1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <linux/pci.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40 
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44 	"Copyright(c) 2018 Intel Corporation.";
45 
46 static const struct igc_info *igc_info_tbl[] = {
47 	[board_base] = &igc_base_info,
48 };
49 
50 static const struct pci_device_id igc_pci_tbl[] = {
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
66 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
67 	/* required last entry */
68 	{0, }
69 };
70 
71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
72 
73 enum latency_range {
74 	lowest_latency = 0,
75 	low_latency = 1,
76 	bulk_latency = 2,
77 	latency_invalid = 255
78 };
79 
80 void igc_reset(struct igc_adapter *adapter)
81 {
82 	struct net_device *dev = adapter->netdev;
83 	struct igc_hw *hw = &adapter->hw;
84 	struct igc_fc_info *fc = &hw->fc;
85 	u32 pba, hwm;
86 
87 	/* Repartition PBA for greater than 9k MTU if required */
88 	pba = IGC_PBA_34K;
89 
90 	/* flow control settings
91 	 * The high water mark must be low enough to fit one full frame
92 	 * after transmitting the pause frame.  As such we must have enough
93 	 * space to allow for us to complete our current transmit and then
94 	 * receive the frame that is in progress from the link partner.
95 	 * Set it to:
96 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
97 	 */
98 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
99 
100 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
101 	fc->low_water = fc->high_water - 16;
102 	fc->pause_time = 0xFFFF;
103 	fc->send_xon = 1;
104 	fc->current_mode = fc->requested_mode;
105 
106 	hw->mac.ops.reset_hw(hw);
107 
108 	if (hw->mac.ops.init_hw(hw))
109 		netdev_err(dev, "Error on hardware initialization\n");
110 
111 	/* Re-establish EEE setting */
112 	igc_set_eee_i225(hw, true, true, true);
113 
114 	if (!netif_running(adapter->netdev))
115 		igc_power_down_phy_copper_base(&adapter->hw);
116 
117 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
118 	wr32(IGC_VET, ETH_P_8021Q);
119 
120 	/* Re-enable PTP, where applicable. */
121 	igc_ptp_reset(adapter);
122 
123 	/* Re-enable TSN offloading, where applicable. */
124 	igc_tsn_reset(adapter);
125 
126 	igc_get_phy_info(hw);
127 }
128 
129 /**
130  * igc_power_up_link - Power up the phy link
131  * @adapter: address of board private structure
132  */
133 static void igc_power_up_link(struct igc_adapter *adapter)
134 {
135 	igc_reset_phy(&adapter->hw);
136 
137 	igc_power_up_phy_copper(&adapter->hw);
138 
139 	igc_setup_link(&adapter->hw);
140 }
141 
142 /**
143  * igc_release_hw_control - release control of the h/w to f/w
144  * @adapter: address of board private structure
145  *
146  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
147  * For ASF and Pass Through versions of f/w this means that the
148  * driver is no longer loaded.
149  */
150 static void igc_release_hw_control(struct igc_adapter *adapter)
151 {
152 	struct igc_hw *hw = &adapter->hw;
153 	u32 ctrl_ext;
154 
155 	if (!pci_device_is_present(adapter->pdev))
156 		return;
157 
158 	/* Let firmware take over control of h/w */
159 	ctrl_ext = rd32(IGC_CTRL_EXT);
160 	wr32(IGC_CTRL_EXT,
161 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
162 }
163 
164 /**
165  * igc_get_hw_control - get control of the h/w from f/w
166  * @adapter: address of board private structure
167  *
168  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
169  * For ASF and Pass Through versions of f/w this means that
170  * the driver is loaded.
171  */
172 static void igc_get_hw_control(struct igc_adapter *adapter)
173 {
174 	struct igc_hw *hw = &adapter->hw;
175 	u32 ctrl_ext;
176 
177 	/* Let firmware know the driver has taken over */
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	wr32(IGC_CTRL_EXT,
180 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
181 }
182 
183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
184 {
185 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
186 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
187 
188 	dma_unmap_len_set(buf, len, 0);
189 }
190 
191 /**
192  * igc_clean_tx_ring - Free Tx Buffers
193  * @tx_ring: ring to be cleaned
194  */
195 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
196 {
197 	u16 i = tx_ring->next_to_clean;
198 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
199 	u32 xsk_frames = 0;
200 
201 	while (i != tx_ring->next_to_use) {
202 		union igc_adv_tx_desc *eop_desc, *tx_desc;
203 
204 		switch (tx_buffer->type) {
205 		case IGC_TX_BUFFER_TYPE_XSK:
206 			xsk_frames++;
207 			break;
208 		case IGC_TX_BUFFER_TYPE_XDP:
209 			xdp_return_frame(tx_buffer->xdpf);
210 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
211 			break;
212 		case IGC_TX_BUFFER_TYPE_SKB:
213 			dev_kfree_skb_any(tx_buffer->skb);
214 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
215 			break;
216 		default:
217 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
218 			break;
219 		}
220 
221 		/* check for eop_desc to determine the end of the packet */
222 		eop_desc = tx_buffer->next_to_watch;
223 		tx_desc = IGC_TX_DESC(tx_ring, i);
224 
225 		/* unmap remaining buffers */
226 		while (tx_desc != eop_desc) {
227 			tx_buffer++;
228 			tx_desc++;
229 			i++;
230 			if (unlikely(i == tx_ring->count)) {
231 				i = 0;
232 				tx_buffer = tx_ring->tx_buffer_info;
233 				tx_desc = IGC_TX_DESC(tx_ring, 0);
234 			}
235 
236 			/* unmap any remaining paged data */
237 			if (dma_unmap_len(tx_buffer, len))
238 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
239 		}
240 
241 		tx_buffer->next_to_watch = NULL;
242 
243 		/* move us one more past the eop_desc for start of next pkt */
244 		tx_buffer++;
245 		i++;
246 		if (unlikely(i == tx_ring->count)) {
247 			i = 0;
248 			tx_buffer = tx_ring->tx_buffer_info;
249 		}
250 	}
251 
252 	if (tx_ring->xsk_pool && xsk_frames)
253 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
254 
255 	/* reset BQL for queue */
256 	netdev_tx_reset_queue(txring_txq(tx_ring));
257 
258 	/* reset next_to_use and next_to_clean */
259 	tx_ring->next_to_use = 0;
260 	tx_ring->next_to_clean = 0;
261 }
262 
263 /**
264  * igc_free_tx_resources - Free Tx Resources per Queue
265  * @tx_ring: Tx descriptor ring for a specific queue
266  *
267  * Free all transmit software resources
268  */
269 void igc_free_tx_resources(struct igc_ring *tx_ring)
270 {
271 	igc_clean_tx_ring(tx_ring);
272 
273 	vfree(tx_ring->tx_buffer_info);
274 	tx_ring->tx_buffer_info = NULL;
275 
276 	/* if not set, then don't free */
277 	if (!tx_ring->desc)
278 		return;
279 
280 	dma_free_coherent(tx_ring->dev, tx_ring->size,
281 			  tx_ring->desc, tx_ring->dma);
282 
283 	tx_ring->desc = NULL;
284 }
285 
286 /**
287  * igc_free_all_tx_resources - Free Tx Resources for All Queues
288  * @adapter: board private structure
289  *
290  * Free all transmit software resources
291  */
292 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
293 {
294 	int i;
295 
296 	for (i = 0; i < adapter->num_tx_queues; i++)
297 		igc_free_tx_resources(adapter->tx_ring[i]);
298 }
299 
300 /**
301  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
302  * @adapter: board private structure
303  */
304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
305 {
306 	int i;
307 
308 	for (i = 0; i < adapter->num_tx_queues; i++)
309 		if (adapter->tx_ring[i])
310 			igc_clean_tx_ring(adapter->tx_ring[i]);
311 }
312 
313 /**
314  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
315  * @tx_ring: tx descriptor ring (for a specific queue) to setup
316  *
317  * Return 0 on success, negative on failure
318  */
319 int igc_setup_tx_resources(struct igc_ring *tx_ring)
320 {
321 	struct net_device *ndev = tx_ring->netdev;
322 	struct device *dev = tx_ring->dev;
323 	int size = 0;
324 
325 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
326 	tx_ring->tx_buffer_info = vzalloc(size);
327 	if (!tx_ring->tx_buffer_info)
328 		goto err;
329 
330 	/* round up to nearest 4K */
331 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
332 	tx_ring->size = ALIGN(tx_ring->size, 4096);
333 
334 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
335 					   &tx_ring->dma, GFP_KERNEL);
336 
337 	if (!tx_ring->desc)
338 		goto err;
339 
340 	tx_ring->next_to_use = 0;
341 	tx_ring->next_to_clean = 0;
342 
343 	return 0;
344 
345 err:
346 	vfree(tx_ring->tx_buffer_info);
347 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
348 	return -ENOMEM;
349 }
350 
351 /**
352  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
353  * @adapter: board private structure
354  *
355  * Return 0 on success, negative on failure
356  */
357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
358 {
359 	struct net_device *dev = adapter->netdev;
360 	int i, err = 0;
361 
362 	for (i = 0; i < adapter->num_tx_queues; i++) {
363 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
364 		if (err) {
365 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
366 			for (i--; i >= 0; i--)
367 				igc_free_tx_resources(adapter->tx_ring[i]);
368 			break;
369 		}
370 	}
371 
372 	return err;
373 }
374 
375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
376 {
377 	u16 i = rx_ring->next_to_clean;
378 
379 	dev_kfree_skb(rx_ring->skb);
380 	rx_ring->skb = NULL;
381 
382 	/* Free all the Rx ring sk_buffs */
383 	while (i != rx_ring->next_to_alloc) {
384 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
385 
386 		/* Invalidate cache lines that may have been written to by
387 		 * device so that we avoid corrupting memory.
388 		 */
389 		dma_sync_single_range_for_cpu(rx_ring->dev,
390 					      buffer_info->dma,
391 					      buffer_info->page_offset,
392 					      igc_rx_bufsz(rx_ring),
393 					      DMA_FROM_DEVICE);
394 
395 		/* free resources associated with mapping */
396 		dma_unmap_page_attrs(rx_ring->dev,
397 				     buffer_info->dma,
398 				     igc_rx_pg_size(rx_ring),
399 				     DMA_FROM_DEVICE,
400 				     IGC_RX_DMA_ATTR);
401 		__page_frag_cache_drain(buffer_info->page,
402 					buffer_info->pagecnt_bias);
403 
404 		i++;
405 		if (i == rx_ring->count)
406 			i = 0;
407 	}
408 }
409 
410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
411 {
412 	struct igc_rx_buffer *bi;
413 	u16 i;
414 
415 	for (i = 0; i < ring->count; i++) {
416 		bi = &ring->rx_buffer_info[i];
417 		if (!bi->xdp)
418 			continue;
419 
420 		xsk_buff_free(bi->xdp);
421 		bi->xdp = NULL;
422 	}
423 }
424 
425 /**
426  * igc_clean_rx_ring - Free Rx Buffers per Queue
427  * @ring: ring to free buffers from
428  */
429 static void igc_clean_rx_ring(struct igc_ring *ring)
430 {
431 	if (ring->xsk_pool)
432 		igc_clean_rx_ring_xsk_pool(ring);
433 	else
434 		igc_clean_rx_ring_page_shared(ring);
435 
436 	clear_ring_uses_large_buffer(ring);
437 
438 	ring->next_to_alloc = 0;
439 	ring->next_to_clean = 0;
440 	ring->next_to_use = 0;
441 }
442 
443 /**
444  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
445  * @adapter: board private structure
446  */
447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
448 {
449 	int i;
450 
451 	for (i = 0; i < adapter->num_rx_queues; i++)
452 		if (adapter->rx_ring[i])
453 			igc_clean_rx_ring(adapter->rx_ring[i]);
454 }
455 
456 /**
457  * igc_free_rx_resources - Free Rx Resources
458  * @rx_ring: ring to clean the resources from
459  *
460  * Free all receive software resources
461  */
462 void igc_free_rx_resources(struct igc_ring *rx_ring)
463 {
464 	igc_clean_rx_ring(rx_ring);
465 
466 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
467 
468 	vfree(rx_ring->rx_buffer_info);
469 	rx_ring->rx_buffer_info = NULL;
470 
471 	/* if not set, then don't free */
472 	if (!rx_ring->desc)
473 		return;
474 
475 	dma_free_coherent(rx_ring->dev, rx_ring->size,
476 			  rx_ring->desc, rx_ring->dma);
477 
478 	rx_ring->desc = NULL;
479 }
480 
481 /**
482  * igc_free_all_rx_resources - Free Rx Resources for All Queues
483  * @adapter: board private structure
484  *
485  * Free all receive software resources
486  */
487 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
488 {
489 	int i;
490 
491 	for (i = 0; i < adapter->num_rx_queues; i++)
492 		igc_free_rx_resources(adapter->rx_ring[i]);
493 }
494 
495 /**
496  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
497  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
498  *
499  * Returns 0 on success, negative on failure
500  */
501 int igc_setup_rx_resources(struct igc_ring *rx_ring)
502 {
503 	struct net_device *ndev = rx_ring->netdev;
504 	struct device *dev = rx_ring->dev;
505 	u8 index = rx_ring->queue_index;
506 	int size, desc_len, res;
507 
508 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
509 			       rx_ring->q_vector->napi.napi_id);
510 	if (res < 0) {
511 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
512 			   index);
513 		return res;
514 	}
515 
516 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
517 	rx_ring->rx_buffer_info = vzalloc(size);
518 	if (!rx_ring->rx_buffer_info)
519 		goto err;
520 
521 	desc_len = sizeof(union igc_adv_rx_desc);
522 
523 	/* Round up to nearest 4K */
524 	rx_ring->size = rx_ring->count * desc_len;
525 	rx_ring->size = ALIGN(rx_ring->size, 4096);
526 
527 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
528 					   &rx_ring->dma, GFP_KERNEL);
529 
530 	if (!rx_ring->desc)
531 		goto err;
532 
533 	rx_ring->next_to_alloc = 0;
534 	rx_ring->next_to_clean = 0;
535 	rx_ring->next_to_use = 0;
536 
537 	return 0;
538 
539 err:
540 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
541 	vfree(rx_ring->rx_buffer_info);
542 	rx_ring->rx_buffer_info = NULL;
543 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
544 	return -ENOMEM;
545 }
546 
547 /**
548  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
549  *                                (Descriptors) for all queues
550  * @adapter: board private structure
551  *
552  * Return 0 on success, negative on failure
553  */
554 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
555 {
556 	struct net_device *dev = adapter->netdev;
557 	int i, err = 0;
558 
559 	for (i = 0; i < adapter->num_rx_queues; i++) {
560 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
561 		if (err) {
562 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
563 			for (i--; i >= 0; i--)
564 				igc_free_rx_resources(adapter->rx_ring[i]);
565 			break;
566 		}
567 	}
568 
569 	return err;
570 }
571 
572 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
573 					      struct igc_ring *ring)
574 {
575 	if (!igc_xdp_is_enabled(adapter) ||
576 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
577 		return NULL;
578 
579 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
580 }
581 
582 /**
583  * igc_configure_rx_ring - Configure a receive ring after Reset
584  * @adapter: board private structure
585  * @ring: receive ring to be configured
586  *
587  * Configure the Rx unit of the MAC after a reset.
588  */
589 static void igc_configure_rx_ring(struct igc_adapter *adapter,
590 				  struct igc_ring *ring)
591 {
592 	struct igc_hw *hw = &adapter->hw;
593 	union igc_adv_rx_desc *rx_desc;
594 	int reg_idx = ring->reg_idx;
595 	u32 srrctl = 0, rxdctl = 0;
596 	u64 rdba = ring->dma;
597 	u32 buf_size;
598 
599 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
600 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
601 	if (ring->xsk_pool) {
602 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
603 						   MEM_TYPE_XSK_BUFF_POOL,
604 						   NULL));
605 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
606 	} else {
607 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
608 						   MEM_TYPE_PAGE_SHARED,
609 						   NULL));
610 	}
611 
612 	if (igc_xdp_is_enabled(adapter))
613 		set_ring_uses_large_buffer(ring);
614 
615 	/* disable the queue */
616 	wr32(IGC_RXDCTL(reg_idx), 0);
617 
618 	/* Set DMA base address registers */
619 	wr32(IGC_RDBAL(reg_idx),
620 	     rdba & 0x00000000ffffffffULL);
621 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
622 	wr32(IGC_RDLEN(reg_idx),
623 	     ring->count * sizeof(union igc_adv_rx_desc));
624 
625 	/* initialize head and tail */
626 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
627 	wr32(IGC_RDH(reg_idx), 0);
628 	writel(0, ring->tail);
629 
630 	/* reset next-to- use/clean to place SW in sync with hardware */
631 	ring->next_to_clean = 0;
632 	ring->next_to_use = 0;
633 
634 	if (ring->xsk_pool)
635 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
636 	else if (ring_uses_large_buffer(ring))
637 		buf_size = IGC_RXBUFFER_3072;
638 	else
639 		buf_size = IGC_RXBUFFER_2048;
640 
641 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
642 	srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
643 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
644 
645 	wr32(IGC_SRRCTL(reg_idx), srrctl);
646 
647 	rxdctl |= IGC_RX_PTHRESH;
648 	rxdctl |= IGC_RX_HTHRESH << 8;
649 	rxdctl |= IGC_RX_WTHRESH << 16;
650 
651 	/* initialize rx_buffer_info */
652 	memset(ring->rx_buffer_info, 0,
653 	       sizeof(struct igc_rx_buffer) * ring->count);
654 
655 	/* initialize Rx descriptor 0 */
656 	rx_desc = IGC_RX_DESC(ring, 0);
657 	rx_desc->wb.upper.length = 0;
658 
659 	/* enable receive descriptor fetching */
660 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
661 
662 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
663 }
664 
665 /**
666  * igc_configure_rx - Configure receive Unit after Reset
667  * @adapter: board private structure
668  *
669  * Configure the Rx unit of the MAC after a reset.
670  */
671 static void igc_configure_rx(struct igc_adapter *adapter)
672 {
673 	int i;
674 
675 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
676 	 * the Base and Length of the Rx Descriptor Ring
677 	 */
678 	for (i = 0; i < adapter->num_rx_queues; i++)
679 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
680 }
681 
682 /**
683  * igc_configure_tx_ring - Configure transmit ring after Reset
684  * @adapter: board private structure
685  * @ring: tx ring to configure
686  *
687  * Configure a transmit ring after a reset.
688  */
689 static void igc_configure_tx_ring(struct igc_adapter *adapter,
690 				  struct igc_ring *ring)
691 {
692 	struct igc_hw *hw = &adapter->hw;
693 	int reg_idx = ring->reg_idx;
694 	u64 tdba = ring->dma;
695 	u32 txdctl = 0;
696 
697 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
698 
699 	/* disable the queue */
700 	wr32(IGC_TXDCTL(reg_idx), 0);
701 	wrfl();
702 	mdelay(10);
703 
704 	wr32(IGC_TDLEN(reg_idx),
705 	     ring->count * sizeof(union igc_adv_tx_desc));
706 	wr32(IGC_TDBAL(reg_idx),
707 	     tdba & 0x00000000ffffffffULL);
708 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
709 
710 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
711 	wr32(IGC_TDH(reg_idx), 0);
712 	writel(0, ring->tail);
713 
714 	txdctl |= IGC_TX_PTHRESH;
715 	txdctl |= IGC_TX_HTHRESH << 8;
716 	txdctl |= IGC_TX_WTHRESH << 16;
717 
718 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
719 	wr32(IGC_TXDCTL(reg_idx), txdctl);
720 }
721 
722 /**
723  * igc_configure_tx - Configure transmit Unit after Reset
724  * @adapter: board private structure
725  *
726  * Configure the Tx unit of the MAC after a reset.
727  */
728 static void igc_configure_tx(struct igc_adapter *adapter)
729 {
730 	int i;
731 
732 	for (i = 0; i < adapter->num_tx_queues; i++)
733 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
734 }
735 
736 /**
737  * igc_setup_mrqc - configure the multiple receive queue control registers
738  * @adapter: Board private structure
739  */
740 static void igc_setup_mrqc(struct igc_adapter *adapter)
741 {
742 	struct igc_hw *hw = &adapter->hw;
743 	u32 j, num_rx_queues;
744 	u32 mrqc, rxcsum;
745 	u32 rss_key[10];
746 
747 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
748 	for (j = 0; j < 10; j++)
749 		wr32(IGC_RSSRK(j), rss_key[j]);
750 
751 	num_rx_queues = adapter->rss_queues;
752 
753 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
754 		for (j = 0; j < IGC_RETA_SIZE; j++)
755 			adapter->rss_indir_tbl[j] =
756 			(j * num_rx_queues) / IGC_RETA_SIZE;
757 		adapter->rss_indir_tbl_init = num_rx_queues;
758 	}
759 	igc_write_rss_indir_tbl(adapter);
760 
761 	/* Disable raw packet checksumming so that RSS hash is placed in
762 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
763 	 * offloads as they are enabled by default
764 	 */
765 	rxcsum = rd32(IGC_RXCSUM);
766 	rxcsum |= IGC_RXCSUM_PCSD;
767 
768 	/* Enable Receive Checksum Offload for SCTP */
769 	rxcsum |= IGC_RXCSUM_CRCOFL;
770 
771 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
772 	wr32(IGC_RXCSUM, rxcsum);
773 
774 	/* Generate RSS hash based on packet types, TCP/UDP
775 	 * port numbers and/or IPv4/v6 src and dst addresses
776 	 */
777 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
778 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
779 	       IGC_MRQC_RSS_FIELD_IPV6 |
780 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
781 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
782 
783 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
784 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
785 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
786 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
787 
788 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
789 
790 	wr32(IGC_MRQC, mrqc);
791 }
792 
793 /**
794  * igc_setup_rctl - configure the receive control registers
795  * @adapter: Board private structure
796  */
797 static void igc_setup_rctl(struct igc_adapter *adapter)
798 {
799 	struct igc_hw *hw = &adapter->hw;
800 	u32 rctl;
801 
802 	rctl = rd32(IGC_RCTL);
803 
804 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
805 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
806 
807 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
808 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
809 
810 	/* enable stripping of CRC. Newer features require
811 	 * that the HW strips the CRC.
812 	 */
813 	rctl |= IGC_RCTL_SECRC;
814 
815 	/* disable store bad packets and clear size bits. */
816 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
817 
818 	/* enable LPE to allow for reception of jumbo frames */
819 	rctl |= IGC_RCTL_LPE;
820 
821 	/* disable queue 0 to prevent tail write w/o re-config */
822 	wr32(IGC_RXDCTL(0), 0);
823 
824 	/* This is useful for sniffing bad packets. */
825 	if (adapter->netdev->features & NETIF_F_RXALL) {
826 		/* UPE and MPE will be handled by normal PROMISC logic
827 		 * in set_rx_mode
828 		 */
829 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
830 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
831 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
832 
833 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
834 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
835 	}
836 
837 	wr32(IGC_RCTL, rctl);
838 }
839 
840 /**
841  * igc_setup_tctl - configure the transmit control registers
842  * @adapter: Board private structure
843  */
844 static void igc_setup_tctl(struct igc_adapter *adapter)
845 {
846 	struct igc_hw *hw = &adapter->hw;
847 	u32 tctl;
848 
849 	/* disable queue 0 which icould be enabled by default */
850 	wr32(IGC_TXDCTL(0), 0);
851 
852 	/* Program the Transmit Control Register */
853 	tctl = rd32(IGC_TCTL);
854 	tctl &= ~IGC_TCTL_CT;
855 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
856 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
857 
858 	/* Enable transmits */
859 	tctl |= IGC_TCTL_EN;
860 
861 	wr32(IGC_TCTL, tctl);
862 }
863 
864 /**
865  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
866  * @adapter: Pointer to adapter where the filter should be set
867  * @index: Filter index
868  * @type: MAC address filter type (source or destination)
869  * @addr: MAC address
870  * @queue: If non-negative, queue assignment feature is enabled and frames
871  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
872  *         assignment is disabled.
873  */
874 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
875 				  enum igc_mac_filter_type type,
876 				  const u8 *addr, int queue)
877 {
878 	struct net_device *dev = adapter->netdev;
879 	struct igc_hw *hw = &adapter->hw;
880 	u32 ral, rah;
881 
882 	if (WARN_ON(index >= hw->mac.rar_entry_count))
883 		return;
884 
885 	ral = le32_to_cpup((__le32 *)(addr));
886 	rah = le16_to_cpup((__le16 *)(addr + 4));
887 
888 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
889 		rah &= ~IGC_RAH_ASEL_MASK;
890 		rah |= IGC_RAH_ASEL_SRC_ADDR;
891 	}
892 
893 	if (queue >= 0) {
894 		rah &= ~IGC_RAH_QSEL_MASK;
895 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
896 		rah |= IGC_RAH_QSEL_ENABLE;
897 	}
898 
899 	rah |= IGC_RAH_AV;
900 
901 	wr32(IGC_RAL(index), ral);
902 	wr32(IGC_RAH(index), rah);
903 
904 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
905 }
906 
907 /**
908  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
909  * @adapter: Pointer to adapter where the filter should be cleared
910  * @index: Filter index
911  */
912 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
913 {
914 	struct net_device *dev = adapter->netdev;
915 	struct igc_hw *hw = &adapter->hw;
916 
917 	if (WARN_ON(index >= hw->mac.rar_entry_count))
918 		return;
919 
920 	wr32(IGC_RAL(index), 0);
921 	wr32(IGC_RAH(index), 0);
922 
923 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
924 }
925 
926 /* Set default MAC address for the PF in the first RAR entry */
927 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
928 {
929 	struct net_device *dev = adapter->netdev;
930 	u8 *addr = adapter->hw.mac.addr;
931 
932 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
933 
934 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
935 }
936 
937 /**
938  * igc_set_mac - Change the Ethernet Address of the NIC
939  * @netdev: network interface device structure
940  * @p: pointer to an address structure
941  *
942  * Returns 0 on success, negative on failure
943  */
944 static int igc_set_mac(struct net_device *netdev, void *p)
945 {
946 	struct igc_adapter *adapter = netdev_priv(netdev);
947 	struct igc_hw *hw = &adapter->hw;
948 	struct sockaddr *addr = p;
949 
950 	if (!is_valid_ether_addr(addr->sa_data))
951 		return -EADDRNOTAVAIL;
952 
953 	eth_hw_addr_set(netdev, addr->sa_data);
954 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
955 
956 	/* set the correct pool for the new PF MAC address in entry 0 */
957 	igc_set_default_mac_filter(adapter);
958 
959 	return 0;
960 }
961 
962 /**
963  *  igc_write_mc_addr_list - write multicast addresses to MTA
964  *  @netdev: network interface device structure
965  *
966  *  Writes multicast address list to the MTA hash table.
