1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/aer.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/ip.h> 11 #include <linux/pm_runtime.h> 12 #include <net/pkt_sched.h> 13 #include <linux/bpf_trace.h> 14 #include <net/xdp_sock_drv.h> 15 #include <linux/pci.h> 16 17 #include <net/ipv6.h> 18 19 #include "igc.h" 20 #include "igc_hw.h" 21 #include "igc_tsn.h" 22 #include "igc_xdp.h" 23 24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 25 26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 27 28 #define IGC_XDP_PASS 0 29 #define IGC_XDP_CONSUMED BIT(0) 30 #define IGC_XDP_TX BIT(1) 31 #define IGC_XDP_REDIRECT BIT(2) 32 33 static int debug = -1; 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 module_param(debug, int, 0); 39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 40 41 char igc_driver_name[] = "igc"; 42 static const char igc_driver_string[] = DRV_SUMMARY; 43 static const char igc_copyright[] = 44 "Copyright(c) 2018 Intel Corporation."; 45 46 static const struct igc_info *igc_info_tbl[] = { 47 [board_base] = &igc_base_info, 48 }; 49 50 static const struct pci_device_id igc_pci_tbl[] = { 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 66 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 67 /* required last entry */ 68 {0, } 69 }; 70 71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 72 73 enum latency_range { 74 lowest_latency = 0, 75 low_latency = 1, 76 bulk_latency = 2, 77 latency_invalid = 255 78 }; 79 80 void igc_reset(struct igc_adapter *adapter) 81 { 82 struct net_device *dev = adapter->netdev; 83 struct igc_hw *hw = &adapter->hw; 84 struct igc_fc_info *fc = &hw->fc; 85 u32 pba, hwm; 86 87 /* Repartition PBA for greater than 9k MTU if required */ 88 pba = IGC_PBA_34K; 89 90 /* flow control settings 91 * The high water mark must be low enough to fit one full frame 92 * after transmitting the pause frame. As such we must have enough 93 * space to allow for us to complete our current transmit and then 94 * receive the frame that is in progress from the link partner. 95 * Set it to: 96 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 97 */ 98 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 99 100 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 101 fc->low_water = fc->high_water - 16; 102 fc->pause_time = 0xFFFF; 103 fc->send_xon = 1; 104 fc->current_mode = fc->requested_mode; 105 106 hw->mac.ops.reset_hw(hw); 107 108 if (hw->mac.ops.init_hw(hw)) 109 netdev_err(dev, "Error on hardware initialization\n"); 110 111 /* Re-establish EEE setting */ 112 igc_set_eee_i225(hw, true, true, true); 113 114 if (!netif_running(adapter->netdev)) 115 igc_power_down_phy_copper_base(&adapter->hw); 116 117 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 118 wr32(IGC_VET, ETH_P_8021Q); 119 120 /* Re-enable PTP, where applicable. */ 121 igc_ptp_reset(adapter); 122 123 /* Re-enable TSN offloading, where applicable. */ 124 igc_tsn_reset(adapter); 125 126 igc_get_phy_info(hw); 127 } 128 129 /** 130 * igc_power_up_link - Power up the phy link 131 * @adapter: address of board private structure 132 */ 133 static void igc_power_up_link(struct igc_adapter *adapter) 134 { 135 igc_reset_phy(&adapter->hw); 136 137 igc_power_up_phy_copper(&adapter->hw); 138 139 igc_setup_link(&adapter->hw); 140 } 141 142 /** 143 * igc_release_hw_control - release control of the h/w to f/w 144 * @adapter: address of board private structure 145 * 146 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 147 * For ASF and Pass Through versions of f/w this means that the 148 * driver is no longer loaded. 149 */ 150 static void igc_release_hw_control(struct igc_adapter *adapter) 151 { 152 struct igc_hw *hw = &adapter->hw; 153 u32 ctrl_ext; 154 155 if (!pci_device_is_present(adapter->pdev)) 156 return; 157 158 /* Let firmware take over control of h/w */ 159 ctrl_ext = rd32(IGC_CTRL_EXT); 160 wr32(IGC_CTRL_EXT, 161 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 162 } 163 164 /** 165 * igc_get_hw_control - get control of the h/w from f/w 166 * @adapter: address of board private structure 167 * 168 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 169 * For ASF and Pass Through versions of f/w this means that 170 * the driver is loaded. 171 */ 172 static void igc_get_hw_control(struct igc_adapter *adapter) 173 { 174 struct igc_hw *hw = &adapter->hw; 175 u32 ctrl_ext; 176 177 /* Let firmware know the driver has taken over */ 178 ctrl_ext = rd32(IGC_CTRL_EXT); 179 wr32(IGC_CTRL_EXT, 180 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 181 } 182 183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 184 { 185 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 186 dma_unmap_len(buf, len), DMA_TO_DEVICE); 187 188 dma_unmap_len_set(buf, len, 0); 189 } 190 191 /** 192 * igc_clean_tx_ring - Free Tx Buffers 193 * @tx_ring: ring to be cleaned 194 */ 195 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 196 { 197 u16 i = tx_ring->next_to_clean; 198 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 199 u32 xsk_frames = 0; 200 201 while (i != tx_ring->next_to_use) { 202 union igc_adv_tx_desc *eop_desc, *tx_desc; 203 204 switch (tx_buffer->type) { 205 case IGC_TX_BUFFER_TYPE_XSK: 206 xsk_frames++; 207 break; 208 case IGC_TX_BUFFER_TYPE_XDP: 209 xdp_return_frame(tx_buffer->xdpf); 210 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 211 break; 212 case IGC_TX_BUFFER_TYPE_SKB: 213 dev_kfree_skb_any(tx_buffer->skb); 214 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 215 break; 216 default: 217 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 218 break; 219 } 220 221 /* check for eop_desc to determine the end of the packet */ 222 eop_desc = tx_buffer->next_to_watch; 223 tx_desc = IGC_TX_DESC(tx_ring, i); 224 225 /* unmap remaining buffers */ 226 while (tx_desc != eop_desc) { 227 tx_buffer++; 228 tx_desc++; 229 i++; 230 if (unlikely(i == tx_ring->count)) { 231 i = 0; 232 tx_buffer = tx_ring->tx_buffer_info; 233 tx_desc = IGC_TX_DESC(tx_ring, 0); 234 } 235 236 /* unmap any remaining paged data */ 237 if (dma_unmap_len(tx_buffer, len)) 238 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 239 } 240 241 tx_buffer->next_to_watch = NULL; 242 243 /* move us one more past the eop_desc for start of next pkt */ 244 tx_buffer++; 245 i++; 246 if (unlikely(i == tx_ring->count)) { 247 i = 0; 248 tx_buffer = tx_ring->tx_buffer_info; 249 } 250 } 251 252 if (tx_ring->xsk_pool && xsk_frames) 253 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 254 255 /* reset BQL for queue */ 256 netdev_tx_reset_queue(txring_txq(tx_ring)); 257 258 /* reset next_to_use and next_to_clean */ 259 tx_ring->next_to_use = 0; 260 tx_ring->next_to_clean = 0; 261 } 262 263 /** 264 * igc_free_tx_resources - Free Tx Resources per Queue 265 * @tx_ring: Tx descriptor ring for a specific queue 266 * 267 * Free all transmit software resources 268 */ 269 void igc_free_tx_resources(struct igc_ring *tx_ring) 270 { 271 igc_clean_tx_ring(tx_ring); 272 273 vfree(tx_ring->tx_buffer_info); 274 tx_ring->tx_buffer_info = NULL; 275 276 /* if not set, then don't free */ 277 if (!tx_ring->desc) 278 return; 279 280 dma_free_coherent(tx_ring->dev, tx_ring->size, 