1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 
16 #include <net/ipv6.h>
17 
18 #include "igc.h"
19 #include "igc_hw.h"
20 #include "igc_tsn.h"
21 #include "igc_xdp.h"
22 
23 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
24 
25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26 
27 #define IGC_XDP_PASS		0
28 #define IGC_XDP_CONSUMED	BIT(0)
29 #define IGC_XDP_TX		BIT(1)
30 #define IGC_XDP_REDIRECT	BIT(2)
31 
32 static int debug = -1;
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
319 /**
320  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
321  * @tx_ring: tx descriptor ring (for a specific queue) to setup
322  *
323  * Return 0 on success, negative on failure
324  */
325 int igc_setup_tx_resources(struct igc_ring *tx_ring)
326 {
327 	struct net_device *ndev = tx_ring->netdev;
328 	struct device *dev = tx_ring->dev;
329 	int size = 0;
330 
331 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
332 	tx_ring->tx_buffer_info = vzalloc(size);
333 	if (!tx_ring->tx_buffer_info)
334 		goto err;
335 
336 	/* round up to nearest 4K */
337 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
338 	tx_ring->size = ALIGN(tx_ring->size, 4096);
339 
340 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
341 					   &tx_ring->dma, GFP_KERNEL);
342 
343 	if (!tx_ring->desc)
344 		goto err;
345 
346 	tx_ring->next_to_use = 0;
347 	tx_ring->next_to_clean = 0;
348 
349 	return 0;
350 
351 err:
352 	vfree(tx_ring->tx_buffer_info);
353 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
354 	return -ENOMEM;
355 }
356 
357 /**
358  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
359  * @adapter: board private structure
360  *
361  * Return 0 on success, negative on failure
362  */
363 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
364 {
365 	struct net_device *dev = adapter->netdev;
366 	int i, err = 0;
367 
368 	for (i = 0; i < adapter->num_tx_queues; i++) {
369 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
370 		if (err) {
371 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
372 			for (i--; i >= 0; i--)
373 				igc_free_tx_resources(adapter->tx_ring[i]);
374 			break;
375 		}
376 	}
377 
378 	return err;
379 }
380 
381 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
382 {
383 	u16 i = rx_ring->next_to_clean;
384 
385 	dev_kfree_skb(rx_ring->skb);
386 	rx_ring->skb = NULL;
387 
388 	/* Free all the Rx ring sk_buffs */
389 	while (i != rx_ring->next_to_alloc) {
390 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
391 
392 		/* Invalidate cache lines that may have been written to by
393 		 * device so that we avoid corrupting memory.
394 		 */
395 		dma_sync_single_range_for_cpu(rx_ring->dev,
396 					      buffer_info->dma,
397 					      buffer_info->page_offset,
398 					      igc_rx_bufsz(rx_ring),
399 					      DMA_FROM_DEVICE);
400 
401 		/* free resources associated with mapping */
402 		dma_unmap_page_attrs(rx_ring->dev,
403 				     buffer_info->dma,
404 				     igc_rx_pg_size(rx_ring),
405 				     DMA_FROM_DEVICE,
406 				     IGC_RX_DMA_ATTR);
407 		__page_frag_cache_drain(buffer_info->page,
408 					buffer_info->pagecnt_bias);
409 
410 		i++;
411 		if (i == rx_ring->count)
412 			i = 0;
413 	}
414 }
415 
416 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
417 {
418 	struct igc_rx_buffer *bi;
419 	u16 i;
420 
421 	for (i = 0; i < ring->count; i++) {
422 		bi = &ring->rx_buffer_info[i];
423 		if (!bi->xdp)
424 			continue;
425 
426 		xsk_buff_free(bi->xdp);
427 		bi->xdp = NULL;
428 	}
429 }
430 
431 /**
432  * igc_clean_rx_ring - Free Rx Buffers per Queue
433  * @ring: ring to free buffers from
434  */
435 static void igc_clean_rx_ring(struct igc_ring *ring)
436 {
437 	if (ring->xsk_pool)
438 		igc_clean_rx_ring_xsk_pool(ring);
439 	else
440 		igc_clean_rx_ring_page_shared(ring);
441 
442 	clear_ring_uses_large_buffer(ring);
443 
444 	ring->next_to_alloc = 0;
445 	ring->next_to_clean = 0;
446 	ring->next_to_use = 0;
447 }
448 
449 /**
450  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
451  * @adapter: board private structure
452  */
453 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
454 {
455 	int i;
456 
457 	for (i = 0; i < adapter->num_rx_queues; i++)
458 		if (adapter->rx_ring[i])
459 			igc_clean_rx_ring(adapter->rx_ring[i]);
460 }
461 
462 /**
463  * igc_free_rx_resources - Free Rx Resources
464  * @rx_ring: ring to clean the resources from
465  *
466  * Free all receive software resources
467  */
468 void igc_free_rx_resources(struct igc_ring *rx_ring)
469 {
470 	igc_clean_rx_ring(rx_ring);
471 
472 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
473 
474 	vfree(rx_ring->rx_buffer_info);
475 	rx_ring->rx_buffer_info = NULL;
476 
477 	/* if not set, then don't free */
478 	if (!rx_ring->desc)
479 		return;
480 
481 	dma_free_coherent(rx_ring->dev, rx_ring->size,
482 			  rx_ring->desc, rx_ring->dma);
483 
484 	rx_ring->desc = NULL;
485 }
486 
487 /**
488  * igc_free_all_rx_resources - Free Rx Resources for All Queues
489  * @adapter: board private structure
490  *
491  * Free all receive software resources
492  */
493 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
494 {
495 	int i;
496 
497 	for (i = 0; i < adapter->num_rx_queues; i++)
498 		igc_free_rx_resources(adapter->rx_ring[i]);
499 }
500 
501 /**
502  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
503  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
504  *
505  * Returns 0 on success, negative on failure
506  */
507 int igc_setup_rx_resources(struct igc_ring *rx_ring)
508 {
509 	struct net_device *ndev = rx_ring->netdev;
510 	struct device *dev = rx_ring->dev;
511 	u8 index = rx_ring->queue_index;
512 	int size, desc_len, res;
513 
514 	/* XDP RX-queue info */
515 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
516 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
517 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
518 			       rx_ring->q_vector->napi.napi_id);
519 	if (res < 0) {
520 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
521 			   index);
522 		return res;
523 	}
524 
525 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
526 	rx_ring->rx_buffer_info = vzalloc(size);
527 	if (!rx_ring->rx_buffer_info)
528 		goto err;
529 
530 	desc_len = sizeof(union igc_adv_rx_desc);
531 
532 	/* Round up to nearest 4K */
533 	rx_ring->size = rx_ring->count * desc_len;
534 	rx_ring->size = ALIGN(rx_ring->size, 4096);
535 
536 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
537 					   &rx_ring->dma, GFP_KERNEL);
538 
539 	if (!rx_ring->desc)
540 		goto err;
541 
542 	rx_ring->next_to_alloc = 0;
543 	rx_ring->next_to_clean = 0;
544 	rx_ring->next_to_use = 0;
545 
546 	return 0;
547 
548 err:
549 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
550 	vfree(rx_ring->rx_buffer_info);
551 	rx_ring->rx_buffer_info = NULL;
552 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
553 	return -ENOMEM;
554 }
555 
556 /**
557  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
558  *                                (Descriptors) for all queues
559  * @adapter: board private structure
560  *
561  * Return 0 on success, negative on failure
562  */
563 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
564 {
565 	struct net_device *dev = adapter->netdev;
566 	int i, err = 0;
567 
568 	for (i = 0; i < adapter->num_rx_queues; i++) {
569 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
570 		if (err) {
571 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
572 			for (i--; i >= 0; i--)
573 				igc_free_rx_resources(adapter->rx_ring[i]);
574 			break;
575 		}
576 	}
577 
578 	return err;
579 }
580 
581 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
582 					      struct igc_ring *ring)
583 {
584 	if (!igc_xdp_is_enabled(adapter) ||
585 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
586 		return NULL;
587 
588 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
589 }
590 
591 /**
592  * igc_configure_rx_ring - Configure a receive ring after Reset
593  * @adapter: board private structure
594  * @ring: receive ring to be configured
595  *
596  * Configure the Rx unit of the MAC after a reset.
597  */
598 static void igc_configure_rx_ring(struct igc_adapter *adapter,
599 				  struct igc_ring *ring)
600 {
601 	struct igc_hw *hw = &adapter->hw;
602 	union igc_adv_rx_desc *rx_desc;
603 	int reg_idx = ring->reg_idx;
604 	u32 srrctl = 0, rxdctl = 0;
605 	u64 rdba = ring->dma;
606 	u32 buf_size;
607 
608 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
609 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
610 	if (ring->xsk_pool) {
611 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
612 						   MEM_TYPE_XSK_BUFF_POOL,
613 						   NULL));
614 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
615 	} else {
616 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
617 						   MEM_TYPE_PAGE_SHARED,
618 						   NULL));
619 	}
620 
621 	if (igc_xdp_is_enabled(adapter))
622 		set_ring_uses_large_buffer(ring);
623 
624 	/* disable the queue */
625 	wr32(IGC_RXDCTL(reg_idx), 0);
626 
627 	/* Set DMA base address registers */
628 	wr32(IGC_RDBAL(reg_idx),
629 	     rdba & 0x00000000ffffffffULL);
630 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
631 	wr32(IGC_RDLEN(reg_idx),
632 	     ring->count * sizeof(union igc_adv_rx_desc));
633 
634 	/* initialize head and tail */
635 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
636 	wr32(IGC_RDH(reg_idx), 0);
637 	writel(0, ring->tail);
638 
639 	/* reset next-to- use/clean to place SW in sync with hardware */
640 	ring->next_to_clean = 0;
641 	ring->next_to_use = 0;
642 
643 	if (ring->xsk_pool)
644 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
645 	else if (ring_uses_large_buffer(ring))
646 		buf_size = IGC_RXBUFFER_3072;
647 	else
648 		buf_size = IGC_RXBUFFER_2048;
649 
650 	srrctl = rd32(IGC_SRRCTL(reg_idx));
651 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
652 		    IGC_SRRCTL_DESCTYPE_MASK);
653 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
654 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
655 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
656 
657 	wr32(IGC_SRRCTL(reg_idx), srrctl);
658 
659 	rxdctl |= IGC_RX_PTHRESH;
660 	rxdctl |= IGC_RX_HTHRESH << 8;
661 	rxdctl |= IGC_RX_WTHRESH << 16;
662 
663 	/* initialize rx_buffer_info */
664 	memset(ring->rx_buffer_info, 0,
665 	       sizeof(struct igc_rx_buffer) * ring->count);
666 
667 	/* initialize Rx descriptor 0 */
668 	rx_desc = IGC_RX_DESC(ring, 0);
669 	rx_desc->wb.upper.length = 0;
670 
671 	/* enable receive descriptor fetching */
672 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
673 
674 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
675 }
676 
677 /**
678  * igc_configure_rx - Configure receive Unit after Reset
679  * @adapter: board private structure
680  *
681  * Configure the Rx unit of the MAC after a reset.
682  */
683 static void igc_configure_rx(struct igc_adapter *adapter)
684 {
685 	int i;
686 
687 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
688 	 * the Base and Length of the Rx Descriptor Ring
689 	 */
690 	for (i = 0; i < adapter->num_rx_queues; i++)
691 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
692 }
693 
694 /**
695  * igc_configure_tx_ring - Configure transmit ring after Reset
696  * @adapter: board private structure
697  * @ring: tx ring to configure
698  *
699  * Configure a transmit ring after a reset.
700  */
701 static void igc_configure_tx_ring(struct igc_adapter *adapter,
702 				  struct igc_ring *ring)
703 {
704 	struct igc_hw *hw = &adapter->hw;
705 	int reg_idx = ring->reg_idx;
706 	u64 tdba = ring->dma;
707 	u32 txdctl = 0;
708 
709 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
710 
711 	/* disable the queue */
712 	wr32(IGC_TXDCTL(reg_idx), 0);
713 	wrfl();
714 	mdelay(10);
715 
716 	wr32(IGC_TDLEN(reg_idx),
717 	     ring->count * sizeof(union igc_adv_tx_desc));
718 	wr32(IGC_TDBAL(reg_idx),
719 	     tdba & 0x00000000ffffffffULL);
720 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
721 
722 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
723 	wr32(IGC_TDH(reg_idx), 0);
724 	writel(0, ring->tail);
725 
726 	txdctl |= IGC_TX_PTHRESH;
727 	txdctl |= IGC_TX_HTHRESH << 8;
728 	txdctl |= IGC_TX_WTHRESH << 16;
729 
730 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
731 	wr32(IGC_TXDCTL(reg_idx), txdctl);
732 }
733 
734 /**
735  * igc_configure_tx - Configure transmit Unit after Reset
736  * @adapter: board private structure
737  *
738  * Configure the Tx unit of the MAC after a reset.
739  */
740 static void igc_configure_tx(struct igc_adapter *adapter)
741 {
742 	int i;
743 
744 	for (i = 0; i < adapter->num_tx_queues; i++)
745 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
746 }
747 
748 /**
749  * igc_setup_mrqc - configure the multiple receive queue control registers
750  * @adapter: Board private structure
751  */
752 static void igc_setup_mrqc(struct igc_adapter *adapter)
753 {
754 	struct igc_hw *hw = &adapter->hw;
755 	u32 j, num_rx_queues;
756 	u32 mrqc, rxcsum;
757 	u32 rss_key[10];
758 
759 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
760 	for (j = 0; j < 10; j++)
761 		wr32(IGC_RSSRK(j), rss_key[j]);
762 
763 	num_rx_queues = adapter->rss_queues;
764 
765 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
766 		for (j = 0; j < IGC_RETA_SIZE; j++)
767 			adapter->rss_indir_tbl[j] =
768 			(j * num_rx_queues) / IGC_RETA_SIZE;
769 		adapter->rss_indir_tbl_init = num_rx_queues;
770 	}
771 	igc_write_rss_indir_tbl(adapter);
772 
773 	/* Disable raw packet checksumming so that RSS hash is placed in
774 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
775 	 * offloads as they are enabled by default
776 	 */
777 	rxcsum = rd32(IGC_RXCSUM);
778 	rxcsum |= IGC_RXCSUM_PCSD;
779 
780 	/* Enable Receive Checksum Offload for SCTP */
781 	rxcsum |= IGC_RXCSUM_CRCOFL;
782 
783 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
784 	wr32(IGC_RXCSUM, rxcsum);
785 
786 	/* Generate RSS hash based on packet types, TCP/UDP
787 	 * port numbers and/or IPv4/v6 src and dst addresses
788 	 */
789 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
790 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
791 	       IGC_MRQC_RSS_FIELD_IPV6 |
792 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
793 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
794 
795 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
796 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
797 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
798 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
799 
800 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
801 
802 	wr32(IGC_MRQC, mrqc);
803 }
804 
805 /**
806  * igc_setup_rctl - configure the receive control registers
807  * @adapter: Board private structure
808  */
809 static void igc_setup_rctl(struct igc_adapter *adapter)
810 {
811 	struct igc_hw *hw = &adapter->hw;
812 	u32 rctl;
813 
814 	rctl = rd32(IGC_RCTL);
815 
816 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
817 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
818 
819 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
820 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
821 
822 	/* enable stripping of CRC. Newer features require
823 	 * that the HW strips the CRC.
824 	 */
825 	rctl |= IGC_RCTL_SECRC;
826 
827 	/* disable store bad packets and clear size bits. */
828 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
829 
830 	/* enable LPE to allow for reception of jumbo frames */
831 	rctl |= IGC_RCTL_LPE;
832 
833 	/* disable queue 0 to prevent tail write w/o re-config */
834 	wr32(IGC_RXDCTL(0), 0);
835 
836 	/* This is useful for sniffing bad packets. */
837 	if (adapter->netdev->features & NETIF_F_RXALL) {
838 		/* UPE and MPE will be handled by normal PROMISC logic
839 		 * in set_rx_mode
840 		 */
841 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
842 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
843 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
844 
845 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
846 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
847 	}
848 
849 	wr32(IGC_RCTL, rctl);
850 }
851 
852 /**
853  * igc_setup_tctl - configure the transmit control registers
854  * @adapter: Board private structure
855  */
856 static void igc_setup_tctl(struct igc_adapter *adapter)
857 {
858 	struct igc_hw *hw = &adapter->hw;
859 	u32 tctl;
860 
861 	/* disable queue 0 which icould be enabled by default */
862 	wr32(IGC_TXDCTL(0), 0);
863 
864 	/* Program the Transmit Control Register */
865 	tctl = rd32(IGC_TCTL);
866 	tctl &= ~IGC_TCTL_CT;
867 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
868 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
869 
870 	/* Enable transmits */
871 	tctl |= IGC_TCTL_EN;
872 
873 	wr32(IGC_TCTL, tctl);
874 }
875 
876 /**
877  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
878  * @adapter: Pointer to adapter where the filter should be set
879  * @index: Filter index
880  * @type: MAC address filter type (source or destination)
881  * @addr: MAC address
882  * @queue: If non-negative, queue assignment feature is enabled and frames
883  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
884  *         assignment is disabled.
885  */
886 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
887 				  enum igc_mac_filter_type type,
888 				  const u8 *addr, int queue)
889 {
890 	struct net_device *dev = adapter->netdev;
891 	struct igc_hw *hw = &adapter->hw;
892 	u32 ral, rah;
893 
894 	if (WARN_ON(index >= hw->mac.rar_entry_count))
895 		return;
896 
897 	ral = le32_to_cpup((__le32 *)(addr));
898 	rah = le16_to_cpup((__le16 *)(addr + 4));
899 
900 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
901 		rah &= ~IGC_RAH_ASEL_MASK;
902 		rah |= IGC_RAH_ASEL_SRC_ADDR;
903 	}
904 
905 	if (queue >= 0) {
906 		rah &= ~IGC_RAH_QSEL_MASK;
907 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
908 		rah |= IGC_RAH_QSEL_ENABLE;
909 	}
910 
911 	rah |= IGC_RAH_AV;
912 
913 	wr32(IGC_RAL(index), ral);
914 	wr32(IGC_RAH(index), rah);
915 
916 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
917 }
918 
919 /**
920  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
921  * @adapter: Pointer to adapter where the filter should be cleared
922  * @index: Filter index
923  */
924 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
925 {
926 	struct net_device *dev = adapter->netdev;
927 	struct igc_hw *hw = &adapter->hw;
928 
929 	if (WARN_ON(index >= hw->mac.rar_entry_count))
930 		return;
931 
932 	wr32(IGC_RAL(index), 0);
933 	wr32(IGC_RAH(index), 0);
934 
935 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
936 }
937 
938 /* Set default MAC address for the PF in the first RAR entry */
939 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
940 {
941 	struct net_device *dev = adapter->netdev;
942 	u8 *addr = adapter->hw.mac.addr;
943 
944 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
945 
946 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
947 }
948 
949 /**
950  * igc_set_mac - Change the Ethernet Address of the NIC
951  * @netdev: network interface device structure
952  * @p: pointer to an address structure
953  *
954  * Returns 0 on success, negative on failure
955  */
956 static int igc_set_mac(struct net_device *netdev, void *p)
957 {
958 	struct igc_adapter *adapter = netdev_priv(netdev);
959 	struct igc_hw *hw = &adapter->hw;
960 	struct sockaddr *addr = p;
961 
962 	if (!is_valid_ether_addr(addr->sa_data))
963 		return -EADDRNOTAVAIL;
964 
965 	eth_hw_addr_set(netdev, addr->sa_data);
966 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
967 
968 	/* set the correct pool for the new PF MAC address in entry 0 */
969 	igc_set_default_mac_filter(adapter);
970 
971 	return 0;
972 }
973 
974 /**
975  *  igc_write_mc_addr_list - write multicast addresses to MTA
976  *  @netdev: network interface device structure
977  *
978  *  Writes multicast address list to the MTA hash table.
979  *  Returns: -ENOMEM on failure
980  *           0 on no addresses written
981  *           X on writing X addresses to MTA
982  **/
983 static int igc_write_mc_addr_list(struct net_device *netdev)
984 {
985 	struct igc_adapter *adapter = netdev_priv(netdev);
986 	struct igc_hw *hw = &adapter->hw;
987 	struct netdev_hw_addr *ha;
988 	u8  *mta_list;
989 	int i;
990 
991 	if (netdev_mc_empty(netdev)) {
992 		/* nothing to program, so clear mc list */
993 		igc_update_mc_addr_list(hw, NULL, 0);
994 		return 0;
995 	}
996 
997 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
998 	if (!mta_list)
999 		return -ENOMEM;
1000 
1001 	/* The shared function expects a packed array of only addresses. */
1002 	i = 0;
1003 	netdev_for_each_mc_addr(ha, netdev)
1004 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1005 
1006 	igc_update_mc_addr_list(hw, mta_list, i);
1007 	kfree(mta_list);
1008 
1009 	return netdev_mc_count(netdev);
1010 }
1011 
1012 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1013 				bool *first_flag, bool *insert_empty)
1014 {
1015 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1016 	ktime_t cycle_time = adapter->cycle_time;
1017 	ktime_t base_time = adapter->base_time;
1018 	ktime_t now = ktime_get_clocktai();
1019 	ktime_t baset_est, end_of_cycle;
1020 	u32 launchtime;
1021 	s64 n;
1022 
1023 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1024 
1025 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1026 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1027 
1028 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1029 		if (baset_est != ring->last_ff_cycle) {
1030 			*first_flag = true;
1031 			ring->last_ff_cycle = baset_est;
1032 
1033 			if (ktime_compare(txtime, ring->last_tx_cycle) > 0)
1034 				*insert_empty = true;
1035 		}
1036 	}
1037 
1038 	/* Introducing a window at end of cycle on which packets
1039 	 * potentially not honor launchtime. Window of 5us chosen
1040 	 * considering software update the tail pointer and packets
1041 	 * are dma'ed to packet buffer.
1042 	 */
1043 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1044 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1045 			    txtime);
1046 
1047 	ring->last_tx_cycle = end_of_cycle;
1048 
1049 	launchtime = ktime_sub_ns(txtime, baset_est);
1050 	if (launchtime > 0)
1051 		div_s64_rem(launchtime, cycle_time, &launchtime);
1052 	else
1053 		launchtime = 0;
1054 
1055 	return cpu_to_le32(launchtime);
1056 }
1057 
1058 static int igc_init_empty_frame(struct igc_ring *ring,
1059 				struct igc_tx_buffer *buffer,
1060 				struct sk_buff *skb)
1061 {
1062 	unsigned int size;
1063 	dma_addr_t dma;
1064 
1065 	size = skb_headlen(skb);
1066 
1067 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1068 	if (dma_mapping_error(ring->dev, dma)) {
1069 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1070 		return -ENOMEM;
1071 	}
1072 
1073 	buffer->skb = skb;
1074 	buffer->protocol = 0;
1075 	buffer->bytecount = skb->len;
1076 	buffer->gso_segs = 1;
1077 	buffer->time_stamp = jiffies;
1078 	dma_unmap_len_set(buffer, len, skb->len);
1079 	dma_unmap_addr_set(buffer, dma, dma);
1080 
1081 	return 0;
1082 }
1083 
1084 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1085 					struct sk_buff *skb,
1086 					struct igc_tx_buffer *first)
1087 {
1088 	union igc_adv_tx_desc *desc;
1089 	u32 cmd_type, olinfo_status;
1090 	int err;
1091 
1092 	if (!igc_desc_unused(ring))
1093 		return -EBUSY;
1094 
1095 	err = igc_init_empty_frame(ring, first, skb);
1096 	if (err)
1097 		return err;
1098 
1099 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1100 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1101 		   first->bytecount;
1102 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1103 
1104 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1105 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1106 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1107 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1108 
1109 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1110 
1111 	first->next_to_watch = desc;
1112 
1113 	ring->next_to_use++;
1114 	if (ring->next_to_use == ring->count)
1115 		ring->next_to_use = 0;
1116 
1117 	return 0;
1118 }
1119 
1120 #define IGC_EMPTY_FRAME_SIZE 60
1121 
1122 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1123 			    __le32 launch_time, bool first_flag,
1124 			    u32 vlan_macip_lens, u32 type_tucmd,
1125 			    u32 mss_l4len_idx)
1126 {
1127 	struct igc_adv_tx_context_desc *context_desc;
1128 	u16 i = tx_ring->next_to_use;
1129 
1130 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1131 
1132 	i++;
1133 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1134 
1135 	/* set bits to identify this as an advanced context descriptor */
1136 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1137 
1138 	/* For i225, context index must be unique per ring. */
1139 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1140 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1141 
1142 	if (first_flag)
1143 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1144 
1145 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1146 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1147 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1148 	context_desc->launch_time	= launch_time;
1149 }
1150 
1151 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1152 			__le32 launch_time, bool first_flag)
1153 {
1154 	struct sk_buff *skb = first->skb;
1155 	u32 vlan_macip_lens = 0;
1156 	u32 type_tucmd = 0;
1157 
1158 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1159 csum_failed:
1160 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1161 		    !tx_ring->launchtime_enable)
1162 			return;
1163 		goto no_csum;
1164 	}
1165 
1166 	switch (skb->csum_offset) {
1167 	case offsetof(struct tcphdr, check):
1168 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1169 		fallthrough;
1170 	case offsetof(struct udphdr, check):
1171 		break;
1172 	case offsetof(struct sctphdr, checksum):
1173 		/* validate that this is actually an SCTP request */
1174 		if (skb_csum_is_sctp(skb)) {
1175 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1176 			break;
1177 		}
1178 		fallthrough;
1179 	default:
1180 		skb_checksum_help(skb);
1181 		goto csum_failed;
1182 	}
1183 
1184 	/* update TX checksum flag */
1185 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1186 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1187 			  skb_network_offset(skb);
1188 no_csum:
1189 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1190 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1191 
1192 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1193 			vlan_macip_lens, type_tucmd, 0);
1194 }
1195 
1196 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1197 {
1198 	struct net_device *netdev = tx_ring->netdev;
1199 
1200 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1201 
1202 	/* memory barriier comment */
1203 	smp_mb();
1204 
1205 	/* We need to check again in a case another CPU has just
1206 	 * made room available.
