure_tx - Configure transmit Unit after Reset 727 * @adapter: board private structure 728 * 729 * Configure the Tx unit of the MAC after a reset. 730 */ 731 static void igc_configure_tx(struct igc_adapter *adapter) 732 { 733 int i; 734 735 for (i = 0; i < adapter->num_tx_queues; i++) 736 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 737 } 738 739 /** 740 * igc_setup_mrqc - configure the multiple receive queue control registers 741 * @adapter: Board private structure 742 */ 743 static void igc_setup_mrqc(struct igc_adapter *adapter) 744 { 745 struct igc_hw *hw = &adapter->hw; 746 u32 j, num_rx_queues; 747 u32 mrqc, rxcsum; 748 u32 rss_key[10]; 749 750 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 751 for (j = 0; j < 10; j++) 752 wr32(IGC_RSSRK(j), rss_key[j]); 753 754 num_rx_queues = adapter->rss_queues; 755 756 if (adapter->rss_indir_tbl_init != num_rx_queues) { 757 for (j = 0; j < IGC_RETA_SIZE; j++) 758 adapter->rss_indir_tbl[j] = 759 (j * num_rx_queues) / IGC_RETA_SIZE; 760 adapter->rss_indir_tbl_init = num_rx_queues; 761 } 762 igc_write_rss_indir_tbl(adapter); 763 764 /* Disable raw packet checksumming so that RSS hash is placed in 765 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 766 * offloads as they are enabled by default 767 */ 768 rxcsum = rd32(IGC_RXCSUM); 769 rxcsum |= IGC_RXCSUM_PCSD; 770 771 /* Enable Receive Checksum Offload for SCTP */ 772 rxcsum |= IGC_RXCSUM_CRCOFL; 773 774 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 775 wr32(IGC_RXCSUM, rxcsum); 776 777 /* Generate RSS hash based on packet types, TCP/UDP 778 * port numbers and/or IPv4/v6 src and dst addresses 779 */ 780 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 781 IGC_MRQC_RSS_FIELD_IPV4_TCP | 782 IGC_MRQC_RSS_FIELD_IPV6 | 783 IGC_MRQC_RSS_FIELD_IPV6_TCP | 784 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 785 786 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 787 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 788 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 789 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 790 791 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 792 793 wr32(IGC_MRQC, mrqc); 794 } 795 796 /** 797 * igc_setup_rctl - configure the receive control registers 798 * @adapter: Board private structure 799 */ 800 static void igc_setup_rctl(struct igc_adapter *adapter) 801 { 802 struct igc_hw *hw = &adapter->hw; 803 u32 rctl; 804 805 rctl = rd32(IGC_RCTL); 806 807 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 808 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 809 810 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 811 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 812 813 /* enable stripping of CRC. Newer features require 814 * that the HW strips the CRC. 815 */ 816 rctl |= IGC_RCTL_SECRC; 817 818 /* disable store bad packets and clear size bits. */ 819 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 820 821 /* enable LPE to allow for reception of jumbo frames */ 822 rctl |= IGC_RCTL_LPE; 823 824 /* disable queue 0 to prevent tail write w/o re-config */ 825 wr32(IGC_RXDCTL(0), 0); 826 827 /* This is useful for sniffing bad packets. */ 828 if (adapter->netdev->features & NETIF_F_RXALL) { 829 /* UPE and MPE will be handled by normal PROMISC logic 830 * in set_rx_mode 831 */ 832 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 833 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 834 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 835 836 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 837 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 838 } 839 840 wr32(IGC_RCTL, rctl); 841 } 842 843 /** 844 * igc_setup_tctl - configure the transmit control registers 845 * @adapter: Board private structure 846 */ 847 static void igc_setup_tctl(struct igc_adapter *adapter) 848 { 849 struct igc_hw *hw = &adapter->hw; 850 u32 tctl; 851 852 /* disable queue 0 which icould be enabled by default */ 853 wr32(IGC_TXDCTL(0), 0); 854 855 /* Program the Transmit Control Register */ 856 tctl = rd32(IGC_TCTL); 857 tctl &= ~IGC_TCTL_CT; 858 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 859 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 860 861 /* Enable transmits */ 862 tctl |= IGC_TCTL_EN; 863 864 wr32(IGC_TCTL, tctl); 865 } 866 867 /** 868 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 869 * @adapter: Pointer to adapter where the filter should be set 870 * @index: Filter index 871 * @type: MAC address filter type (source or destination) 872 * @addr: MAC address 873 * @queue: If non-negative, queue assignment feature is enabled and frames 874 * matching the filter are enqueued onto 'queue'. Otherwise, queue 875 * assignment is disabled. 876 */ 877 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 878 enum igc_mac_filter_type type, 879 const u8 *addr, int queue) 880 { 881 struct net_device *dev = adapter->netdev; 882 struct igc_hw *hw = &adapter->hw; 883 u32 ral, rah; 884 885 if (WARN_ON(index >= hw->mac.rar_entry_count)) 886 return; 887 888 ral = le32_to_cpup((__le32 *)(addr)); 889 rah = le16_to_cpup((__le16 *)(addr + 4)); 890 891 if (type == IGC_MAC_FILTER_TYPE_SRC) { 892 rah &= ~IGC_RAH_ASEL_MASK; 893 rah |= IGC_RAH_ASEL_SRC_ADDR; 894 } 895 896 if (queue >= 0) { 897 rah &= ~IGC_RAH_QSEL_MASK; 898 rah |= (queue << IGC_RAH_QSEL_SHIFT); 899 rah |= IGC_RAH_QSEL_ENABLE; 900 } 901 902 rah |= IGC_RAH_AV; 903 904 wr32(IGC_RAL(index), ral); 905 wr32(IGC_RAH(index), rah); 906 907 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 908 } 909 910 /** 911 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 912 * @adapter: Pointer to adapter where the filter should be cleared 913 * @index: Filter index 914 */ 915 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 916 { 917 struct net_device *dev = adapter->netdev; 918 struct igc_hw *hw = &adapter->hw; 919 920 if (WARN_ON(index >= hw->mac.rar_entry_count)) 921 return; 922 923 wr32(IGC_RAL(index), 0); 924 wr32(IGC_RAH(index), 0); 925 926 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 927 } 928 929 /* Set default MAC address for the PF in the first RAR entry */ 930 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 931 { 932 struct net_device *dev = adapter->netdev; 933 u8 *addr = adapter->hw.mac.addr; 934 935 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 936 937 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 938 } 939 940 /** 941 * igc_set_mac - Change the Ethernet Address of the NIC 942 * @netdev: network interface device structure 943 * @p: pointer to an address structure 944 * 945 * Returns 0 on success, negative on failure 946 */ 947 static int igc_set_mac(struct net_device *netdev, void *p) 948 { 949 struct igc_adapter *adapter = netdev_priv(netdev); 950 struct igc_hw *hw = &adapter->hw; 951 struct sockaddr *addr = p; 952 953 if (!is_valid_ether_addr(addr->sa_data)) 954 return -EADDRNOTAVAIL; 955 956 eth_hw_addr_set(netdev, addr->sa_data); 957 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 958 959 /* set the correct pool for the new PF MAC address in entry 0 */ 960 igc_set_default_mac_filter(adapter); 961 962 return 0; 963 } 964 965 /** 966 * igc_write_mc_addr_list - write multicast addresses to MTA 967 * @netdev: network interface device structure 968 * 969 * Writes multicast address list to the MTA hash table. 970 * Returns: -ENOMEM on failure 971 * 0 on no addresses written 972 * X on writing X addresses to MTA 973 **/ 974 static int igc_write_mc_addr_list(struct net_device *netdev) 975 { 976 struct igc_adapter *adapter = netdev_priv(netdev); 977 struct igc_hw *hw = &adapter->hw; 978 struct netdev_hw_addr *ha; 979 u8 *mta_list; 980 int i; 981 982 if (netdev_mc_empty(netdev)) { 983 /* nothing to program, so clear mc list */ 984 igc_update_mc_addr_list(hw, NULL, 0); 985 return 0; 986 } 987 988 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 989 if (!mta_list) 990 return -ENOMEM; 991 992 /* The shared function expects a packed array of only addresses. */ 993 i = 0; 994 netdev_for_each_mc_addr(ha, netdev) 995 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 996 997 igc_update_mc_addr_list(hw, mta_list, i); 998 kfree(mta_list); 999 1000 return netdev_mc_count(netdev); 1001 } 1002 1003 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime) 1004 { 1005 ktime_t cycle_time = adapter->cycle_time; 1006 ktime_t base_time = adapter->base_time; 1007 u32 launchtime; 1008 1009 /* FIXME: when using ETF together with taprio, we may have a 1010 * case where 'delta' is larger than the cycle_time, this may 1011 * cause problems if we don't read the current value of 1012 * IGC_BASET, as the value writen into the launchtime 1013 * descriptor field may be misinterpreted. 1014 */ 1015 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime); 1016 1017 return cpu_to_le32(launchtime); 1018 } 1019 1020 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1021 struct igc_tx_buffer *first, 1022 u32 vlan_macip_lens, u32 type_tucmd, 1023 u32 mss_l4len_idx) 1024 { 1025 struct igc_adv_tx_context_desc *context_desc; 1026 u16 i = tx_ring->next_to_use; 1027 1028 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1029 1030 i++; 1031 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1032 1033 /* set bits to identify this as an advanced context descriptor */ 1034 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1035 1036 /* For i225, context index must be unique per ring. */ 1037 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1038 mss_l4len_idx |= tx_ring->reg_idx << 4; 1039 1040 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1041 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1042 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1043 1044 /* We assume there is always a valid Tx time available. Invalid times 1045 * should have been handled by the upper layers. 1046 */ 1047 if (tx_ring->launchtime_enable) { 1048 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1049 ktime_t txtime = first->skb->tstamp; 1050 1051 skb_txtime_consumed(first->skb); 1052 context_desc->launch_time = igc_tx_launchtime(adapter, 1053 txtime); 1054 } else { 1055 context_desc->launch_time = 0; 1056 } 1057 } 1058 1059 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first) 1060 { 1061 struct sk_buff *skb = first->skb; 1062 u32 vlan_macip_lens = 0; 1063 u32 type_tucmd = 0; 1064 1065 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1066 csum_failed: 1067 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1068 !tx_ring->launchtime_enable) 1069 return; 1070 goto no_csum; 1071 } 1072 1073 switch (skb->csum_offset) { 1074 case offsetof(struct tcphdr, check): 1075 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1076 fallthrough; 1077 case offsetof(struct udphdr, check): 1078 break; 1079 case offsetof(struct sctphdr, checksum): 1080 /* validate that this is actually an SCTP request */ 1081 if (skb_csum_is_sctp(skb)) { 1082 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1083 break; 1084 } 1085 fallthrough; 1086 default: 1087 skb_checksum_help(skb); 1088 goto csum_failed; 1089 } 1090 1091 /* update TX checksum flag */ 1092 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1093 vlan_macip_lens = skb_checksum_start_offset(skb) - 1094 skb_network_offset(skb); 1095 no_csum: 1096 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1097 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1098 1099 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); 1100 } 1101 1102 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1103 { 1104 struct net_device *netdev = tx_ring->netdev; 1105 1106 netif_stop_subqueue(netdev, tx_ring->queue_index); 1107 1108 /* memory barriier comment */ 1109 smp_mb(); 1110 1111 /* We need to check again in a case another CPU has just 1112 * made room available. 1113 */ 1114 if (igc_desc_unused(tx_ring) < size) 1115 return -EBUSY; 1116 1117 /* A reprieve! */ 1118 netif_wake_subqueue(netdev, tx_ring->queue_index); 1119 1120 u64_stats_update_begin(&tx_ring->tx_syncp2); 1121 tx_ring->tx_stats.restart_queue2++; 1122 u64_stats_update_end(&tx_ring->tx_syncp2); 1123 1124 return 0; 1125 } 1126 1127 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1128 { 1129 if (igc_desc_unused(tx_ring) >= size) 1130 return 0; 1131 return __igc_maybe_stop_tx(tx_ring, size); 1132 } 1133 1134 #define IGC_SET_FLAG(_input, _flag, _result) \ 1135 (((_flag) <= (_result)) ? \ 1136 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1137 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1138 1139 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1140 { 1141 /* set type for advanced descriptor with frame checksum insertion */ 1142 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1143 IGC_ADVTXD_DCMD_DEXT | 1144 IGC_ADVTXD_DCMD_IFCS; 1145 1146 /* set HW vlan bit if vlan is present */ 1147 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1148 IGC_ADVTXD_DCMD_VLE); 1149 1150 /* set segmentation bits for TSO */ 1151 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1152 (IGC_ADVTXD_DCMD_TSE)); 1153 1154 /* set timestamp bit if present */ 1155 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1156 (IGC_ADVTXD_MAC_TSTAMP)); 1157 1158 /* insert frame checksum */ 1159 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1160 1161 return cmd_type; 1162 } 1163 1164 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1165 union igc_adv_tx_desc *tx_desc, 1166 u32 tx_flags, unsigned int paylen) 1167 { 1168 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1169 1170 /* insert L4 checksum */ 1171 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 1172 ((IGC_TXD_POPTS_TXSM << 8) / 1173 IGC_TX_FLAGS_CSUM); 1174 1175 /* insert IPv4 checksum */ 1176 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 1177 (((IGC_TXD_POPTS_IXSM << 8)) / 1178 IGC_TX_FLAGS_IPV4); 1179 1180 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1181 } 1182 1183 static int igc_tx_map(struct igc_ring *tx_ring, 1184 struct igc_tx_buffer *first, 1185 const u8 hdr_len) 1186 { 1187 struct sk_buff *skb = first->skb; 1188 struct igc_tx_buffer *tx_buffer; 1189 union igc_adv_tx_desc *tx_desc; 1190 u32 tx_flags = first->tx_flags; 1191 skb_frag_t *frag; 1192 u16 i = tx_ring->next_to_use; 1193 unsigned int data_len, size; 1194 dma_addr_t dma; 1195 u32 cmd_type; 1196 1197 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1198 tx_desc = IGC_TX_DESC(tx_ring, i); 1199 1200 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1201 1202 size = skb_headlen(skb); 1203 data_len = skb->data_len; 1204 1205 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1206 1207 tx_buffer = first; 1208 1209 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1210 if (dma_mapping_error(tx_ring->dev, dma)) 1211 goto dma_error; 1212 1213 /* record length, and DMA address */ 1214 dma_unmap_len_set(tx_buffer, len, size); 1215 dma_unmap_addr_set(tx_buffer, dma, dma); 1216 1217 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1218 1219 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1220 tx_desc->read.cmd_type_len = 1221 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1222 1223 i++; 1224 tx_desc++; 1225 if (i == tx_ring->count) { 1226 tx_desc = IGC_TX_DESC(tx_ring, 0); 1227 i = 0; 1228 } 1229 tx_desc->read.olinfo_status = 0; 1230 1231 dma += IGC_MAX_DATA_PER_TXD; 1232 size -= IGC_MAX_DATA_PER_TXD; 1233 1234 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1235 } 1236 1237 if (likely(!data_len)) 1238 break; 1239 1240 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1241 1242 i++; 1243 tx_desc++; 1244 if (i == tx_ring->count) { 1245 tx_desc = IGC_TX_DESC(tx_ring, 0); 1246 i = 0; 1247 } 1248 tx_desc->read.olinfo_status = 0; 1249 1250 size = skb_frag_size(frag); 1251 data_len -= size; 1252 1253 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1254 size, DMA_TO_DEVICE); 1255 1256 tx_buffer = &tx_ring->tx_buffer_info[i]; 1257 } 1258 1259 /* write last descriptor with RS and EOP bits */ 1260 cmd_type |= size | IGC_TXD_DCMD; 1261 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1262 1263 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1264 1265 /* set the timestamp */ 1266 first->time_stamp = jiffies; 1267 1268 skb_tx_timestamp(skb); 1269 1270 /* Force memory writes to complete before letting h/w know there 1271 * are new descriptors to fetch. (Only applicable for weak-ordered 1272 * memory model archs, such as IA-64). 1273 * 1274 * We also need this memory barrier to make certain all of the 1275 * status bits have been updated before next_to_watch is written. 1276 */ 1277 wmb(); 1278 1279 /* set next_to_watch value indicating a packet is present */ 1280 first->next_to_watch = tx_desc; 1281 1282 i++; 1283 if (i == tx_ring->count) 1284 i = 0; 1285 1286 tx_ring->next_to_use = i; 1287 1288 /* Make sure there is space in the ring for the next send. */ 1289 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1290 1291 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1292 writel(i, tx_ring->tail); 1293 } 1294 1295 return 0; 1296 dma_error: 1297 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1298 tx_buffer = &tx_ring->tx_buffer_info[i]; 1299 1300 /* clear dma mappings for failed tx_buffer_info map */ 1301 while (tx_buffer != first) { 1302 if (dma_unmap_len(tx_buffer, len)) 1303 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1304 1305 if (i-- == 0) 1306 i += tx_ring->count; 1307 tx_buffer = &tx_ring->tx_buffer_info[i]; 1308 } 1309 1310 if (dma_unmap_len(tx_buffer, len)) 1311 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1312 1313 dev_kfree_skb_any(tx_buffer->skb); 1314 tx_buffer->skb = NULL; 1315 1316 tx_ring->next_to_use = i; 1317 1318 return -1; 1319 } 1320 1321 static int igc_tso(struct igc_ring *tx_ring, 1322 struct igc_tx_buffer *first, 1323 u8 *hdr_len) 1324 { 1325 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1326 struct sk_buff *skb = first->skb; 1327 union { 1328 struct iphdr *v4; 1329 struct ipv6hdr *v6; 1330 unsigned char *hdr; 1331 } ip; 1332 union { 1333 struct tcphdr *tcp; 1334 struct udphdr *udp; 1335 unsigned char *hdr; 1336 } l4; 1337 u32 paylen, l4_offset; 1338 int err; 1339 1340 if (skb->ip_summed != CHECKSUM_PARTIAL) 1341 return 0; 1342 1343 if (!skb_is_gso(skb)) 1344 return 0; 1345 1346 err = skb_cow_head(skb, 0); 1347 if (err < 0) 1348 return err; 1349 1350 ip.hdr = skb_network_header(skb); 1351 l4.hdr = skb_checksum_start(skb); 1352 1353 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1354 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1355 1356 /* initialize outer IP header fields */ 1357 if (ip.v4->version == 4) { 1358 unsigned char *csum_start = skb_checksum_start(skb); 1359 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1360 1361 /* IP header will have to cancel out any data that 1362 * is not a part of the outer IP header 1363 */ 1364 ip.v4->check = csum_fold(csum_partial(trans_start, 1365 csum_start - trans_start, 1366 0)); 1367 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1368 1369 ip.v4->tot_len = 0; 1370 first->tx_flags |= IGC_TX_FLAGS_TSO | 1371 IGC_TX_FLAGS_CSUM | 1372 IGC_TX_FLAGS_IPV4; 1373 } else { 1374 ip.v6->payload_len = 0; 1375 first->tx_flags |= IGC_TX_FLAGS_TSO | 1376 IGC_TX_FLAGS_CSUM; 1377 } 1378 1379 /* determine offset of inner transport header */ 1380 l4_offset = l4.hdr - skb->data; 1381 1382 /* remove payload length from inner checksum */ 1383 paylen = skb->len - l4_offset; 1384 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1385 /* compute length of segmentation header */ 1386 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1387 csum_replace_by_diff(&l4.tcp->check, 1388 (__force __wsum)htonl(paylen)); 1389 } else { 1390 /* compute length of segmentation header */ 1391 *hdr_len = sizeof(*l4.udp) + l4_offset; 1392 csum_replace_by_diff(&l4.udp->check, 1393 (__force __wsum)htonl(paylen)); 1394 } 1395 1396 /* update gso size and bytecount with header size */ 1397 first->gso_segs = skb_shinfo(skb)->gso_segs; 1398 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1399 1400 /* MSS L4LEN IDX */ 1401 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1402 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1403 1404 /* VLAN MACLEN IPLEN */ 1405 vlan_macip_lens = l4.hdr - ip.hdr; 1406 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1407 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1408 1409 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, 1410 type_tucmd, mss_l4len_idx); 1411 1412 return 1; 1413 } 1414 1415 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1416 struct igc_ring *tx_ring) 1417 { 1418 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1419 __be16 protocol = vlan_get_protocol(skb); 1420 struct igc_tx_buffer *first; 1421 u32 tx_flags = 0; 1422 unsigned short f; 1423 u8 hdr_len = 0; 1424 int tso = 0; 1425 1426 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1427 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1428 * + 2 desc gap to keep tail from touching head, 1429 * + 1 desc for context descriptor, 1430 * otherwise try next time 1431 */ 1432 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1433 count += TXD_USE_COUNT(skb_frag_size( 1434 &skb_shinfo(skb)->frags[f])); 1435 1436 if (igc_maybe_stop_tx(tx_ring, count + 3)) { 1437 /* this is a hard error */ 1438 return NETDEV_TX_BUSY; 1439 } 1440 1441 /* record the location of the first descriptor for this packet */ 1442 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1443 first->type = IGC_TX_BUFFER_TYPE_SKB; 1444 first->skb = skb; 1445 first->bytecount = skb->len; 1446 first->gso_segs = 1; 1447 1448 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1449 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1450 1451 /* FIXME: add support for retrieving timestamps from 1452 * the other timer registers before skipping the 1453 * timestamping request. 