281 tx_ring->desc, tx_ring->dma); 282 283 tx_ring->desc = NULL; 284 } 285 286 /** 287 * igc_free_all_tx_resources - Free Tx Resources for All Queues 288 * @adapter: board private structure 289 * 290 * Free all transmit software resources 291 */ 292 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 293 { 294 int i; 295 296 for (i = 0; i < adapter->num_tx_queues; i++) 297 igc_free_tx_resources(adapter->tx_ring[i]); 298 } 299 300 /** 301 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 302 * @adapter: board private structure 303 */ 304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 305 { 306 int i; 307 308 for (i = 0; i < adapter->num_tx_queues; i++) 309 if (adapter->tx_ring[i]) 310 igc_clean_tx_ring(adapter->tx_ring[i]); 311 } 312 313 /** 314 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 315 * @tx_ring: tx descriptor ring (for a specific queue) to setup 316 * 317 * Return 0 on success, negative on failure 318 */ 319 int igc_setup_tx_resources(struct igc_ring *tx_ring) 320 { 321 struct net_device *ndev = tx_ring->netdev; 322 struct device *dev = tx_ring->dev; 323 int size = 0; 324 325 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 326 tx_ring->tx_buffer_info = vzalloc(size); 327 if (!tx_ring->tx_buffer_info) 328 goto err; 329 330 /* round up to nearest 4K */ 331 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 332 tx_ring->size = ALIGN(tx_ring->size, 4096); 333 334 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 335 &tx_ring->dma, GFP_KERNEL); 336 337 if (!tx_ring->desc) 338 goto err; 339 340 tx_ring->next_to_use = 0; 341 tx_ring->next_to_clean = 0; 342 343 return 0; 344 345 err: 346 vfree(tx_ring->tx_buffer_info); 347 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 348 return -ENOMEM; 349 } 350 351 /** 352 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 353 * @adapter: board private structure 354 * 355 * Return 0 on success, negative on failure 356 */ 357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 358 { 359 struct net_device *dev = adapter->netdev; 360 int i, err = 0; 361 362 for (i = 0; i < adapter->num_tx_queues; i++) { 363 err = igc_setup_tx_resources(adapter->tx_ring[i]); 364 if (err) { 365 netdev_err(dev, "Error on Tx queue %u setup\n", i); 366 for (i--; i >= 0; i--) 367 igc_free_tx_resources(adapter->tx_ring[i]); 368 break; 369 } 370 } 371 372 return err; 373 } 374 375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 376 { 377 u16 i = rx_ring->next_to_clean; 378 379 dev_kfree_skb(rx_ring->skb); 380 rx_ring->skb = NULL; 381 382 /* Free all the Rx ring sk_buffs */ 383 while (i != rx_ring->next_to_alloc) { 384 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 385 386 /* Invalidate cache lines that may have been written to by 387 * device so that we avoid corrupting memory. 388 */ 389 dma_sync_single_range_for_cpu(rx_ring->dev, 390 buffer_info->dma, 391 buffer_info->page_offset, 392 igc_rx_bufsz(rx_ring), 393 DMA_FROM_DEVICE); 394 395 /* free resources associated with mapping */ 396 dma_unmap_page_attrs(rx_ring->dev, 397 buffer_info->dma, 398 igc_rx_pg_size(rx_ring), 399 DMA_FROM_DEVICE, 400 IGC_RX_DMA_ATTR); 401 __page_frag_cache_drain(buffer_info->page, 402 buffer_info->pagecnt_bias); 403 404 i++; 405 if (i == rx_ring->count) 406 i = 0; 407 } 408 } 409 410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 411 { 412 struct igc_rx_buffer *bi; 413 u16 i; 414 415 for (i = 0; i < ring->count; i++) { 416 bi = &ring->rx_buffer_info[i]; 417 if (!bi->xdp) 418 continue; 419 420 xsk_buff_free(bi->xdp); 421 bi->xdp = NULL; 422 } 423 } 424 425 /** 426 * igc_clean_rx_ring - Free Rx Buffers per Queue 427 * @ring: ring to free buffers from 428 */ 429 static void igc_clean_rx_ring(struct igc_ring *ring) 430 { 431 if (ring->xsk_pool) 432 igc_clean_rx_ring_xsk_pool(ring); 433 else 434 igc_clean_rx_ring_page_shared(ring); 435 436 clear_ring_uses_large_buffer(ring); 437 438 ring->next_to_alloc = 0; 439 ring->next_to_clean = 0; 440 ring->next_to_use = 0; 441 } 442 443 /** 444 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 445 * @adapter: board private structure 446 */ 447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 448 { 449 int i; 450 451 for (i = 0; i < adapter->num_rx_queues; i++) 452 if (adapter->rx_ring[i]) 453 igc_clean_rx_ring(adapter->rx_ring[i]); 454 } 455 456 /** 457 * igc_free_rx_resources - Free Rx Resources 458 * @rx_ring: ring to clean the resources from 459 * 460 * Free all receive software resources 461 */ 462 void igc_free_rx_resources(struct igc_ring *rx_ring) 463 { 464 igc_clean_rx_ring(rx_ring); 465 466 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 467 468 vfree(rx_ring->rx_buffer_info); 469 rx_ring->rx_buffer_info = NULL; 470 471 /* if not set, then don't free */ 472 if (!rx_ring->desc) 473 return; 474 475 dma_free_coherent(rx_ring->dev, rx_ring->size, 476 rx_ring->desc, rx_ring->dma); 477 478 rx_ring->desc = NULL; 479 } 480 481 /** 482 * igc_free_all_rx_resources - Free Rx Resources for All Queues 483 * @adapter: board private structure 484 * 485 * Free all receive software resources 486 */ 487 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 488 { 489 int i; 490 491 for (i = 0; i < adapter->num_rx_queues; i++) 492 igc_free_rx_resources(adapter->rx_ring[i]); 493 } 494 495 /** 496 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 497 * @rx_ring: rx descriptor ring (for a specific queue) to setup 498 * 499 * Returns 0 on success, negative on failure 500 */ 501 int igc_setup_rx_resources(struct igc_ring *rx_ring) 502 { 503 struct net_device *ndev = rx_ring->netdev; 504 struct device *dev = rx_ring->dev; 505 u8 index = rx_ring->queue_index; 506 int size, desc_len, res; 507 508 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 509 rx_ring->q_vector->napi.napi_id); 510 if (res < 0) { 511 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 512 index); 513 return res; 514 } 515 516 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 517 rx_ring->rx_buffer_info = vzalloc(size); 518 if (!rx_ring->rx_buffer_info) 519 goto err; 520 521 desc_len = sizeof(union igc_adv_rx_desc); 522 523 /* Round up to nearest 4K */ 524 rx_ring->size = rx_ring->count * desc_len; 525 rx_ring->size = ALIGN(rx_ring->size, 4096); 526 527 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 528 &rx_ring->dma, GFP_KERNEL); 529 530 if (!rx_ring->desc) 531 goto err; 532 533 rx_ring->next_to_alloc = 0; 534 rx_ring->next_to_clean = 0; 535 rx_ring->next_to_use = 0; 536 537 return 0; 538 539 err: 540 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 541 vfree(rx_ring->rx_buffer_info); 542 rx_ring->rx_buffer_info = NULL; 543 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 544 return -ENOMEM; 545 } 546 547 /** 548 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 549 * (Descriptors) for all queues 550 * @adapter: board private structure 551 * 552 * Return 0 on success, negative on failure 553 */ 554 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 555 { 556 struct net_device *dev = adapter->netdev; 557 int i, err = 0; 558 559 for (i = 0; i < adapter->num_rx_queues; i++) { 560 err = igc_setup_rx_resources(adapter->rx_ring[i]); 561 if (err) { 562 netdev_err(dev, "Error on Rx queue %u setup\n", i); 563 for (i--; i >= 0; i--) 564 igc_free_rx_resources(adapter->rx_ring[i]); 565 break; 566 } 567 } 568 569 return err; 570 } 571 572 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 573 struct igc_ring *ring) 574 { 575 if (!igc_xdp_is_enabled(adapter) || 576 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 577 return NULL; 578 579 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 580 } 581 582 /** 583 * igc_configure_rx_ring - Configure a receive ring after Reset 584 * @adapter: board private structure 585 * @ring: receive ring to be configured 586 * 587 * Configure the Rx unit of the MAC after a reset. 