1207 	 */
1208 	if (igc_desc_unused(tx_ring) < size)
1209 		return -EBUSY;
1210 
1211 	/* A reprieve! */
1212 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1213 
1214 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1215 	tx_ring->tx_stats.restart_queue2++;
1216 	u64_stats_update_end(&tx_ring->tx_syncp2);
1217 
1218 	return 0;
1219 }
1220 
1221 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1222 {
1223 	if (igc_desc_unused(tx_ring) >= size)
1224 		return 0;
1225 	return __igc_maybe_stop_tx(tx_ring, size);
1226 }
1227 
1228 #define IGC_SET_FLAG(_input, _flag, _result) \
1229 	(((_flag) <= (_result)) ?				\
1230 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1231 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1232 
1233 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1234 {
1235 	/* set type for advanced descriptor with frame checksum insertion */
1236 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1237 		       IGC_ADVTXD_DCMD_DEXT |
1238 		       IGC_ADVTXD_DCMD_IFCS;
1239 
1240 	/* set HW vlan bit if vlan is present */
1241 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1242 				 IGC_ADVTXD_DCMD_VLE);
1243 
1244 	/* set segmentation bits for TSO */
1245 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1246 				 (IGC_ADVTXD_DCMD_TSE));
1247 
1248 	/* set timestamp bit if present */
1249 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1250 				 (IGC_ADVTXD_MAC_TSTAMP));
1251 
1252 	/* insert frame checksum */
1253 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1254 
1255 	return cmd_type;
1256 }
1257 
1258 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1259 				 union igc_adv_tx_desc *tx_desc,
1260 				 u32 tx_flags, unsigned int paylen)
1261 {
1262 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1263 
1264 	/* insert L4 checksum */
1265 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1266 			  ((IGC_TXD_POPTS_TXSM << 8) /
1267 			  IGC_TX_FLAGS_CSUM);
1268 
1269 	/* insert IPv4 checksum */
1270 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1271 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1272 			  IGC_TX_FLAGS_IPV4);
1273 
1274 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1275 }
1276 
1277 static int igc_tx_map(struct igc_ring *tx_ring,
1278 		      struct igc_tx_buffer *first,
1279 		      const u8 hdr_len)
1280 {
1281 	struct sk_buff *skb = first->skb;
1282 	struct igc_tx_buffer *tx_buffer;
1283 	union igc_adv_tx_desc *tx_desc;
1284 	u32 tx_flags = first->tx_flags;
1285 	skb_frag_t *frag;
1286 	u16 i = tx_ring->next_to_use;
1287 	unsigned int data_len, size;
1288 	dma_addr_t dma;
1289 	u32 cmd_type;
1290 
1291 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1292 	tx_desc = IGC_TX_DESC(tx_ring, i);
1293 
1294 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1295 
1296 	size = skb_headlen(skb);
1297 	data_len = skb->data_len;
1298 
1299 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1300 
1301 	tx_buffer = first;
1302 
1303 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1304 		if (dma_mapping_error(tx_ring->dev, dma))
1305 			goto dma_error;
1306 
1307 		/* record length, and DMA address */
1308 		dma_unmap_len_set(tx_buffer, len, size);
1309 		dma_unmap_addr_set(tx_buffer, dma, dma);
1310 
1311 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1312 
1313 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1314 			tx_desc->read.cmd_type_len =
1315 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1316 
1317 			i++;
1318 			tx_desc++;
1319 			if (i == tx_ring->count) {
1320 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1321 				i = 0;
1322 			}
1323 			tx_desc->read.olinfo_status = 0;
1324 
1325 			dma += IGC_MAX_DATA_PER_TXD;
1326 			size -= IGC_MAX_DATA_PER_TXD;
1327 
1328 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1329 		}
1330 
1331 		if (likely(!data_len))
1332 			break;
1333 
1334 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1335 
1336 		i++;
1337 		tx_desc++;
1338 		if (i == tx_ring->count) {
1339 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1340 			i = 0;
1341 		}
1342 		tx_desc->read.olinfo_status = 0;
1343 
1344 		size = skb_frag_size(frag);
1345 		data_len -= size;
1346 
1347 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1348 				       size, DMA_TO_DEVICE);
1349 
1350 		tx_buffer = &tx_ring->tx_buffer_info[i];
1351 	}
1352 
1353 	/* write last descriptor with RS and EOP bits */
1354 	cmd_type |= size | IGC_TXD_DCMD;
1355 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1356 
1357 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1358 
1359 	/* set the timestamp */
1360 	first->time_stamp = jiffies;
1361 
1362 	skb_tx_timestamp(skb);
1363 
1364 	/* Force memory writes to complete before letting h/w know there
1365 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1366 	 * memory model archs, such as IA-64).
1367 	 *
1368 	 * We also need this memory barrier to make certain all of the
1369 	 * status bits have been updated before next_to_watch is written.
1370 	 */
1371 	wmb();
1372 
1373 	/* set next_to_watch value indicating a packet is present */
1374 	first->next_to_watch = tx_desc;
1375 
1376 	i++;
1377 	if (i == tx_ring->count)
1378 		i = 0;
1379 
1380 	tx_ring->next_to_use = i;
1381 
1382 	/* Make sure there is space in the ring for the next send. */
1383 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1384 
1385 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1386 		writel(i, tx_ring->tail);
1387 	}
1388 
1389 	return 0;
1390 dma_error:
1391 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1392 	tx_buffer = &tx_ring->tx_buffer_info[i];
1393 
1394 	/* clear dma mappings for failed tx_buffer_info map */
1395 	while (tx_buffer != first) {
1396 		if (dma_unmap_len(tx_buffer, len))
1397 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1398 
1399 		if (i-- == 0)
1400 			i += tx_ring->count;
1401 		tx_buffer = &tx_ring->tx_buffer_info[i];
1402 	}
1403 
1404 	if (dma_unmap_len(tx_buffer, len))
1405 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1406 
1407 	dev_kfree_skb_any(tx_buffer->skb);
1408 	tx_buffer->skb = NULL;
1409 
1410 	tx_ring->next_to_use = i;
1411 
1412 	return -1;
1413 }
1414 
1415 static int igc_tso(struct igc_ring *tx_ring,
1416 		   struct igc_tx_buffer *first,
1417 		   __le32 launch_time, bool first_flag,
1418 		   u8 *hdr_len)
1419 {
1420 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1421 	struct sk_buff *skb = first->skb;
1422 	union {
1423 		struct iphdr *v4;
1424 		struct ipv6hdr *v6;
1425 		unsigned char *hdr;
1426 	} ip;
1427 	union {
1428 		struct tcphdr *tcp;
1429 		struct udphdr *udp;
1430 		unsigned char *hdr;
1431 	} l4;
1432 	u32 paylen, l4_offset;
1433 	int err;
1434 
1435 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1436 		return 0;
1437 
1438 	if (!skb_is_gso(skb))
1439 		return 0;
1440 
1441 	err = skb_cow_head(skb, 0);
1442 	if (err < 0)
1443 		return err;
1444 
1445 	ip.hdr = skb_network_header(skb);
1446 	l4.hdr = skb_checksum_start(skb);
1447 
1448 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1449 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1450 
1451 	/* initialize outer IP header fields */
1452 	if (ip.v4->version == 4) {
1453 		unsigned char *csum_start = skb_checksum_start(skb);
1454 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1455 
1456 		/* IP header will have to cancel out any data that
1457 		 * is not a part of the outer IP header
1458 		 */
1459 		ip.v4->check = csum_fold(csum_partial(trans_start,
1460 						      csum_start - trans_start,
1461 						      0));
1462 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1463 
1464 		ip.v4->tot_len = 0;
1465 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1466 				   IGC_TX_FLAGS_CSUM |
1467 				   IGC_TX_FLAGS_IPV4;
1468 	} else {
1469 		ip.v6->payload_len = 0;
1470 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1471 				   IGC_TX_FLAGS_CSUM;
1472 	}
1473 
1474 	/* determine offset of inner transport header */
1475 	l4_offset = l4.hdr - skb->data;
1476 
1477 	/* remove payload length from inner checksum */
1478 	paylen = skb->len - l4_offset;
1479 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1480 		/* compute length of segmentation header */
1481 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1482 		csum_replace_by_diff(&l4.tcp->check,
1483 				     (__force __wsum)htonl(paylen));
1484 	} else {
1485 		/* compute length of segmentation header */
1486 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1487 		csum_replace_by_diff(&l4.udp->check,
1488 				     (__force __wsum)htonl(paylen));
1489 	}
1490 
1491 	/* update gso size and bytecount with header size */
1492 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1493 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1494 
1495 	/* MSS L4LEN IDX */
1496 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1497 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1498 
1499 	/* VLAN MACLEN IPLEN */
1500 	vlan_macip_lens = l4.hdr - ip.hdr;
1501 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1502 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1503 
1504 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1505 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1506 
1507 	return 1;
1508 }
1509 
1510 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1511 				       struct igc_ring *tx_ring)
1512 {
1513 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1514 	bool first_flag = false, insert_empty = false;
1515 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1516 	__be16 protocol = vlan_get_protocol(skb);
1517 	struct igc_tx_buffer *first;
1518 	__le32 launch_time = 0;
1519 	u32 tx_flags = 0;
1520 	unsigned short f;
1521 	ktime_t txtime;
1522 	u8 hdr_len = 0;
1523 	int tso = 0;
1524 
1525 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1526 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1527 	 *	+ 2 desc gap to keep tail from touching head,
1528 	 *	+ 1 desc for context descriptor,
1529 	 * otherwise try next time
1530 	 */
1531 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1532 		count += TXD_USE_COUNT(skb_frag_size(
1533 						&skb_shinfo(skb)->frags[f]));
1534 
1535 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1536 		/* this is a hard error */
1537 		return NETDEV_TX_BUSY;
1538 	}
1539 
1540 	if (!tx_ring->launchtime_enable)
1541 		goto done;
1542 
1543 	txtime = skb->tstamp;
1544 	skb->tstamp = ktime_set(0, 0);
1545 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1546 
1547 	if (insert_empty) {
1548 		struct igc_tx_buffer *empty_info;
1549 		struct sk_buff *empty;
1550 		void *data;
1551 
1552 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1553 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1554 		if (!empty)
1555 			goto done;
1556 
1557 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1558 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1559 
1560 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1561 
1562 		if (igc_init_tx_empty_descriptor(tx_ring,
1563 						 empty,
1564 						 empty_info) < 0)
1565 			dev_kfree_skb_any(empty);
1566 	}
1567 
1568 done:
1569 	/* record the location of the first descriptor for this packet */
1570 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1571 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1572 	first->skb = skb;
1573 	first->bytecount = skb->len;
1574 	first->gso_segs = 1;
1575 
1576 	if (tx_ring->max_sdu > 0) {
1577 		u32 max_sdu = 0;
1578 
1579 		max_sdu = tx_ring->max_sdu +
1580 			  (skb_vlan_tagged(first->skb) ? VLAN_HLEN : 0);
1581 
1582 		if (first->bytecount > max_sdu) {
1583 			adapter->stats.txdrop++;
1584 			goto out_drop;
1585 		}
1586 	}
1587 
1588 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1589 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1590 		/* FIXME: add support for retrieving timestamps from
1591 		 * the other timer registers before skipping the
1592 		 * timestamping request.
1593 		 */
1594 		unsigned long flags;
1595 
1596 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1597 		if (!adapter->ptp_tx_skb) {
1598 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1599 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1600 
1601 			adapter->ptp_tx_skb = skb_get(skb);
1602 			adapter->ptp_tx_start = jiffies;
1603 		} else {
1604 			adapter->tx_hwtstamp_skipped++;
1605 		}
1606 
1607 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1608 	}
1609 
1610 	if (skb_vlan_tag_present(skb)) {
1611 		tx_flags |= IGC_TX_FLAGS_VLAN;
1612 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1613 	}
1614 
1615 	/* record initial flags and protocol */
1616 	first->tx_flags = tx_flags;
1617 	first->protocol = protocol;
1618 
1619 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1620 	if (tso < 0)
1621 		goto out_drop;
1622 	else if (!tso)
1623 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1624 
1625 	igc_tx_map(tx_ring, first, hdr_len);
1626 
1627 	return NETDEV_TX_OK;
1628 
1629 out_drop:
1630 	dev_kfree_skb_any(first->skb);
1631 	first->skb = NULL;
1632 
1633 	return NETDEV_TX_OK;
1634 }
1635 
1636 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1637 						    struct sk_buff *skb)
1638 {
1639 	unsigned int r_idx = skb->queue_mapping;
1640 
1641 	if (r_idx >= adapter->num_tx_queues)
1642 		r_idx = r_idx % adapter->num_tx_queues;
1643 
1644 	return adapter->tx_ring[r_idx];
1645 }
1646 
1647 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1648 				  struct net_device *netdev)
1649 {
1650 	struct igc_adapter *adapter = netdev_priv(netdev);
1651 
1652 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1653 	 * in order to meet this minimum size requirement.
1654 	 */
1655 	if (skb->len < 17) {
1656 		if (skb_padto(skb, 17))
1657 			return NETDEV_TX_OK;
1658 		skb->len = 17;
1659 	}
1660 
1661 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1662 }
1663 
1664 static void igc_rx_checksum(struct igc_ring *ring,
1665 			    union igc_adv_rx_desc *rx_desc,
1666 			    struct sk_buff *skb)
1667 {
1668 	skb_checksum_none_assert(skb);
1669 
1670 	/* Ignore Checksum bit is set */
1671 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1672 		return;
1673 
1674 	/* Rx checksum disabled via ethtool */
1675 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1676 		return;
1677 
1678 	/* TCP/UDP checksum error bit is set */
1679 	if (igc_test_staterr(rx_desc,
1680 			     IGC_RXDEXT_STATERR_L4E |
1681 			     IGC_RXDEXT_STATERR_IPE)) {
1682 		/* work around errata with sctp packets where the TCPE aka
1683 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1684 		 * packets (aka let the stack check the crc32c)
1685 		 */
1686 		if (!(skb->len == 60 &&
1687 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1688 			u64_stats_update_begin(&ring->rx_syncp);
1689 			ring->rx_stats.csum_err++;
1690 			u64_stats_update_end(&ring->rx_syncp);
1691 		}
1692 		/* let the stack verify checksum errors */
1693 		return;
1694 	}
1695 	/* It must be a TCP or UDP packet with a valid checksum */
1696 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1697 				      IGC_RXD_STAT_UDPCS))
1698 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1699 
1700 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1701 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1702 }
1703 
1704 /* Mapping HW RSS Type to enum pkt_hash_types */
1705 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1706 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1707 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1708 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1709 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1710 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1711 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1712 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1713 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1714 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1715 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1716 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1717 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1718 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1719 	[13] = PKT_HASH_TYPE_NONE,
1720 	[14] = PKT_HASH_TYPE_NONE,
1721 	[15] = PKT_HASH_TYPE_NONE,
1722 };
1723 
1724 static inline void igc_rx_hash(struct igc_ring *ring,
1725 			       union igc_adv_rx_desc *rx_desc,
1726 			       struct sk_buff *skb)
1727 {
1728 	if (ring->netdev->features & NETIF_F_RXHASH) {
1729 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1730 		u32 rss_type = igc_rss_type(rx_desc);
1731 
1732 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1733 	}
1734 }
1735 
1736 static void igc_rx_vlan(struct igc_ring *rx_ring,
1737 			union igc_adv_rx_desc *rx_desc,
1738 			struct sk_buff *skb)
1739 {
1740 	struct net_device *dev = rx_ring->netdev;
1741 	u16 vid;
1742 
1743 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1744 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1745 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1746 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1747 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1748 		else
1749 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1750 
1751 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1752 	}
1753 }
1754 
1755 /**
1756  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1757  * @rx_ring: rx descriptor ring packet is being transacted on
1758  * @rx_desc: pointer to the EOP Rx descriptor
1759  * @skb: pointer to current skb being populated
1760  *
1761  * This function checks the ring, descriptor, and packet information in order
1762  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1763  * skb.
1764  */
1765 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1766 				   union igc_adv_rx_desc *rx_desc,
1767 				   struct sk_buff *skb)
1768 {
1769 	igc_rx_hash(rx_ring, rx_desc, skb);
1770 
1771 	igc_rx_checksum(rx_ring, rx_desc, skb);
1772 
1773 	igc_rx_vlan(rx_ring, rx_desc, skb);
1774 
1775 	skb_record_rx_queue(skb, rx_ring->queue_index);
1776 
1777 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1778 }
1779 
1780 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1781 {
1782 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1783 	struct igc_adapter *adapter = netdev_priv(netdev);
1784 	struct igc_hw *hw = &adapter->hw;
1785 	u32 ctrl;
1786 
1787 	ctrl = rd32(IGC_CTRL);
1788 
1789 	if (enable) {
1790 		/* enable VLAN tag insert/strip */
1791 		ctrl |= IGC_CTRL_VME;
1792 	} else {
1793 		/* disable VLAN tag insert/strip */
1794 		ctrl &= ~IGC_CTRL_VME;
1795 	}
1796 	wr32(IGC_CTRL, ctrl);
1797 }
1798 
1799 static void igc_restore_vlan(struct igc_adapter *adapter)
1800 {
1801 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1802 }
1803 
1804 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1805 					       const unsigned int size,
1806 					       int *rx_buffer_pgcnt)
1807 {
1808 	struct igc_rx_buffer *rx_buffer;
1809 
1810 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1811 	*rx_buffer_pgcnt =
1812 #if (PAGE_SIZE < 8192)
1813 		page_count(rx_buffer->page);
1814 #else
1815 		0;
1816 #endif
1817 	prefetchw(rx_buffer->page);
1818 
1819 	/* we are reusing so sync this buffer for CPU use */
1820 	dma_sync_single_range_for_cpu(rx_ring->dev,
1821 				      rx_buffer->dma,
1822 				      rx_buffer->page_offset,
1823 				      size,
1824 				      DMA_FROM_DEVICE);
1825 
1826 	rx_buffer->pagecnt_bias--;
1827 
1828 	return rx_buffer;
1829 }
1830 
1831 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1832 			       unsigned int truesize)
1833 {
1834 #if (PAGE_SIZE < 8192)
1835 	buffer->page_offset ^= truesize;
1836 #else
1837 	buffer->page_offset += truesize;
1838 #endif
1839 }
1840 
1841 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1842 					      unsigned int size)
1843 {
1844 	unsigned int truesize;
1845 
1846 #if (PAGE_SIZE < 8192)
1847 	truesize = igc_rx_pg_size(ring) / 2;
1848 #else
1849 	truesize = ring_uses_build_skb(ring) ?
1850 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1851 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1852 		   SKB_DATA_ALIGN(size);
1853 #endif
1854 	return truesize;
1855 }
1856 
1857 /**
1858  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1859  * @rx_ring: rx descriptor ring to transact packets on
1860  * @rx_buffer: buffer containing page to add
1861  * @skb: sk_buff to place the data into
1862  * @size: size of buffer to be added
1863  *
1864  * This function will add the data contained in rx_buffer->page to the skb.
1865  */
1866 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1867 			    struct igc_rx_buffer *rx_buffer,
1868 			    struct sk_buff *skb,
1869 			    unsigned int size)
1870 {
1871 	unsigned int truesize;
1872 
1873 #if (PAGE_SIZE < 8192)
1874 	truesize = igc_rx_pg_size(rx_ring) / 2;
1875 #else
1876 	truesize = ring_uses_build_skb(rx_ring) ?
1877 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1878 		   SKB_DATA_ALIGN(size);
1879 #endif
1880 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1881 			rx_buffer->page_offset, size, truesize);
1882 
1883 	igc_rx_buffer_flip(rx_buffer, truesize);
1884 }
1885 
1886 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1887 				     struct igc_rx_buffer *rx_buffer,
1888 				     struct xdp_buff *xdp)
1889 {
1890 	unsigned int size = xdp->data_end - xdp->data;
1891 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1892 	unsigned int metasize = xdp->data - xdp->data_meta;
1893 	struct sk_buff *skb;
1894 
1895 	/* prefetch first cache line of first page */
1896 	net_prefetch(xdp->data_meta);
1897 
1898 	/* build an skb around the page buffer */
1899 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1900 	if (unlikely(!skb))
1901 		return NULL;
1902 
1903 	/* update pointers within the skb to store the data */
1904 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1905 	__skb_put(skb, size);
1906 	if (metasize)
1907 		skb_metadata_set(skb, metasize);
1908 
1909 	igc_rx_buffer_flip(rx_buffer, truesize);
1910 	return skb;
1911 }
1912 
1913 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1914 					 struct igc_rx_buffer *rx_buffer,
1915 					 struct xdp_buff *xdp,
1916 					 ktime_t timestamp)
1917 {
1918 	unsigned int metasize = xdp->data - xdp->data_meta;
1919 	unsigned int size = xdp->data_end - xdp->data;
1920 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1921 	void *va = xdp->data;
1922 	unsigned int headlen;
1923 	struct sk_buff *skb;
1924 
1925 	/* prefetch first cache line of first page */
1926 	net_prefetch(xdp->data_meta);
1927 
1928 	/* allocate a skb to store the frags */
1929 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1930 			     IGC_RX_HDR_LEN + metasize);
1931 	if (unlikely(!skb))
1932 		return NULL;
1933 
1934 	if (timestamp)
1935 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1936 
1937 	/* Determine available headroom for copy */
1938 	headlen = size;
1939 	if (headlen > IGC_RX_HDR_LEN)
1940 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1941 
1942 	/* align pull length to size of long to optimize memcpy performance */
1943 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1944 	       ALIGN(headlen + metasize, sizeof(long)));
1945 
1946 	if (metasize) {
1947 		skb_metadata_set(skb, metasize);
1948 		__skb_pull(skb, metasize);
1949 	}
1950 
1951 	/* update all of the pointers */
1952 	size -= headlen;
1953 	if (size) {
1954 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1955 				(va + headlen) - page_address(rx_buffer->page),
1956 				size, truesize);
1957 		igc_rx_buffer_flip(rx_buffer, truesize);
1958 	} else {
1959 		rx_buffer->pagecnt_bias++;
1960 	}
1961 
1962 	return skb;
1963 }
1964 
1965 /**
1966  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1967  * @rx_ring: rx descriptor ring to store buffers on
1968  * @old_buff: donor buffer to have page reused
1969  *
1970  * Synchronizes page for reuse by the adapter
1971  */
1972 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1973 			      struct igc_rx_buffer *old_buff)
1974 {
1975 	u16 nta = rx_ring->next_to_alloc;
1976 	struct igc_rx_buffer *new_buff;
1977 
1978 	new_buff = &rx_ring->rx_buffer_info[nta];
1979 
1980 	/* update, and store next to alloc */
1981 	nta++;
1982 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1983 
1984 	/* Transfer page from old buffer to new buffer.
1985 	 * Move each member individually to avoid possible store
1986 	 * forwarding stalls.
1987 	 */
1988 	new_buff->dma		= old_buff->dma;
1989 	new_buff->page		= old_buff->page;
1990 	new_buff->page_offset	= old_buff->page_offset;
1991 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1992 }
1993 
1994 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1995 				  int rx_buffer_pgcnt)
1996 {
1997 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1998 	struct page *page = rx_buffer->page;
1999 
2000 	/* avoid re-using remote and pfmemalloc pages */
2001 	if (!dev_page_is_reusable(page))
2002 		return false;
2003 
2004 #if (PAGE_SIZE < 8192)
2005 	/* if we are only owner of page we can reuse it */
2006 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2007 		return false;
2008 #else
2009 #define IGC_LAST_OFFSET \
2010 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2011 
2012 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2013 		return false;
2014 #endif
2015 
2016 	/* If we have drained the page fragment pool we need to update
2017 	 * the pagecnt_bias and page count so that we fully restock the
2018 	 * number of references the driver holds.
2019 	 */
2020 	if (unlikely(pagecnt_bias == 1)) {
2021 		page_ref_add(page, USHRT_MAX - 1);
2022 		rx_buffer->pagecnt_bias = USHRT_MAX;
2023 	}
2024 
2025 	return true;
2026 }
2027 
2028 /**
2029  * igc_is_non_eop - process handling of non-EOP buffers
2030  * @rx_ring: Rx ring being processed
2031  * @rx_desc: Rx descriptor for current buffer
2032  *
2033  * This function updates next to clean.  If the buffer is an EOP buffer
2034  * this function exits returning false, otherwise it will place the
2035  * sk_buff in the next buffer to be chained and return true indicating
2036  * that this is in fact a non-EOP buffer.
2037  */
2038 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2039 			   union igc_adv_rx_desc *rx_desc)
2040 {
2041 	u32 ntc = rx_ring->next_to_clean + 1;
2042 
2043 	/* fetch, update, and store next to clean */
2044 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2045 	rx_ring->next_to_clean = ntc;
2046 
2047 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2048 
2049 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2050 		return false;
2051 
2052 	return true;
2053 }
2054 
2055 /**
2056  * igc_cleanup_headers - Correct corrupted or empty headers
2057  * @rx_ring: rx descriptor ring packet is being transacted on
2058  * @rx_desc: pointer to the EOP Rx descriptor
2059  * @skb: pointer to current skb being fixed
2060  *
2061  * Address the case where we are pulling data in on pages only
2062  * and as such no data is present in the skb header.
2063  *
2064  * In addition if skb is not at least 60 bytes we need to pad it so that
2065  * it is large enough to qualify as a valid Ethernet frame.
2066  *
2067  * Returns true if an error was encountered and skb was freed.
2068  */
2069 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2070 				union igc_adv_rx_desc *rx_desc,
2071 				struct sk_buff *skb)
2072 {
2073 	/* XDP packets use error pointer so abort at this point */
2074 	if (IS_ERR(skb))
2075 		return true;
2076 
2077 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2078 		struct net_device *netdev = rx_ring->netdev;
2079 
2080 		if (!(netdev->features & NETIF_F_RXALL)) {
2081 			dev_kfree_skb_any(skb);
2082 			return true;
2083 		}
2084 	}
2085 
2086 	/* if eth_skb_pad returns an error the skb was freed */
2087 	if (eth_skb_pad(skb))
2088 		return true;
2089 
2090 	return false;
2091 }
2092 
2093 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2094 			      struct igc_rx_buffer *rx_buffer,
2095 			      int rx_buffer_pgcnt)
2096 {
2097 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2098 		/* hand second half of page back to the ring */
2099 		igc_reuse_rx_page(rx_ring, rx_buffer);
2100 	} else {
2101 		/* We are not reusing the buffer so unmap it and free
2102 		 * any references we are holding to it
2103 		 */
2104 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2105 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2106 				     IGC_RX_DMA_ATTR);
2107 		__page_frag_cache_drain(rx_buffer->page,
2108 					rx_buffer->pagecnt_bias);
2109 	}
2110 
2111 	/* clear contents of rx_buffer */
2112 	rx_buffer->page = NULL;
2113 }
2114 
2115 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2116 {
2117 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2118 
2119 	if (ring_uses_build_skb(rx_ring))
2120 		return IGC_SKB_PAD;
2121 	if (igc_xdp_is_enabled(adapter))
2122 		return XDP_PACKET_HEADROOM;
2123 
2124 	return 0;
2125 }
2126 
2127 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2128 				  struct igc_rx_buffer *bi)
2129 {
2130 	struct page *page = bi->page;
2131 	dma_addr_t dma;
2132 
2133 	/* since we are recycling buffers we should seldom need to alloc */
2134 	if (likely(page))
2135 		return true;
2136 
2137 	/* alloc new page for storage */
2138 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2139 	if (unlikely(!page)) {
2140 		rx_ring->rx_stats.alloc_failed++;
2141 		return false;
2142 	}
2143 
2144 	/* map page for use */
2145 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2146 				 igc_rx_pg_size(rx_ring),
2147 				 DMA_FROM_DEVICE,
2148 				 IGC_RX_DMA_ATTR);
2149 
2150 	/* if mapping failed free memory back to system since
2151 	 * there isn't much point in holding memory we can't use
2152 	 */
2153 	if (dma_mapping_error(rx_ring->dev, dma)) {
2154 		__free_page(page);
2155 
2156 		rx_ring->rx_stats.alloc_failed++;
2157 		return false;
2158 	}
2159 
2160 	bi->dma = dma;
2161 	bi->page = page;
2162 	bi->page_offset = igc_rx_offset(rx_ring);
2163 	page_ref_add(page, USHRT_MAX - 1);
2164 	bi->pagecnt_bias = USHRT_MAX;
2165 
2166 	return true;
2167 }
2168 
2169 /**
2170  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2171  * @rx_ring: rx descriptor ring
2172  * @cleaned_count: number of buffers to clean
2173  */
2174 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2175 {
2176 	union igc_adv_rx_desc *rx_desc;
2177 	u16 i = rx_ring->next_to_use;
2178 	struct igc_rx_buffer *bi;
2179 	u16 bufsz;
2180 
2181 	/* nothing to do */
2182 	if (!cleaned_count)
2183 		return;
2184 
2185 	rx_desc = IGC_RX_DESC(rx_ring, i);
2186 	bi = &rx_ring->rx_buffer_info[i];
2187 	i -= rx_ring->count;
2188 
2189 	bufsz = igc_rx_bufsz(rx_ring);
2190 
2191 	do {
2192 		if (!igc_alloc_mapped_page(rx_ring, bi))
2193 			break;
2194 
2195 		/* sync the buffer for use by the device */
2196 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2197 						 bi->page_offset, bufsz,
2198 						 DMA_FROM_DEVICE);
2199 
2200 		/* Refresh the desc even if buffer_addrs didn't change
2201 		 * because each write-back erases this info.