967  *  Returns: -ENOMEM on failure
968  *           0 on no addresses written
969  *           X on writing X addresses to MTA
970  **/
971 static int igc_write_mc_addr_list(struct net_device *netdev)
972 {
973 	struct igc_adapter *adapter = netdev_priv(netdev);
974 	struct igc_hw *hw = &adapter->hw;
975 	struct netdev_hw_addr *ha;
976 	u8  *mta_list;
977 	int i;
978 
979 	if (netdev_mc_empty(netdev)) {
980 		/* nothing to program, so clear mc list */
981 		igc_update_mc_addr_list(hw, NULL, 0);
982 		return 0;
983 	}
984 
985 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
986 	if (!mta_list)
987 		return -ENOMEM;
988 
989 	/* The shared function expects a packed array of only addresses. */
990 	i = 0;
991 	netdev_for_each_mc_addr(ha, netdev)
992 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
993 
994 	igc_update_mc_addr_list(hw, mta_list, i);
995 	kfree(mta_list);
996 
997 	return netdev_mc_count(netdev);
998 }
999 
1000 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
1001 {
1002 	ktime_t cycle_time = adapter->cycle_time;
1003 	ktime_t base_time = adapter->base_time;
1004 	u32 launchtime;
1005 
1006 	/* FIXME: when using ETF together with taprio, we may have a
1007 	 * case where 'delta' is larger than the cycle_time, this may
1008 	 * cause problems if we don't read the current value of
1009 	 * IGC_BASET, as the value writen into the launchtime
1010 	 * descriptor field may be misinterpreted.
1011 	 */
1012 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1013 
1014 	return cpu_to_le32(launchtime);
1015 }
1016 
1017 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1018 			    struct igc_tx_buffer *first,
1019 			    u32 vlan_macip_lens, u32 type_tucmd,
1020 			    u32 mss_l4len_idx)
1021 {
1022 	struct igc_adv_tx_context_desc *context_desc;
1023 	u16 i = tx_ring->next_to_use;
1024 
1025 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1026 
1027 	i++;
1028 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1029 
1030 	/* set bits to identify this as an advanced context descriptor */
1031 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1032 
1033 	/* For i225, context index must be unique per ring. */
1034 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1035 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1036 
1037 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1038 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1039 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1040 
1041 	/* We assume there is always a valid Tx time available. Invalid times
1042 	 * should have been handled by the upper layers.
1043 	 */
1044 	if (tx_ring->launchtime_enable) {
1045 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1046 		ktime_t txtime = first->skb->tstamp;
1047 
1048 		skb_txtime_consumed(first->skb);
1049 		context_desc->launch_time = igc_tx_launchtime(adapter,
1050 							      txtime);
1051 	} else {
1052 		context_desc->launch_time = 0;
1053 	}
1054 }
1055 
1056 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1057 {
1058 	struct sk_buff *skb = first->skb;
1059 	u32 vlan_macip_lens = 0;
1060 	u32 type_tucmd = 0;
1061 
1062 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1063 csum_failed:
1064 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1065 		    !tx_ring->launchtime_enable)
1066 			return;
1067 		goto no_csum;
1068 	}
1069 
1070 	switch (skb->csum_offset) {
1071 	case offsetof(struct tcphdr, check):
1072 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1073 		fallthrough;
1074 	case offsetof(struct udphdr, check):
1075 		break;
1076 	case offsetof(struct sctphdr, checksum):
1077 		/* validate that this is actually an SCTP request */
1078 		if (skb_csum_is_sctp(skb)) {
1079 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1080 			break;
1081 		}
1082 		fallthrough;
1083 	default:
1084 		skb_checksum_help(skb);
1085 		goto csum_failed;
1086 	}
1087 
1088 	/* update TX checksum flag */
1089 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1090 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1091 			  skb_network_offset(skb);
1092 no_csum:
1093 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1094 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1095 
1096 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1097 }
1098 
1099 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1100 {
1101 	struct net_device *netdev = tx_ring->netdev;
1102 
1103 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1104 
1105 	/* memory barriier comment */
1106 	smp_mb();
1107 
1108 	/* We need to check again in a case another CPU has just
1109 	 * made room available.
1110 	 */
1111 	if (igc_desc_unused(tx_ring) < size)
1112 		return -EBUSY;
1113 
1114 	/* A reprieve! */
1115 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1116 
1117 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1118 	tx_ring->tx_stats.restart_queue2++;
1119 	u64_stats_update_end(&tx_ring->tx_syncp2);
1120 
1121 	return 0;
1122 }
1123 
1124 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1125 {
1126 	if (igc_desc_unused(tx_ring) >= size)
1127 		return 0;
1128 	return __igc_maybe_stop_tx(tx_ring, size);
1129 }
1130 
1131 #define IGC_SET_FLAG(_input, _flag, _result) \
1132 	(((_flag) <= (_result)) ?				\
1133 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1134 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1135 
1136 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1137 {
1138 	/* set type for advanced descriptor with frame checksum insertion */
1139 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1140 		       IGC_ADVTXD_DCMD_DEXT |
1141 		       IGC_ADVTXD_DCMD_IFCS;
1142 
1143 	/* set HW vlan bit if vlan is present */
1144 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1145 				 IGC_ADVTXD_DCMD_VLE);
1146 
1147 	/* set segmentation bits for TSO */
1148 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1149 				 (IGC_ADVTXD_DCMD_TSE));
1150 
1151 	/* set timestamp bit if present */
1152 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1153 				 (IGC_ADVTXD_MAC_TSTAMP));
1154 
1155 	/* insert frame checksum */
1156 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1157 
1158 	return cmd_type;
1159 }
1160 
1161 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1162 				 union igc_adv_tx_desc *tx_desc,
1163 				 u32 tx_flags, unsigned int paylen)
1164 {
1165 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1166 
1167 	/* insert L4 checksum */
1168 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1169 			  ((IGC_TXD_POPTS_TXSM << 8) /
1170 			  IGC_TX_FLAGS_CSUM);
1171 
1172 	/* insert IPv4 checksum */
1173 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1174 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1175 			  IGC_TX_FLAGS_IPV4);
1176 
1177 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1178 }
1179 
1180 static int igc_tx_map(struct igc_ring *tx_ring,
1181 		      struct igc_tx_buffer *first,
1182 		      const u8 hdr_len)
1183 {
1184 	struct sk_buff *skb = first->skb;
1185 	struct igc_tx_buffer *tx_buffer;
1186 	union igc_adv_tx_desc *tx_desc;
1187 	u32 tx_flags = first->tx_flags;
1188 	skb_frag_t *frag;
1189 	u16 i = tx_ring->next_to_use;
1190 	unsigned int data_len, size;
1191 	dma_addr_t dma;
1192 	u32 cmd_type;
1193 
1194 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1195 	tx_desc = IGC_TX_DESC(tx_ring, i);
1196 
1197 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1198 
1199 	size = skb_headlen(skb);
1200 	data_len = skb->data_len;
1201 
1202 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1203 
1204 	tx_buffer = first;
1205 
1206 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1207 		if (dma_mapping_error(tx_ring->dev, dma))
1208 			goto dma_error;
1209 
1210 		/* record length, and DMA address */
1211 		dma_unmap_len_set(tx_buffer, len, size);
1212 		dma_unmap_addr_set(tx_buffer, dma, dma);
1213 
1214 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1215 
1216 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1217 			tx_desc->read.cmd_type_len =
1218 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1219 
1220 			i++;
1221 			tx_desc++;
1222 			if (i == tx_ring->count) {
1223 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1224 				i = 0;
1225 			}
1226 			tx_desc->read.olinfo_status = 0;
1227 
1228 			dma += IGC_MAX_DATA_PER_TXD;
1229 			size -= IGC_MAX_DATA_PER_TXD;
1230 
1231 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1232 		}
1233 
1234 		if (likely(!data_len))
1235 			break;
1236 
1237 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1238 
1239 		i++;
1240 		tx_desc++;
1241 		if (i == tx_ring->count) {
1242 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1243 			i = 0;
1244 		}
1245 		tx_desc->read.olinfo_status = 0;
1246 
1247 		size = skb_frag_size(frag);
1248 		data_len -= size;
1249 
1250 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1251 				       size, DMA_TO_DEVICE);
1252 
1253 		tx_buffer = &tx_ring->tx_buffer_info[i];
1254 	}
1255 
1256 	/* write last descriptor with RS and EOP bits */
1257 	cmd_type |= size | IGC_TXD_DCMD;
1258 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1259 
1260 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1261 
1262 	/* set the timestamp */
1263 	first->time_stamp = jiffies;
1264 
1265 	skb_tx_timestamp(skb);
1266 
1267 	/* Force memory writes to complete before letting h/w know there
1268 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1269 	 * memory model archs, such as IA-64).
1270 	 *
1271 	 * We also need this memory barrier to make certain all of the
1272 	 * status bits have been updated before next_to_watch is written.
1273 	 */
1274 	wmb();
1275 
1276 	/* set next_to_watch value indicating a packet is present */
1277 	first->next_to_watch = tx_desc;
1278 
1279 	i++;
1280 	if (i == tx_ring->count)
1281 		i = 0;
1282 
1283 	tx_ring->next_to_use = i;
1284 
1285 	/* Make sure there is space in the ring for the next send. */
1286 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1287 
1288 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1289 		writel(i, tx_ring->tail);
1290 	}
1291 
1292 	return 0;
1293 dma_error:
1294 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1295 	tx_buffer = &tx_ring->tx_buffer_info[i];
1296 
1297 	/* clear dma mappings for failed tx_buffer_info map */
1298 	while (tx_buffer != first) {
1299 		if (dma_unmap_len(tx_buffer, len))
1300 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1301 
1302 		if (i-- == 0)
1303 			i += tx_ring->count;
1304 		tx_buffer = &tx_ring->tx_buffer_info[i];
1305 	}
1306 
1307 	if (dma_unmap_len(tx_buffer, len))
1308 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1309 
1310 	dev_kfree_skb_any(tx_buffer->skb);
1311 	tx_buffer->skb = NULL;
1312 
1313 	tx_ring->next_to_use = i;
1314 
1315 	return -1;
1316 }
1317 
1318 static int igc_tso(struct igc_ring *tx_ring,
1319 		   struct igc_tx_buffer *first,
1320 		   u8 *hdr_len)
1321 {
1322 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1323 	struct sk_buff *skb = first->skb;
1324 	union {
1325 		struct iphdr *v4;
1326 		struct ipv6hdr *v6;
1327 		unsigned char *hdr;
1328 	} ip;
1329 	union {
1330 		struct tcphdr *tcp;
1331 		struct udphdr *udp;
1332 		unsigned char *hdr;
1333 	} l4;
1334 	u32 paylen, l4_offset;
1335 	int err;
1336 
1337 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1338 		return 0;
1339 
1340 	if (!skb_is_gso(skb))
1341 		return 0;
1342 
1343 	err = skb_cow_head(skb, 0);
1344 	if (err < 0)
1345 		return err;
1346 
1347 	ip.hdr = skb_network_header(skb);
1348 	l4.hdr = skb_checksum_start(skb);
1349 
1350 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1351 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1352 
1353 	/* initialize outer IP header fields */
1354 	if (ip.v4->version == 4) {
1355 		unsigned char *csum_start = skb_checksum_start(skb);
1356 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1357 
1358 		/* IP header will have to cancel out any data that
1359 		 * is not a part of the outer IP header
1360 		 */
1361 		ip.v4->check = csum_fold(csum_partial(trans_start,
1362 						      csum_start - trans_start,
1363 						      0));
1364 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1365 
1366 		ip.v4->tot_len = 0;
1367 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1368 				   IGC_TX_FLAGS_CSUM |
1369 				   IGC_TX_FLAGS_IPV4;
1370 	} else {
1371 		ip.v6->payload_len = 0;
1372 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1373 				   IGC_TX_FLAGS_CSUM;
1374 	}
1375 
1376 	/* determine offset of inner transport header */
1377 	l4_offset = l4.hdr - skb->data;
1378 
1379 	/* remove payload length from inner checksum */
1380 	paylen = skb->len - l4_offset;
1381 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1382 		/* compute length of segmentation header */
1383 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1384 		csum_replace_by_diff(&l4.tcp->check,
1385 				     (__force __wsum)htonl(paylen));
1386 	} else {
1387 		/* compute length of segmentation header */
1388 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1389 		csum_replace_by_diff(&l4.udp->check,
1390 				     (__force __wsum)htonl(paylen));
1391 	}
1392 
1393 	/* update gso size and bytecount with header size */
1394 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1395 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1396 
1397 	/* MSS L4LEN IDX */
1398 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1399 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1400 
1401 	/* VLAN MACLEN IPLEN */
1402 	vlan_macip_lens = l4.hdr - ip.hdr;
1403 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1404 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1405 
1406 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1407 			type_tucmd, mss_l4len_idx);
1408 
1409 	return 1;
1410 }
1411 
1412 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1413 				       struct igc_ring *tx_ring)
1414 {
1415 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1416 	__be16 protocol = vlan_get_protocol(skb);
1417 	struct igc_tx_buffer *first;
1418 	u32 tx_flags = 0;
1419 	unsigned short f;
1420 	u8 hdr_len = 0;
1421 	int tso = 0;
1422 
1423 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1424 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1425 	 *	+ 2 desc gap to keep tail from touching head,
1426 	 *	+ 1 desc for context descriptor,
1427 	 * otherwise try next time
1428 	 */
1429 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1430 		count += TXD_USE_COUNT(skb_frag_size(
1431 						&skb_shinfo(skb)->frags[f]));
1432 
1433 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1434 		/* this is a hard error */
1435 		return NETDEV_TX_BUSY;
1436 	}
1437 
1438 	/* record the location of the first descriptor for this packet */
1439 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1440 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1441 	first->skb = skb;
1442 	first->bytecount = skb->len;
1443 	first->gso_segs = 1;
1444 
1445 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1446 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1447 
1448 		/* FIXME: add support for retrieving timestamps from
1449 		 * the other timer registers before skipping the
1450 		 * timestamping request.
1451 		 */
1452 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1453 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1454 					   &adapter->state)) {
1455 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1456 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1457 
1458 			adapter->ptp_tx_skb = skb_get(skb);
1459 			adapter->ptp_tx_start = jiffies;
1460 		} else {
1461 			adapter->tx_hwtstamp_skipped++;
1462 		}
1463 	}
1464 
1465 	if (skb_vlan_tag_present(skb)) {
1466 		tx_flags |= IGC_TX_FLAGS_VLAN;
1467 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1468 	}
1469 
1470 	/* record initial flags and protocol */
1471 	first->tx_flags = tx_flags;
1472 	first->protocol = protocol;
1473 
1474 	tso = igc_tso(tx_ring, first, &hdr_len);
1475 	if (tso < 0)
1476 		goto out_drop;
1477 	else if (!tso)
1478 		igc_tx_csum(tx_ring, first);
1479 
1480 	igc_tx_map(tx_ring, first, hdr_len);
1481 
1482 	return NETDEV_TX_OK;
1483 
1484 out_drop:
1485 	dev_kfree_skb_any(first->skb);
1486 	first->skb = NULL;
1487 
1488 	return NETDEV_TX_OK;
1489 }
1490 
1491 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1492 						    struct sk_buff *skb)
1493 {
1494 	unsigned int r_idx = skb->queue_mapping;
1495 
1496 	if (r_idx >= adapter->num_tx_queues)
1497 		r_idx = r_idx % adapter->num_tx_queues;
1498 
1499 	return adapter->tx_ring[r_idx];
1500 }
1501 
1502 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1503 				  struct net_device *netdev)
1504 {
1505 	struct igc_adapter *adapter = netdev_priv(netdev);
1506 
1507 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1508 	 * in order to meet this minimum size requirement.
1509 	 */
1510 	if (skb->len < 17) {
1511 		if (skb_padto(skb, 17))
1512 			return NETDEV_TX_OK;
1513 		skb->len = 17;
1514 	}
1515 
1516 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1517 }
1518 
1519 static void igc_rx_checksum(struct igc_ring *ring,
1520 			    union igc_adv_rx_desc *rx_desc,
1521 			    struct sk_buff *skb)
1522 {
1523 	skb_checksum_none_assert(skb);
1524 
1525 	/* Ignore Checksum bit is set */
1526 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1527 		return;
1528 
1529 	/* Rx checksum disabled via ethtool */
1530 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1531 		return;
1532 
1533 	/* TCP/UDP checksum error bit is set */
1534 	if (igc_test_staterr(rx_desc,
1535 			     IGC_RXDEXT_STATERR_L4E |
1536 			     IGC_RXDEXT_STATERR_IPE)) {
1537 		/* work around errata with sctp packets where the TCPE aka
1538 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1539 		 * packets (aka let the stack check the crc32c)
1540 		 */
1541 		if (!(skb->len == 60 &&
1542 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1543 			u64_stats_update_begin(&ring->rx_syncp);
1544 			ring->rx_stats.csum_err++;
1545 			u64_stats_update_end(&ring->rx_syncp);
1546 		}
1547 		/* let the stack verify checksum errors */
1548 		return;
1549 	}
1550 	/* It must be a TCP or UDP packet with a valid checksum */
1551 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1552 				      IGC_RXD_STAT_UDPCS))
1553 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1554 
1555 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1556 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1557 }
1558 
1559 static inline void igc_rx_hash(struct igc_ring *ring,
1560 			       union igc_adv_rx_desc *rx_desc,
1561 			       struct sk_buff *skb)
1562 {
1563 	if (ring->netdev->features & NETIF_F_RXHASH)
1564 		skb_set_hash(skb,
1565 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1566 			     PKT_HASH_TYPE_L3);
1567 }
1568 
1569 static void igc_rx_vlan(struct igc_ring *rx_ring,
1570 			union igc_adv_rx_desc *rx_desc,
1571 			struct sk_buff *skb)
1572 {
1573 	struct net_device *dev = rx_ring->netdev;
1574 	u16 vid;
1575 
1576 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1577 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1578 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1579 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1580 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1581 		else
1582 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1583 
1584 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1585 	}
1586 }
1587 
1588 /**
1589  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1590  * @rx_ring: rx descriptor ring packet is being transacted on
1591  * @rx_desc: pointer to the EOP Rx descriptor
1592  * @skb: pointer to current skb being populated
1593  *
1594  * This function checks the ring, descriptor, and packet information in order
1595  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1596  * skb.
1597  */
1598 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1599 				   union igc_adv_rx_desc *rx_desc,
1600 				   struct sk_buff *skb)
1601 {
1602 	igc_rx_hash(rx_ring, rx_desc, skb);
1603 
1604 	igc_rx_checksum(rx_ring, rx_desc, skb);
1605 
1606 	igc_rx_vlan(rx_ring, rx_desc, skb);
1607 
1608 	skb_record_rx_queue(skb, rx_ring->queue_index);
1609 
1610 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1611 }
1612 
1613 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1614 {
1615 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1616 	struct igc_adapter *adapter = netdev_priv(netdev);
1617 	struct igc_hw *hw = &adapter->hw;
1618 	u32 ctrl;
1619 
1620 	ctrl = rd32(IGC_CTRL);
1621 
1622 	if (enable) {
1623 		/* enable VLAN tag insert/strip */
1624 		ctrl |= IGC_CTRL_VME;
1625 	} else {
1626 		/* disable VLAN tag insert/strip */
1627 		ctrl &= ~IGC_CTRL_VME;
1628 	}
1629 	wr32(IGC_CTRL, ctrl);
1630 }
1631 
1632 static void igc_restore_vlan(struct igc_adapter *adapter)
1633 {
1634 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1635 }
1636 
1637 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1638 					       const unsigned int size,
1639 					       int *rx_buffer_pgcnt)
1640 {
1641 	struct igc_rx_buffer *rx_buffer;
1642 
1643 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1644 	*rx_buffer_pgcnt =
1645 #if (PAGE_SIZE < 8192)
1646 		page_count(rx_buffer->page);
1647 #else
1648 		0;
1649 #endif
1650 	prefetchw(rx_buffer->page);
1651 
1652 	/* we are reusing so sync this buffer for CPU use */
1653 	dma_sync_single_range_for_cpu(rx_ring->dev,
1654 				      rx_buffer->dma,
1655 				      rx_buffer->page_offset,
1656 				      size,
1657 				      DMA_FROM_DEVICE);
1658 
1659 	rx_buffer->pagecnt_bias--;
1660 
1661 	return rx_buffer;
1662 }
1663 
1664 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1665 			       unsigned int truesize)
1666 {
1667 #if (PAGE_SIZE < 8192)
1668 	buffer->page_offset ^= truesize;
1669 #else
1670 	buffer->page_offset += truesize;
1671 #endif
1672 }
1673 
1674 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1675 					      unsigned int size)
1676 {
1677 	unsigned int truesize;
1678 
1679 #if (PAGE_SIZE < 8192)
1680 	truesize = igc_rx_pg_size(ring) / 2;
1681 #else
1682 	truesize = ring_uses_build_skb(ring) ?
1683 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1684 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1685 		   SKB_DATA_ALIGN(size);
1686 #endif
1687 	return truesize;
1688 }
1689 
1690 /**
1691  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1692  * @rx_ring: rx descriptor ring to transact packets on
1693  * @rx_buffer: buffer containing page to add
1694  * @skb: sk_buff to place the data into
1695  * @size: size of buffer to be added
1696  *
1697  * This function will add the data contained in rx_buffer->page to the skb.
1698  */
1699 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1700 			    struct igc_rx_buffer *rx_buffer,
1701 			    struct sk_buff *skb,
1702 			    unsigned int size)
1703 {
1704 	unsigned int truesize;
1705 
1706 #if (PAGE_SIZE < 8192)
1707 	truesize = igc_rx_pg_size(rx_ring) / 2;
1708 #else
1709 	truesize = ring_uses_build_skb(rx_ring) ?
1710 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1711 		   SKB_DATA_ALIGN(size);
1712 #endif
1713 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1714 			rx_buffer->page_offset, size, truesize);
1715 
1716 	igc_rx_buffer_flip(rx_buffer, truesize);
1717 }
1718 
1719 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1720 				     struct igc_rx_buffer *rx_buffer,
1721 				     union igc_adv_rx_desc *rx_desc,
1722 				     unsigned int size)
1723 {
1724 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1725 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1726 	struct sk_buff *skb;
1727 
1728 	/* prefetch first cache line of first page */
1729 	net_prefetch(va);
1730 
1731 	/* build an skb around the page buffer */
1732 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1733 	if (unlikely(!skb))
1734 		return NULL;
1735 
1736 	/* update pointers within the skb to store the data */
1737 	skb_reserve(skb, IGC_SKB_PAD);
1738 	__skb_put(skb, size);
1739 
1740 	igc_rx_buffer_flip(rx_buffer, truesize);
1741 	return skb;
1742 }
1743 
1744 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1745 					 struct igc_rx_buffer *rx_buffer,
1746 					 struct xdp_buff *xdp,
1747 					 ktime_t timestamp)
1748 {
1749 	unsigned int size = xdp->data_end - xdp->data;
1750 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1751 	void *va = xdp->data;
1752 	unsigned int headlen;
1753 	struct sk_buff *skb;
1754 
1755 	/* prefetch first cache line of first page */
1756 	net_prefetch(va);
1757 
1758 	/* allocate a skb to store the frags */
1759 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1760 	if (unlikely(!skb))
1761 		return NULL;
1762 
1763 	if (timestamp)
1764 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1765 
1766 	/* Determine available headroom for copy */
1767 	headlen = size;
1768 	if (headlen > IGC_RX_HDR_LEN)
1769 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1770 
1771 	/* align pull length to size of long to optimize memcpy performance */
1772 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1773 
1774 	/* update all of the pointers */
1775 	size -= headlen;
1776 	if (size) {
1777 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1778 				(va + headlen) - page_address(rx_buffer->page),
1779 				size, truesize);
1780 		igc_rx_buffer_flip(rx_buffer, truesize);
1781 	} else {
1782 		rx_buffer->pagecnt_bias++;
1783 	}
1784 
1785 	return skb;
1786 }
1787 
1788 /**
1789  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1790  * @rx_ring: rx descriptor ring to store buffers on
1791  * @old_buff: donor buffer to have page reused
1792  *
1793  * Synchronizes page for reuse by the adapter
1794  */
1795 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1796 			      struct igc_rx_buffer *old_buff)
1797 {
1798 	u16 nta = rx_ring->next_to_alloc;
1799 	struct igc_rx_buffer *new_buff;
1800 
1801 	new_buff = &rx_ring->rx_buffer_info[nta];
1802 
1803 	/* update, and store next to alloc */
1804 	nta++;
1805 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1806 
1807 	/* Transfer page from old buffer to new buffer.
1808 	 * Move each member individually to avoid possible store
1809 	 * forwarding stalls.
1810 	 */
1811 	new_buff->dma		= old_buff->dma;
1812 	new_buff->page		= old_buff->page;
1813 	new_buff->page_offset	= old_buff->page_offset;
1814 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1815 }
1816 
1817 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1818 				  int rx_buffer_pgcnt)
1819 {
1820 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1821 	struct page *page = rx_buffer->page;
1822 
1823 	/* avoid re-using remote and pfmemalloc pages */
1824 	if (!dev_page_is_reusable(page))
1825 		return false;
1826 
1827 #if (PAGE_SIZE < 8192)
1828 	/* if we are only owner of page we can reuse it */
1829 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1830 		return false;
1831 #else
1832 #define IGC_LAST_OFFSET \
1833 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1834 
1835 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1836 		return false;
1837 #endif
1838 
1839 	/* If we have drained the page fragment pool we need to update
1840 	 * the pagecnt_bias and page count so that we fully restock the
1841 	 * number of references the driver holds.
1842 	 */
1843 	if (unlikely(pagecnt_bias == 1)) {
1844 		page_ref_add(page, USHRT_MAX - 1);
1845 		rx_buffer->pagecnt_bias = USHRT_MAX;
1846 	}
1847 
1848 	return true;
1849 }
1850 
1851 /**
1852  * igc_is_non_eop - process handling of non-EOP buffers
1853  * @rx_ring: Rx ring being processed
1854  * @rx_desc: Rx descriptor for current buffer
1855  *
1856  * This function updates next to clean.  If the buffer is an EOP buffer
1857  * this function exits returning false, otherwise it will place the
1858  * sk_buff in the next buffer to be chained and return true indicating
1859  * that this is in fact a non-EOP buffer.