588 */ 589 static void igc_configure_rx_ring(struct igc_adapter *adapter, 590 struct igc_ring *ring) 591 { 592 struct igc_hw *hw = &adapter->hw; 593 union igc_adv_rx_desc *rx_desc; 594 int reg_idx = ring->reg_idx; 595 u32 srrctl = 0, rxdctl = 0; 596 u64 rdba = ring->dma; 597 u32 buf_size; 598 599 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 600 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 601 if (ring->xsk_pool) { 602 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 603 MEM_TYPE_XSK_BUFF_POOL, 604 NULL)); 605 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 606 } else { 607 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 608 MEM_TYPE_PAGE_SHARED, 609 NULL)); 610 } 611 612 if (igc_xdp_is_enabled(adapter)) 613 set_ring_uses_large_buffer(ring); 614 615 /* disable the queue */ 616 wr32(IGC_RXDCTL(reg_idx), 0); 617 618 /* Set DMA base address registers */ 619 wr32(IGC_RDBAL(reg_idx), 620 rdba & 0x00000000ffffffffULL); 621 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 622 wr32(IGC_RDLEN(reg_idx), 623 ring->count * sizeof(union igc_adv_rx_desc)); 624 625 /* initialize head and tail */ 626 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 627 wr32(IGC_RDH(reg_idx), 0); 628 writel(0, ring->tail); 629 630 /* reset next-to- use/clean to place SW in sync with hardware */ 631 ring->next_to_clean = 0; 632 ring->next_to_use = 0; 633 634 if (ring->xsk_pool) 635 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 636 else if (ring_uses_large_buffer(ring)) 637 buf_size = IGC_RXBUFFER_3072; 638 else 639 buf_size = IGC_RXBUFFER_2048; 640 641 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; 642 srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT; 643 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 644 645 wr32(IGC_SRRCTL(reg_idx), srrctl); 646 647 rxdctl |= IGC_RX_PTHRESH; 648 rxdctl |= IGC_RX_HTHRESH << 8; 649 rxdctl |= IGC_RX_WTHRESH << 16; 650 651 /* initialize rx_buffer_info */ 652 memset(ring->rx_buffer_info, 0, 653 sizeof(struct igc_rx_buffer) * ring->count); 654 655 /* initialize Rx descriptor 0 */ 656 rx_desc = IGC_RX_DESC(ring, 0); 657 rx_desc->wb.upper.length = 0; 658 659 /* enable receive descriptor fetching */ 660 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 661 662 wr32(IGC_RXDCTL(reg_idx), rxdctl); 663 } 664 665 /** 666 * igc_configure_rx - Configure receive Unit after Reset 667 * @adapter: board private structure 668 * 669 * Configure the Rx unit of the MAC after a reset. 670 */ 671 static void igc_configure_rx(struct igc_adapter *adapter) 672 { 673 int i; 674 675 /* Setup the HW Rx Head and Tail Descriptor Pointers and 676 * the Base and Length of the Rx Descriptor Ring 677 */ 678 for (i = 0; i < adapter->num_rx_queues; i++) 679 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 680 } 681 682 /** 683 * igc_configure_tx_ring - Configure transmit ring after Reset 684 * @adapter: board private structure 685 * @ring: tx ring to configure 686 * 687 * Configure a transmit ring after a reset. 688 */ 689 static void igc_configure_tx_ring(struct igc_adapter *adapter, 690 struct igc_ring *ring) 691 { 692 struct igc_hw *hw = &adapter->hw; 693 int reg_idx = ring->reg_idx; 694 u64 tdba = ring->dma; 695 u32 txdctl = 0; 696 697 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 698 699 /* disable the queue */ 700 wr32(IGC_TXDCTL(reg_idx), 0); 701 wrfl(); 702 mdelay(10); 703 704 wr32(IGC_TDLEN(reg_idx), 705 ring->count * sizeof(union igc_adv_tx_desc)); 706 wr32(IGC_TDBAL(reg_idx), 707 tdba & 0x00000000ffffffffULL); 708 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 709 710 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 711 wr32(IGC_TDH(reg_idx), 0); 712 writel(0, ring->tail); 713 714 txdctl |= IGC_TX_PTHRESH; 715 txdctl |= IGC_TX_HTHRESH << 8; 716 txdctl |= IGC_TX_WTHRESH << 16; 717 718 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 719 wr32(IGC_TXDCTL(reg_idx), txdctl); 720 } 721 722 /** 723 * igc_configure_tx - Configure transmit Unit after Reset 724 * @adapter: board private structure 725 * 726 * Configure the Tx unit of the MAC after a reset. 727 */ 728 static void igc_configure_tx(struct igc_adapter *adapter) 729 { 730 int i; 731 732 for (i = 0; i < adapter->num_tx_queues; i++) 733 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 734 } 735 736 /** 737 * igc_setup_mrqc - configure the multiple receive queue control registers 738 * @adapter: Board private structure 739 */ 740 static void igc_setup_mrqc(struct igc_adapter *adapter) 741 { 742 struct igc_hw *hw = &adapter->hw; 743 u32 j, num_rx_queues; 744 u32 mrqc, rxcsum; 745 u32 rss_key[10]; 746 747 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 748 for (j = 0; j < 10; j++) 749 wr32(IGC_RSSRK(j), rss_key[j]); 750 751 num_rx_queues = adapter->rss_queues; 752 753 if (adapter->rss_indir_tbl_init != num_rx_queues) { 754 for (j = 0; j < IGC_RETA_SIZE; j++) 755 adapter->rss_indir_tbl[j] = 756 (j * num_rx_queues) / IGC_RETA_SIZE; 757 adapter->rss_indir_tbl_init = num_rx_queues; 758 } 759 igc_write_rss_indir_tbl(adapter); 760 761 /* Disable raw packet checksumming so that RSS hash is placed in 762 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 763 * offloads as they are enabled by default 764 */ 765 rxcsum = rd32(IGC_RXCSUM); 766 rxcsum |= IGC_RXCSUM_PCSD; 767 768 /* Enable Receive Checksum Offload for SCTP */ 769 rxcsum |= IGC_RXCSUM_CRCOFL; 770 771 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 772 wr32(IGC_RXCSUM, rxcsum); 773 774 /* Generate RSS hash based on packet types, TCP/UDP 775 * port numbers and/or IPv4/v6 src and dst addresses 776 */ 777 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 778 IGC_MRQC_RSS_FIELD_IPV4_TCP | 779 IGC_MRQC_RSS_FIELD_IPV6 | 780 IGC_MRQC_RSS_FIELD_IPV6_TCP | 781 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 782 783 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 784 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 785 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 786 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 787 788 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 789 790 wr32(IGC_MRQC, mrqc); 791 } 792 793 /** 794 * igc_setup_rctl - configure the receive control registers 795 * @adapter: Board private structure 796 */ 797 static void igc_setup_rctl(struct igc_adapter *adapter) 798 { 799 struct igc_hw *hw = &adapter->hw; 800 u32 rctl; 801 802 rctl = rd32(IGC_RCTL); 803 804 