2202 		 */
2203 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2204 
2205 		rx_desc++;
2206 		bi++;
2207 		i++;
2208 		if (unlikely(!i)) {
2209 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2210 			bi = rx_ring->rx_buffer_info;
2211 			i -= rx_ring->count;
2212 		}
2213 
2214 		/* clear the length for the next_to_use descriptor */
2215 		rx_desc->wb.upper.length = 0;
2216 
2217 		cleaned_count--;
2218 	} while (cleaned_count);
2219 
2220 	i += rx_ring->count;
2221 
2222 	if (rx_ring->next_to_use != i) {
2223 		/* record the next descriptor to use */
2224 		rx_ring->next_to_use = i;
2225 
2226 		/* update next to alloc since we have filled the ring */
2227 		rx_ring->next_to_alloc = i;
2228 
2229 		/* Force memory writes to complete before letting h/w
2230 		 * know there are new descriptors to fetch.  (Only
2231 		 * applicable for weak-ordered memory model archs,
2232 		 * such as IA-64).
2233 		 */
2234 		wmb();
2235 		writel(i, rx_ring->tail);
2236 	}
2237 }
2238 
2239 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2240 {
2241 	union igc_adv_rx_desc *desc;
2242 	u16 i = ring->next_to_use;
2243 	struct igc_rx_buffer *bi;
2244 	dma_addr_t dma;
2245 	bool ok = true;
2246 
2247 	if (!count)
2248 		return ok;
2249 
2250 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2251 
2252 	desc = IGC_RX_DESC(ring, i);
2253 	bi = &ring->rx_buffer_info[i];
2254 	i -= ring->count;
2255 
2256 	do {
2257 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2258 		if (!bi->xdp) {
2259 			ok = false;
2260 			break;
2261 		}
2262 
2263 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2264 		desc->read.pkt_addr = cpu_to_le64(dma);
2265 
2266 		desc++;
2267 		bi++;
2268 		i++;
2269 		if (unlikely(!i)) {
2270 			desc = IGC_RX_DESC(ring, 0);
2271 			bi = ring->rx_buffer_info;
2272 			i -= ring->count;
2273 		}
2274 
2275 		/* Clear the length for the next_to_use descriptor. */
2276 		desc->wb.upper.length = 0;
2277 
2278 		count--;
2279 	} while (count);
2280 
2281 	i += ring->count;
2282 
2283 	if (ring->next_to_use != i) {
2284 		ring->next_to_use = i;
2285 
2286 		/* Force memory writes to complete before letting h/w
2287 		 * know there are new descriptors to fetch.  (Only
2288 		 * applicable for weak-ordered memory model archs,
2289 		 * such as IA-64).
2290 		 */
2291 		wmb();
2292 		writel(i, ring->tail);
2293 	}
2294 
2295 	return ok;
2296 }
2297 
2298 /* This function requires __netif_tx_lock is held by the caller. */
2299 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2300 				      struct xdp_frame *xdpf)
2301 {
2302 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2303 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2304 	u16 count, index = ring->next_to_use;
2305 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2306 	struct igc_tx_buffer *buffer = head;
2307 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2308 	u32 olinfo_status, len = xdpf->len, cmd_type;
2309 	void *data = xdpf->data;
2310 	u16 i;
2311 
2312 	count = TXD_USE_COUNT(len);
2313 	for (i = 0; i < nr_frags; i++)
2314 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2315 
2316 	if (igc_maybe_stop_tx(ring, count + 3)) {
2317 		/* this is a hard error */
2318 		return -EBUSY;
2319 	}
2320 
2321 	i = 0;
2322 	head->bytecount = xdp_get_frame_len(xdpf);
2323 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2324 	head->gso_segs = 1;
2325 	head->xdpf = xdpf;
2326 
2327 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2328 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2329 
2330 	for (;;) {
2331 		dma_addr_t dma;
2332 
2333 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2334 		if (dma_mapping_error(ring->dev, dma)) {
2335 			netdev_err_once(ring->netdev,
2336 					"Failed to map DMA for TX\n");
2337 			goto unmap;
2338 		}
2339 
2340 		dma_unmap_len_set(buffer, len, len);
2341 		dma_unmap_addr_set(buffer, dma, dma);
2342 
2343 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2344 			   IGC_ADVTXD_DCMD_IFCS | len;
2345 
2346 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2347 		desc->read.buffer_addr = cpu_to_le64(dma);
2348 
2349 		buffer->protocol = 0;
2350 
2351 		if (++index == ring->count)
2352 			index = 0;
2353 
2354 		if (i == nr_frags)
2355 			break;
2356 
2357 		buffer = &ring->tx_buffer_info[index];
2358 		desc = IGC_TX_DESC(ring, index);
2359 		desc->read.olinfo_status = 0;
2360 
2361 		data = skb_frag_address(&sinfo->frags[i]);
2362 		len = skb_frag_size(&sinfo->frags[i]);
2363 		i++;
2364 	}
2365 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2366 
2367 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2368 	/* set the timestamp */
2369 	head->time_stamp = jiffies;
2370 	/* set next_to_watch value indicating a packet is present */
2371 	head->next_to_watch = desc;
2372 	ring->next_to_use = index;
2373 
2374 	return 0;
2375 
2376 unmap:
2377 	for (;;) {
2378 		buffer = &ring->tx_buffer_info[index];
2379 		if (dma_unmap_len(buffer, len))
2380 			dma_unmap_page(ring->dev,
2381 				       dma_unmap_addr(buffer, dma),
2382 				       dma_unmap_len(buffer, len),
2383 				       DMA_TO_DEVICE);
2384 		dma_unmap_len_set(buffer, len, 0);
2385 		if (buffer == head)
2386 			break;
2387 
2388 		if (!index)
2389 			index += ring->count;
2390 		index--;
2391 	}
2392 
2393 	return -ENOMEM;
2394 }
2395 
2396 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2397 					    int cpu)
2398 {
2399 	int index = cpu;
2400 
2401 	if (unlikely(index < 0))
2402 		index = 0;
2403 
2404 	while (index >= adapter->num_tx_queues)
2405 		index -= adapter->num_tx_queues;
2406 
2407 	return adapter->tx_ring[index];
2408 }
2409 
2410 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2411 {
2412 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2413 	int cpu = smp_processor_id();
2414 	struct netdev_queue *nq;
2415 	struct igc_ring *ring;
2416 	int res;
2417 
2418 	if (unlikely(!xdpf))
2419 		return -EFAULT;
2420 
2421 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2422 	nq = txring_txq(ring);
2423 
2424 	__netif_tx_lock(nq, cpu);
2425 	/* Avoid transmit queue timeout since we share it with the slow path */
2426 	txq_trans_cond_update(nq);
2427 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2428 	__netif_tx_unlock(nq);
2429 	return res;
2430 }
2431 
2432 /* This function assumes rcu_read_lock() is held by the caller. */
2433 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2434 			      struct bpf_prog *prog,
2435 			      struct xdp_buff *xdp)
2436 {
2437 	u32 act = bpf_prog_run_xdp(prog, xdp);
2438 
2439 	switch (act) {
2440 	case XDP_PASS:
2441 		return IGC_XDP_PASS;
2442 	case XDP_TX:
2443 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2444 			goto out_failure;
2445 		return IGC_XDP_TX;
2446 	case XDP_REDIRECT:
2447 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2448 			goto out_failure;
2449 		return IGC_XDP_REDIRECT;
2450 		break;
2451 	default:
2452 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2453 		fallthrough;
2454 	case XDP_ABORTED:
2455 out_failure:
2456 		trace_xdp_exception(adapter->netdev, prog, act);
2457 		fallthrough;
2458 	case XDP_DROP:
2459 		return IGC_XDP_CONSUMED;
2460 	}
2461 }
2462 
2463 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2464 					struct xdp_buff *xdp)
2465 {
2466 	struct bpf_prog *prog;
2467 	int res;
2468 
2469 	prog = READ_ONCE(adapter->xdp_prog);
2470 	if (!prog) {
2471 		res = IGC_XDP_PASS;
2472 		goto out;
2473 	}
2474 
2475 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2476 
2477 out:
2478 	return ERR_PTR(-res);
2479 }
2480 
2481 /* This function assumes __netif_tx_lock is held by the caller. */
2482 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2483 {
2484 	/* Once tail pointer is updated, hardware can fetch the descriptors
2485 	 * any time so we issue a write membar here to ensure all memory
2486 	 * writes are complete before the tail pointer is updated.
2487 	 */
2488 	wmb();
2489 	writel(ring->next_to_use, ring->tail);
2490 }
2491 
2492 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2493 {
2494 	int cpu = smp_processor_id();
2495 	struct netdev_queue *nq;
2496 	struct igc_ring *ring;
2497 
2498 	if (status & IGC_XDP_TX) {
2499 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2500 		nq = txring_txq(ring);
2501 
2502 		__netif_tx_lock(nq, cpu);
2503 		igc_flush_tx_descriptors(ring);
2504 		__netif_tx_unlock(nq);
2505 	}
2506 
2507 	if (status & IGC_XDP_REDIRECT)
2508 		xdp_do_flush();
2509 }
2510 
2511 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2512 				unsigned int packets, unsigned int bytes)
2513 {
2514 	struct igc_ring *ring = q_vector->rx.ring;
2515 
2516 	u64_stats_update_begin(&ring->rx_syncp);
2517 	ring->rx_stats.packets += packets;
2518 	ring->rx_stats.bytes += bytes;
2519 	u64_stats_update_end(&ring->rx_syncp);
2520 
2521 	q_vector->rx.total_packets += packets;
2522 	q_vector->rx.total_bytes += bytes;
2523 }
2524 
2525 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2526 {
2527 	unsigned int total_bytes = 0, total_packets = 0;
2528 	struct igc_adapter *adapter = q_vector->adapter;
2529 	struct igc_ring *rx_ring = q_vector->rx.ring;
2530 	struct sk_buff *skb = rx_ring->skb;
2531 	u16 cleaned_count = igc_desc_unused(rx_ring);
2532 	int xdp_status = 0, rx_buffer_pgcnt;
2533 
2534 	while (likely(total_packets < budget)) {
2535 		union igc_adv_rx_desc *rx_desc;
2536 		struct igc_rx_buffer *rx_buffer;
2537 		unsigned int size, truesize;
2538 		struct igc_xdp_buff ctx;
2539 		ktime_t timestamp = 0;
2540 		int pkt_offset = 0;
2541 		void *pktbuf;
2542 
2543 		/* return some buffers to hardware, one at a time is too slow */
2544 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2545 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2546 			cleaned_count = 0;
2547 		}
2548 
2549 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2550 		size = le16_to_cpu(rx_desc->wb.upper.length);
2551 		if (!size)
2552 			break;
2553 
2554 		/* This memory barrier is needed to keep us from reading
2555 		 * any other fields out of the rx_desc until we know the
2556 		 * descriptor has been written back
2557 		 */
2558 		dma_rmb();
2559 
2560 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2561 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2562 
2563 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2564 
2565 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2566 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2567 							pktbuf);
2568 			ctx.rx_ts = timestamp;
2569 			pkt_offset = IGC_TS_HDR_LEN;
2570 			size -= IGC_TS_HDR_LEN;
2571 		}
2572 
2573 		if (!skb) {
2574 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2575 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2576 					 igc_rx_offset(rx_ring) + pkt_offset,
2577 					 size, true);
2578 			xdp_buff_clear_frags_flag(&ctx.xdp);
2579 			ctx.rx_desc = rx_desc;
2580 
2581 			skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2582 		}
2583 
2584 		if (IS_ERR(skb)) {
2585 			unsigned int xdp_res = -PTR_ERR(skb);
2586 
2587 			switch (xdp_res) {
2588 			case IGC_XDP_CONSUMED:
2589 				rx_buffer->pagecnt_bias++;
2590 				break;
2591 			case IGC_XDP_TX:
2592 			case IGC_XDP_REDIRECT:
2593 				igc_rx_buffer_flip(rx_buffer, truesize);
2594 				xdp_status |= xdp_res;
2595 				break;
2596 			}
2597 
2598 			total_packets++;
2599 			total_bytes += size;
2600 		} else if (skb)
2601 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2602 		else if (ring_uses_build_skb(rx_ring))
2603 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2604 		else
2605 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx.xdp,
2606 						timestamp);
2607 
2608 		/* exit if we failed to retrieve a buffer */
2609 		if (!skb) {
2610 			rx_ring->rx_stats.alloc_failed++;
2611 			rx_buffer->pagecnt_bias++;
2612 			break;
2613 		}
2614 
2615 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2616 		cleaned_count++;
2617 
2618 		/* fetch next buffer in frame if non-eop */
2619 		if (igc_is_non_eop(rx_ring, rx_desc))
2620 			continue;
2621 
2622 		/* verify the packet layout is correct */
2623 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2624 			skb = NULL;
2625 			continue;
2626 		}
2627 
2628 		/* probably a little skewed due to removing CRC */
2629 		total_bytes += skb->len;
2630 
2631 		/* populate checksum, VLAN, and protocol */
2632 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2633 
2634 		napi_gro_receive(&q_vector->napi, skb);
2635 
2636 		/* reset skb pointer */
2637 		skb = NULL;
2638 
2639 		/* update budget accounting */
2640 		total_packets++;
2641 	}
2642 
2643 	if (xdp_status)
2644 		igc_finalize_xdp(adapter, xdp_status);
2645 
2646 	/* place incomplete frames back on ring for completion */
2647 	rx_ring->skb = skb;
2648 
2649 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2650 
2651 	if (cleaned_count)
2652 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2653 
2654 	return total_packets;
2655 }
2656 
2657 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2658 					    struct xdp_buff *xdp)
2659 {
2660 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2661 	unsigned int metasize = xdp->data - xdp->data_meta;
2662 	struct sk_buff *skb;
2663 
2664 	net_prefetch(xdp->data_meta);
2665 
2666 	skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2667 			       GFP_ATOMIC | __GFP_NOWARN);
2668 	if (unlikely(!skb))
2669 		return NULL;
2670 
2671 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2672 	       ALIGN(totalsize, sizeof(long)));
2673 
2674 	if (metasize) {
2675 		skb_metadata_set(skb, metasize);
2676 		__skb_pull(skb, metasize);
2677 	}
2678 
2679 	return skb;
2680 }
2681 
2682 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2683 				union igc_adv_rx_desc *desc,
2684 				struct xdp_buff *xdp,
2685 				ktime_t timestamp)
2686 {
2687 	struct igc_ring *ring = q_vector->rx.ring;
2688 	struct sk_buff *skb;
2689 
2690 	skb = igc_construct_skb_zc(ring, xdp);
2691 	if (!skb) {
2692 		ring->rx_stats.alloc_failed++;
2693 		return;
2694 	}
2695 
2696 	if (timestamp)
2697 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2698 
2699 	if (igc_cleanup_headers(ring, desc, skb))
2700 		return;
2701 
2702 	igc_process_skb_fields(ring, desc, skb);
2703 	napi_gro_receive(&q_vector->napi, skb);
2704 }
2705 
2706 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2707 {
2708 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2709 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2710 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2711 	 */
2712        return (struct igc_xdp_buff *)xdp;
2713 }
2714 
2715 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2716 {
2717 	struct igc_adapter *adapter = q_vector->adapter;
2718 	struct igc_ring *ring = q_vector->rx.ring;
2719 	u16 cleaned_count = igc_desc_unused(ring);
2720 	int total_bytes = 0, total_packets = 0;
2721 	u16 ntc = ring->next_to_clean;
2722 	struct bpf_prog *prog;
2723 	bool failure = false;
2724 	int xdp_status = 0;
2725 
2726 	rcu_read_lock();
2727 
2728 	prog = READ_ONCE(adapter->xdp_prog);
2729 
2730 	while (likely(total_packets < budget)) {
2731 		union igc_adv_rx_desc *desc;
2732 		struct igc_rx_buffer *bi;
2733 		struct igc_xdp_buff *ctx;
2734 		ktime_t timestamp = 0;
2735 		unsigned int size;
2736 		int res;
2737 
2738 		desc = IGC_RX_DESC(ring, ntc);
2739 		size = le16_to_cpu(desc->wb.upper.length);
2740 		if (!size)
2741 			break;
2742 
2743 		/* This memory barrier is needed to keep us from reading
2744 		 * any other fields out of the rx_desc until we know the
2745 		 * descriptor has been written back
2746 		 */
2747 		dma_rmb();
2748 
2749 		bi = &ring->rx_buffer_info[ntc];
2750 
2751 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2752 		ctx->rx_desc = desc;
2753 
2754 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2755 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2756 							bi->xdp->data);
2757 			ctx->rx_ts = timestamp;
2758 
2759 			bi->xdp->data += IGC_TS_HDR_LEN;
2760 
2761 			/* HW timestamp has been copied into local variable. Metadata
2762 			 * length when XDP program is called should be 0.
2763 			 */
2764 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2765 			size -= IGC_TS_HDR_LEN;
2766 		}
2767 
2768 		bi->xdp->data_end = bi->xdp->data + size;
2769 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2770 
2771 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2772 		switch (res) {
2773 		case IGC_XDP_PASS:
2774 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2775 			fallthrough;
2776 		case IGC_XDP_CONSUMED:
2777 			xsk_buff_free(bi->xdp);
2778 			break;
2779 		case IGC_XDP_TX:
2780 		case IGC_XDP_REDIRECT:
2781 			xdp_status |= res;
2782 			break;
2783 		}
2784 
2785 		bi->xdp = NULL;
2786 		total_bytes += size;
2787 		total_packets++;
2788 		cleaned_count++;
2789 		ntc++;
2790 		if (ntc == ring->count)
2791 			ntc = 0;
2792 	}
2793 
2794 	ring->next_to_clean = ntc;
2795 	rcu_read_unlock();
2796 
2797 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2798 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2799 
2800 	if (xdp_status)
2801 		igc_finalize_xdp(adapter, xdp_status);
2802 
2803 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2804 
2805 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2806 		if (failure || ring->next_to_clean == ring->next_to_use)
2807 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2808 		else
2809 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2810 		return total_packets;
2811 	}
2812 
2813 	return failure ? budget : total_packets;
2814 }
2815 
2816 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2817 				unsigned int packets, unsigned int bytes)
2818 {
2819 	struct igc_ring *ring = q_vector->tx.ring;
2820 
2821 	u64_stats_update_begin(&ring->tx_syncp);
2822 	ring->tx_stats.bytes += bytes;
2823 	ring->tx_stats.packets += packets;
2824 	u64_stats_update_end(&ring->tx_syncp);
2825 
2826 	q_vector->tx.total_bytes += bytes;
2827 	q_vector->tx.total_packets += packets;
2828 }
2829 
2830 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2831 {
2832 	struct xsk_buff_pool *pool = ring->xsk_pool;
2833 	struct netdev_queue *nq = txring_txq(ring);
2834 	union igc_adv_tx_desc *tx_desc = NULL;
2835 	int cpu = smp_processor_id();
2836 	u16 ntu = ring->next_to_use;
2837 	struct xdp_desc xdp_desc;
2838 	u16 budget;
2839 
2840 	if (!netif_carrier_ok(ring->netdev))
2841 		return;
2842 
2843 	__netif_tx_lock(nq, cpu);
2844 
2845 	/* Avoid transmit queue timeout since we share it with the slow path */
2846 	txq_trans_cond_update(nq);
2847 
2848 	budget = igc_desc_unused(ring);
2849 
2850 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2851 		u32 cmd_type, olinfo_status;
2852 		struct igc_tx_buffer *bi;
2853 		dma_addr_t dma;
2854 
2855 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2856 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2857 			   xdp_desc.len;
2858 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2859 
2860 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2861 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2862 
2863 		tx_desc = IGC_TX_DESC(ring, ntu);
2864 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2865 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2866 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2867 
2868 		bi = &ring->tx_buffer_info[ntu];
2869 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2870 		bi->protocol = 0;
2871 		bi->bytecount = xdp_desc.len;
2872 		bi->gso_segs = 1;
2873 		bi->time_stamp = jiffies;
2874 		bi->next_to_watch = tx_desc;
2875 
2876 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2877 
2878 		ntu++;
2879 		if (ntu == ring->count)
2880 			ntu = 0;
2881 	}
2882 
2883 	ring->next_to_use = ntu;
2884 	if (tx_desc) {
2885 		igc_flush_tx_descriptors(ring);
2886 		xsk_tx_release(pool);
2887 	}
2888 
2889 	__netif_tx_unlock(nq);
2890 }
2891 
2892 /**
2893  * igc_clean_tx_irq - Reclaim resources after transmit completes
2894  * @q_vector: pointer to q_vector containing needed info
2895  * @napi_budget: Used to determine if we are in netpoll
2896  *
2897  * returns true if ring is completely cleaned
2898  */
2899 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2900 {
2901 	struct igc_adapter *adapter = q_vector->adapter;
2902 	unsigned int total_bytes = 0, total_packets = 0;
2903 	unsigned int budget = q_vector->tx.work_limit;
2904 	struct igc_ring *tx_ring = q_vector->tx.ring;
2905 	unsigned int i = tx_ring->next_to_clean;
2906 	struct igc_tx_buffer *tx_buffer;
2907 	union igc_adv_tx_desc *tx_desc;
2908 	u32 xsk_frames = 0;
2909 
2910 	if (test_bit(__IGC_DOWN, &adapter->state))
2911 		return true;
2912 
2913 	tx_buffer = &tx_ring->tx_buffer_info[i];
2914 	tx_desc = IGC_TX_DESC(tx_ring, i);
2915 	i -= tx_ring->count;
2916 
2917 	do {
2918 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2919 
2920 		/* if next_to_watch is not set then there is no work pending */
2921 		if (!eop_desc)
2922 			break;
2923 
2924 		/* prevent any other reads prior to eop_desc */
2925 		smp_rmb();
2926 
2927 		/* if DD is not set pending work has not been completed */
2928 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2929 			break;
2930 
2931 		/* clear next_to_watch to prevent false hangs */
2932 		tx_buffer->next_to_watch = NULL;
2933 
2934 		/* update the statistics for this packet */
2935 		total_bytes += tx_buffer->bytecount;
2936 		total_packets += tx_buffer->gso_segs;
2937 
2938 		switch (tx_buffer->type) {
2939 		case IGC_TX_BUFFER_TYPE_XSK:
2940 			xsk_frames++;
2941 			break;
2942 		case IGC_TX_BUFFER_TYPE_XDP:
2943 			xdp_return_frame(tx_buffer->xdpf);
2944 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2945 			break;
2946 		case IGC_TX_BUFFER_TYPE_SKB:
2947 			napi_consume_skb(tx_buffer->skb, napi_budget);
2948 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2949 			break;
2950 		default:
2951 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2952 			break;
2953 		}
2954 
2955 		/* clear last DMA location and unmap remaining buffers */
2956 		while (tx_desc != eop_desc) {
2957 			tx_buffer++;
2958 			tx_desc++;
2959 			i++;
2960 			if (unlikely(!i)) {
2961 				i -= tx_ring->count;
2962 				tx_buffer = tx_ring->tx_buffer_info;
2963 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2964 			}
2965 
2966 			/* unmap any remaining paged data */
2967 			if (dma_unmap_len(tx_buffer, len))
2968 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2969 		}
2970 
2971 		/* move us one more past the eop_desc for start of next pkt */
2972 		tx_buffer++;
2973 		tx_desc++;
2974 		i++;
2975 		if (unlikely(!i)) {
2976 			i -= tx_ring->count;
2977 			tx_buffer = tx_ring->tx_buffer_info;
2978 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2979 		}
2980 
2981 		/* issue prefetch for next Tx descriptor */
2982 		prefetch(tx_desc);
2983 
2984 		/* update budget accounting */
2985 		budget--;
2986 	} while (likely(budget));
2987 
2988 	netdev_tx_completed_queue(txring_txq(tx_ring),
2989 				  total_packets, total_bytes);
2990 
2991 	i += tx_ring->count;
2992 	tx_ring->next_to_clean = i;
2993 
2994 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2995 
2996 	if (tx_ring->xsk_pool) {
2997 		if (xsk_frames)
2998 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2999 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3000 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3001 		igc_xdp_xmit_zc(tx_ring);
3002 	}
3003 
3004 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3005 		struct igc_hw *hw = &adapter->hw;
3006 
3007 		/* Detect a transmit hang in hardware, this serializes the
3008 		 * check with the clearing of time_stamp and movement of i
3009 		 */
3010 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3011 		if (tx_buffer->next_to_watch &&
3012 		    time_after(jiffies, tx_buffer->time_stamp +
3013 		    (adapter->tx_timeout_factor * HZ)) &&
3014 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3015 		    (rd32(IGC_TDH(tx_ring->reg_idx)) !=
3016 		     readl(tx_ring->tail))) {
3017 			/* detected Tx unit hang */
3018 			netdev_err(tx_ring->netdev,
3019 				   "Detected Tx Unit Hang\n"
3020 				   "  Tx Queue             <%d>\n"
3021 				   "  TDH                  <%x>\n"
3022 				   "  TDT                  <%x>\n"
3023 				   "  next_to_use          <%x>\n"
3024 				   "  next_to_clean        <%x>\n"
3025 				   "buffer_info[next_to_clean]\n"
3026 				   "  time_stamp           <%lx>\n"
3027 				   "  next_to_watch        <%p>\n"
3028 				   "  jiffies              <%lx>\n"
3029 				   "  desc.status          <%x>\n",
3030 				   tx_ring->queue_index,
3031 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3032 				   readl(tx_ring->tail),
3033 				   tx_ring->next_to_use,
3034 				   tx_ring->next_to_clean,
3035 				   tx_buffer->time_stamp,
3036 				   tx_buffer->next_to_watch,
3037 				   jiffies,
3038 				   tx_buffer->next_to_watch->wb.status);
3039 			netif_stop_subqueue(tx_ring->netdev,
3040 					    tx_ring->queue_index);
3041 
3042 			/* we are about to reset, no point in enabling stuff */
3043 			return true;
3044 		}
3045 	}
3046 
3047 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3048 	if (unlikely(total_packets &&
3049 		     netif_carrier_ok(tx_ring->netdev) &&
3050 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3051 		/* Make sure that anybody stopping the queue after this
3052 		 * sees the new next_to_clean.