1860  */
1861 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1862 			   union igc_adv_rx_desc *rx_desc)
1863 {
1864 	u32 ntc = rx_ring->next_to_clean + 1;
1865 
1866 	/* fetch, update, and store next to clean */
1867 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1868 	rx_ring->next_to_clean = ntc;
1869 
1870 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1871 
1872 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1873 		return false;
1874 
1875 	return true;
1876 }
1877 
1878 /**
1879  * igc_cleanup_headers - Correct corrupted or empty headers
1880  * @rx_ring: rx descriptor ring packet is being transacted on
1881  * @rx_desc: pointer to the EOP Rx descriptor
1882  * @skb: pointer to current skb being fixed
1883  *
1884  * Address the case where we are pulling data in on pages only
1885  * and as such no data is present in the skb header.
1886  *
1887  * In addition if skb is not at least 60 bytes we need to pad it so that
1888  * it is large enough to qualify as a valid Ethernet frame.
1889  *
1890  * Returns true if an error was encountered and skb was freed.
1891  */
1892 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1893 				union igc_adv_rx_desc *rx_desc,
1894 				struct sk_buff *skb)
1895 {
1896 	/* XDP packets use error pointer so abort at this point */
1897 	if (IS_ERR(skb))
1898 		return true;
1899 
1900 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1901 		struct net_device *netdev = rx_ring->netdev;
1902 
1903 		if (!(netdev->features & NETIF_F_RXALL)) {
1904 			dev_kfree_skb_any(skb);
1905 			return true;
1906 		}
1907 	}
1908 
1909 	/* if eth_skb_pad returns an error the skb was freed */
1910 	if (eth_skb_pad(skb))
1911 		return true;
1912 
1913 	return false;
1914 }
1915 
1916 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1917 			      struct igc_rx_buffer *rx_buffer,
1918 			      int rx_buffer_pgcnt)
1919 {
1920 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1921 		/* hand second half of page back to the ring */
1922 		igc_reuse_rx_page(rx_ring, rx_buffer);
1923 	} else {
1924 		/* We are not reusing the buffer so unmap it and free
1925 		 * any references we are holding to it
1926 		 */
1927 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1928 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1929 				     IGC_RX_DMA_ATTR);
1930 		__page_frag_cache_drain(rx_buffer->page,
1931 					rx_buffer->pagecnt_bias);
1932 	}
1933 
1934 	/* clear contents of rx_buffer */
1935 	rx_buffer->page = NULL;
1936 }
1937 
1938 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1939 {
1940 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1941 
1942 	if (ring_uses_build_skb(rx_ring))
1943 		return IGC_SKB_PAD;
1944 	if (igc_xdp_is_enabled(adapter))
1945 		return XDP_PACKET_HEADROOM;
1946 
1947 	return 0;
1948 }
1949 
1950 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1951 				  struct igc_rx_buffer *bi)
1952 {
1953 	struct page *page = bi->page;
1954 	dma_addr_t dma;
1955 
1956 	/* since we are recycling buffers we should seldom need to alloc */
1957 	if (likely(page))
1958 		return true;
1959 
1960 	/* alloc new page for storage */
1961 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1962 	if (unlikely(!page)) {
1963 		rx_ring->rx_stats.alloc_failed++;
1964 		return false;
1965 	}
1966 
1967 	/* map page for use */
1968 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1969 				 igc_rx_pg_size(rx_ring),
1970 				 DMA_FROM_DEVICE,
1971 				 IGC_RX_DMA_ATTR);
1972 
1973 	/* if mapping failed free memory back to system since
1974 	 * there isn't much point in holding memory we can't use
1975 	 */
1976 	if (dma_mapping_error(rx_ring->dev, dma)) {
1977 		__free_page(page);
1978 
1979 		rx_ring->rx_stats.alloc_failed++;
1980 		return false;
1981 	}
1982 
1983 	bi->dma = dma;
1984 	bi->page = page;
1985 	bi->page_offset = igc_rx_offset(rx_ring);
1986 	page_ref_add(page, USHRT_MAX - 1);
1987 	bi->pagecnt_bias = USHRT_MAX;
1988 
1989 	return true;
1990 }
1991 
1992 /**
1993  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1994  * @rx_ring: rx descriptor ring
1995  * @cleaned_count: number of buffers to clean
1996  */
1997 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1998 {
1999 	union igc_adv_rx_desc *rx_desc;
2000 	u16 i = rx_ring->next_to_use;
2001 	struct igc_rx_buffer *bi;
2002 	u16 bufsz;
2003 
2004 	/* nothing to do */
2005 	if (!cleaned_count)
2006 		return;
2007 
2008 	rx_desc = IGC_RX_DESC(rx_ring, i);
2009 	bi = &rx_ring->rx_buffer_info[i];
2010 	i -= rx_ring->count;
2011 
2012 	bufsz = igc_rx_bufsz(rx_ring);
2013 
2014 	do {
2015 		if (!igc_alloc_mapped_page(rx_ring, bi))
2016 			break;
2017 
2018 		/* sync the buffer for use by the device */
2019 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2020 						 bi->page_offset, bufsz,
2021 						 DMA_FROM_DEVICE);
2022 
2023 		/* Refresh the desc even if buffer_addrs didn't change
2024 		 * because each write-back erases this info.
2025 		 */
2026 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2027 
2028 		rx_desc++;
2029 		bi++;
2030 		i++;
2031 		if (unlikely(!i)) {
2032 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2033 			bi = rx_ring->rx_buffer_info;
2034 			i -= rx_ring->count;
2035 		}
2036 
2037 		/* clear the length for the next_to_use descriptor */
2038 		rx_desc->wb.upper.length = 0;
2039 
2040 		cleaned_count--;
2041 	} while (cleaned_count);
2042 
2043 	i += rx_ring->count;
2044 
2045 	if (rx_ring->next_to_use != i) {
2046 		/* record the next descriptor to use */
2047 		rx_ring->next_to_use = i;
2048 
2049 		/* update next to alloc since we have filled the ring */
2050 		rx_ring->next_to_alloc = i;
2051 
2052 		/* Force memory writes to complete before letting h/w
2053 		 * know there are new descriptors to fetch.  (Only
2054 		 * applicable for weak-ordered memory model archs,
2055 		 * such as IA-64).
2056 		 */
2057 		wmb();
2058 		writel(i, rx_ring->tail);
2059 	}
2060 }
2061 
2062 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2063 {
2064 	union igc_adv_rx_desc *desc;
2065 	u16 i = ring->next_to_use;
2066 	struct igc_rx_buffer *bi;
2067 	dma_addr_t dma;
2068 	bool ok = true;
2069 
2070 	if (!count)
2071 		return ok;
2072 
2073 	desc = IGC_RX_DESC(ring, i);
2074 	bi = &ring->rx_buffer_info[i];
2075 	i -= ring->count;
2076 
2077 	do {
2078 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2079 		if (!bi->xdp) {
2080 			ok = false;
2081 			break;
2082 		}
2083 
2084 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2085 		desc->read.pkt_addr = cpu_to_le64(dma);
2086 
2087 		desc++;
2088 		bi++;
2089 		i++;
2090 		if (unlikely(!i)) {
2091 			desc = IGC_RX_DESC(ring, 0);
2092 			bi = ring->rx_buffer_info;
2093 			i -= ring->count;
2094 		}
2095 
2096 		/* Clear the length for the next_to_use descriptor. */
2097 		desc->wb.upper.length = 0;
2098 
2099 		count--;
2100 	} while (count);
2101 
2102 	i += ring->count;
2103 
2104 	if (ring->next_to_use != i) {
2105 		ring->next_to_use = i;
2106 
2107 		/* Force memory writes to complete before letting h/w
2108 		 * know there are new descriptors to fetch.  (Only
2109 		 * applicable for weak-ordered memory model archs,
2110 		 * such as IA-64).
2111 		 */
2112 		wmb();
2113 		writel(i, ring->tail);
2114 	}
2115 
2116 	return ok;
2117 }
2118 
2119 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2120 				  struct xdp_frame *xdpf,
2121 				  struct igc_ring *ring)
2122 {
2123 	dma_addr_t dma;
2124 
2125 	dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2126 	if (dma_mapping_error(ring->dev, dma)) {
2127 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2128 		return -ENOMEM;
2129 	}
2130 
2131 	buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2132 	buffer->xdpf = xdpf;
2133 	buffer->protocol = 0;
2134 	buffer->bytecount = xdpf->len;
2135 	buffer->gso_segs = 1;
2136 	buffer->time_stamp = jiffies;
2137 	dma_unmap_len_set(buffer, len, xdpf->len);
2138 	dma_unmap_addr_set(buffer, dma, dma);
2139 	return 0;
2140 }
2141 
2142 /* This function requires __netif_tx_lock is held by the caller. */
2143 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2144 				      struct xdp_frame *xdpf)
2145 {
2146 	struct igc_tx_buffer *buffer;
2147 	union igc_adv_tx_desc *desc;
2148 	u32 cmd_type, olinfo_status;
2149 	int err;
2150 
2151 	if (!igc_desc_unused(ring))
2152 		return -EBUSY;
2153 
2154 	buffer = &ring->tx_buffer_info[ring->next_to_use];
2155 	err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2156 	if (err)
2157 		return err;
2158 
2159 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2160 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2161 		   buffer->bytecount;
2162 	olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2163 
2164 	desc = IGC_TX_DESC(ring, ring->next_to_use);
2165 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2166 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2167 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2168 
2169 	netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2170 
2171 	buffer->next_to_watch = desc;
2172 
2173 	ring->next_to_use++;
2174 	if (ring->next_to_use == ring->count)
2175 		ring->next_to_use = 0;
2176 
2177 	return 0;
2178 }
2179 
2180 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2181 					    int cpu)
2182 {
2183 	int index = cpu;
2184 
2185 	if (unlikely(index < 0))
2186 		index = 0;
2187 
2188 	while (index >= adapter->num_tx_queues)
2189 		index -= adapter->num_tx_queues;
2190 
2191 	return adapter->tx_ring[index];
2192 }
2193 
2194 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2195 {
2196 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2197 	int cpu = smp_processor_id();
2198 	struct netdev_queue *nq;
2199 	struct igc_ring *ring;
2200 	int res;
2201 
2202 	if (unlikely(!xdpf))
2203 		return -EFAULT;
2204 
2205 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2206 	nq = txring_txq(ring);
2207 
2208 	__netif_tx_lock(nq, cpu);
2209 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2210 	__netif_tx_unlock(nq);
2211 	return res;
2212 }
2213 
2214 /* This function assumes rcu_read_lock() is held by the caller. */
2215 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2216 			      struct bpf_prog *prog,
2217 			      struct xdp_buff *xdp)
2218 {
2219 	u32 act = bpf_prog_run_xdp(prog, xdp);
2220 
2221 	switch (act) {
2222 	case XDP_PASS:
2223 		return IGC_XDP_PASS;
2224 	case XDP_TX:
2225 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2226 			goto out_failure;
2227 		return IGC_XDP_TX;
2228 	case XDP_REDIRECT:
2229 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2230 			goto out_failure;
2231 		return IGC_XDP_REDIRECT;
2232 		break;
2233 	default:
2234 		bpf_warn_invalid_xdp_action(act);
2235 		fallthrough;
2236 	case XDP_ABORTED:
2237 out_failure:
2238 		trace_xdp_exception(adapter->netdev, prog, act);
2239 		fallthrough;
2240 	case XDP_DROP:
2241 		return IGC_XDP_CONSUMED;
2242 	}
2243 }
2244 
2245 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2246 					struct xdp_buff *xdp)
2247 {
2248 	struct bpf_prog *prog;
2249 	int res;
2250 
2251 	prog = READ_ONCE(adapter->xdp_prog);
2252 	if (!prog) {
2253 		res = IGC_XDP_PASS;
2254 		goto out;
2255 	}
2256 
2257 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2258 
2259 out:
2260 	return ERR_PTR(-res);
2261 }
2262 
2263 /* This function assumes __netif_tx_lock is held by the caller. */
2264 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2265 {
2266 	/* Once tail pointer is updated, hardware can fetch the descriptors
2267 	 * any time so we issue a write membar here to ensure all memory
2268 	 * writes are complete before the tail pointer is updated.
2269 	 */
2270 	wmb();
2271 	writel(ring->next_to_use, ring->tail);
2272 }
2273 
2274 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2275 {
2276 	int cpu = smp_processor_id();
2277 	struct netdev_queue *nq;
2278 	struct igc_ring *ring;
2279 
2280 	if (status & IGC_XDP_TX) {
2281 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2282 		nq = txring_txq(ring);
2283 
2284 		__netif_tx_lock(nq, cpu);
2285 		igc_flush_tx_descriptors(ring);
2286 		__netif_tx_unlock(nq);
2287 	}
2288 
2289 	if (status & IGC_XDP_REDIRECT)
2290 		xdp_do_flush();
2291 }
2292 
2293 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2294 				unsigned int packets, unsigned int bytes)
2295 {
2296 	struct igc_ring *ring = q_vector->rx.ring;
2297 
2298 	u64_stats_update_begin(&ring->rx_syncp);
2299 	ring->rx_stats.packets += packets;
2300 	ring->rx_stats.bytes += bytes;
2301 	u64_stats_update_end(&ring->rx_syncp);
2302 
2303 	q_vector->rx.total_packets += packets;
2304 	q_vector->rx.total_bytes += bytes;
2305 }
2306 
2307 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2308 {
2309 	unsigned int total_bytes = 0, total_packets = 0;
2310 	struct igc_adapter *adapter = q_vector->adapter;
2311 	struct igc_ring *rx_ring = q_vector->rx.ring;
2312 	struct sk_buff *skb = rx_ring->skb;
2313 	u16 cleaned_count = igc_desc_unused(rx_ring);
2314 	int xdp_status = 0, rx_buffer_pgcnt;
2315 
2316 	while (likely(total_packets < budget)) {
2317 		union igc_adv_rx_desc *rx_desc;
2318 		struct igc_rx_buffer *rx_buffer;
2319 		unsigned int size, truesize;
2320 		ktime_t timestamp = 0;
2321 		struct xdp_buff xdp;
2322 		int pkt_offset = 0;
2323 		void *pktbuf;
2324 
2325 		/* return some buffers to hardware, one at a time is too slow */
2326 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2327 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2328 			cleaned_count = 0;
2329 		}
2330 
2331 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2332 		size = le16_to_cpu(rx_desc->wb.upper.length);
2333 		if (!size)
2334 			break;
2335 
2336 		/* This memory barrier is needed to keep us from reading
2337 		 * any other fields out of the rx_desc until we know the
2338 		 * descriptor has been written back
2339 		 */
2340 		dma_rmb();
2341 
2342 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2343 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2344 
2345 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2346 
2347 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2348 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2349 							pktbuf);
2350 			pkt_offset = IGC_TS_HDR_LEN;
2351 			size -= IGC_TS_HDR_LEN;
2352 		}
2353 
2354 		if (!skb) {
2355 			xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2356 			xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2357 					 igc_rx_offset(rx_ring) + pkt_offset, size, false);
2358 
2359 			skb = igc_xdp_run_prog(adapter, &xdp);
2360 		}
2361 
2362 		if (IS_ERR(skb)) {
2363 			unsigned int xdp_res = -PTR_ERR(skb);
2364 
2365 			switch (xdp_res) {
2366 			case IGC_XDP_CONSUMED:
2367 				rx_buffer->pagecnt_bias++;
2368 				break;
2369 			case IGC_XDP_TX:
2370 			case IGC_XDP_REDIRECT:
2371 				igc_rx_buffer_flip(rx_buffer, truesize);
2372 				xdp_status |= xdp_res;
2373 				break;
2374 			}
2375 
2376 			total_packets++;
2377 			total_bytes += size;
2378 		} else if (skb)
2379 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2380 		else if (ring_uses_build_skb(rx_ring))
2381 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2382 		else
2383 			skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2384 						timestamp);
2385 
2386 		/* exit if we failed to retrieve a buffer */
2387 		if (!skb) {
2388 			rx_ring->rx_stats.alloc_failed++;
2389 			rx_buffer->pagecnt_bias++;
2390 			break;
2391 		}
2392 
2393 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2394 		cleaned_count++;
2395 
2396 		/* fetch next buffer in frame if non-eop */
2397 		if (igc_is_non_eop(rx_ring, rx_desc))
2398 			continue;
2399 
2400 		/* verify the packet layout is correct */
2401 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2402 			skb = NULL;
2403 			continue;
2404 		}
2405 
2406 		/* probably a little skewed due to removing CRC */
2407 		total_bytes += skb->len;
2408 
2409 		/* populate checksum, VLAN, and protocol */
2410 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2411 
2412 		napi_gro_receive(&q_vector->napi, skb);
2413 
2414 		/* reset skb pointer */
2415 		skb = NULL;
2416 
2417 		/* update budget accounting */
2418 		total_packets++;
2419 	}
2420 
2421 	if (xdp_status)
2422 		igc_finalize_xdp(adapter, xdp_status);
2423 
2424 	/* place incomplete frames back on ring for completion */
2425 	rx_ring->skb = skb;
2426 
2427 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2428 
2429 	if (cleaned_count)
2430 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2431 
2432 	return total_packets;
2433 }
2434 
2435 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2436 					    struct xdp_buff *xdp)
2437 {
2438 	unsigned int metasize = xdp->data - xdp->data_meta;
2439 	unsigned int datasize = xdp->data_end - xdp->data;
2440 	unsigned int totalsize = metasize + datasize;
2441 	struct sk_buff *skb;
2442 
2443 	skb = __napi_alloc_skb(&ring->q_vector->napi,
2444 			       xdp->data_end - xdp->data_hard_start,
2445 			       GFP_ATOMIC | __GFP_NOWARN);
2446 	if (unlikely(!skb))
2447 		return NULL;
2448 
2449 	skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
2450 	memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize);
2451 	if (metasize)
2452 		skb_metadata_set(skb, metasize);
2453 
2454 	return skb;
2455 }
2456 
2457 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2458 				union igc_adv_rx_desc *desc,
2459 				struct xdp_buff *xdp,
2460 				ktime_t timestamp)
2461 {
2462 	struct igc_ring *ring = q_vector->rx.ring;
2463 	struct sk_buff *skb;
2464 
2465 	skb = igc_construct_skb_zc(ring, xdp);
2466 	if (!skb) {
2467 		ring->rx_stats.alloc_failed++;
2468 		return;
2469 	}
2470 
2471 	if (timestamp)
2472 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2473 
2474 	if (igc_cleanup_headers(ring, desc, skb))
2475 		return;
2476 
2477 	igc_process_skb_fields(ring, desc, skb);
2478 	napi_gro_receive(&q_vector->napi, skb);
2479 }
2480 
2481 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2482 {
2483 	struct igc_adapter *adapter = q_vector->adapter;
2484 	struct igc_ring *ring = q_vector->rx.ring;
2485 	u16 cleaned_count = igc_desc_unused(ring);
2486 	int total_bytes = 0, total_packets = 0;
2487 	u16 ntc = ring->next_to_clean;
2488 	struct bpf_prog *prog;
2489 	bool failure = false;
2490 	int xdp_status = 0;
2491 
2492 	rcu_read_lock();
2493 
2494 	prog = READ_ONCE(adapter->xdp_prog);
2495 
2496 	while (likely(total_packets < budget)) {
2497 		union igc_adv_rx_desc *desc;
2498 		struct igc_rx_buffer *bi;
2499 		ktime_t timestamp = 0;
2500 		unsigned int size;
2501 		int res;
2502 
2503 		desc = IGC_RX_DESC(ring, ntc);
2504 		size = le16_to_cpu(desc->wb.upper.length);
2505 		if (!size)
2506 			break;
2507 
2508 		/* This memory barrier is needed to keep us from reading
2509 		 * any other fields out of the rx_desc until we know the
2510 		 * descriptor has been written back
2511 		 */
2512 		dma_rmb();
2513 
2514 		bi = &ring->rx_buffer_info[ntc];
2515 
2516 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2517 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2518 							bi->xdp->data);
2519 
2520 			bi->xdp->data += IGC_TS_HDR_LEN;
2521 
2522 			/* HW timestamp has been copied into local variable. Metadata
2523 			 * length when XDP program is called should be 0.
2524 			 */
2525 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2526 			size -= IGC_TS_HDR_LEN;
2527 		}
2528 
2529 		bi->xdp->data_end = bi->xdp->data + size;
2530 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2531 
2532 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2533 		switch (res) {
2534 		case IGC_XDP_PASS:
2535 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2536 			fallthrough;
2537 		case IGC_XDP_CONSUMED:
2538 			xsk_buff_free(bi->xdp);
2539 			break;
2540 		case IGC_XDP_TX:
2541 		case IGC_XDP_REDIRECT:
2542 			xdp_status |= res;
2543 			break;
2544 		}
2545 
2546 		bi->xdp = NULL;
2547 		total_bytes += size;
2548 		total_packets++;
2549 		cleaned_count++;
2550 		ntc++;
2551 		if (ntc == ring->count)
2552 			ntc = 0;
2553 	}
2554 
2555 	ring->next_to_clean = ntc;
2556 	rcu_read_unlock();
2557 
2558 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2559 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2560 
2561 	if (xdp_status)
2562 		igc_finalize_xdp(adapter, xdp_status);
2563 
2564 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2565 
2566 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2567 		if (failure || ring->next_to_clean == ring->next_to_use)
2568 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2569 		else
2570 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2571 		return total_packets;
2572 	}
2573 
2574 	return failure ? budget : total_packets;
2575 }
2576 
2577 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2578 				unsigned int packets, unsigned int bytes)
2579 {
2580 	struct igc_ring *ring = q_vector->tx.ring;
2581 
2582 	u64_stats_update_begin(&ring->tx_syncp);
2583 	ring->tx_stats.bytes += bytes;
2584 	ring->tx_stats.packets += packets;
2585 	u64_stats_update_end(&ring->tx_syncp);
2586 
2587 	q_vector->tx.total_bytes += bytes;
2588 	q_vector->tx.total_packets += packets;
2589 }
2590 
2591 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2592 {
2593 	struct xsk_buff_pool *pool = ring->xsk_pool;
2594 	struct netdev_queue *nq = txring_txq(ring);
2595 	union igc_adv_tx_desc *tx_desc = NULL;
2596 	int cpu = smp_processor_id();
2597 	u16 ntu = ring->next_to_use;
2598 	struct xdp_desc xdp_desc;
2599 	u16 budget;
2600 
2601 	if (!netif_carrier_ok(ring->netdev))
2602 		return;
2603 
2604 	__netif_tx_lock(nq, cpu);
2605 
2606 	budget = igc_desc_unused(ring);
2607 
2608 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2609 		u32 cmd_type, olinfo_status;
2610 		struct igc_tx_buffer *bi;
2611 		dma_addr_t dma;
2612 
2613 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2614 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2615 			   xdp_desc.len;
2616 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2617 
2618 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2619 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2620 
2621 		tx_desc = IGC_TX_DESC(ring, ntu);
2622 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2623 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2624 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2625 
2626 		bi = &ring->tx_buffer_info[ntu];
2627 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2628 		bi->protocol = 0;
2629 		bi->bytecount = xdp_desc.len;
2630 		bi->gso_segs = 1;
2631 		bi->time_stamp = jiffies;
2632 		bi->next_to_watch = tx_desc;
2633 
2634 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2635 
2636 		ntu++;
2637 		if (ntu == ring->count)
2638 			ntu = 0;
2639 	}
2640 
2641 	ring->next_to_use = ntu;
2642 	if (tx_desc) {
2643 		igc_flush_tx_descriptors(ring);
2644 		xsk_tx_release(pool);
2645 	}
2646 
2647 	__netif_tx_unlock(nq);
2648 }
2649 
2650 /**
2651  * igc_clean_tx_irq - Reclaim resources after transmit completes
2652  * @q_vector: pointer to q_vector containing needed info
2653  * @napi_budget: Used to determine if we are in netpoll
2654  *
2655  * returns true if ring is completely cleaned
2656  */
2657 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2658 {
2659 	struct igc_adapter *adapter = q_vector->adapter;
2660 	unsigned int total_bytes = 0, total_packets = 0;
2661 	unsigned int budget = q_vector->tx.work_limit;
2662 	struct igc_ring *tx_ring = q_vector->tx.ring;
2663 	unsigned int i = tx_ring->next_to_clean;
2664 	struct igc_tx_buffer *tx_buffer;
2665 	union igc_adv_tx_desc *tx_desc;
2666 	u32 xsk_frames = 0;
2667 
2668 	if (test_bit(__IGC_DOWN, &adapter->state))
2669 		return true;
2670 
2671 	tx_buffer = &tx_ring->tx_buffer_info[i];
2672 	tx_desc = IGC_TX_DESC(tx_ring, i);
2673 	i -= tx_ring->count;
2674 
2675 	do {
2676 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2677 
2678 		/* if next_to_watch is not set then there is no work pending */
2679 		if (!eop_desc)
2680 			break;
2681 
2682 		/* prevent any other reads prior to eop_desc */
2683 		smp_rmb();
2684 
2685 		/* if DD is not set pending work has not been completed */
2686 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2687 			break;
2688 
2689 		/* clear next_to_watch to prevent false hangs */
2690 		tx_buffer->next_to_watch = NULL;
2691 
2692 		/* update the statistics for this packet */
2693 		total_bytes += tx_buffer->bytecount;
2694 		total_packets += tx_buffer->gso_segs;
2695 
2696 		switch (tx_buffer->type) {
2697 		case IGC_TX_BUFFER_TYPE_XSK:
2698 			xsk_frames++;
2699 			break;
2700 		case IGC_TX_BUFFER_TYPE_XDP:
2701 			xdp_return_frame(tx_buffer->xdpf);
2702 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2703 			break;
2704 		case IGC_TX_BUFFER_TYPE_SKB:
2705 			napi_consume_skb(tx_buffer->skb, napi_budget);
2706 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2707 			break;
2708 		default:
2709 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2710 			break;
2711 		}
2712 
2713 		/* clear last DMA location and unmap remaining buffers */
2714 		while (tx_desc != eop_desc) {
2715 			tx_buffer++;
2716 			tx_desc++;
2717 			i++;
2718 			if (unlikely(!i)) {
2719 				i -= tx_ring->count;
2720 				tx_buffer = tx_ring->tx_buffer_info;
2721 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2722 			}
2723 
2724 			/* unmap any remaining paged data */
2725 			if (dma_unmap_len(tx_buffer, len))
2726 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2727 		}
2728 
2729 		/* move us one more past the eop_desc for start of next pkt */
2730 		tx_buffer++;
2731 		tx_desc++;
2732 		i++;
2733 		if (unlikely(!i)) {
2734 			i -= tx_ring->count;
2735 			tx_buffer = tx_ring->tx_buffer_info;
2736 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2737 		}
2738 
2739 		/* issue prefetch for next Tx descriptor */
2740 		prefetch(tx_desc);
2741 
2742 		/* update budget accounting */
2743 		budget--;
2744 	} while (likely(budget));
2745 
2746 	netdev_tx_completed_queue(txring_txq(tx_ring),
2747 				  total_packets, total_bytes);
2748 
2749 	i += tx_ring->count;
2750 	tx_ring->next_to_clean = i;
2751 
2752 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2753 
2754 	if (tx_ring->xsk_pool) {
2755 		if (xsk_frames)
2756 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2757 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2758 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2759 		igc_xdp_xmit_zc(tx_ring);
2760 	}
2761 
2762 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2763 		struct igc_hw *hw = &adapter->hw;
2764 
2765 		/* Detect a transmit hang in hardware, this serializes the
2766 		 * check with the clearing of time_stamp and movement of i
2767 		 */
2768 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2769 		if (tx_buffer->next_to_watch &&
2770 		    time_after(jiffies, tx_buffer->time_stamp +
2771 		    (adapter->tx_timeout_factor * HZ)) &&
2772 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2773 			/* detected Tx unit hang */
2774 			netdev_err(tx_ring->netdev,
2775 				   "Detected Tx Unit Hang\n"
2776 				   "  Tx Queue             <%d>\n"
2777 				   "  TDH                  <%x>\n"
2778 				   "  TDT                  <%x>\n"
2779 				   "  next_to_use          <%x>\n"
2780 				   "  next_to_clean        <%x>\n"
2781 				   "buffer_info[next_to_clean]\n"
2782 				   "  time_stamp           <%lx>\n"
2783 				   "  next_to_watch        <%p>\n"
2784 				   "  jiffies              <%lx>\n"
2785 				   "  desc.status          <%x>\n",
2786 				   tx_ring->queue_index,
2787 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2788 				   readl(tx_ring->tail),
2789 				   tx_ring->next_to_use,
2790 				   tx_ring->next_to_clean,
2791 				   tx_buffer->time_stamp,
2792 				   tx_buffer->next_to_watch,
2793 				   jiffies,
2794 				   tx_buffer->next_to_watch->wb.status);
2795 			netif_stop_subqueue(tx_ring->netdev,
2796 					    tx_ring->queue_index);
2797 
2798 			/* we are about to reset, no point in enabling stuff */
2799 			return true;
2800 		}
2801 	}
2802 
2803 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2804 	if (unlikely(total_packets &&
2805 		     netif_carrier_ok(tx_ring->netdev) &&
2806 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2807 		/* Make sure that anybody stopping the queue after this
2808 		 * sees the new next_to_clean.