1454 */ 1455 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 1456 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS, 1457 &adapter->state)) { 1458 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1459 tx_flags |= IGC_TX_FLAGS_TSTAMP; 1460 1461 adapter->ptp_tx_skb = skb_get(skb); 1462 adapter->ptp_tx_start = jiffies; 1463 } else { 1464 adapter->tx_hwtstamp_skipped++; 1465 } 1466 } 1467 1468 if (skb_vlan_tag_present(skb)) { 1469 tx_flags |= IGC_TX_FLAGS_VLAN; 1470 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1471 } 1472 1473 /* record initial flags and protocol */ 1474 first->tx_flags = tx_flags; 1475 first->protocol = protocol; 1476 1477 tso = igc_tso(tx_ring, first, &hdr_len); 1478 if (tso < 0) 1479 goto out_drop; 1480 else if (!tso) 1481 igc_tx_csum(tx_ring, first); 1482 1483 igc_tx_map(tx_ring, first, hdr_len); 1484 1485 return NETDEV_TX_OK; 1486 1487 out_drop: 1488 dev_kfree_skb_any(first->skb); 1489 first->skb = NULL; 1490 1491 return NETDEV_TX_OK; 1492 } 1493 1494 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1495 struct sk_buff *skb) 1496 { 1497 unsigned int r_idx = skb->queue_mapping; 1498 1499 if (r_idx >= adapter->num_tx_queues) 1500 r_idx = r_idx % adapter->num_tx_queues; 1501 1502 return adapter->tx_ring[r_idx]; 1503 } 1504 1505 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1506 struct net_device *netdev) 1507 { 1508 struct igc_adapter *adapter = netdev_priv(netdev); 1509 1510 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1511 * in order to meet this minimum size requirement. 1512 */ 1513 if (skb->len < 17) { 1514 if (skb_padto(skb, 17)) 1515 return NETDEV_TX_OK; 1516 skb->len = 17; 1517 } 1518 1519 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1520 } 1521 1522 static void igc_rx_checksum(struct igc_ring *ring, 1523 union igc_adv_rx_desc *rx_desc, 1524 struct sk_buff *skb) 1525 { 1526 skb_checksum_none_assert(skb); 1527 1528 /* Ignore Checksum bit is set */ 1529 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1530 return; 1531 1532 /* Rx checksum disabled via ethtool */ 1533 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1534 return; 1535 1536 /* TCP/UDP checksum error bit is set */ 1537 if (igc_test_staterr(rx_desc, 1538 IGC_RXDEXT_STATERR_L4E | 1539 IGC_RXDEXT_STATERR_IPE)) { 1540 /* work around errata with sctp packets where the TCPE aka 1541 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1542 * packets (aka let the stack check the crc32c) 1543 */ 1544 if (!(skb->len == 60 && 1545 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1546 u64_stats_update_begin(&ring->rx_syncp); 1547 ring->rx_stats.csum_err++; 1548 u64_stats_update_end(&ring->rx_syncp); 1549 } 1550 /* let the stack verify checksum errors */ 1551 return; 1552 } 1553 /* It must be a TCP or UDP packet with a valid checksum */ 1554 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1555 IGC_RXD_STAT_UDPCS)) 1556 skb->ip_summed = CHECKSUM_UNNECESSARY; 1557 1558 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1559 le32_to_cpu(rx_desc->wb.upper.status_error)); 1560 } 1561 1562 static inline void igc_rx_hash(struct igc_ring *ring, 1563 union igc_adv_rx_desc *rx_desc, 1564 struct sk_buff *skb) 1565 { 1566 if (ring->netdev->features & NETIF_F_RXHASH) 1567 skb_set_hash(skb, 1568 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1569 PKT_HASH_TYPE_L3); 1570 } 1571 1572 static void igc_rx_vlan(struct igc_ring *rx_ring, 1573 union igc_adv_rx_desc *rx_desc, 1574 struct sk_buff *skb) 1575 { 1576 struct net_device *dev = rx_ring->netdev; 1577 u16 vid; 1578 1579 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1580 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1581 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1582 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1583 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1584 else 1585 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1586 1587 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1588 } 1589 } 1590 1591 /** 1592 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1593 * @rx_ring: rx descriptor ring packet is being transacted on 1594 * @rx_desc: pointer to the EOP Rx descriptor 1595 * @skb: pointer to current skb being populated 1596 * 1597 * This function checks the ring, descriptor, and packet information in order 1598 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1599 * skb. 1600 */ 1601 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1602 union igc_adv_rx_desc *rx_desc, 1603 struct sk_buff *skb) 1604 { 1605 igc_rx_hash(rx_ring, rx_desc, skb); 1606 1607 igc_rx_checksum(rx_ring, rx_desc, skb); 1608 1609 igc_rx_vlan(rx_ring, rx_desc, skb); 1610 1611 skb_record_rx_queue(skb, rx_ring->queue_index); 1612 1613 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1614 } 1615 1616 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1617 { 1618 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1619 struct igc_adapter *adapter = netdev_priv(netdev); 1620 struct igc_hw *hw = &adapter->hw; 1621 u32 ctrl; 1622 1623 ctrl = rd32(IGC_CTRL); 1624 1625 if (enable) { 1626 /* enable VLAN tag insert/strip */ 1627 ctrl |= IGC_CTRL_VME; 1628 } else { 1629 /* disable VLAN tag insert/strip */ 1630 ctrl &= ~IGC_CTRL_VME; 1631 } 1632 wr32(IGC_CTRL, ctrl); 1633 } 1634 1635 static void igc_restore_vlan(struct igc_adapter *adapter) 1636 { 1637 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1638 } 1639 1640 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1641 const unsigned int size, 1642 int *rx_buffer_pgcnt) 1643 { 1644 struct igc_rx_buffer *rx_buffer; 1645 1646 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1647 *rx_buffer_pgcnt = 1648 #if (PAGE_SIZE < 8192) 1649 page_count(rx_buffer->page); 1650 #else 1651 0; 1652 #endif 1653 prefetchw(rx_buffer->page); 1654 1655 /* we are reusing so sync this buffer for CPU use */ 1656 dma_sync_single_range_for_cpu(rx_ring->dev, 1657 rx_buffer->dma, 1658 rx_buffer->page_offset, 1659 size, 1660 DMA_FROM_DEVICE); 1661 1662 rx_buffer->pagecnt_bias--; 1663 1664 return rx_buffer; 1665 } 1666 1667 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1668 unsigned int truesize) 1669 { 1670 #if (PAGE_SIZE < 8192) 1671 buffer->page_offset ^= truesize; 1672 #else 1673 buffer->page_offset += truesize; 1674 #endif 1675 } 1676 1677 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1678 unsigned int size) 1679 { 1680 unsigned int truesize; 1681 1682 #if (PAGE_SIZE < 8192) 1683 truesize = igc_rx_pg_size(ring) / 2; 1684 #else 1685 truesize = ring_uses_build_skb(ring) ? 1686 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1687 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1688 SKB_DATA_ALIGN(size); 1689 #endif 1690 return truesize; 1691 } 1692 1693 /** 1694 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1695 * @rx_ring: rx descriptor ring to transact packets on 1696 * @rx_buffer: buffer containing page to add 1697 * @skb: sk_buff to place the data into 1698 * @size: size of buffer to be added 1699 * 1700 * This function will add the data contained in rx_buffer->page to the skb. 1701 */ 1702 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1703 struct igc_rx_buffer *rx_buffer, 1704 struct sk_buff *skb, 1705 unsigned int size) 1706 { 1707 unsigned int truesize; 1708 1709 #if (PAGE_SIZE < 8192) 1710 truesize = igc_rx_pg_size(rx_ring) / 2; 1711 #else 1712 truesize = ring_uses_build_skb(rx_ring) ? 1713 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1714 SKB_DATA_ALIGN(size); 1715 #endif 1716 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1717 rx_buffer->page_offset, size, truesize); 1718 1719 igc_rx_buffer_flip(rx_buffer, truesize); 1720 } 1721 1722 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1723 struct igc_rx_buffer *rx_buffer, 1724 struct xdp_buff *xdp) 1725 { 1726 unsigned int size = xdp->data_end - xdp->data; 1727 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1728 unsigned int metasize = xdp->data - xdp->data_meta; 1729 struct sk_buff *skb; 1730 1731 /* prefetch first cache line of first page */ 1732 net_prefetch(xdp->data_meta); 1733 1734 /* build an skb around the page buffer */ 1735 skb = napi_build_skb(xdp->data_hard_start, truesize); 1736 if (unlikely(!skb)) 1737 return NULL; 1738 1739 /* update pointers within the skb to store the data */ 1740 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1741 __skb_put(skb, size); 1742 if (metasize) 1743 skb_metadata_set(skb, metasize); 1744 1745 igc_rx_buffer_flip(rx_buffer, truesize); 1746 return skb; 1747 } 1748 1749 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1750 struct igc_rx_buffer *rx_buffer, 1751 struct xdp_buff *xdp, 1752 ktime_t timestamp) 1753 { 1754 unsigned int metasize = xdp->data - xdp->data_meta; 1755 unsigned int size = xdp->data_end - xdp->data; 1756 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1757 void *va = xdp->data; 1758 unsigned int headlen; 1759 struct sk_buff *skb; 1760 1761 /* prefetch first cache line of first page */ 1762 net_prefetch(xdp->data_meta); 1763 1764 /* allocate a skb to store the frags */ 1765 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1766 IGC_RX_HDR_LEN + metasize); 1767 if (unlikely(!skb)) 1768 return NULL; 1769 1770 if (timestamp) 1771 skb_hwtstamps(skb)->hwtstamp = timestamp; 1772 1773 /* Determine available headroom for copy */ 1774 headlen = size; 1775 if (headlen > IGC_RX_HDR_LEN) 1776 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1777 1778 /* align pull length to size of long to optimize memcpy performance */ 1779 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1780 ALIGN(headlen + metasize, sizeof(long))); 1781 1782 if (metasize) { 1783 skb_metadata_set(skb, metasize); 1784 __skb_pull(skb, metasize); 1785 } 1786 1787 /* update all of the pointers */ 1788 size -= headlen; 1789 if (size) { 1790 skb_add_rx_frag(skb, 0, rx_buffer->page, 1791 (va + headlen) - page_address(rx_buffer->page), 1792 size, truesize); 1793 igc_rx_buffer_flip(rx_buffer, truesize); 1794 } else { 1795 rx_buffer->pagecnt_bias++; 1796 } 1797 1798 return skb; 1799 } 1800 1801 /** 1802 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1803 * @rx_ring: rx descriptor ring to store buffers on 1804 * @old_buff: donor buffer to have page reused 1805 * 1806 * Synchronizes page for reuse by the adapter 1807 */ 1808 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1809 struct igc_rx_buffer *old_buff) 1810 { 1811 u16 nta = rx_ring->next_to_alloc; 1812 struct igc_rx_buffer *new_buff; 1813 1814 new_buff = &rx_ring->rx_buffer_info[nta]; 1815 1816 /* update, and store next to alloc */ 1817 nta++; 1818 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1819 1820 /* Transfer page from old buffer to new buffer. 1821 * Move each member individually to avoid possible store 1822 * forwarding stalls. 1823 */ 1824 new_buff->dma = old_buff->dma; 1825 new_buff->page = old_buff->page; 1826 new_buff->page_offset = old_buff->page_offset; 1827 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1828 } 1829 1830 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 1831 int rx_buffer_pgcnt) 1832 { 1833 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1834 struct page *page = rx_buffer->page; 1835 1836 /* avoid re-using remote and pfmemalloc pages */ 1837 if (!dev_page_is_reusable(page)) 1838 return false; 1839 1840 #if (PAGE_SIZE < 8192) 1841 /* if we are only owner of page we can reuse it */ 1842 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 1843 return false; 1844 #else 1845 #define IGC_LAST_OFFSET \ 1846 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1847 1848 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1849 return false; 1850 #endif 1851 1852 /* If we have drained the page fragment pool we need to update 1853 * the pagecnt_bias and page count so that we fully restock the 1854 * number of references the driver holds. 1855 */ 1856 if (unlikely(pagecnt_bias == 1)) { 1857 page_ref_add(page, USHRT_MAX - 1); 1858 rx_buffer->pagecnt_bias = USHRT_MAX; 1859 } 1860 1861 return true; 1862 } 1863 1864 /** 1865 * igc_is_non_eop - process handling of non-EOP buffers 1866 * @rx_ring: Rx ring being processed 1867 * @rx_desc: Rx descriptor for current buffer 1868 * 1869 * This function updates next to clean. If the buffer is an EOP buffer 1870 * this function exits returning false, otherwise it will place the 1871 * sk_buff in the next buffer to be chained and return true indicating 1872 * that this is in fact a non-EOP buffer. 1873 */ 1874 static bool igc_is_non_eop(struct igc_ring *rx_ring, 1875 union igc_adv_rx_desc *rx_desc) 1876 { 1877 u32 ntc = rx_ring->next_to_clean + 1; 1878 1879 /* fetch, update, and store next to clean */ 1880 ntc = (ntc < rx_ring->count) ? ntc : 0; 1881 rx_ring->next_to_clean = ntc; 1882 1883 prefetch(IGC_RX_DESC(rx_ring, ntc)); 1884 1885 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 1886 return false; 1887 1888 return true; 1889 } 1890 1891 /** 1892 * igc_cleanup_headers - Correct corrupted or empty headers 1893 * @rx_ring: rx descriptor ring packet is being transacted on 1894 * @rx_desc: pointer to the EOP Rx descriptor 1895 * @skb: pointer to current skb being fixed 1896 * 1897 * Address the case where we are pulling data in on pages only 1898 * and as such no data is present in the skb header. 1899 * 1900 * In addition if skb is not at least 60 bytes we need to pad it so that 1901 * it is large enough to qualify as a valid Ethernet frame. 1902 * 1903 * Returns true if an error was encountered and skb was freed. 1904 */ 1905 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 1906 union igc_adv_rx_desc *rx_desc, 1907 struct sk_buff *skb) 1908 { 1909 /* XDP packets use error pointer so abort at this point */ 1910 if (IS_ERR(skb)) 1911 return true; 1912 1913 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 1914 struct net_device *netdev = rx_ring->netdev; 1915 1916 if (!(netdev->features & NETIF_F_RXALL)) { 1917 dev_kfree_skb_any(skb); 1918 return true; 1919 } 1920 } 1921 1922 /* if eth_skb_pad returns an error the skb was freed */ 1923 if (eth_skb_pad(skb)) 1924 return true; 1925 1926 return false; 1927 } 1928 1929 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 1930 struct igc_rx_buffer *rx_buffer, 1931 int rx_buffer_pgcnt) 1932 { 1933 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 1934 /* hand second half of page back to the ring */ 1935 igc_reuse_rx_page(rx_ring, rx_buffer); 1936 } else { 1937 /* We are not reusing the buffer so unmap it and free 1938 * any references we are holding to it 1939 */ 1940 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1941 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1942 IGC_RX_DMA_ATTR); 1943 __page_frag_cache_drain(rx_buffer->page, 1944 rx_buffer->pagecnt_bias); 1945 } 1946 1947 /* clear contents of rx_buffer */ 1948 rx_buffer->page = NULL; 1949 } 1950 1951 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 1952 { 1953 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 1954 1955 if (ring_uses_build_skb(rx_ring)) 1956 return IGC_SKB_PAD; 1957 if (igc_xdp_is_enabled(adapter)) 1958 return XDP_PACKET_HEADROOM; 1959 1960 return 0; 1961 } 1962 1963 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 1964 struct igc_rx_buffer *bi) 1965 { 1966 struct page *page = bi->page; 1967 dma_addr_t dma; 1968 1969 /* since we are recycling buffers we should seldom need to alloc */ 1970 if (likely(page)) 1971 return true; 1972 1973 /* alloc new page for storage */ 1974 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 1975 if (unlikely(!page)) { 1976 rx_ring->rx_stats.alloc_failed++; 1977 return false; 1978 } 1979 1980 /* map page for use */ 1981 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1982 igc_rx_pg_size(rx_ring), 1983 DMA_FROM_DEVICE, 1984 IGC_RX_DMA_ATTR); 1985 1986 /* if mapping failed free memory back to system since 1987 * there isn't much point in holding memory we can't use 1988 */ 1989 if (dma_mapping_error(rx_ring->dev, dma)) { 1990 __free_page(page); 1991 1992 rx_ring->rx_stats.alloc_failed++; 1993 return false; 1994 } 1995 1996 bi->dma = dma; 1997 bi->page = page; 1998 bi->page_offset = igc_rx_offset(rx_ring); 1999 page_ref_add(page, USHRT_MAX - 1); 2000 bi->pagecnt_bias = USHRT_MAX; 2001 2002 return true; 2003 } 2004 2005 /** 2006 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2007 * @rx_ring: rx descriptor ring 2008 * @cleaned_count: number of buffers to clean 2009 */ 2010 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2011 { 2012 union igc_adv_rx_desc *rx_desc; 2013 u16 i = rx_ring->next_to_use; 2014 struct igc_rx_buffer *bi; 2015 u16 bufsz; 2016 2017 /* nothing to do */ 2018 if (!cleaned_count) 2019 return; 2020 2021 rx_desc = IGC_RX_DESC(rx_ring, i); 2022 bi = &rx_ring->rx_buffer_info[i]; 2023 i -= rx_ring->count; 2024 2025 bufsz = igc_rx_bufsz(rx_ring); 2026 2027 do { 2028 if (!igc_alloc_mapped_page(rx_ring, bi)) 2029 break; 2030 2031 /* sync the buffer for use by the device */ 2032 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2033 bi->page_offset, bufsz, 2034 DMA_FROM_DEVICE); 2035 2036 /* Refresh the desc even if buffer_addrs didn't change 2037 * because each write-back erases this info. 2038 */ 2039 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2040 2041 rx_desc++; 2042 bi++; 2043 i++; 2044 if (unlikely(!i)) { 2045 rx_desc = IGC_RX_DESC(rx_ring, 0); 2046 bi = rx_ring->rx_buffer_info; 2047 i -= rx_ring->count; 2048 } 2049 2050 /* clear the length for the next_to_use descriptor */ 2051 rx_desc->wb.upper.length = 0; 2052 2053 cleaned_count--; 2054 } while (cleaned_count); 2055 2056 i += rx_ring->count; 2057 2058 if (rx_ring->next_to_use != i) { 2059 /* record the next descriptor to use */ 2060 rx_ring->next_to_use = i; 2061 2062 /* update next to alloc since we have filled the ring */ 2063 rx_ring->next_to_alloc = i; 2064 2065 /* Force memory writes to complete before letting h/w 2066 * know there are new descriptors to fetch. (Only 2067 * applicable for weak-ordered memory model archs, 2068 * such as IA-64). 2069 */ 2070 wmb(); 2071 writel(i, rx_ring->tail); 2072 } 2073 } 2074 2075 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2076 { 2077 union igc_adv_rx_desc *desc; 2078 u16 i = ring->next_to_use; 2079 struct igc_rx_buffer *bi; 2080 dma_addr_t dma; 2081 bool ok = true; 2082 2083 if (!count) 2084 return ok; 2085 2086 desc = IGC_RX_DESC(ring, i); 2087 bi = &ring->rx_buffer_info[i]; 2088 i -= ring->count; 2089 2090 do { 2091 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2092 if (!bi->xdp) { 2093 ok = false; 2094 break; 2095 } 2096 2097 dma = xsk_buff_xdp_get_dma(bi->xdp); 2098 desc->read.pkt_addr = cpu_to_le64(dma); 2099 2100 desc++; 2101 bi++; 2102 i++; 2103 if (unlikely(!i)) { 2104 desc = IGC_RX_DESC(ring, 0); 2105 bi = ring->rx_buffer_info; 2106 i -= ring->count; 2107 } 2108 2109 /* Clear the length for the next_to_use descriptor. */ 2110 desc->wb.upper.length = 0; 2111 2112 count--; 2113 } while (count); 2114 2115 i += ring->count; 2116 2117 if (ring->next_to_use != i) { 2118 ring->next_to_use = i; 2119 2120 /* Force memory writes to complete before letting h/w 2121 * know there are new descriptors to fetch. (Only 2122 * applicable for weak-ordered memory model archs, 2123 * such as IA-64). 2124 */ 2125 wmb(); 2126 writel(i, ring->tail); 2127 } 2128 2129 return ok; 2130 } 2131 2132 /* This function requires __netif_tx_lock is held by the caller. */ 2133 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2134 struct xdp_frame *xdpf) 2135 { 2136 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2137 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 2138 u16 count, index = ring->next_to_use; 2139 struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; 2140 struct igc_tx_buffer *buffer = head; 2141 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); 2142 u32 olinfo_status, len = xdpf->len, cmd_type; 2143 void *data = xdpf->data; 2144 u16 i; 2145 2146 count = TXD_USE_COUNT(len); 2147 for (i = 0; i < nr_frags; i++) 2148 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 2149 2150 if (igc_maybe_stop_tx(ring, count + 3)) { 2151 /* this is a hard error */ 2152 return -EBUSY; 2153 } 2154 2155 i = 0; 2156 head->bytecount = xdp_get_frame_len(xdpf); 2157 head->type = IGC_TX_BUFFER_TYPE_XDP; 2158 head->gso_segs = 1; 2159 head->xdpf = xdpf; 2160 2161 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2162 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2163 2164 for (;;) { 2165 dma_addr_t dma; 2166 2167 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); 2168 if (dma_mapping_error(ring->dev, dma)) { 2169 netdev_err_once(ring->netdev, 2170 "Failed to map DMA for TX\n"); 2171 goto unmap; 2172 } 2173 2174 dma_unmap_len_set(buffer, len, len); 2175 dma_unmap_addr_set(buffer, dma, dma); 2176 2177 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2178 IGC_ADVTXD_DCMD_IFCS | len; 2179 2180 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2181 desc->read.buffer_addr = cpu_to_le64(dma); 2182 2183 buffer->protocol = 0; 2184 2185 if (++index == ring->count) 2186 index = 0; 2187 2188 if (i == nr_frags) 2189 break; 2190 2191 buffer = &ring->tx_buffer_info[index]; 2192 desc = IGC_TX_DESC(ring, index); 2193 desc->read.olinfo_status = 0; 2194 2195 data = skb_frag_address(&sinfo->frags[i]); 2196 len = skb_frag_size(&sinfo->frags[i]); 2197 i++; 2198 } 2199 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); 2200 2201 netdev_tx_sent_queue(txring_txq(ring), head->bytecount); 2202 /* set the timestamp */ 2203 head->time_stamp = jiffies; 2204 /* set next_to_watch value indicating a packet is present */ 2205 head->next_to_watch = desc; 2206 ring->next_to_use = index; 2207 2208 return 0; 2209 2210 unmap: 2211 for (;;) { 2212 buffer = &ring->tx_buffer_info[index]; 2213 if (dma_unmap_len(buffer, len)) 2214 dma_unmap_page(ring->dev, 2215 dma_unmap_addr(buffer, dma), 2216 dma_unmap_len(buffer, len), 2217 DMA_TO_DEVICE); 2218 dma_unmap_len_set(buffer, len, 0); 2219 if (buffer == head) 2220 break; 2221 2222 if (!index) 2223 index += ring->count; 2224 index--; 2225 } 2226 2227 return -ENOMEM; 2228 } 2229 2230 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2231 int cpu) 2232 { 2233 int index = cpu; 2234 2235 if (unlikely(index < 0)) 2236 index = 0; 2237 2238 while (index >= adapter->num_tx_queues) 2239 index -= adapter->num_tx_queues; 2240 2241 return adapter->tx_ring[index]; 2242 } 2243 2244 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2245 { 2246 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2247 int cpu = smp_processor_id(); 2248 struct netdev_queue *nq; 2249 struct igc_ring *ring; 2250 int res; 2251 2252 if (unlikely(!xdpf)) 2253 return -EFAULT; 2254 2255 ring = igc_xdp_get_tx_ring(adapter, cpu); 2256 nq = txring_txq(ring); 2257 2258 __netif_tx_lock(nq, cpu); 2259 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2260 __netif_tx_unlock(nq); 2261 return res; 2262 } 2263 2264 /* This function assumes rcu_read_lock() is held by the caller. */ 2265 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2266 struct bpf_prog *prog, 2267 struct xdp_buff *xdp) 2268 { 2269 u32 act = bpf_prog_run_xdp(prog, xdp); 2270 2271 switch (act) { 2272 case XDP_PASS: 2273 return IGC_XDP_PASS; 2274 case XDP_TX: 2275 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2276 goto out_failure; 2277 return IGC_XDP_TX; 2278 case XDP_REDIRECT: 2279 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2280 goto out_failure; 2281 return IGC_XDP_REDIRECT; 2282 break; 2283 default: 2284 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2285 fallthrough; 2286 case XDP_ABORTED: 2287 out_failure: 2288 trace_xdp_exception(adapter->netdev, prog, act); 2289 fallthrough; 2290 case XDP_DROP: 2291 return IGC_XDP_CONSUMED; 2292 } 2293 } 2294 2295 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2296 struct xdp_buff *xdp) 2297 { 2298 struct bpf_prog *prog; 2299 int res; 2300 2301 prog = READ_ONCE(adapter->xdp_prog); 2302 if (!prog) { 2303 res = IGC_XDP_PASS; 2304 goto out; 2305 } 2306 2307 res = __igc_xdp_run_prog(adapter, prog, xdp); 2308 2309 out: 2310 return ERR_PTR(-res); 2311 } 2312 2313 /* This function assumes __netif_tx_lock is held by the caller. */ 2314 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2315 { 2316 /* Once tail pointer is updated, hardware can fetch the descriptors 2317 * any time so we issue a write membar here to ensure all memory 2318 * writes are complete before the tail pointer is updated. 