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 805 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 806 807 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 808 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 809 810 /* enable stripping of CRC. Newer features require 811 * that the HW strips the CRC. 812 */ 813 rctl |= IGC_RCTL_SECRC; 814 815 /* disable store bad packets and clear size bits. */ 816 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 817 818 /* enable LPE to allow for reception of jumbo frames */ 819 rctl |= IGC_RCTL_LPE; 820 821 /* disable queue 0 to prevent tail write w/o re-config */ 822 wr32(IGC_RXDCTL(0), 0); 823 824 /* This is useful for sniffing bad packets. */ 825 if (adapter->netdev->features & NETIF_F_RXALL) { 826 /* UPE and MPE will be handled by normal PROMISC logic 827 * in set_rx_mode 828 */ 829 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 830 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 831 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 832 833 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 834 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 835 } 836 837 wr32(IGC_RCTL, rctl); 838 } 839 840 /** 841 * igc_setup_tctl - configure the transmit control registers 842 * @adapter: Board private structure 843 */ 844 static void igc_setup_tctl(struct igc_adapter *adapter) 845 { 846 struct igc_hw *hw = &adapter->hw; 847 u32 tctl; 848 849 /* disable queue 0 which icould be enabled by default */ 850 wr32(IGC_TXDCTL(0), 0); 851 852 /* Program the Transmit Control Register */ 853 tctl = rd32(IGC_TCTL); 854 tctl &= ~IGC_TCTL_CT; 855 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 856 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 857 858 /* Enable transmits */ 859 tctl |= IGC_TCTL_EN; 860 861 wr32(IGC_TCTL, tctl); 862 } 863 864 /** 865 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 866 * @adapter: Pointer to adapter where the filter should be set 867 * @index: Filter index 868 * @type: MAC address filter type (source or destination) 869 * @addr: MAC address 870 * @queue: If non-negative, queue assignment feature is enabled and frames 871 * matching the filter are enqueued onto 'queue'. Otherwise, queue 872 * assignment is disabled. 873 */ 874 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 875 enum igc_mac_filter_type type, 876 const u8 *addr, int queue) 877 { 878 struct net_device *dev = adapter->netdev; 879 struct igc_hw *hw = &adapter->hw; 880 u32 ral, rah; 881 882 if (WARN_ON(index >= hw->mac.rar_entry_count)) 883 return; 884 885 ral = le32_to_cpup((__le32 *)(addr)); 886 rah = le16_to_cpup((__le16 *)(addr + 4)); 887 888 if (type == IGC_MAC_FILTER_TYPE_SRC) { 889 rah &= ~IGC_RAH_ASEL_MASK; 890 rah |= IGC_RAH_ASEL_SRC_ADDR; 891 } 892 893 if (queue >= 0) { 894 rah &= ~IGC_RAH_QSEL_MASK; 895 rah |= (queue << IGC_RAH_QSEL_SHIFT); 896 rah |= IGC_RAH_QSEL_ENABLE; 897 } 898 899 rah |= IGC_RAH_AV; 900 901 wr32(IGC_RAL(index), ral); 902 wr32(IGC_RAH(index), rah); 903 904 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 905 } 906 907 /** 908 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 909 * @adapter: Pointer to adapter where the filter should be cleared 910 * @index: Filter index 911 */ 912 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 913 { 914 struct net_device *dev = adapter->netdev; 915 struct igc_hw *hw = &adapter->hw; 916 917 if (WARN_ON(index >= hw->mac.rar_entry_count)) 918 return; 919 920 wr32(IGC_RAL(index), 0); 921 wr32(IGC_RAH(index), 0); 922 923 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 924 } 925 926 /* Set default MAC address for the PF in the first RAR entry */ 927 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 928 { 929 struct net_device *dev = adapter->netdev; 930 u8 *addr = adapter->hw.mac.addr; 931 932 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 933 934 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 935 } 936 937 /** 938 * igc_set_mac - Change the Ethernet Address of the NIC 939 * @netdev: network interface device structure 940 * @p: pointer to an address structure 941 * 942 * Returns 0 on success, negative on failure 943 */ 944 static int igc_set_mac(struct net_device *netdev, void *p) 945 { 946 struct igc_adapter *adapter = netdev_priv(netdev); 947 struct igc_hw *hw = &adapter->hw; 948 struct sockaddr *addr = p; 949 950 if (!is_valid_ether_addr(addr->sa_data)) 951 return -EADDRNOTAVAIL; 952 953 eth_hw_addr_set(netdev, addr->sa_data); 954 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 955 956 /* set the correct pool for the new PF MAC address in entry 0 */ 957 igc_set_default_mac_filter(adapter); 958 959 return 0; 960 } 961 962 /** 963 * igc_write_mc_addr_list - write multicast addresses to MTA 964 * @netdev: network interface device structure 965 * 966 * Writes multicast address list to the MTA hash table. 967 * Returns: -ENOMEM on failure 968 * 0 on no addresses written 969 * X on writing X addresses to MTA 970 **/ 971 static int igc_write_mc_addr_list(struct net_device *netdev) 972 { 973 struct igc_adapter *adapter = netdev_priv(netdev); 974 struct igc_hw *hw = &adapter->hw; 975 struct netdev_hw_addr *ha; 976 u8 *mta_list; 977 int i; 978 979 if (netdev_mc_empty(netdev)) { 980 /* nothing to program, so clear mc list */ 981 igc_update_mc_addr_list(hw, NULL, 0); 982 return 0; 983 } 984 985 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 986 if (!mta_list) 987 return -ENOMEM; 988 989 /* The shared function expects a packed array of only addresses. */ 990 i = 0; 991 netdev_for_each_mc_addr(ha, netdev) 992 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 993 994 igc_update_mc_addr_list(hw, mta_list, i); 995 kfree(mta_list); 996 997 return netdev_mc_count(netdev); 998 } 999 1000 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime) 1001 { 1002 ktime_t cycle_time = adapter->cycle_time; 1003 ktime_t base_time = adapter->base_time; 1004 u32 launchtime; 1005 1006 /* FIXME: when using ETF together with taprio, we may have a 1007 * case where 'delta' is larger than the cycle_time, this may 1008 * cause problems if we don't read the current value of 1009 * IGC_BASET, as the value writen into the launchtime 1010 * descriptor field may be misinterpreted. 1011 */ 1012 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime); 1013 1014 return cpu_to_le32(launchtime); 1015 } 1016 1017 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1018 struct igc_tx_buffer *first, 1019 u32 vlan_macip_lens, u32 type_tucmd, 1020 u32 mss_l4len_idx) 1021 { 1022 struct igc_adv_tx_context_desc *context_desc; 1023 u16 i = tx_ring->next_to_use; 1024 1025 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1026 1027 i++; 1028 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1029 1030 /* set bits to identify this as an advanced context descriptor */ 1031 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1032 1033 /* For i225, context index must be unique per ring. */ 1034 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1035 mss_l4len_idx |= tx_ring->reg_idx << 4; 1036 1037 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1038 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1039 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1040 1041 /* We assume there is always a valid Tx time available. Invalid times 1042 * should have been handled by the upper layers. 