3053 		 */
3054 		smp_mb();
3055 		if (__netif_subqueue_stopped(tx_ring->netdev,
3056 					     tx_ring->queue_index) &&
3057 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3058 			netif_wake_subqueue(tx_ring->netdev,
3059 					    tx_ring->queue_index);
3060 
3061 			u64_stats_update_begin(&tx_ring->tx_syncp);
3062 			tx_ring->tx_stats.restart_queue++;
3063 			u64_stats_update_end(&tx_ring->tx_syncp);
3064 		}
3065 	}
3066 
3067 	return !!budget;
3068 }
3069 
3070 static int igc_find_mac_filter(struct igc_adapter *adapter,
3071 			       enum igc_mac_filter_type type, const u8 *addr)
3072 {
3073 	struct igc_hw *hw = &adapter->hw;
3074 	int max_entries = hw->mac.rar_entry_count;
3075 	u32 ral, rah;
3076 	int i;
3077 
3078 	for (i = 0; i < max_entries; i++) {
3079 		ral = rd32(IGC_RAL(i));
3080 		rah = rd32(IGC_RAH(i));
3081 
3082 		if (!(rah & IGC_RAH_AV))
3083 			continue;
3084 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3085 			continue;
3086 		if ((rah & IGC_RAH_RAH_MASK) !=
3087 		    le16_to_cpup((__le16 *)(addr + 4)))
3088 			continue;
3089 		if (ral != le32_to_cpup((__le32 *)(addr)))
3090 			continue;
3091 
3092 		return i;
3093 	}
3094 
3095 	return -1;
3096 }
3097 
3098 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3099 {
3100 	struct igc_hw *hw = &adapter->hw;
3101 	int max_entries = hw->mac.rar_entry_count;
3102 	u32 rah;
3103 	int i;
3104 
3105 	for (i = 0; i < max_entries; i++) {
3106 		rah = rd32(IGC_RAH(i));
3107 
3108 		if (!(rah & IGC_RAH_AV))
3109 			return i;
3110 	}
3111 
3112 	return -1;
3113 }
3114 
3115 /**
3116  * igc_add_mac_filter() - Add MAC address filter
3117  * @adapter: Pointer to adapter where the filter should be added
3118  * @type: MAC address filter type (source or destination)
3119  * @addr: MAC address
3120  * @queue: If non-negative, queue assignment feature is enabled and frames
3121  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3122  *         assignment is disabled.
3123  *
3124  * Return: 0 in case of success, negative errno code otherwise.
3125  */
3126 static int igc_add_mac_filter(struct igc_adapter *adapter,
3127 			      enum igc_mac_filter_type type, const u8 *addr,
3128 			      int queue)
3129 {
3130 	struct net_device *dev = adapter->netdev;
3131 	int index;
3132 
3133 	index = igc_find_mac_filter(adapter, type, addr);
3134 	if (index >= 0)
3135 		goto update_filter;
3136 
3137 	index = igc_get_avail_mac_filter_slot(adapter);
3138 	if (index < 0)
3139 		return -ENOSPC;
3140 
3141 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3142 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3143 		   addr, queue);
3144 
3145 update_filter:
3146 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3147 	return 0;
3148 }
3149 
3150 /**
3151  * igc_del_mac_filter() - Delete MAC address filter
3152  * @adapter: Pointer to adapter where the filter should be deleted from
3153  * @type: MAC address filter type (source or destination)
3154  * @addr: MAC address
3155  */
3156 static void igc_del_mac_filter(struct igc_adapter *adapter,
3157 			       enum igc_mac_filter_type type, const u8 *addr)
3158 {
3159 	struct net_device *dev = adapter->netdev;
3160 	int index;
3161 
3162 	index = igc_find_mac_filter(adapter, type, addr);
3163 	if (index < 0)
3164 		return;
3165 
3166 	if (index == 0) {
3167 		/* If this is the default filter, we don't actually delete it.
3168 		 * We just reset to its default value i.e. disable queue
3169 		 * assignment.
3170 		 */
3171 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3172 
3173 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3174 	} else {
3175 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3176 			   index,
3177 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3178 			   addr);
3179 
3180 		igc_clear_mac_filter_hw(adapter, index);
3181 	}
3182 }
3183 
3184 /**
3185  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3186  * @adapter: Pointer to adapter where the filter should be added
3187  * @prio: VLAN priority value
3188  * @queue: Queue number which matching frames are assigned to
3189  *
3190  * Return: 0 in case of success, negative errno code otherwise.
3191  */
3192 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3193 				    int queue)
3194 {
3195 	struct net_device *dev = adapter->netdev;
3196 	struct igc_hw *hw = &adapter->hw;
3197 	u32 vlanpqf;
3198 
3199 	vlanpqf = rd32(IGC_VLANPQF);
3200 
3201 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3202 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3203 		return -EEXIST;
3204 	}
3205 
3206 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3207 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3208 
3209 	wr32(IGC_VLANPQF, vlanpqf);
3210 
3211 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3212 		   prio, queue);
3213 	return 0;
3214 }
3215 
3216 /**
3217  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3218  * @adapter: Pointer to adapter where the filter should be deleted from
3219  * @prio: VLAN priority value
3220  */
3221 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3222 {
3223 	struct igc_hw *hw = &adapter->hw;
3224 	u32 vlanpqf;
3225 
3226 	vlanpqf = rd32(IGC_VLANPQF);
3227 
3228 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3229 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3230 
3231 	wr32(IGC_VLANPQF, vlanpqf);
3232 
3233 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3234 		   prio);
3235 }
3236 
3237 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3238 {
3239 	struct igc_hw *hw = &adapter->hw;
3240 	int i;
3241 
3242 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3243 		u32 etqf = rd32(IGC_ETQF(i));
3244 
3245 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3246 			return i;
3247 	}
3248 
3249 	return -1;
3250 }
3251 
3252 /**
3253  * igc_add_etype_filter() - Add ethertype filter
3254  * @adapter: Pointer to adapter where the filter should be added
3255  * @etype: Ethertype value
3256  * @queue: If non-negative, queue assignment feature is enabled and frames
3257  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3258  *         assignment is disabled.
3259  *
3260  * Return: 0 in case of success, negative errno code otherwise.
3261  */
3262 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3263 				int queue)
3264 {
3265 	struct igc_hw *hw = &adapter->hw;
3266 	int index;
3267 	u32 etqf;
3268 
3269 	index = igc_get_avail_etype_filter_slot(adapter);
3270 	if (index < 0)
3271 		return -ENOSPC;
3272 
3273 	etqf = rd32(IGC_ETQF(index));
3274 
3275 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3276 	etqf |= etype;
3277 
3278 	if (queue >= 0) {
3279 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3280 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3281 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3282 	}
3283 
3284 	etqf |= IGC_ETQF_FILTER_ENABLE;
3285 
3286 	wr32(IGC_ETQF(index), etqf);
3287 
3288 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3289 		   etype, queue);
3290 	return 0;
3291 }
3292 
3293 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3294 {
3295 	struct igc_hw *hw = &adapter->hw;
3296 	int i;
3297 
3298 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3299 		u32 etqf = rd32(IGC_ETQF(i));
3300 
3301 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3302 			return i;
3303 	}
3304 
3305 	return -1;
3306 }
3307 
3308 /**
3309  * igc_del_etype_filter() - Delete ethertype filter
3310  * @adapter: Pointer to adapter where the filter should be deleted from
3311  * @etype: Ethertype value
3312  */
3313 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3314 {
3315 	struct igc_hw *hw = &adapter->hw;
3316 	int index;
3317 
3318 	index = igc_find_etype_filter(adapter, etype);
3319 	if (index < 0)
3320 		return;
3321 
3322 	wr32(IGC_ETQF(index), 0);
3323 
3324 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3325 		   etype);
3326 }
3327 
3328 static int igc_flex_filter_select(struct igc_adapter *adapter,
3329 				  struct igc_flex_filter *input,
3330 				  u32 *fhft)
3331 {
3332 	struct igc_hw *hw = &adapter->hw;
3333 	u8 fhft_index;
3334 	u32 fhftsl;
3335 
3336 	if (input->index >= MAX_FLEX_FILTER) {
3337 		dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3338 		return -EINVAL;
3339 	}
3340 
3341 	/* Indirect table select register */
3342 	fhftsl = rd32(IGC_FHFTSL);
3343 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3344 	switch (input->index) {
3345 	case 0 ... 7:
3346 		fhftsl |= 0x00;
3347 		break;
3348 	case 8 ... 15:
3349 		fhftsl |= 0x01;
3350 		break;
3351 	case 16 ... 23:
3352 		fhftsl |= 0x02;
3353 		break;
3354 	case 24 ... 31:
3355 		fhftsl |= 0x03;
3356 		break;
3357 	}
3358 	wr32(IGC_FHFTSL, fhftsl);
3359 
3360 	/* Normalize index down to host table register */
3361 	fhft_index = input->index % 8;
3362 
3363 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3364 		IGC_FHFT_EXT(fhft_index - 4);
3365 
3366 	return 0;
3367 }
3368 
3369 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3370 				    struct igc_flex_filter *input)
3371 {
3372 	struct device *dev = &adapter->pdev->dev;
3373 	struct igc_hw *hw = &adapter->hw;
3374 	u8 *data = input->data;
3375 	u8 *mask = input->mask;
3376 	u32 queuing;
3377 	u32 fhft;
3378 	u32 wufc;
3379 	int ret;
3380 	int i;
3381 
3382 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3383 	 * out early to avoid surprises later.
3384 	 */
3385 	if (input->length % 8 != 0) {
3386 		dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3387 		return -EINVAL;
3388 	}
3389 
3390 	/* Select corresponding flex filter register and get base for host table. */
3391 	ret = igc_flex_filter_select(adapter, input, &fhft);
3392 	if (ret)
3393 		return ret;
3394 
3395 	/* When adding a filter globally disable flex filter feature. That is
3396 	 * recommended within the datasheet.
3397 	 */
3398 	wufc = rd32(IGC_WUFC);
3399 	wufc &= ~IGC_WUFC_FLEX_HQ;
3400 	wr32(IGC_WUFC, wufc);
3401 
3402 	/* Configure filter */
3403 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3404 	queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3405 	queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3406 
3407 	if (input->immediate_irq)
3408 		queuing |= IGC_FHFT_IMM_INT;
3409 
3410 	if (input->drop)
3411 		queuing |= IGC_FHFT_DROP;
3412 
3413 	wr32(fhft + 0xFC, queuing);
3414 
3415 	/* Write data (128 byte) and mask (128 bit) */
3416 	for (i = 0; i < 16; ++i) {
3417 		const size_t data_idx = i * 8;
3418 		const size_t row_idx = i * 16;
3419 		u32 dw0 =
3420 			(data[data_idx + 0] << 0) |
3421 			(data[data_idx + 1] << 8) |
3422 			(data[data_idx + 2] << 16) |
3423 			(data[data_idx + 3] << 24);
3424 		u32 dw1 =
3425 			(data[data_idx + 4] << 0) |
3426 			(data[data_idx + 5] << 8) |
3427 			(data[data_idx + 6] << 16) |
3428 			(data[data_idx + 7] << 24);
3429 		u32 tmp;
3430 
3431 		/* Write row: dw0, dw1 and mask */
3432 		wr32(fhft + row_idx, dw0);
3433 		wr32(fhft + row_idx + 4, dw1);
3434 
3435 		/* mask is only valid for MASK(7, 0) */
3436 		tmp = rd32(fhft + row_idx + 8);
3437 		tmp &= ~GENMASK(7, 0);
3438 		tmp |= mask[i];
3439 		wr32(fhft + row_idx + 8, tmp);
3440 	}
3441 
3442 	/* Enable filter. */
3443 	wufc |= IGC_WUFC_FLEX_HQ;
3444 	if (input->index > 8) {
3445 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3446 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3447 
3448 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3449 
3450 		wr32(IGC_WUFC_EXT, wufc_ext);
3451 	} else {
3452 		wufc |= (IGC_WUFC_FLX0 << input->index);
3453 	}
3454 	wr32(IGC_WUFC, wufc);
3455 
3456 	dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3457 		input->index);
3458 
3459 	return 0;
3460 }
3461 
3462 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3463 				      const void *src, unsigned int offset,
3464 				      size_t len, const void *mask)
3465 {
3466 	int i;
3467 
3468 	/* data */
3469 	memcpy(&flex->data[offset], src, len);
3470 
3471 	/* mask */
3472 	for (i = 0; i < len; ++i) {
3473 		const unsigned int idx = i + offset;
3474 		const u8 *ptr = mask;
3475 
3476 		if (mask) {
3477 			if (ptr[i] & 0xff)
3478 				flex->mask[idx / 8] |= BIT(idx % 8);
3479 
3480 			continue;
3481 		}
3482 
3483 		flex->mask[idx / 8] |= BIT(idx % 8);
3484 	}
3485 }
3486 
3487 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3488 {
3489 	struct igc_hw *hw = &adapter->hw;
3490 	u32 wufc, wufc_ext;
3491 	int i;
3492 
3493 	wufc = rd32(IGC_WUFC);
3494 	wufc_ext = rd32(IGC_WUFC_EXT);
3495 
3496 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3497 		if (i < 8) {
3498 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3499 				return i;
3500 		} else {
3501 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3502 				return i;
3503 		}
3504 	}
3505 
3506 	return -ENOSPC;
3507 }
3508 
3509 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3510 {
3511 	struct igc_hw *hw = &adapter->hw;
3512 	u32 wufc, wufc_ext;
3513 
3514 	wufc = rd32(IGC_WUFC);
3515 	wufc_ext = rd32(IGC_WUFC_EXT);
3516 
3517 	if (wufc & IGC_WUFC_FILTER_MASK)
3518 		return true;
3519 
3520 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3521 		return true;
3522 
3523 	return false;
3524 }
3525 
3526 static int igc_add_flex_filter(struct igc_adapter *adapter,
3527 			       struct igc_nfc_rule *rule)
3528 {
3529 	struct igc_flex_filter flex = { };
3530 	struct igc_nfc_filter *filter = &rule->filter;
3531 	unsigned int eth_offset, user_offset;
3532 	int ret, index;
3533 	bool vlan;
3534 
3535 	index = igc_find_avail_flex_filter_slot(adapter);
3536 	if (index < 0)
3537 		return -ENOSPC;
3538 
3539 	/* Construct the flex filter:
3540 	 *  -> dest_mac [6]
3541 	 *  -> src_mac [6]
3542 	 *  -> tpid [2]
3543 	 *  -> vlan tci [2]
3544 	 *  -> ether type [2]
3545 	 *  -> user data [8]
3546 	 *  -> = 26 bytes => 32 length
3547 	 */
3548 	flex.index    = index;
3549 	flex.length   = 32;
3550 	flex.rx_queue = rule->action;
3551 
3552 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3553 	eth_offset = vlan ? 16 : 12;
3554 	user_offset = vlan ? 18 : 14;
3555 
3556 	/* Add destination MAC  */
3557 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3558 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3559 					  ETH_ALEN, NULL);
3560 
3561 	/* Add source MAC */
3562 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3563 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3564 					  ETH_ALEN, NULL);
3565 
3566 	/* Add VLAN etype */
3567 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3568 		igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3569 					  sizeof(filter->vlan_etype),
3570 					  NULL);
3571 
3572 	/* Add VLAN TCI */
3573 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3574 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3575 					  sizeof(filter->vlan_tci), NULL);
3576 
3577 	/* Add Ether type */
3578 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3579 		__be16 etype = cpu_to_be16(filter->etype);
3580 
3581 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3582 					  sizeof(etype), NULL);
3583 	}
3584 
3585 	/* Add user data */
3586 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3587 		igc_flex_filter_add_field(&flex, &filter->user_data,
3588 					  user_offset,
3589 					  sizeof(filter->user_data),
3590 					  filter->user_mask);
3591 
3592 	/* Add it down to the hardware and enable it. */
3593 	ret = igc_write_flex_filter_ll(adapter, &flex);
3594 	if (ret)
3595 		return ret;
3596 
3597 	filter->flex_index = index;
3598 
3599 	return 0;
3600 }
3601 
3602 static void igc_del_flex_filter(struct igc_adapter *adapter,
3603 				u16 reg_index)
3604 {
3605 	struct igc_hw *hw = &adapter->hw;
3606 	u32 wufc;
3607 
3608 	/* Just disable the filter. The filter table itself is kept
3609 	 * intact. Another flex_filter_add() should override the "old" data
3610 	 * then.
3611 	 */
3612 	if (reg_index > 8) {
3613 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3614 
3615 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3616 		wr32(IGC_WUFC_EXT, wufc_ext);
3617 	} else {
3618 		wufc = rd32(IGC_WUFC);
3619 
3620 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3621 		wr32(IGC_WUFC, wufc);
3622 	}
3623 
3624 	if (igc_flex_filter_in_use(adapter))
3625 		return;
3626 
3627 	/* No filters are in use, we may disable flex filters */
3628 	wufc = rd32(IGC_WUFC);
3629 	wufc &= ~IGC_WUFC_FLEX_HQ;
3630 	wr32(IGC_WUFC, wufc);
3631 }
3632 
3633 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3634 			       struct igc_nfc_rule *rule)
3635 {
3636 	int err;
3637 
3638 	if (rule->flex) {
3639 		return igc_add_flex_filter(adapter, rule);
3640 	}
3641 
3642 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3643 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3644 					   rule->action);
3645 		if (err)
3646 			return err;
3647 	}
3648 
3649 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3650 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3651 					 rule->filter.src_addr, rule->action);
3652 		if (err)
3653 			return err;
3654 	}
3655 
3656 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3657 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3658 					 rule->filter.dst_addr, rule->action);
3659 		if (err)
3660 			return err;
3661 	}
3662 
3663 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3664 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3665 			   VLAN_PRIO_SHIFT;
3666 
3667 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3668 		if (err)
3669 			return err;
3670 	}
3671 
3672 	return 0;
3673 }
3674 
3675 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3676 				 const struct igc_nfc_rule *rule)
3677 {
3678 	if (rule->flex) {
3679 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3680 		return;
3681 	}
3682 
3683 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3684 		igc_del_etype_filter(adapter, rule->filter.etype);
3685 
3686 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3687 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3688 			   VLAN_PRIO_SHIFT;
3689 
3690 		igc_del_vlan_prio_filter(adapter, prio);
3691 	}
3692 
3693 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3694 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3695 				   rule->filter.src_addr);
3696 
3697 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3698 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3699 				   rule->filter.dst_addr);
3700 }
3701 
3702 /**
3703  * igc_get_nfc_rule() - Get NFC rule
3704  * @adapter: Pointer to adapter
3705  * @location: Rule location
3706  *
3707  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3708  *
3709  * Return: Pointer to NFC rule at @location. If not found, NULL.
3710  */
3711 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3712 				      u32 location)
3713 {
3714 	struct igc_nfc_rule *rule;
3715 
3716 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3717 		if (rule->location == location)
3718 			return rule;
3719 		if (rule->location > location)
3720 			break;
3721 	}
3722 
3723 	return NULL;
3724 }
3725 
3726 /**
3727  * igc_del_nfc_rule() - Delete NFC rule
3728  * @adapter: Pointer to adapter
3729  * @rule: Pointer to rule to be deleted
3730  *
3731  * Disable NFC rule in hardware and delete it from adapter.
3732  *
3733  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3734  */
3735 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3736 {
3737 	igc_disable_nfc_rule(adapter, rule);
3738 
3739 	list_del(&rule->list);
3740 	adapter->nfc_rule_count--;
3741 
3742 	kfree(rule);
3743 }
3744 
3745 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3746 {
3747 	struct igc_nfc_rule *rule, *tmp;
3748 
3749 	mutex_lock(&adapter->nfc_rule_lock);
3750 
3751 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3752 		igc_del_nfc_rule(adapter, rule);
3753 
3754 	mutex_unlock(&adapter->nfc_rule_lock);
3755 }
3756 
3757 /**
3758  * igc_add_nfc_rule() - Add NFC rule
3759  * @adapter: Pointer to adapter
3760  * @rule: Pointer to rule to be added
3761  *
3762  * Enable NFC rule in hardware and add it to adapter.
3763  *
3764  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3765  *
3766  * Return: 0 on success, negative errno on failure.
3767  */
3768 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3769 {
3770 	struct igc_nfc_rule *pred, *cur;
3771 	int err;
3772 
3773 	err = igc_enable_nfc_rule(adapter, rule);
3774 	if (err)
3775 		return err;
3776 
3777 	pred = NULL;
3778 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3779 		if (cur->location >= rule->location)
3780 			break;
3781 		pred = cur;
3782 	}
3783 
3784 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3785 	adapter->nfc_rule_count++;
3786 	return 0;
3787 }
3788 
3789 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3790 {
3791 	struct igc_nfc_rule *rule;
3792 
3793 	mutex_lock(&adapter->nfc_rule_lock);
3794 
3795 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3796 		igc_enable_nfc_rule(adapter, rule);
3797 
3798 	mutex_unlock(&adapter->nfc_rule_lock);
3799 }
3800 
3801 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3802 {
3803 	struct igc_adapter *adapter = netdev_priv(netdev);
3804 
3805 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3806 }
3807 
3808 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3809 {
3810 	struct igc_adapter *adapter = netdev_priv(netdev);
3811 
3812 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3813 	return 0;
3814 }
3815 
3816 /**
3817  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3818  * @netdev: network interface device structure
3819  *
3820  * The set_rx_mode entry point is called whenever the unicast or multicast
3821  * address lists or the network interface flags are updated.  This routine is
3822  * responsible for configuring the hardware for proper unicast, multicast,
3823  * promiscuous mode, and all-multi behavior.
3824  */
3825 static void igc_set_rx_mode(struct net_device *netdev)
3826 {
3827 	struct igc_adapter *adapter = netdev_priv(netdev);
3828 	struct igc_hw *hw = &adapter->hw;
3829 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3830 	int count;
3831 
3832 	/* Check for Promiscuous and All Multicast modes */
3833 	if (netdev->flags & IFF_PROMISC) {
3834 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3835 	} else {
3836 		if (netdev->flags & IFF_ALLMULTI) {
3837 			rctl |= IGC_RCTL_MPE;
3838 		} else {
3839 			/* Write addresses to the MTA, if the attempt fails
3840 			 * then we should just turn on promiscuous mode so
3841 			 * that we can at least receive multicast traffic
3842 			 */
3843 			count = igc_write_mc_addr_list(netdev);
3844 			if (count < 0)
3845 				rctl |= IGC_RCTL_MPE;
3846 		}
3847 	}
3848 
3849 	/* Write addresses to available RAR registers, if there is not
3850 	 * sufficient space to store all the addresses then enable
3851 	 * unicast promiscuous mode
3852 	 */
3853 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3854 		rctl |= IGC_RCTL_UPE;
3855 
3856 	/* update state of unicast and multicast */
3857 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3858 	wr32(IGC_RCTL, rctl);
3859 
3860 #if (PAGE_SIZE < 8192)
3861 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3862 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3863 #endif
3864 	wr32(IGC_RLPML, rlpml);
3865 }
3866 
3867 /**
3868  * igc_configure - configure the hardware for RX and TX
3869  * @adapter: private board structure
3870  */
3871 static void igc_configure(struct igc_adapter *adapter)
3872 {
3873 	struct net_device *netdev = adapter->netdev;
3874 	int i = 0;
3875 
3876 	igc_get_hw_control(adapter);
3877 	igc_set_rx_mode(netdev);
3878 
3879 	igc_restore_vlan(adapter);
3880 
3881 	igc_setup_tctl(adapter);
3882 	igc_setup_mrqc(adapter);
3883 	igc_setup_rctl(adapter);
3884 
3885 	igc_set_default_mac_filter(adapter);
3886 	igc_restore_nfc_rules(adapter);
3887 
3888 	igc_configure_tx(adapter);
3889 	igc_configure_rx(adapter);
3890 
3891 	igc_rx_fifo_flush_base(&adapter->hw);
3892 
3893 	/* call igc_desc_unused which always leaves
3894 	 * at least 1 descriptor unused to make sure
3895 	 * next_to_use != next_to_clean
3896 	 */
3897 	for (i = 0; i < adapter->num_rx_queues; i++) {
3898 		struct igc_ring *ring = adapter->rx_ring[i];
3899 
3900 		if (ring->xsk_pool)
3901 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3902 		else
3903 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3904 	}
3905 }
3906 
3907 /**
3908  * igc_write_ivar - configure ivar for given MSI-X vector
3909  * @hw: pointer to the HW structure
3910  * @msix_vector: vector number we are allocating to a given ring
3911  * @index: row index of IVAR register to write within IVAR table
3912  * @offset: column offset of in IVAR, should be multiple of 8
3913  *
3914  * The IVAR table consists of 2 columns,
3915  * each containing an cause allocation for an Rx and Tx ring, and a
3916  * variable number of rows depending on the number of queues supported.
3917  */
3918 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3919 			   int index, int offset)
3920 {
3921 	u32 ivar = array_rd32(IGC_IVAR0, index);
3922 
3923 	/* clear any bits that are currently set */
3924 	ivar &= ~((u32)0xFF << offset);
3925 
3926 	/* write vector and valid bit */
3927 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3928 
3929 	array_wr32(IGC_IVAR0, index, ivar);
3930 }
3931 
3932 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3933 {
3934 	struct igc_adapter *adapter = q_vector->adapter;
3935 	struct igc_hw *hw = &adapter->hw;
3936 	int rx_queue = IGC_N0_QUEUE;
3937 	int tx_queue = IGC_N0_QUEUE;
3938 
3939 	if (q_vector->rx.ring)
3940 		rx_queue = q_vector->rx.ring->reg_idx;
3941 	if (q_vector->tx.ring)
3942 		tx_queue = q_vector->tx.ring->reg_idx;
3943 
3944 	switch (hw->mac.type) {
3945 	case igc_i225:
3946 		if (rx_queue > IGC_N0_QUEUE)
3947 			igc_write_ivar(hw, msix_vector,
3948 				       rx_queue >> 1,
3949 				       (rx_queue & 0x1) << 4);
3950 		if (tx_queue > IGC_N0_QUEUE)
3951 			igc_write_ivar(hw, msix_vector,
3952 				       tx_queue >> 1,
3953 				       ((tx_queue & 0x1) << 4) + 8);
3954 		q_vector->eims_value = BIT(msix_vector);
3955 		break;
3956 	default:
3957 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3958 		break;
3959 	}
3960 
3961 	/* add q_vector eims value to global eims_enable_mask */
3962 	adapter->eims_enable_mask |= q_vector->eims_value;
3963 
3964 	/* configure q_vector to set itr on first interrupt */
3965 	q_vector->set_itr = 1;
3966 }
3967 
3968 /**
3969  * igc_configure_msix - Configure MSI-X hardware
3970  * @adapter: Pointer to adapter structure
3971  *
3972  * igc_configure_msix sets up the hardware to properly
3973  * generate MSI-X interrupts.