2319 */ 2320 wmb(); 2321 writel(ring->next_to_use, ring->tail); 2322 } 2323 2324 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2325 { 2326 int cpu = smp_processor_id(); 2327 struct netdev_queue *nq; 2328 struct igc_ring *ring; 2329 2330 if (status & IGC_XDP_TX) { 2331 ring = igc_xdp_get_tx_ring(adapter, cpu); 2332 nq = txring_txq(ring); 2333 2334 __netif_tx_lock(nq, cpu); 2335 igc_flush_tx_descriptors(ring); 2336 __netif_tx_unlock(nq); 2337 } 2338 2339 if (status & IGC_XDP_REDIRECT) 2340 xdp_do_flush(); 2341 } 2342 2343 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2344 unsigned int packets, unsigned int bytes) 2345 { 2346 struct igc_ring *ring = q_vector->rx.ring; 2347 2348 u64_stats_update_begin(&ring->rx_syncp); 2349 ring->rx_stats.packets += packets; 2350 ring->rx_stats.bytes += bytes; 2351 u64_stats_update_end(&ring->rx_syncp); 2352 2353 q_vector->rx.total_packets += packets; 2354 q_vector->rx.total_bytes += bytes; 2355 } 2356 2357 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2358 { 2359 unsigned int total_bytes = 0, total_packets = 0; 2360 struct igc_adapter *adapter = q_vector->adapter; 2361 struct igc_ring *rx_ring = q_vector->rx.ring; 2362 struct sk_buff *skb = rx_ring->skb; 2363 u16 cleaned_count = igc_desc_unused(rx_ring); 2364 int xdp_status = 0, rx_buffer_pgcnt; 2365 2366 while (likely(total_packets < budget)) { 2367 union igc_adv_rx_desc *rx_desc; 2368 struct igc_rx_buffer *rx_buffer; 2369 unsigned int size, truesize; 2370 ktime_t timestamp = 0; 2371 struct xdp_buff xdp; 2372 int pkt_offset = 0; 2373 void *pktbuf; 2374 2375 /* return some buffers to hardware, one at a time is too slow */ 2376 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2377 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2378 cleaned_count = 0; 2379 } 2380 2381 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2382 size = le16_to_cpu(rx_desc->wb.upper.length); 2383 if (!size) 2384 break; 2385 2386 /* This memory barrier is needed to keep us from reading 2387 * any other fields out of the rx_desc until we know the 2388 * descriptor has been written back 2389 */ 2390 dma_rmb(); 2391 2392 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2393 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2394 2395 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2396 2397 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2398 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2399 pktbuf); 2400 pkt_offset = IGC_TS_HDR_LEN; 2401 size -= IGC_TS_HDR_LEN; 2402 } 2403 2404 if (!skb) { 2405 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq); 2406 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring), 2407 igc_rx_offset(rx_ring) + pkt_offset, 2408 size, true); 2409 xdp_buff_clear_frags_flag(&xdp); 2410 2411 skb = igc_xdp_run_prog(adapter, &xdp); 2412 } 2413 2414 if (IS_ERR(skb)) { 2415 unsigned int xdp_res = -PTR_ERR(skb); 2416 2417 switch (xdp_res) { 2418 case IGC_XDP_CONSUMED: 2419 rx_buffer->pagecnt_bias++; 2420 break; 2421 case IGC_XDP_TX: 2422 case IGC_XDP_REDIRECT: 2423 igc_rx_buffer_flip(rx_buffer, truesize); 2424 xdp_status |= xdp_res; 2425 break; 2426 } 2427 2428 total_packets++; 2429 total_bytes += size; 2430 } else if (skb) 2431 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2432 else if (ring_uses_build_skb(rx_ring)) 2433 skb = igc_build_skb(rx_ring, rx_buffer, &xdp); 2434 else 2435 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp, 2436 timestamp); 2437 2438 /* exit if we failed to retrieve a buffer */ 2439 if (!skb) { 2440 rx_ring->rx_stats.alloc_failed++; 2441 rx_buffer->pagecnt_bias++; 2442 break; 2443 } 2444 2445 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2446 cleaned_count++; 2447 2448 /* fetch next buffer in frame if non-eop */ 2449 if (igc_is_non_eop(rx_ring, rx_desc)) 2450 continue; 2451 2452 /* verify the packet layout is correct */ 2453 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2454 skb = NULL; 2455 continue; 2456 } 2457 2458 /* probably a little skewed due to removing CRC */ 2459 total_bytes += skb->len; 2460 2461 /* populate checksum, VLAN, and protocol */ 2462 igc_process_skb_fields(rx_ring, rx_desc, skb); 2463 2464 napi_gro_receive(&q_vector->napi, skb); 2465 2466 /* reset skb pointer */ 2467 skb = NULL; 2468 2469 /* update budget accounting */ 2470 total_packets++; 2471 } 2472 2473 if (xdp_status) 2474 igc_finalize_xdp(adapter, xdp_status); 2475 2476 /* place incomplete frames back on ring for completion */ 2477 rx_ring->skb = skb; 2478 2479 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2480 2481 if (cleaned_count) 2482 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2483 2484 return total_packets; 2485 } 2486 2487 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2488 struct xdp_buff *xdp) 2489 { 2490 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2491 unsigned int metasize = xdp->data - xdp->data_meta; 2492 struct sk_buff *skb; 2493 2494 net_prefetch(xdp->data_meta); 2495 2496 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize, 2497 GFP_ATOMIC | __GFP_NOWARN); 2498 if (unlikely(!skb)) 2499 return NULL; 2500 2501 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2502 ALIGN(totalsize, sizeof(long))); 2503 2504 if (metasize) { 2505 skb_metadata_set(skb, metasize); 2506 __skb_pull(skb, metasize); 2507 } 2508 2509 return skb; 2510 } 2511 2512 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2513 union igc_adv_rx_desc *desc, 2514 struct xdp_buff *xdp, 2515 ktime_t timestamp) 2516 { 2517 struct igc_ring *ring = q_vector->rx.ring; 2518 struct sk_buff *skb; 2519 2520 skb = igc_construct_skb_zc(ring, xdp); 2521 if (!skb) { 2522 ring->rx_stats.alloc_failed++; 2523 return; 2524 } 2525 2526 if (timestamp) 2527 skb_hwtstamps(skb)->hwtstamp = timestamp; 2528 2529 if (igc_cleanup_headers(ring, desc, skb)) 2530 return; 2531 2532 igc_process_skb_fields(ring, desc, skb); 2533 napi_gro_receive(&q_vector->napi, skb); 2534 } 2535 2536 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2537 { 2538 struct igc_adapter *adapter = q_vector->adapter; 2539 struct igc_ring *ring = q_vector->rx.ring; 2540 u16 cleaned_count = igc_desc_unused(ring); 2541 int total_bytes = 0, total_packets = 0; 2542 u16 ntc = ring->next_to_clean; 2543 struct bpf_prog *prog; 2544 bool failure = false; 2545 int xdp_status = 0; 2546 2547 rcu_read_lock(); 2548 2549 prog = READ_ONCE(adapter->xdp_prog); 2550 2551 while (likely(total_packets < budget)) { 2552 union igc_adv_rx_desc *desc; 2553 struct igc_rx_buffer *bi; 2554 ktime_t timestamp = 0; 2555 unsigned int size; 2556 int res; 2557 2558 desc = IGC_RX_DESC(ring, ntc); 2559 size = le16_to_cpu(desc->wb.upper.length); 2560 if (!size) 2561 break; 2562 2563 /* This memory barrier is needed to keep us from reading 2564 * any other fields out of the rx_desc until we know the 2565 * descriptor has been written back 2566 */ 2567 dma_rmb(); 2568 2569 bi = &ring->rx_buffer_info[ntc]; 2570 2571 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2572 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2573 bi->xdp->data); 2574 2575 bi->xdp->data += IGC_TS_HDR_LEN; 2576 2577 /* HW timestamp has been copied into local variable. Metadata 2578 * length when XDP program is called should be 0. 2579 */ 2580 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2581 size -= IGC_TS_HDR_LEN; 2582 } 2583 2584 bi->xdp->data_end = bi->xdp->data + size; 2585 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); 2586 2587 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2588 switch (res) { 2589 case IGC_XDP_PASS: 2590 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2591 fallthrough; 2592 case IGC_XDP_CONSUMED: 2593 xsk_buff_free(bi->xdp); 2594 break; 2595 case IGC_XDP_TX: 2596 case IGC_XDP_REDIRECT: 2597 xdp_status |= res; 2598 break; 2599 } 2600 2601 bi->xdp = NULL; 2602 total_bytes += size; 2603 total_packets++; 2604 cleaned_count++; 2605 ntc++; 2606 if (ntc == ring->count) 2607 ntc = 0; 2608 } 2609 2610 ring->next_to_clean = ntc; 2611 rcu_read_unlock(); 2612 2613 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2614 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2615 2616 if (xdp_status) 2617 igc_finalize_xdp(adapter, xdp_status); 2618 2619 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2620 2621 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2622 if (failure || ring->next_to_clean == ring->next_to_use) 2623 xsk_set_rx_need_wakeup(ring->xsk_pool); 2624 else 2625 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2626 return total_packets; 2627 } 2628 2629 return failure ? budget : total_packets; 2630 } 2631 2632 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2633 unsigned int packets, unsigned int bytes) 2634 { 2635 struct igc_ring *ring = q_vector->tx.ring; 2636 2637 u64_stats_update_begin(&ring->tx_syncp); 2638 ring->tx_stats.bytes += bytes; 2639 ring->tx_stats.packets += packets; 2640 u64_stats_update_end(&ring->tx_syncp); 2641 2642 q_vector->tx.total_bytes += bytes; 2643 q_vector->tx.total_packets += packets; 2644 } 2645 2646 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2647 { 2648 struct xsk_buff_pool *pool = ring->xsk_pool; 2649 struct netdev_queue *nq = txring_txq(ring); 2650 union igc_adv_tx_desc *tx_desc = NULL; 2651 int cpu = smp_processor_id(); 2652 u16 ntu = ring->next_to_use; 2653 struct xdp_desc xdp_desc; 2654 u16 budget; 2655 2656 if (!netif_carrier_ok(ring->netdev)) 2657 return; 2658 2659 __netif_tx_lock(nq, cpu); 2660 2661 budget = igc_desc_unused(ring); 2662 2663 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2664 u32 cmd_type, olinfo_status; 2665 struct igc_tx_buffer *bi; 2666 dma_addr_t dma; 2667 2668 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2669 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2670 xdp_desc.len; 2671 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2672 2673 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2674 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2675 2676 tx_desc = IGC_TX_DESC(ring, ntu); 2677 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2678 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2679 tx_desc->read.buffer_addr = cpu_to_le64(dma); 2680 2681 bi = &ring->tx_buffer_info[ntu]; 2682 bi->type = IGC_TX_BUFFER_TYPE_XSK; 2683 bi->protocol = 0; 2684 bi->bytecount = xdp_desc.len; 2685 bi->gso_segs = 1; 2686 bi->time_stamp = jiffies; 2687 bi->next_to_watch = tx_desc; 2688 2689 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 2690 2691 ntu++; 2692 if (ntu == ring->count) 2693 ntu = 0; 2694 } 2695 2696 ring->next_to_use = ntu; 2697 if (tx_desc) { 2698 igc_flush_tx_descriptors(ring); 2699 xsk_tx_release(pool); 2700 } 2701 2702 __netif_tx_unlock(nq); 2703 } 2704 2705 /** 2706 * igc_clean_tx_irq - Reclaim resources after transmit completes 2707 * @q_vector: pointer to q_vector containing needed info 2708 * @napi_budget: Used to determine if we are in netpoll 2709 * 2710 * returns true if ring is completely cleaned 2711 */ 2712 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 2713 { 2714 struct igc_adapter *adapter = q_vector->adapter; 2715 unsigned int total_bytes = 0, total_packets = 0; 2716 unsigned int budget = q_vector->tx.work_limit; 2717 struct igc_ring *tx_ring = q_vector->tx.ring; 2718 unsigned int i = tx_ring->next_to_clean; 2719 struct igc_tx_buffer *tx_buffer; 2720 union igc_adv_tx_desc *tx_desc; 2721 u32 xsk_frames = 0; 2722 2723 if (test_bit(__IGC_DOWN, &adapter->state)) 2724 return true; 2725 2726 tx_buffer = &tx_ring->tx_buffer_info[i]; 2727 tx_desc = IGC_TX_DESC(tx_ring, i); 2728 i -= tx_ring->count; 2729 2730 do { 2731 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2732 2733 /* if next_to_watch is not set then there is no work pending */ 2734 if (!eop_desc) 2735 break; 2736 2737 /* prevent any other reads prior to eop_desc */ 2738 smp_rmb(); 2739 2740 /* if DD is not set pending work has not been completed */ 2741 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2742 break; 2743 2744 /* clear next_to_watch to prevent false hangs */ 2745 tx_buffer->next_to_watch = NULL; 2746 2747 /* update the statistics for this packet */ 2748 total_bytes += tx_buffer->bytecount; 2749 total_packets += tx_buffer->gso_segs; 2750 2751 switch (tx_buffer->type) { 2752 case IGC_TX_BUFFER_TYPE_XSK: 2753 xsk_frames++; 2754 break; 2755 case IGC_TX_BUFFER_TYPE_XDP: 2756 xdp_return_frame(tx_buffer->xdpf); 2757 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2758 break; 2759 case IGC_TX_BUFFER_TYPE_SKB: 2760 napi_consume_skb(tx_buffer->skb, napi_budget); 2761 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2762 break; 2763 default: 2764 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 2765 break; 2766 } 2767 2768 /* clear last DMA location and unmap remaining buffers */ 2769 while (tx_desc != eop_desc) { 2770 tx_buffer++; 2771 tx_desc++; 2772 i++; 2773 if (unlikely(!i)) { 2774 i -= tx_ring->count; 2775 tx_buffer = tx_ring->tx_buffer_info; 2776 tx_desc = IGC_TX_DESC(tx_ring, 0); 2777 } 2778 2779 /* unmap any remaining paged data */ 2780 if (dma_unmap_len(tx_buffer, len)) 2781 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2782 } 2783 2784 /* move us one more past the eop_desc for start of next pkt */ 2785 tx_buffer++; 2786 tx_desc++; 2787 i++; 2788 if (unlikely(!i)) { 2789 i -= tx_ring->count; 2790 tx_buffer = tx_ring->tx_buffer_info; 2791 tx_desc = IGC_TX_DESC(tx_ring, 0); 2792 } 2793 2794 /* issue prefetch for next Tx descriptor */ 2795 prefetch(tx_desc); 2796 2797 /* update budget accounting */ 2798 budget--; 2799 } while (likely(budget)); 2800 2801 netdev_tx_completed_queue(txring_txq(tx_ring), 2802 total_packets, total_bytes); 2803 2804 i += tx_ring->count; 2805 tx_ring->next_to_clean = i; 2806 2807 igc_update_tx_stats(q_vector, total_packets, total_bytes); 2808 2809 if (tx_ring->xsk_pool) { 2810 if (xsk_frames) 2811 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 2812 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 2813 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 2814 igc_xdp_xmit_zc(tx_ring); 2815 } 2816 2817 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 2818 struct igc_hw *hw = &adapter->hw; 2819 2820 /* Detect a transmit hang in hardware, this serializes the 2821 * check with the clearing of time_stamp and movement of i 2822 */ 2823 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2824 if (tx_buffer->next_to_watch && 2825 time_after(jiffies, tx_buffer->time_stamp + 2826 (adapter->tx_timeout_factor * HZ)) && 2827 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) { 2828 /* detected Tx unit hang */ 2829 netdev_err(tx_ring->netdev, 2830 "Detected Tx Unit Hang\n" 2831 " Tx Queue <%d>\n" 2832 " TDH <%x>\n" 2833 " TDT <%x>\n" 2834 " next_to_use <%x>\n" 2835 " next_to_clean <%x>\n" 2836 "buffer_info[next_to_clean]\n" 2837 " time_stamp <%lx>\n" 2838 " next_to_watch <%p>\n" 2839 " jiffies <%lx>\n" 2840 " desc.status <%x>\n", 2841 tx_ring->queue_index, 2842 rd32(IGC_TDH(tx_ring->reg_idx)), 2843 readl(tx_ring->tail), 2844 tx_ring->next_to_use, 2845 tx_ring->next_to_clean, 2846 tx_buffer->time_stamp, 2847 tx_buffer->next_to_watch, 2848 jiffies, 2849 tx_buffer->next_to_watch->wb.status); 2850 netif_stop_subqueue(tx_ring->netdev, 2851 tx_ring->queue_index); 2852 2853 /* we are about to reset, no point in enabling stuff */ 2854 return true; 2855 } 2856 } 2857 2858 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 2859 if (unlikely(total_packets && 2860 netif_carrier_ok(tx_ring->netdev) && 2861 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 2862 /* Make sure that anybody stopping the queue after this 2863 * sees the new next_to_clean. 2864 */ 2865 smp_mb(); 2866 if (__netif_subqueue_stopped(tx_ring->netdev, 2867 tx_ring->queue_index) && 2868 !(test_bit(__IGC_DOWN, &adapter->state))) { 2869 netif_wake_subqueue(tx_ring->netdev, 2870 tx_ring->queue_index); 2871 2872 u64_stats_update_begin(&tx_ring->tx_syncp); 2873 tx_ring->tx_stats.restart_queue++; 2874 u64_stats_update_end(&tx_ring->tx_syncp); 2875 } 2876 } 2877 2878 return !!budget; 2879 } 2880 2881 static int igc_find_mac_filter(struct igc_adapter *adapter, 2882 enum igc_mac_filter_type type, const u8 *addr) 2883 { 2884 struct igc_hw *hw = &adapter->hw; 2885 int max_entries = hw->mac.rar_entry_count; 2886 u32 ral, rah; 2887 int i; 2888 2889 for (i = 0; i < max_entries; i++) { 2890 ral = rd32(IGC_RAL(i)); 2891 rah = rd32(IGC_RAH(i)); 2892 2893 if (!(rah & IGC_RAH_AV)) 2894 continue; 2895 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 2896 continue; 2897 if ((rah & IGC_RAH_RAH_MASK) != 2898 le16_to_cpup((__le16 *)(addr + 4))) 2899 continue; 2900 if (ral != le32_to_cpup((__le32 *)(addr))) 2901 continue; 2902 2903 return i; 2904 } 2905 2906 return -1; 2907 } 2908 2909 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 2910 { 2911 struct igc_hw *hw = &adapter->hw; 2912 int max_entries = hw->mac.rar_entry_count; 2913 u32 rah; 2914 int i; 2915 2916 for (i = 0; i < max_entries; i++) { 2917 rah = rd32(IGC_RAH(i)); 2918 2919 if (!(rah & IGC_RAH_AV)) 2920 return i; 2921 } 2922 2923 return -1; 2924 } 2925 2926 /** 2927 * igc_add_mac_filter() - Add MAC address filter 2928 * @adapter: Pointer to adapter where the filter should be added 2929 * @type: MAC address filter type (source or destination) 2930 * @addr: MAC address 2931 * @queue: If non-negative, queue assignment feature is enabled and frames 2932 * matching the filter are enqueued onto 'queue'. Otherwise, queue 2933 * assignment is disabled. 2934 * 2935 * Return: 0 in case of success, negative errno code otherwise. 2936 */ 2937 static int igc_add_mac_filter(struct igc_adapter *adapter, 2938 enum igc_mac_filter_type type, const u8 *addr, 2939 int queue) 2940 { 2941 struct net_device *dev = adapter->netdev; 2942 int index; 2943 2944 index = igc_find_mac_filter(adapter, type, addr); 2945 if (index >= 0) 2946 goto update_filter; 2947 2948 index = igc_get_avail_mac_filter_slot(adapter); 2949 if (index < 0) 2950 return -ENOSPC; 2951 2952 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 2953 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 2954 addr, queue); 2955 2956 update_filter: 2957 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 2958 return 0; 2959 } 2960 2961 /** 2962 * igc_del_mac_filter() - Delete MAC address filter 2963 * @adapter: Pointer to adapter where the filter should be deleted from 2964 * @type: MAC address filter type (source or destination) 2965 * @addr: MAC address 2966 */ 2967 static void igc_del_mac_filter(struct igc_adapter *adapter, 2968 enum igc_mac_filter_type type, const u8 *addr) 2969 { 2970 struct net_device *dev = adapter->netdev; 2971 int index; 2972 2973 index = igc_find_mac_filter(adapter, type, addr); 2974 if (index < 0) 2975 return; 2976 2977 if (index == 0) { 2978 /* If this is the default filter, we don't actually delete it. 2979 * We just reset to its default value i.e. disable queue 2980 * assignment. 2981 */ 2982 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 2983 2984 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 2985 } else { 2986 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 2987 index, 2988 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 2989 addr); 2990 2991 igc_clear_mac_filter_hw(adapter, index); 2992 } 2993 } 2994 2995 /** 2996 * igc_add_vlan_prio_filter() - Add VLAN priority filter 2997 * @adapter: Pointer to adapter where the filter should be added 2998 * @prio: VLAN priority value 2999 * @queue: Queue number which matching frames are assigned to 3000 * 3001 * Return: 0 in case of success, negative errno code otherwise. 3002 */ 3003 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 3004 int queue) 3005 { 3006 struct net_device *dev = adapter->netdev; 3007 struct igc_hw *hw = &adapter->hw; 3008 u32 vlanpqf; 3009 3010 vlanpqf = rd32(IGC_VLANPQF); 3011 3012 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 3013 netdev_dbg(dev, "VLAN priority filter already in use\n"); 3014 return -EEXIST; 3015 } 3016 3017 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 3018 vlanpqf |= IGC_VLANPQF_VALID(prio); 3019 3020 wr32(IGC_VLANPQF, vlanpqf); 3021 3022 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 3023 prio, queue); 3024 return 0; 3025 } 3026 3027 /** 3028 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 3029 * @adapter: Pointer to adapter where the filter should be deleted from 3030 * @prio: VLAN priority value 3031 */ 3032 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 3033 { 3034 struct igc_hw *hw = &adapter->hw; 3035 u32 vlanpqf; 3036 3037 vlanpqf = rd32(IGC_VLANPQF); 3038 3039 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3040 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3041 3042 wr32(IGC_VLANPQF, vlanpqf); 3043 3044 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3045 prio); 3046 } 3047 3048 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3049 { 3050 struct igc_hw *hw = &adapter->hw; 3051 int i; 3052 3053 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3054 u32 etqf = rd32(IGC_ETQF(i)); 3055 3056 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3057 return i; 3058 } 3059 3060 return -1; 3061 } 3062 3063 /** 3064 * igc_add_etype_filter() - Add ethertype filter 3065 * @adapter: Pointer to adapter where the filter should be added 3066 * @etype: Ethertype value 3067 * @queue: If non-negative, queue assignment feature is enabled and frames 3068 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3069 * assignment is disabled. 