1043 */ 1044 if (tx_ring->launchtime_enable) { 1045 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1046 ktime_t txtime = first->skb->tstamp; 1047 1048 skb_txtime_consumed(first->skb); 1049 context_desc->launch_time = igc_tx_launchtime(adapter, 1050 txtime); 1051 } else { 1052 context_desc->launch_time = 0; 1053 } 1054 } 1055 1056 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first) 1057 { 1058 struct sk_buff *skb = first->skb; 1059 u32 vlan_macip_lens = 0; 1060 u32 type_tucmd = 0; 1061 1062 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1063 csum_failed: 1064 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1065 !tx_ring->launchtime_enable) 1066 return; 1067 goto no_csum; 1068 } 1069 1070 switch (skb->csum_offset) { 1071 case offsetof(struct tcphdr, check): 1072 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1073 fallthrough; 1074 case offsetof(struct udphdr, check): 1075 break; 1076 case offsetof(struct sctphdr, checksum): 1077 /* validate that this is actually an SCTP request */ 1078 if (skb_csum_is_sctp(skb)) { 1079 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1080 break; 1081 } 1082 fallthrough; 1083 default: 1084 skb_checksum_help(skb); 1085 goto csum_failed; 1086 } 1087 1088 /* update TX checksum flag */ 1089 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1090 vlan_macip_lens = skb_checksum_start_offset(skb) - 1091 skb_network_offset(skb); 1092 no_csum: 1093 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1094 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1095 1096 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); 1097 } 1098 1099 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1100 { 1101 struct net_device *netdev = tx_ring->netdev; 1102 1103 netif_stop_subqueue(netdev, tx_ring->queue_index); 1104 1105 /* memory barriier comment */ 1106 smp_mb(); 1107 1108 /* We need to check again in a case another CPU has just 1109 * made room available. 1110 */ 1111 if (igc_desc_unused(tx_ring) < size) 1112 return -EBUSY; 1113 1114 /* A reprieve! */ 1115 netif_wake_subqueue(netdev, tx_ring->queue_index); 1116 1117 u64_stats_update_begin(&tx_ring->tx_syncp2); 1118 tx_ring->tx_stats.restart_queue2++; 1119 u64_stats_update_end(&tx_ring->tx_syncp2); 1120 1121 return 0; 1122 } 1123 1124 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1125 { 1126 if (igc_desc_unused(tx_ring) >= size) 1127 return 0; 1128 return __igc_maybe_stop_tx(tx_ring, size); 1129 } 1130 1131 #define IGC_SET_FLAG(_input, _flag, _result) \ 1132 (((_flag) <= (_result)) ? \ 1133 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1134 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1135 1136 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1137 { 1138 /* set type for advanced descriptor with frame checksum insertion */ 1139 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1140 IGC_ADVTXD_DCMD_DEXT | 1141 IGC_ADVTXD_DCMD_IFCS; 1142 1143 /* set HW vlan bit if vlan is present */ 1144 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1145 IGC_ADVTXD_DCMD_VLE); 1146 1147 /* set segmentation bits for TSO */ 1148 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1149 (IGC_ADVTXD_DCMD_TSE)); 1150 1151 /* set timestamp bit if present */ 1152 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1153 (IGC_ADVTXD_MAC_TSTAMP)); 1154 1155 /* insert frame checksum */ 1156 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1157 1158 return cmd_type; 1159 } 1160 1161 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1162 union igc_adv_tx_desc *tx_desc, 1163 u32 tx_flags, unsigned int paylen) 1164 { 1165 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1166 1167 /* insert L4 checksum */ 1168 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 1169 ((IGC_TXD_POPTS_TXSM << 8) / 1170 IGC_TX_FLAGS_CSUM); 1171 1172 /* insert IPv4 checksum */ 1173 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 1174 (((IGC_TXD_POPTS_IXSM << 8)) / 1175 IGC_TX_FLAGS_IPV4); 1176 1177 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1178 } 1179 1180 static int igc_tx_map(struct igc_ring *tx_ring, 1181 struct igc_tx_buffer *first, 1182 const u8 hdr_len) 1183 { 1184 struct sk_buff *skb = first->skb; 1185 struct igc_tx_buffer *tx_buffer; 1186 union igc_adv_tx_desc *tx_desc; 1187 u32 tx_flags = first->tx_flags; 1188 skb_frag_t *frag; 1189 u16 i = tx_ring->next_to_use; 1190 unsigned int data_len, size; 1191 dma_addr_t dma; 1192 u32 cmd_type; 1193 1194 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1195 tx_desc = IGC_TX_DESC(tx_ring, i); 1196 1197 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1198 1199 size = skb_headlen(skb); 1200 data_len = skb->data_len; 1201 1202 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1203 1204 tx_buffer = first; 1205 1206 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1207 if (dma_mapping_error(tx_ring->dev, dma)) 1208 goto dma_error; 1209 1210 /* record length, and DMA address */ 1211 dma_unmap_len_set(tx_buffer, len, size); 1212 dma_unmap_addr_set(tx_buffer, dma, dma); 1213 1214 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1215 1216 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1217 tx_desc->read.cmd_type_len = 1218 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1219 1220 i++; 1221 tx_desc++; 1222 if (i == tx_ring->count) { 1223 tx_desc = IGC_TX_DESC(tx_ring, 0); 1224 i = 0; 1225 } 1226 tx_desc->read.olinfo_status = 0; 1227 1228 dma += IGC_MAX_DATA_PER_TXD; 1229 size -= IGC_MAX_DATA_PER_TXD; 1230 1231 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1232 } 1233 1234 if (likely(!data_len)) 1235 break; 1236 1237 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1238 1239 i++; 1240 tx_desc++; 1241 if (i == tx_ring->count) { 1242 tx_desc = IGC_TX_DESC(tx_ring, 0); 1243 i = 0; 1244 } 1245 tx_desc->read.olinfo_status = 0; 1246 1247 size = skb_frag_size(frag); 1248 data_len -= size; 1249 1250 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1251 size, DMA_TO_DEVICE); 1252 1253 tx_buffer = &tx_ring->tx_buffer_info[i]; 1254 } 1255 1256 /* write last descriptor with RS and EOP bits */ 1257 cmd_type |= size | IGC_TXD_DCMD; 1258 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1259 1260 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1261 1262 /* set the timestamp */ 1263 first->time_stamp = jiffies; 1264 1265 skb_tx_timestamp(skb); 1266 1267 /* Force memory writes to complete before letting h/w know there 1268 * are new descriptors to fetch. (Only applicable for weak-ordered 1269 * memory model archs, such as IA-64). 1270 * 1271 * We also need this memory barrier to make certain all of the 1272 * status bits have been updated before next_to_watch is written. 