2809 		 */
2810 		smp_mb();
2811 		if (__netif_subqueue_stopped(tx_ring->netdev,
2812 					     tx_ring->queue_index) &&
2813 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2814 			netif_wake_subqueue(tx_ring->netdev,
2815 					    tx_ring->queue_index);
2816 
2817 			u64_stats_update_begin(&tx_ring->tx_syncp);
2818 			tx_ring->tx_stats.restart_queue++;
2819 			u64_stats_update_end(&tx_ring->tx_syncp);
2820 		}
2821 	}
2822 
2823 	return !!budget;
2824 }
2825 
2826 static int igc_find_mac_filter(struct igc_adapter *adapter,
2827 			       enum igc_mac_filter_type type, const u8 *addr)
2828 {
2829 	struct igc_hw *hw = &adapter->hw;
2830 	int max_entries = hw->mac.rar_entry_count;
2831 	u32 ral, rah;
2832 	int i;
2833 
2834 	for (i = 0; i < max_entries; i++) {
2835 		ral = rd32(IGC_RAL(i));
2836 		rah = rd32(IGC_RAH(i));
2837 
2838 		if (!(rah & IGC_RAH_AV))
2839 			continue;
2840 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2841 			continue;
2842 		if ((rah & IGC_RAH_RAH_MASK) !=
2843 		    le16_to_cpup((__le16 *)(addr + 4)))
2844 			continue;
2845 		if (ral != le32_to_cpup((__le32 *)(addr)))
2846 			continue;
2847 
2848 		return i;
2849 	}
2850 
2851 	return -1;
2852 }
2853 
2854 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2855 {
2856 	struct igc_hw *hw = &adapter->hw;
2857 	int max_entries = hw->mac.rar_entry_count;
2858 	u32 rah;
2859 	int i;
2860 
2861 	for (i = 0; i < max_entries; i++) {
2862 		rah = rd32(IGC_RAH(i));
2863 
2864 		if (!(rah & IGC_RAH_AV))
2865 			return i;
2866 	}
2867 
2868 	return -1;
2869 }
2870 
2871 /**
2872  * igc_add_mac_filter() - Add MAC address filter
2873  * @adapter: Pointer to adapter where the filter should be added
2874  * @type: MAC address filter type (source or destination)
2875  * @addr: MAC address
2876  * @queue: If non-negative, queue assignment feature is enabled and frames
2877  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2878  *         assignment is disabled.
2879  *
2880  * Return: 0 in case of success, negative errno code otherwise.
2881  */
2882 static int igc_add_mac_filter(struct igc_adapter *adapter,
2883 			      enum igc_mac_filter_type type, const u8 *addr,
2884 			      int queue)
2885 {
2886 	struct net_device *dev = adapter->netdev;
2887 	int index;
2888 
2889 	index = igc_find_mac_filter(adapter, type, addr);
2890 	if (index >= 0)
2891 		goto update_filter;
2892 
2893 	index = igc_get_avail_mac_filter_slot(adapter);
2894 	if (index < 0)
2895 		return -ENOSPC;
2896 
2897 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2898 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2899 		   addr, queue);
2900 
2901 update_filter:
2902 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2903 	return 0;
2904 }
2905 
2906 /**
2907  * igc_del_mac_filter() - Delete MAC address filter
2908  * @adapter: Pointer to adapter where the filter should be deleted from
2909  * @type: MAC address filter type (source or destination)
2910  * @addr: MAC address
2911  */
2912 static void igc_del_mac_filter(struct igc_adapter *adapter,
2913 			       enum igc_mac_filter_type type, const u8 *addr)
2914 {
2915 	struct net_device *dev = adapter->netdev;
2916 	int index;
2917 
2918 	index = igc_find_mac_filter(adapter, type, addr);
2919 	if (index < 0)
2920 		return;
2921 
2922 	if (index == 0) {
2923 		/* If this is the default filter, we don't actually delete it.
2924 		 * We just reset to its default value i.e. disable queue
2925 		 * assignment.
2926 		 */
2927 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2928 
2929 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2930 	} else {
2931 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2932 			   index,
2933 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2934 			   addr);
2935 
2936 		igc_clear_mac_filter_hw(adapter, index);
2937 	}
2938 }
2939 
2940 /**
2941  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2942  * @adapter: Pointer to adapter where the filter should be added
2943  * @prio: VLAN priority value
2944  * @queue: Queue number which matching frames are assigned to
2945  *
2946  * Return: 0 in case of success, negative errno code otherwise.
2947  */
2948 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2949 				    int queue)
2950 {
2951 	struct net_device *dev = adapter->netdev;
2952 	struct igc_hw *hw = &adapter->hw;
2953 	u32 vlanpqf;
2954 
2955 	vlanpqf = rd32(IGC_VLANPQF);
2956 
2957 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2958 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2959 		return -EEXIST;
2960 	}
2961 
2962 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2963 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2964 
2965 	wr32(IGC_VLANPQF, vlanpqf);
2966 
2967 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2968 		   prio, queue);
2969 	return 0;
2970 }
2971 
2972 /**
2973  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2974  * @adapter: Pointer to adapter where the filter should be deleted from
2975  * @prio: VLAN priority value
2976  */
2977 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2978 {
2979 	struct igc_hw *hw = &adapter->hw;
2980 	u32 vlanpqf;
2981 
2982 	vlanpqf = rd32(IGC_VLANPQF);
2983 
2984 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2985 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2986 
2987 	wr32(IGC_VLANPQF, vlanpqf);
2988 
2989 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2990 		   prio);
2991 }
2992 
2993 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2994 {
2995 	struct igc_hw *hw = &adapter->hw;
2996 	int i;
2997 
2998 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2999 		u32 etqf = rd32(IGC_ETQF(i));
3000 
3001 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3002 			return i;
3003 	}
3004 
3005 	return -1;
3006 }
3007 
3008 /**
3009  * igc_add_etype_filter() - Add ethertype filter
3010  * @adapter: Pointer to adapter where the filter should be added
3011  * @etype: Ethertype value
3012  * @queue: If non-negative, queue assignment feature is enabled and frames
3013  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3014  *         assignment is disabled.
3015  *
3016  * Return: 0 in case of success, negative errno code otherwise.
3017  */
3018 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3019 				int queue)
3020 {
3021 	struct igc_hw *hw = &adapter->hw;
3022 	int index;
3023 	u32 etqf;
3024 
3025 	index = igc_get_avail_etype_filter_slot(adapter);
3026 	if (index < 0)
3027 		return -ENOSPC;
3028 
3029 	etqf = rd32(IGC_ETQF(index));
3030 
3031 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3032 	etqf |= etype;
3033 
3034 	if (queue >= 0) {
3035 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3036 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3037 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3038 	}
3039 
3040 	etqf |= IGC_ETQF_FILTER_ENABLE;
3041 
3042 	wr32(IGC_ETQF(index), etqf);
3043 
3044 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3045 		   etype, queue);
3046 	return 0;
3047 }
3048 
3049 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3050 {
3051 	struct igc_hw *hw = &adapter->hw;
3052 	int i;
3053 
3054 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3055 		u32 etqf = rd32(IGC_ETQF(i));
3056 
3057 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3058 			return i;
3059 	}
3060 
3061 	return -1;
3062 }
3063 
3064 /**
3065  * igc_del_etype_filter() - Delete ethertype filter
3066  * @adapter: Pointer to adapter where the filter should be deleted from
3067  * @etype: Ethertype value
3068  */
3069 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3070 {
3071 	struct igc_hw *hw = &adapter->hw;
3072 	int index;
3073 
3074 	index = igc_find_etype_filter(adapter, etype);
3075 	if (index < 0)
3076 		return;
3077 
3078 	wr32(IGC_ETQF(index), 0);
3079 
3080 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3081 		   etype);
3082 }
3083 
3084 static int igc_flex_filter_select(struct igc_adapter *adapter,
3085 				  struct igc_flex_filter *input,
3086 				  u32 *fhft)
3087 {
3088 	struct igc_hw *hw = &adapter->hw;
3089 	u8 fhft_index;
3090 	u32 fhftsl;
3091 
3092 	if (input->index >= MAX_FLEX_FILTER) {
3093 		dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3094 		return -EINVAL;
3095 	}
3096 
3097 	/* Indirect table select register */
3098 	fhftsl = rd32(IGC_FHFTSL);
3099 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3100 	switch (input->index) {
3101 	case 0 ... 7:
3102 		fhftsl |= 0x00;
3103 		break;
3104 	case 8 ... 15:
3105 		fhftsl |= 0x01;
3106 		break;
3107 	case 16 ... 23:
3108 		fhftsl |= 0x02;
3109 		break;
3110 	case 24 ... 31:
3111 		fhftsl |= 0x03;
3112 		break;
3113 	}
3114 	wr32(IGC_FHFTSL, fhftsl);
3115 
3116 	/* Normalize index down to host table register */
3117 	fhft_index = input->index % 8;
3118 
3119 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3120 		IGC_FHFT_EXT(fhft_index - 4);
3121 
3122 	return 0;
3123 }
3124 
3125 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3126 				    struct igc_flex_filter *input)
3127 {
3128 	struct device *dev = &adapter->pdev->dev;
3129 	struct igc_hw *hw = &adapter->hw;
3130 	u8 *data = input->data;
3131 	u8 *mask = input->mask;
3132 	u32 queuing;
3133 	u32 fhft;
3134 	u32 wufc;
3135 	int ret;
3136 	int i;
3137 
3138 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3139 	 * out early to avoid surprises later.
3140 	 */
3141 	if (input->length % 8 != 0) {
3142 		dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3143 		return -EINVAL;
3144 	}
3145 
3146 	/* Select corresponding flex filter register and get base for host table. */
3147 	ret = igc_flex_filter_select(adapter, input, &fhft);
3148 	if (ret)
3149 		return ret;
3150 
3151 	/* When adding a filter globally disable flex filter feature. That is
3152 	 * recommended within the datasheet.
3153 	 */
3154 	wufc = rd32(IGC_WUFC);
3155 	wufc &= ~IGC_WUFC_FLEX_HQ;
3156 	wr32(IGC_WUFC, wufc);
3157 
3158 	/* Configure filter */
3159 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3160 	queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3161 	queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3162 
3163 	if (input->immediate_irq)
3164 		queuing |= IGC_FHFT_IMM_INT;
3165 
3166 	if (input->drop)
3167 		queuing |= IGC_FHFT_DROP;
3168 
3169 	wr32(fhft + 0xFC, queuing);
3170 
3171 	/* Write data (128 byte) and mask (128 bit) */
3172 	for (i = 0; i < 16; ++i) {
3173 		const size_t data_idx = i * 8;
3174 		const size_t row_idx = i * 16;
3175 		u32 dw0 =
3176 			(data[data_idx + 0] << 0) |
3177 			(data[data_idx + 1] << 8) |
3178 			(data[data_idx + 2] << 16) |
3179 			(data[data_idx + 3] << 24);
3180 		u32 dw1 =
3181 			(data[data_idx + 4] << 0) |
3182 			(data[data_idx + 5] << 8) |
3183 			(data[data_idx + 6] << 16) |
3184 			(data[data_idx + 7] << 24);
3185 		u32 tmp;
3186 
3187 		/* Write row: dw0, dw1 and mask */
3188 		wr32(fhft + row_idx, dw0);
3189 		wr32(fhft + row_idx + 4, dw1);
3190 
3191 		/* mask is only valid for MASK(7, 0) */
3192 		tmp = rd32(fhft + row_idx + 8);
3193 		tmp &= ~GENMASK(7, 0);
3194 		tmp |= mask[i];
3195 		wr32(fhft + row_idx + 8, tmp);
3196 	}
3197 
3198 	/* Enable filter. */
3199 	wufc |= IGC_WUFC_FLEX_HQ;
3200 	if (input->index > 8) {
3201 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3202 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3203 
3204 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3205 
3206 		wr32(IGC_WUFC_EXT, wufc_ext);
3207 	} else {
3208 		wufc |= (IGC_WUFC_FLX0 << input->index);
3209 	}
3210 	wr32(IGC_WUFC, wufc);
3211 
3212 	dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3213 		input->index);
3214 
3215 	return 0;
3216 }
3217 
3218 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3219 				      const void *src, unsigned int offset,
3220 				      size_t len, const void *mask)
3221 {
3222 	int i;
3223 
3224 	/* data */
3225 	memcpy(&flex->data[offset], src, len);
3226 
3227 	/* mask */
3228 	for (i = 0; i < len; ++i) {
3229 		const unsigned int idx = i + offset;
3230 		const u8 *ptr = mask;
3231 
3232 		if (mask) {
3233 			if (ptr[i] & 0xff)
3234 				flex->mask[idx / 8] |= BIT(idx % 8);
3235 
3236 			continue;
3237 		}
3238 
3239 		flex->mask[idx / 8] |= BIT(idx % 8);
3240 	}
3241 }
3242 
3243 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3244 {
3245 	struct igc_hw *hw = &adapter->hw;
3246 	u32 wufc, wufc_ext;
3247 	int i;
3248 
3249 	wufc = rd32(IGC_WUFC);
3250 	wufc_ext = rd32(IGC_WUFC_EXT);
3251 
3252 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3253 		if (i < 8) {
3254 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3255 				return i;
3256 		} else {
3257 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3258 				return i;
3259 		}
3260 	}
3261 
3262 	return -ENOSPC;
3263 }
3264 
3265 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3266 {
3267 	struct igc_hw *hw = &adapter->hw;
3268 	u32 wufc, wufc_ext;
3269 
3270 	wufc = rd32(IGC_WUFC);
3271 	wufc_ext = rd32(IGC_WUFC_EXT);
3272 
3273 	if (wufc & IGC_WUFC_FILTER_MASK)
3274 		return true;
3275 
3276 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3277 		return true;
3278 
3279 	return false;
3280 }
3281 
3282 static int igc_add_flex_filter(struct igc_adapter *adapter,
3283 			       struct igc_nfc_rule *rule)
3284 {
3285 	struct igc_flex_filter flex = { };
3286 	struct igc_nfc_filter *filter = &rule->filter;
3287 	unsigned int eth_offset, user_offset;
3288 	int ret, index;
3289 	bool vlan;
3290 
3291 	index = igc_find_avail_flex_filter_slot(adapter);
3292 	if (index < 0)
3293 		return -ENOSPC;
3294 
3295 	/* Construct the flex filter:
3296 	 *  -> dest_mac [6]
3297 	 *  -> src_mac [6]
3298 	 *  -> tpid [2]
3299 	 *  -> vlan tci [2]
3300 	 *  -> ether type [2]
3301 	 *  -> user data [8]
3302 	 *  -> = 26 bytes => 32 length
3303 	 */
3304 	flex.index    = index;
3305 	flex.length   = 32;
3306 	flex.rx_queue = rule->action;
3307 
3308 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3309 	eth_offset = vlan ? 16 : 12;
3310 	user_offset = vlan ? 18 : 14;
3311 
3312 	/* Add destination MAC  */
3313 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3314 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3315 					  ETH_ALEN, NULL);
3316 
3317 	/* Add source MAC */
3318 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3319 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3320 					  ETH_ALEN, NULL);
3321 
3322 	/* Add VLAN etype */
3323 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3324 		igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3325 					  sizeof(filter->vlan_etype),
3326 					  NULL);
3327 
3328 	/* Add VLAN TCI */
3329 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3330 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3331 					  sizeof(filter->vlan_tci), NULL);
3332 
3333 	/* Add Ether type */
3334 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3335 		__be16 etype = cpu_to_be16(filter->etype);
3336 
3337 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3338 					  sizeof(etype), NULL);
3339 	}
3340 
3341 	/* Add user data */
3342 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3343 		igc_flex_filter_add_field(&flex, &filter->user_data,
3344 					  user_offset,
3345 					  sizeof(filter->user_data),
3346 					  filter->user_mask);
3347 
3348 	/* Add it down to the hardware and enable it. */
3349 	ret = igc_write_flex_filter_ll(adapter, &flex);
3350 	if (ret)
3351 		return ret;
3352 
3353 	filter->flex_index = index;
3354 
3355 	return 0;
3356 }
3357 
3358 static void igc_del_flex_filter(struct igc_adapter *adapter,
3359 				u16 reg_index)
3360 {
3361 	struct igc_hw *hw = &adapter->hw;
3362 	u32 wufc;
3363 
3364 	/* Just disable the filter. The filter table itself is kept
3365 	 * intact. Another flex_filter_add() should override the "old" data
3366 	 * then.
3367 	 */
3368 	if (reg_index > 8) {
3369 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3370 
3371 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3372 		wr32(IGC_WUFC_EXT, wufc_ext);
3373 	} else {
3374 		wufc = rd32(IGC_WUFC);
3375 
3376 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3377 		wr32(IGC_WUFC, wufc);
3378 	}
3379 
3380 	if (igc_flex_filter_in_use(adapter))
3381 		return;
3382 
3383 	/* No filters are in use, we may disable flex filters */
3384 	wufc = rd32(IGC_WUFC);
3385 	wufc &= ~IGC_WUFC_FLEX_HQ;
3386 	wr32(IGC_WUFC, wufc);
3387 }
3388 
3389 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3390 			       struct igc_nfc_rule *rule)
3391 {
3392 	int err;
3393 
3394 	if (rule->flex) {
3395 		return igc_add_flex_filter(adapter, rule);
3396 	}
3397 
3398 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3399 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3400 					   rule->action);
3401 		if (err)
3402 			return err;
3403 	}
3404 
3405 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3406 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3407 					 rule->filter.src_addr, rule->action);
3408 		if (err)
3409 			return err;
3410 	}
3411 
3412 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3413 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3414 					 rule->filter.dst_addr, rule->action);
3415 		if (err)
3416 			return err;
3417 	}
3418 
3419 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3420 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3421 			   VLAN_PRIO_SHIFT;
3422 
3423 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3424 		if (err)
3425 			return err;
3426 	}
3427 
3428 	return 0;
3429 }
3430 
3431 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3432 				 const struct igc_nfc_rule *rule)
3433 {
3434 	if (rule->flex) {
3435 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3436 		return;
3437 	}
3438 
3439 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3440 		igc_del_etype_filter(adapter, rule->filter.etype);
3441 
3442 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3443 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3444 			   VLAN_PRIO_SHIFT;
3445 
3446 		igc_del_vlan_prio_filter(adapter, prio);
3447 	}
3448 
3449 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3450 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3451 				   rule->filter.src_addr);
3452 
3453 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3454 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3455 				   rule->filter.dst_addr);
3456 }
3457 
3458 /**
3459  * igc_get_nfc_rule() - Get NFC rule
3460  * @adapter: Pointer to adapter
3461  * @location: Rule location
3462  *
3463  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3464  *
3465  * Return: Pointer to NFC rule at @location. If not found, NULL.
3466  */
3467 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3468 				      u32 location)
3469 {
3470 	struct igc_nfc_rule *rule;
3471 
3472 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3473 		if (rule->location == location)
3474 			return rule;
3475 		if (rule->location > location)
3476 			break;
3477 	}
3478 
3479 	return NULL;
3480 }
3481 
3482 /**
3483  * igc_del_nfc_rule() - Delete NFC rule
3484  * @adapter: Pointer to adapter
3485  * @rule: Pointer to rule to be deleted
3486  *
3487  * Disable NFC rule in hardware and delete it from adapter.
3488  *
3489  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3490  */
3491 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3492 {
3493 	igc_disable_nfc_rule(adapter, rule);
3494 
3495 	list_del(&rule->list);
3496 	adapter->nfc_rule_count--;
3497 
3498 	kfree(rule);
3499 }
3500 
3501 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3502 {
3503 	struct igc_nfc_rule *rule, *tmp;
3504 
3505 	mutex_lock(&adapter->nfc_rule_lock);
3506 
3507 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3508 		igc_del_nfc_rule(adapter, rule);
3509 
3510 	mutex_unlock(&adapter->nfc_rule_lock);
3511 }
3512 
3513 /**
3514  * igc_add_nfc_rule() - Add NFC rule
3515  * @adapter: Pointer to adapter
3516  * @rule: Pointer to rule to be added
3517  *
3518  * Enable NFC rule in hardware and add it to adapter.
3519  *
3520  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3521  *
3522  * Return: 0 on success, negative errno on failure.
3523  */
3524 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3525 {
3526 	struct igc_nfc_rule *pred, *cur;
3527 	int err;
3528 
3529 	err = igc_enable_nfc_rule(adapter, rule);
3530 	if (err)
3531 		return err;
3532 
3533 	pred = NULL;
3534 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3535 		if (cur->location >= rule->location)
3536 			break;
3537 		pred = cur;
3538 	}
3539 
3540 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3541 	adapter->nfc_rule_count++;
3542 	return 0;
3543 }
3544 
3545 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3546 {
3547 	struct igc_nfc_rule *rule;
3548 
3549 	mutex_lock(&adapter->nfc_rule_lock);
3550 
3551 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3552 		igc_enable_nfc_rule(adapter, rule);
3553 
3554 	mutex_unlock(&adapter->nfc_rule_lock);
3555 }
3556 
3557 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3558 {
3559 	struct igc_adapter *adapter = netdev_priv(netdev);
3560 
3561 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3562 }
3563 
3564 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3565 {
3566 	struct igc_adapter *adapter = netdev_priv(netdev);
3567 
3568 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3569 	return 0;
3570 }
3571 
3572 /**
3573  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3574  * @netdev: network interface device structure
3575  *
3576  * The set_rx_mode entry point is called whenever the unicast or multicast
3577  * address lists or the network interface flags are updated.  This routine is
3578  * responsible for configuring the hardware for proper unicast, multicast,
3579  * promiscuous mode, and all-multi behavior.
3580  */
3581 static void igc_set_rx_mode(struct net_device *netdev)
3582 {
3583 	struct igc_adapter *adapter = netdev_priv(netdev);
3584 	struct igc_hw *hw = &adapter->hw;
3585 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3586 	int count;
3587 
3588 	/* Check for Promiscuous and All Multicast modes */
3589 	if (netdev->flags & IFF_PROMISC) {
3590 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3591 	} else {
3592 		if (netdev->flags & IFF_ALLMULTI) {
3593 			rctl |= IGC_RCTL_MPE;
3594 		} else {
3595 			/* Write addresses to the MTA, if the attempt fails
3596 			 * then we should just turn on promiscuous mode so
3597 			 * that we can at least receive multicast traffic
3598 			 */
3599 			count = igc_write_mc_addr_list(netdev);
3600 			if (count < 0)
3601 				rctl |= IGC_RCTL_MPE;
3602 		}
3603 	}
3604 
3605 	/* Write addresses to available RAR registers, if there is not
3606 	 * sufficient space to store all the addresses then enable
3607 	 * unicast promiscuous mode
3608 	 */
3609 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3610 		rctl |= IGC_RCTL_UPE;
3611 
3612 	/* update state of unicast and multicast */
3613 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3614 	wr32(IGC_RCTL, rctl);
3615 
3616 #if (PAGE_SIZE < 8192)
3617 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3618 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3619 #endif
3620 	wr32(IGC_RLPML, rlpml);
3621 }
3622 
3623 /**
3624  * igc_configure - configure the hardware for RX and TX
3625  * @adapter: private board structure
3626  */
3627 static void igc_configure(struct igc_adapter *adapter)
3628 {
3629 	struct net_device *netdev = adapter->netdev;
3630 	int i = 0;
3631 
3632 	igc_get_hw_control(adapter);
3633 	igc_set_rx_mode(netdev);
3634 
3635 	igc_restore_vlan(adapter);
3636 
3637 	igc_setup_tctl(adapter);
3638 	igc_setup_mrqc(adapter);
3639 	igc_setup_rctl(adapter);
3640 
3641 	igc_set_default_mac_filter(adapter);
3642 	igc_restore_nfc_rules(adapter);
3643 
3644 	igc_configure_tx(adapter);
3645 	igc_configure_rx(adapter);
3646 
3647 	igc_rx_fifo_flush_base(&adapter->hw);
3648 
3649 	/* call igc_desc_unused which always leaves
3650 	 * at least 1 descriptor unused to make sure
3651 	 * next_to_use != next_to_clean
3652 	 */
3653 	for (i = 0; i < adapter->num_rx_queues; i++) {
3654 		struct igc_ring *ring = adapter->rx_ring[i];
3655 
3656 		if (ring->xsk_pool)
3657 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3658 		else
3659 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3660 	}
3661 }
3662 
3663 /**
3664  * igc_write_ivar - configure ivar for given MSI-X vector
3665  * @hw: pointer to the HW structure
3666  * @msix_vector: vector number we are allocating to a given ring
3667  * @index: row index of IVAR register to write within IVAR table
3668  * @offset: column offset of in IVAR, should be multiple of 8
3669  *
3670  * The IVAR table consists of 2 columns,
3671  * each containing an cause allocation for an Rx and Tx ring, and a
3672  * variable number of rows depending on the number of queues supported.