3070 * 3071 * Return: 0 in case of success, negative errno code otherwise. 3072 */ 3073 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3074 int queue) 3075 { 3076 struct igc_hw *hw = &adapter->hw; 3077 int index; 3078 u32 etqf; 3079 3080 index = igc_get_avail_etype_filter_slot(adapter); 3081 if (index < 0) 3082 return -ENOSPC; 3083 3084 etqf = rd32(IGC_ETQF(index)); 3085 3086 etqf &= ~IGC_ETQF_ETYPE_MASK; 3087 etqf |= etype; 3088 3089 if (queue >= 0) { 3090 etqf &= ~IGC_ETQF_QUEUE_MASK; 3091 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3092 etqf |= IGC_ETQF_QUEUE_ENABLE; 3093 } 3094 3095 etqf |= IGC_ETQF_FILTER_ENABLE; 3096 3097 wr32(IGC_ETQF(index), etqf); 3098 3099 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3100 etype, queue); 3101 return 0; 3102 } 3103 3104 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3105 { 3106 struct igc_hw *hw = &adapter->hw; 3107 int i; 3108 3109 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3110 u32 etqf = rd32(IGC_ETQF(i)); 3111 3112 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3113 return i; 3114 } 3115 3116 return -1; 3117 } 3118 3119 /** 3120 * igc_del_etype_filter() - Delete ethertype filter 3121 * @adapter: Pointer to adapter where the filter should be deleted from 3122 * @etype: Ethertype value 3123 */ 3124 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3125 { 3126 struct igc_hw *hw = &adapter->hw; 3127 int index; 3128 3129 index = igc_find_etype_filter(adapter, etype); 3130 if (index < 0) 3131 return; 3132 3133 wr32(IGC_ETQF(index), 0); 3134 3135 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3136 etype); 3137 } 3138 3139 static int igc_flex_filter_select(struct igc_adapter *adapter, 3140 struct igc_flex_filter *input, 3141 u32 *fhft) 3142 { 3143 struct igc_hw *hw = &adapter->hw; 3144 u8 fhft_index; 3145 u32 fhftsl; 3146 3147 if (input->index >= MAX_FLEX_FILTER) { 3148 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n"); 3149 return -EINVAL; 3150 } 3151 3152 /* Indirect table select register */ 3153 fhftsl = rd32(IGC_FHFTSL); 3154 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3155 switch (input->index) { 3156 case 0 ... 7: 3157 fhftsl |= 0x00; 3158 break; 3159 case 8 ... 15: 3160 fhftsl |= 0x01; 3161 break; 3162 case 16 ... 23: 3163 fhftsl |= 0x02; 3164 break; 3165 case 24 ... 31: 3166 fhftsl |= 0x03; 3167 break; 3168 } 3169 wr32(IGC_FHFTSL, fhftsl); 3170 3171 /* Normalize index down to host table register */ 3172 fhft_index = input->index % 8; 3173 3174 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3175 IGC_FHFT_EXT(fhft_index - 4); 3176 3177 return 0; 3178 } 3179 3180 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3181 struct igc_flex_filter *input) 3182 { 3183 struct device *dev = &adapter->pdev->dev; 3184 struct igc_hw *hw = &adapter->hw; 3185 u8 *data = input->data; 3186 u8 *mask = input->mask; 3187 u32 queuing; 3188 u32 fhft; 3189 u32 wufc; 3190 int ret; 3191 int i; 3192 3193 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3194 * out early to avoid surprises later. 3195 */ 3196 if (input->length % 8 != 0) { 3197 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n"); 3198 return -EINVAL; 3199 } 3200 3201 /* Select corresponding flex filter register and get base for host table. */ 3202 ret = igc_flex_filter_select(adapter, input, &fhft); 3203 if (ret) 3204 return ret; 3205 3206 /* When adding a filter globally disable flex filter feature. That is 3207 * recommended within the datasheet. 3208 */ 3209 wufc = rd32(IGC_WUFC); 3210 wufc &= ~IGC_WUFC_FLEX_HQ; 3211 wr32(IGC_WUFC, wufc); 3212 3213 /* Configure filter */ 3214 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3215 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK; 3216 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK; 3217 3218 if (input->immediate_irq) 3219 queuing |= IGC_FHFT_IMM_INT; 3220 3221 if (input->drop) 3222 queuing |= IGC_FHFT_DROP; 3223 3224 wr32(fhft + 0xFC, queuing); 3225 3226 /* Write data (128 byte) and mask (128 bit) */ 3227 for (i = 0; i < 16; ++i) { 3228 const size_t data_idx = i * 8; 3229 const size_t row_idx = i * 16; 3230 u32 dw0 = 3231 (data[data_idx + 0] << 0) | 3232 (data[data_idx + 1] << 8) | 3233 (data[data_idx + 2] << 16) | 3234 (data[data_idx + 3] << 24); 3235 u32 dw1 = 3236 (data[data_idx + 4] << 0) | 3237 (data[data_idx + 5] << 8) | 3238 (data[data_idx + 6] << 16) | 3239 (data[data_idx + 7] << 24); 3240 u32 tmp; 3241 3242 /* Write row: dw0, dw1 and mask */ 3243 wr32(fhft + row_idx, dw0); 3244 wr32(fhft + row_idx + 4, dw1); 3245 3246 /* mask is only valid for MASK(7, 0) */ 3247 tmp = rd32(fhft + row_idx + 8); 3248 tmp &= ~GENMASK(7, 0); 3249 tmp |= mask[i]; 3250 wr32(fhft + row_idx + 8, tmp); 3251 } 3252 3253 /* Enable filter. */ 3254 wufc |= IGC_WUFC_FLEX_HQ; 3255 if (input->index > 8) { 3256 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3257 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3258 3259 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3260 3261 wr32(IGC_WUFC_EXT, wufc_ext); 3262 } else { 3263 wufc |= (IGC_WUFC_FLX0 << input->index); 3264 } 3265 wr32(IGC_WUFC, wufc); 3266 3267 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n", 3268 input->index); 3269 3270 return 0; 3271 } 3272 3273 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3274 const void *src, unsigned int offset, 3275 size_t len, const void *mask) 3276 { 3277 int i; 3278 3279 /* data */ 3280 memcpy(&flex->data[offset], src, len); 3281 3282 /* mask */ 3283 for (i = 0; i < len; ++i) { 3284 const unsigned int idx = i + offset; 3285 const u8 *ptr = mask; 3286 3287 if (mask) { 3288 if (ptr[i] & 0xff) 3289 flex->mask[idx / 8] |= BIT(idx % 8); 3290 3291 continue; 3292 } 3293 3294 flex->mask[idx / 8] |= BIT(idx % 8); 3295 } 3296 } 3297 3298 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3299 { 3300 struct igc_hw *hw = &adapter->hw; 3301 u32 wufc, wufc_ext; 3302 int i; 3303 3304 wufc = rd32(IGC_WUFC); 3305 wufc_ext = rd32(IGC_WUFC_EXT); 3306 3307 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3308 if (i < 8) { 3309 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3310 return i; 3311 } else { 3312 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3313 return i; 3314 } 3315 } 3316 3317 return -ENOSPC; 3318 } 3319 3320 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3321 { 3322 struct igc_hw *hw = &adapter->hw; 3323 u32 wufc, wufc_ext; 3324 3325 wufc = rd32(IGC_WUFC); 3326 wufc_ext = rd32(IGC_WUFC_EXT); 3327 3328 if (wufc & IGC_WUFC_FILTER_MASK) 3329 return true; 3330 3331 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3332 return true; 3333 3334 return false; 3335 } 3336 3337 static int igc_add_flex_filter(struct igc_adapter *adapter, 3338 struct igc_nfc_rule *rule) 3339 { 3340 struct igc_flex_filter flex = { }; 3341 struct igc_nfc_filter *filter = &rule->filter; 3342 unsigned int eth_offset, user_offset; 3343 int ret, index; 3344 bool vlan; 3345 3346 index = igc_find_avail_flex_filter_slot(adapter); 3347 if (index < 0) 3348 return -ENOSPC; 3349 3350 /* Construct the flex filter: 3351 * -> dest_mac [6] 3352 * -> src_mac [6] 3353 * -> tpid [2] 3354 * -> vlan tci [2] 3355 * -> ether type [2] 3356 * -> user data [8] 3357 * -> = 26 bytes => 32 length 3358 */ 3359 flex.index = index; 3360 flex.length = 32; 3361 flex.rx_queue = rule->action; 3362 3363 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3364 eth_offset = vlan ? 16 : 12; 3365 user_offset = vlan ? 18 : 14; 3366 3367 /* Add destination MAC */ 3368 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3369 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3370 ETH_ALEN, NULL); 3371 3372 /* Add source MAC */ 3373 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3374 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3375 ETH_ALEN, NULL); 3376 3377 /* Add VLAN etype */ 3378 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) 3379 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12, 3380 sizeof(filter->vlan_etype), 3381 NULL); 3382 3383 /* Add VLAN TCI */ 3384 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3385 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3386 sizeof(filter->vlan_tci), NULL); 3387 3388 /* Add Ether type */ 3389 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3390 __be16 etype = cpu_to_be16(filter->etype); 3391 3392 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3393 sizeof(etype), NULL); 3394 } 3395 3396 /* Add user data */ 3397 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3398 igc_flex_filter_add_field(&flex, &filter->user_data, 3399 user_offset, 3400 sizeof(filter->user_data), 3401 filter->user_mask); 3402 3403 /* Add it down to the hardware and enable it. */ 3404 ret = igc_write_flex_filter_ll(adapter, &flex); 3405 if (ret) 3406 return ret; 3407 3408 filter->flex_index = index; 3409 3410 return 0; 3411 } 3412 3413 static void igc_del_flex_filter(struct igc_adapter *adapter, 3414 u16 reg_index) 3415 { 3416 struct igc_hw *hw = &adapter->hw; 3417 u32 wufc; 3418 3419 /* Just disable the filter. The filter table itself is kept 3420 * intact. Another flex_filter_add() should override the "old" data 3421 * then. 3422 */ 3423 if (reg_index > 8) { 3424 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3425 3426 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3427 wr32(IGC_WUFC_EXT, wufc_ext); 3428 } else { 3429 wufc = rd32(IGC_WUFC); 3430 3431 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3432 wr32(IGC_WUFC, wufc); 3433 } 3434 3435 if (igc_flex_filter_in_use(adapter)) 3436 return; 3437 3438 /* No filters are in use, we may disable flex filters */ 3439 wufc = rd32(IGC_WUFC); 3440 wufc &= ~IGC_WUFC_FLEX_HQ; 3441 wr32(IGC_WUFC, wufc); 3442 } 3443 3444 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3445 struct igc_nfc_rule *rule) 3446 { 3447 int err; 3448 3449 if (rule->flex) { 3450 return igc_add_flex_filter(adapter, rule); 3451 } 3452 3453 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3454 err = igc_add_etype_filter(adapter, rule->filter.etype, 3455 rule->action); 3456 if (err) 3457 return err; 3458 } 3459 3460 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3461 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3462 rule->filter.src_addr, rule->action); 3463 if (err) 3464 return err; 3465 } 3466 3467 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3468 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3469 rule->filter.dst_addr, rule->action); 3470 if (err) 3471 return err; 3472 } 3473 3474 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3475 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3476 VLAN_PRIO_SHIFT; 3477 3478 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3479 if (err) 3480 return err; 3481 } 3482 3483 return 0; 3484 } 3485 3486 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3487 const struct igc_nfc_rule *rule) 3488 { 3489 if (rule->flex) { 3490 igc_del_flex_filter(adapter, rule->filter.flex_index); 3491 return; 3492 } 3493 3494 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3495 igc_del_etype_filter(adapter, rule->filter.etype); 3496 3497 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3498 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3499 VLAN_PRIO_SHIFT; 3500 3501 igc_del_vlan_prio_filter(adapter, prio); 3502 } 3503 3504 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3505 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3506 rule->filter.src_addr); 3507 3508 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3509 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3510 rule->filter.dst_addr); 3511 } 3512 3513 /** 3514 * igc_get_nfc_rule() - Get NFC rule 3515 * @adapter: Pointer to adapter 3516 * @location: Rule location 3517 * 3518 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3519 * 3520 * Return: Pointer to NFC rule at @location. If not found, NULL. 3521 */ 3522 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3523 u32 location) 3524 { 3525 struct igc_nfc_rule *rule; 3526 3527 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3528 if (rule->location == location) 3529 return rule; 3530 if (rule->location > location) 3531 break; 3532 } 3533 3534 return NULL; 3535 } 3536 3537 /** 3538 * igc_del_nfc_rule() - Delete NFC rule 3539 * @adapter: Pointer to adapter 3540 * @rule: Pointer to rule to be deleted 3541 * 3542 * Disable NFC rule in hardware and delete it from adapter. 3543 * 3544 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3545 */ 3546 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3547 { 3548 igc_disable_nfc_rule(adapter, rule); 3549 3550 list_del(&rule->list); 3551 adapter->nfc_rule_count--; 3552 3553 kfree(rule); 3554 } 3555 3556 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3557 { 3558 struct igc_nfc_rule *rule, *tmp; 3559 3560 mutex_lock(&adapter->nfc_rule_lock); 3561 3562 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3563 igc_del_nfc_rule(adapter, rule); 3564 3565 mutex_unlock(&adapter->nfc_rule_lock); 3566 } 3567 3568 /** 3569 * igc_add_nfc_rule() - Add NFC rule 3570 * @adapter: Pointer to adapter 3571 * @rule: Pointer to rule to be added 3572 * 3573 * Enable NFC rule in hardware and add it to adapter. 3574 * 3575 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3576 * 3577 * Return: 0 on success, negative errno on failure. 3578 */ 3579 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3580 { 3581 struct igc_nfc_rule *pred, *cur; 3582 int err; 3583 3584 err = igc_enable_nfc_rule(adapter, rule); 3585 if (err) 3586 return err; 3587 3588 pred = NULL; 3589 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3590 if (cur->location >= rule->location) 3591 break; 3592 pred = cur; 3593 } 3594 3595 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3596 adapter->nfc_rule_count++; 3597 return 0; 3598 } 3599 3600 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3601 { 3602 struct igc_nfc_rule *rule; 3603 3604 mutex_lock(&adapter->nfc_rule_lock); 3605 3606 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3607 igc_enable_nfc_rule(adapter, rule); 3608 3609 mutex_unlock(&adapter->nfc_rule_lock); 3610 } 3611 3612 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3613 { 3614 struct igc_adapter *adapter = netdev_priv(netdev); 3615 3616 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3617 } 3618 3619 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3620 { 3621 struct igc_adapter *adapter = netdev_priv(netdev); 3622 3623 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3624 return 0; 3625 } 3626 3627 /** 3628 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3629 * @netdev: network interface device structure 3630 * 3631 * The set_rx_mode entry point is called whenever the unicast or multicast 3632 * address lists or the network interface flags are updated. This routine is 3633 * responsible for configuring the hardware for proper unicast, multicast, 3634 * promiscuous mode, and all-multi behavior. 3635 */ 3636 static void igc_set_rx_mode(struct net_device *netdev) 3637 { 3638 struct igc_adapter *adapter = netdev_priv(netdev); 3639 struct igc_hw *hw = &adapter->hw; 3640 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3641 int count; 3642 3643 /* Check for Promiscuous and All Multicast modes */ 3644 if (netdev->flags & IFF_PROMISC) { 3645 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3646 } else { 3647 if (netdev->flags & IFF_ALLMULTI) { 3648 rctl |= IGC_RCTL_MPE; 3649 } else { 3650 /* Write addresses to the MTA, if the attempt fails 3651 * then we should just turn on promiscuous mode so 3652 * that we can at least receive multicast traffic 3653 */ 3654 count = igc_write_mc_addr_list(netdev); 3655 if (count < 0) 3656 rctl |= IGC_RCTL_MPE; 3657 } 3658 } 3659 3660 /* Write addresses to available RAR registers, if there is not 3661 * sufficient space to store all the addresses then enable 3662 * unicast promiscuous mode 3663 */ 3664 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3665 rctl |= IGC_RCTL_UPE; 3666 3667 /* update state of unicast and multicast */ 3668 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 3669 wr32(IGC_RCTL, rctl); 3670 3671 #if (PAGE_SIZE < 8192) 3672 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 3673 rlpml = IGC_MAX_FRAME_BUILD_SKB; 3674 #endif 3675 wr32(IGC_RLPML, rlpml); 3676 } 3677 3678 /** 3679 * igc_configure - configure the hardware for RX and TX 3680 * @adapter: private board structure 3681 */ 3682 static void igc_configure(struct igc_adapter *adapter) 3683 { 3684 struct net_device *netdev = adapter->netdev; 3685 int i = 0; 3686 3687 igc_get_hw_control(adapter); 3688 igc_set_rx_mode(netdev); 3689 3690 igc_restore_vlan(adapter); 3691 3692 igc_setup_tctl(adapter); 3693 igc_setup_mrqc(adapter); 3694 igc_setup_rctl(adapter); 3695 3696 igc_set_default_mac_filter(adapter); 3697 igc_restore_nfc_rules(adapter); 3698 3699 igc_configure_tx(adapter); 3700 igc_configure_rx(adapter); 3701 3702 igc_rx_fifo_flush_base(&adapter->hw); 3703 3704 /* call igc_desc_unused which always leaves 3705 * at least 1 descriptor unused to make sure 3706 * next_to_use != next_to_clean 3707 */ 3708 for (i = 0; i < adapter->num_rx_queues; i++) { 3709 struct igc_ring *ring = adapter->rx_ring[i]; 3710 3711 if (ring->xsk_pool) 3712 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 3713 else 3714 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 3715 } 3716 } 3717 3718 /** 3719 * igc_write_ivar - configure ivar for given MSI-X vector 3720 * @hw: pointer to the HW structure 3721 * @msix_vector: vector number we are allocating to a given ring 3722 * @index: row index of IVAR register to write within IVAR table 3723 * @offset: column offset of in IVAR, should be multiple of 8 3724 * 3725 * The IVAR table consists of 2 columns, 3726 * each containing an cause allocation for an Rx and Tx ring, and a 3727 * variable number of rows depending on the number of queues supported. 3728 */ 3729 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 3730 int index, int offset) 3731 { 3732 u32 ivar = array_rd32(IGC_IVAR0, index); 3733 3734 /* clear any bits that are currently set */ 3735 ivar &= ~((u32)0xFF << offset); 3736 3737 /* write vector and valid bit */ 3738 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 3739 3740 array_wr32(IGC_IVAR0, index, ivar); 3741 } 3742 3743 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 3744 { 3745 struct igc_adapter *adapter = q_vector->adapter; 3746 struct igc_hw *hw = &adapter->hw; 3747 int rx_queue = IGC_N0_QUEUE; 3748 int tx_queue = IGC_N0_QUEUE; 3749 3750 if (q_vector->rx.ring) 3751 rx_queue = q_vector->rx.ring->reg_idx; 3752 if (q_vector->tx.ring) 3753 tx_queue = q_vector->tx.ring->reg_idx; 3754 3755 switch (hw->mac.type) { 3756 case igc_i225: 3757 if (rx_queue > IGC_N0_QUEUE) 3758 igc_write_ivar(hw, msix_vector, 3759 rx_queue >> 1, 3760 (rx_queue & 0x1) << 4); 3761 if (tx_queue > IGC_N0_QUEUE) 3762 igc_write_ivar(hw, msix_vector, 3763 tx_queue >> 1, 3764 ((tx_queue & 0x1) << 4) + 8); 3765 q_vector->eims_value = BIT(msix_vector); 3766 break; 3767 default: 3768 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 3769 break; 3770 } 3771 3772 /* add q_vector eims value to global eims_enable_mask */ 3773 adapter->eims_enable_mask |= q_vector->eims_value; 3774 3775 /* configure q_vector to set itr on first interrupt */ 3776 q_vector->set_itr = 1; 3777 } 3778 3779 /** 3780 * igc_configure_msix - Configure MSI-X hardware 3781 * @adapter: Pointer to adapter structure 3782 * 3783 * igc_configure_msix sets up the hardware to properly 3784 * generate MSI-X interrupts. 3785 */ 3786 static void igc_configure_msix(struct igc_adapter *adapter) 3787 { 3788 struct igc_hw *hw = &adapter->hw; 3789 int i, vector = 0; 3790 u32 tmp; 3791 3792 adapter->eims_enable_mask = 0; 3793 3794 /* set vector for other causes, i.e. link changes */ 3795 switch (hw->mac.type) { 3796 case igc_i225: 3797 /* Turn on MSI-X capability first, or our settings 3798 * won't stick. And it will take days to debug. 3799 */ 3800 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 3801 IGC_GPIE_PBA | IGC_GPIE_EIAME | 3802 IGC_GPIE_NSICR); 3803 3804 /* enable msix_other interrupt */ 3805 adapter->eims_other = BIT(vector); 3806 tmp = (vector++ | IGC_IVAR_VALID) << 8; 3807 3808 wr32(IGC_IVAR_MISC, tmp); 3809 break; 3810 default: 3811 /* do nothing, since nothing else supports MSI-X */ 3812 break; 3813 } /* switch (hw->mac.type) */ 3814 3815 adapter->eims_enable_mask |= adapter->eims_other; 3816 3817 for (i = 0; i < adapter->num_q_vectors; i++) 3818 igc_assign_vector(adapter->q_vector[i], vector++); 3819 3820 wrfl(); 3821 } 3822 3823 /** 3824 * igc_irq_enable - Enable default interrupt generation settings 3825 * @adapter: board private structure 3826 */ 3827 static void igc_irq_enable(struct igc_adapter *adapter) 3828 { 3829 struct igc_hw *hw = &adapter->hw; 3830 3831 if (adapter->msix_entries) { 3832 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3833 u32 regval = rd32(IGC_EIAC); 3834 3835 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3836 regval = rd32(IGC_EIAM); 3837 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3838 wr32(IGC_EIMS, adapter->eims_enable_mask); 3839 wr32(IGC_IMS, ims); 3840 } else { 3841 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3842 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3843 } 3844 } 3845 3846 /** 3847 * igc_irq_disable - Mask off interrupt generation on the NIC 3848 * @adapter: board private structure 3849 */ 3850 static void igc_irq_disable(struct igc_adapter *adapter) 3851 { 3852 struct igc_hw *hw = &adapter->hw; 3853 3854 if (adapter->msix_entries) { 3855 u32 regval = rd32(IGC_EIAM); 3856 3857 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3858 wr32(IGC_EIMC, adapter->eims_enable_mask); 3859 regval = rd32(IGC_EIAC); 3860 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 3861 } 3862 3863 wr32(IGC_IAM, 0); 3864 wr32(IGC_IMC, ~0); 3865 wrfl(); 3866 3867 if (adapter->msix_entries) { 3868 int vector = 0, i; 3869 3870 synchronize_irq(adapter->msix_entries[vector++].vector); 3871 3872 for (i = 0; i < adapter->num_q_vectors; i++) 3873 synchronize_irq(adapter->msix_entries[vector++].vector); 3874 } else { 3875 synchronize_irq(adapter->pdev->irq); 3876 } 3877 } 3878 3879 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 3880 const u32 max_rss_queues) 3881 { 3882 /* Determine if we need to pair queues. */ 3883 /* If rss_queues > half of max_rss_queues, pair the queues in 3884 * order to conserve interrupts due to limited supply. 