1273 */ 1274 wmb(); 1275 1276 /* set next_to_watch value indicating a packet is present */ 1277 first->next_to_watch = tx_desc; 1278 1279 i++; 1280 if (i == tx_ring->count) 1281 i = 0; 1282 1283 tx_ring->next_to_use = i; 1284 1285 /* Make sure there is space in the ring for the next send. */ 1286 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1287 1288 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1289 writel(i, tx_ring->tail); 1290 } 1291 1292 return 0; 1293 dma_error: 1294 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1295 tx_buffer = &tx_ring->tx_buffer_info[i]; 1296 1297 /* clear dma mappings for failed tx_buffer_info map */ 1298 while (tx_buffer != first) { 1299 if (dma_unmap_len(tx_buffer, len)) 1300 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1301 1302 if (i-- == 0) 1303 i += tx_ring->count; 1304 tx_buffer = &tx_ring->tx_buffer_info[i]; 1305 } 1306 1307 if (dma_unmap_len(tx_buffer, len)) 1308 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1309 1310 dev_kfree_skb_any(tx_buffer->skb); 1311 tx_buffer->skb = NULL; 1312 1313 tx_ring->next_to_use = i; 1314 1315 return -1; 1316 } 1317 1318 static int igc_tso(struct igc_ring *tx_ring, 1319 struct igc_tx_buffer *first, 1320 u8 *hdr_len) 1321 { 1322 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1323 struct sk_buff *skb = first->skb; 1324 union { 1325 struct iphdr *v4; 1326 struct ipv6hdr *v6; 1327 unsigned char *hdr; 1328 } ip; 1329 union { 1330 struct tcphdr *tcp; 1331 struct udphdr *udp; 1332 unsigned char *hdr; 1333 } l4; 1334 u32 paylen, l4_offset; 1335 int err; 1336 1337 if (skb->ip_summed != CHECKSUM_PARTIAL) 1338 return 0; 1339 1340 if (!skb_is_gso(skb)) 1341 return 0; 1342 1343 err = skb_cow_head(skb, 0); 1344 if (err < 0) 1345 return err; 1346 1347 ip.hdr = skb_network_header(skb); 1348 l4.hdr = skb_checksum_start(skb); 1349 1350 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1351 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1352 1353 /* initialize outer IP header fields */ 1354 if (ip.v4->version == 4) { 1355 unsigned char *csum_start = skb_checksum_start(skb); 1356 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1357 1358 /* IP header will have to cancel out any data that 1359 * is not a part of the outer IP header 1360 */ 1361 ip.v4->check = csum_fold(csum_partial(trans_start, 1362 csum_start - trans_start, 1363 0)); 1364 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1365 1366 ip.v4->tot_len = 0; 1367 first->tx_flags |= IGC_TX_FLAGS_TSO | 1368 IGC_TX_FLAGS_CSUM | 1369 IGC_TX_FLAGS_IPV4; 1370 } else { 1371 ip.v6->payload_len = 0; 1372 first->tx_flags |= IGC_TX_FLAGS_TSO | 1373 IGC_TX_FLAGS_CSUM; 1374 } 1375 1376 /* determine offset of inner transport header */ 1377 l4_offset = l4.hdr - skb->data; 1378 1379 /* remove payload length from inner checksum */ 1380 paylen = skb->len - l4_offset; 1381 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1382 /* compute length of segmentation header */ 1383 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1384 csum_replace_by_diff(&l4.tcp->check, 1385 (__force __wsum)htonl(paylen)); 1386 } else { 1387 /* compute length of segmentation header */ 1388 *hdr_len = sizeof(*l4.udp) + l4_offset; 1389 csum_replace_by_diff(&l4.udp->check, 1390 (__force __wsum)htonl(paylen)); 1391 } 1392 1393 /* update gso size and bytecount with header size */ 1394 first->gso_segs = skb_shinfo(skb)->gso_segs; 1395 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1396 1397 /* MSS L4LEN IDX */ 1398 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1399 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1400 1401 /* VLAN MACLEN IPLEN */ 1402 vlan_macip_lens = l4.hdr - ip.hdr; 1403 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1404 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1405 1406 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, 1407 type_tucmd, mss_l4len_idx); 1408 1409 return 1; 1410 } 1411 1412 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1413 struct igc_ring *tx_ring) 1414 { 1415 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1416 __be16 protocol = vlan_get_protocol(skb); 1417 struct igc_tx_buffer *first; 1418 u32 tx_flags = 0; 1419 unsigned short f; 1420 u8 hdr_len = 0; 1421 int tso = 0; 1422 1423 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1424 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1425 * + 2 desc gap to keep tail from touching head, 1426 * + 1 desc for context descriptor, 1427 * otherwise try next time 1428 */ 1429 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1430 count += TXD_USE_COUNT(skb_frag_size( 1431 &skb_shinfo(skb)->frags[f])); 1432 1433 if (igc_maybe_stop_tx(tx_ring, count + 3)) { 1434 /* this is a hard error */ 1435 return NETDEV_TX_BUSY; 1436 } 1437 1438 /* record the location of the first descriptor for this packet */ 1439 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1440 first->type = IGC_TX_BUFFER_TYPE_SKB; 1441 first->skb = skb; 1442 first->bytecount = skb->len; 1443 first->gso_segs = 1; 1444 1445 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1446 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1447 1448 /* FIXME: add support for retrieving timestamps from 1449 * the other timer registers before skipping the 1450 * timestamping request. 1451 */ 1452 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 1453 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS, 1454 &adapter->state)) { 1455 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1456 tx_flags |= IGC_TX_FLAGS_TSTAMP; 1457 1458 adapter->ptp_tx_skb = skb_get(skb); 1459 adapter->ptp_tx_start = jiffies; 1460 } else { 1461 adapter->tx_hwtstamp_skipped++; 1462 } 1463 } 1464 1465 if (skb_vlan_tag_present(skb)) { 1466 tx_flags |= IGC_TX_FLAGS_VLAN; 1467 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1468 } 1469 1470 /* record initial flags and protocol */ 1471 first->tx_flags = tx_flags; 1472 first->protocol = protocol; 1473 1474 tso = igc_tso(tx_ring, first, &hdr_len); 1475 if (tso < 0) 1476 goto out_drop; 1477 else if (!tso) 1478 igc_tx_csum(tx_ring, first); 1479 1480 igc_tx_map(tx_ring, first, hdr_len); 1481 1482 return NETDEV_TX_OK; 1483 1484 out_drop: 1485 dev_kfree_skb_any(first->skb); 1486 first->skb = NULL; 1487 1488 return NETDEV_TX_OK; 1489 } 1490 1491 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1492 struct sk_buff *skb) 1493 { 1494 unsigned int r_idx = skb->queue_mapping; 1495 1496 if (r_idx >= adapter->num_tx_queues) 1497 r_idx = r_idx % adapter->num_tx_queues; 1498 1499 return adapter->tx_ring[r_idx]; 1500 } 1501 1502 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1503 struct net_device *netdev) 1504 { 1505 struct igc_adapter *adapter = netdev_priv(netdev); 1506 1507 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1508 * in order to meet this minimum size requirement. 1509 */ 1510 if (skb->len < 17) { 1511 if (skb_padto(skb, 17)) 1512 return NETDEV_TX_OK; 1513 skb->len = 17; 1514 } 1515 1516 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1517 } 1518 1519 static void igc_rx_checksum(struct igc_ring *ring, 1520 union igc_adv_rx_desc *rx_desc, 1521 struct sk_buff *skb) 1522 { 1523 skb_checksum_none_assert(skb); 1524 1525 /* Ignore Checksum bit is set */ 1526 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1527 return; 1528 1529 /* Rx checksum disabled via ethtool */ 1530 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1531 return; 1532 1533 /* TCP/UDP checksum error bit is set */ 1534 if (igc_test_staterr(rx_desc, 1535 IGC_RXDEXT_STATERR_L4E | 1536 IGC_RXDEXT_STATERR_IPE)) { 1537 /* work around errata with sctp packets where the TCPE aka 1538 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1539 * packets (aka let the stack check the crc32c) 1540 */ 1541 if (!