3673  */
3674 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3675 			   int index, int offset)
3676 {
3677 	u32 ivar = array_rd32(IGC_IVAR0, index);
3678 
3679 	/* clear any bits that are currently set */
3680 	ivar &= ~((u32)0xFF << offset);
3681 
3682 	/* write vector and valid bit */
3683 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3684 
3685 	array_wr32(IGC_IVAR0, index, ivar);
3686 }
3687 
3688 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3689 {
3690 	struct igc_adapter *adapter = q_vector->adapter;
3691 	struct igc_hw *hw = &adapter->hw;
3692 	int rx_queue = IGC_N0_QUEUE;
3693 	int tx_queue = IGC_N0_QUEUE;
3694 
3695 	if (q_vector->rx.ring)
3696 		rx_queue = q_vector->rx.ring->reg_idx;
3697 	if (q_vector->tx.ring)
3698 		tx_queue = q_vector->tx.ring->reg_idx;
3699 
3700 	switch (hw->mac.type) {
3701 	case igc_i225:
3702 		if (rx_queue > IGC_N0_QUEUE)
3703 			igc_write_ivar(hw, msix_vector,
3704 				       rx_queue >> 1,
3705 				       (rx_queue & 0x1) << 4);
3706 		if (tx_queue > IGC_N0_QUEUE)
3707 			igc_write_ivar(hw, msix_vector,
3708 				       tx_queue >> 1,
3709 				       ((tx_queue & 0x1) << 4) + 8);
3710 		q_vector->eims_value = BIT(msix_vector);
3711 		break;
3712 	default:
3713 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3714 		break;
3715 	}
3716 
3717 	/* add q_vector eims value to global eims_enable_mask */
3718 	adapter->eims_enable_mask |= q_vector->eims_value;
3719 
3720 	/* configure q_vector to set itr on first interrupt */
3721 	q_vector->set_itr = 1;
3722 }
3723 
3724 /**
3725  * igc_configure_msix - Configure MSI-X hardware
3726  * @adapter: Pointer to adapter structure
3727  *
3728  * igc_configure_msix sets up the hardware to properly
3729  * generate MSI-X interrupts.
3730  */
3731 static void igc_configure_msix(struct igc_adapter *adapter)
3732 {
3733 	struct igc_hw *hw = &adapter->hw;
3734 	int i, vector = 0;
3735 	u32 tmp;
3736 
3737 	adapter->eims_enable_mask = 0;
3738 
3739 	/* set vector for other causes, i.e. link changes */
3740 	switch (hw->mac.type) {
3741 	case igc_i225:
3742 		/* Turn on MSI-X capability first, or our settings
3743 		 * won't stick.  And it will take days to debug.
3744 		 */
3745 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3746 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3747 		     IGC_GPIE_NSICR);
3748 
3749 		/* enable msix_other interrupt */
3750 		adapter->eims_other = BIT(vector);
3751 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3752 
3753 		wr32(IGC_IVAR_MISC, tmp);
3754 		break;
3755 	default:
3756 		/* do nothing, since nothing else supports MSI-X */
3757 		break;
3758 	} /* switch (hw->mac.type) */
3759 
3760 	adapter->eims_enable_mask |= adapter->eims_other;
3761 
3762 	for (i = 0; i < adapter->num_q_vectors; i++)
3763 		igc_assign_vector(adapter->q_vector[i], vector++);
3764 
3765 	wrfl();
3766 }
3767 
3768 /**
3769  * igc_irq_enable - Enable default interrupt generation settings
3770  * @adapter: board private structure
3771  */
3772 static void igc_irq_enable(struct igc_adapter *adapter)
3773 {
3774 	struct igc_hw *hw = &adapter->hw;
3775 
3776 	if (adapter->msix_entries) {
3777 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3778 		u32 regval = rd32(IGC_EIAC);
3779 
3780 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3781 		regval = rd32(IGC_EIAM);
3782 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3783 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3784 		wr32(IGC_IMS, ims);
3785 	} else {
3786 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3787 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3788 	}
3789 }
3790 
3791 /**
3792  * igc_irq_disable - Mask off interrupt generation on the NIC
3793  * @adapter: board private structure
3794  */
3795 static void igc_irq_disable(struct igc_adapter *adapter)
3796 {
3797 	struct igc_hw *hw = &adapter->hw;
3798 
3799 	if (adapter->msix_entries) {
3800 		u32 regval = rd32(IGC_EIAM);
3801 
3802 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3803 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3804 		regval = rd32(IGC_EIAC);
3805 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3806 	}
3807 
3808 	wr32(IGC_IAM, 0);
3809 	wr32(IGC_IMC, ~0);
3810 	wrfl();
3811 
3812 	if (adapter->msix_entries) {
3813 		int vector = 0, i;
3814 
3815 		synchronize_irq(adapter->msix_entries[vector++].vector);
3816 
3817 		for (i = 0; i < adapter->num_q_vectors; i++)
3818 			synchronize_irq(adapter->msix_entries[vector++].vector);
3819 	} else {
3820 		synchronize_irq(adapter->pdev->irq);
3821 	}
3822 }
3823 
3824 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3825 			      const u32 max_rss_queues)
3826 {
3827 	/* Determine if we need to pair queues. */
3828 	/* If rss_queues > half of max_rss_queues, pair the queues in
3829 	 * order to conserve interrupts due to limited supply.
3830 	 */
3831 	if (adapter->rss_queues > (max_rss_queues / 2))
3832 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3833 	else
3834 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3835 }
3836 
3837 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3838 {
3839 	return IGC_MAX_RX_QUEUES;
3840 }
3841 
3842 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3843 {
3844 	u32 max_rss_queues;
3845 
3846 	max_rss_queues = igc_get_max_rss_queues(adapter);
3847 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3848 
3849 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3850 }
3851 
3852 /**
3853  * igc_reset_q_vector - Reset config for interrupt vector
3854  * @adapter: board private structure to initialize
3855  * @v_idx: Index of vector to be reset
3856  *
3857  * If NAPI is enabled it will delete any references to the
3858  * NAPI struct. This is preparation for igc_free_q_vector.
3859  */
3860 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3861 {
3862 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3863 
3864 	/* if we're coming from igc_set_interrupt_capability, the vectors are
3865 	 * not yet allocated
3866 	 */
3867 	if (!q_vector)
3868 		return;
3869 
3870 	if (q_vector->tx.ring)
3871 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3872 
3873 	if (q_vector->rx.ring)
3874 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3875 
3876 	netif_napi_del(&q_vector->napi);
3877 }
3878 
3879 /**
3880  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3881  * @adapter: board private structure to initialize
3882  * @v_idx: Index of vector to be freed
3883  *
3884  * This function frees the memory allocated to the q_vector.
3885  */
3886 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3887 {
3888 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3889 
3890 	adapter->q_vector[v_idx] = NULL;
3891 
3892 	/* igc_get_stats64() might access the rings on this vector,
3893 	 * we must wait a grace period before freeing it.
3894 	 */
3895 	if (q_vector)
3896 		kfree_rcu(q_vector, rcu);
3897 }
3898 
3899 /**
3900  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3901  * @adapter: board private structure to initialize
3902  *
3903  * This function frees the memory allocated to the q_vectors.  In addition if
3904  * NAPI is enabled it will delete any references to the NAPI struct prior
3905  * to freeing the q_vector.
3906  */
3907 static void igc_free_q_vectors(struct igc_adapter *adapter)
3908 {
3909 	int v_idx = adapter->num_q_vectors;
3910 
3911 	adapter->num_tx_queues = 0;
3912 	adapter->num_rx_queues = 0;
3913 	adapter->num_q_vectors = 0;
3914 
3915 	while (v_idx--) {
3916 		igc_reset_q_vector(adapter, v_idx);
3917 		igc_free_q_vector(adapter, v_idx);
3918 	}
3919 }
3920 
3921 /**
3922  * igc_update_itr - update the dynamic ITR value based on statistics
3923  * @q_vector: pointer to q_vector
3924  * @ring_container: ring info to update the itr for
3925  *
3926  * Stores a new ITR value based on packets and byte
3927  * counts during the last interrupt.  The advantage of per interrupt
3928  * computation is faster updates and more accurate ITR for the current
3929  * traffic pattern.  Constants in this function were computed
3930  * based on theoretical maximum wire speed and thresholds were set based
3931  * on testing data as well as attempting to minimize response time
3932  * while increasing bulk throughput.
3933  * NOTE: These calculations are only valid when operating in a single-
3934  * queue environment.
3935  */
3936 static void igc_update_itr(struct igc_q_vector *q_vector,
3937 			   struct igc_ring_container *ring_container)
3938 {
3939 	unsigned int packets = ring_container->total_packets;
3940 	unsigned int bytes = ring_container->total_bytes;
3941 	u8 itrval = ring_container->itr;
3942 
3943 	/* no packets, exit with status unchanged */
3944 	if (packets == 0)
3945 		return;
3946 
3947 	switch (itrval) {
3948 	case lowest_latency:
3949 		/* handle TSO and jumbo frames */
3950 		if (bytes / packets > 8000)
3951 			itrval = bulk_latency;
3952 		else if ((packets < 5) && (bytes > 512))
3953 			itrval = low_latency;
3954 		break;
3955 	case low_latency:  /* 50 usec aka 20000 ints/s */
3956 		if (bytes > 10000) {
3957 			/* this if handles the TSO accounting */
3958 			if (bytes / packets > 8000)
3959 				itrval = bulk_latency;
3960 			else if ((packets < 10) || ((bytes / packets) > 1200))
3961 				itrval = bulk_latency;
3962 			else if ((packets > 35))
3963 				itrval = lowest_latency;
3964 		} else if (bytes / packets > 2000) {
3965 			itrval = bulk_latency;
3966 		} else if (packets <= 2 && bytes < 512) {
3967 			itrval = lowest_latency;
3968 		}
3969 		break;
3970 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3971 		if (bytes > 25000) {
3972 			if (packets > 35)
3973 				itrval = low_latency;
3974 		} else if (bytes < 1500) {
3975 			itrval = low_latency;
3976 		}
3977 		break;
3978 	}
3979 
3980 	/* clear work counters since we have the values we need */
3981 	ring_container->total_bytes = 0;
3982 	ring_container->total_packets = 0;
3983 
3984 	/* write updated itr to ring container */
3985 	ring_container->itr = itrval;
3986 }
3987 
3988 static void igc_set_itr(struct igc_q_vector *q_vector)
3989 {
3990 	struct igc_adapter *adapter = q_vector->adapter;
3991 	u32 new_itr = q_vector->itr_val;
3992 	u8 current_itr = 0;
3993 
3994 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3995 	switch (adapter->link_speed) {
3996 	case SPEED_10:
3997 	case SPEED_100:
3998 		current_itr = 0;
3999 		new_itr = IGC_4K_ITR;
4000 		goto set_itr_now;
4001 	default:
4002 		break;
4003 	}
4004 
4005 	igc_update_itr(q_vector, &q_vector->tx);
4006 	igc_update_itr(q_vector, &q_vector->rx);
4007 
4008 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4009 
4010 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4011 	if (current_itr == lowest_latency &&
4012 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4013 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4014 		current_itr = low_latency;
4015 
4016 	switch (current_itr) {
4017 	/* counts and packets in update_itr are dependent on these numbers */
4018 	case lowest_latency:
4019 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4020 		break;
4021 	case low_latency:
4022 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4023 		break;
4024 	case bulk_latency:
4025 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4026 		break;
4027 	default:
4028 		break;
4029 	}
4030 
4031 set_itr_now:
4032 	if (new_itr != q_vector->itr_val) {
4033 		/* this attempts to bias the interrupt rate towards Bulk
4034 		 * by adding intermediate steps when interrupt rate is
4035 		 * increasing
4036 		 */
4037 		new_itr = new_itr > q_vector->itr_val ?
4038 			  max((new_itr * q_vector->itr_val) /
4039 			  (new_itr + (q_vector->itr_val >> 2)),
4040 			  new_itr) : new_itr;
4041 		/* Don't write the value here; it resets the adapter's
4042 		 * internal timer, and causes us to delay far longer than
4043 		 * we should between interrupts.  Instead, we write the ITR
4044 		 * value at the beginning of the next interrupt so the timing
4045 		 * ends up being correct.
4046 		 */
4047 		q_vector->itr_val = new_itr;
4048 		q_vector->set_itr = 1;
4049 	}
4050 }
4051 
4052 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4053 {
4054 	int v_idx = adapter->num_q_vectors;
4055 
4056 	if (adapter->msix_entries) {
4057 		pci_disable_msix(adapter->pdev);
4058 		kfree(adapter->msix_entries);
4059 		adapter->msix_entries = NULL;
4060 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4061 		pci_disable_msi(adapter->pdev);
4062 	}
4063 
4064 	while (v_idx--)
4065 		igc_reset_q_vector(adapter, v_idx);
4066 }
4067 
4068 /**
4069  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4070  * @adapter: Pointer to adapter structure
4071  * @msix: boolean value for MSI-X capability
4072  *
4073  * Attempt to configure interrupts using the best available
4074  * capabilities of the hardware and kernel.
4075  */
4076 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4077 					 bool msix)
4078 {
4079 	int numvecs, i;
4080 	int err;
4081 
4082 	if (!msix)
4083 		goto msi_only;
4084 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4085 
4086 	/* Number of supported queues. */
4087 	adapter->num_rx_queues = adapter->rss_queues;
4088 
4089 	adapter->num_tx_queues = adapter->rss_queues;
4090 
4091 	/* start with one vector for every Rx queue */
4092 	numvecs = adapter->num_rx_queues;
4093 
4094 	/* if Tx handler is separate add 1 for every Tx queue */
4095 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4096 		numvecs += adapter->num_tx_queues;
4097 
4098 	/* store the number of vectors reserved for queues */
4099 	adapter->num_q_vectors = numvecs;
4100 
4101 	/* add 1 vector for link status interrupts */
4102 	numvecs++;
4103 
4104 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4105 					GFP_KERNEL);
4106 
4107 	if (!adapter->msix_entries)
4108 		return;
4109 
4110 	/* populate entry values */
4111 	for (i = 0; i < numvecs; i++)
4112 		adapter->msix_entries[i].entry = i;
4113 
4114 	err = pci_enable_msix_range(adapter->pdev,
4115 				    adapter->msix_entries,
4116 				    numvecs,
4117 				    numvecs);
4118 	if (err > 0)
4119 		return;
4120 
4121 	kfree(adapter->msix_entries);
4122 	adapter->msix_entries = NULL;
4123 
4124 	igc_reset_interrupt_capability(adapter);
4125 
4126 msi_only:
4127 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4128 
4129 	adapter->rss_queues = 1;
4130 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4131 	adapter->num_rx_queues = 1;
4132 	adapter->num_tx_queues = 1;
4133 	adapter->num_q_vectors = 1;
4134 	if (!pci_enable_msi(adapter->pdev))
4135 		adapter->flags |= IGC_FLAG_HAS_MSI;
4136 }
4137 
4138 /**
4139  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4140  * @q_vector: pointer to q_vector
4141  *
4142  * Stores a new ITR value based on strictly on packet size.  This
4143  * algorithm is less sophisticated than that used in igc_update_itr,
4144  * due to the difficulty of synchronizing statistics across multiple
4145  * receive rings.  The divisors and thresholds used by this function
4146  * were determined based on theoretical maximum wire speed and testing
4147  * data, in order to minimize response time while increasing bulk
4148  * throughput.
4149  * NOTE: This function is called only when operating in a multiqueue
4150  * receive environment.
4151  */
4152 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4153 {
4154 	struct igc_adapter *adapter = q_vector->adapter;
4155 	int new_val = q_vector->itr_val;
4156 	int avg_wire_size = 0;
4157 	unsigned int packets;
4158 
4159 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4160 	 * ints/sec - ITR timer value of 120 ticks.
4161 	 */
4162 	switch (adapter->link_speed) {
4163 	case SPEED_10:
4164 	case SPEED_100:
4165 		new_val = IGC_4K_ITR;
4166 		goto set_itr_val;
4167 	default:
4168 		break;
4169 	}
4170 
4171 	packets = q_vector->rx.total_packets;
4172 	if (packets)
4173 		avg_wire_size = q_vector->rx.total_bytes / packets;
4174 
4175 	packets = q_vector->tx.total_packets;
4176 	if (packets)
4177 		avg_wire_size = max_t(u32, avg_wire_size,
4178 				      q_vector->tx.total_bytes / packets);
4179 
4180 	/* if avg_wire_size isn't set no work was done */
4181 	if (!avg_wire_size)
4182 		goto clear_counts;
4183 
4184 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4185 	avg_wire_size += 24;
4186 
4187 	/* Don't starve jumbo frames */
4188 	avg_wire_size = min(avg_wire_size, 3000);
4189 
4190 	/* Give a little boost to mid-size frames */
4191 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4192 		new_val = avg_wire_size / 3;
4193 	else
4194 		new_val = avg_wire_size / 2;
4195 
4196 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4197 	if (new_val < IGC_20K_ITR &&
4198 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4199 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4200 		new_val = IGC_20K_ITR;
4201 
4202 set_itr_val:
4203 	if (new_val != q_vector->itr_val) {
4204 		q_vector->itr_val = new_val;
4205 		q_vector->set_itr = 1;
4206 	}
4207 clear_counts:
4208 	q_vector->rx.total_bytes = 0;
4209 	q_vector->rx.total_packets = 0;
4210 	q_vector->tx.total_bytes = 0;
4211 	q_vector->tx.total_packets = 0;
4212 }
4213 
4214 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4215 {
4216 	struct igc_adapter *adapter = q_vector->adapter;
4217 	struct igc_hw *hw = &adapter->hw;
4218 
4219 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4220 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4221 		if (adapter->num_q_vectors == 1)
4222 			igc_set_itr(q_vector);
4223 		else
4224 			igc_update_ring_itr(q_vector);
4225 	}
4226 
4227 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4228 		if (adapter->msix_entries)
4229 			wr32(IGC_EIMS, q_vector->eims_value);
4230 		else
4231 			igc_irq_enable(adapter);
4232 	}
4233 }
4234 
4235 static void igc_add_ring(struct igc_ring *ring,
4236 			 struct igc_ring_container *head)
4237 {
4238 	head->ring = ring;
4239 	head->count++;
4240 }
4241 
4242 /**
4243  * igc_cache_ring_register - Descriptor ring to register mapping
4244  * @adapter: board private structure to initialize
4245  *
4246  * Once we know the feature-set enabled for the device, we'll cache
4247  * the register offset the descriptor ring is assigned to.
4248  */
4249 static void igc_cache_ring_register(struct igc_adapter *adapter)
4250 {
4251 	int i = 0, j = 0;
4252 
4253 	switch (adapter->hw.mac.type) {
4254 	case igc_i225:
4255 	default:
4256 		for (; i < adapter->num_rx_queues; i++)
4257 			adapter->rx_ring[i]->reg_idx = i;
4258 		for (; j < adapter->num_tx_queues; j++)
4259 			adapter->tx_ring[j]->reg_idx = j;
4260 		break;
4261 	}
4262 }
4263 
4264 /**
4265  * igc_poll - NAPI Rx polling callback
4266  * @napi: napi polling structure
4267  * @budget: count of how many packets we should handle
4268  */
4269 static int igc_poll(struct napi_struct *napi, int budget)
4270 {
4271 	struct igc_q_vector *q_vector = container_of(napi,
4272 						     struct igc_q_vector,
4273 						     napi);
4274 	struct igc_ring *rx_ring = q_vector->rx.ring;
4275 	bool clean_complete = true;
4276 	int work_done = 0;
4277 
4278 	if (q_vector->tx.ring)
4279 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4280 
4281 	if (rx_ring) {
4282 		int cleaned = rx_ring->xsk_pool ?
4283 			      igc_clean_rx_irq_zc(q_vector, budget) :
4284 			      igc_clean_rx_irq(q_vector, budget);
4285 
4286 		work_done += cleaned;
4287 		if (cleaned >= budget)
4288 			clean_complete = false;
4289 	}
4290 
4291 	/* If all work not completed, return budget and keep polling */
4292 	if (!clean_complete)
4293 		return budget;
4294 
4295 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4296 	 * poll us due to busy-polling
4297 	 */
4298 	if (likely(napi_complete_done(napi, work_done)))
4299 		igc_ring_irq_enable(q_vector);
4300 
4301 	return min(work_done, budget - 1);
4302 }
4303 
4304 /**
4305  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4306  * @adapter: board private structure to initialize
4307  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4308  * @v_idx: index of vector in adapter struct
4309  * @txr_count: total number of Tx rings to allocate
4310  * @txr_idx: index of first Tx ring to allocate
4311  * @rxr_count: total number of Rx rings to allocate
4312  * @rxr_idx: index of first Rx ring to allocate
4313  *
4314  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4315  */
4316 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4317 			      unsigned int v_count, unsigned int v_idx,
4318 			      unsigned int txr_count, unsigned int txr_idx,
4319 			      unsigned int rxr_count, unsigned int rxr_idx)
4320 {
4321 	struct igc_q_vector *q_vector;
4322 	struct igc_ring *ring;
4323 	int ring_count;
4324 
4325 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4326 	if (txr_count > 1 || rxr_count > 1)
4327 		return -ENOMEM;
4328 
4329 	ring_count = txr_count + rxr_count;
4330 
4331 	/* allocate q_vector and rings */
4332 	q_vector = adapter->q_vector[v_idx];
4333 	if (!q_vector)
4334 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4335 				   GFP_KERNEL);
4336 	else
4337 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4338 	if (!q_vector)
4339 		return -ENOMEM;
4340 
4341 	/* initialize NAPI */
4342 	netif_napi_add(adapter->netdev, &q_vector->napi,
4343 		       igc_poll, 64);
4344 
4345 	/* tie q_vector and adapter together */
4346 	adapter->q_vector[v_idx] = q_vector;
4347 	q_vector->adapter = adapter;
4348 
4349 	/* initialize work limits */
4350 	q_vector->tx.work_limit = adapter->tx_work_limit;
4351 
4352 	/* initialize ITR configuration */
4353 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4354 	q_vector->itr_val = IGC_START_ITR;
4355 
4356 	/* initialize pointer to rings */
4357 	ring = q_vector->ring;
4358 
4359 	/* initialize ITR */
4360 	if (rxr_count) {
4361 		/* rx or rx/tx vector */
4362 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4363 			q_vector->itr_val = adapter->rx_itr_setting;
4364 	} else {
4365 		/* tx only vector */
4366 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4367 			q_vector->itr_val = adapter->tx_itr_setting;
4368 	}
4369 
4370 	if (txr_count) {
4371 		/* assign generic ring traits */
4372 		ring->dev = &adapter->pdev->dev;
4373 		ring->netdev = adapter->netdev;
4374 
4375 		/* configure backlink on ring */
4376 		ring->q_vector = q_vector;
4377 
4378 		/* update q_vector Tx values */
4379 		igc_add_ring(ring, &q_vector->tx);
4380 
4381 		/* apply Tx specific ring traits */
4382 		ring->count = adapter->tx_ring_count;
4383 		ring->queue_index = txr_idx;
4384 
4385 		/* assign ring to adapter */
4386 		adapter->tx_ring[txr_idx] = ring;
4387 
4388 		/* push pointer to next ring */
4389 		ring++;
4390 	}
4391 
4392 	if (rxr_count) {
4393 		/* assign generic ring traits */
4394 		ring->dev = &adapter->pdev->dev;
4395 		ring->netdev = adapter->netdev;
4396 
4397 		/* configure backlink on ring */
4398 		ring->q_vector = q_vector;
4399 
4400 		/* update q_vector Rx values */
4401 		igc_add_ring(ring, &q_vector->rx);
4402 
4403 		/* apply Rx specific ring traits */
4404 		ring->count = adapter->rx_ring_count;
4405 		ring->queue_index = rxr_idx;
4406 
4407 		/* assign ring to adapter */
4408 		adapter->rx_ring[rxr_idx] = ring;
4409 	}
4410 
4411 	return 0;
4412 }
4413 
4414 /**
4415  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4416  * @adapter: board private structure to initialize
4417  *
4418  * We allocate one q_vector per queue interrupt.  If allocation fails we
4419  * return -ENOMEM.
4420  */
4421 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4422 {
4423 	int rxr_remaining = adapter->num_rx_queues;
4424 	int txr_remaining = adapter->num_tx_queues;
4425 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4426 	int q_vectors = adapter->num_q_vectors;
4427 	int err;
4428 
4429 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4430 		for (; rxr_remaining; v_idx++) {
4431 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4432 						 0, 0, 1, rxr_idx);
4433 
4434 			if (err)
4435 				goto err_out;
4436 
4437 			/* update counts and index */
4438 			rxr_remaining--;
4439 			rxr_idx++;
4440 		}
4441 	}
4442 
4443 	for (; v_idx < q_vectors; v_idx++) {
4444 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4445 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4446 
4447 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4448 					 tqpv, txr_idx, rqpv, rxr_idx);
4449 
4450 		if (err)
4451 			goto err_out;
4452 
4453 		/* update counts and index */
4454 		rxr_remaining -= rqpv;
4455 		txr_remaining -= tqpv;
4456 		rxr_idx++;
4457 		txr_idx++;
4458 	}
4459 
4460 	return 0;
4461 
4462 err_out:
4463 	adapter->num_tx_queues = 0;
4464 	adapter->num_rx_queues = 0;
4465 	adapter->num_q_vectors = 0;
4466 
4467 	while (v_idx--)
4468 		igc_free_q_vector(adapter, v_idx);
4469 
4470 	return -ENOMEM;
4471 }
4472 
4473 /**
4474  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4475  * @adapter: Pointer to adapter structure
4476  * @msix: boolean for MSI-X capability
4477  *
4478  * This function initializes the interrupts and allocates all of the queues.