3885 */ 3886 if (adapter->rss_queues > (max_rss_queues / 2)) 3887 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 3888 else 3889 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 3890 } 3891 3892 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 3893 { 3894 return IGC_MAX_RX_QUEUES; 3895 } 3896 3897 static void igc_init_queue_configuration(struct igc_adapter *adapter) 3898 { 3899 u32 max_rss_queues; 3900 3901 max_rss_queues = igc_get_max_rss_queues(adapter); 3902 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3903 3904 igc_set_flag_queue_pairs(adapter, max_rss_queues); 3905 } 3906 3907 /** 3908 * igc_reset_q_vector - Reset config for interrupt vector 3909 * @adapter: board private structure to initialize 3910 * @v_idx: Index of vector to be reset 3911 * 3912 * If NAPI is enabled it will delete any references to the 3913 * NAPI struct. This is preparation for igc_free_q_vector. 3914 */ 3915 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 3916 { 3917 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 3918 3919 /* if we're coming from igc_set_interrupt_capability, the vectors are 3920 * not yet allocated 3921 */ 3922 if (!q_vector) 3923 return; 3924 3925 if (q_vector->tx.ring) 3926 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 3927 3928 if (q_vector->rx.ring) 3929 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 3930 3931 netif_napi_del(&q_vector->napi); 3932 } 3933 3934 /** 3935 * igc_free_q_vector - Free memory allocated for specific interrupt vector 3936 * @adapter: board private structure to initialize 3937 * @v_idx: Index of vector to be freed 3938 * 3939 * This function frees the memory allocated to the q_vector. 3940 */ 3941 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 3942 { 3943 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 3944 3945 adapter->q_vector[v_idx] = NULL; 3946 3947 /* igc_get_stats64() might access the rings on this vector, 3948 * we must wait a grace period before freeing it. 3949 */ 3950 if (q_vector) 3951 kfree_rcu(q_vector, rcu); 3952 } 3953 3954 /** 3955 * igc_free_q_vectors - Free memory allocated for interrupt vectors 3956 * @adapter: board private structure to initialize 3957 * 3958 * This function frees the memory allocated to the q_vectors. In addition if 3959 * NAPI is enabled it will delete any references to the NAPI struct prior 3960 * to freeing the q_vector. 3961 */ 3962 static void igc_free_q_vectors(struct igc_adapter *adapter) 3963 { 3964 int v_idx = adapter->num_q_vectors; 3965 3966 adapter->num_tx_queues = 0; 3967 adapter->num_rx_queues = 0; 3968 adapter->num_q_vectors = 0; 3969 3970 while (v_idx--) { 3971 igc_reset_q_vector(adapter, v_idx); 3972 igc_free_q_vector(adapter, v_idx); 3973 } 3974 } 3975 3976 /** 3977 * igc_update_itr - update the dynamic ITR value based on statistics 3978 * @q_vector: pointer to q_vector 3979 * @ring_container: ring info to update the itr for 3980 * 3981 * Stores a new ITR value based on packets and byte 3982 * counts during the last interrupt. The advantage of per interrupt 3983 * computation is faster updates and more accurate ITR for the current 3984 * traffic pattern. Constants in this function were computed 3985 * based on theoretical maximum wire speed and thresholds were set based 3986 * on testing data as well as attempting to minimize response time 3987 * while increasing bulk throughput. 3988 * NOTE: These calculations are only valid when operating in a single- 3989 * queue environment. 3990 */ 3991 static void igc_update_itr(struct igc_q_vector *q_vector, 3992 struct igc_ring_container *ring_container) 3993 { 3994 unsigned int packets = ring_container->total_packets; 3995 unsigned int bytes = ring_container->total_bytes; 3996 u8 itrval = ring_container->itr; 3997 3998 /* no packets, exit with status unchanged */ 3999 if (packets == 0) 4000 return; 4001 4002 switch (itrval) { 4003 case lowest_latency: 4004 /* handle TSO and jumbo frames */ 4005 if (bytes / packets > 8000) 4006 itrval = bulk_latency; 4007 else if ((packets < 5) && (bytes > 512)) 4008 itrval = low_latency; 4009 break; 4010 case low_latency: /* 50 usec aka 20000 ints/s */ 4011 if (bytes > 10000) { 4012 /* this if handles the TSO accounting */ 4013 if (bytes / packets > 8000) 4014 itrval = bulk_latency; 4015 else if ((packets < 10) || ((bytes / packets) > 1200)) 4016 itrval = bulk_latency; 4017 else if ((packets > 35)) 4018 itrval = lowest_latency; 4019 } else if (bytes / packets > 2000) { 4020 itrval = bulk_latency; 4021 } else if (packets <= 2 && bytes < 512) { 4022 itrval = lowest_latency; 4023 } 4024 break; 4025 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4026 if (bytes > 25000) { 4027 if (packets > 35) 4028 itrval = low_latency; 4029 } else if (bytes < 1500) { 4030 itrval = low_latency; 4031 } 4032 break; 4033 } 4034 4035 /* clear work counters since we have the values we need */ 4036 ring_container->total_bytes = 0; 4037 ring_container->total_packets = 0; 4038 4039 /* write updated itr to ring container */ 4040 ring_container->itr = itrval; 4041 } 4042 4043 static void igc_set_itr(struct igc_q_vector *q_vector) 4044 { 4045 struct igc_adapter *adapter = q_vector->adapter; 4046 u32 new_itr = q_vector->itr_val; 4047 u8 current_itr = 0; 4048 4049 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4050 switch (adapter->link_speed) { 4051 case SPEED_10: 4052 case SPEED_100: 4053 current_itr = 0; 4054 new_itr = IGC_4K_ITR; 4055 goto set_itr_now; 4056 default: 4057 break; 4058 } 4059 4060 igc_update_itr(q_vector, &q_vector->tx); 4061 igc_update_itr(q_vector, &q_vector->rx); 4062 4063 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4064 4065 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4066 if (current_itr == lowest_latency && 4067 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4068 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4069 current_itr = low_latency; 4070 4071 switch (current_itr) { 4072 /* counts and packets in update_itr are dependent on these numbers */ 4073 case lowest_latency: 4074 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4075 break; 4076 case low_latency: 4077 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4078 break; 4079 case bulk_latency: 4080 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4081 break; 4082 default: 4083 break; 4084 } 4085 4086 set_itr_now: 4087 if (new_itr != q_vector->itr_val) { 4088 /* this attempts to bias the interrupt rate towards Bulk 4089 * by adding intermediate steps when interrupt rate is 4090 * increasing 4091 */ 4092 new_itr = new_itr > q_vector->itr_val ? 4093 max((new_itr * q_vector->itr_val) / 4094 (new_itr + (q_vector->itr_val >> 2)), 4095 new_itr) : new_itr; 4096 /* Don't write the value here; it resets the adapter's 4097 * internal timer, and causes us to delay far longer than 4098 * we should between interrupts. Instead, we write the ITR 4099 * value at the beginning of the next interrupt so the timing 4100 * ends up being correct. 4101 */ 4102 q_vector->itr_val = new_itr; 4103 q_vector->set_itr = 1; 4104 } 4105 } 4106 4107 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4108 { 4109 int v_idx = adapter->num_q_vectors; 4110 4111 if (adapter->msix_entries) { 4112 pci_disable_msix(adapter->pdev); 4113 kfree(adapter->msix_entries); 4114 adapter->msix_entries = NULL; 4115 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4116 pci_disable_msi(adapter->pdev); 4117 } 4118 4119 while (v_idx--) 4120 igc_reset_q_vector(adapter, v_idx); 4121 } 4122 4123 /** 4124 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4125 * @adapter: Pointer to adapter structure 4126 * @msix: boolean value for MSI-X capability 4127 * 4128 * Attempt to configure interrupts using the best available 4129 * capabilities of the hardware and kernel. 4130 */ 4131 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4132 bool msix) 4133 { 4134 int numvecs, i; 4135 int err; 4136 4137 if (!msix) 4138 goto msi_only; 4139 adapter->flags |= IGC_FLAG_HAS_MSIX; 4140 4141 /* Number of supported queues. */ 4142 adapter->num_rx_queues = adapter->rss_queues; 4143 4144 adapter->num_tx_queues = adapter->rss_queues; 4145 4146 /* start with one vector for every Rx queue */ 4147 numvecs = adapter->num_rx_queues; 4148 4149 /* if Tx handler is separate add 1 for every Tx queue */ 4150 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4151 numvecs += adapter->num_tx_queues; 4152 4153 /* store the number of vectors reserved for queues */ 4154 adapter->num_q_vectors = numvecs; 4155 4156 /* add 1 vector for link status interrupts */ 4157 numvecs++; 4158 4159 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4160 GFP_KERNEL); 4161 4162 if (!adapter->msix_entries) 4163 return; 4164 4165 /* populate entry values */ 4166 for (i = 0; i < numvecs; i++) 4167 adapter->msix_entries[i].entry = i; 4168 4169 err = pci_enable_msix_range(adapter->pdev, 4170 adapter->msix_entries, 4171 numvecs, 4172 numvecs); 4173 if (err > 0) 4174 return; 4175 4176 kfree(adapter->msix_entries); 4177 adapter->msix_entries = NULL; 4178 4179 igc_reset_interrupt_capability(adapter); 4180 4181 msi_only: 4182 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4183 4184 adapter->rss_queues = 1; 4185 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4186 adapter->num_rx_queues = 1; 4187 adapter->num_tx_queues = 1; 4188 adapter->num_q_vectors = 1; 4189 if (!pci_enable_msi(adapter->pdev)) 4190 adapter->flags |= IGC_FLAG_HAS_MSI; 4191 } 4192 4193 /** 4194 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4195 * @q_vector: pointer to q_vector 4196 * 4197 * Stores a new ITR value based on strictly on packet size. This 4198 * algorithm is less sophisticated than that used in igc_update_itr, 4199 * due to the difficulty of synchronizing statistics across multiple 4200 * receive rings. The divisors and thresholds used by this function 4201 * were determined based on theoretical maximum wire speed and testing 4202 * data, in order to minimize response time while increasing bulk 4203 * throughput. 4204 * NOTE: This function is called only when operating in a multiqueue 4205 * receive environment. 4206 */ 4207 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4208 { 4209 struct igc_adapter *adapter = q_vector->adapter; 4210 int new_val = q_vector->itr_val; 4211 int avg_wire_size = 0; 4212 unsigned int packets; 4213 4214 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4215 * ints/sec - ITR timer value of 120 ticks. 4216 */ 4217 switch (adapter->link_speed) { 4218 case SPEED_10: 4219 case SPEED_100: 4220 new_val = IGC_4K_ITR; 4221 goto set_itr_val; 4222 default: 4223 break; 4224 } 4225 4226 packets = q_vector->rx.total_packets; 4227 if (packets) 4228 avg_wire_size = q_vector->rx.total_bytes / packets; 4229 4230 packets = q_vector->tx.total_packets; 4231 if (packets) 4232 avg_wire_size = max_t(u32, avg_wire_size, 4233 q_vector->tx.total_bytes / packets); 4234 4235 /* if avg_wire_size isn't set no work was done */ 4236 if (!avg_wire_size) 4237 goto clear_counts; 4238 4239 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4240 avg_wire_size += 24; 4241 4242 /* Don't starve jumbo frames */ 4243 avg_wire_size = min(avg_wire_size, 3000); 4244 4245 /* Give a little boost to mid-size frames */ 4246 if (avg_wire_size > 300 && avg_wire_size < 1200) 4247 new_val = avg_wire_size / 3; 4248 else 4249 new_val = avg_wire_size / 2; 4250 4251 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4252 if (new_val < IGC_20K_ITR && 4253 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4254 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4255 new_val = IGC_20K_ITR; 4256 4257 set_itr_val: 4258 if (new_val != q_vector->itr_val) { 4259 q_vector->itr_val = new_val; 4260 q_vector->set_itr = 1; 4261 } 4262 clear_counts: 4263 q_vector->rx.total_bytes = 0; 4264 q_vector->rx.total_packets = 0; 4265 q_vector->tx.total_bytes = 0; 4266 q_vector->tx.total_packets = 0; 4267 } 4268 4269 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4270 { 4271 struct igc_adapter *adapter = q_vector->adapter; 4272 struct igc_hw *hw = &adapter->hw; 4273 4274 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4275 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4276 if (adapter->num_q_vectors == 1) 4277 igc_set_itr(q_vector); 4278 else 4279 igc_update_ring_itr(q_vector); 4280 } 4281 4282 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4283 if (adapter->msix_entries) 4284 wr32(IGC_EIMS, q_vector->eims_value); 4285 else 4286 igc_irq_enable(adapter); 4287 } 4288 } 4289 4290 static void igc_add_ring(struct igc_ring *ring, 4291 struct igc_ring_container *head) 4292 { 4293 head->ring = ring; 4294 head->count++; 4295 } 4296 4297 /** 4298 * igc_cache_ring_register - Descriptor ring to register mapping 4299 * @adapter: board private structure to initialize 4300 * 4301 * Once we know the feature-set enabled for the device, we'll cache 4302 * the register offset the descriptor ring is assigned to. 4303 */ 4304 static void igc_cache_ring_register(struct igc_adapter *adapter) 4305 { 4306 int i = 0, j = 0; 4307 4308 switch (adapter->hw.mac.type) { 4309 case igc_i225: 4310 default: 4311 for (; i < adapter->num_rx_queues; i++) 4312 adapter->rx_ring[i]->reg_idx = i; 4313 for (; j < adapter->num_tx_queues; j++) 4314 adapter->tx_ring[j]->reg_idx = j; 4315 break; 4316 } 4317 } 4318 4319 /** 4320 * igc_poll - NAPI Rx polling callback 4321 * @napi: napi polling structure 4322 * @budget: count of how many packets we should handle 4323 */ 4324 static int igc_poll(struct napi_struct *napi, int budget) 4325 { 4326 struct igc_q_vector *q_vector = container_of(napi, 4327 struct igc_q_vector, 4328 napi); 4329 struct igc_ring *rx_ring = q_vector->rx.ring; 4330 bool clean_complete = true; 4331 int work_done = 0; 4332 4333 if (q_vector->tx.ring) 4334 clean_complete = igc_clean_tx_irq(q_vector, budget); 4335 4336 if (rx_ring) { 4337 int cleaned = rx_ring->xsk_pool ? 4338 igc_clean_rx_irq_zc(q_vector, budget) : 4339 igc_clean_rx_irq(q_vector, budget); 4340 4341 work_done += cleaned; 4342 if (cleaned >= budget) 4343 clean_complete = false; 4344 } 4345 4346 /* If all work not completed, return budget and keep polling */ 4347 if (!clean_complete) 4348 return budget; 4349 4350 /* Exit the polling mode, but don't re-enable interrupts if stack might 4351 * poll us due to busy-polling 4352 */ 4353 if (likely(napi_complete_done(napi, work_done))) 4354 igc_ring_irq_enable(q_vector); 4355 4356 return min(work_done, budget - 1); 4357 } 4358 4359 /** 4360 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4361 * @adapter: board private structure to initialize 4362 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4363 * @v_idx: index of vector in adapter struct 4364 * @txr_count: total number of Tx rings to allocate 4365 * @txr_idx: index of first Tx ring to allocate 4366 * @rxr_count: total number of Rx rings to allocate 4367 * @rxr_idx: index of first Rx ring to allocate 4368 * 4369 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4370 */ 4371 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4372 unsigned int v_count, unsigned int v_idx, 4373 unsigned int txr_count, unsigned int txr_idx, 4374 unsigned int rxr_count, unsigned int rxr_idx) 4375 { 4376 struct igc_q_vector *q_vector; 4377 struct igc_ring *ring; 4378 int ring_count; 4379 4380 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4381 if (txr_count > 1 || rxr_count > 1) 4382 return -ENOMEM; 4383 4384 ring_count = txr_count + rxr_count; 4385 4386 /* allocate q_vector and rings */ 4387 q_vector = adapter->q_vector[v_idx]; 4388 if (!q_vector) 4389 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4390 GFP_KERNEL); 4391 else 4392 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4393 if (!q_vector) 4394 return -ENOMEM; 4395 4396 /* initialize NAPI */ 4397 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); 4398 4399 /* tie q_vector and adapter together */ 4400 adapter->q_vector[v_idx] = q_vector; 4401 q_vector->adapter = adapter; 4402 4403 /* initialize work limits */ 4404 q_vector->tx.work_limit = adapter->tx_work_limit; 4405 4406 /* initialize ITR configuration */ 4407 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4408 q_vector->itr_val = IGC_START_ITR; 4409 4410 /* initialize pointer to rings */ 4411 ring = q_vector->ring; 4412 4413 /* initialize ITR */ 4414 if (rxr_count) { 4415 /* rx or rx/tx vector */ 4416 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4417 q_vector->itr_val = adapter->rx_itr_setting; 4418 } else { 4419 /* tx only vector */ 4420 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4421 q_vector->itr_val = adapter->tx_itr_setting; 4422 } 4423 4424 if (txr_count) { 4425 /* assign generic ring traits */ 4426 ring->dev = &adapter->pdev->dev; 4427 ring->netdev = adapter->netdev; 4428 4429 /* configure backlink on ring */ 4430 ring->q_vector = q_vector; 4431 4432 /* update q_vector Tx values */ 4433 igc_add_ring(ring, &q_vector->tx); 4434 4435 /* apply Tx specific ring traits */ 4436 ring->count = adapter->tx_ring_count; 4437 ring->queue_index = txr_idx; 4438 4439 /* assign ring to adapter */ 4440 adapter->tx_ring[txr_idx] = ring; 4441 4442 /* push pointer to next ring */ 4443 ring++; 4444 } 4445 4446 if (rxr_count) { 4447 /* assign generic ring traits */ 4448 ring->dev = &adapter->pdev->dev; 4449 ring->netdev = adapter->netdev; 4450 4451 /* configure backlink on ring */ 4452 ring->q_vector = q_vector; 4453 4454 /* update q_vector Rx values */ 4455 igc_add_ring(ring, &q_vector->rx); 4456 4457 /* apply Rx specific ring traits */ 4458 ring->count = adapter->rx_ring_count; 4459 ring->queue_index = rxr_idx; 4460 4461 /* assign ring to adapter */ 4462 adapter->rx_ring[rxr_idx] = ring; 4463 } 4464 4465 return 0; 4466 } 4467 4468 /** 4469 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4470 * @adapter: board private structure to initialize 4471 * 4472 * We allocate one q_vector per queue interrupt. If allocation fails we 4473 * return -ENOMEM. 4474 */ 4475 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4476 { 4477 int rxr_remaining = adapter->num_rx_queues; 4478 int txr_remaining = adapter->num_tx_queues; 4479 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4480 int q_vectors = adapter->num_q_vectors; 4481 int err; 4482 4483 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4484 for (; rxr_remaining; v_idx++) { 4485 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4486 0, 0, 1, rxr_idx); 4487 4488 if (err) 4489 goto err_out; 4490 4491 /* update counts and index */ 4492 rxr_remaining--; 4493 rxr_idx++; 4494 } 4495 } 4496 4497 for (; v_idx < q_vectors; v_idx++) { 4498 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4499 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4500 4501 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4502 tqpv, txr_idx, rqpv, rxr_idx); 4503 4504 if (err) 4505 goto err_out; 4506 4507 /* update counts and index */ 4508 rxr_remaining -= rqpv; 4509 txr_remaining -= tqpv; 4510 rxr_idx++; 4511 txr_idx++; 4512 } 4513 4514 return 0; 4515 4516 err_out: 4517 adapter->num_tx_queues = 0; 4518 adapter->num_rx_queues = 0; 4519 adapter->num_q_vectors = 0; 4520 4521 while (v_idx--) 4522 igc_free_q_vector(adapter, v_idx); 4523 4524 return -ENOMEM; 4525 } 4526 4527 /** 4528 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4529 * @adapter: Pointer to adapter structure 4530 * @msix: boolean for MSI-X capability 4531 * 4532 * This function initializes the interrupts and allocates all of the queues. 4533 */ 4534 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4535 { 4536 struct net_device *dev = adapter->netdev; 4537 int err = 0; 4538 4539 igc_set_interrupt_capability(adapter, msix); 4540 4541 err = igc_alloc_q_vectors(adapter); 4542 if (err) { 4543 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4544 goto err_alloc_q_vectors; 4545 } 4546 4547 igc_cache_ring_register(adapter); 4548 4549 return 0; 4550 4551 err_alloc_q_vectors: 4552 igc_reset_interrupt_capability(adapter); 4553 return err; 4554 } 4555 4556 /** 4557 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4558 * @adapter: board private structure to initialize 4559 * 4560 * igc_sw_init initializes the Adapter private data structure. 4561 * Fields are initialized based on PCI device information and 4562 * OS network device settings (MTU size). 