3974  */
3975 static void igc_configure_msix(struct igc_adapter *adapter)
3976 {
3977 	struct igc_hw *hw = &adapter->hw;
3978 	int i, vector = 0;
3979 	u32 tmp;
3980 
3981 	adapter->eims_enable_mask = 0;
3982 
3983 	/* set vector for other causes, i.e. link changes */
3984 	switch (hw->mac.type) {
3985 	case igc_i225:
3986 		/* Turn on MSI-X capability first, or our settings
3987 		 * won't stick.  And it will take days to debug.
3988 		 */
3989 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3990 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3991 		     IGC_GPIE_NSICR);
3992 
3993 		/* enable msix_other interrupt */
3994 		adapter->eims_other = BIT(vector);
3995 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3996 
3997 		wr32(IGC_IVAR_MISC, tmp);
3998 		break;
3999 	default:
4000 		/* do nothing, since nothing else supports MSI-X */
4001 		break;
4002 	} /* switch (hw->mac.type) */
4003 
4004 	adapter->eims_enable_mask |= adapter->eims_other;
4005 
4006 	for (i = 0; i < adapter->num_q_vectors; i++)
4007 		igc_assign_vector(adapter->q_vector[i], vector++);
4008 
4009 	wrfl();
4010 }
4011 
4012 /**
4013  * igc_irq_enable - Enable default interrupt generation settings
4014  * @adapter: board private structure
4015  */
4016 static void igc_irq_enable(struct igc_adapter *adapter)
4017 {
4018 	struct igc_hw *hw = &adapter->hw;
4019 
4020 	if (adapter->msix_entries) {
4021 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4022 		u32 regval = rd32(IGC_EIAC);
4023 
4024 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4025 		regval = rd32(IGC_EIAM);
4026 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4027 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4028 		wr32(IGC_IMS, ims);
4029 	} else {
4030 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4031 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4032 	}
4033 }
4034 
4035 /**
4036  * igc_irq_disable - Mask off interrupt generation on the NIC
4037  * @adapter: board private structure
4038  */
4039 static void igc_irq_disable(struct igc_adapter *adapter)
4040 {
4041 	struct igc_hw *hw = &adapter->hw;
4042 
4043 	if (adapter->msix_entries) {
4044 		u32 regval = rd32(IGC_EIAM);
4045 
4046 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4047 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4048 		regval = rd32(IGC_EIAC);
4049 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4050 	}
4051 
4052 	wr32(IGC_IAM, 0);
4053 	wr32(IGC_IMC, ~0);
4054 	wrfl();
4055 
4056 	if (adapter->msix_entries) {
4057 		int vector = 0, i;
4058 
4059 		synchronize_irq(adapter->msix_entries[vector++].vector);
4060 
4061 		for (i = 0; i < adapter->num_q_vectors; i++)
4062 			synchronize_irq(adapter->msix_entries[vector++].vector);
4063 	} else {
4064 		synchronize_irq(adapter->pdev->irq);
4065 	}
4066 }
4067 
4068 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4069 			      const u32 max_rss_queues)
4070 {
4071 	/* Determine if we need to pair queues. */
4072 	/* If rss_queues > half of max_rss_queues, pair the queues in
4073 	 * order to conserve interrupts due to limited supply.
4074 	 */
4075 	if (adapter->rss_queues > (max_rss_queues / 2))
4076 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4077 	else
4078 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4079 }
4080 
4081 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4082 {
4083 	return IGC_MAX_RX_QUEUES;
4084 }
4085 
4086 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4087 {
4088 	u32 max_rss_queues;
4089 
4090 	max_rss_queues = igc_get_max_rss_queues(adapter);
4091 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4092 
4093 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4094 }
4095 
4096 /**
4097  * igc_reset_q_vector - Reset config for interrupt vector
4098  * @adapter: board private structure to initialize
4099  * @v_idx: Index of vector to be reset
4100  *
4101  * If NAPI is enabled it will delete any references to the
4102  * NAPI struct. This is preparation for igc_free_q_vector.
4103  */
4104 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4105 {
4106 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4107 
4108 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4109 	 * not yet allocated
4110 	 */
4111 	if (!q_vector)
4112 		return;
4113 
4114 	if (q_vector->tx.ring)
4115 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4116 
4117 	if (q_vector->rx.ring)
4118 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4119 
4120 	netif_napi_del(&q_vector->napi);
4121 }
4122 
4123 /**
4124  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4125  * @adapter: board private structure to initialize
4126  * @v_idx: Index of vector to be freed
4127  *
4128  * This function frees the memory allocated to the q_vector.
4129  */
4130 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4131 {
4132 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4133 
4134 	adapter->q_vector[v_idx] = NULL;
4135 
4136 	/* igc_get_stats64() might access the rings on this vector,
4137 	 * we must wait a grace period before freeing it.
4138 	 */
4139 	if (q_vector)
4140 		kfree_rcu(q_vector, rcu);
4141 }
4142 
4143 /**
4144  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4145  * @adapter: board private structure to initialize
4146  *
4147  * This function frees the memory allocated to the q_vectors.  In addition if
4148  * NAPI is enabled it will delete any references to the NAPI struct prior
4149  * to freeing the q_vector.
4150  */
4151 static void igc_free_q_vectors(struct igc_adapter *adapter)
4152 {
4153 	int v_idx = adapter->num_q_vectors;
4154 
4155 	adapter->num_tx_queues = 0;
4156 	adapter->num_rx_queues = 0;
4157 	adapter->num_q_vectors = 0;
4158 
4159 	while (v_idx--) {
4160 		igc_reset_q_vector(adapter, v_idx);
4161 		igc_free_q_vector(adapter, v_idx);
4162 	}
4163 }
4164 
4165 /**
4166  * igc_update_itr - update the dynamic ITR value based on statistics
4167  * @q_vector: pointer to q_vector
4168  * @ring_container: ring info to update the itr for
4169  *
4170  * Stores a new ITR value based on packets and byte
4171  * counts during the last interrupt.  The advantage of per interrupt
4172  * computation is faster updates and more accurate ITR for the current
4173  * traffic pattern.  Constants in this function were computed
4174  * based on theoretical maximum wire speed and thresholds were set based
4175  * on testing data as well as attempting to minimize response time
4176  * while increasing bulk throughput.
4177  * NOTE: These calculations are only valid when operating in a single-
4178  * queue environment.
4179  */
4180 static void igc_update_itr(struct igc_q_vector *q_vector,
4181 			   struct igc_ring_container *ring_container)
4182 {
4183 	unsigned int packets = ring_container->total_packets;
4184 	unsigned int bytes = ring_container->total_bytes;
4185 	u8 itrval = ring_container->itr;
4186 
4187 	/* no packets, exit with status unchanged */
4188 	if (packets == 0)
4189 		return;
4190 
4191 	switch (itrval) {
4192 	case lowest_latency:
4193 		/* handle TSO and jumbo frames */
4194 		if (bytes / packets > 8000)
4195 			itrval = bulk_latency;
4196 		else if ((packets < 5) && (bytes > 512))
4197 			itrval = low_latency;
4198 		break;
4199 	case low_latency:  /* 50 usec aka 20000 ints/s */
4200 		if (bytes > 10000) {
4201 			/* this if handles the TSO accounting */
4202 			if (bytes / packets > 8000)
4203 				itrval = bulk_latency;
4204 			else if ((packets < 10) || ((bytes / packets) > 1200))
4205 				itrval = bulk_latency;
4206 			else if ((packets > 35))
4207 				itrval = lowest_latency;
4208 		} else if (bytes / packets > 2000) {
4209 			itrval = bulk_latency;
4210 		} else if (packets <= 2 && bytes < 512) {
4211 			itrval = lowest_latency;
4212 		}
4213 		break;
4214 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4215 		if (bytes > 25000) {
4216 			if (packets > 35)
4217 				itrval = low_latency;
4218 		} else if (bytes < 1500) {
4219 			itrval = low_latency;
4220 		}
4221 		break;
4222 	}
4223 
4224 	/* clear work counters since we have the values we need */
4225 	ring_container->total_bytes = 0;
4226 	ring_container->total_packets = 0;
4227 
4228 	/* write updated itr to ring container */
4229 	ring_container->itr = itrval;
4230 }
4231 
4232 static void igc_set_itr(struct igc_q_vector *q_vector)
4233 {
4234 	struct igc_adapter *adapter = q_vector->adapter;
4235 	u32 new_itr = q_vector->itr_val;
4236 	u8 current_itr = 0;
4237 
4238 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4239 	switch (adapter->link_speed) {
4240 	case SPEED_10:
4241 	case SPEED_100:
4242 		current_itr = 0;
4243 		new_itr = IGC_4K_ITR;
4244 		goto set_itr_now;
4245 	default:
4246 		break;
4247 	}
4248 
4249 	igc_update_itr(q_vector, &q_vector->tx);
4250 	igc_update_itr(q_vector, &q_vector->rx);
4251 
4252 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4253 
4254 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4255 	if (current_itr == lowest_latency &&
4256 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4257 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4258 		current_itr = low_latency;
4259 
4260 	switch (current_itr) {
4261 	/* counts and packets in update_itr are dependent on these numbers */
4262 	case lowest_latency:
4263 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4264 		break;
4265 	case low_latency:
4266 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4267 		break;
4268 	case bulk_latency:
4269 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4270 		break;
4271 	default:
4272 		break;
4273 	}
4274 
4275 set_itr_now:
4276 	if (new_itr != q_vector->itr_val) {
4277 		/* this attempts to bias the interrupt rate towards Bulk
4278 		 * by adding intermediate steps when interrupt rate is
4279 		 * increasing
4280 		 */
4281 		new_itr = new_itr > q_vector->itr_val ?
4282 			  max((new_itr * q_vector->itr_val) /
4283 			  (new_itr + (q_vector->itr_val >> 2)),
4284 			  new_itr) : new_itr;
4285 		/* Don't write the value here; it resets the adapter's
4286 		 * internal timer, and causes us to delay far longer than
4287 		 * we should between interrupts.  Instead, we write the ITR
4288 		 * value at the beginning of the next interrupt so the timing
4289 		 * ends up being correct.
4290 		 */
4291 		q_vector->itr_val = new_itr;
4292 		q_vector->set_itr = 1;
4293 	}
4294 }
4295 
4296 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4297 {
4298 	int v_idx = adapter->num_q_vectors;
4299 
4300 	if (adapter->msix_entries) {
4301 		pci_disable_msix(adapter->pdev);
4302 		kfree(adapter->msix_entries);
4303 		adapter->msix_entries = NULL;
4304 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4305 		pci_disable_msi(adapter->pdev);
4306 	}
4307 
4308 	while (v_idx--)
4309 		igc_reset_q_vector(adapter, v_idx);
4310 }
4311 
4312 /**
4313  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4314  * @adapter: Pointer to adapter structure
4315  * @msix: boolean value for MSI-X capability
4316  *
4317  * Attempt to configure interrupts using the best available
4318  * capabilities of the hardware and kernel.
4319  */
4320 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4321 					 bool msix)
4322 {
4323 	int numvecs, i;
4324 	int err;
4325 
4326 	if (!msix)
4327 		goto msi_only;
4328 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4329 
4330 	/* Number of supported queues. */
4331 	adapter->num_rx_queues = adapter->rss_queues;
4332 
4333 	adapter->num_tx_queues = adapter->rss_queues;
4334 
4335 	/* start with one vector for every Rx queue */
4336 	numvecs = adapter->num_rx_queues;
4337 
4338 	/* if Tx handler is separate add 1 for every Tx queue */
4339 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4340 		numvecs += adapter->num_tx_queues;
4341 
4342 	/* store the number of vectors reserved for queues */
4343 	adapter->num_q_vectors = numvecs;
4344 
4345 	/* add 1 vector for link status interrupts */
4346 	numvecs++;
4347 
4348 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4349 					GFP_KERNEL);
4350 
4351 	if (!adapter->msix_entries)
4352 		return;
4353 
4354 	/* populate entry values */
4355 	for (i = 0; i < numvecs; i++)
4356 		adapter->msix_entries[i].entry = i;
4357 
4358 	err = pci_enable_msix_range(adapter->pdev,
4359 				    adapter->msix_entries,
4360 				    numvecs,
4361 				    numvecs);
4362 	if (err > 0)
4363 		return;
4364 
4365 	kfree(adapter->msix_entries);
4366 	adapter->msix_entries = NULL;
4367 
4368 	igc_reset_interrupt_capability(adapter);
4369 
4370 msi_only:
4371 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4372 
4373 	adapter->rss_queues = 1;
4374 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4375 	adapter->num_rx_queues = 1;
4376 	adapter->num_tx_queues = 1;
4377 	adapter->num_q_vectors = 1;
4378 	if (!pci_enable_msi(adapter->pdev))
4379 		adapter->flags |= IGC_FLAG_HAS_MSI;
4380 }
4381 
4382 /**
4383  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4384  * @q_vector: pointer to q_vector
4385  *
4386  * Stores a new ITR value based on strictly on packet size.  This
4387  * algorithm is less sophisticated than that used in igc_update_itr,
4388  * due to the difficulty of synchronizing statistics across multiple
4389  * receive rings.  The divisors and thresholds used by this function
4390  * were determined based on theoretical maximum wire speed and testing
4391  * data, in order to minimize response time while increasing bulk
4392  * throughput.
4393  * NOTE: This function is called only when operating in a multiqueue
4394  * receive environment.
4395  */
4396 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4397 {
4398 	struct igc_adapter *adapter = q_vector->adapter;
4399 	int new_val = q_vector->itr_val;
4400 	int avg_wire_size = 0;
4401 	unsigned int packets;
4402 
4403 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4404 	 * ints/sec - ITR timer value of 120 ticks.
4405 	 */
4406 	switch (adapter->link_speed) {
4407 	case SPEED_10:
4408 	case SPEED_100:
4409 		new_val = IGC_4K_ITR;
4410 		goto set_itr_val;
4411 	default:
4412 		break;
4413 	}
4414 
4415 	packets = q_vector->rx.total_packets;
4416 	if (packets)
4417 		avg_wire_size = q_vector->rx.total_bytes / packets;
4418 
4419 	packets = q_vector->tx.total_packets;
4420 	if (packets)
4421 		avg_wire_size = max_t(u32, avg_wire_size,
4422 				      q_vector->tx.total_bytes / packets);
4423 
4424 	/* if avg_wire_size isn't set no work was done */
4425 	if (!avg_wire_size)
4426 		goto clear_counts;
4427 
4428 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4429 	avg_wire_size += 24;
4430 
4431 	/* Don't starve jumbo frames */
4432 	avg_wire_size = min(avg_wire_size, 3000);
4433 
4434 	/* Give a little boost to mid-size frames */
4435 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4436 		new_val = avg_wire_size / 3;
4437 	else
4438 		new_val = avg_wire_size / 2;
4439 
4440 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4441 	if (new_val < IGC_20K_ITR &&
4442 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4443 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4444 		new_val = IGC_20K_ITR;
4445 
4446 set_itr_val:
4447 	if (new_val != q_vector->itr_val) {
4448 		q_vector->itr_val = new_val;
4449 		q_vector->set_itr = 1;
4450 	}
4451 clear_counts:
4452 	q_vector->rx.total_bytes = 0;
4453 	q_vector->rx.total_packets = 0;
4454 	q_vector->tx.total_bytes = 0;
4455 	q_vector->tx.total_packets = 0;
4456 }
4457 
4458 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4459 {
4460 	struct igc_adapter *adapter = q_vector->adapter;
4461 	struct igc_hw *hw = &adapter->hw;
4462 
4463 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4464 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4465 		if (adapter->num_q_vectors == 1)
4466 			igc_set_itr(q_vector);
4467 		else
4468 			igc_update_ring_itr(q_vector);
4469 	}
4470 
4471 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4472 		if (adapter->msix_entries)
4473 			wr32(IGC_EIMS, q_vector->eims_value);
4474 		else
4475 			igc_irq_enable(adapter);
4476 	}
4477 }
4478 
4479 static void igc_add_ring(struct igc_ring *ring,
4480 			 struct igc_ring_container *head)
4481 {
4482 	head->ring = ring;
4483 	head->count++;
4484 }
4485 
4486 /**
4487  * igc_cache_ring_register - Descriptor ring to register mapping
4488  * @adapter: board private structure to initialize
4489  *
4490  * Once we know the feature-set enabled for the device, we'll cache
4491  * the register offset the descriptor ring is assigned to.
4492  */
4493 static void igc_cache_ring_register(struct igc_adapter *adapter)
4494 {
4495 	int i = 0, j = 0;
4496 
4497 	switch (adapter->hw.mac.type) {
4498 	case igc_i225:
4499 	default:
4500 		for (; i < adapter->num_rx_queues; i++)
4501 			adapter->rx_ring[i]->reg_idx = i;
4502 		for (; j < adapter->num_tx_queues; j++)
4503 			adapter->tx_ring[j]->reg_idx = j;
4504 		break;
4505 	}
4506 }
4507 
4508 /**
4509  * igc_poll - NAPI Rx polling callback
4510  * @napi: napi polling structure
4511  * @budget: count of how many packets we should handle
4512  */
4513 static int igc_poll(struct napi_struct *napi, int budget)
4514 {
4515 	struct igc_q_vector *q_vector = container_of(napi,
4516 						     struct igc_q_vector,
4517 						     napi);
4518 	struct igc_ring *rx_ring = q_vector->rx.ring;
4519 	bool clean_complete = true;
4520 	int work_done = 0;
4521 
4522 	if (q_vector->tx.ring)
4523 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4524 
4525 	if (rx_ring) {
4526 		int cleaned = rx_ring->xsk_pool ?
4527 			      igc_clean_rx_irq_zc(q_vector, budget) :
4528 			      igc_clean_rx_irq(q_vector, budget);
4529 
4530 		work_done += cleaned;
4531 		if (cleaned >= budget)
4532 			clean_complete = false;
4533 	}
4534 
4535 	/* If all work not completed, return budget and keep polling */
4536 	if (!clean_complete)
4537 		return budget;
4538 
4539 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4540 	 * poll us due to busy-polling
4541 	 */
4542 	if (likely(napi_complete_done(napi, work_done)))
4543 		igc_ring_irq_enable(q_vector);
4544 
4545 	return min(work_done, budget - 1);
4546 }
4547 
4548 /**
4549  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4550  * @adapter: board private structure to initialize
4551  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4552  * @v_idx: index of vector in adapter struct
4553  * @txr_count: total number of Tx rings to allocate
4554  * @txr_idx: index of first Tx ring to allocate
4555  * @rxr_count: total number of Rx rings to allocate
4556  * @rxr_idx: index of first Rx ring to allocate
4557  *
4558  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4559  */
4560 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4561 			      unsigned int v_count, unsigned int v_idx,
4562 			      unsigned int txr_count, unsigned int txr_idx,
4563 			      unsigned int rxr_count, unsigned int rxr_idx)
4564 {
4565 	struct igc_q_vector *q_vector;
4566 	struct igc_ring *ring;
4567 	int ring_count;
4568 
4569 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4570 	if (txr_count > 1 || rxr_count > 1)
4571 		return -ENOMEM;
4572 
4573 	ring_count = txr_count + rxr_count;
4574 
4575 	/* allocate q_vector and rings */
4576 	q_vector = adapter->q_vector[v_idx];
4577 	if (!q_vector)
4578 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4579 				   GFP_KERNEL);
4580 	else
4581 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4582 	if (!q_vector)
4583 		return -ENOMEM;
4584 
4585 	/* initialize NAPI */
4586 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4587 
4588 	/* tie q_vector and adapter together */
4589 	adapter->q_vector[v_idx] = q_vector;
4590 	q_vector->adapter = adapter;
4591 
4592 	/* initialize work limits */
4593 	q_vector->tx.work_limit = adapter->tx_work_limit;
4594 
4595 	/* initialize ITR configuration */
4596 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4597 	q_vector->itr_val = IGC_START_ITR;
4598 
4599 	/* initialize pointer to rings */
4600 	ring = q_vector->ring;
4601 
4602 	/* initialize ITR */
4603 	if (rxr_count) {
4604 		/* rx or rx/tx vector */
4605 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4606 			q_vector->itr_val = adapter->rx_itr_setting;
4607 	} else {
4608 		/* tx only vector */
4609 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4610 			q_vector->itr_val = adapter->tx_itr_setting;
4611 	}
4612 
4613 	if (txr_count) {
4614 		/* assign generic ring traits */
4615 		ring->dev = &adapter->pdev->dev;
4616 		ring->netdev = adapter->netdev;
4617 
4618 		/* configure backlink on ring */
4619 		ring->q_vector = q_vector;
4620 
4621 		/* update q_vector Tx values */
4622 		igc_add_ring(ring, &q_vector->tx);
4623 
4624 		/* apply Tx specific ring traits */
4625 		ring->count = adapter->tx_ring_count;
4626 		ring->queue_index = txr_idx;
4627 
4628 		/* assign ring to adapter */
4629 		adapter->tx_ring[txr_idx] = ring;
4630 
4631 		/* push pointer to next ring */
4632 		ring++;
4633 	}
4634 
4635 	if (rxr_count) {
4636 		/* assign generic ring traits */
4637 		ring->dev = &adapter->pdev->dev;
4638 		ring->netdev = adapter->netdev;
4639 
4640 		/* configure backlink on ring */
4641 		ring->q_vector = q_vector;
4642 
4643 		/* update q_vector Rx values */
4644 		igc_add_ring(ring, &q_vector->rx);
4645 
4646 		/* apply Rx specific ring traits */
4647 		ring->count = adapter->rx_ring_count;
4648 		ring->queue_index = rxr_idx;
4649 
4650 		/* assign ring to adapter */
4651 		adapter->rx_ring[rxr_idx] = ring;
4652 	}
4653 
4654 	return 0;
4655 }
4656 
4657 /**
4658  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4659  * @adapter: board private structure to initialize
4660  *
4661  * We allocate one q_vector per queue interrupt.  If allocation fails we
4662  * return -ENOMEM.
4663  */
4664 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4665 {
4666 	int rxr_remaining = adapter->num_rx_queues;
4667 	int txr_remaining = adapter->num_tx_queues;
4668 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4669 	int q_vectors = adapter->num_q_vectors;
4670 	int err;
4671 
4672 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4673 		for (; rxr_remaining; v_idx++) {
4674 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4675 						 0, 0, 1, rxr_idx);
4676 
4677 			if (err)
4678 				goto err_out;
4679 
4680 			/* update counts and index */
4681 			rxr_remaining--;
4682 			rxr_idx++;
4683 		}
4684 	}
4685 
4686 	for (; v_idx < q_vectors; v_idx++) {
4687 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4688 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4689 
4690 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4691 					 tqpv, txr_idx, rqpv, rxr_idx);
4692 
4693 		if (err)
4694 			goto err_out;
4695 
4696 		/* update counts and index */
4697 		rxr_remaining -= rqpv;
4698 		txr_remaining -= tqpv;
4699 		rxr_idx++;
4700 		txr_idx++;
4701 	}
4702 
4703 	return 0;
4704 
4705 err_out:
4706 	adapter->num_tx_queues = 0;
4707 	adapter->num_rx_queues = 0;
4708 	adapter->num_q_vectors = 0;
4709 
4710 	while (v_idx--)
4711 		igc_free_q_vector(adapter, v_idx);
4712 
4713 	return -ENOMEM;
4714 }
4715 
4716 /**
4717  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4718  * @adapter: Pointer to adapter structure
4719  * @msix: boolean for MSI-X capability
4720  *
4721  * This function initializes the interrupts and allocates all of the queues.
4722  */
4723 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4724 {
4725 	struct net_device *dev = adapter->netdev;
4726 	int err = 0;
4727 
4728 	igc_set_interrupt_capability(adapter, msix);
4729 
4730 	err = igc_alloc_q_vectors(adapter);
4731 	if (err) {
4732 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4733 		goto err_alloc_q_vectors;
4734 	}
4735 
4736 	igc_cache_ring_register(adapter);
4737 
4738 	return 0;
4739 
4740 err_alloc_q_vectors:
4741 	igc_reset_interrupt_capability(adapter);
4742 	return err;
4743 }
4744 
4745 /**
4746  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4747  * @adapter: board private structure to initialize
4748  *
4749  * igc_sw_init initializes the Adapter private data structure.
4750  * Fields are initialized based on PCI device information and
4751  * OS network device settings (MTU size).
4752  */
4753 static int igc_sw_init(struct igc_adapter *adapter)
4754 {
4755 	struct net_device *netdev = adapter->netdev;
4756 	struct pci_dev *pdev = adapter->pdev;
4757 	struct igc_hw *hw = &adapter->hw;
4758 
4759 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4760 
4761 	/* set default ring sizes */
4762 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4763 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4764 
4765 	/* set default ITR values */
4766 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4767 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4768 
4769 	/* set default work limits */
4770 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4771 
4772 	/* adjust max frame to be at least the size of a standard frame */
4773 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4774 				VLAN_HLEN;
4775 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4776 
4777 	mutex_init(&adapter->nfc_rule_lock);
4778 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4779 	adapter->nfc_rule_count = 0;
4780 
4781 	spin_lock_init(&adapter->stats64_lock);
4782 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4783 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4784 
4785 	igc_init_queue_configuration(adapter);
4786 
4787 	/* This call may decrease the number of queues */
4788 	if (igc_init_interrupt_scheme(adapter, true)) {
4789 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4790 		return -ENOMEM;
4791 	}
4792 
4793 	/* Explicitly disable IRQ since the NIC can be in any state. */
4794 	igc_irq_disable(adapter);
4795 
4796 	set_bit(__IGC_DOWN, &adapter->state);
4797 
4798 	return 0;
4799 }
4800 
4801 /**
4802  * igc_up - Open the interface and prepare it to handle traffic
4803  * @adapter: board private structure
4804  */
4805 void igc_up(struct igc_adapter *adapter)
4806 {
4807 	struct igc_hw *hw = &adapter->hw;
4808 	int i = 0;
4809 
4810 	/* hardware has been reset, we need to reload some things */
4811 	igc_configure(adapter);
4812 
4813 	clear_bit(__IGC_DOWN, &adapter->state);
4814 
4815 	for (i = 0; i < adapter->num_q_vectors; i++)
4816 		napi_enable(&adapter->q_vector[i]->napi);
4817 
4818 	if (adapter->msix_entries)
4819 		igc_configure_msix(adapter);
4820 	else
4821 		igc_assign_vector(adapter->q_vector[0], 0);
4822 
4823 	/* Clear any pending interrupts. */
4824 	rd32(IGC_ICR);
4825 	igc_irq_enable(adapter);
4826 
4827 	netif_tx_start_all_queues(adapter->netdev);
4828 
4829 	/* start the watchdog. */
4830 	hw->mac.get_link_status = true;
4831 	schedule_work(&adapter->watchdog_task);
4832 }
4833 
4834 /**
4835  * igc_update_stats - Update the board statistics counters
4836  * @adapter: board private structure
4837  */
4838 void igc_update_stats(struct igc_adapter *adapter)
4839 {
4840 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4841 	struct pci_dev *pdev = adapter->pdev;
4842 	struct igc_hw *hw = &adapter->hw;
4843 	u64 _bytes, _packets;
4844 	u64 bytes, packets;
4845 	unsigned int start;
4846 	u32 mpc;
4847 	int i;
4848 
4849 	/* Prevent stats update while adapter is being reset, or if the pci
4850 	 * connection is down.