4479  */
4480 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4481 {
4482 	struct net_device *dev = adapter->netdev;
4483 	int err = 0;
4484 
4485 	igc_set_interrupt_capability(adapter, msix);
4486 
4487 	err = igc_alloc_q_vectors(adapter);
4488 	if (err) {
4489 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4490 		goto err_alloc_q_vectors;
4491 	}
4492 
4493 	igc_cache_ring_register(adapter);
4494 
4495 	return 0;
4496 
4497 err_alloc_q_vectors:
4498 	igc_reset_interrupt_capability(adapter);
4499 	return err;
4500 }
4501 
4502 /**
4503  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4504  * @adapter: board private structure to initialize
4505  *
4506  * igc_sw_init initializes the Adapter private data structure.
4507  * Fields are initialized based on PCI device information and
4508  * OS network device settings (MTU size).
4509  */
4510 static int igc_sw_init(struct igc_adapter *adapter)
4511 {
4512 	struct net_device *netdev = adapter->netdev;
4513 	struct pci_dev *pdev = adapter->pdev;
4514 	struct igc_hw *hw = &adapter->hw;
4515 
4516 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4517 
4518 	/* set default ring sizes */
4519 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4520 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4521 
4522 	/* set default ITR values */
4523 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4524 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4525 
4526 	/* set default work limits */
4527 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4528 
4529 	/* adjust max frame to be at least the size of a standard frame */
4530 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4531 				VLAN_HLEN;
4532 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4533 
4534 	mutex_init(&adapter->nfc_rule_lock);
4535 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4536 	adapter->nfc_rule_count = 0;
4537 
4538 	spin_lock_init(&adapter->stats64_lock);
4539 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4540 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4541 
4542 	igc_init_queue_configuration(adapter);
4543 
4544 	/* This call may decrease the number of queues */
4545 	if (igc_init_interrupt_scheme(adapter, true)) {
4546 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4547 		return -ENOMEM;
4548 	}
4549 
4550 	/* Explicitly disable IRQ since the NIC can be in any state. */
4551 	igc_irq_disable(adapter);
4552 
4553 	set_bit(__IGC_DOWN, &adapter->state);
4554 
4555 	return 0;
4556 }
4557 
4558 /**
4559  * igc_up - Open the interface and prepare it to handle traffic
4560  * @adapter: board private structure
4561  */
4562 void igc_up(struct igc_adapter *adapter)
4563 {
4564 	struct igc_hw *hw = &adapter->hw;
4565 	int i = 0;
4566 
4567 	/* hardware has been reset, we need to reload some things */
4568 	igc_configure(adapter);
4569 
4570 	clear_bit(__IGC_DOWN, &adapter->state);
4571 
4572 	for (i = 0; i < adapter->num_q_vectors; i++)
4573 		napi_enable(&adapter->q_vector[i]->napi);
4574 
4575 	if (adapter->msix_entries)
4576 		igc_configure_msix(adapter);
4577 	else
4578 		igc_assign_vector(adapter->q_vector[0], 0);
4579 
4580 	/* Clear any pending interrupts. */
4581 	rd32(IGC_ICR);
4582 	igc_irq_enable(adapter);
4583 
4584 	netif_tx_start_all_queues(adapter->netdev);
4585 
4586 	/* start the watchdog. */
4587 	hw->mac.get_link_status = true;
4588 	schedule_work(&adapter->watchdog_task);
4589 }
4590 
4591 /**
4592  * igc_update_stats - Update the board statistics counters
4593  * @adapter: board private structure
4594  */
4595 void igc_update_stats(struct igc_adapter *adapter)
4596 {
4597 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4598 	struct pci_dev *pdev = adapter->pdev;
4599 	struct igc_hw *hw = &adapter->hw;
4600 	u64 _bytes, _packets;
4601 	u64 bytes, packets;
4602 	unsigned int start;
4603 	u32 mpc;
4604 	int i;
4605 
4606 	/* Prevent stats update while adapter is being reset, or if the pci
4607 	 * connection is down.
4608 	 */
4609 	if (adapter->link_speed == 0)
4610 		return;
4611 	if (pci_channel_offline(pdev))
4612 		return;
4613 
4614 	packets = 0;
4615 	bytes = 0;
4616 
4617 	rcu_read_lock();
4618 	for (i = 0; i < adapter->num_rx_queues; i++) {
4619 		struct igc_ring *ring = adapter->rx_ring[i];
4620 		u32 rqdpc = rd32(IGC_RQDPC(i));
4621 
4622 		if (hw->mac.type >= igc_i225)
4623 			wr32(IGC_RQDPC(i), 0);
4624 
4625 		if (rqdpc) {
4626 			ring->rx_stats.drops += rqdpc;
4627 			net_stats->rx_fifo_errors += rqdpc;
4628 		}
4629 
4630 		do {
4631 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4632 			_bytes = ring->rx_stats.bytes;
4633 			_packets = ring->rx_stats.packets;
4634 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4635 		bytes += _bytes;
4636 		packets += _packets;
4637 	}
4638 
4639 	net_stats->rx_bytes = bytes;
4640 	net_stats->rx_packets = packets;
4641 
4642 	packets = 0;
4643 	bytes = 0;
4644 	for (i = 0; i < adapter->num_tx_queues; i++) {
4645 		struct igc_ring *ring = adapter->tx_ring[i];
4646 
4647 		do {
4648 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4649 			_bytes = ring->tx_stats.bytes;
4650 			_packets = ring->tx_stats.packets;
4651 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4652 		bytes += _bytes;
4653 		packets += _packets;
4654 	}
4655 	net_stats->tx_bytes = bytes;
4656 	net_stats->tx_packets = packets;
4657 	rcu_read_unlock();
4658 
4659 	/* read stats registers */
4660 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4661 	adapter->stats.gprc += rd32(IGC_GPRC);
4662 	adapter->stats.gorc += rd32(IGC_GORCL);
4663 	rd32(IGC_GORCH); /* clear GORCL */
4664 	adapter->stats.bprc += rd32(IGC_BPRC);
4665 	adapter->stats.mprc += rd32(IGC_MPRC);
4666 	adapter->stats.roc += rd32(IGC_ROC);
4667 
4668 	adapter->stats.prc64 += rd32(IGC_PRC64);
4669 	adapter->stats.prc127 += rd32(IGC_PRC127);
4670 	adapter->stats.prc255 += rd32(IGC_PRC255);
4671 	adapter->stats.prc511 += rd32(IGC_PRC511);
4672 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4673 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4674 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4675 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4676 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4677 
4678 	mpc = rd32(IGC_MPC);
4679 	adapter->stats.mpc += mpc;
4680 	net_stats->rx_fifo_errors += mpc;
4681 	adapter->stats.scc += rd32(IGC_SCC);
4682 	adapter->stats.ecol += rd32(IGC_ECOL);
4683 	adapter->stats.mcc += rd32(IGC_MCC);
4684 	adapter->stats.latecol += rd32(IGC_LATECOL);
4685 	adapter->stats.dc += rd32(IGC_DC);
4686 	adapter->stats.rlec += rd32(IGC_RLEC);
4687 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4688 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4689 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4690 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4691 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4692 	adapter->stats.gptc += rd32(IGC_GPTC);
4693 	adapter->stats.gotc += rd32(IGC_GOTCL);
4694 	rd32(IGC_GOTCH); /* clear GOTCL */
4695 	adapter->stats.rnbc += rd32(IGC_RNBC);
4696 	adapter->stats.ruc += rd32(IGC_RUC);
4697 	adapter->stats.rfc += rd32(IGC_RFC);
4698 	adapter->stats.rjc += rd32(IGC_RJC);
4699 	adapter->stats.tor += rd32(IGC_TORH);
4700 	adapter->stats.tot += rd32(IGC_TOTH);
4701 	adapter->stats.tpr += rd32(IGC_TPR);
4702 
4703 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4704 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4705 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4706 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4707 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4708 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4709 
4710 	adapter->stats.mptc += rd32(IGC_MPTC);
4711 	adapter->stats.bptc += rd32(IGC_BPTC);
4712 
4713 	adapter->stats.tpt += rd32(IGC_TPT);
4714 	adapter->stats.colc += rd32(IGC_COLC);
4715 	adapter->stats.colc += rd32(IGC_RERC);
4716 
4717 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4718 
4719 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4720 
4721 	adapter->stats.iac += rd32(IGC_IAC);
4722 
4723 	/* Fill out the OS statistics structure */
4724 	net_stats->multicast = adapter->stats.mprc;
4725 	net_stats->collisions = adapter->stats.colc;
4726 
4727 	/* Rx Errors */
4728 
4729 	/* RLEC on some newer hardware can be incorrect so build
4730 	 * our own version based on RUC and ROC
4731 	 */
4732 	net_stats->rx_errors = adapter->stats.rxerrc +
4733 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4734 		adapter->stats.ruc + adapter->stats.roc +
4735 		adapter->stats.cexterr;
4736 	net_stats->rx_length_errors = adapter->stats.ruc +
4737 				      adapter->stats.roc;
4738 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4739 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4740 	net_stats->rx_missed_errors = adapter->stats.mpc;
4741 
4742 	/* Tx Errors */
4743 	net_stats->tx_errors = adapter->stats.ecol +
4744 			       adapter->stats.latecol;
4745 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4746 	net_stats->tx_window_errors = adapter->stats.latecol;
4747 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4748 
4749 	/* Tx Dropped needs to be maintained elsewhere */
4750 
4751 	/* Management Stats */
4752 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4753 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4754 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4755 }
4756 
4757 /**
4758  * igc_down - Close the interface
4759  * @adapter: board private structure
4760  */
4761 void igc_down(struct igc_adapter *adapter)
4762 {
4763 	struct net_device *netdev = adapter->netdev;
4764 	struct igc_hw *hw = &adapter->hw;
4765 	u32 tctl, rctl;
4766 	int i = 0;
4767 
4768 	set_bit(__IGC_DOWN, &adapter->state);
4769 
4770 	igc_ptp_suspend(adapter);
4771 
4772 	if (pci_device_is_present(adapter->pdev)) {
4773 		/* disable receives in the hardware */
4774 		rctl = rd32(IGC_RCTL);
4775 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4776 		/* flush and sleep below */
4777 	}
4778 	/* set trans_start so we don't get spurious watchdogs during reset */
4779 	netif_trans_update(netdev);
4780 
4781 	netif_carrier_off(netdev);
4782 	netif_tx_stop_all_queues(netdev);
4783 
4784 	if (pci_device_is_present(adapter->pdev)) {
4785 		/* disable transmits in the hardware */
4786 		tctl = rd32(IGC_TCTL);
4787 		tctl &= ~IGC_TCTL_EN;
4788 		wr32(IGC_TCTL, tctl);
4789 		/* flush both disables and wait for them to finish */
4790 		wrfl();
4791 		usleep_range(10000, 20000);
4792 
4793 		igc_irq_disable(adapter);
4794 	}
4795 
4796 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4797 
4798 	for (i = 0; i < adapter->num_q_vectors; i++) {
4799 		if (adapter->q_vector[i]) {
4800 			napi_synchronize(&adapter->q_vector[i]->napi);
4801 			napi_disable(&adapter->q_vector[i]->napi);
4802 		}
4803 	}
4804 
4805 	del_timer_sync(&adapter->watchdog_timer);
4806 	del_timer_sync(&adapter->phy_info_timer);
4807 
4808 	/* record the stats before reset*/
4809 	spin_lock(&adapter->stats64_lock);
4810 	igc_update_stats(adapter);
4811 	spin_unlock(&adapter->stats64_lock);
4812 
4813 	adapter->link_speed = 0;
4814 	adapter->link_duplex = 0;
4815 
4816 	if (!pci_channel_offline(adapter->pdev))
4817 		igc_reset(adapter);
4818 
4819 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
4820 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4821 
4822 	igc_clean_all_tx_rings(adapter);
4823 	igc_clean_all_rx_rings(adapter);
4824 }
4825 
4826 void igc_reinit_locked(struct igc_adapter *adapter)
4827 {
4828 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4829 		usleep_range(1000, 2000);
4830 	igc_down(adapter);
4831 	igc_up(adapter);
4832 	clear_bit(__IGC_RESETTING, &adapter->state);
4833 }
4834 
4835 static void igc_reset_task(struct work_struct *work)
4836 {
4837 	struct igc_adapter *adapter;
4838 
4839 	adapter = container_of(work, struct igc_adapter, reset_task);
4840 
4841 	rtnl_lock();
4842 	/* If we're already down or resetting, just bail */
4843 	if (test_bit(__IGC_DOWN, &adapter->state) ||
4844 	    test_bit(__IGC_RESETTING, &adapter->state)) {
4845 		rtnl_unlock();
4846 		return;
4847 	}
4848 
4849 	igc_rings_dump(adapter);
4850 	igc_regs_dump(adapter);
4851 	netdev_err(adapter->netdev, "Reset adapter\n");
4852 	igc_reinit_locked(adapter);
4853 	rtnl_unlock();
4854 }
4855 
4856 /**
4857  * igc_change_mtu - Change the Maximum Transfer Unit
4858  * @netdev: network interface device structure
4859  * @new_mtu: new value for maximum frame size
4860  *
4861  * Returns 0 on success, negative on failure
4862  */
4863 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4864 {
4865 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4866 	struct igc_adapter *adapter = netdev_priv(netdev);
4867 
4868 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4869 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4870 		return -EINVAL;
4871 	}
4872 
4873 	/* adjust max frame to be at least the size of a standard frame */
4874 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4875 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4876 
4877 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4878 		usleep_range(1000, 2000);
4879 
4880 	/* igc_down has a dependency on max_frame_size */
4881 	adapter->max_frame_size = max_frame;
4882 
4883 	if (netif_running(netdev))
4884 		igc_down(adapter);
4885 
4886 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4887 	netdev->mtu = new_mtu;
4888 
4889 	if (netif_running(netdev))
4890 		igc_up(adapter);
4891 	else
4892 		igc_reset(adapter);
4893 
4894 	clear_bit(__IGC_RESETTING, &adapter->state);
4895 
4896 	return 0;
4897 }
4898 
4899 /**
4900  * igc_get_stats64 - Get System Network Statistics
4901  * @netdev: network interface device structure
4902  * @stats: rtnl_link_stats64 pointer
4903  *
4904  * Returns the address of the device statistics structure.
4905  * The statistics are updated here and also from the timer callback.
4906  */
4907 static void igc_get_stats64(struct net_device *netdev,
4908 			    struct rtnl_link_stats64 *stats)
4909 {
4910 	struct igc_adapter *adapter = netdev_priv(netdev);
4911 
4912 	spin_lock(&adapter->stats64_lock);
4913 	if (!test_bit(__IGC_RESETTING, &adapter->state))
4914 		igc_update_stats(adapter);
4915 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4916 	spin_unlock(&adapter->stats64_lock);
4917 }
4918 
4919 static netdev_features_t igc_fix_features(struct net_device *netdev,
4920 					  netdev_features_t features)
4921 {
4922 	/* Since there is no support for separate Rx/Tx vlan accel
4923 	 * enable/disable make sure Tx flag is always in same state as Rx.
4924 	 */
4925 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4926 		features |= NETIF_F_HW_VLAN_CTAG_TX;
4927 	else
4928 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4929 
4930 	return features;
4931 }
4932 
4933 static int igc_set_features(struct net_device *netdev,
4934 			    netdev_features_t features)
4935 {
4936 	netdev_features_t changed = netdev->features ^ features;
4937 	struct igc_adapter *adapter = netdev_priv(netdev);
4938 
4939 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4940 		igc_vlan_mode(netdev, features);
4941 
4942 	/* Add VLAN support */
4943 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4944 		return 0;
4945 
4946 	if (!(features & NETIF_F_NTUPLE))
4947 		igc_flush_nfc_rules(adapter);
4948 
4949 	netdev->features = features;
4950 
4951 	if (netif_running(netdev))
4952 		igc_reinit_locked(adapter);
4953 	else
4954 		igc_reset(adapter);
4955 
4956 	return 1;
4957 }
4958 
4959 static netdev_features_t
4960 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4961 		   netdev_features_t features)
4962 {
4963 	unsigned int network_hdr_len, mac_hdr_len;
4964 
4965 	/* Make certain the headers can be described by a context descriptor */
4966 	mac_hdr_len = skb_network_header(skb) - skb->data;
4967 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4968 		return features & ~(NETIF_F_HW_CSUM |
4969 				    NETIF_F_SCTP_CRC |
4970 				    NETIF_F_HW_VLAN_CTAG_TX |
4971 				    NETIF_F_TSO |
4972 				    NETIF_F_TSO6);
4973 
4974 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4975 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4976 		return features & ~(NETIF_F_HW_CSUM |
4977 				    NETIF_F_SCTP_CRC |
4978 				    NETIF_F_TSO |
4979 				    NETIF_F_TSO6);
4980 
4981 	/* We can only support IPv4 TSO in tunnels if we can mangle the
4982 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4983 	 */
4984 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4985 		features &= ~NETIF_F_TSO;
4986 
4987 	return features;
4988 }
4989 
4990 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4991 {
4992 	u32 ack, tsauxc, sec, nsec, tsicr;
4993 	struct igc_hw *hw = &adapter->hw;
4994 	struct ptp_clock_event event;
4995 	struct timespec64 ts;
4996 
4997 	tsicr = rd32(IGC_TSICR);
4998 	ack = 0;
4999 
5000 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5001 		event.type = PTP_CLOCK_PPS;
5002 		if (adapter->ptp_caps.pps)
5003 			ptp_clock_event(adapter->ptp_clock, &event);
5004 		ack |= IGC_TSICR_SYS_WRAP;
5005 	}
5006 
5007 	if (tsicr & IGC_TSICR_TXTS) {
5008 		/* retrieve hardware timestamp */
5009 		schedule_work(&adapter->ptp_tx_work);
5010 		ack |= IGC_TSICR_TXTS;
5011 	}
5012 
5013 	if (tsicr & IGC_TSICR_TT0) {
5014 		spin_lock(&adapter->tmreg_lock);
5015 		ts = timespec64_add(adapter->perout[0].start,
5016 				    adapter->perout[0].period);
5017 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5018 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5019 		tsauxc = rd32(IGC_TSAUXC);
5020 		tsauxc |= IGC_TSAUXC_EN_TT0;
5021 		wr32(IGC_TSAUXC, tsauxc);
5022 		adapter->perout[0].start = ts;
5023 		spin_unlock(&adapter->tmreg_lock);
5024 		ack |= IGC_TSICR_TT0;
5025 	}
5026 
5027 	if (tsicr & IGC_TSICR_TT1) {
5028 		spin_lock(&adapter->tmreg_lock);
5029 		ts = timespec64_add(adapter->perout[1].start,
5030 				    adapter->perout[1].period);
5031 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5032 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5033 		tsauxc = rd32(IGC_TSAUXC);
5034 		tsauxc |= IGC_TSAUXC_EN_TT1;
5035 		wr32(IGC_TSAUXC, tsauxc);
5036 		adapter->perout[1].start = ts;
5037 		spin_unlock(&adapter->tmreg_lock);
5038 		ack |= IGC_TSICR_TT1;
5039 	}
5040 
5041 	if (tsicr & IGC_TSICR_AUTT0) {
5042 		nsec = rd32(IGC_AUXSTMPL0);
5043 		sec  = rd32(IGC_AUXSTMPH0);
5044 		event.type = PTP_CLOCK_EXTTS;
5045 		event.index = 0;
5046 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5047 		ptp_clock_event(adapter->ptp_clock, &event);
5048 		ack |= IGC_TSICR_AUTT0;
5049 	}
5050 
5051 	if (tsicr & IGC_TSICR_AUTT1) {
5052 		nsec = rd32(IGC_AUXSTMPL1);
5053 		sec  = rd32(IGC_AUXSTMPH1);
5054 		event.type = PTP_CLOCK_EXTTS;
5055 		event.index = 1;
5056 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5057 		ptp_clock_event(adapter->ptp_clock, &event);
5058 		ack |= IGC_TSICR_AUTT1;
5059 	}
5060 
5061 	/* acknowledge the interrupts */
5062 	wr32(IGC_TSICR, ack);
5063 }
5064 
5065 /**
5066  * igc_msix_other - msix other interrupt handler
5067  * @irq: interrupt number
5068  * @data: pointer to a q_vector
5069  */
5070 static irqreturn_t igc_msix_other(int irq, void *data)
5071 {
5072 	struct igc_adapter *adapter = data;
5073 	struct igc_hw *hw = &adapter->hw;
5074 	u32 icr = rd32(IGC_ICR);
5075 
5076 	/* reading ICR causes bit 31 of EICR to be cleared */
5077 	if (icr & IGC_ICR_DRSTA)
5078 		schedule_work(&adapter->reset_task);
5079 
5080 	if (icr & IGC_ICR_DOUTSYNC) {
5081 		/* HW is reporting DMA is out of sync */
5082 		adapter->stats.doosync++;
5083 	}
5084 
5085 	if (icr & IGC_ICR_LSC) {
5086 		hw->mac.get_link_status = true;
5087 		/* guard against interrupt when we're going down */
5088 		if (!test_bit(__IGC_DOWN, &adapter->state))
5089 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5090 	}
5091 
5092 	if (icr & IGC_ICR_TS)
5093 		igc_tsync_interrupt(adapter);
5094 
5095 	wr32(IGC_EIMS, adapter->eims_other);
5096 
5097 	return IRQ_HANDLED;
5098 }
5099 
5100 static void igc_write_itr(struct igc_q_vector *q_vector)
5101 {
5102 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5103 
5104 	if (!q_vector->set_itr)
5105 		return;
5106 
5107 	if (!itr_val)
5108 		itr_val = IGC_ITR_VAL_MASK;
5109 
5110 	itr_val |= IGC_EITR_CNT_IGNR;
5111 
5112 	writel(itr_val, q_vector->itr_register);
5113 	q_vector->set_itr = 0;
5114 }
5115 
5116 static irqreturn_t igc_msix_ring(int irq, void *data)
5117 {
5118 	struct igc_q_vector *q_vector = data;
5119 
5120 	/* Write the ITR value calculated from the previous interrupt. */
5121 	igc_write_itr(q_vector);
5122 
5123 	napi_schedule(&q_vector->napi);
5124 
5125 	return IRQ_HANDLED;
5126 }
5127 
5128 /**
5129  * igc_request_msix - Initialize MSI-X interrupts
5130  * @adapter: Pointer to adapter structure
5131  *
5132  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5133  * kernel.
5134  */
5135 static int igc_request_msix(struct igc_adapter *adapter)
5136 {
5137 	unsigned int num_q_vectors = adapter->num_q_vectors;
5138 	int i = 0, err = 0, vector = 0, free_vector = 0;
5139 	struct net_device *netdev = adapter->netdev;
5140 
5141 	err = request_irq(adapter->msix_entries[vector].vector,
5142 			  &igc_msix_other, 0, netdev->name, adapter);
5143 	if (err)
5144 		goto err_out;
5145 
5146 	if (num_q_vectors > MAX_Q_VECTORS) {
5147 		num_q_vectors = MAX_Q_VECTORS;
5148 		dev_warn(&adapter->pdev->dev,
5149 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5150 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5151 	}
5152 	for (i = 0; i < num_q_vectors; i++) {
5153 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5154 
5155 		vector++;
5156 
5157 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5158 
5159 		if (q_vector->rx.ring && q_vector->tx.ring)
5160 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5161 				q_vector->rx.ring->queue_index);
5162 		else if (q_vector->tx.ring)
5163 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5164 				q_vector->tx.ring->queue_index);
5165 		else if (q_vector->rx.ring)
5166 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5167 				q_vector->rx.ring->queue_index);
5168 		else
5169 			sprintf(q_vector->name, "%s-unused", netdev->name);
5170 
5171 		err = request_irq(adapter->msix_entries[vector].vector,
5172 				  igc_msix_ring, 0, q_vector->name,
5173 				  q_vector);
5174 		if (err)
5175 			goto err_free;
5176 	}
5177 
5178 	igc_configure_msix(adapter);
5179 	return 0;
5180 
5181 err_free:
5182 	/* free already assigned IRQs */
5183 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5184 
5185 	vector--;
5186 	for (i = 0; i < vector; i++) {
5187 		free_irq(adapter->msix_entries[free_vector++].vector,
5188 			 adapter->q_vector[i]);
5189 	}
5190 err_out:
5191 	return err;
5192 }
5193 
5194 /**
5195  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5196  * @adapter: Pointer to adapter structure
5197  *
5198  * This function resets the device so that it has 0 rx queues, tx queues, and
5199  * MSI-X interrupts allocated.
5200  */
5201 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5202 {
5203 	igc_free_q_vectors(adapter);
5204 	igc_reset_interrupt_capability(adapter);
5205 }
5206 
5207 /* Need to wait a few seconds after link up to get diagnostic information from
5208  * the phy
5209  */
5210 static void igc_update_phy_info(struct timer_list *t)
5211 {
5212 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5213 
5214 	igc_get_phy_info(&adapter->hw);
5215 }
5216 
5217 /**
5218  * igc_has_link - check shared code for link and determine up/down
5219  * @adapter: pointer to driver private info
5220  */
5221 bool igc_has_link(struct igc_adapter *adapter)
5222 {
5223 	struct igc_hw *hw = &adapter->hw;
5224 	bool link_active = false;
5225 
5226 	/* get_link_status is set on LSC (link status) interrupt or
5227 	 * rx sequence error interrupt.  get_link_status will stay
5228 	 * false until the igc_check_for_link establishes link
5229 	 * for copper adapters ONLY
5230 	 */
5231 	if (!hw->mac.get_link_status)
5232 		return true;
5233 	hw->mac.ops.check_for_link(hw);
5234 	link_active = !hw->mac.get_link_status;
5235 
5236 	if (hw->mac.type == igc_i225) {
5237 		if (!netif_carrier_ok(adapter->netdev)) {
5238 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5239 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5240 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5241 			adapter->link_check_timeout = jiffies;
5242 		}
5243 	}
5244 
5245 	return link_active;
5246 }
5247 
5248 /**
5249  * igc_watchdog - Timer Call-back
5250  * @t: timer for the watchdog
5251  */
5252 static void igc_watchdog(struct timer_list *t)
5253 {
5254 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5255 	/* Do the rest outside of interrupt context */
5256 	schedule_work(&adapter->watchdog_task);
5257 }
5258 
5259 static void igc_watchdog_task(struct work_struct *work)
5260 {
5261 	struct igc_adapter *adapter = container_of(work,
5262 						   struct igc_adapter,
5263 						   watchdog_task);
5264 	struct net_device *netdev = adapter->netdev;
5265 	struct igc_hw *hw = &adapter->hw;
5266 	struct igc_phy_info *phy = &hw->phy;
5267 	u16 phy_data, retry_count = 20;
5268 	u32 link;
5269 	int i;
5270 
5271 	link = igc_has_link(adapter);
5272 
5273 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5274 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5275 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5276 		else
5277 			link = false;
5278 	}
5279 
5280 	if (link) {
5281 		/* Cancel scheduled suspend requests. */
5282 		pm_runtime_resume(netdev->dev.parent);
5283 
5284 		if (!netif_carrier_ok(netdev)) {
5285 			u32 ctrl;
5286 
5287 			hw->mac.ops.get_speed_and_duplex(hw,
5288 							 &adapter->link_speed,
5289 							 &adapter->link_duplex);
5290 
5291 			ctrl = rd32(IGC_CTRL);
5292 			/* Link status message must follow this format */
5293 			netdev_info(netdev,
5294 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5295 				    adapter->link_speed,
5296 				    adapter->link_duplex == FULL_DUPLEX ?