4563 */ 4564 static int igc_sw_init(struct igc_adapter *adapter) 4565 { 4566 struct net_device *netdev = adapter->netdev; 4567 struct pci_dev *pdev = adapter->pdev; 4568 struct igc_hw *hw = &adapter->hw; 4569 4570 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4571 4572 /* set default ring sizes */ 4573 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4574 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4575 4576 /* set default ITR values */ 4577 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4578 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4579 4580 /* set default work limits */ 4581 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4582 4583 /* adjust max frame to be at least the size of a standard frame */ 4584 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4585 VLAN_HLEN; 4586 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4587 4588 mutex_init(&adapter->nfc_rule_lock); 4589 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4590 adapter->nfc_rule_count = 0; 4591 4592 spin_lock_init(&adapter->stats64_lock); 4593 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4594 adapter->flags |= IGC_FLAG_HAS_MSIX; 4595 4596 igc_init_queue_configuration(adapter); 4597 4598 /* This call may decrease the number of queues */ 4599 if (igc_init_interrupt_scheme(adapter, true)) { 4600 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4601 return -ENOMEM; 4602 } 4603 4604 /* Explicitly disable IRQ since the NIC can be in any state. */ 4605 igc_irq_disable(adapter); 4606 4607 set_bit(__IGC_DOWN, &adapter->state); 4608 4609 return 0; 4610 } 4611 4612 /** 4613 * igc_up - Open the interface and prepare it to handle traffic 4614 * @adapter: board private structure 4615 */ 4616 void igc_up(struct igc_adapter *adapter) 4617 { 4618 struct igc_hw *hw = &adapter->hw; 4619 int i = 0; 4620 4621 /* hardware has been reset, we need to reload some things */ 4622 igc_configure(adapter); 4623 4624 clear_bit(__IGC_DOWN, &adapter->state); 4625 4626 for (i = 0; i < adapter->num_q_vectors; i++) 4627 napi_enable(&adapter->q_vector[i]->napi); 4628 4629 if (adapter->msix_entries) 4630 igc_configure_msix(adapter); 4631 else 4632 igc_assign_vector(adapter->q_vector[0], 0); 4633 4634 /* Clear any pending interrupts. */ 4635 rd32(IGC_ICR); 4636 igc_irq_enable(adapter); 4637 4638 netif_tx_start_all_queues(adapter->netdev); 4639 4640 /* start the watchdog. */ 4641 hw->mac.get_link_status = true; 4642 schedule_work(&adapter->watchdog_task); 4643 } 4644 4645 /** 4646 * igc_update_stats - Update the board statistics counters 4647 * @adapter: board private structure 4648 */ 4649 void igc_update_stats(struct igc_adapter *adapter) 4650 { 4651 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4652 struct pci_dev *pdev = adapter->pdev; 4653 struct igc_hw *hw = &adapter->hw; 4654 u64 _bytes, _packets; 4655 u64 bytes, packets; 4656 unsigned int start; 4657 u32 mpc; 4658 int i; 4659 4660 /* Prevent stats update while adapter is being reset, or if the pci 4661 * connection is down. 4662 */ 4663 if (adapter->link_speed == 0) 4664 return; 4665 if (pci_channel_offline(pdev)) 4666 return; 4667 4668 packets = 0; 4669 bytes = 0; 4670 4671 rcu_read_lock(); 4672 for (i = 0; i < adapter->num_rx_queues; i++) { 4673 struct igc_ring *ring = adapter->rx_ring[i]; 4674 u32 rqdpc = rd32(IGC_RQDPC(i)); 4675 4676 if (hw->mac.type >= igc_i225) 4677 wr32(IGC_RQDPC(i), 0); 4678 4679 if (rqdpc) { 4680 ring->rx_stats.drops += rqdpc; 4681 net_stats->rx_fifo_errors += rqdpc; 4682 } 4683 4684 do { 4685 start = u64_stats_fetch_begin(&ring->rx_syncp); 4686 _bytes = ring->rx_stats.bytes; 4687 _packets = ring->rx_stats.packets; 4688 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 4689 bytes += _bytes; 4690 packets += _packets; 4691 } 4692 4693 net_stats->rx_bytes = bytes; 4694 net_stats->rx_packets = packets; 4695 4696 packets = 0; 4697 bytes = 0; 4698 for (i = 0; i < adapter->num_tx_queues; i++) { 4699 struct igc_ring *ring = adapter->tx_ring[i]; 4700 4701 do { 4702 start = u64_stats_fetch_begin(&ring->tx_syncp); 4703 _bytes = ring->tx_stats.bytes; 4704 _packets = ring->tx_stats.packets; 4705 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 4706 bytes += _bytes; 4707 packets += _packets; 4708 } 4709 net_stats->tx_bytes = bytes; 4710 net_stats->tx_packets = packets; 4711 rcu_read_unlock(); 4712 4713 /* read stats registers */ 4714 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 4715 adapter->stats.gprc += rd32(IGC_GPRC); 4716 adapter->stats.gorc += rd32(IGC_GORCL); 4717 rd32(IGC_GORCH); /* clear GORCL */ 4718 adapter->stats.bprc += rd32(IGC_BPRC); 4719 adapter->stats.mprc += rd32(IGC_MPRC); 4720 adapter->stats.roc += rd32(IGC_ROC); 4721 4722 adapter->stats.prc64 += rd32(IGC_PRC64); 4723 adapter->stats.prc127 += rd32(IGC_PRC127); 4724 adapter->stats.prc255 += rd32(IGC_PRC255); 4725 adapter->stats.prc511 += rd32(IGC_PRC511); 4726 adapter->stats.prc1023 += rd32(IGC_PRC1023); 4727 adapter->stats.prc1522 += rd32(IGC_PRC1522); 4728 adapter->stats.tlpic += rd32(IGC_TLPIC); 4729 adapter->stats.rlpic += rd32(IGC_RLPIC); 4730 adapter->stats.hgptc += rd32(IGC_HGPTC); 4731 4732 mpc = rd32(IGC_MPC); 4733 adapter->stats.mpc += mpc; 4734 net_stats->rx_fifo_errors += mpc; 4735 adapter->stats.scc += rd32(IGC_SCC); 4736 adapter->stats.ecol += rd32(IGC_ECOL); 4737 adapter->stats.mcc += rd32(IGC_MCC); 4738 adapter->stats.latecol += rd32(IGC_LATECOL); 4739 adapter->stats.dc += rd32(IGC_DC); 4740 adapter->stats.rlec += rd32(IGC_RLEC); 4741 adapter->stats.xonrxc += rd32(IGC_XONRXC); 4742 adapter->stats.xontxc += rd32(IGC_XONTXC); 4743 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 4744 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 4745 adapter->stats.fcruc += rd32(IGC_FCRUC); 4746 adapter->stats.gptc += rd32(IGC_GPTC); 4747 adapter->stats.gotc += rd32(IGC_GOTCL); 4748 rd32(IGC_GOTCH); /* clear GOTCL */ 4749 adapter->stats.rnbc += rd32(IGC_RNBC); 4750 adapter->stats.ruc += rd32(IGC_RUC); 4751 adapter->stats.rfc += rd32(IGC_RFC); 4752 adapter->stats.rjc += rd32(IGC_RJC); 4753 adapter->stats.tor += rd32(IGC_TORH); 4754 adapter->stats.tot += rd32(IGC_TOTH); 4755 adapter->stats.tpr += rd32(IGC_TPR); 4756 4757 adapter->stats.ptc64 += rd32(IGC_PTC64); 4758 adapter->stats.ptc127 += rd32(IGC_PTC127); 4759 adapter->stats.ptc255 += rd32(IGC_PTC255); 4760 adapter->stats.ptc511 += rd32(IGC_PTC511); 4761 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 4762 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 4763 4764 adapter->stats.mptc += rd32(IGC_MPTC); 4765 adapter->stats.bptc += rd32(IGC_BPTC); 4766 4767 adapter->stats.tpt += rd32(IGC_TPT); 4768 adapter->stats.colc += rd32(IGC_COLC); 4769 adapter->stats.colc += rd32(IGC_RERC); 4770 4771 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 4772 4773 adapter->stats.tsctc += rd32(IGC_TSCTC); 4774 4775 adapter->stats.iac += rd32(IGC_IAC); 4776 4777 /* Fill out the OS statistics structure */ 4778 net_stats->multicast = adapter->stats.mprc; 4779 net_stats->collisions = adapter->stats.colc; 4780 4781 /* Rx Errors */ 4782 4783 /* RLEC on some newer hardware can be incorrect so build 4784 * our own version based on RUC and ROC 4785 */ 4786 net_stats->rx_errors = adapter->stats.rxerrc + 4787 adapter->stats.crcerrs + adapter->stats.algnerrc + 4788 adapter->stats.ruc + adapter->stats.roc + 4789 adapter->stats.cexterr; 4790 net_stats->rx_length_errors = adapter->stats.ruc + 4791 adapter->stats.roc; 4792 net_stats->rx_crc_errors = adapter->stats.crcerrs; 4793 net_stats->rx_frame_errors = adapter->stats.algnerrc; 4794 net_stats->rx_missed_errors = adapter->stats.mpc; 4795 4796 /* Tx Errors */ 4797 net_stats->tx_errors = adapter->stats.ecol + 4798 adapter->stats.latecol; 4799 net_stats->tx_aborted_errors = adapter->stats.ecol; 4800 net_stats->tx_window_errors = adapter->stats.latecol; 4801 net_stats->tx_carrier_errors = adapter->stats.tncrs; 4802 4803 /* Tx Dropped needs to be maintained elsewhere */ 4804 4805 /* Management Stats */ 4806 adapter->stats.mgptc += rd32(IGC_MGTPTC); 4807 adapter->stats.mgprc += rd32(IGC_MGTPRC); 4808 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 4809 } 4810 4811 /** 4812 * igc_down - Close the interface 4813 * @adapter: board private structure 4814 */ 4815 void igc_down(struct igc_adapter *adapter) 4816 { 4817 struct net_device *netdev = adapter->netdev; 4818 struct igc_hw *hw = &adapter->hw; 4819 u32 tctl, rctl; 4820 int i = 0; 4821 4822 set_bit(__IGC_DOWN, &adapter->state); 4823 4824 igc_ptp_suspend(adapter); 4825 4826 if (pci_device_is_present(adapter->pdev)) { 4827 /* disable receives in the hardware */ 4828 rctl = rd32(IGC_RCTL); 4829 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 4830 /* flush and sleep below */ 4831 } 4832 /* set trans_start so we don't get spurious watchdogs during reset */ 4833 netif_trans_update(netdev); 4834 4835 netif_carrier_off(netdev); 4836 netif_tx_stop_all_queues(netdev); 4837 4838 if (pci_device_is_present(adapter->pdev)) { 4839 /* disable transmits in the hardware */ 4840 tctl = rd32(IGC_TCTL); 4841 tctl &= ~IGC_TCTL_EN; 4842 wr32(IGC_TCTL, tctl); 4843 /* flush both disables and wait for them to finish */ 4844 wrfl(); 4845 usleep_range(10000, 20000); 4846 4847 igc_irq_disable(adapter); 4848 } 4849 4850 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 4851 4852 for (i = 0; i < adapter->num_q_vectors; i++) { 4853 if (adapter->q_vector[i]) { 4854 napi_synchronize(&adapter->q_vector[i]->napi); 4855 napi_disable(&adapter->q_vector[i]->napi); 4856 } 4857 } 4858 4859 del_timer_sync(&adapter->watchdog_timer); 4860 del_timer_sync(&adapter->phy_info_timer); 4861 4862 /* record the stats before reset*/ 4863 spin_lock(&adapter->stats64_lock); 4864 igc_update_stats(adapter); 4865 spin_unlock(&adapter->stats64_lock); 4866 4867 adapter->link_speed = 0; 4868 adapter->link_duplex = 0; 4869 4870 if (!pci_channel_offline(adapter->pdev)) 4871 igc_reset(adapter); 4872 4873 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 4874 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 4875 4876 igc_clean_all_tx_rings(adapter); 4877 igc_clean_all_rx_rings(adapter); 4878 } 4879 4880 void igc_reinit_locked(struct igc_adapter *adapter) 4881 { 4882 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 4883 usleep_range(1000, 2000); 4884 igc_down(adapter); 4885 igc_up(adapter); 4886 clear_bit(__IGC_RESETTING, &adapter->state); 4887 } 4888 4889 static void igc_reset_task(struct work_struct *work) 4890 { 4891 struct igc_adapter *adapter; 4892 4893 adapter = container_of(work, struct igc_adapter, reset_task); 4894 4895 rtnl_lock(); 4896 /* If we're already down or resetting, just bail */ 4897 if (test_bit(__IGC_DOWN, &adapter->state) || 4898 test_bit(__IGC_RESETTING, &adapter->state)) { 4899 rtnl_unlock(); 4900 return; 4901 } 4902 4903 igc_rings_dump(adapter); 4904 igc_regs_dump(adapter); 4905 netdev_err(adapter->netdev, "Reset adapter\n"); 4906 igc_reinit_locked(adapter); 4907 rtnl_unlock(); 4908 } 4909 4910 /** 4911 * igc_change_mtu - Change the Maximum Transfer Unit 4912 * @netdev: network interface device structure 4913 * @new_mtu: new value for maximum frame size 4914 * 4915 * Returns 0 on success, negative on failure 4916 */ 4917 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 4918 { 4919 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4920 struct igc_adapter *adapter = netdev_priv(netdev); 4921 4922 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 4923 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 4924 return -EINVAL; 4925 } 4926 4927 /* adjust max frame to be at least the size of a standard frame */ 4928 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 4929 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 4930 4931 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 4932 usleep_range(1000, 2000); 4933 4934 /* igc_down has a dependency on max_frame_size */ 4935 adapter->max_frame_size = max_frame; 4936 4937 if (netif_running(netdev)) 4938 igc_down(adapter); 4939 4940 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 4941 netdev->mtu = new_mtu; 4942 4943 if (netif_running(netdev)) 4944 igc_up(adapter); 4945 else 4946 igc_reset(adapter); 4947 4948 clear_bit(__IGC_RESETTING, &adapter->state); 4949 4950 return 0; 4951 } 4952 4953 /** 4954 * igc_get_stats64 - Get System Network Statistics 4955 * @netdev: network interface device structure 4956 * @stats: rtnl_link_stats64 pointer 4957 * 4958 * Returns the address of the device statistics structure. 4959 * The statistics are updated here and also from the timer callback. 4960 */ 4961 static void igc_get_stats64(struct net_device *netdev, 4962 struct rtnl_link_stats64 *stats) 4963 { 4964 struct igc_adapter *adapter = netdev_priv(netdev); 4965 4966 spin_lock(&adapter->stats64_lock); 4967 if (!test_bit(__IGC_RESETTING, &adapter->state)) 4968 igc_update_stats(adapter); 4969 memcpy(stats, &adapter->stats64, sizeof(*stats)); 4970 spin_unlock(&adapter->stats64_lock); 4971 } 4972 4973 static netdev_features_t igc_fix_features(struct net_device *netdev, 4974 netdev_features_t features) 4975 { 4976 /* Since there is no support for separate Rx/Tx vlan accel 4977 * enable/disable make sure Tx flag is always in same state as Rx. 4978 */ 4979 if (features & NETIF_F_HW_VLAN_CTAG_RX) 4980 features |= NETIF_F_HW_VLAN_CTAG_TX; 4981 else 4982 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4983 4984 return features; 4985 } 4986 4987 static int igc_set_features(struct net_device *netdev, 4988 netdev_features_t features) 4989 { 4990 netdev_features_t changed = netdev->features ^ features; 4991 struct igc_adapter *adapter = netdev_priv(netdev); 4992 4993 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 4994 igc_vlan_mode(netdev, features); 4995 4996 /* Add VLAN support */ 4997 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 4998 return 0; 4999 5000 if (!(features & NETIF_F_NTUPLE)) 5001 igc_flush_nfc_rules(adapter); 5002 5003 netdev->features = features; 5004 5005 if (netif_running(netdev)) 5006 igc_reinit_locked(adapter); 5007 else 5008 igc_reset(adapter); 5009 5010 return 1; 5011 } 5012 5013 static netdev_features_t 5014 igc_features_check(struct sk_buff *skb, struct net_device *dev, 5015 netdev_features_t features) 5016 { 5017 unsigned int network_hdr_len, mac_hdr_len; 5018 5019 /* Make certain the headers can be described by a context descriptor */ 5020 mac_hdr_len = skb_network_header(skb) - skb->data; 5021 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 5022 return features & ~(NETIF_F_HW_CSUM | 5023 NETIF_F_SCTP_CRC | 5024 NETIF_F_HW_VLAN_CTAG_TX | 5025 NETIF_F_TSO | 5026 NETIF_F_TSO6); 5027 5028 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 5029 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 5030 return features & ~(NETIF_F_HW_CSUM | 5031 NETIF_F_SCTP_CRC | 5032 NETIF_F_TSO | 5033 NETIF_F_TSO6); 5034 5035 /* We can only support IPv4 TSO in tunnels if we can mangle the 5036 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5037 */ 5038 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5039 features &= ~NETIF_F_TSO; 5040 5041 return features; 5042 } 5043 5044 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5045 { 5046 u32 ack, tsauxc, sec, nsec, tsicr; 5047 struct igc_hw *hw = &adapter->hw; 5048 struct ptp_clock_event event; 5049 struct timespec64 ts; 5050 5051 tsicr = rd32(IGC_TSICR); 5052 ack = 0; 5053 5054 if (tsicr & IGC_TSICR_SYS_WRAP) { 5055 event.type = PTP_CLOCK_PPS; 5056 if (adapter->ptp_caps.pps) 5057 ptp_clock_event(adapter->ptp_clock, &event); 5058 ack |= IGC_TSICR_SYS_WRAP; 5059 } 5060 5061 if (tsicr & IGC_TSICR_TXTS) { 5062 /* retrieve hardware timestamp */ 5063 schedule_work(&adapter->ptp_tx_work); 5064 ack |= IGC_TSICR_TXTS; 5065 } 5066 5067 if (tsicr & IGC_TSICR_TT0) { 5068 spin_lock(&adapter->tmreg_lock); 5069 ts = timespec64_add(adapter->perout[0].start, 5070 adapter->perout[0].period); 5071 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5072 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5073 tsauxc = rd32(IGC_TSAUXC); 5074 tsauxc |= IGC_TSAUXC_EN_TT0; 5075 wr32(IGC_TSAUXC, tsauxc); 5076 adapter->perout[0].start = ts; 5077 spin_unlock(&adapter->tmreg_lock); 5078 ack |= IGC_TSICR_TT0; 5079 } 5080 5081 if (tsicr & IGC_TSICR_TT1) { 5082 spin_lock(&adapter->tmreg_lock); 5083 ts = timespec64_add(adapter->perout[1].start, 5084 adapter->perout[1].period); 5085 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5086 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5087 tsauxc = rd32(IGC_TSAUXC); 5088 tsauxc |= IGC_TSAUXC_EN_TT1; 5089 wr32(IGC_TSAUXC, tsauxc); 5090 adapter->perout[1].start = ts; 5091 spin_unlock(&adapter->tmreg_lock); 5092 ack |= IGC_TSICR_TT1; 5093 } 5094 5095 if (tsicr & IGC_TSICR_AUTT0) { 5096 nsec = rd32(IGC_AUXSTMPL0); 5097 sec = rd32(IGC_AUXSTMPH0); 5098 event.type = PTP_CLOCK_EXTTS; 5099 event.index = 0; 5100 event.timestamp = sec * NSEC_PER_SEC + nsec; 5101 ptp_clock_event(adapter->ptp_clock, &event); 5102 ack |= IGC_TSICR_AUTT0; 5103 } 5104 5105 if (tsicr & IGC_TSICR_AUTT1) { 5106 nsec = rd32(IGC_AUXSTMPL1); 5107 sec = rd32(IGC_AUXSTMPH1); 5108 event.type = PTP_CLOCK_EXTTS; 5109 event.index = 1; 5110 event.timestamp = sec * NSEC_PER_SEC + nsec; 5111 ptp_clock_event(adapter->ptp_clock, &event); 5112 ack |= IGC_TSICR_AUTT1; 5113 } 5114 5115 /* acknowledge the interrupts */ 5116 wr32(IGC_TSICR, ack); 5117 } 5118 5119 /** 5120 * igc_msix_other - msix other interrupt handler 5121 * @irq: interrupt number 5122 * @data: pointer to a q_vector 5123 */ 5124 static irqreturn_t igc_msix_other(int irq, void *data) 5125 { 5126 struct igc_adapter *adapter = data; 5127 struct igc_hw *hw = &adapter->hw; 5128 u32 icr = rd32(IGC_ICR); 5129 5130 /* reading ICR causes bit 31 of EICR to be cleared */ 5131 if (icr & IGC_ICR_DRSTA) 5132 schedule_work(&adapter->reset_task); 5133 5134 if (icr & IGC_ICR_DOUTSYNC) { 5135 /* HW is reporting DMA is out of sync */ 5136 adapter->stats.doosync++; 5137 } 5138 5139 if (icr & IGC_ICR_LSC) { 5140 hw->mac.get_link_status = true; 5141 /* guard against interrupt when we're going down */ 5142 if (!test_bit(__IGC_DOWN, &adapter->state)) 5143 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5144 } 5145 5146 if (icr & IGC_ICR_TS) 5147 igc_tsync_interrupt(adapter); 5148 5149 wr32(IGC_EIMS, adapter->eims_other); 5150 5151 return IRQ_HANDLED; 5152 } 5153 5154 static void igc_write_itr(struct igc_q_vector *q_vector) 5155 { 5156 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5157 5158 if (!q_vector->set_itr) 5159 return; 5160 5161 if (!itr_val) 5162 itr_val = IGC_ITR_VAL_MASK; 5163 5164 itr_val |= IGC_EITR_CNT_IGNR; 5165 5166 writel(itr_val, q_vector->itr_register); 5167 q_vector->set_itr = 0; 5168 } 5169 5170 static irqreturn_t igc_msix_ring(int irq, void *data) 5171 { 5172 struct igc_q_vector *q_vector = data; 5173 5174 /* Write the ITR value calculated from the previous interrupt. */ 5175 igc_write_itr(q_vector); 5176 5177 napi_schedule(&q_vector->napi); 5178 5179 return IRQ_HANDLED; 5180 } 5181 5182 /** 5183 * igc_request_msix - Initialize MSI-X interrupts 5184 * @adapter: Pointer to adapter structure 5185 * 5186 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5187 * kernel. 5188 */ 5189 static int igc_request_msix(struct igc_adapter *adapter) 5190 { 5191 unsigned int num_q_vectors = adapter->num_q_vectors; 5192 int i = 0, err = 0, vector = 0, free_vector = 0; 5193 struct net_device *netdev = adapter->netdev; 5194 5195 err = request_irq(adapter->msix_entries[vector].vector, 5196 &igc_msix_other, 0, netdev->name, adapter); 5197 if (err) 5198 goto err_out; 5199 5200 if (num_q_vectors > MAX_Q_VECTORS) { 5201 num_q_vectors = MAX_Q_VECTORS; 5202 dev_warn(&adapter->pdev->dev, 5203 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5204 adapter->num_q_vectors, MAX_Q_VECTORS); 5205 } 5206 for (i = 0; i < num_q_vectors; i++) { 5207 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5208 5209 vector++; 5210 5211 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5212 5213 if (q_vector->rx.ring && q_vector->tx.ring) 5214 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5215 q_vector->rx.ring->queue_index); 5216 else if (q_vector->tx.ring) 5217 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5218 q_vector->tx.ring->queue_index); 5219 else if (q_vector->rx.ring) 5220 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5221 q_vector->rx.ring->queue_index); 5222 else 5223 sprintf(q_vector->name, "%s-unused", netdev->name); 5224 5225 err = request_irq(adapter->msix_entries[vector].vector, 5226 igc_msix_ring, 0, q_vector->name, 5227 q_vector); 5228 if (err) 5229 goto err_free; 5230 } 5231 5232 igc_configure_msix(adapter); 5233 return 0; 5234 5235 err_free: 5236 /* free already assigned IRQs */ 5237 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5238 5239 vector--; 5240 for (i = 0; i < vector; i++) { 5241 free_irq(adapter->msix_entries[free_vector++].vector, 5242 adapter->q_vector[i]); 5243 } 5244 err_out: 5245 return err; 5246 } 5247 5248 /** 5249 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5250 * @adapter: Pointer to adapter structure 5251 * 5252 * This function resets the device so that it has 0 rx queues, tx queues, and 5253 * MSI-X interrupts allocated. 5254 */ 5255 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5256 { 5257 igc_free_q_vectors(adapter); 5258 igc_reset_interrupt_capability(adapter); 5259 } 5260 5261 /* Need to wait a few seconds after link up to get diagnostic information from 5262 * the phy 5263 */ 5264 static void igc_update_phy_info(struct timer_list *t) 5265 { 5266 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5267 5268 igc_get_phy_info(&adapter->hw); 5269 } 5270 5271 /** 5272 * igc_has_link - check shared code for link and determine up/down 5273 * @adapter: pointer to driver private info 5274 */ 5275 bool igc_has_link(struct igc_adapter *adapter) 5276 { 5277 struct igc_hw *hw = &adapter->hw; 5278 bool link_active = false; 5279 5280 /* get_link_status is set on LSC (link status) interrupt or 5281 * rx sequence error interrupt. get_link_status will stay 5282 * false until the igc_check_for_link establishes link 5283 * for copper adapters ONLY 5284 */ 5285 if (!hw->mac.get_link_status) 5286 return true; 5287 hw->mac.ops.check_for_link(hw); 5288 link_active = !hw->mac.get_link_status; 5289 5290 if (hw->mac.type == igc_i225) { 5291 if (!netif_carrier_ok(adapter->netdev)) { 5292 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5293 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5294 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5295 adapter->link_check_timeout = jiffies; 5296 } 5297 } 5298 5299 return link_active; 5300 } 5301 5302 /** 5303 * igc_watchdog - Timer Call-back 5304 * @t: timer for the watchdog 5305 */ 5306 static void igc_watchdog(struct timer_list *t) 5307 { 5308 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5309 /* Do the rest outside of interrupt context */ 5310 schedule_work(&adapter->watchdog_task); 5311 } 5312 5313 static void igc_watchdog_task(struct work_struct *work) 5314 { 5315 struct igc_adapter *adapter = container_of(work, 5316 struct igc_adapter, 5317 watchdog_task); 5318 struct net_device *netdev = adapter->netdev; 5319 struct igc_hw *hw = &adapter->hw; 5320 struct igc_phy_info *phy = &hw->phy; 5321 u16 phy_data, retry_count = 20; 5322 u32 link; 5323 int i; 5324 5325 link = igc_has_link(adapter); 5326 5327 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5328 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5329 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5330 else 5331 link = false; 5332 } 5333 5334 if (link) { 5335 /* Cancel scheduled suspend requests. */ 5336 pm_runtime_resume(netdev->dev.parent); 5337 5338 if (!netif_carrier_ok(netdev)) { 5339 u32 ctrl; 5340 5341 hw->mac.ops.get_speed_and_duplex(hw, 5342 &adapter->link_speed, 5343 &adapter->link_duplex); 5344 5345 ctrl = rd32(IGC_CTRL); 5346 /* Link status message must follow this format */ 5347 netdev_info(netdev, 5348 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5349 adapter->link_speed, 5350 adapter->link_duplex == FULL_DUPLEX ? 