4851 	 */
4852 	if (adapter->link_speed == 0)
4853 		return;
4854 	if (pci_channel_offline(pdev))
4855 		return;
4856 
4857 	packets = 0;
4858 	bytes = 0;
4859 
4860 	rcu_read_lock();
4861 	for (i = 0; i < adapter->num_rx_queues; i++) {
4862 		struct igc_ring *ring = adapter->rx_ring[i];
4863 		u32 rqdpc = rd32(IGC_RQDPC(i));
4864 
4865 		if (hw->mac.type >= igc_i225)
4866 			wr32(IGC_RQDPC(i), 0);
4867 
4868 		if (rqdpc) {
4869 			ring->rx_stats.drops += rqdpc;
4870 			net_stats->rx_fifo_errors += rqdpc;
4871 		}
4872 
4873 		do {
4874 			start = u64_stats_fetch_begin(&ring->rx_syncp);
4875 			_bytes = ring->rx_stats.bytes;
4876 			_packets = ring->rx_stats.packets;
4877 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4878 		bytes += _bytes;
4879 		packets += _packets;
4880 	}
4881 
4882 	net_stats->rx_bytes = bytes;
4883 	net_stats->rx_packets = packets;
4884 
4885 	packets = 0;
4886 	bytes = 0;
4887 	for (i = 0; i < adapter->num_tx_queues; i++) {
4888 		struct igc_ring *ring = adapter->tx_ring[i];
4889 
4890 		do {
4891 			start = u64_stats_fetch_begin(&ring->tx_syncp);
4892 			_bytes = ring->tx_stats.bytes;
4893 			_packets = ring->tx_stats.packets;
4894 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4895 		bytes += _bytes;
4896 		packets += _packets;
4897 	}
4898 	net_stats->tx_bytes = bytes;
4899 	net_stats->tx_packets = packets;
4900 	rcu_read_unlock();
4901 
4902 	/* read stats registers */
4903 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4904 	adapter->stats.gprc += rd32(IGC_GPRC);
4905 	adapter->stats.gorc += rd32(IGC_GORCL);
4906 	rd32(IGC_GORCH); /* clear GORCL */
4907 	adapter->stats.bprc += rd32(IGC_BPRC);
4908 	adapter->stats.mprc += rd32(IGC_MPRC);
4909 	adapter->stats.roc += rd32(IGC_ROC);
4910 
4911 	adapter->stats.prc64 += rd32(IGC_PRC64);
4912 	adapter->stats.prc127 += rd32(IGC_PRC127);
4913 	adapter->stats.prc255 += rd32(IGC_PRC255);
4914 	adapter->stats.prc511 += rd32(IGC_PRC511);
4915 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4916 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4917 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4918 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4919 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4920 
4921 	mpc = rd32(IGC_MPC);
4922 	adapter->stats.mpc += mpc;
4923 	net_stats->rx_fifo_errors += mpc;
4924 	adapter->stats.scc += rd32(IGC_SCC);
4925 	adapter->stats.ecol += rd32(IGC_ECOL);
4926 	adapter->stats.mcc += rd32(IGC_MCC);
4927 	adapter->stats.latecol += rd32(IGC_LATECOL);
4928 	adapter->stats.dc += rd32(IGC_DC);
4929 	adapter->stats.rlec += rd32(IGC_RLEC);
4930 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4931 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4932 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4933 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4934 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4935 	adapter->stats.gptc += rd32(IGC_GPTC);
4936 	adapter->stats.gotc += rd32(IGC_GOTCL);
4937 	rd32(IGC_GOTCH); /* clear GOTCL */
4938 	adapter->stats.rnbc += rd32(IGC_RNBC);
4939 	adapter->stats.ruc += rd32(IGC_RUC);
4940 	adapter->stats.rfc += rd32(IGC_RFC);
4941 	adapter->stats.rjc += rd32(IGC_RJC);
4942 	adapter->stats.tor += rd32(IGC_TORH);
4943 	adapter->stats.tot += rd32(IGC_TOTH);
4944 	adapter->stats.tpr += rd32(IGC_TPR);
4945 
4946 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4947 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4948 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4949 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4950 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4951 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4952 
4953 	adapter->stats.mptc += rd32(IGC_MPTC);
4954 	adapter->stats.bptc += rd32(IGC_BPTC);
4955 
4956 	adapter->stats.tpt += rd32(IGC_TPT);
4957 	adapter->stats.colc += rd32(IGC_COLC);
4958 	adapter->stats.colc += rd32(IGC_RERC);
4959 
4960 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4961 
4962 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4963 
4964 	adapter->stats.iac += rd32(IGC_IAC);
4965 
4966 	/* Fill out the OS statistics structure */
4967 	net_stats->multicast = adapter->stats.mprc;
4968 	net_stats->collisions = adapter->stats.colc;
4969 
4970 	/* Rx Errors */
4971 
4972 	/* RLEC on some newer hardware can be incorrect so build
4973 	 * our own version based on RUC and ROC
4974 	 */
4975 	net_stats->rx_errors = adapter->stats.rxerrc +
4976 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4977 		adapter->stats.ruc + adapter->stats.roc +
4978 		adapter->stats.cexterr;
4979 	net_stats->rx_length_errors = adapter->stats.ruc +
4980 				      adapter->stats.roc;
4981 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4982 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4983 	net_stats->rx_missed_errors = adapter->stats.mpc;
4984 
4985 	/* Tx Errors */
4986 	net_stats->tx_errors = adapter->stats.ecol +
4987 			       adapter->stats.latecol;
4988 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4989 	net_stats->tx_window_errors = adapter->stats.latecol;
4990 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4991 
4992 	/* Tx Dropped */
4993 	net_stats->tx_dropped = adapter->stats.txdrop;
4994 
4995 	/* Management Stats */
4996 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4997 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4998 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4999 }
5000 
5001 /**
5002  * igc_down - Close the interface
5003  * @adapter: board private structure
5004  */
5005 void igc_down(struct igc_adapter *adapter)
5006 {
5007 	struct net_device *netdev = adapter->netdev;
5008 	struct igc_hw *hw = &adapter->hw;
5009 	u32 tctl, rctl;
5010 	int i = 0;
5011 
5012 	set_bit(__IGC_DOWN, &adapter->state);
5013 
5014 	igc_ptp_suspend(adapter);
5015 
5016 	if (pci_device_is_present(adapter->pdev)) {
5017 		/* disable receives in the hardware */
5018 		rctl = rd32(IGC_RCTL);
5019 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5020 		/* flush and sleep below */
5021 	}
5022 	/* set trans_start so we don't get spurious watchdogs during reset */
5023 	netif_trans_update(netdev);
5024 
5025 	netif_carrier_off(netdev);
5026 	netif_tx_stop_all_queues(netdev);
5027 
5028 	if (pci_device_is_present(adapter->pdev)) {
5029 		/* disable transmits in the hardware */
5030 		tctl = rd32(IGC_TCTL);
5031 		tctl &= ~IGC_TCTL_EN;
5032 		wr32(IGC_TCTL, tctl);
5033 		/* flush both disables and wait for them to finish */
5034 		wrfl();
5035 		usleep_range(10000, 20000);
5036 
5037 		igc_irq_disable(adapter);
5038 	}
5039 
5040 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5041 
5042 	for (i = 0; i < adapter->num_q_vectors; i++) {
5043 		if (adapter->q_vector[i]) {
5044 			napi_synchronize(&adapter->q_vector[i]->napi);
5045 			napi_disable(&adapter->q_vector[i]->napi);
5046 		}
5047 	}
5048 
5049 	del_timer_sync(&adapter->watchdog_timer);
5050 	del_timer_sync(&adapter->phy_info_timer);
5051 
5052 	/* record the stats before reset*/
5053 	spin_lock(&adapter->stats64_lock);
5054 	igc_update_stats(adapter);
5055 	spin_unlock(&adapter->stats64_lock);
5056 
5057 	adapter->link_speed = 0;
5058 	adapter->link_duplex = 0;
5059 
5060 	if (!pci_channel_offline(adapter->pdev))
5061 		igc_reset(adapter);
5062 
5063 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5064 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5065 
5066 	igc_clean_all_tx_rings(adapter);
5067 	igc_clean_all_rx_rings(adapter);
5068 }
5069 
5070 void igc_reinit_locked(struct igc_adapter *adapter)
5071 {
5072 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5073 		usleep_range(1000, 2000);
5074 	igc_down(adapter);
5075 	igc_up(adapter);
5076 	clear_bit(__IGC_RESETTING, &adapter->state);
5077 }
5078 
5079 static void igc_reset_task(struct work_struct *work)
5080 {
5081 	struct igc_adapter *adapter;
5082 
5083 	adapter = container_of(work, struct igc_adapter, reset_task);
5084 
5085 	rtnl_lock();
5086 	/* If we're already down or resetting, just bail */
5087 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5088 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5089 		rtnl_unlock();
5090 		return;
5091 	}
5092 
5093 	igc_rings_dump(adapter);
5094 	igc_regs_dump(adapter);
5095 	netdev_err(adapter->netdev, "Reset adapter\n");
5096 	igc_reinit_locked(adapter);
5097 	rtnl_unlock();
5098 }
5099 
5100 /**
5101  * igc_change_mtu - Change the Maximum Transfer Unit
5102  * @netdev: network interface device structure
5103  * @new_mtu: new value for maximum frame size
5104  *
5105  * Returns 0 on success, negative on failure
5106  */
5107 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5108 {
5109 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5110 	struct igc_adapter *adapter = netdev_priv(netdev);
5111 
5112 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5113 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5114 		return -EINVAL;
5115 	}
5116 
5117 	/* adjust max frame to be at least the size of a standard frame */
5118 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5119 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5120 
5121 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5122 		usleep_range(1000, 2000);
5123 
5124 	/* igc_down has a dependency on max_frame_size */
5125 	adapter->max_frame_size = max_frame;
5126 
5127 	if (netif_running(netdev))
5128 		igc_down(adapter);
5129 
5130 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5131 	netdev->mtu = new_mtu;
5132 
5133 	if (netif_running(netdev))
5134 		igc_up(adapter);
5135 	else
5136 		igc_reset(adapter);
5137 
5138 	clear_bit(__IGC_RESETTING, &adapter->state);
5139 
5140 	return 0;
5141 }
5142 
5143 /**
5144  * igc_tx_timeout - Respond to a Tx Hang
5145  * @netdev: network interface device structure
5146  * @txqueue: queue number that timed out
5147  **/
5148 static void igc_tx_timeout(struct net_device *netdev,
5149 			   unsigned int __always_unused txqueue)
5150 {
5151 	struct igc_adapter *adapter = netdev_priv(netdev);
5152 	struct igc_hw *hw = &adapter->hw;
5153 
5154 	/* Do the reset outside of interrupt context */
5155 	adapter->tx_timeout_count++;
5156 	schedule_work(&adapter->reset_task);
5157 	wr32(IGC_EICS,
5158 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5159 }
5160 
5161 /**
5162  * igc_get_stats64 - Get System Network Statistics
5163  * @netdev: network interface device structure
5164  * @stats: rtnl_link_stats64 pointer
5165  *
5166  * Returns the address of the device statistics structure.
5167  * The statistics are updated here and also from the timer callback.
5168  */
5169 static void igc_get_stats64(struct net_device *netdev,
5170 			    struct rtnl_link_stats64 *stats)
5171 {
5172 	struct igc_adapter *adapter = netdev_priv(netdev);
5173 
5174 	spin_lock(&adapter->stats64_lock);
5175 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5176 		igc_update_stats(adapter);
5177 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5178 	spin_unlock(&adapter->stats64_lock);
5179 }
5180 
5181 static netdev_features_t igc_fix_features(struct net_device *netdev,
5182 					  netdev_features_t features)
5183 {
5184 	/* Since there is no support for separate Rx/Tx vlan accel
5185 	 * enable/disable make sure Tx flag is always in same state as Rx.
5186 	 */
5187 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5188 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5189 	else
5190 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5191 
5192 	return features;
5193 }
5194 
5195 static int igc_set_features(struct net_device *netdev,
5196 			    netdev_features_t features)
5197 {
5198 	netdev_features_t changed = netdev->features ^ features;
5199 	struct igc_adapter *adapter = netdev_priv(netdev);
5200 
5201 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5202 		igc_vlan_mode(netdev, features);
5203 
5204 	/* Add VLAN support */
5205 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5206 		return 0;
5207 
5208 	if (!(features & NETIF_F_NTUPLE))
5209 		igc_flush_nfc_rules(adapter);
5210 
5211 	netdev->features = features;
5212 
5213 	if (netif_running(netdev))
5214 		igc_reinit_locked(adapter);
5215 	else
5216 		igc_reset(adapter);
5217 
5218 	return 1;
5219 }
5220 
5221 static netdev_features_t
5222 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5223 		   netdev_features_t features)
5224 {
5225 	unsigned int network_hdr_len, mac_hdr_len;
5226 
5227 	/* Make certain the headers can be described by a context descriptor */
5228 	mac_hdr_len = skb_network_header(skb) - skb->data;
5229 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5230 		return features & ~(NETIF_F_HW_CSUM |
5231 				    NETIF_F_SCTP_CRC |
5232 				    NETIF_F_HW_VLAN_CTAG_TX |
5233 				    NETIF_F_TSO |
5234 				    NETIF_F_TSO6);
5235 
5236 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5237 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5238 		return features & ~(NETIF_F_HW_CSUM |
5239 				    NETIF_F_SCTP_CRC |
5240 				    NETIF_F_TSO |
5241 				    NETIF_F_TSO6);
5242 
5243 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5244 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5245 	 */
5246 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5247 		features &= ~NETIF_F_TSO;
5248 
5249 	return features;
5250 }
5251 
5252 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5253 {
5254 	u32 ack, tsauxc, sec, nsec, tsicr;
5255 	struct igc_hw *hw = &adapter->hw;
5256 	struct ptp_clock_event event;
5257 	struct timespec64 ts;
5258 
5259 	tsicr = rd32(IGC_TSICR);
5260 	ack = 0;
5261 
5262 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5263 		event.type = PTP_CLOCK_PPS;
5264 		if (adapter->ptp_caps.pps)
5265 			ptp_clock_event(adapter->ptp_clock, &event);
5266 		ack |= IGC_TSICR_SYS_WRAP;
5267 	}
5268 
5269 	if (tsicr & IGC_TSICR_TXTS) {
5270 		/* retrieve hardware timestamp */
5271 		igc_ptp_tx_tstamp_event(adapter);
5272 		ack |= IGC_TSICR_TXTS;
5273 	}
5274 
5275 	if (tsicr & IGC_TSICR_TT0) {
5276 		spin_lock(&adapter->tmreg_lock);
5277 		ts = timespec64_add(adapter->perout[0].start,
5278 				    adapter->perout[0].period);
5279 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5280 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5281 		tsauxc = rd32(IGC_TSAUXC);
5282 		tsauxc |= IGC_TSAUXC_EN_TT0;
5283 		wr32(IGC_TSAUXC, tsauxc);
5284 		adapter->perout[0].start = ts;
5285 		spin_unlock(&adapter->tmreg_lock);
5286 		ack |= IGC_TSICR_TT0;
5287 	}
5288 
5289 	if (tsicr & IGC_TSICR_TT1) {
5290 		spin_lock(&adapter->tmreg_lock);
5291 		ts = timespec64_add(adapter->perout[1].start,
5292 				    adapter->perout[1].period);
5293 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5294 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5295 		tsauxc = rd32(IGC_TSAUXC);
5296 		tsauxc |= IGC_TSAUXC_EN_TT1;
5297 		wr32(IGC_TSAUXC, tsauxc);
5298 		adapter->perout[1].start = ts;
5299 		spin_unlock(&adapter->tmreg_lock);
5300 		ack |= IGC_TSICR_TT1;
5301 	}
5302 
5303 	if (tsicr & IGC_TSICR_AUTT0) {
5304 		nsec = rd32(IGC_AUXSTMPL0);
5305 		sec  = rd32(IGC_AUXSTMPH0);
5306 		event.type = PTP_CLOCK_EXTTS;
5307 		event.index = 0;
5308 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5309 		ptp_clock_event(adapter->ptp_clock, &event);
5310 		ack |= IGC_TSICR_AUTT0;
5311 	}
5312 
5313 	if (tsicr & IGC_TSICR_AUTT1) {
5314 		nsec = rd32(IGC_AUXSTMPL1);
5315 		sec  = rd32(IGC_AUXSTMPH1);
5316 		event.type = PTP_CLOCK_EXTTS;
5317 		event.index = 1;
5318 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5319 		ptp_clock_event(adapter->ptp_clock, &event);
5320 		ack |= IGC_TSICR_AUTT1;
5321 	}
5322 
5323 	/* acknowledge the interrupts */
5324 	wr32(IGC_TSICR, ack);
5325 }
5326 
5327 /**
5328  * igc_msix_other - msix other interrupt handler
5329  * @irq: interrupt number
5330  * @data: pointer to a q_vector
5331  */
5332 static irqreturn_t igc_msix_other(int irq, void *data)
5333 {
5334 	struct igc_adapter *adapter = data;
5335 	struct igc_hw *hw = &adapter->hw;
5336 	u32 icr = rd32(IGC_ICR);
5337 
5338 	/* reading ICR causes bit 31 of EICR to be cleared */
5339 	if (icr & IGC_ICR_DRSTA)
5340 		schedule_work(&adapter->reset_task);
5341 
5342 	if (icr & IGC_ICR_DOUTSYNC) {
5343 		/* HW is reporting DMA is out of sync */
5344 		adapter->stats.doosync++;
5345 	}
5346 
5347 	if (icr & IGC_ICR_LSC) {
5348 		hw->mac.get_link_status = true;
5349 		/* guard against interrupt when we're going down */
5350 		if (!test_bit(__IGC_DOWN, &adapter->state))
5351 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5352 	}
5353 
5354 	if (icr & IGC_ICR_TS)
5355 		igc_tsync_interrupt(adapter);
5356 
5357 	wr32(IGC_EIMS, adapter->eims_other);
5358 
5359 	return IRQ_HANDLED;
5360 }
5361 
5362 static void igc_write_itr(struct igc_q_vector *q_vector)
5363 {
5364 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5365 
5366 	if (!q_vector->set_itr)
5367 		return;
5368 
5369 	if (!itr_val)
5370 		itr_val = IGC_ITR_VAL_MASK;
5371 
5372 	itr_val |= IGC_EITR_CNT_IGNR;
5373 
5374 	writel(itr_val, q_vector->itr_register);
5375 	q_vector->set_itr = 0;
5376 }
5377 
5378 static irqreturn_t igc_msix_ring(int irq, void *data)
5379 {
5380 	struct igc_q_vector *q_vector = data;
5381 
5382 	/* Write the ITR value calculated from the previous interrupt. */
5383 	igc_write_itr(q_vector);
5384 
5385 	napi_schedule(&q_vector->napi);
5386 
5387 	return IRQ_HANDLED;
5388 }
5389 
5390 /**
5391  * igc_request_msix - Initialize MSI-X interrupts
5392  * @adapter: Pointer to adapter structure
5393  *
5394  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5395  * kernel.
5396  */
5397 static int igc_request_msix(struct igc_adapter *adapter)
5398 {
5399 	unsigned int num_q_vectors = adapter->num_q_vectors;
5400 	int i = 0, err = 0, vector = 0, free_vector = 0;
5401 	struct net_device *netdev = adapter->netdev;
5402 
5403 	err = request_irq(adapter->msix_entries[vector].vector,
5404 			  &igc_msix_other, 0, netdev->name, adapter);
5405 	if (err)
5406 		goto err_out;
5407 
5408 	if (num_q_vectors > MAX_Q_VECTORS) {
5409 		num_q_vectors = MAX_Q_VECTORS;
5410 		dev_warn(&adapter->pdev->dev,
5411 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5412 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5413 	}
5414 	for (i = 0; i < num_q_vectors; i++) {
5415 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5416 
5417 		vector++;
5418 
5419 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5420 
5421 		if (q_vector->rx.ring && q_vector->tx.ring)
5422 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5423 				q_vector->rx.ring->queue_index);
5424 		else if (q_vector->tx.ring)
5425 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5426 				q_vector->tx.ring->queue_index);
5427 		else if (q_vector->rx.ring)
5428 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5429 				q_vector->rx.ring->queue_index);
5430 		else
5431 			sprintf(q_vector->name, "%s-unused", netdev->name);
5432 
5433 		err = request_irq(adapter->msix_entries[vector].vector,
5434 				  igc_msix_ring, 0, q_vector->name,
5435 				  q_vector);
5436 		if (err)
5437 			goto err_free;
5438 	}
5439 
5440 	igc_configure_msix(adapter);
5441 	return 0;
5442 
5443 err_free:
5444 	/* free already assigned IRQs */
5445 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5446 
5447 	vector--;
5448 	for (i = 0; i < vector; i++) {
5449 		free_irq(adapter->msix_entries[free_vector++].vector,
5450 			 adapter->q_vector[i]);
5451 	}
5452 err_out:
5453 	return err;
5454 }
5455 
5456 /**
5457  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5458  * @adapter: Pointer to adapter structure
5459  *
5460  * This function resets the device so that it has 0 rx queues, tx queues, and
5461  * MSI-X interrupts allocated.
5462  */
5463 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5464 {
5465 	igc_free_q_vectors(adapter);
5466 	igc_reset_interrupt_capability(adapter);
5467 }
5468 
5469 /* Need to wait a few seconds after link up to get diagnostic information from
5470  * the phy
5471  */
5472 static void igc_update_phy_info(struct timer_list *t)
5473 {
5474 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5475 
5476 	igc_get_phy_info(&adapter->hw);
5477 }
5478 
5479 /**
5480  * igc_has_link - check shared code for link and determine up/down
5481  * @adapter: pointer to driver private info
5482  */
5483 bool igc_has_link(struct igc_adapter *adapter)
5484 {
5485 	struct igc_hw *hw = &adapter->hw;
5486 	bool link_active = false;
5487 
5488 	/* get_link_status is set on LSC (link status) interrupt or
5489 	 * rx sequence error interrupt.  get_link_status will stay
5490 	 * false until the igc_check_for_link establishes link
5491 	 * for copper adapters ONLY
5492 	 */
5493 	if (!hw->mac.get_link_status)
5494 		return true;
5495 	hw->mac.ops.check_for_link(hw);
5496 	link_active = !hw->mac.get_link_status;
5497 
5498 	if (hw->mac.type == igc_i225) {
5499 		if (!netif_carrier_ok(adapter->netdev)) {
5500 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5501 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5502 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5503 			adapter->link_check_timeout = jiffies;
5504 		}
5505 	}
5506 
5507 	return link_active;
5508 }
5509 
5510 /**
5511  * igc_watchdog - Timer Call-back
5512  * @t: timer for the watchdog
5513  */
5514 static void igc_watchdog(struct timer_list *t)
5515 {
5516 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5517 	/* Do the rest outside of interrupt context */
5518 	schedule_work(&adapter->watchdog_task);
5519 }
5520 
5521 static void igc_watchdog_task(struct work_struct *work)
5522 {
5523 	struct igc_adapter *adapter = container_of(work,
5524 						   struct igc_adapter,
5525 						   watchdog_task);
5526 	struct net_device *netdev = adapter->netdev;
5527 	struct igc_hw *hw = &adapter->hw;
5528 	struct igc_phy_info *phy = &hw->phy;
5529 	u16 phy_data, retry_count = 20;
5530 	u32 link;
5531 	int i;
5532 
5533 	link = igc_has_link(adapter);
5534 
5535 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5536 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5537 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5538 		else
5539 			link = false;
5540 	}
5541 
5542 	if (link) {
5543 		/* Cancel scheduled suspend requests. */
5544 		pm_runtime_resume(netdev->dev.parent);
5545 
5546 		if (!netif_carrier_ok(netdev)) {
5547 			u32 ctrl;
5548 
5549 			hw->mac.ops.get_speed_and_duplex(hw,
5550 							 &adapter->link_speed,
5551 							 &adapter->link_duplex);
5552 
5553 			ctrl = rd32(IGC_CTRL);
5554 			/* Link status message must follow this format */
5555 			netdev_info(netdev,
5556 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5557 				    adapter->link_speed,
5558 				    adapter->link_duplex == FULL_DUPLEX ?
5559 				    "Full" : "Half",
5560 				    (ctrl & IGC_CTRL_TFCE) &&
5561 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5562 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5563 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5564 
5565 			/* disable EEE if enabled */
5566 			if ((adapter->flags & IGC_FLAG_EEE) &&
5567 			    adapter->link_duplex == HALF_DUPLEX) {
5568 				netdev_info(netdev,
5569 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5570 				adapter->hw.dev_spec._base.eee_enable = false;
5571 				adapter->flags &= ~IGC_FLAG_EEE;
5572 			}
5573 
5574 			/* check if SmartSpeed worked */
5575 			igc_check_downshift(hw);
5576 			if (phy->speed_downgraded)
5577 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5578 
5579 			/* adjust timeout factor according to speed/duplex */
5580 			adapter->tx_timeout_factor = 1;
5581 			switch (adapter->link_speed) {
5582 			case SPEED_10:
5583 				adapter->tx_timeout_factor = 14;
5584 				break;
5585 			case SPEED_100:
5586 			case SPEED_1000:
5587 			case SPEED_2500:
5588 				adapter->tx_timeout_factor = 1;
5589 				break;
5590 			}
5591 
5592 			/* Once the launch time has been set on the wire, there
5593 			 * is a delay before the link speed can be determined
5594 			 * based on link-up activity. Write into the register
5595 			 * as soon as we know the correct link speed.