5297 				    "Full" : "Half",
5298 				    (ctrl & IGC_CTRL_TFCE) &&
5299 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5300 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5301 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5302 
5303 			/* disable EEE if enabled */
5304 			if ((adapter->flags & IGC_FLAG_EEE) &&
5305 			    adapter->link_duplex == HALF_DUPLEX) {
5306 				netdev_info(netdev,
5307 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5308 				adapter->hw.dev_spec._base.eee_enable = false;
5309 				adapter->flags &= ~IGC_FLAG_EEE;
5310 			}
5311 
5312 			/* check if SmartSpeed worked */
5313 			igc_check_downshift(hw);
5314 			if (phy->speed_downgraded)
5315 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5316 
5317 			/* adjust timeout factor according to speed/duplex */
5318 			adapter->tx_timeout_factor = 1;
5319 			switch (adapter->link_speed) {
5320 			case SPEED_10:
5321 				adapter->tx_timeout_factor = 14;
5322 				break;
5323 			case SPEED_100:
5324 			case SPEED_1000:
5325 			case SPEED_2500:
5326 				adapter->tx_timeout_factor = 7;
5327 				break;
5328 			}
5329 
5330 			if (adapter->link_speed != SPEED_1000)
5331 				goto no_wait;
5332 
5333 			/* wait for Remote receiver status OK */
5334 retry_read_status:
5335 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5336 					      &phy_data)) {
5337 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5338 				    retry_count) {
5339 					msleep(100);
5340 					retry_count--;
5341 					goto retry_read_status;
5342 				} else if (!retry_count) {
5343 					netdev_err(netdev, "exceed max 2 second\n");
5344 				}
5345 			} else {
5346 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5347 			}
5348 no_wait:
5349 			netif_carrier_on(netdev);
5350 
5351 			/* link state has changed, schedule phy info update */
5352 			if (!test_bit(__IGC_DOWN, &adapter->state))
5353 				mod_timer(&adapter->phy_info_timer,
5354 					  round_jiffies(jiffies + 2 * HZ));
5355 		}
5356 	} else {
5357 		if (netif_carrier_ok(netdev)) {
5358 			adapter->link_speed = 0;
5359 			adapter->link_duplex = 0;
5360 
5361 			/* Links status message must follow this format */
5362 			netdev_info(netdev, "NIC Link is Down\n");
5363 			netif_carrier_off(netdev);
5364 
5365 			/* link state has changed, schedule phy info update */
5366 			if (!test_bit(__IGC_DOWN, &adapter->state))
5367 				mod_timer(&adapter->phy_info_timer,
5368 					  round_jiffies(jiffies + 2 * HZ));
5369 
5370 			/* link is down, time to check for alternate media */
5371 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5372 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5373 					schedule_work(&adapter->reset_task);
5374 					/* return immediately */
5375 					return;
5376 				}
5377 			}
5378 			pm_schedule_suspend(netdev->dev.parent,
5379 					    MSEC_PER_SEC * 5);
5380 
5381 		/* also check for alternate media here */
5382 		} else if (!netif_carrier_ok(netdev) &&
5383 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5384 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5385 				schedule_work(&adapter->reset_task);
5386 				/* return immediately */
5387 				return;
5388 			}
5389 		}
5390 	}
5391 
5392 	spin_lock(&adapter->stats64_lock);
5393 	igc_update_stats(adapter);
5394 	spin_unlock(&adapter->stats64_lock);
5395 
5396 	for (i = 0; i < adapter->num_tx_queues; i++) {
5397 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5398 
5399 		if (!netif_carrier_ok(netdev)) {
5400 			/* We've lost link, so the controller stops DMA,
5401 			 * but we've got queued Tx work that's never going
5402 			 * to get done, so reset controller to flush Tx.
5403 			 * (Do the reset outside of interrupt context).
5404 			 */
5405 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5406 				adapter->tx_timeout_count++;
5407 				schedule_work(&adapter->reset_task);
5408 				/* return immediately since reset is imminent */
5409 				return;
5410 			}
5411 		}
5412 
5413 		/* Force detection of hung controller every watchdog period */
5414 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5415 	}
5416 
5417 	/* Cause software interrupt to ensure Rx ring is cleaned */
5418 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5419 		u32 eics = 0;
5420 
5421 		for (i = 0; i < adapter->num_q_vectors; i++)
5422 			eics |= adapter->q_vector[i]->eims_value;
5423 		wr32(IGC_EICS, eics);
5424 	} else {
5425 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5426 	}
5427 
5428 	igc_ptp_tx_hang(adapter);
5429 
5430 	/* Reset the timer */
5431 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5432 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5433 			mod_timer(&adapter->watchdog_timer,
5434 				  round_jiffies(jiffies +  HZ));
5435 		else
5436 			mod_timer(&adapter->watchdog_timer,
5437 				  round_jiffies(jiffies + 2 * HZ));
5438 	}
5439 }
5440 
5441 /**
5442  * igc_intr_msi - Interrupt Handler
5443  * @irq: interrupt number
5444  * @data: pointer to a network interface device structure
5445  */
5446 static irqreturn_t igc_intr_msi(int irq, void *data)
5447 {
5448 	struct igc_adapter *adapter = data;
5449 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5450 	struct igc_hw *hw = &adapter->hw;
5451 	/* read ICR disables interrupts using IAM */
5452 	u32 icr = rd32(IGC_ICR);
5453 
5454 	igc_write_itr(q_vector);
5455 
5456 	if (icr & IGC_ICR_DRSTA)
5457 		schedule_work(&adapter->reset_task);
5458 
5459 	if (icr & IGC_ICR_DOUTSYNC) {
5460 		/* HW is reporting DMA is out of sync */
5461 		adapter->stats.doosync++;
5462 	}
5463 
5464 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5465 		hw->mac.get_link_status = true;
5466 		if (!test_bit(__IGC_DOWN, &adapter->state))
5467 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5468 	}
5469 
5470 	napi_schedule(&q_vector->napi);
5471 
5472 	return IRQ_HANDLED;
5473 }
5474 
5475 /**
5476  * igc_intr - Legacy Interrupt Handler
5477  * @irq: interrupt number
5478  * @data: pointer to a network interface device structure
5479  */
5480 static irqreturn_t igc_intr(int irq, void *data)
5481 {
5482 	struct igc_adapter *adapter = data;
5483 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5484 	struct igc_hw *hw = &adapter->hw;
5485 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5486 	 * need for the IMC write
5487 	 */
5488 	u32 icr = rd32(IGC_ICR);
5489 
5490 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5491 	 * not set, then the adapter didn't send an interrupt
5492 	 */
5493 	if (!(icr & IGC_ICR_INT_ASSERTED))
5494 		return IRQ_NONE;
5495 
5496 	igc_write_itr(q_vector);
5497 
5498 	if (icr & IGC_ICR_DRSTA)
5499 		schedule_work(&adapter->reset_task);
5500 
5501 	if (icr & IGC_ICR_DOUTSYNC) {
5502 		/* HW is reporting DMA is out of sync */
5503 		adapter->stats.doosync++;
5504 	}
5505 
5506 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5507 		hw->mac.get_link_status = true;
5508 		/* guard against interrupt when we're going down */
5509 		if (!test_bit(__IGC_DOWN, &adapter->state))
5510 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5511 	}
5512 
5513 	napi_schedule(&q_vector->napi);
5514 
5515 	return IRQ_HANDLED;
5516 }
5517 
5518 static void igc_free_irq(struct igc_adapter *adapter)
5519 {
5520 	if (adapter->msix_entries) {
5521 		int vector = 0, i;
5522 
5523 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5524 
5525 		for (i = 0; i < adapter->num_q_vectors; i++)
5526 			free_irq(adapter->msix_entries[vector++].vector,
5527 				 adapter->q_vector[i]);
5528 	} else {
5529 		free_irq(adapter->pdev->irq, adapter);
5530 	}
5531 }
5532 
5533 /**
5534  * igc_request_irq - initialize interrupts
5535  * @adapter: Pointer to adapter structure
5536  *
5537  * Attempts to configure interrupts using the best available
5538  * capabilities of the hardware and kernel.
5539  */
5540 static int igc_request_irq(struct igc_adapter *adapter)
5541 {
5542 	struct net_device *netdev = adapter->netdev;
5543 	struct pci_dev *pdev = adapter->pdev;
5544 	int err = 0;
5545 
5546 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5547 		err = igc_request_msix(adapter);
5548 		if (!err)
5549 			goto request_done;
5550 		/* fall back to MSI */
5551 		igc_free_all_tx_resources(adapter);
5552 		igc_free_all_rx_resources(adapter);
5553 
5554 		igc_clear_interrupt_scheme(adapter);
5555 		err = igc_init_interrupt_scheme(adapter, false);
5556 		if (err)
5557 			goto request_done;
5558 		igc_setup_all_tx_resources(adapter);
5559 		igc_setup_all_rx_resources(adapter);
5560 		igc_configure(adapter);
5561 	}
5562 
5563 	igc_assign_vector(adapter->q_vector[0], 0);
5564 
5565 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5566 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5567 				  netdev->name, adapter);
5568 		if (!err)
5569 			goto request_done;
5570 
5571 		/* fall back to legacy interrupts */
5572 		igc_reset_interrupt_capability(adapter);
5573 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5574 	}
5575 
5576 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5577 			  netdev->name, adapter);
5578 
5579 	if (err)
5580 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5581 
5582 request_done:
5583 	return err;
5584 }
5585 
5586 /**
5587  * __igc_open - Called when a network interface is made active
5588  * @netdev: network interface device structure
5589  * @resuming: boolean indicating if the device is resuming
5590  *
5591  * Returns 0 on success, negative value on failure
5592  *
5593  * The open entry point is called when a network interface is made
5594  * active by the system (IFF_UP).  At this point all resources needed
5595  * for transmit and receive operations are allocated, the interrupt
5596  * handler is registered with the OS, the watchdog timer is started,
5597  * and the stack is notified that the interface is ready.
5598  */
5599 static int __igc_open(struct net_device *netdev, bool resuming)
5600 {
5601 	struct igc_adapter *adapter = netdev_priv(netdev);
5602 	struct pci_dev *pdev = adapter->pdev;
5603 	struct igc_hw *hw = &adapter->hw;
5604 	int err = 0;
5605 	int i = 0;
5606 
5607 	/* disallow open during test */
5608 
5609 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5610 		WARN_ON(resuming);
5611 		return -EBUSY;
5612 	}
5613 
5614 	if (!resuming)
5615 		pm_runtime_get_sync(&pdev->dev);
5616 
5617 	netif_carrier_off(netdev);
5618 
5619 	/* allocate transmit descriptors */
5620 	err = igc_setup_all_tx_resources(adapter);
5621 	if (err)
5622 		goto err_setup_tx;
5623 
5624 	/* allocate receive descriptors */
5625 	err = igc_setup_all_rx_resources(adapter);
5626 	if (err)
5627 		goto err_setup_rx;
5628 
5629 	igc_power_up_link(adapter);
5630 
5631 	igc_configure(adapter);
5632 
5633 	err = igc_request_irq(adapter);
5634 	if (err)
5635 		goto err_req_irq;
5636 
5637 	/* Notify the stack of the actual queue counts. */
5638 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5639 	if (err)
5640 		goto err_set_queues;
5641 
5642 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5643 	if (err)
5644 		goto err_set_queues;
5645 
5646 	clear_bit(__IGC_DOWN, &adapter->state);
5647 
5648 	for (i = 0; i < adapter->num_q_vectors; i++)
5649 		napi_enable(&adapter->q_vector[i]->napi);
5650 
5651 	/* Clear any pending interrupts. */
5652 	rd32(IGC_ICR);
5653 	igc_irq_enable(adapter);
5654 
5655 	if (!resuming)
5656 		pm_runtime_put(&pdev->dev);
5657 
5658 	netif_tx_start_all_queues(netdev);
5659 
5660 	/* start the watchdog. */
5661 	hw->mac.get_link_status = true;
5662 	schedule_work(&adapter->watchdog_task);
5663 
5664 	return IGC_SUCCESS;
5665 
5666 err_set_queues:
5667 	igc_free_irq(adapter);
5668 err_req_irq:
5669 	igc_release_hw_control(adapter);
5670 	igc_power_down_phy_copper_base(&adapter->hw);
5671 	igc_free_all_rx_resources(adapter);
5672 err_setup_rx:
5673 	igc_free_all_tx_resources(adapter);
5674 err_setup_tx:
5675 	igc_reset(adapter);
5676 	if (!resuming)
5677 		pm_runtime_put(&pdev->dev);
5678 
5679 	return err;
5680 }
5681 
5682 int igc_open(struct net_device *netdev)
5683 {
5684 	return __igc_open(netdev, false);
5685 }
5686 
5687 /**
5688  * __igc_close - Disables a network interface
5689  * @netdev: network interface device structure
5690  * @suspending: boolean indicating the device is suspending
5691  *
5692  * Returns 0, this is not allowed to fail
5693  *
5694  * The close entry point is called when an interface is de-activated
5695  * by the OS.  The hardware is still under the driver's control, but
5696  * needs to be disabled.  A global MAC reset is issued to stop the
5697  * hardware, and all transmit and receive resources are freed.
5698  */
5699 static int __igc_close(struct net_device *netdev, bool suspending)
5700 {
5701 	struct igc_adapter *adapter = netdev_priv(netdev);
5702 	struct pci_dev *pdev = adapter->pdev;
5703 
5704 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5705 
5706 	if (!suspending)
5707 		pm_runtime_get_sync(&pdev->dev);
5708 
5709 	igc_down(adapter);
5710 
5711 	igc_release_hw_control(adapter);
5712 
5713 	igc_free_irq(adapter);
5714 
5715 	igc_free_all_tx_resources(adapter);
5716 	igc_free_all_rx_resources(adapter);
5717 
5718 	if (!suspending)
5719 		pm_runtime_put_sync(&pdev->dev);
5720 
5721 	return 0;
5722 }
5723 
5724 int igc_close(struct net_device *netdev)
5725 {
5726 	if (netif_device_present(netdev) || netdev->dismantle)
5727 		return __igc_close(netdev, false);
5728 	return 0;
5729 }
5730 
5731 /**
5732  * igc_ioctl - Access the hwtstamp interface
5733  * @netdev: network interface device structure
5734  * @ifr: interface request data
5735  * @cmd: ioctl command
5736  **/
5737 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5738 {
5739 	switch (cmd) {
5740 	case SIOCGHWTSTAMP:
5741 		return igc_ptp_get_ts_config(netdev, ifr);
5742 	case SIOCSHWTSTAMP:
5743 		return igc_ptp_set_ts_config(netdev, ifr);
5744 	default:
5745 		return -EOPNOTSUPP;
5746 	}
5747 }
5748 
5749 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5750 				      bool enable)
5751 {
5752 	struct igc_ring *ring;
5753 
5754 	if (queue < 0 || queue >= adapter->num_tx_queues)
5755 		return -EINVAL;
5756 
5757 	ring = adapter->tx_ring[queue];
5758 	ring->launchtime_enable = enable;
5759 
5760 	return 0;
5761 }
5762 
5763 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5764 {
5765 	struct timespec64 b;
5766 
5767 	b = ktime_to_timespec64(base_time);
5768 
5769 	return timespec64_compare(now, &b) > 0;
5770 }
5771 
5772 static bool validate_schedule(struct igc_adapter *adapter,
5773 			      const struct tc_taprio_qopt_offload *qopt)
5774 {
5775 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
5776 	struct timespec64 now;
5777 	size_t n;
5778 
5779 	if (qopt->cycle_time_extension)
5780 		return false;
5781 
5782 	igc_ptp_read(adapter, &now);
5783 
5784 	/* If we program the controller's BASET registers with a time
5785 	 * in the future, it will hold all the packets until that
5786 	 * time, causing a lot of TX Hangs, so to avoid that, we
5787 	 * reject schedules that would start in the future.
5788 	 */
5789 	if (!is_base_time_past(qopt->base_time, &now))
5790 		return false;
5791 
5792 	for (n = 0; n < qopt->num_entries; n++) {
5793 		const struct tc_taprio_sched_entry *e;
5794 		int i;
5795 
5796 		e = &qopt->entries[n];
5797 
5798 		/* i225 only supports "global" frame preemption
5799 		 * settings.
5800 		 */
5801 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
5802 			return false;
5803 
5804 		for (i = 0; i < adapter->num_tx_queues; i++) {
5805 			if (e->gate_mask & BIT(i))
5806 				queue_uses[i]++;
5807 
5808 			if (queue_uses[i] > 1)
5809 				return false;
5810 		}
5811 	}
5812 
5813 	return true;
5814 }
5815 
5816 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5817 				     struct tc_etf_qopt_offload *qopt)
5818 {
5819 	struct igc_hw *hw = &adapter->hw;
5820 	int err;
5821 
5822 	if (hw->mac.type != igc_i225)
5823 		return -EOPNOTSUPP;
5824 
5825 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5826 	if (err)
5827 		return err;
5828 
5829 	return igc_tsn_offload_apply(adapter);
5830 }
5831 
5832 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
5833 {
5834 	int i;
5835 
5836 	adapter->base_time = 0;
5837 	adapter->cycle_time = NSEC_PER_SEC;
5838 
5839 	for (i = 0; i < adapter->num_tx_queues; i++) {
5840 		struct igc_ring *ring = adapter->tx_ring[i];
5841 
5842 		ring->start_time = 0;
5843 		ring->end_time = NSEC_PER_SEC;
5844 	}
5845 
5846 	return 0;
5847 }
5848 
5849 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5850 				 struct tc_taprio_qopt_offload *qopt)
5851 {
5852 	u32 start_time = 0, end_time = 0;
5853 	size_t n;
5854 
5855 	if (!qopt->enable)
5856 		return igc_tsn_clear_schedule(adapter);
5857 
5858 	if (adapter->base_time)
5859 		return -EALREADY;
5860 
5861 	if (!validate_schedule(adapter, qopt))
5862 		return -EINVAL;
5863 
5864 	adapter->cycle_time = qopt->cycle_time;
5865 	adapter->base_time = qopt->base_time;
5866 
5867 	/* FIXME: be a little smarter about cases when the gate for a
5868 	 * queue stays open for more than one entry.
5869 	 */
5870 	for (n = 0; n < qopt->num_entries; n++) {
5871 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
5872 		int i;
5873 
5874 		end_time += e->interval;
5875 
5876 		for (i = 0; i < adapter->num_tx_queues; i++) {
5877 			struct igc_ring *ring = adapter->tx_ring[i];
5878 
5879 			if (!(e->gate_mask & BIT(i)))
5880 				continue;
5881 
5882 			ring->start_time = start_time;
5883 			ring->end_time = end_time;
5884 		}
5885 
5886 		start_time += e->interval;
5887 	}
5888 
5889 	return 0;
5890 }
5891 
5892 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5893 					 struct tc_taprio_qopt_offload *qopt)
5894 {
5895 	struct igc_hw *hw = &adapter->hw;
5896 	int err;
5897 
5898 	if (hw->mac.type != igc_i225)
5899 		return -EOPNOTSUPP;
5900 
5901 	err = igc_save_qbv_schedule(adapter, qopt);
5902 	if (err)
5903 		return err;
5904 
5905 	return igc_tsn_offload_apply(adapter);
5906 }
5907 
5908 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
5909 			       bool enable, int idleslope, int sendslope,
5910 			       int hicredit, int locredit)
5911 {
5912 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
5913 	struct net_device *netdev = adapter->netdev;
5914 	struct igc_ring *ring;
5915 	int i;
5916 
5917 	/* i225 has two sets of credit-based shaper logic.
5918 	 * Supporting it only on the top two priority queues
5919 	 */
5920 	if (queue < 0 || queue > 1)
5921 		return -EINVAL;
5922 
5923 	ring = adapter->tx_ring[queue];
5924 
5925 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
5926 		if (adapter->tx_ring[i])
5927 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
5928 
5929 	/* CBS should be enabled on the highest priority queue first in order
5930 	 * for the CBS algorithm to operate as intended.
5931 	 */
5932 	if (enable) {
5933 		if (queue == 1 && !cbs_status[0]) {
5934 			netdev_err(netdev,
5935 				   "Enabling CBS on queue1 before queue0\n");
5936 			return -EINVAL;
5937 		}
5938 	} else {
5939 		if (queue == 0 && cbs_status[1]) {
5940 			netdev_err(netdev,
5941 				   "Disabling CBS on queue0 before queue1\n");
5942 			return -EINVAL;
5943 		}
5944 	}
5945 
5946 	ring->cbs_enable = enable;
5947 	ring->idleslope = idleslope;
5948 	ring->sendslope = sendslope;
5949 	ring->hicredit = hicredit;
5950 	ring->locredit = locredit;
5951 
5952 	return 0;
5953 }
5954 
5955 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
5956 			      struct tc_cbs_qopt_offload *qopt)
5957 {
5958 	struct igc_hw *hw = &adapter->hw;
5959 	int err;
5960 
5961 	if (hw->mac.type != igc_i225)
5962 		return -EOPNOTSUPP;
5963 
5964 	if (qopt->queue < 0 || qopt->queue > 1)
5965 		return -EINVAL;
5966 
5967 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
5968 				  qopt->idleslope, qopt->sendslope,
5969 				  qopt->hicredit, qopt->locredit);
5970 	if (err)
5971 		return err;
5972 
5973 	return igc_tsn_offload_apply(adapter);
5974 }
5975 
5976 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5977 			void *type_data)
5978 {
5979 	struct igc_adapter *adapter = netdev_priv(dev);
5980 
5981 	switch (type) {
5982 	case TC_SETUP_QDISC_TAPRIO:
5983 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5984 
5985 	case TC_SETUP_QDISC_ETF:
5986 		return igc_tsn_enable_launchtime(adapter, type_data);
5987 
5988 	case TC_SETUP_QDISC_CBS:
5989 		return igc_tsn_enable_cbs(adapter, type_data);
5990 
5991 	default:
5992 		return -EOPNOTSUPP;
5993 	}
5994 }
5995 
5996 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5997 {
5998 	struct igc_adapter *adapter = netdev_priv(dev);
5999 
6000 	switch (bpf->command) {
6001 	case XDP_SETUP_PROG:
6002 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6003 	case XDP_SETUP_XSK_POOL:
6004 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6005 					  bpf->xsk.queue_id);
6006 	default:
6007 		return -EOPNOTSUPP;
6008 	}
6009 }
6010 
6011 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6012 			struct xdp_frame **frames, u32 flags)
6013 {
6014 	struct igc_adapter *adapter = netdev_priv(dev);
6015 	int cpu = smp_processor_id();
6016 	struct netdev_queue *nq;
6017 	struct igc_ring *ring;
6018 	int i, drops;
6019 
6020 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6021 		return -ENETDOWN;
6022 
6023 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6024 		return -EINVAL;
6025 
6026 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6027 	nq = txring_txq(ring);
6028 
6029 	__netif_tx_lock(nq, cpu);
6030 
6031 	drops = 0;
6032 	for (i = 0; i < num_frames; i++) {
6033 		int err;
6034 		struct xdp_frame *xdpf = frames[i];
6035 
6036 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6037 		if (err) {
6038 			xdp_return_frame_rx_napi(xdpf);
6039 			drops++;
6040 		}
6041 	}
6042 
6043 	if (flags & XDP_XMIT_FLUSH)
6044 		igc_flush_tx_descriptors(ring);
6045 
6046 	__netif_tx_unlock(nq);
6047 
6048 	return num_frames - drops;
6049 }
6050 
6051 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6052 					struct igc_q_vector *q_vector)
6053 {
6054 	struct igc_hw *hw = &adapter->hw;
6055 	u32 eics = 0;
6056 
6057 	eics |= q_vector->eims_value;
6058 	wr32(IGC_EICS, eics);
6059 }
6060 
6061 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6062 {
6063 	struct igc_adapter *adapter = netdev_priv(dev);
6064 	struct igc_q_vector *q_vector;
6065 	struct igc_ring *ring;
6066 
6067 	if (test_bit(__IGC_DOWN, &adapter->state))
6068 		return -ENETDOWN;
6069 
6070 	if (!igc_xdp_is_enabled(adapter))
6071 		return -ENXIO;
6072 
6073 	if (queue_id >= adapter->num_rx_queues)
6074 		return -EINVAL;
6075 
6076 	ring = adapter->rx_ring[queue_id];
6077 
6078 	if (!ring->xsk_pool)
6079 		return -ENXIO;
6080 
6081 	q_vector = adapter->q_vector[queue_id];
6082 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6083 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6084 
6085 	return 0;
6086 }
6087 
6088 static const struct net_device_ops igc_netdev_ops = {
6089 	.ndo_open		= igc_open,
6090 	.ndo_stop		= igc_close,
6091 	.ndo_start_xmit		= igc_xmit_frame,
6092 	.ndo_set_rx_mode	= igc_set_rx_mode,
6093 	.ndo_set_mac_address	= igc_set_mac,
6094 	.ndo_change_mtu		= igc_change_mtu,
6095 	.ndo_get_stats64	= igc_get_stats64,
6096 	.ndo_fix_features	= igc_fix_features,
6097 	.ndo_set_features	= igc_set_features,
6098 	.ndo_features_check	= igc_features_check,
6099 	.ndo_eth_ioctl		= igc_ioctl,
6100 	.ndo_setup_tc		= igc_setup_tc,
6101 	.ndo_bpf		= igc_bpf,
6102 	.ndo_xdp_xmit		= igc_xdp_xmit,
6103 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6104 };
6105 
6106 /* PCIe configuration access */
6107 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6108 {
6109 	struct igc_adapter *adapter = hw->back;
6110 
6111 	pci_read_config_word(adapter->pdev, reg, value);
6112 }
6113 
6114 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6115 {
6116 	struct igc_adapter *adapter = hw->back;
6117 
6118 	pci_write_config_word(adapter->pdev, reg, *value);
6119 }
6120 
6121 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6122 {
6123 	struct igc_adapter *adapter = hw->back;
6124 
6125 	if (!pci_is_pcie(adapter->pdev))
6126 		return -IGC_ERR_CONFIG;
6127 
6128 	pcie_capability_read_word(adapter->pdev, reg, value);
6129 
6130 	return IGC_SUCCESS;
6131 }
6132 
6133 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6134 {
6135 	struct igc_adapter *adapter = hw->back;
6136 
6137 	if (!pci_is_pcie(adapter->pdev))
6138 		return -IGC_ERR_CONFIG;
6139 
6140 	pcie_capability_write_word(adapter->pdev, reg, *value);
6141 
6142 	return IGC_SUCCESS;
6143 }
6144 
6145 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6146 {
6147 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6148 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6149 	u32 value = 0;
6150 
6151 	value = readl(&hw_addr[reg]);
6152 
6153 	/* reads should not return all F's */
6154 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6155 		struct net_device *netdev = igc->netdev;
6156 
6157 		hw->hw_addr = NULL;
6158 		netif_device_detach(netdev);
6159 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6160 		WARN(pci_device_is_present(igc->pdev),
6161 		     "igc: Failed to read reg 0x%x!\n", reg);
6162 	}
6163 
6164 	return value;
6165 }
6166 
6167 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
6168 {
6169 	struct igc_mac_info *mac = &adapter->hw.mac;
6170 
6171 	mac->autoneg = false;
6172 
6173 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6174 	 * for the switch() below to work
6175 	 */
6176 	if ((spd & 1) || (dplx & ~1))
6177 		goto err_inval;
6178 
6179 	switch (spd + dplx) {
6180 	case SPEED_10 + DUPLEX_HALF:
6181 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6182 		break;
6183 	case SPEED_10 + DUPLEX_FULL:
6184 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6185 		break;
6186 	case SPEED_100 + DUPLEX_HALF:
6187 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6188 		break;
6189 	case SPEED_100 + DUPLEX_FULL:
6190 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6191 		break;
6192 	case SPEED_1000 + DUPLEX_FULL:
6193 		mac->autoneg = true;
6194 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6195 		break;
6196 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6197 		goto err_inval;
6198 	case SPEED_2500 + DUPLEX_FULL:
6199 		mac->autoneg = true;
6200 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
6201 		break;
6202 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
6203 	default:
6204 		goto err_inval;
6205 	}
6206 
6207 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6208 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6209 
6210 	return 0;
6211 
6212 err_inval:
6213 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
6214 	return -EINVAL;
6215 }
6216 
6217 /**
6218  * igc_probe - Device Initialization Routine
6219  * @pdev: PCI device information struct
6220  * @ent: entry in igc_pci_tbl
6221  *
6222  * Returns 0 on success, negative on failure
6223  *
6224  * igc_probe initializes an adapter identified by a pci_dev structure.