(skb->len == 60 && 1542 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1543 u64_stats_update_begin(&ring->rx_syncp); 1544 ring->rx_stats.csum_err++; 1545 u64_stats_update_end(&ring->rx_syncp); 1546 } 1547 /* let the stack verify checksum errors */ 1548 return; 1549 } 1550 /* It must be a TCP or UDP packet with a valid checksum */ 1551 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1552 IGC_RXD_STAT_UDPCS)) 1553 skb->ip_summed = CHECKSUM_UNNECESSARY; 1554 1555 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1556 le32_to_cpu(rx_desc->wb.upper.status_error)); 1557 } 1558 1559 static inline void igc_rx_hash(struct igc_ring *ring, 1560 union igc_adv_rx_desc *rx_desc, 1561 struct sk_buff *skb) 1562 { 1563 if (ring->netdev->features & NETIF_F_RXHASH) 1564 skb_set_hash(skb, 1565 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1566 PKT_HASH_TYPE_L3); 1567 } 1568 1569 static void igc_rx_vlan(struct igc_ring *rx_ring, 1570 union igc_adv_rx_desc *rx_desc, 1571 struct sk_buff *skb) 1572 { 1573 struct net_device *dev = rx_ring->netdev; 1574 u16 vid; 1575 1576 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1577 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1578 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1579 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1580 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1581 else 1582 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1583 1584 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1585 } 1586 } 1587 1588 /** 1589 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1590 * @rx_ring: rx descriptor ring packet is being transacted on 1591 * @rx_desc: pointer to the EOP Rx descriptor 1592 * @skb: pointer to current skb being populated 1593 * 1594 * This function checks the ring, descriptor, and packet information in order 1595 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1596 * skb. 1597 */ 1598 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1599 union igc_adv_rx_desc *rx_desc, 1600 struct sk_buff *skb) 1601 { 1602 igc_rx_hash(rx_ring, rx_desc, skb); 1603 1604 igc_rx_checksum(rx_ring, rx_desc, skb); 1605 1606 igc_rx_vlan(rx_ring, rx_desc, skb); 1607 1608 skb_record_rx_queue(skb, rx_ring->queue_index); 1609 1610 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1611 } 1612 1613 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1614 { 1615 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1616 struct igc_adapter *adapter = netdev_priv(netdev); 1617 struct igc_hw *hw = &adapter->hw; 1618 u32 ctrl; 1619 1620 ctrl = rd32(IGC_CTRL); 1621 1622 if (enable) { 1623 /* enable VLAN tag insert/strip */ 1624 ctrl |= IGC_CTRL_VME; 1625 } else { 1626 /* disable VLAN tag insert/strip */ 1627 ctrl &= ~IGC_CTRL_VME; 1628 } 1629 wr32(IGC_CTRL, ctrl); 1630 } 1631 1632 static void igc_restore_vlan(struct igc_adapter *adapter) 1633 { 1634 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1635 } 1636 1637 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1638 const unsigned int size, 1639 int *rx_buffer_pgcnt) 1640 { 1641 struct igc_rx_buffer *rx_buffer; 1642 1643 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1644 *rx_buffer_pgcnt = 1645 #if (PAGE_SIZE < 8192) 1646 page_count(rx_buffer->page); 1647 #else 1648 0; 1649 #endif 1650 prefetchw(rx_buffer->page); 1651 1652 /* we are reusing so sync this buffer for CPU use */ 1653 dma_sync_single_range_for_cpu(rx_ring->dev, 1654 rx_buffer->dma, 1655 rx_buffer->page_offset, 1656 size, 1657 DMA_FROM_DEVICE); 1658 1659 rx_buffer->pagecnt_bias--; 1660 1661 return rx_buffer; 1662 } 1663 1664 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1665 unsigned int truesize) 1666 { 1667 #if (PAGE_SIZE < 8192) 1668 buffer->page_offset ^= truesize; 1669 #else 1670 buffer->page_offset += truesize; 1671 #endif 1672 } 1673 1674 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1675 unsigned int size) 1676 { 1677 unsigned int truesize; 1678 1679 #if (PAGE_SIZE < 8192) 1680 truesize = igc_rx_pg_size(ring) / 2; 1681 #else 1682 truesize = ring_uses_build_skb(ring) ? 1683 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1684 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1685 SKB_DATA_ALIGN(size); 1686 #endif 1687 return truesize; 1688 } 1689 1690 /** 1691 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1692 * @rx_ring: rx descriptor ring to transact packets on 1693 * @rx_buffer: buffer containing page to add 1694 * @skb: sk_buff to place the data into 1695 * @size: size of buffer to be added 1696 * 1697 * This function will add the data contained in rx_buffer->page to the skb. 1698 */ 1699 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1700 struct igc_rx_buffer *rx_buffer, 1701 struct sk_buff *skb, 1702 unsigned int size) 1703 { 1704 unsigned int truesize; 1705 1706 #if (PAGE_SIZE < 8192) 1707 truesize = igc_rx_pg_size(rx_ring) / 2; 1708 #else 1709 truesize = ring_uses_build_skb(rx_ring) ? 1710 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1711 SKB_DATA_ALIGN(size); 1712 #endif 1713 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1714 rx_buffer->page_offset, size, truesize); 1715 1716 igc_rx_buffer_flip(rx_buffer, truesize); 1717 } 1718 1719 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1720 struct igc_rx_buffer *rx_buffer, 1721 union igc_adv_rx_desc *rx_desc, 1722 unsigned int size) 1723 { 1724 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1725 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1726 struct sk_buff *skb; 1727 1728 /* prefetch first cache line of first page */ 1729 net_prefetch(va); 1730 1731 /* build an skb around the page buffer */ 1732 skb = build_skb(va - IGC_SKB_PAD, truesize); 1733 if (unlikely(!skb)) 1734 return NULL; 1735 1736 /* update pointers within the skb to store the data */ 1737 skb_reserve(skb, IGC_SKB_PAD); 1738 __skb_put(skb, size); 1739 1740 igc_rx_buffer_flip(rx_buffer, truesize); 1741 return skb; 1742 } 1743 1744 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1745 struct igc_rx_buffer *rx_buffer, 1746 struct xdp_buff *xdp, 1747 ktime_t timestamp) 1748 { 1749 unsigned int size = xdp->data_end - xdp->data; 1750 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1751 void *va = xdp->data; 1752 unsigned int headlen; 1753 struct sk_buff *skb; 1754 1755 /* prefetch first cache line of first page */ 1756 net_prefetch(va); 1757 1758 /* allocate a skb to store the frags */ 1759 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN); 1760 if (unlikely(!skb)) 1761 return NULL; 1762 1763 if (timestamp) 1764 skb_hwtstamps(skb)->hwtstamp = timestamp; 1765 1766 /* Determine available headroom for copy */ 1767 headlen = size; 1768 if (headlen > IGC_RX_HDR_LEN) 1769 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1770 1771 /* align pull length to size of long to optimize memcpy performance */ 1772 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1773 1774 /* update all of the pointers */ 1775 size -= headlen; 1776 if (size) { 1777 skb_add_rx_frag(skb, 0, rx_buffer->page, 1778 (va + headlen) - page_address(rx_buffer->page), 1779 size, truesize); 1780 igc_rx_buffer_flip(rx_buffer, truesize); 1781 } else { 1782 rx_buffer->pagecnt_bias++; 1783 } 1784 1785 return skb; 1786 } 1787 1788 /** 1789 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1790 * @rx_ring: rx descriptor ring to store buffers on 1791 * @old_buff: donor buffer to have page reused 1792 * 1793 * Synchronizes page for reuse by the adapter 1794 */ 1795 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1796 struct igc_rx_buffer *old_buff) 1797 { 1798 u16 nta = rx_ring->next_to_alloc; 1799 struct igc_rx_buffer *new_buff; 1800 1801 new_buff = &rx_ring->rx_buffer_info[nta]; 1802 1803 /* update, and store next to alloc */ 1804 nta++; 1805 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1806 1807 /* Transfer page from old buffer to new buffer. 