5351 "Full" : "Half", 5352 (ctrl & IGC_CTRL_TFCE) && 5353 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5354 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5355 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5356 5357 /* disable EEE if enabled */ 5358 if ((adapter->flags & IGC_FLAG_EEE) && 5359 adapter->link_duplex == HALF_DUPLEX) { 5360 netdev_info(netdev, 5361 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5362 adapter->hw.dev_spec._base.eee_enable = false; 5363 adapter->flags &= ~IGC_FLAG_EEE; 5364 } 5365 5366 /* check if SmartSpeed worked */ 5367 igc_check_downshift(hw); 5368 if (phy->speed_downgraded) 5369 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5370 5371 /* adjust timeout factor according to speed/duplex */ 5372 adapter->tx_timeout_factor = 1; 5373 switch (adapter->link_speed) { 5374 case SPEED_10: 5375 adapter->tx_timeout_factor = 14; 5376 break; 5377 case SPEED_100: 5378 case SPEED_1000: 5379 case SPEED_2500: 5380 adapter->tx_timeout_factor = 7; 5381 break; 5382 } 5383 5384 /* Once the launch time has been set on the wire, there 5385 * is a delay before the link speed can be determined 5386 * based on link-up activity. Write into the register 5387 * as soon as we know the correct link speed. 5388 */ 5389 igc_tsn_adjust_txtime_offset(adapter); 5390 5391 if (adapter->link_speed != SPEED_1000) 5392 goto no_wait; 5393 5394 /* wait for Remote receiver status OK */ 5395 retry_read_status: 5396 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5397 &phy_data)) { 5398 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5399 retry_count) { 5400 msleep(100); 5401 retry_count--; 5402 goto retry_read_status; 5403 } else if (!retry_count) { 5404 netdev_err(netdev, "exceed max 2 second\n"); 5405 } 5406 } else { 5407 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5408 } 5409 no_wait: 5410 netif_carrier_on(netdev); 5411 5412 /* link state has changed, schedule phy info update */ 5413 if (!test_bit(__IGC_DOWN, &adapter->state)) 5414 mod_timer(&adapter->phy_info_timer, 5415 round_jiffies(jiffies + 2 * HZ)); 5416 } 5417 } else { 5418 if (netif_carrier_ok(netdev)) { 5419 adapter->link_speed = 0; 5420 adapter->link_duplex = 0; 5421 5422 /* Links status message must follow this format */ 5423 netdev_info(netdev, "NIC Link is Down\n"); 5424 netif_carrier_off(netdev); 5425 5426 /* link state has changed, schedule phy info update */ 5427 if (!test_bit(__IGC_DOWN, &adapter->state)) 5428 mod_timer(&adapter->phy_info_timer, 5429 round_jiffies(jiffies + 2 * HZ)); 5430 5431 /* link is down, time to check for alternate media */ 5432 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 5433 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 5434 schedule_work(&adapter->reset_task); 5435 /* return immediately */ 5436 return; 5437 } 5438 } 5439 pm_schedule_suspend(netdev->dev.parent, 5440 MSEC_PER_SEC * 5); 5441 5442 /* also check for alternate media here */ 5443 } else if (!netif_carrier_ok(netdev) && 5444 (adapter->flags & IGC_FLAG_MAS_ENABLE)) { 5445 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 5446 schedule_work(&adapter->reset_task); 5447 /* return immediately */ 5448 return; 5449 } 5450 } 5451 } 5452 5453 spin_lock(&adapter->stats64_lock); 5454 igc_update_stats(adapter); 5455 spin_unlock(&adapter->stats64_lock); 5456 5457 for (i = 0; i < adapter->num_tx_queues; i++) { 5458 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5459 5460 if (!netif_carrier_ok(netdev)) { 5461 /* We've lost link, so the controller stops DMA, 5462 * but we've got queued Tx work that's never going 5463 * to get done, so reset controller to flush Tx. 5464 * (Do the reset outside of interrupt context). 5465 */ 5466 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5467 adapter->tx_timeout_count++; 5468 schedule_work(&adapter->reset_task); 5469 /* return immediately since reset is imminent */ 5470 return; 5471 } 5472 } 5473 5474 /* Force detection of hung controller every watchdog period */ 5475 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5476 } 5477 5478 /* Cause software interrupt to ensure Rx ring is cleaned */ 5479 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5480 u32 eics = 0; 5481 5482 for (i = 0; i < adapter->num_q_vectors; i++) 5483 eics |= adapter->q_vector[i]->eims_value; 5484 wr32(IGC_EICS, eics); 5485 } else { 5486 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5487 } 5488 5489 igc_ptp_tx_hang(adapter); 5490 5491 /* Reset the timer */ 5492 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5493 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5494 mod_timer(&adapter->watchdog_timer, 5495 round_jiffies(jiffies + HZ)); 5496 else 5497 mod_timer(&adapter->watchdog_timer, 5498 round_jiffies(jiffies + 2 * HZ)); 5499 } 5500 } 5501 5502 /** 5503 * igc_intr_msi - Interrupt Handler 5504 * @irq: interrupt number 5505 * @data: pointer to a network interface device structure 5506 */ 5507 static irqreturn_t igc_intr_msi(int irq, void *data) 5508 { 5509 struct igc_adapter *adapter = data; 5510 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5511 struct igc_hw *hw = &adapter->hw; 5512 /* read ICR disables interrupts using IAM */ 5513 u32 icr = rd32(IGC_ICR); 5514 5515 igc_write_itr(q_vector); 5516 5517 if (icr & IGC_ICR_DRSTA) 5518 schedule_work(&adapter->reset_task); 5519 5520 if (icr & IGC_ICR_DOUTSYNC) { 5521 /* HW is reporting DMA is out of sync */ 5522 adapter->stats.doosync++; 5523 } 5524 5525 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5526 hw->mac.get_link_status = true; 5527 if (!test_bit(__IGC_DOWN, &adapter->state)) 5528 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5529 } 5530 5531 if (icr & IGC_ICR_TS) 5532 igc_tsync_interrupt(adapter); 5533 5534 napi_schedule(&q_vector->napi); 5535 5536 return IRQ_HANDLED; 5537 } 5538 5539 /** 5540 * igc_intr - Legacy Interrupt Handler 5541 * @irq: interrupt number 5542 * @data: pointer to a network interface device structure 5543 */ 5544 static irqreturn_t igc_intr(int irq, void *data) 5545 { 5546 struct igc_adapter *adapter = data; 5547 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5548 struct igc_hw *hw = &adapter->hw; 5549 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5550 * need for the IMC write 5551 */ 5552 u32 icr = rd32(IGC_ICR); 5553 5554 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5555 * not set, then the adapter didn't send an interrupt 5556 */ 5557 if (!(icr & IGC_ICR_INT_ASSERTED)) 5558 return IRQ_NONE; 5559 5560 igc_write_itr(q_vector); 5561 5562 if (icr & IGC_ICR_DRSTA) 5563 schedule_work(&adapter->reset_task); 5564 5565 if (icr & IGC_ICR_DOUTSYNC) { 5566 /* HW is reporting DMA is out of sync */ 5567 adapter->stats.doosync++; 5568 } 5569 5570 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5571 hw->mac.get_link_status = true; 5572 /* guard against interrupt when we're going down */ 5573 if (!test_bit(__IGC_DOWN, &adapter->state)) 5574 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5575 } 5576 5577 if (icr & IGC_ICR_TS) 5578 igc_tsync_interrupt(adapter); 5579 5580 napi_schedule(&q_vector->napi); 5581 5582 return IRQ_HANDLED; 5583 } 5584 5585 static void igc_free_irq(struct igc_adapter *adapter) 5586 { 5587 if (adapter->msix_entries) { 5588 int vector = 0, i; 5589 5590 free_irq(adapter->msix_entries[vector++].vector, adapter); 5591 5592 for (i = 0; i < adapter->num_q_vectors; i++) 5593 free_irq(adapter->msix_entries[vector++].vector, 5594 adapter->q_vector[i]); 5595 } else { 5596 free_irq(adapter->pdev->irq, adapter); 5597 } 5598 } 5599 5600 /** 5601 * igc_request_irq - initialize interrupts 5602 * @adapter: Pointer to adapter structure 5603 * 5604 * Attempts to configure interrupts using the best available 5605 * capabilities of the hardware and kernel. 5606 */ 5607 static int igc_request_irq(struct igc_adapter *adapter) 5608 { 5609 struct net_device *netdev = adapter->netdev; 5610 struct pci_dev *pdev = adapter->pdev; 5611 int err = 0; 5612 5613 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5614 err = igc_request_msix(adapter); 5615 if (!err) 5616 goto request_done; 5617 /* fall back to MSI */ 5618 igc_free_all_tx_resources(adapter); 5619 igc_free_all_rx_resources(adapter); 5620 5621 igc_clear_interrupt_scheme(adapter); 5622 err = igc_init_interrupt_scheme(adapter, false); 5623 if (err) 5624 goto request_done; 5625 igc_setup_all_tx_resources(adapter); 5626 igc_setup_all_rx_resources(adapter); 5627 igc_configure(adapter); 5628 } 5629 5630 igc_assign_vector(adapter->q_vector[0], 0); 5631 5632 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5633 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5634 netdev->name, adapter); 5635 if (!err) 5636 goto request_done; 5637 5638 /* fall back to legacy interrupts */ 5639 igc_reset_interrupt_capability(adapter); 5640 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5641 } 5642 5643 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5644 netdev->name, adapter); 5645 5646 if (err) 5647 netdev_err(netdev, "Error %d getting interrupt\n", err); 5648 5649 request_done: 5650 return err; 5651 } 5652 5653 /** 5654 * __igc_open - Called when a network interface is made active 5655 * @netdev: network interface device structure 5656 * @resuming: boolean indicating if the device is resuming 5657 * 5658 * Returns 0 on success, negative value on failure 5659 * 5660 * The open entry point is called when a network interface is made 5661 * active by the system (IFF_UP). At this point all resources needed 5662 * for transmit and receive operations are allocated, the interrupt 5663 * handler is registered with the OS, the watchdog timer is started, 5664 * and the stack is notified that the interface is ready. 5665 */ 5666 static int __igc_open(struct net_device *netdev, bool resuming) 5667 { 5668 struct igc_adapter *adapter = netdev_priv(netdev); 5669 struct pci_dev *pdev = adapter->pdev; 5670 struct igc_hw *hw = &adapter->hw; 5671 int err = 0; 5672 int i = 0; 5673 5674 /* disallow open during test */ 5675 5676 if (test_bit(__IGC_TESTING, &adapter->state)) { 5677 WARN_ON(resuming); 5678 return -EBUSY; 5679 } 5680 5681 if (!resuming) 5682 pm_runtime_get_sync(&pdev->dev); 5683 5684 netif_carrier_off(netdev); 5685 5686 /* allocate transmit descriptors */ 5687 err = igc_setup_all_tx_resources(adapter); 5688 if (err) 5689 goto err_setup_tx; 5690 5691 /* allocate receive descriptors */ 5692 err = igc_setup_all_rx_resources(adapter); 5693 if (err) 5694 goto err_setup_rx; 5695 5696 igc_power_up_link(adapter); 5697 5698 igc_configure(adapter); 5699 5700 err = igc_request_irq(adapter); 5701 if (err) 5702 goto err_req_irq; 5703 5704 /* Notify the stack of the actual queue counts. */ 5705 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 5706 if (err) 5707 goto err_set_queues; 5708 5709 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 5710 if (err) 5711 goto err_set_queues; 5712 5713 clear_bit(__IGC_DOWN, &adapter->state); 5714 5715 for (i = 0; i < adapter->num_q_vectors; i++) 5716 napi_enable(&adapter->q_vector[i]->napi); 5717 5718 /* Clear any pending interrupts. */ 5719 rd32(IGC_ICR); 5720 igc_irq_enable(adapter); 5721 5722 if (!resuming) 5723 pm_runtime_put(&pdev->dev); 5724 5725 netif_tx_start_all_queues(netdev); 5726 5727 /* start the watchdog. */ 5728 hw->mac.get_link_status = true; 5729 schedule_work(&adapter->watchdog_task); 5730 5731 return IGC_SUCCESS; 5732 5733 err_set_queues: 5734 igc_free_irq(adapter); 5735 err_req_irq: 5736 igc_release_hw_control(adapter); 5737 igc_power_down_phy_copper_base(&adapter->hw); 5738 igc_free_all_rx_resources(adapter); 5739 err_setup_rx: 5740 igc_free_all_tx_resources(adapter); 5741 err_setup_tx: 5742 igc_reset(adapter); 5743 if (!resuming) 5744 pm_runtime_put(&pdev->dev); 5745 5746 return err; 5747 } 5748 5749 int igc_open(struct net_device *netdev) 5750 { 5751 return __igc_open(netdev, false); 5752 } 5753 5754 /** 5755 * __igc_close - Disables a network interface 5756 * @netdev: network interface device structure 5757 * @suspending: boolean indicating the device is suspending 5758 * 5759 * Returns 0, this is not allowed to fail 5760 * 5761 * The close entry point is called when an interface is de-activated 5762 * by the OS. The hardware is still under the driver's control, but 5763 * needs to be disabled. A global MAC reset is issued to stop the 5764 * hardware, and all transmit and receive resources are freed. 5765 */ 5766 static int __igc_close(struct net_device *netdev, bool suspending) 5767 { 5768 struct igc_adapter *adapter = netdev_priv(netdev); 5769 struct pci_dev *pdev = adapter->pdev; 5770 5771 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 5772 5773 if (!suspending) 5774 pm_runtime_get_sync(&pdev->dev); 5775 5776 igc_down(adapter); 5777 5778 igc_release_hw_control(adapter); 5779 5780 igc_free_irq(adapter); 5781 5782 igc_free_all_tx_resources(adapter); 5783 igc_free_all_rx_resources(adapter); 5784 5785 if (!suspending) 5786 pm_runtime_put_sync(&pdev->dev); 5787 5788 return 0; 5789 } 5790 5791 int igc_close(struct net_device *netdev) 5792 { 5793 if (netif_device_present(netdev) || netdev->dismantle) 5794 return __igc_close(netdev, false); 5795 return 0; 5796 } 5797 5798 /** 5799 * igc_ioctl - Access the hwtstamp interface 5800 * @netdev: network interface device structure 5801 * @ifr: interface request data 5802 * @cmd: ioctl command 5803 **/ 5804 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5805 { 5806 switch (cmd) { 5807 case SIOCGHWTSTAMP: 5808 return igc_ptp_get_ts_config(netdev, ifr); 5809 case SIOCSHWTSTAMP: 5810 return igc_ptp_set_ts_config(netdev, ifr); 5811 default: 5812 return -EOPNOTSUPP; 5813 } 5814 } 5815 5816 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 5817 bool enable) 5818 { 5819 struct igc_ring *ring; 5820 5821 if (queue < 0 || queue >= adapter->num_tx_queues) 5822 return -EINVAL; 5823 5824 ring = adapter->tx_ring[queue]; 5825 ring->launchtime_enable = enable; 5826 5827 return 0; 5828 } 5829 5830 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 5831 { 5832 struct timespec64 b; 5833 5834 b = ktime_to_timespec64(base_time); 5835 5836 return timespec64_compare(now, &b) > 0; 5837 } 5838 5839 static bool validate_schedule(struct igc_adapter *adapter, 5840 const struct tc_taprio_qopt_offload *qopt) 5841 { 5842 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 5843 struct timespec64 now; 5844 size_t n; 5845 5846 if (qopt->cycle_time_extension) 5847 return false; 5848 5849 igc_ptp_read(adapter, &now); 5850 5851 /* If we program the controller's BASET registers with a time 5852 * in the future, it will hold all the packets until that 5853 * time, causing a lot of TX Hangs, so to avoid that, we 5854 * reject schedules that would start in the future. 5855 */ 5856 if (!is_base_time_past(qopt->base_time, &now)) 5857 return false; 5858 5859 for (n = 0; n < qopt->num_entries; n++) { 5860 const struct tc_taprio_sched_entry *e, *prev; 5861 int i; 5862 5863 prev = n ? &qopt->entries[n - 1] : NULL; 5864 e = &qopt->entries[n]; 5865 5866 /* i225 only supports "global" frame preemption 5867 * settings. 5868 */ 5869 if (e->command != TC_TAPRIO_CMD_SET_GATES) 5870 return false; 5871 5872 for (i = 0; i < adapter->num_tx_queues; i++) { 5873 if (e->gate_mask & BIT(i)) 5874 queue_uses[i]++; 5875 5876 /* There are limitations: A single queue cannot be 5877 * opened and closed multiple times per cycle unless the 5878 * gate stays open. Check for it. 5879 */ 5880 if (queue_uses[i] > 1 && 5881 !(prev->gate_mask & BIT(i))) 5882 return false; 5883 } 5884 } 5885 5886 return true; 5887 } 5888 5889 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 5890 struct tc_etf_qopt_offload *qopt) 5891 { 5892 struct igc_hw *hw = &adapter->hw; 5893 int err; 5894 5895 if (hw->mac.type != igc_i225) 5896 return -EOPNOTSUPP; 5897 5898 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 5899 if (err) 5900 return err; 5901 5902 return igc_tsn_offload_apply(adapter); 5903 } 5904 5905 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 5906 { 5907 int i; 5908 5909 adapter->base_time = 0; 5910 adapter->cycle_time = NSEC_PER_SEC; 5911 5912 for (i = 0; i < adapter->num_tx_queues; i++) { 5913 struct igc_ring *ring = adapter->tx_ring[i]; 5914 5915 ring->start_time = 0; 5916 ring->end_time = NSEC_PER_SEC; 5917 } 5918 5919 return 0; 5920 } 5921 5922 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 5923 struct tc_taprio_qopt_offload *qopt) 5924 { 5925 bool queue_configured[IGC_MAX_TX_QUEUES] = { }; 5926 u32 start_time = 0, end_time = 0; 5927 size_t n; 5928 5929 if (!qopt->enable) 5930 return igc_tsn_clear_schedule(adapter); 5931 5932 if (adapter->base_time) 5933 return -EALREADY; 5934 5935 if (!validate_schedule(adapter, qopt)) 5936 return -EINVAL; 5937 5938 adapter->cycle_time = qopt->cycle_time; 5939 adapter->base_time = qopt->base_time; 5940 5941 for (n = 0; n < qopt->num_entries; n++) { 5942 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 5943 int i; 5944 5945 end_time += e->interval; 5946 5947 for (i = 0; i < adapter->num_tx_queues; i++) { 5948 struct igc_ring *ring = adapter->tx_ring[i]; 5949 5950 if (!(e->gate_mask & BIT(i))) 5951 continue; 5952 5953 /* Check whether a queue stays open for more than one 5954 * entry. If so, keep the start and advance the end 5955 * time. 5956 */ 5957 if (!queue_configured[i]) 5958 ring->start_time = start_time; 5959 ring->end_time = end_time; 5960 5961 queue_configured[i] = true; 5962 } 5963 5964 start_time += e->interval; 5965 } 5966 5967 return 0; 5968 } 5969 5970 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 5971 struct tc_taprio_qopt_offload *qopt) 5972 { 5973 struct igc_hw *hw = &adapter->hw; 5974 int err; 5975 5976 if (hw->mac.type != igc_i225) 5977 return -EOPNOTSUPP; 5978 5979 err = igc_save_qbv_schedule(adapter, qopt); 5980 if (err) 5981 return err; 5982 5983 return igc_tsn_offload_apply(adapter); 5984 } 5985 5986 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 5987 bool enable, int idleslope, int sendslope, 5988 int hicredit, int locredit) 5989 { 5990 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 5991 struct net_device *netdev = adapter->netdev; 5992 struct igc_ring *ring; 5993 int i; 5994 5995 /* i225 has two sets of credit-based shaper logic. 5996 * Supporting it only on the top two priority queues 5997 */ 5998 if (queue < 0 || queue > 1) 5999 return -EINVAL; 6000 6001 ring = adapter->tx_ring[queue]; 6002 6003 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 6004 if (adapter->tx_ring[i]) 6005 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 6006 6007 /* CBS should be enabled on the highest priority queue first in order 6008 * for the CBS algorithm to operate as intended. 6009 */ 6010 if (enable) { 6011 if (queue == 1 && !cbs_status[0]) { 6012 netdev_err(netdev, 6013 "Enabling CBS on queue1 before queue0\n"); 6014 return -EINVAL; 6015 } 6016 } else { 6017 if (queue == 0 && cbs_status[1]) { 6018 netdev_err(netdev, 6019 "Disabling CBS on queue0 before queue1\n"); 6020 return -EINVAL; 6021 } 6022 } 6023 6024 ring->cbs_enable = enable; 6025 ring->idleslope = idleslope; 6026 ring->sendslope = sendslope; 6027 ring->hicredit = hicredit; 6028 ring->locredit = locredit; 6029 6030 return 0; 6031 } 6032 6033 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 6034 struct tc_cbs_qopt_offload *qopt) 6035 { 6036 struct igc_hw *hw = &adapter->hw; 6037 int err; 6038 6039 if (hw->mac.type != igc_i225) 6040 return -EOPNOTSUPP; 6041 6042 if (qopt->queue < 0 || qopt->queue > 1) 6043 return -EINVAL; 6044 6045 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 6046 qopt->idleslope, qopt->sendslope, 6047 qopt->hicredit, qopt->locredit); 6048 if (err) 6049 return err; 6050 6051 return igc_tsn_offload_apply(adapter); 6052 } 6053 6054 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6055 void *type_data) 6056 { 6057 struct igc_adapter *adapter = netdev_priv(dev); 6058 6059 switch (type) { 6060 case TC_SETUP_QDISC_TAPRIO: 6061 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6062 6063 case TC_SETUP_QDISC_ETF: 6064 return igc_tsn_enable_launchtime(adapter, type_data); 6065 6066 case TC_SETUP_QDISC_CBS: 6067 return igc_tsn_enable_cbs(adapter, type_data); 6068 6069 default: 6070 return -EOPNOTSUPP; 6071 } 6072 } 6073 6074 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6075 { 6076 struct igc_adapter *adapter = netdev_priv(dev); 6077 6078 switch (bpf->command) { 6079 case XDP_SETUP_PROG: 6080 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6081 case XDP_SETUP_XSK_POOL: 6082 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6083 bpf->xsk.queue_id); 6084 default: 6085 return -EOPNOTSUPP; 6086 } 6087 } 6088 6089 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6090 struct xdp_frame **frames, u32 flags) 6091 { 6092 struct igc_adapter *adapter = netdev_priv(dev); 6093 int cpu = smp_processor_id(); 6094 struct netdev_queue *nq; 6095 struct igc_ring *ring; 6096 int i, drops; 6097 6098 if (unlikely(test_bit(__IGC_DOWN, &adapter->state))) 6099 return -ENETDOWN; 6100 6101 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6102 return -EINVAL; 6103 6104 ring = igc_xdp_get_tx_ring(adapter, cpu); 6105 nq = txring_txq(ring); 6106 6107 __netif_tx_lock(nq, cpu); 6108 6109 drops = 0; 6110 for (i = 0; i < num_frames; i++) { 6111 int err; 6112 struct xdp_frame *xdpf = frames[i]; 6113 6114 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6115 if (err) { 6116 xdp_return_frame_rx_napi(xdpf); 6117 drops++; 6118 } 6119 } 6120 6121 if (flags & XDP_XMIT_FLUSH) 6122 igc_flush_tx_descriptors(ring); 6123 6124 __netif_tx_unlock(nq); 6125 6126 return num_frames - drops; 6127 } 6128 6129 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6130 struct igc_q_vector *q_vector) 6131 { 6132 struct igc_hw *hw = &adapter->hw; 6133 u32 eics = 0; 6134 6135 eics |= q_vector->eims_value; 6136 wr32(IGC_EICS, eics); 6137 } 6138 6139 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6140 { 6141 struct igc_adapter *adapter = netdev_priv(dev); 6142 struct igc_q_vector *q_vector; 6143 struct igc_ring *ring; 6144 6145 if (test_bit(__IGC_DOWN, &adapter->state)) 6146 return -ENETDOWN; 6147 6148 if (!igc_xdp_is_enabled(adapter)) 6149 return -ENXIO; 6150 6151 if (queue_id >= adapter->num_rx_queues) 6152 return -EINVAL; 6153 6154 ring = adapter->rx_ring[queue_id]; 6155 6156 if (!ring->xsk_pool) 6157 return -ENXIO; 6158 6159 q_vector = adapter->q_vector[queue_id]; 6160 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6161 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6162 6163 return 0; 6164 } 6165 6166 static const struct net_device_ops igc_netdev_ops = { 6167 .ndo_open = igc_open, 6168 .ndo_stop = igc_close, 6169 .ndo_start_xmit = igc_xmit_frame, 6170 .ndo_set_rx_mode = igc_set_rx_mode, 6171 .ndo_set_mac_address = igc_set_mac, 6172 .ndo_change_mtu = igc_change_mtu, 6173 .ndo_get_stats64 = igc_get_stats64, 6174 .ndo_fix_features = igc_fix_features, 6175 .ndo_set_features = igc_set_features, 6176 .ndo_features_check = igc_features_check, 6177 .ndo_eth_ioctl = igc_ioctl, 6178 .ndo_setup_tc = igc_setup_tc, 6179 .ndo_bpf = igc_bpf, 6180 .ndo_xdp_xmit = igc_xdp_xmit, 6181 .ndo_xsk_wakeup = igc_xsk_wakeup, 6182 }; 6183 6184 /* PCIe configuration access */ 6185 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6186 { 6187 struct igc_adapter *adapter = hw->back; 6188 6189 pci_read_config_word(adapter->pdev, reg, value); 6190 } 6191 6192 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6193 { 6194 struct igc_adapter *adapter = hw->back; 6195 6196 pci_write_config_word(adapter->pdev, reg, *value); 6197 } 6198 6199 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6200 { 6201 struct igc_adapter *adapter = hw->back; 6202 6203 if (!pci_is_pcie(adapter->pdev)) 6204 return -IGC_ERR_CONFIG; 6205 6206 pcie_capability_read_word(adapter->pdev, reg, value); 6207 6208 return IGC_SUCCESS; 6209 } 6210 6211 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6212 { 6213 struct igc_adapter *adapter = hw->back; 6214 6215 if (!pci_is_pcie(adapter->pdev)) 6216 return -IGC_ERR_CONFIG; 6217 6218 pcie_capability_write_word(adapter->pdev, reg, *value); 6219 6220 return IGC_SUCCESS; 6221 } 6222 6223 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6224 { 6225 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6226 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6227 u32 value = 0; 6228 6229 if (IGC_REMOVED(hw_addr)) 6230 return ~value; 6231 6232 value = readl(&hw_addr[reg]); 6233 6234 /* reads should not return all F's */ 6235 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6236 struct net_device *netdev = igc->netdev; 6237 6238 hw->hw_addr = NULL; 6239 netif_device_detach(netdev); 6240 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6241 WARN(pci_device_is_present(igc->pdev), 6242 "igc: Failed to read reg 0x%x!