6225  * The OS initialization, configuring the adapter private structure,
6226  * and a hardware reset occur.
6227  */
6228 static int igc_probe(struct pci_dev *pdev,
6229 		     const struct pci_device_id *ent)
6230 {
6231 	struct igc_adapter *adapter;
6232 	struct net_device *netdev;
6233 	struct igc_hw *hw;
6234 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6235 	int err, pci_using_dac;
6236 
6237 	err = pci_enable_device_mem(pdev);
6238 	if (err)
6239 		return err;
6240 
6241 	pci_using_dac = 0;
6242 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6243 	if (!err) {
6244 		pci_using_dac = 1;
6245 	} else {
6246 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6247 		if (err) {
6248 			dev_err(&pdev->dev,
6249 				"No usable DMA configuration, aborting\n");
6250 			goto err_dma;
6251 		}
6252 	}
6253 
6254 	err = pci_request_mem_regions(pdev, igc_driver_name);
6255 	if (err)
6256 		goto err_pci_reg;
6257 
6258 	pci_enable_pcie_error_reporting(pdev);
6259 
6260 	err = pci_enable_ptm(pdev, NULL);
6261 	if (err < 0)
6262 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6263 
6264 	pci_set_master(pdev);
6265 
6266 	err = -ENOMEM;
6267 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6268 				   IGC_MAX_TX_QUEUES);
6269 
6270 	if (!netdev)
6271 		goto err_alloc_etherdev;
6272 
6273 	SET_NETDEV_DEV(netdev, &pdev->dev);
6274 
6275 	pci_set_drvdata(pdev, netdev);
6276 	adapter = netdev_priv(netdev);
6277 	adapter->netdev = netdev;
6278 	adapter->pdev = pdev;
6279 	hw = &adapter->hw;
6280 	hw->back = adapter;
6281 	adapter->port_num = hw->bus.func;
6282 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6283 
6284 	err = pci_save_state(pdev);
6285 	if (err)
6286 		goto err_ioremap;
6287 
6288 	err = -EIO;
6289 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6290 				   pci_resource_len(pdev, 0));
6291 	if (!adapter->io_addr)
6292 		goto err_ioremap;
6293 
6294 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6295 	hw->hw_addr = adapter->io_addr;
6296 
6297 	netdev->netdev_ops = &igc_netdev_ops;
6298 	igc_ethtool_set_ops(netdev);
6299 	netdev->watchdog_timeo = 5 * HZ;
6300 
6301 	netdev->mem_start = pci_resource_start(pdev, 0);
6302 	netdev->mem_end = pci_resource_end(pdev, 0);
6303 
6304 	/* PCI config space info */
6305 	hw->vendor_id = pdev->vendor;
6306 	hw->device_id = pdev->device;
6307 	hw->revision_id = pdev->revision;
6308 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6309 	hw->subsystem_device_id = pdev->subsystem_device;
6310 
6311 	/* Copy the default MAC and PHY function pointers */
6312 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6313 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6314 
6315 	/* Initialize skew-specific constants */
6316 	err = ei->get_invariants(hw);
6317 	if (err)
6318 		goto err_sw_init;
6319 
6320 	/* Add supported features to the features list*/
6321 	netdev->features |= NETIF_F_SG;
6322 	netdev->features |= NETIF_F_TSO;
6323 	netdev->features |= NETIF_F_TSO6;
6324 	netdev->features |= NETIF_F_TSO_ECN;
6325 	netdev->features |= NETIF_F_RXCSUM;
6326 	netdev->features |= NETIF_F_HW_CSUM;
6327 	netdev->features |= NETIF_F_SCTP_CRC;
6328 	netdev->features |= NETIF_F_HW_TC;
6329 
6330 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6331 				  NETIF_F_GSO_GRE_CSUM | \
6332 				  NETIF_F_GSO_IPXIP4 | \
6333 				  NETIF_F_GSO_IPXIP6 | \
6334 				  NETIF_F_GSO_UDP_TUNNEL | \
6335 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6336 
6337 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6338 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6339 
6340 	/* setup the private structure */
6341 	err = igc_sw_init(adapter);
6342 	if (err)
6343 		goto err_sw_init;
6344 
6345 	/* copy netdev features into list of user selectable features */
6346 	netdev->hw_features |= NETIF_F_NTUPLE;
6347 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6348 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6349 	netdev->hw_features |= netdev->features;
6350 
6351 	if (pci_using_dac)
6352 		netdev->features |= NETIF_F_HIGHDMA;
6353 
6354 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6355 	netdev->mpls_features |= NETIF_F_HW_CSUM;
6356 	netdev->hw_enc_features |= netdev->vlan_features;
6357 
6358 	/* MTU range: 68 - 9216 */
6359 	netdev->min_mtu = ETH_MIN_MTU;
6360 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6361 
6362 	/* before reading the NVM, reset the controller to put the device in a
6363 	 * known good starting state
6364 	 */
6365 	hw->mac.ops.reset_hw(hw);
6366 
6367 	if (igc_get_flash_presence_i225(hw)) {
6368 		if (hw->nvm.ops.validate(hw) < 0) {
6369 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6370 			err = -EIO;
6371 			goto err_eeprom;
6372 		}
6373 	}
6374 
6375 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6376 		/* copy the MAC address out of the NVM */
6377 		if (hw->mac.ops.read_mac_addr(hw))
6378 			dev_err(&pdev->dev, "NVM Read Error\n");
6379 	}
6380 
6381 	eth_hw_addr_set(netdev, hw->mac.addr);
6382 
6383 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6384 		dev_err(&pdev->dev, "Invalid MAC Address\n");
6385 		err = -EIO;
6386 		goto err_eeprom;
6387 	}
6388 
6389 	/* configure RXPBSIZE and TXPBSIZE */
6390 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6391 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6392 
6393 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6394 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6395 
6396 	INIT_WORK(&adapter->reset_task, igc_reset_task);
6397 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6398 
6399 	/* Initialize link properties that are user-changeable */
6400 	adapter->fc_autoneg = true;
6401 	hw->mac.autoneg = true;
6402 	hw->phy.autoneg_advertised = 0xaf;
6403 
6404 	hw->fc.requested_mode = igc_fc_default;
6405 	hw->fc.current_mode = igc_fc_default;
6406 
6407 	/* By default, support wake on port A */
6408 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6409 
6410 	/* initialize the wol settings based on the eeprom settings */
6411 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6412 		adapter->wol |= IGC_WUFC_MAG;
6413 
6414 	device_set_wakeup_enable(&adapter->pdev->dev,
6415 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6416 
6417 	igc_ptp_init(adapter);
6418 
6419 	igc_tsn_clear_schedule(adapter);
6420 
6421 	/* reset the hardware with the new settings */
6422 	igc_reset(adapter);
6423 
6424 	/* let the f/w know that the h/w is now under the control of the
6425 	 * driver.
6426 	 */
6427 	igc_get_hw_control(adapter);
6428 
6429 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6430 	err = register_netdev(netdev);
6431 	if (err)
6432 		goto err_register;
6433 
6434 	 /* carrier off reporting is important to ethtool even BEFORE open */
6435 	netif_carrier_off(netdev);
6436 
6437 	/* Check if Media Autosense is enabled */
6438 	adapter->ei = *ei;
6439 
6440 	/* print pcie link status and MAC address */
6441 	pcie_print_link_status(pdev);
6442 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6443 
6444 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6445 	/* Disable EEE for internal PHY devices */
6446 	hw->dev_spec._base.eee_enable = false;
6447 	adapter->flags &= ~IGC_FLAG_EEE;
6448 	igc_set_eee_i225(hw, false, false, false);
6449 
6450 	pm_runtime_put_noidle(&pdev->dev);
6451 
6452 	return 0;
6453 
6454 err_register:
6455 	igc_release_hw_control(adapter);
6456 err_eeprom:
6457 	if (!igc_check_reset_block(hw))
6458 		igc_reset_phy(hw);
6459 err_sw_init:
6460 	igc_clear_interrupt_scheme(adapter);
6461 	iounmap(adapter->io_addr);
6462 err_ioremap:
6463 	free_netdev(netdev);
6464 err_alloc_etherdev:
6465 	pci_disable_pcie_error_reporting(pdev);
6466 	pci_release_mem_regions(pdev);
6467 err_pci_reg:
6468 err_dma:
6469 	pci_disable_device(pdev);
6470 	return err;
6471 }
6472 
6473 /**
6474  * igc_remove - Device Removal Routine
6475  * @pdev: PCI device information struct
6476  *
6477  * igc_remove is called by the PCI subsystem to alert the driver
6478  * that it should release a PCI device.  This could be caused by a
6479  * Hot-Plug event, or because the driver is going to be removed from
6480  * memory.
6481  */
6482 static void igc_remove(struct pci_dev *pdev)
6483 {
6484 	struct net_device *netdev = pci_get_drvdata(pdev);
6485 	struct igc_adapter *adapter = netdev_priv(netdev);
6486 
6487 	pm_runtime_get_noresume(&pdev->dev);
6488 
6489 	igc_flush_nfc_rules(adapter);
6490 
6491 	igc_ptp_stop(adapter);
6492 
6493 	set_bit(__IGC_DOWN, &adapter->state);
6494 
6495 	del_timer_sync(&adapter->watchdog_timer);
6496 	del_timer_sync(&adapter->phy_info_timer);
6497 
6498 	cancel_work_sync(&adapter->reset_task);
6499 	cancel_work_sync(&adapter->watchdog_task);
6500 
6501 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6502 	 * would have already happened in close and is redundant.
6503 	 */
6504 	igc_release_hw_control(adapter);
6505 	unregister_netdev(netdev);
6506 
6507 	igc_clear_interrupt_scheme(adapter);
6508 	pci_iounmap(pdev, adapter->io_addr);
6509 	pci_release_mem_regions(pdev);
6510 
6511 	free_netdev(netdev);
6512 
6513 	pci_disable_pcie_error_reporting(pdev);
6514 
6515 	pci_disable_device(pdev);
6516 }
6517 
6518 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6519 			  bool runtime)
6520 {
6521 	struct net_device *netdev = pci_get_drvdata(pdev);
6522 	struct igc_adapter *adapter = netdev_priv(netdev);
6523 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6524 	struct igc_hw *hw = &adapter->hw;
6525 	u32 ctrl, rctl, status;
6526 	bool wake;
6527 
6528 	rtnl_lock();
6529 	netif_device_detach(netdev);
6530 
6531 	if (netif_running(netdev))
6532 		__igc_close(netdev, true);
6533 
6534 	igc_ptp_suspend(adapter);
6535 
6536 	igc_clear_interrupt_scheme(adapter);
6537 	rtnl_unlock();
6538 
6539 	status = rd32(IGC_STATUS);
6540 	if (status & IGC_STATUS_LU)
6541 		wufc &= ~IGC_WUFC_LNKC;
6542 
6543 	if (wufc) {
6544 		igc_setup_rctl(adapter);
6545 		igc_set_rx_mode(netdev);
6546 
6547 		/* turn on all-multi mode if wake on multicast is enabled */
6548 		if (wufc & IGC_WUFC_MC) {
6549 			rctl = rd32(IGC_RCTL);
6550 			rctl |= IGC_RCTL_MPE;
6551 			wr32(IGC_RCTL, rctl);
6552 		}
6553 
6554 		ctrl = rd32(IGC_CTRL);
6555 		ctrl |= IGC_CTRL_ADVD3WUC;
6556 		wr32(IGC_CTRL, ctrl);
6557 
6558 		/* Allow time for pending master requests to run */
6559 		igc_disable_pcie_master(hw);
6560 
6561 		wr32(IGC_WUC, IGC_WUC_PME_EN);
6562 		wr32(IGC_WUFC, wufc);
6563 	} else {
6564 		wr32(IGC_WUC, 0);
6565 		wr32(IGC_WUFC, 0);
6566 	}
6567 
6568 	wake = wufc || adapter->en_mng_pt;
6569 	if (!wake)
6570 		igc_power_down_phy_copper_base(&adapter->hw);
6571 	else
6572 		igc_power_up_link(adapter);
6573 
6574 	if (enable_wake)
6575 		*enable_wake = wake;
6576 
6577 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6578 	 * would have already happened in close and is redundant.
6579 	 */
6580 	igc_release_hw_control(adapter);
6581 
6582 	pci_disable_device(pdev);
6583 
6584 	return 0;
6585 }
6586 
6587 #ifdef CONFIG_PM
6588 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6589 {
6590 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6591 }
6592 
6593 static void igc_deliver_wake_packet(struct net_device *netdev)
6594 {
6595 	struct igc_adapter *adapter = netdev_priv(netdev);
6596 	struct igc_hw *hw = &adapter->hw;
6597 	struct sk_buff *skb;
6598 	u32 wupl;
6599 
6600 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6601 
6602 	/* WUPM stores only the first 128 bytes of the wake packet.
6603 	 * Read the packet only if we have the whole thing.
6604 	 */
6605 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6606 		return;
6607 
6608 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6609 	if (!skb)
6610 		return;
6611 
6612 	skb_put(skb, wupl);
6613 
6614 	/* Ensure reads are 32-bit aligned */
6615 	wupl = roundup(wupl, 4);
6616 
6617 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6618 
6619 	skb->protocol = eth_type_trans(skb, netdev);
6620 	netif_rx(skb);
6621 }
6622 
6623 static int __maybe_unused igc_resume(struct device *dev)
6624 {
6625 	struct pci_dev *pdev = to_pci_dev(dev);
6626 	struct net_device *netdev = pci_get_drvdata(pdev);
6627 	struct igc_adapter *adapter = netdev_priv(netdev);
6628 	struct igc_hw *hw = &adapter->hw;
6629 	u32 err, val;
6630 
6631 	pci_set_power_state(pdev, PCI_D0);
6632 	pci_restore_state(pdev);
6633 	pci_save_state(pdev);
6634 
6635 	if (!pci_device_is_present(pdev))
6636 		return -ENODEV;
6637 	err = pci_enable_device_mem(pdev);
6638 	if (err) {
6639 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6640 		return err;
6641 	}
6642 	pci_set_master(pdev);
6643 
6644 	pci_enable_wake(pdev, PCI_D3hot, 0);
6645 	pci_enable_wake(pdev, PCI_D3cold, 0);
6646 
6647 	if (igc_init_interrupt_scheme(adapter, true)) {
6648 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6649 		return -ENOMEM;
6650 	}
6651 
6652 	igc_reset(adapter);
6653 
6654 	/* let the f/w know that the h/w is now under the control of the
6655 	 * driver.
6656 	 */
6657 	igc_get_hw_control(adapter);
6658 
6659 	val = rd32(IGC_WUS);
6660 	if (val & WAKE_PKT_WUS)
6661 		igc_deliver_wake_packet(netdev);
6662 
6663 	wr32(IGC_WUS, ~0);
6664 
6665 	rtnl_lock();
6666 	if (!err && netif_running(netdev))
6667 		err = __igc_open(netdev, true);
6668 
6669 	if (!err)
6670 		netif_device_attach(netdev);
6671 	rtnl_unlock();
6672 
6673 	return err;
6674 }
6675 
6676 static int __maybe_unused igc_runtime_resume(struct device *dev)
6677 {
6678 	return igc_resume(dev);
6679 }
6680 
6681 static int __maybe_unused igc_suspend(struct device *dev)
6682 {
6683 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6684 }
6685 
6686 static int __maybe_unused igc_runtime_idle(struct device *dev)
6687 {
6688 	struct net_device *netdev = dev_get_drvdata(dev);
6689 	struct igc_adapter *adapter = netdev_priv(netdev);
6690 
6691 	if (!igc_has_link(adapter))
6692 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6693 
6694 	return -EBUSY;
6695 }
6696 #endif /* CONFIG_PM */
6697 
6698 static void igc_shutdown(struct pci_dev *pdev)
6699 {
6700 	bool wake;
6701 
6702 	__igc_shutdown(pdev, &wake, 0);
6703 
6704 	if (system_state == SYSTEM_POWER_OFF) {
6705 		pci_wake_from_d3(pdev, wake);
6706 		pci_set_power_state(pdev, PCI_D3hot);
6707 	}
6708 }
6709 
6710 /**
6711  *  igc_io_error_detected - called when PCI error is detected
6712  *  @pdev: Pointer to PCI device
6713  *  @state: The current PCI connection state
6714  *
6715  *  This function is called after a PCI bus error affecting
6716  *  this device has been detected.
6717  **/
6718 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6719 					      pci_channel_state_t state)
6720 {
6721 	struct net_device *netdev = pci_get_drvdata(pdev);
6722 	struct igc_adapter *adapter = netdev_priv(netdev);
6723 
6724 	netif_device_detach(netdev);
6725 
6726 	if (state == pci_channel_io_perm_failure)
6727 		return PCI_ERS_RESULT_DISCONNECT;
6728 
6729 	if (netif_running(netdev))
6730 		igc_down(adapter);
6731 	pci_disable_device(pdev);
6732 
6733 	/* Request a slot reset. */
6734 	return PCI_ERS_RESULT_NEED_RESET;
6735 }
6736 
6737 /**
6738  *  igc_io_slot_reset - called after the PCI bus has been reset.
6739  *  @pdev: Pointer to PCI device
6740  *
6741  *  Restart the card from scratch, as if from a cold-boot. Implementation
6742  *  resembles the first-half of the igc_resume routine.
6743  **/
6744 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6745 {
6746 	struct net_device *netdev = pci_get_drvdata(pdev);
6747 	struct igc_adapter *adapter = netdev_priv(netdev);
6748 	struct igc_hw *hw = &adapter->hw;
6749 	pci_ers_result_t result;
6750 
6751 	if (pci_enable_device_mem(pdev)) {
6752 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6753 		result = PCI_ERS_RESULT_DISCONNECT;
6754 	} else {
6755 		pci_set_master(pdev);
6756 		pci_restore_state(pdev);
6757 		pci_save_state(pdev);
6758 
6759 		pci_enable_wake(pdev, PCI_D3hot, 0);
6760 		pci_enable_wake(pdev, PCI_D3cold, 0);
6761 
6762 		/* In case of PCI error, adapter loses its HW address
6763 		 * so we should re-assign it here.
6764 		 */
6765 		hw->hw_addr = adapter->io_addr;
6766 
6767 		igc_reset(adapter);
6768 		wr32(IGC_WUS, ~0);
6769 		result = PCI_ERS_RESULT_RECOVERED;
6770 	}
6771 
6772 	return result;
6773 }
6774 
6775 /**
6776  *  igc_io_resume - called when traffic can start to flow again.
6777  *  @pdev: Pointer to PCI device
6778  *
6779  *  This callback is called when the error recovery driver tells us that
6780  *  its OK to resume normal operation. Implementation resembles the
6781  *  second-half of the igc_resume routine.
6782  */
6783 static void igc_io_resume(struct pci_dev *pdev)
6784 {
6785 	struct net_device *netdev = pci_get_drvdata(pdev);
6786 	struct igc_adapter *adapter = netdev_priv(netdev);
6787 
6788 	rtnl_lock();
6789 	if (netif_running(netdev)) {
6790 		if (igc_open(netdev)) {
6791 			netdev_err(netdev, "igc_open failed after reset\n");
6792 			return;
6793 		}
6794 	}
6795 
6796 	netif_device_attach(netdev);
6797 
6798 	/* let the f/w know that the h/w is now under the control of the
6799 	 * driver.
6800 	 */
6801 	igc_get_hw_control(adapter);
6802 	rtnl_unlock();
6803 }
6804 
6805 static const struct pci_error_handlers igc_err_handler = {
6806 	.error_detected = igc_io_error_detected,
6807 	.slot_reset = igc_io_slot_reset,
6808 	.resume = igc_io_resume,
6809 };
6810 
6811 #ifdef CONFIG_PM
6812 static const struct dev_pm_ops igc_pm_ops = {
6813 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6814 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6815 			   igc_runtime_idle)
6816 };
6817 #endif
6818 
6819 static struct pci_driver igc_driver = {
6820 	.name     = igc_driver_name,
6821 	.id_table = igc_pci_tbl,
6822 	.probe    = igc_probe,
6823 	.remove   = igc_remove,
6824 #ifdef CONFIG_PM
6825 	.driver.pm = &igc_pm_ops,
6826 #endif
6827 	.shutdown = igc_shutdown,
6828 	.err_handler = &igc_err_handler,
6829 };
6830 
6831 /**
6832  * igc_reinit_queues - return error
6833  * @adapter: pointer to adapter structure
6834  */
6835 int igc_reinit_queues(struct igc_adapter *adapter)
6836 {
6837 	struct net_device *netdev = adapter->netdev;
6838 	int err = 0;
6839 
6840 	if (netif_running(netdev))
6841 		igc_close(netdev);
6842 
6843 	igc_reset_interrupt_capability(adapter);
6844 
6845 	if (igc_init_interrupt_scheme(adapter, true)) {
6846 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6847 		return -ENOMEM;
6848 	}
6849 
6850 	if (netif_running(netdev))
6851 		err = igc_open(netdev);
6852 
6853 	return err;
6854 }
6855 
6856 /**
6857  * igc_get_hw_dev - return device
6858  * @hw: pointer to hardware structure
6859  *
6860  * used by hardware layer to print debugging information
6861  */
6862 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6863 {
6864 	struct igc_adapter *adapter = hw->back;
6865 
6866 	return adapter->netdev;
6867 }
6868 
6869 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6870 {
6871 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6872 	u8 idx = ring->reg_idx;
6873 	u32 rxdctl;
6874 
6875 	rxdctl = rd32(IGC_RXDCTL(idx));
6876 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6877 	rxdctl |= IGC_RXDCTL_SWFLUSH;
6878 	wr32(IGC_RXDCTL(idx), rxdctl);
6879 }
6880 
6881 void igc_disable_rx_ring(struct igc_ring *ring)
6882 {
6883 	igc_disable_rx_ring_hw(ring);
6884 	igc_clean_rx_ring(ring);
6885 }
6886 
6887 void igc_enable_rx_ring(struct igc_ring *ring)
6888 {
6889 	struct igc_adapter *adapter = ring->q_vector->adapter;
6890 
6891 	igc_configure_rx_ring(adapter, ring);
6892 
6893 	if (ring->xsk_pool)
6894 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6895 	else
6896 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6897 }
6898 
6899 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6900 {
6901 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6902 	u8 idx = ring->reg_idx;
6903 	u32 txdctl;
6904 
6905 	txdctl = rd32(IGC_TXDCTL(idx));
6906 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6907 	txdctl |= IGC_TXDCTL_SWFLUSH;
6908 	wr32(IGC_TXDCTL(idx), txdctl);
6909 }
6910 
6911 void igc_disable_tx_ring(struct igc_ring *ring)
6912 {
6913 	igc_disable_tx_ring_hw(ring);
6914 	igc_clean_tx_ring(ring);
6915 }
6916 
6917 void igc_enable_tx_ring(struct igc_ring *ring)
6918 {
6919 	struct igc_adapter *adapter = ring->q_vector->adapter;
6920 
6921 	igc_configure_tx_ring(adapter, ring);
6922 }
6923 
6924 /**
6925  * igc_init_module - Driver Registration Routine
6926  *
6927  * igc_init_module is the first routine called when the driver is
6928  * loaded. All it does is register with the PCI subsystem.
6929  */
6930 static int __init igc_init_module(void)
6931 {
6932 	int ret;
6933 
6934 	pr_info("%s\n", igc_driver_string);
6935 	pr_info("%s\n", igc_copyright);
6936 
6937 	ret = pci_register_driver(&igc_driver);
6938 	return ret;
6939 }
6940 
6941 module_init(igc_init_module);
6942 
6943 /**
6944  * igc_exit_module - Driver Exit Cleanup Routine
6945  *
6946  * igc_exit_module is called just before the driver is removed
6947  * from memory.
6948  */
6949 static void __exit igc_exit_module(void)
6950 {
6951 	pci_unregister_driver(&igc_driver);
6952 }
6953 
6954 module_exit(igc_exit_module);
6955 /* igc_main.c */
6956