5596 			 */
5597 			igc_tsn_adjust_txtime_offset(adapter);
5598 
5599 			if (adapter->link_speed != SPEED_1000)
5600 				goto no_wait;
5601 
5602 			/* wait for Remote receiver status OK */
5603 retry_read_status:
5604 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5605 					      &phy_data)) {
5606 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5607 				    retry_count) {
5608 					msleep(100);
5609 					retry_count--;
5610 					goto retry_read_status;
5611 				} else if (!retry_count) {
5612 					netdev_err(netdev, "exceed max 2 second\n");
5613 				}
5614 			} else {
5615 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5616 			}
5617 no_wait:
5618 			netif_carrier_on(netdev);
5619 
5620 			/* link state has changed, schedule phy info update */
5621 			if (!test_bit(__IGC_DOWN, &adapter->state))
5622 				mod_timer(&adapter->phy_info_timer,
5623 					  round_jiffies(jiffies + 2 * HZ));
5624 		}
5625 	} else {
5626 		if (netif_carrier_ok(netdev)) {
5627 			adapter->link_speed = 0;
5628 			adapter->link_duplex = 0;
5629 
5630 			/* Links status message must follow this format */
5631 			netdev_info(netdev, "NIC Link is Down\n");
5632 			netif_carrier_off(netdev);
5633 
5634 			/* link state has changed, schedule phy info update */
5635 			if (!test_bit(__IGC_DOWN, &adapter->state))
5636 				mod_timer(&adapter->phy_info_timer,
5637 					  round_jiffies(jiffies + 2 * HZ));
5638 
5639 			pm_schedule_suspend(netdev->dev.parent,
5640 					    MSEC_PER_SEC * 5);
5641 		}
5642 	}
5643 
5644 	spin_lock(&adapter->stats64_lock);
5645 	igc_update_stats(adapter);
5646 	spin_unlock(&adapter->stats64_lock);
5647 
5648 	for (i = 0; i < adapter->num_tx_queues; i++) {
5649 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5650 
5651 		if (!netif_carrier_ok(netdev)) {
5652 			/* We've lost link, so the controller stops DMA,
5653 			 * but we've got queued Tx work that's never going
5654 			 * to get done, so reset controller to flush Tx.
5655 			 * (Do the reset outside of interrupt context).
5656 			 */
5657 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5658 				adapter->tx_timeout_count++;
5659 				schedule_work(&adapter->reset_task);
5660 				/* return immediately since reset is imminent */
5661 				return;
5662 			}
5663 		}
5664 
5665 		/* Force detection of hung controller every watchdog period */
5666 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5667 	}
5668 
5669 	/* Cause software interrupt to ensure Rx ring is cleaned */
5670 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5671 		u32 eics = 0;
5672 
5673 		for (i = 0; i < adapter->num_q_vectors; i++)
5674 			eics |= adapter->q_vector[i]->eims_value;
5675 		wr32(IGC_EICS, eics);
5676 	} else {
5677 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5678 	}
5679 
5680 	igc_ptp_tx_hang(adapter);
5681 
5682 	/* Reset the timer */
5683 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5684 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5685 			mod_timer(&adapter->watchdog_timer,
5686 				  round_jiffies(jiffies +  HZ));
5687 		else
5688 			mod_timer(&adapter->watchdog_timer,
5689 				  round_jiffies(jiffies + 2 * HZ));
5690 	}
5691 }
5692 
5693 /**
5694  * igc_intr_msi - Interrupt Handler
5695  * @irq: interrupt number
5696  * @data: pointer to a network interface device structure
5697  */
5698 static irqreturn_t igc_intr_msi(int irq, void *data)
5699 {
5700 	struct igc_adapter *adapter = data;
5701 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5702 	struct igc_hw *hw = &adapter->hw;
5703 	/* read ICR disables interrupts using IAM */
5704 	u32 icr = rd32(IGC_ICR);
5705 
5706 	igc_write_itr(q_vector);
5707 
5708 	if (icr & IGC_ICR_DRSTA)
5709 		schedule_work(&adapter->reset_task);
5710 
5711 	if (icr & IGC_ICR_DOUTSYNC) {
5712 		/* HW is reporting DMA is out of sync */
5713 		adapter->stats.doosync++;
5714 	}
5715 
5716 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5717 		hw->mac.get_link_status = true;
5718 		if (!test_bit(__IGC_DOWN, &adapter->state))
5719 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5720 	}
5721 
5722 	if (icr & IGC_ICR_TS)
5723 		igc_tsync_interrupt(adapter);
5724 
5725 	napi_schedule(&q_vector->napi);
5726 
5727 	return IRQ_HANDLED;
5728 }
5729 
5730 /**
5731  * igc_intr - Legacy Interrupt Handler
5732  * @irq: interrupt number
5733  * @data: pointer to a network interface device structure
5734  */
5735 static irqreturn_t igc_intr(int irq, void *data)
5736 {
5737 	struct igc_adapter *adapter = data;
5738 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5739 	struct igc_hw *hw = &adapter->hw;
5740 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5741 	 * need for the IMC write
5742 	 */
5743 	u32 icr = rd32(IGC_ICR);
5744 
5745 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5746 	 * not set, then the adapter didn't send an interrupt
5747 	 */
5748 	if (!(icr & IGC_ICR_INT_ASSERTED))
5749 		return IRQ_NONE;
5750 
5751 	igc_write_itr(q_vector);
5752 
5753 	if (icr & IGC_ICR_DRSTA)
5754 		schedule_work(&adapter->reset_task);
5755 
5756 	if (icr & IGC_ICR_DOUTSYNC) {
5757 		/* HW is reporting DMA is out of sync */
5758 		adapter->stats.doosync++;
5759 	}
5760 
5761 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5762 		hw->mac.get_link_status = true;
5763 		/* guard against interrupt when we're going down */
5764 		if (!test_bit(__IGC_DOWN, &adapter->state))
5765 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5766 	}
5767 
5768 	if (icr & IGC_ICR_TS)
5769 		igc_tsync_interrupt(adapter);
5770 
5771 	napi_schedule(&q_vector->napi);
5772 
5773 	return IRQ_HANDLED;
5774 }
5775 
5776 static void igc_free_irq(struct igc_adapter *adapter)
5777 {
5778 	if (adapter->msix_entries) {
5779 		int vector = 0, i;
5780 
5781 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5782 
5783 		for (i = 0; i < adapter->num_q_vectors; i++)
5784 			free_irq(adapter->msix_entries[vector++].vector,
5785 				 adapter->q_vector[i]);
5786 	} else {
5787 		free_irq(adapter->pdev->irq, adapter);
5788 	}
5789 }
5790 
5791 /**
5792  * igc_request_irq - initialize interrupts
5793  * @adapter: Pointer to adapter structure
5794  *
5795  * Attempts to configure interrupts using the best available
5796  * capabilities of the hardware and kernel.
5797  */
5798 static int igc_request_irq(struct igc_adapter *adapter)
5799 {
5800 	struct net_device *netdev = adapter->netdev;
5801 	struct pci_dev *pdev = adapter->pdev;
5802 	int err = 0;
5803 
5804 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5805 		err = igc_request_msix(adapter);
5806 		if (!err)
5807 			goto request_done;
5808 		/* fall back to MSI */
5809 		igc_free_all_tx_resources(adapter);
5810 		igc_free_all_rx_resources(adapter);
5811 
5812 		igc_clear_interrupt_scheme(adapter);
5813 		err = igc_init_interrupt_scheme(adapter, false);
5814 		if (err)
5815 			goto request_done;
5816 		igc_setup_all_tx_resources(adapter);
5817 		igc_setup_all_rx_resources(adapter);
5818 		igc_configure(adapter);
5819 	}
5820 
5821 	igc_assign_vector(adapter->q_vector[0], 0);
5822 
5823 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5824 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5825 				  netdev->name, adapter);
5826 		if (!err)
5827 			goto request_done;
5828 
5829 		/* fall back to legacy interrupts */
5830 		igc_reset_interrupt_capability(adapter);
5831 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5832 	}
5833 
5834 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5835 			  netdev->name, adapter);
5836 
5837 	if (err)
5838 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5839 
5840 request_done:
5841 	return err;
5842 }
5843 
5844 /**
5845  * __igc_open - Called when a network interface is made active
5846  * @netdev: network interface device structure
5847  * @resuming: boolean indicating if the device is resuming
5848  *
5849  * Returns 0 on success, negative value on failure
5850  *
5851  * The open entry point is called when a network interface is made
5852  * active by the system (IFF_UP).  At this point all resources needed
5853  * for transmit and receive operations are allocated, the interrupt
5854  * handler is registered with the OS, the watchdog timer is started,
5855  * and the stack is notified that the interface is ready.
5856  */
5857 static int __igc_open(struct net_device *netdev, bool resuming)
5858 {
5859 	struct igc_adapter *adapter = netdev_priv(netdev);
5860 	struct pci_dev *pdev = adapter->pdev;
5861 	struct igc_hw *hw = &adapter->hw;
5862 	int err = 0;
5863 	int i = 0;
5864 
5865 	/* disallow open during test */
5866 
5867 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5868 		WARN_ON(resuming);
5869 		return -EBUSY;
5870 	}
5871 
5872 	if (!resuming)
5873 		pm_runtime_get_sync(&pdev->dev);
5874 
5875 	netif_carrier_off(netdev);
5876 
5877 	/* allocate transmit descriptors */
5878 	err = igc_setup_all_tx_resources(adapter);
5879 	if (err)
5880 		goto err_setup_tx;
5881 
5882 	/* allocate receive descriptors */
5883 	err = igc_setup_all_rx_resources(adapter);
5884 	if (err)
5885 		goto err_setup_rx;
5886 
5887 	igc_power_up_link(adapter);
5888 
5889 	igc_configure(adapter);
5890 
5891 	err = igc_request_irq(adapter);
5892 	if (err)
5893 		goto err_req_irq;
5894 
5895 	/* Notify the stack of the actual queue counts. */
5896 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5897 	if (err)
5898 		goto err_set_queues;
5899 
5900 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5901 	if (err)
5902 		goto err_set_queues;
5903 
5904 	clear_bit(__IGC_DOWN, &adapter->state);
5905 
5906 	for (i = 0; i < adapter->num_q_vectors; i++)
5907 		napi_enable(&adapter->q_vector[i]->napi);
5908 
5909 	/* Clear any pending interrupts. */
5910 	rd32(IGC_ICR);
5911 	igc_irq_enable(adapter);
5912 
5913 	if (!resuming)
5914 		pm_runtime_put(&pdev->dev);
5915 
5916 	netif_tx_start_all_queues(netdev);
5917 
5918 	/* start the watchdog. */
5919 	hw->mac.get_link_status = true;
5920 	schedule_work(&adapter->watchdog_task);
5921 
5922 	return IGC_SUCCESS;
5923 
5924 err_set_queues:
5925 	igc_free_irq(adapter);
5926 err_req_irq:
5927 	igc_release_hw_control(adapter);
5928 	igc_power_down_phy_copper_base(&adapter->hw);
5929 	igc_free_all_rx_resources(adapter);
5930 err_setup_rx:
5931 	igc_free_all_tx_resources(adapter);
5932 err_setup_tx:
5933 	igc_reset(adapter);
5934 	if (!resuming)
5935 		pm_runtime_put(&pdev->dev);
5936 
5937 	return err;
5938 }
5939 
5940 int igc_open(struct net_device *netdev)
5941 {
5942 	return __igc_open(netdev, false);
5943 }
5944 
5945 /**
5946  * __igc_close - Disables a network interface
5947  * @netdev: network interface device structure
5948  * @suspending: boolean indicating the device is suspending
5949  *
5950  * Returns 0, this is not allowed to fail
5951  *
5952  * The close entry point is called when an interface is de-activated
5953  * by the OS.  The hardware is still under the driver's control, but
5954  * needs to be disabled.  A global MAC reset is issued to stop the
5955  * hardware, and all transmit and receive resources are freed.
5956  */
5957 static int __igc_close(struct net_device *netdev, bool suspending)
5958 {
5959 	struct igc_adapter *adapter = netdev_priv(netdev);
5960 	struct pci_dev *pdev = adapter->pdev;
5961 
5962 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5963 
5964 	if (!suspending)
5965 		pm_runtime_get_sync(&pdev->dev);
5966 
5967 	igc_down(adapter);
5968 
5969 	igc_release_hw_control(adapter);
5970 
5971 	igc_free_irq(adapter);
5972 
5973 	igc_free_all_tx_resources(adapter);
5974 	igc_free_all_rx_resources(adapter);
5975 
5976 	if (!suspending)
5977 		pm_runtime_put_sync(&pdev->dev);
5978 
5979 	return 0;
5980 }
5981 
5982 int igc_close(struct net_device *netdev)
5983 {
5984 	if (netif_device_present(netdev) || netdev->dismantle)
5985 		return __igc_close(netdev, false);
5986 	return 0;
5987 }
5988 
5989 /**
5990  * igc_ioctl - Access the hwtstamp interface
5991  * @netdev: network interface device structure
5992  * @ifr: interface request data
5993  * @cmd: ioctl command
5994  **/
5995 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5996 {
5997 	switch (cmd) {
5998 	case SIOCGHWTSTAMP:
5999 		return igc_ptp_get_ts_config(netdev, ifr);
6000 	case SIOCSHWTSTAMP:
6001 		return igc_ptp_set_ts_config(netdev, ifr);
6002 	default:
6003 		return -EOPNOTSUPP;
6004 	}
6005 }
6006 
6007 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6008 				      bool enable)
6009 {
6010 	struct igc_ring *ring;
6011 
6012 	if (queue < 0 || queue >= adapter->num_tx_queues)
6013 		return -EINVAL;
6014 
6015 	ring = adapter->tx_ring[queue];
6016 	ring->launchtime_enable = enable;
6017 
6018 	return 0;
6019 }
6020 
6021 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6022 {
6023 	struct timespec64 b;
6024 
6025 	b = ktime_to_timespec64(base_time);
6026 
6027 	return timespec64_compare(now, &b) > 0;
6028 }
6029 
6030 static bool validate_schedule(struct igc_adapter *adapter,
6031 			      const struct tc_taprio_qopt_offload *qopt)
6032 {
6033 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6034 	struct igc_hw *hw = &adapter->hw;
6035 	struct timespec64 now;
6036 	size_t n;
6037 
6038 	if (qopt->cycle_time_extension)
6039 		return false;
6040 
6041 	igc_ptp_read(adapter, &now);
6042 
6043 	/* If we program the controller's BASET registers with a time
6044 	 * in the future, it will hold all the packets until that
6045 	 * time, causing a lot of TX Hangs, so to avoid that, we
6046 	 * reject schedules that would start in the future.
6047 	 * Note: Limitation above is no longer in i226.
6048 	 */
6049 	if (!is_base_time_past(qopt->base_time, &now) &&
6050 	    igc_is_device_id_i225(hw))
6051 		return false;
6052 
6053 	for (n = 0; n < qopt->num_entries; n++) {
6054 		const struct tc_taprio_sched_entry *e, *prev;
6055 		int i;
6056 
6057 		prev = n ? &qopt->entries[n - 1] : NULL;
6058 		e = &qopt->entries[n];
6059 
6060 		/* i225 only supports "global" frame preemption
6061 		 * settings.
6062 		 */
6063 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6064 			return false;
6065 
6066 		for (i = 0; i < adapter->num_tx_queues; i++)
6067 			if (e->gate_mask & BIT(i)) {
6068 				queue_uses[i]++;
6069 
6070 				/* There are limitations: A single queue cannot
6071 				 * be opened and closed multiple times per cycle
6072 				 * unless the gate stays open. Check for it.
6073 				 */
6074 				if (queue_uses[i] > 1 &&
6075 				    !(prev->gate_mask & BIT(i)))
6076 					return false;
6077 			}
6078 	}
6079 
6080 	return true;
6081 }
6082 
6083 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6084 				     struct tc_etf_qopt_offload *qopt)
6085 {
6086 	struct igc_hw *hw = &adapter->hw;
6087 	int err;
6088 
6089 	if (hw->mac.type != igc_i225)
6090 		return -EOPNOTSUPP;
6091 
6092 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6093 	if (err)
6094 		return err;
6095 
6096 	return igc_tsn_offload_apply(adapter);
6097 }
6098 
6099 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6100 {
6101 	int i;
6102 
6103 	adapter->base_time = 0;
6104 	adapter->cycle_time = NSEC_PER_SEC;
6105 	adapter->qbv_config_change_errors = 0;
6106 
6107 	for (i = 0; i < adapter->num_tx_queues; i++) {
6108 		struct igc_ring *ring = adapter->tx_ring[i];
6109 
6110 		ring->start_time = 0;
6111 		ring->end_time = NSEC_PER_SEC;
6112 		ring->max_sdu = 0;
6113 	}
6114 
6115 	return 0;
6116 }
6117 
6118 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6119 				 struct tc_taprio_qopt_offload *qopt)
6120 {
6121 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6122 	struct igc_hw *hw = &adapter->hw;
6123 	u32 start_time = 0, end_time = 0;
6124 	size_t n;
6125 	int i;
6126 
6127 	switch (qopt->cmd) {
6128 	case TAPRIO_CMD_REPLACE:
6129 		adapter->qbv_enable = true;
6130 		break;
6131 	case TAPRIO_CMD_DESTROY:
6132 		adapter->qbv_enable = false;
6133 		break;
6134 	default:
6135 		return -EOPNOTSUPP;
6136 	}
6137 
6138 	if (!adapter->qbv_enable)
6139 		return igc_tsn_clear_schedule(adapter);
6140 
6141 	if (qopt->base_time < 0)
6142 		return -ERANGE;
6143 
6144 	if (igc_is_device_id_i225(hw) && adapter->base_time)
6145 		return -EALREADY;
6146 
6147 	if (!validate_schedule(adapter, qopt))
6148 		return -EINVAL;
6149 
6150 	adapter->cycle_time = qopt->cycle_time;
6151 	adapter->base_time = qopt->base_time;
6152 
6153 	for (n = 0; n < qopt->num_entries; n++) {
6154 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6155 
6156 		end_time += e->interval;
6157 
6158 		/* If any of the conditions below are true, we need to manually
6159 		 * control the end time of the cycle.
6160 		 * 1. Qbv users can specify a cycle time that is not equal
6161 		 * to the total GCL intervals. Hence, recalculation is
6162 		 * necessary here to exclude the time interval that
6163 		 * exceeds the cycle time.
6164 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6165 		 * once the end of the list is reached, it will switch
6166 		 * to the END_OF_CYCLE state and leave the gates in the
6167 		 * same state until the next cycle is started.
6168 		 */
6169 		if (end_time > adapter->cycle_time ||
6170 		    n + 1 == qopt->num_entries)
6171 			end_time = adapter->cycle_time;
6172 
6173 		for (i = 0; i < adapter->num_tx_queues; i++) {
6174 			struct igc_ring *ring = adapter->tx_ring[i];
6175 
6176 			if (!(e->gate_mask & BIT(i)))
6177 				continue;
6178 
6179 			/* Check whether a queue stays open for more than one
6180 			 * entry. If so, keep the start and advance the end
6181 			 * time.
6182 			 */
6183 			if (!queue_configured[i])
6184 				ring->start_time = start_time;
6185 			ring->end_time = end_time;
6186 
6187 			queue_configured[i] = true;
6188 		}
6189 
6190 		start_time += e->interval;
6191 	}
6192 
6193 	/* Check whether a queue gets configured.
6194 	 * If not, set the start and end time to be end time.
6195 	 */
6196 	for (i = 0; i < adapter->num_tx_queues; i++) {
6197 		if (!queue_configured[i]) {
6198 			struct igc_ring *ring = adapter->tx_ring[i];
6199 
6200 			ring->start_time = end_time;
6201 			ring->end_time = end_time;
6202 		}
6203 	}
6204 
6205 	for (i = 0; i < adapter->num_tx_queues; i++) {
6206 		struct igc_ring *ring = adapter->tx_ring[i];
6207 		struct net_device *dev = adapter->netdev;
6208 
6209 		if (qopt->max_sdu[i])
6210 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len;
6211 		else
6212 			ring->max_sdu = 0;
6213 	}
6214 
6215 	return 0;
6216 }
6217 
6218 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6219 					 struct tc_taprio_qopt_offload *qopt)
6220 {
6221 	struct igc_hw *hw = &adapter->hw;
6222 	int err;
6223 
6224 	if (hw->mac.type != igc_i225)
6225 		return -EOPNOTSUPP;
6226 
6227 	err = igc_save_qbv_schedule(adapter, qopt);
6228 	if (err)
6229 		return err;
6230 
6231 	return igc_tsn_offload_apply(adapter);
6232 }
6233 
6234 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6235 			       bool enable, int idleslope, int sendslope,
6236 			       int hicredit, int locredit)
6237 {
6238 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6239 	struct net_device *netdev = adapter->netdev;
6240 	struct igc_ring *ring;
6241 	int i;
6242 
6243 	/* i225 has two sets of credit-based shaper logic.
6244 	 * Supporting it only on the top two priority queues
6245 	 */
6246 	if (queue < 0 || queue > 1)
6247 		return -EINVAL;
6248 
6249 	ring = adapter->tx_ring[queue];
6250 
6251 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6252 		if (adapter->tx_ring[i])
6253 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6254 
6255 	/* CBS should be enabled on the highest priority queue first in order
6256 	 * for the CBS algorithm to operate as intended.
6257 	 */
6258 	if (enable) {
6259 		if (queue == 1 && !cbs_status[0]) {
6260 			netdev_err(netdev,
6261 				   "Enabling CBS on queue1 before queue0\n");
6262 			return -EINVAL;
6263 		}
6264 	} else {
6265 		if (queue == 0 && cbs_status[1]) {
6266 			netdev_err(netdev,
6267 				   "Disabling CBS on queue0 before queue1\n");
6268 			return -EINVAL;
6269 		}
6270 	}
6271 
6272 	ring->cbs_enable = enable;
6273 	ring->idleslope = idleslope;
6274 	ring->sendslope = sendslope;
6275 	ring->hicredit = hicredit;
6276 	ring->locredit = locredit;
6277 
6278 	return 0;
6279 }
6280 
6281 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6282 			      struct tc_cbs_qopt_offload *qopt)
6283 {
6284 	struct igc_hw *hw = &adapter->hw;
6285 	int err;
6286 
6287 	if (hw->mac.type != igc_i225)
6288 		return -EOPNOTSUPP;
6289 
6290 	if (qopt->queue < 0 || qopt->queue > 1)
6291 		return -EINVAL;
6292 
6293 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6294 				  qopt->idleslope, qopt->sendslope,
6295 				  qopt->hicredit, qopt->locredit);
6296 	if (err)
6297 		return err;
6298 
6299 	return igc_tsn_offload_apply(adapter);
6300 }
6301 
6302 static int igc_tc_query_caps(struct igc_adapter *adapter,
6303 			     struct tc_query_caps_base *base)
6304 {
6305 	struct igc_hw *hw = &adapter->hw;
6306 
6307 	switch (base->type) {
6308 	case TC_SETUP_QDISC_TAPRIO: {
6309 		struct tc_taprio_caps *caps = base->caps;
6310 
6311 		caps->broken_mqprio = true;
6312 
6313 		if (hw->mac.type == igc_i225) {
6314 			caps->supports_queue_max_sdu = true;
6315 			caps->gate_mask_per_txq = true;
6316 		}
6317 
6318 		return 0;
6319 	}
6320 	default:
6321 		return -EOPNOTSUPP;
6322 	}
6323 }
6324 
6325 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6326 			void *type_data)
6327 {
6328 	struct igc_adapter *adapter = netdev_priv(dev);
6329 
6330 	switch (type) {
6331 	case TC_QUERY_CAPS:
6332 		return igc_tc_query_caps(adapter, type_data);
6333 	case TC_SETUP_QDISC_TAPRIO:
6334 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6335 
6336 	case TC_SETUP_QDISC_ETF:
6337 		return igc_tsn_enable_launchtime(adapter, type_data);
6338 
6339 	case TC_SETUP_QDISC_CBS:
6340 		return igc_tsn_enable_cbs(adapter, type_data);
6341 
6342 	default:
6343 		return -EOPNOTSUPP;
6344 	}
6345 }
6346 
6347 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6348 {
6349 	struct igc_adapter *adapter = netdev_priv(dev);
6350 
6351 	switch (bpf->command) {
6352 	case XDP_SETUP_PROG:
6353 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6354 	case XDP_SETUP_XSK_POOL:
6355 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6356 					  bpf->xsk.queue_id);
6357 	default:
6358 		return -EOPNOTSUPP;
6359 	}
6360 }
6361 
6362 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6363 			struct xdp_frame **frames, u32 flags)
6364 {
6365 	struct igc_adapter *adapter = netdev_priv(dev);
6366 	int cpu = smp_processor_id();
6367 	struct netdev_queue *nq;
6368 	struct igc_ring *ring;
6369 	int i, drops;
6370 
6371 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6372 		return -ENETDOWN;
6373 
6374 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6375 		return -EINVAL;
6376 
6377 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6378 	nq = txring_txq(ring);
6379 
6380 	__netif_tx_lock(nq, cpu);
6381 
6382 	/* Avoid transmit queue timeout since we share it with the slow path */
6383 	txq_trans_cond_update(nq);
6384 
6385 	drops = 0;
6386 	for (i = 0; i < num_frames; i++) {
6387 		int err;
6388 		struct xdp_frame *xdpf = frames[i];
6389 
6390 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6391 		if (err) {
6392 			xdp_return_frame_rx_napi(xdpf);
6393 			drops++;
6394 		}
6395 	}
6396 
6397 	if (flags & XDP_XMIT_FLUSH)
6398 		igc_flush_tx_descriptors(ring);
6399 
6400 	__netif_tx_unlock(nq);
6401 
6402 	return num_frames - drops;
6403 }
6404 
6405 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6406 					struct igc_q_vector *q_vector)
6407 {
6408 	struct igc_hw *hw = &adapter->hw;
6409 	u32 eics = 0;
6410 
6411 	eics |= q_vector->eims_value;
6412 	wr32(IGC_EICS, eics);
6413 }
6414 
6415 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6416 {
6417 	struct igc_adapter *adapter = netdev_priv(dev);
6418 	struct igc_q_vector *q_vector;
6419 	struct igc_ring *ring;
6420 
6421 	if (test_bit(__IGC_DOWN, &adapter->state))
6422 		return -ENETDOWN;
6423 
6424 	if (!igc_xdp_is_enabled(adapter))
6425 		return -ENXIO;
6426 
6427 	if (queue_id >= adapter->num_rx_queues)
6428 		return -EINVAL;
6429 
6430 	ring = adapter->rx_ring[queue_id];
6431 
6432 	if (!ring->xsk_pool)
6433 		return -ENXIO;
6434 
6435 	q_vector = adapter->q_vector[queue_id];
6436 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6437 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6438 
6439 	return 0;
6440 }
6441 
6442 static const struct net_device_ops igc_netdev_ops = {
6443 	.ndo_open		= igc_open,
6444 	.ndo_stop		= igc_close,
6445 	.ndo_start_xmit		= igc_xmit_frame,
6446 	.ndo_set_rx_mode	= igc_set_rx_mode,
6447 	.ndo_set_mac_address	= igc_set_mac,
6448 	.ndo_change_mtu		= igc_change_mtu,
6449 	.ndo_tx_timeout		= igc_tx_timeout,
6450 	.ndo_get_stats64	= igc_get_stats64,
6451 	.ndo_fix_features	= igc_fix_features,
6452 	.ndo_set_features	= igc_set_features,
6453 	.ndo_features_check	= igc_features_check,
6454 	.ndo_eth_ioctl		= igc_ioctl,
6455 	.ndo_setup_tc		= igc_setup_tc,
6456 	.ndo_bpf		= igc_bpf,
6457 	.ndo_xdp_xmit		= igc_xdp_xmit,
6458 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6459 };
6460 
6461 /* PCIe configuration access */
6462 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6463 {
6464 	struct igc_adapter *adapter = hw->back;
6465 
6466 	pci_read_config_word(adapter->pdev, reg, value);
6467 }
6468 
6469 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6470 {
6471 	struct igc_adapter *adapter = hw->back;
6472 
6473 	pci_write_config_word(adapter->pdev, reg, *value);
6474 }
6475 
6476 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6477 {
6478 	struct igc_adapter *adapter = hw->back;
6479 
6480 	if (!pci_is_pcie(adapter->pdev))
6481 		return -IGC_ERR_CONFIG;
6482 
6483 	pcie_capability_read_word(adapter->pdev, reg, value);
6484 
6485 	return IGC_SUCCESS;
6486 }
6487 
6488 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6489 {
6490 	struct igc_adapter *adapter = hw->back;
6491 
6492 	if (!pci_is_pcie(adapter->pdev))
6493 		return -IGC_ERR_CONFIG;
6494 
6495 	pcie_capability_write_word(adapter->pdev, reg, *value);
6496 
6497 	return IGC_SUCCESS;
6498 }
6499 
6500 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6501 {
6502 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6503 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6504 	u32 value = 0;
6505 
6506 	if (IGC_REMOVED(hw_addr))
6507 		return ~value;
6508 
6509 	value = readl(&hw_addr[reg]);
6510 
6511 	/* reads should not return all F's */
6512 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6513 		struct net_device *netdev = igc->netdev;
6514 
6515 		hw->hw_addr = NULL;
6516 		netif_device_detach(netdev);
6517 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6518 		WARN(pci_device_is_present(igc->pdev),
6519 		     "igc: Failed to read reg 0x%x!\n", reg);
6520 	}
6521 
6522 	return value;
6523 }
6524 
6525 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6526 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6527 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6528 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6529 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6530 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6531 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6532 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6533 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6534 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6535 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6536 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6537 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6538 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6539 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6540 	[13] = XDP_RSS_TYPE_NONE,
6541 	[14] = XDP_RSS_TYPE_NONE,
6542 	[15] = XDP_RSS_TYPE_NONE,
6543 };
6544 
6545 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6546 			   enum xdp_rss_hash_type *rss_type)
6547 {
6548 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6549 
6550 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6551 		return -ENODATA;
6552 
6553 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6554 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6555 
6556 	return 0;
6557 }
6558 
6559 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6560 {
6561 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6562 
6563 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6564 		*timestamp = ctx->rx_ts;
6565 
6566 		return 0;
6567 	}
6568 
6569 	return -ENODATA;
6570 }
6571 
6572 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6573 	.xmo_rx_hash			= igc_xdp_rx_hash,
6574 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6575 };
6576 
6577 /**
6578  * igc_probe - Device Initialization Routine
6579  * @pdev: PCI device information struct
6580  * @ent: entry in igc_pci_tbl
6581  *
6582  * Returns 0 on success, negative on failure
6583  *
6584  * igc_probe initializes an adapter identified by a pci_dev structure.