\n", reg); 6243 } 6244 6245 return value; 6246 } 6247 6248 /** 6249 * igc_probe - Device Initialization Routine 6250 * @pdev: PCI device information struct 6251 * @ent: entry in igc_pci_tbl 6252 * 6253 * Returns 0 on success, negative on failure 6254 * 6255 * igc_probe initializes an adapter identified by a pci_dev structure. 6256 * The OS initialization, configuring the adapter private structure, 6257 * and a hardware reset occur. 6258 */ 6259 static int igc_probe(struct pci_dev *pdev, 6260 const struct pci_device_id *ent) 6261 { 6262 struct igc_adapter *adapter; 6263 struct net_device *netdev; 6264 struct igc_hw *hw; 6265 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6266 int err; 6267 6268 err = pci_enable_device_mem(pdev); 6269 if (err) 6270 return err; 6271 6272 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6273 if (err) { 6274 dev_err(&pdev->dev, 6275 "No usable DMA configuration, aborting\n"); 6276 goto err_dma; 6277 } 6278 6279 err = pci_request_mem_regions(pdev, igc_driver_name); 6280 if (err) 6281 goto err_pci_reg; 6282 6283 pci_enable_pcie_error_reporting(pdev); 6284 6285 err = pci_enable_ptm(pdev, NULL); 6286 if (err < 0) 6287 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6288 6289 pci_set_master(pdev); 6290 6291 err = -ENOMEM; 6292 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6293 IGC_MAX_TX_QUEUES); 6294 6295 if (!netdev) 6296 goto err_alloc_etherdev; 6297 6298 SET_NETDEV_DEV(netdev, &pdev->dev); 6299 6300 pci_set_drvdata(pdev, netdev); 6301 adapter = netdev_priv(netdev); 6302 adapter->netdev = netdev; 6303 adapter->pdev = pdev; 6304 hw = &adapter->hw; 6305 hw->back = adapter; 6306 adapter->port_num = hw->bus.func; 6307 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6308 6309 err = pci_save_state(pdev); 6310 if (err) 6311 goto err_ioremap; 6312 6313 err = -EIO; 6314 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6315 pci_resource_len(pdev, 0)); 6316 if (!adapter->io_addr) 6317 goto err_ioremap; 6318 6319 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6320 hw->hw_addr = adapter->io_addr; 6321 6322 netdev->netdev_ops = &igc_netdev_ops; 6323 igc_ethtool_set_ops(netdev); 6324 netdev->watchdog_timeo = 5 * HZ; 6325 6326 netdev->mem_start = pci_resource_start(pdev, 0); 6327 netdev->mem_end = pci_resource_end(pdev, 0); 6328 6329 /* PCI config space info */ 6330 hw->vendor_id = pdev->vendor; 6331 hw->device_id = pdev->device; 6332 hw->revision_id = pdev->revision; 6333 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6334 hw->subsystem_device_id = pdev->subsystem_device; 6335 6336 /* Copy the default MAC and PHY function pointers */ 6337 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6338 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6339 6340 /* Initialize skew-specific constants */ 6341 err = ei->get_invariants(hw); 6342 if (err) 6343 goto err_sw_init; 6344 6345 /* Add supported features to the features list*/ 6346 netdev->features |= NETIF_F_SG; 6347 netdev->features |= NETIF_F_TSO; 6348 netdev->features |= NETIF_F_TSO6; 6349 netdev->features |= NETIF_F_TSO_ECN; 6350 netdev->features |= NETIF_F_RXCSUM; 6351 netdev->features |= NETIF_F_HW_CSUM; 6352 netdev->features |= NETIF_F_SCTP_CRC; 6353 netdev->features |= NETIF_F_HW_TC; 6354 6355 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6356 NETIF_F_GSO_GRE_CSUM | \ 6357 NETIF_F_GSO_IPXIP4 | \ 6358 NETIF_F_GSO_IPXIP6 | \ 6359 NETIF_F_GSO_UDP_TUNNEL | \ 6360 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6361 6362 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6363 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6364 6365 /* setup the private structure */ 6366 err = igc_sw_init(adapter); 6367 if (err) 6368 goto err_sw_init; 6369 6370 /* copy netdev features into list of user selectable features */ 6371 netdev->hw_features |= NETIF_F_NTUPLE; 6372 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6373 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6374 netdev->hw_features |= netdev->features; 6375 6376 netdev->features |= NETIF_F_HIGHDMA; 6377 6378 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6379 netdev->mpls_features |= NETIF_F_HW_CSUM; 6380 netdev->hw_enc_features |= netdev->vlan_features; 6381 6382 /* MTU range: 68 - 9216 */ 6383 netdev->min_mtu = ETH_MIN_MTU; 6384 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6385 6386 /* before reading the NVM, reset the controller to put the device in a 6387 * known good starting state 6388 */ 6389 hw->mac.ops.reset_hw(hw); 6390 6391 if (igc_get_flash_presence_i225(hw)) { 6392 if (hw->nvm.ops.validate(hw) < 0) { 6393 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6394 err = -EIO; 6395 goto err_eeprom; 6396 } 6397 } 6398 6399 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6400 /* copy the MAC address out of the NVM */ 6401 if (hw->mac.ops.read_mac_addr(hw)) 6402 dev_err(&pdev->dev, "NVM Read Error\n"); 6403 } 6404 6405 eth_hw_addr_set(netdev, hw->mac.addr); 6406 6407 if (!is_valid_ether_addr(netdev->dev_addr)) { 6408 dev_err(&pdev->dev, "Invalid MAC Address\n"); 6409 err = -EIO; 6410 goto err_eeprom; 6411 } 6412 6413 /* configure RXPBSIZE and TXPBSIZE */ 6414 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 6415 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 6416 6417 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 6418 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 6419 6420 INIT_WORK(&adapter->reset_task, igc_reset_task); 6421 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 6422 6423 /* Initialize link properties that are user-changeable */ 6424 adapter->fc_autoneg = true; 6425 hw->mac.autoneg = true; 6426 hw->phy.autoneg_advertised = 0xaf; 6427 6428 hw->fc.requested_mode = igc_fc_default; 6429 hw->fc.current_mode = igc_fc_default; 6430 6431 /* By default, support wake on port A */ 6432 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 6433 6434 /* initialize the wol settings based on the eeprom settings */ 6435 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 6436 adapter->wol |= IGC_WUFC_MAG; 6437 6438 device_set_wakeup_enable(&adapter->pdev->dev, 6439 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 6440 6441 igc_ptp_init(adapter); 6442 6443 igc_tsn_clear_schedule(adapter); 6444 6445 /* reset the hardware with the new settings */ 6446 igc_reset(adapter); 6447 6448 /* let the f/w know that the h/w is now under the control of the 6449 * driver. 6450 */ 6451 igc_get_hw_control(adapter); 6452 6453 strncpy(netdev->name, "eth%d", IFNAMSIZ); 6454 err = register_netdev(netdev); 6455 if (err) 6456 goto err_register; 6457 6458 /* carrier off reporting is important to ethtool even BEFORE open */ 6459 netif_carrier_off(netdev); 6460 6461 /* Check if Media Autosense is enabled */ 6462 adapter->ei = *ei; 6463 6464 /* print pcie link status and MAC address */ 6465 pcie_print_link_status(pdev); 6466 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 6467 6468 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 6469 /* Disable EEE for internal PHY devices */ 6470 hw->dev_spec._base.eee_enable = false; 6471 adapter->flags &= ~IGC_FLAG_EEE; 6472 igc_set_eee_i225(hw, false, false, false); 6473 6474 pm_runtime_put_noidle(&pdev->dev); 6475 6476 return 0; 6477 6478 err_register: 6479 igc_release_hw_control(adapter); 6480 err_eeprom: 6481 if (!igc_check_reset_block(hw)) 6482 igc_reset_phy(hw); 6483 err_sw_init: 6484 igc_clear_interrupt_scheme(adapter); 6485 iounmap(adapter->io_addr); 6486 err_ioremap: 6487 free_netdev(netdev); 6488 err_alloc_etherdev: 6489 pci_disable_pcie_error_reporting(pdev); 6490 pci_release_mem_regions(pdev); 6491 err_pci_reg: 6492 err_dma: 6493 pci_disable_device(pdev); 6494 return err; 6495 } 6496 6497 /** 6498 * igc_remove - Device Removal Routine 6499 * @pdev: PCI device information struct 6500 * 6501 * igc_remove is called by the PCI subsystem to alert the driver 6502 * that it should release a PCI device. This could be caused by a 6503 * Hot-Plug event, or because the driver is going to be removed from 6504 * memory. 6505 */ 6506 static void igc_remove(struct pci_dev *pdev) 6507 { 6508 struct net_device *netdev = pci_get_drvdata(pdev); 6509 struct igc_adapter *adapter = netdev_priv(netdev); 6510 6511 pm_runtime_get_noresume(&pdev->dev); 6512 6513 igc_flush_nfc_rules(adapter); 6514 6515 igc_ptp_stop(adapter); 6516 6517 set_bit(__IGC_DOWN, &adapter->state); 6518 6519 del_timer_sync(&adapter->watchdog_timer); 6520 del_timer_sync(&adapter->phy_info_timer); 6521 6522 cancel_work_sync(&adapter->reset_task); 6523 cancel_work_sync(&adapter->watchdog_task); 6524 6525 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6526 * would have already happened in close and is redundant. 6527 */ 6528 igc_release_hw_control(adapter); 6529 unregister_netdev(netdev); 6530 6531 igc_clear_interrupt_scheme(adapter); 6532 pci_iounmap(pdev, adapter->io_addr); 6533 pci_release_mem_regions(pdev); 6534 6535 free_netdev(netdev); 6536 6537 pci_disable_pcie_error_reporting(pdev); 6538 6539 pci_disable_device(pdev); 6540 } 6541 6542 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 6543 bool runtime) 6544 { 6545 struct net_device *netdev = pci_get_drvdata(pdev); 6546 struct igc_adapter *adapter = netdev_priv(netdev); 6547 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 6548 struct igc_hw *hw = &adapter->hw; 6549 u32 ctrl, rctl, status; 6550 bool wake; 6551 6552 rtnl_lock(); 6553 netif_device_detach(netdev); 6554 6555 if (netif_running(netdev)) 6556 __igc_close(netdev, true); 6557 6558 igc_ptp_suspend(adapter); 6559 6560 igc_clear_interrupt_scheme(adapter); 6561 rtnl_unlock(); 6562 6563 status = rd32(IGC_STATUS); 6564 if (status & IGC_STATUS_LU) 6565 wufc &= ~IGC_WUFC_LNKC; 6566 6567 if (wufc) { 6568 igc_setup_rctl(adapter); 6569 igc_set_rx_mode(netdev); 6570 6571 /* turn on all-multi mode if wake on multicast is enabled */ 6572 if (wufc & IGC_WUFC_MC) { 6573 rctl = rd32(IGC_RCTL); 6574 rctl |= IGC_RCTL_MPE; 6575 wr32(IGC_RCTL, rctl); 6576 } 6577 6578 ctrl = rd32(IGC_CTRL); 6579 ctrl |= IGC_CTRL_ADVD3WUC; 6580 wr32(IGC_CTRL, ctrl); 6581 6582 /* Allow time for pending master requests to run */ 6583 igc_disable_pcie_master(hw); 6584 6585 wr32(IGC_WUC, IGC_WUC_PME_EN); 6586 wr32(IGC_WUFC, wufc); 6587 } else { 6588 wr32(IGC_WUC, 0); 6589 wr32(IGC_WUFC, 0); 6590 } 6591 6592 wake = wufc || adapter->en_mng_pt; 6593 if (!wake) 6594 igc_power_down_phy_copper_base(&adapter->hw); 6595 else 6596 igc_power_up_link(adapter); 6597 6598 if (enable_wake) 6599 *enable_wake = wake; 6600 6601 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6602 * would have already happened in close and is redundant. 6603 */ 6604 igc_release_hw_control(adapter); 6605 6606 pci_disable_device(pdev); 6607 6608 return 0; 6609 } 6610 6611 #ifdef CONFIG_PM 6612 static int __maybe_unused igc_runtime_suspend(struct device *dev) 6613 { 6614 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 6615 } 6616 6617 static void igc_deliver_wake_packet(struct net_device *netdev) 6618 { 6619 struct igc_adapter *adapter = netdev_priv(netdev); 6620 struct igc_hw *hw = &adapter->hw; 6621 struct sk_buff *skb; 6622 u32 wupl; 6623 6624 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 6625 6626 /* WUPM stores only the first 128 bytes of the wake packet. 6627 * Read the packet only if we have the whole thing. 6628 */ 6629 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 6630 return; 6631 6632 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 6633 if (!skb) 6634 return; 6635 6636 skb_put(skb, wupl); 6637 6638 /* Ensure reads are 32-bit aligned */ 6639 wupl = roundup(wupl, 4); 6640 6641 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 6642 6643 skb->protocol = eth_type_trans(skb, netdev); 6644 netif_rx(skb); 6645 } 6646 6647 static int __maybe_unused igc_resume(struct device *dev) 6648 { 6649 struct pci_dev *pdev = to_pci_dev(dev); 6650 struct net_device *netdev = pci_get_drvdata(pdev); 6651 struct igc_adapter *adapter = netdev_priv(netdev); 6652 struct igc_hw *hw = &adapter->hw; 6653 u32 err, val; 6654 6655 pci_set_power_state(pdev, PCI_D0); 6656 pci_restore_state(pdev); 6657 pci_save_state(pdev); 6658 6659 if (!pci_device_is_present(pdev)) 6660 return -ENODEV; 6661 err = pci_enable_device_mem(pdev); 6662 if (err) { 6663 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 6664 return err; 6665 } 6666 pci_set_master(pdev); 6667 6668 pci_enable_wake(pdev, PCI_D3hot, 0); 6669 pci_enable_wake(pdev, PCI_D3cold, 0); 6670 6671 if (igc_init_interrupt_scheme(adapter, true)) { 6672 netdev_err(netdev, "Unable to allocate memory for queues\n"); 6673 return -ENOMEM; 6674 } 6675 6676 igc_reset(adapter); 6677 6678 /* let the f/w know that the h/w is now under the control of the 6679 * driver. 6680 */ 6681 igc_get_hw_control(adapter); 6682 6683 val = rd32(IGC_WUS); 6684 if (val & WAKE_PKT_WUS) 6685 igc_deliver_wake_packet(netdev); 6686 6687 wr32(IGC_WUS, ~0); 6688 6689 rtnl_lock(); 6690 if (!err && netif_running(netdev)) 6691 err = __igc_open(netdev, true); 6692 6693 if (!err) 6694 netif_device_attach(netdev); 6695 rtnl_unlock(); 6696 6697 return err; 6698 } 6699 6700 static int __maybe_unused igc_runtime_resume(struct device *dev) 6701 { 6702 return igc_resume(dev); 6703 } 6704 6705 static int __maybe_unused igc_suspend(struct device *dev) 6706 { 6707 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 6708 } 6709 6710 static int __maybe_unused igc_runtime_idle(struct device *dev) 6711 { 6712 struct net_device *netdev = dev_get_drvdata(dev); 6713 struct igc_adapter *adapter = netdev_priv(netdev); 6714 6715 if (!igc_has_link(adapter)) 6716 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 6717 6718 return -EBUSY; 6719 } 6720 #endif /* CONFIG_PM */ 6721 6722 static void igc_shutdown(struct pci_dev *pdev) 6723 { 6724 bool wake; 6725 6726 __igc_shutdown(pdev, &wake, 0); 6727 6728 if (system_state == SYSTEM_POWER_OFF) { 6729 pci_wake_from_d3(pdev, wake); 6730 pci_set_power_state(pdev, PCI_D3hot); 6731 } 6732 } 6733 6734 /** 6735 * igc_io_error_detected - called when PCI error is detected 6736 * @pdev: Pointer to PCI device 6737 * @state: The current PCI connection state 6738 * 6739 * This function is called after a PCI bus error affecting 6740 * this device has been detected. 6741 **/ 6742 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 6743 pci_channel_state_t state) 6744 { 6745 struct net_device *netdev = pci_get_drvdata(pdev); 6746 struct igc_adapter *adapter = netdev_priv(netdev); 6747 6748 netif_device_detach(netdev); 6749 6750 if (state == pci_channel_io_perm_failure) 6751 return PCI_ERS_RESULT_DISCONNECT; 6752 6753 if (netif_running(netdev)) 6754 igc_down(adapter); 6755 pci_disable_device(pdev); 6756 6757 /* Request a slot reset. */ 6758 return PCI_ERS_RESULT_NEED_RESET; 6759 } 6760 6761 /** 6762 * igc_io_slot_reset - called after the PCI bus has been reset. 6763 * @pdev: Pointer to PCI device 6764 * 6765 * Restart the card from scratch, as if from a cold-boot. Implementation 6766 * resembles the first-half of the igc_resume routine. 6767 **/ 6768 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 6769 { 6770 struct net_device *netdev = pci_get_drvdata(pdev); 6771 struct igc_adapter *adapter = netdev_priv(netdev); 6772 struct igc_hw *hw = &adapter->hw; 6773 pci_ers_result_t result; 6774 6775 if (pci_enable_device_mem(pdev)) { 6776 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 6777 result = PCI_ERS_RESULT_DISCONNECT; 6778 } else { 6779 pci_set_master(pdev); 6780 pci_restore_state(pdev); 6781 pci_save_state(pdev); 6782 6783 pci_enable_wake(pdev, PCI_D3hot, 0); 6784 pci_enable_wake(pdev, PCI_D3cold, 0); 6785 6786 /* In case of PCI error, adapter loses its HW address 6787 * so we should re-assign it here. 6788 */ 6789 hw->hw_addr = adapter->io_addr; 6790 6791 igc_reset(adapter); 6792 wr32(IGC_WUS, ~0); 6793 result = PCI_ERS_RESULT_RECOVERED; 6794 } 6795 6796 return result; 6797 } 6798 6799 /** 6800 * igc_io_resume - called when traffic can start to flow again. 6801 * @pdev: Pointer to PCI device 6802 * 6803 * This callback is called when the error recovery driver tells us that 6804 * its OK to resume normal operation. Implementation resembles the 6805 * second-half of the igc_resume routine. 6806 */ 6807 static void igc_io_resume(struct pci_dev *pdev) 6808 { 6809 struct net_device *netdev = pci_get_drvdata(pdev); 6810 struct igc_adapter *adapter = netdev_priv(netdev); 6811 6812 rtnl_lock(); 6813 if (netif_running(netdev)) { 6814 if (igc_open(netdev)) { 6815 netdev_err(netdev, "igc_open failed after reset\n"); 6816 return; 6817 } 6818 } 6819 6820 netif_device_attach(netdev); 6821 6822 /* let the f/w know that the h/w is now under the control of the 6823 * driver. 6824 */ 6825 igc_get_hw_control(adapter); 6826 rtnl_unlock(); 6827 } 6828 6829 static const struct pci_error_handlers igc_err_handler = { 6830 .error_detected = igc_io_error_detected, 6831 .slot_reset = igc_io_slot_reset, 6832 .resume = igc_io_resume, 6833 }; 6834 6835 #ifdef CONFIG_PM 6836 static const struct dev_pm_ops igc_pm_ops = { 6837 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 6838 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 6839 igc_runtime_idle) 6840 }; 6841 #endif 6842 6843 static struct pci_driver igc_driver = { 6844 .name = igc_driver_name, 6845 .id_table = igc_pci_tbl, 6846 .probe = igc_probe, 6847 .remove = igc_remove, 6848 #ifdef CONFIG_PM 6849 .driver.pm = &igc_pm_ops, 6850 #endif 6851 .shutdown = igc_shutdown, 6852 .err_handler = &igc_err_handler, 6853 }; 6854 6855 /** 6856 * igc_reinit_queues - return error 6857 * @adapter: pointer to adapter structure 6858 */ 6859 int igc_reinit_queues(struct igc_adapter *adapter) 6860 { 6861 struct net_device *netdev = adapter->netdev; 6862 int err = 0; 6863 6864 if (netif_running(netdev)) 6865 igc_close(netdev); 6866 6867 igc_reset_interrupt_capability(adapter); 6868 6869 if (igc_init_interrupt_scheme(adapter, true)) { 6870 netdev_err(netdev, "Unable to allocate memory for queues\n"); 6871 return -ENOMEM; 6872 } 6873 6874 if (netif_running(netdev)) 6875 err = igc_open(netdev); 6876 6877 return err; 6878 } 6879 6880 /** 6881 * igc_get_hw_dev - return device 6882 * @hw: pointer to hardware structure 6883 * 6884 * used by hardware layer to print debugging information 6885 */ 6886 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 6887 { 6888 struct igc_adapter *adapter = hw->back; 6889 6890 return adapter->netdev; 6891 } 6892 6893 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 6894 { 6895 struct igc_hw *hw = &ring->q_vector->adapter->hw; 6896 u8 idx = ring->reg_idx; 6897 u32 rxdctl; 6898 6899 rxdctl = rd32(IGC_RXDCTL(idx)); 6900 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 6901 rxdctl |= IGC_RXDCTL_SWFLUSH; 6902 wr32(IGC_RXDCTL(idx), rxdctl); 6903 } 6904 6905 void igc_disable_rx_ring(struct igc_ring *ring) 6906 { 6907 igc_disable_rx_ring_hw(ring); 6908 igc_clean_rx_ring(ring); 6909 } 6910 6911 void igc_enable_rx_ring(struct igc_ring *ring) 6912 { 6913 struct igc_adapter *adapter = ring->q_vector->adapter; 6914 6915 igc_configure_rx_ring(adapter, ring); 6916 6917 if (ring->xsk_pool) 6918 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 6919 else 6920 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 6921 } 6922 6923 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 6924 { 6925 struct igc_hw *hw = &ring->q_vector->adapter->hw; 6926 u8 idx = ring->reg_idx; 6927 u32 txdctl; 6928 6929 txdctl = rd32(IGC_TXDCTL(idx)); 6930 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 6931 txdctl |= IGC_TXDCTL_SWFLUSH; 6932 wr32(IGC_TXDCTL(idx), txdctl); 6933 } 6934 6935 void igc_disable_tx_ring(struct igc_ring *ring) 6936 { 6937 igc_disable_tx_ring_hw(ring); 6938 igc_clean_tx_ring(ring); 6939 } 6940 6941 void igc_enable_tx_ring(struct igc_ring *ring) 6942 { 6943 struct igc_adapter *adapter = ring->q_vector->adapter; 6944 6945 igc_configure_tx_ring(adapter, ring); 6946 } 6947 6948 /** 6949 * igc_init_module - Driver Registration Routine 6950 * 6951 * igc_init_module is the first routine called when the driver is 6952 * loaded. All it does is register with the PCI subsystem. 6953 */ 6954 static int __init igc_init_module(void) 6955 { 6956 int ret; 6957 6958 pr_info("%s\n", igc_driver_string); 6959 pr_info("%s\n", igc_copyright); 6960 6961 ret = pci_register_driver(&igc_driver); 6962 return ret; 6963 } 6964 6965 module_init(igc_init_module); 6966 6967 /** 6968 * igc_exit_module - Driver Exit Cleanup Routine 6969 * 6970 * igc_exit_module is called just before the driver is removed 6971 * from memory. 6972 */ 6973 static void __exit igc_exit_module(void) 6974 { 6975 pci_unregister_driver(&igc_driver); 6976 } 6977 6978 module_exit(igc_exit_module); 6979 /* igc_main.c */ 6980