6585  * The OS initialization, configuring the adapter private structure,
6586  * and a hardware reset occur.
6587  */
6588 static int igc_probe(struct pci_dev *pdev,
6589 		     const struct pci_device_id *ent)
6590 {
6591 	struct igc_adapter *adapter;
6592 	struct net_device *netdev;
6593 	struct igc_hw *hw;
6594 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6595 	int err;
6596 
6597 	err = pci_enable_device_mem(pdev);
6598 	if (err)
6599 		return err;
6600 
6601 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6602 	if (err) {
6603 		dev_err(&pdev->dev,
6604 			"No usable DMA configuration, aborting\n");
6605 		goto err_dma;
6606 	}
6607 
6608 	err = pci_request_mem_regions(pdev, igc_driver_name);
6609 	if (err)
6610 		goto err_pci_reg;
6611 
6612 	err = pci_enable_ptm(pdev, NULL);
6613 	if (err < 0)
6614 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6615 
6616 	pci_set_master(pdev);
6617 
6618 	err = -ENOMEM;
6619 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6620 				   IGC_MAX_TX_QUEUES);
6621 
6622 	if (!netdev)
6623 		goto err_alloc_etherdev;
6624 
6625 	SET_NETDEV_DEV(netdev, &pdev->dev);
6626 
6627 	pci_set_drvdata(pdev, netdev);
6628 	adapter = netdev_priv(netdev);
6629 	adapter->netdev = netdev;
6630 	adapter->pdev = pdev;
6631 	hw = &adapter->hw;
6632 	hw->back = adapter;
6633 	adapter->port_num = hw->bus.func;
6634 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6635 
6636 	err = pci_save_state(pdev);
6637 	if (err)
6638 		goto err_ioremap;
6639 
6640 	err = -EIO;
6641 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6642 				   pci_resource_len(pdev, 0));
6643 	if (!adapter->io_addr)
6644 		goto err_ioremap;
6645 
6646 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6647 	hw->hw_addr = adapter->io_addr;
6648 
6649 	netdev->netdev_ops = &igc_netdev_ops;
6650 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6651 	igc_ethtool_set_ops(netdev);
6652 	netdev->watchdog_timeo = 5 * HZ;
6653 
6654 	netdev->mem_start = pci_resource_start(pdev, 0);
6655 	netdev->mem_end = pci_resource_end(pdev, 0);
6656 
6657 	/* PCI config space info */
6658 	hw->vendor_id = pdev->vendor;
6659 	hw->device_id = pdev->device;
6660 	hw->revision_id = pdev->revision;
6661 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6662 	hw->subsystem_device_id = pdev->subsystem_device;
6663 
6664 	/* Copy the default MAC and PHY function pointers */
6665 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6666 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6667 
6668 	/* Initialize skew-specific constants */
6669 	err = ei->get_invariants(hw);
6670 	if (err)
6671 		goto err_sw_init;
6672 
6673 	/* Add supported features to the features list*/
6674 	netdev->features |= NETIF_F_SG;
6675 	netdev->features |= NETIF_F_TSO;
6676 	netdev->features |= NETIF_F_TSO6;
6677 	netdev->features |= NETIF_F_TSO_ECN;
6678 	netdev->features |= NETIF_F_RXHASH;
6679 	netdev->features |= NETIF_F_RXCSUM;
6680 	netdev->features |= NETIF_F_HW_CSUM;
6681 	netdev->features |= NETIF_F_SCTP_CRC;
6682 	netdev->features |= NETIF_F_HW_TC;
6683 
6684 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6685 				  NETIF_F_GSO_GRE_CSUM | \
6686 				  NETIF_F_GSO_IPXIP4 | \
6687 				  NETIF_F_GSO_IPXIP6 | \
6688 				  NETIF_F_GSO_UDP_TUNNEL | \
6689 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6690 
6691 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6692 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6693 
6694 	/* setup the private structure */
6695 	err = igc_sw_init(adapter);
6696 	if (err)
6697 		goto err_sw_init;
6698 
6699 	/* copy netdev features into list of user selectable features */
6700 	netdev->hw_features |= NETIF_F_NTUPLE;
6701 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6702 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6703 	netdev->hw_features |= netdev->features;
6704 
6705 	netdev->features |= NETIF_F_HIGHDMA;
6706 
6707 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6708 	netdev->mpls_features |= NETIF_F_HW_CSUM;
6709 	netdev->hw_enc_features |= netdev->vlan_features;
6710 
6711 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6712 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
6713 
6714 	/* MTU range: 68 - 9216 */
6715 	netdev->min_mtu = ETH_MIN_MTU;
6716 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6717 
6718 	/* before reading the NVM, reset the controller to put the device in a
6719 	 * known good starting state
6720 	 */
6721 	hw->mac.ops.reset_hw(hw);
6722 
6723 	if (igc_get_flash_presence_i225(hw)) {
6724 		if (hw->nvm.ops.validate(hw) < 0) {
6725 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6726 			err = -EIO;
6727 			goto err_eeprom;
6728 		}
6729 	}
6730 
6731 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6732 		/* copy the MAC address out of the NVM */
6733 		if (hw->mac.ops.read_mac_addr(hw))
6734 			dev_err(&pdev->dev, "NVM Read Error\n");
6735 	}
6736 
6737 	eth_hw_addr_set(netdev, hw->mac.addr);
6738 
6739 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6740 		dev_err(&pdev->dev, "Invalid MAC Address\n");
6741 		err = -EIO;
6742 		goto err_eeprom;
6743 	}
6744 
6745 	/* configure RXPBSIZE and TXPBSIZE */
6746 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6747 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6748 
6749 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6750 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6751 
6752 	INIT_WORK(&adapter->reset_task, igc_reset_task);
6753 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6754 
6755 	/* Initialize link properties that are user-changeable */
6756 	adapter->fc_autoneg = true;
6757 	hw->mac.autoneg = true;
6758 	hw->phy.autoneg_advertised = 0xaf;
6759 
6760 	hw->fc.requested_mode = igc_fc_default;
6761 	hw->fc.current_mode = igc_fc_default;
6762 
6763 	/* By default, support wake on port A */
6764 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6765 
6766 	/* initialize the wol settings based on the eeprom settings */
6767 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6768 		adapter->wol |= IGC_WUFC_MAG;
6769 
6770 	device_set_wakeup_enable(&adapter->pdev->dev,
6771 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6772 
6773 	igc_ptp_init(adapter);
6774 
6775 	igc_tsn_clear_schedule(adapter);
6776 
6777 	/* reset the hardware with the new settings */
6778 	igc_reset(adapter);
6779 
6780 	/* let the f/w know that the h/w is now under the control of the
6781 	 * driver.
6782 	 */
6783 	igc_get_hw_control(adapter);
6784 
6785 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6786 	err = register_netdev(netdev);
6787 	if (err)
6788 		goto err_register;
6789 
6790 	 /* carrier off reporting is important to ethtool even BEFORE open */
6791 	netif_carrier_off(netdev);
6792 
6793 	/* Check if Media Autosense is enabled */
6794 	adapter->ei = *ei;
6795 
6796 	/* print pcie link status and MAC address */
6797 	pcie_print_link_status(pdev);
6798 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6799 
6800 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6801 	/* Disable EEE for internal PHY devices */
6802 	hw->dev_spec._base.eee_enable = false;
6803 	adapter->flags &= ~IGC_FLAG_EEE;
6804 	igc_set_eee_i225(hw, false, false, false);
6805 
6806 	pm_runtime_put_noidle(&pdev->dev);
6807 
6808 	return 0;
6809 
6810 err_register:
6811 	igc_release_hw_control(adapter);
6812 err_eeprom:
6813 	if (!igc_check_reset_block(hw))
6814 		igc_reset_phy(hw);
6815 err_sw_init:
6816 	igc_clear_interrupt_scheme(adapter);
6817 	iounmap(adapter->io_addr);
6818 err_ioremap:
6819 	free_netdev(netdev);
6820 err_alloc_etherdev:
6821 	pci_release_mem_regions(pdev);
6822 err_pci_reg:
6823 err_dma:
6824 	pci_disable_device(pdev);
6825 	return err;
6826 }
6827 
6828 /**
6829  * igc_remove - Device Removal Routine
6830  * @pdev: PCI device information struct
6831  *
6832  * igc_remove is called by the PCI subsystem to alert the driver
6833  * that it should release a PCI device.  This could be caused by a
6834  * Hot-Plug event, or because the driver is going to be removed from
6835  * memory.
6836  */
6837 static void igc_remove(struct pci_dev *pdev)
6838 {
6839 	struct net_device *netdev = pci_get_drvdata(pdev);
6840 	struct igc_adapter *adapter = netdev_priv(netdev);
6841 
6842 	pm_runtime_get_noresume(&pdev->dev);
6843 
6844 	igc_flush_nfc_rules(adapter);
6845 
6846 	igc_ptp_stop(adapter);
6847 
6848 	pci_disable_ptm(pdev);
6849 	pci_clear_master(pdev);
6850 
6851 	set_bit(__IGC_DOWN, &adapter->state);
6852 
6853 	del_timer_sync(&adapter->watchdog_timer);
6854 	del_timer_sync(&adapter->phy_info_timer);
6855 
6856 	cancel_work_sync(&adapter->reset_task);
6857 	cancel_work_sync(&adapter->watchdog_task);
6858 
6859 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6860 	 * would have already happened in close and is redundant.
6861 	 */
6862 	igc_release_hw_control(adapter);
6863 	unregister_netdev(netdev);
6864 
6865 	igc_clear_interrupt_scheme(adapter);
6866 	pci_iounmap(pdev, adapter->io_addr);
6867 	pci_release_mem_regions(pdev);
6868 
6869 	free_netdev(netdev);
6870 
6871 	pci_disable_device(pdev);
6872 }
6873 
6874 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6875 			  bool runtime)
6876 {
6877 	struct net_device *netdev = pci_get_drvdata(pdev);
6878 	struct igc_adapter *adapter = netdev_priv(netdev);
6879 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6880 	struct igc_hw *hw = &adapter->hw;
6881 	u32 ctrl, rctl, status;
6882 	bool wake;
6883 
6884 	rtnl_lock();
6885 	netif_device_detach(netdev);
6886 
6887 	if (netif_running(netdev))
6888 		__igc_close(netdev, true);
6889 
6890 	igc_ptp_suspend(adapter);
6891 
6892 	igc_clear_interrupt_scheme(adapter);
6893 	rtnl_unlock();
6894 
6895 	status = rd32(IGC_STATUS);
6896 	if (status & IGC_STATUS_LU)
6897 		wufc &= ~IGC_WUFC_LNKC;
6898 
6899 	if (wufc) {
6900 		igc_setup_rctl(adapter);
6901 		igc_set_rx_mode(netdev);
6902 
6903 		/* turn on all-multi mode if wake on multicast is enabled */
6904 		if (wufc & IGC_WUFC_MC) {
6905 			rctl = rd32(IGC_RCTL);
6906 			rctl |= IGC_RCTL_MPE;
6907 			wr32(IGC_RCTL, rctl);
6908 		}
6909 
6910 		ctrl = rd32(IGC_CTRL);
6911 		ctrl |= IGC_CTRL_ADVD3WUC;
6912 		wr32(IGC_CTRL, ctrl);
6913 
6914 		/* Allow time for pending master requests to run */
6915 		igc_disable_pcie_master(hw);
6916 
6917 		wr32(IGC_WUC, IGC_WUC_PME_EN);
6918 		wr32(IGC_WUFC, wufc);
6919 	} else {
6920 		wr32(IGC_WUC, 0);
6921 		wr32(IGC_WUFC, 0);
6922 	}
6923 
6924 	wake = wufc || adapter->en_mng_pt;
6925 	if (!wake)
6926 		igc_power_down_phy_copper_base(&adapter->hw);
6927 	else
6928 		igc_power_up_link(adapter);
6929 
6930 	if (enable_wake)
6931 		*enable_wake = wake;
6932 
6933 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6934 	 * would have already happened in close and is redundant.
6935 	 */
6936 	igc_release_hw_control(adapter);
6937 
6938 	pci_disable_device(pdev);
6939 
6940 	return 0;
6941 }
6942 
6943 #ifdef CONFIG_PM
6944 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6945 {
6946 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6947 }
6948 
6949 static void igc_deliver_wake_packet(struct net_device *netdev)
6950 {
6951 	struct igc_adapter *adapter = netdev_priv(netdev);
6952 	struct igc_hw *hw = &adapter->hw;
6953 	struct sk_buff *skb;
6954 	u32 wupl;
6955 
6956 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6957 
6958 	/* WUPM stores only the first 128 bytes of the wake packet.
6959 	 * Read the packet only if we have the whole thing.
6960 	 */
6961 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6962 		return;
6963 
6964 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6965 	if (!skb)
6966 		return;
6967 
6968 	skb_put(skb, wupl);
6969 
6970 	/* Ensure reads are 32-bit aligned */
6971 	wupl = roundup(wupl, 4);
6972 
6973 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6974 
6975 	skb->protocol = eth_type_trans(skb, netdev);
6976 	netif_rx(skb);
6977 }
6978 
6979 static int __maybe_unused igc_resume(struct device *dev)
6980 {
6981 	struct pci_dev *pdev = to_pci_dev(dev);
6982 	struct net_device *netdev = pci_get_drvdata(pdev);
6983 	struct igc_adapter *adapter = netdev_priv(netdev);
6984 	struct igc_hw *hw = &adapter->hw;
6985 	u32 err, val;
6986 
6987 	pci_set_power_state(pdev, PCI_D0);
6988 	pci_restore_state(pdev);
6989 	pci_save_state(pdev);
6990 
6991 	if (!pci_device_is_present(pdev))
6992 		return -ENODEV;
6993 	err = pci_enable_device_mem(pdev);
6994 	if (err) {
6995 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6996 		return err;
6997 	}
6998 	pci_set_master(pdev);
6999 
7000 	pci_enable_wake(pdev, PCI_D3hot, 0);
7001 	pci_enable_wake(pdev, PCI_D3cold, 0);
7002 
7003 	if (igc_init_interrupt_scheme(adapter, true)) {
7004 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7005 		return -ENOMEM;
7006 	}
7007 
7008 	igc_reset(adapter);
7009 
7010 	/* let the f/w know that the h/w is now under the control of the
7011 	 * driver.
7012 	 */
7013 	igc_get_hw_control(adapter);
7014 
7015 	val = rd32(IGC_WUS);
7016 	if (val & WAKE_PKT_WUS)
7017 		igc_deliver_wake_packet(netdev);
7018 
7019 	wr32(IGC_WUS, ~0);
7020 
7021 	rtnl_lock();
7022 	if (!err && netif_running(netdev))
7023 		err = __igc_open(netdev, true);
7024 
7025 	if (!err)
7026 		netif_device_attach(netdev);
7027 	rtnl_unlock();
7028 
7029 	return err;
7030 }
7031 
7032 static int __maybe_unused igc_runtime_resume(struct device *dev)
7033 {
7034 	return igc_resume(dev);
7035 }
7036 
7037 static int __maybe_unused igc_suspend(struct device *dev)
7038 {
7039 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7040 }
7041 
7042 static int __maybe_unused igc_runtime_idle(struct device *dev)
7043 {
7044 	struct net_device *netdev = dev_get_drvdata(dev);
7045 	struct igc_adapter *adapter = netdev_priv(netdev);
7046 
7047 	if (!igc_has_link(adapter))
7048 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7049 
7050 	return -EBUSY;
7051 }
7052 #endif /* CONFIG_PM */
7053 
7054 static void igc_shutdown(struct pci_dev *pdev)
7055 {
7056 	bool wake;
7057 
7058 	__igc_shutdown(pdev, &wake, 0);
7059 
7060 	if (system_state == SYSTEM_POWER_OFF) {
7061 		pci_wake_from_d3(pdev, wake);
7062 		pci_set_power_state(pdev, PCI_D3hot);
7063 	}
7064 }
7065 
7066 /**
7067  *  igc_io_error_detected - called when PCI error is detected
7068  *  @pdev: Pointer to PCI device
7069  *  @state: The current PCI connection state
7070  *
7071  *  This function is called after a PCI bus error affecting
7072  *  this device has been detected.
7073  **/
7074 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7075 					      pci_channel_state_t state)
7076 {
7077 	struct net_device *netdev = pci_get_drvdata(pdev);
7078 	struct igc_adapter *adapter = netdev_priv(netdev);
7079 
7080 	netif_device_detach(netdev);
7081 
7082 	if (state == pci_channel_io_perm_failure)
7083 		return PCI_ERS_RESULT_DISCONNECT;
7084 
7085 	if (netif_running(netdev))
7086 		igc_down(adapter);
7087 	pci_disable_device(pdev);
7088 
7089 	/* Request a slot reset. */
7090 	return PCI_ERS_RESULT_NEED_RESET;
7091 }
7092 
7093 /**
7094  *  igc_io_slot_reset - called after the PCI bus has been reset.
7095  *  @pdev: Pointer to PCI device
7096  *
7097  *  Restart the card from scratch, as if from a cold-boot. Implementation
7098  *  resembles the first-half of the igc_resume routine.
7099  **/
7100 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7101 {
7102 	struct net_device *netdev = pci_get_drvdata(pdev);
7103 	struct igc_adapter *adapter = netdev_priv(netdev);
7104 	struct igc_hw *hw = &adapter->hw;
7105 	pci_ers_result_t result;
7106 
7107 	if (pci_enable_device_mem(pdev)) {
7108 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7109 		result = PCI_ERS_RESULT_DISCONNECT;
7110 	} else {
7111 		pci_set_master(pdev);
7112 		pci_restore_state(pdev);
7113 		pci_save_state(pdev);
7114 
7115 		pci_enable_wake(pdev, PCI_D3hot, 0);
7116 		pci_enable_wake(pdev, PCI_D3cold, 0);
7117 
7118 		/* In case of PCI error, adapter loses its HW address
7119 		 * so we should re-assign it here.
7120 		 */
7121 		hw->hw_addr = adapter->io_addr;
7122 
7123 		igc_reset(adapter);
7124 		wr32(IGC_WUS, ~0);
7125 		result = PCI_ERS_RESULT_RECOVERED;
7126 	}
7127 
7128 	return result;
7129 }
7130 
7131 /**
7132  *  igc_io_resume - called when traffic can start to flow again.
7133  *  @pdev: Pointer to PCI device
7134  *
7135  *  This callback is called when the error recovery driver tells us that
7136  *  its OK to resume normal operation. Implementation resembles the
7137  *  second-half of the igc_resume routine.
7138  */
7139 static void igc_io_resume(struct pci_dev *pdev)
7140 {
7141 	struct net_device *netdev = pci_get_drvdata(pdev);
7142 	struct igc_adapter *adapter = netdev_priv(netdev);
7143 
7144 	rtnl_lock();
7145 	if (netif_running(netdev)) {
7146 		if (igc_open(netdev)) {
7147 			netdev_err(netdev, "igc_open failed after reset\n");
7148 			return;
7149 		}
7150 	}
7151 
7152 	netif_device_attach(netdev);
7153 
7154 	/* let the f/w know that the h/w is now under the control of the
7155 	 * driver.
7156 	 */
7157 	igc_get_hw_control(adapter);
7158 	rtnl_unlock();
7159 }
7160 
7161 static const struct pci_error_handlers igc_err_handler = {
7162 	.error_detected = igc_io_error_detected,
7163 	.slot_reset = igc_io_slot_reset,
7164 	.resume = igc_io_resume,
7165 };
7166 
7167 #ifdef CONFIG_PM
7168 static const struct dev_pm_ops igc_pm_ops = {
7169 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7170 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7171 			   igc_runtime_idle)
7172 };
7173 #endif
7174 
7175 static struct pci_driver igc_driver = {
7176 	.name     = igc_driver_name,
7177 	.id_table = igc_pci_tbl,
7178 	.probe    = igc_probe,
7179 	.remove   = igc_remove,
7180 #ifdef CONFIG_PM
7181 	.driver.pm = &igc_pm_ops,
7182 #endif
7183 	.shutdown = igc_shutdown,
7184 	.err_handler = &igc_err_handler,
7185 };
7186 
7187 /**
7188  * igc_reinit_queues - return error
7189  * @adapter: pointer to adapter structure
7190  */
7191 int igc_reinit_queues(struct igc_adapter *adapter)
7192 {
7193 	struct net_device *netdev = adapter->netdev;
7194 	int err = 0;
7195 
7196 	if (netif_running(netdev))
7197 		igc_close(netdev);
7198 
7199 	igc_reset_interrupt_capability(adapter);
7200 
7201 	if (igc_init_interrupt_scheme(adapter, true)) {
7202 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7203 		return -ENOMEM;
7204 	}
7205 
7206 	if (netif_running(netdev))
7207 		err = igc_open(netdev);
7208 
7209 	return err;
7210 }
7211 
7212 /**
7213  * igc_get_hw_dev - return device
7214  * @hw: pointer to hardware structure
7215  *
7216  * used by hardware layer to print debugging information
7217  */
7218 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7219 {
7220 	struct igc_adapter *adapter = hw->back;
7221 
7222 	return adapter->netdev;
7223 }
7224 
7225 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7226 {
7227 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7228 	u8 idx = ring->reg_idx;
7229 	u32 rxdctl;
7230 
7231 	rxdctl = rd32(IGC_RXDCTL(idx));
7232 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7233 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7234 	wr32(IGC_RXDCTL(idx), rxdctl);
7235 }
7236 
7237 void igc_disable_rx_ring(struct igc_ring *ring)
7238 {
7239 	igc_disable_rx_ring_hw(ring);
7240 	igc_clean_rx_ring(ring);
7241 }
7242 
7243 void igc_enable_rx_ring(struct igc_ring *ring)
7244 {
7245 	struct igc_adapter *adapter = ring->q_vector->adapter;
7246 
7247 	igc_configure_rx_ring(adapter, ring);
7248 
7249 	if (ring->xsk_pool)
7250 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7251 	else
7252 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7253 }
7254 
7255 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
7256 {
7257 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7258 	u8 idx = ring->reg_idx;
7259 	u32 txdctl;
7260 
7261 	txdctl = rd32(IGC_TXDCTL(idx));
7262 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
7263 	txdctl |= IGC_TXDCTL_SWFLUSH;
7264 	wr32(IGC_TXDCTL(idx), txdctl);
7265 }
7266 
7267 void igc_disable_tx_ring(struct igc_ring *ring)
7268 {
7269 	igc_disable_tx_ring_hw(ring);
7270 	igc_clean_tx_ring(ring);
7271 }
7272 
7273 void igc_enable_tx_ring(struct igc_ring *ring)
7274 {
7275 	struct igc_adapter *adapter = ring->q_vector->adapter;
7276 
7277 	igc_configure_tx_ring(adapter, ring);
7278 }
7279 
7280 /**
7281  * igc_init_module - Driver Registration Routine
7282  *
7283  * igc_init_module is the first routine called when the driver is
7284  * loaded. All it does is register with the PCI subsystem.
7285  */
7286 static int __init igc_init_module(void)
7287 {
7288 	int ret;
7289 
7290 	pr_info("%s\n", igc_driver_string);
7291 	pr_info("%s\n", igc_copyright);
7292 
7293 	ret = pci_register_driver(&igc_driver);
7294 	return ret;
7295 }
7296 
7297 module_init(igc_init_module);
7298 
7299 /**
7300  * igc_exit_module - Driver Exit Cleanup Routine
7301  *
7302  * igc_exit_module is called just before the driver is removed
7303  * from memory.
7304  */
7305 static void __exit igc_exit_module(void)
7306 {
7307 	pci_unregister_driver(&igc_driver);
7308 }
7309 
7310 module_exit(igc_exit_module);
7311 /* igc_main.c */
7312