1808 * Move each member individually to avoid possible store 1809 * forwarding stalls. 1810 */ 1811 new_buff->dma = old_buff->dma; 1812 new_buff->page = old_buff->page; 1813 new_buff->page_offset = old_buff->page_offset; 1814 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1815 } 1816 1817 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 1818 int rx_buffer_pgcnt) 1819 { 1820 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1821 struct page *page = rx_buffer->page; 1822 1823 /* avoid re-using remote and pfmemalloc pages */ 1824 if (!dev_page_is_reusable(page)) 1825 return false; 1826 1827 #if (PAGE_SIZE < 8192) 1828 /* if we are only owner of page we can reuse it */ 1829 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 1830 return false; 1831 #else 1832 #define IGC_LAST_OFFSET \ 1833 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1834 1835 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1836 return false; 1837 #endif 1838 1839 /* If we have drained the page fragment pool we need to update 1840 * the pagecnt_bias and page count so that we fully restock the 1841 * number of references the driver holds. 1842 */ 1843 if (unlikely(pagecnt_bias == 1)) { 1844 page_ref_add(page, USHRT_MAX - 1); 1845 rx_buffer->pagecnt_bias = USHRT_MAX; 1846 } 1847 1848 return true; 1849 } 1850 1851 /** 1852 * igc_is_non_eop - process handling of non-EOP buffers 1853 * @rx_ring: Rx ring being processed 1854 * @rx_desc: Rx descriptor for current buffer 1855 * 1856 * This function updates next to clean. If the buffer is an EOP buffer 1857 * this function exits returning false, otherwise it will place the 1858 * sk_buff in the next buffer to be chained and return true indicating 1859 * that this is in fact a non-EOP buffer. 1860 */ 1861 static bool igc_is_non_eop(struct igc_ring *rx_ring, 1862 union igc_adv_rx_desc *rx_desc) 1863 { 1864 u32 ntc = rx_ring->next_to_clean + 1; 1865 1866 /* fetch, update, and store next to clean */ 1867 ntc = (ntc < rx_ring->count) ? ntc : 0; 1868 rx_ring->next_to_clean = ntc; 1869 1870 prefetch(IGC_RX_DESC(rx_ring, ntc)); 1871 1872 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 1873 return false; 1874 1875 return true; 1876 } 1877 1878 /** 1879 * igc_cleanup_headers - Correct corrupted or empty headers 1880 * @rx_ring: rx descriptor ring packet is being transacted on 1881 * @rx_desc: pointer to the EOP Rx descriptor 1882 * @skb: pointer to current skb being fixed 1883 * 1884 * Address the case where we are pulling data in on pages only 1885 * and as such no data is present in the skb header. 1886 * 1887 * In addition if skb is not at least 60 bytes we need to pad it so that 1888 * it is large enough to qualify as a valid Ethernet frame. 1889 * 1890 * Returns true if an error was encountered and skb was freed. 1891 */ 1892 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 1893 union igc_adv_rx_desc *rx_desc, 1894 struct sk_buff *skb) 1895 { 1896 /* XDP packets use error pointer so abort at this point */ 1897 if (IS_ERR(skb)) 1898 return true; 1899 1900 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 1901 struct net_device *netdev = rx_ring->netdev; 1902 1903 if (!(netdev->features & NETIF_F_RXALL)) { 1904 dev_kfree_skb_any(skb); 1905 return true; 1906 } 1907 } 1908 1909 /* if eth_skb_pad returns an error the skb was freed */ 1910 if (eth_skb_pad(skb)) 1911 return true; 1912 1913 return false; 1914 } 1915 1916 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 1917 struct igc_rx_buffer *rx_buffer, 1918 int rx_buffer_pgcnt) 1919 { 1920 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 1921 /* hand second half of page back to the ring */ 1922 igc_reuse_rx_page(rx_ring, rx_buffer); 1923 } else { 1924 /* We are not reusing the buffer so unmap it and free 1925 * any references we are holding to it 1926 */ 1927 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1928 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1929 IGC_RX_DMA_ATTR); 1930 __page_frag_cache_drain(rx_buffer->page, 1931 rx_buffer->pagecnt_bias); 1932 } 1933 1934 /* clear contents of rx_buffer */ 1935 rx_buffer->page = NULL; 1936 } 1937 1938 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 1939 { 1940 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 1941 1942 if (ring_uses_build_skb(rx_ring)) 1943 return IGC_SKB_PAD; 1944 if (igc_xdp_is_enabled(adapter)) 1945 return XDP_PACKET_HEADROOM; 1946 1947 return 0; 1948 } 1949 1950 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 1951 struct igc_rx_buffer *bi) 1952 { 1953 struct page *page = bi->page; 1954 dma_addr_t dma; 1955 1956 /* since we are recycling buffers we should seldom need to alloc */ 1957 if (likely(page)) 1958 return true; 1959 1960 /* alloc new page for storage */ 1961 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 1962 if (unlikely(!page)) { 1963 rx_ring->rx_stats.alloc_failed++; 1964 return false; 1965 } 1966 1967 /* map page for use */ 1968 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1969 igc_rx_pg_size(rx_ring), 1970 DMA_FROM_DEVICE, 1971 IGC_RX_DMA_ATTR); 1972 1973 /* if mapping failed free memory back to system since 1974 * there isn't much point in holding memory we can't use 1975 */ 1976 if (dma_mapping_error(rx_ring->dev, dma)) { 1977 __free_page(page); 1978 1979 rx_ring->rx_stats.alloc_failed++; 1980 return false; 1981 } 1982 1983 bi->dma = dma; 1984 bi->page = page; 1985 bi->page_offset = igc_rx_offset(rx_ring); 1986 page_ref_add(page, USHRT_MAX - 1); 1987 bi->pagecnt_bias = USHRT_MAX; 1988 1989 return true; 1990 } 1991 1992 /** 1993 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 1994 * @rx_ring: rx descriptor ring 1995 * @cleaned_count: number of buffers to clean 1996 */ 1997 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 1998 { 1999 union igc_adv_rx_desc *rx_desc; 2000 u16 i = rx_ring->next_to_use; 2001 struct igc_rx_buffer *bi; 2002 u16 bufsz; 2003 2004 /* nothing to do */ 2005 if (!cleaned_count) 2006 return; 2007 2008 rx_desc = IGC_RX_DESC(rx_ring, i); 2009 bi = &rx_ring->rx_buffer_info[i]; 2010 i -= rx_ring->count; 2011 2012 bufsz = igc_rx_bufsz(rx_ring); 2013 2014 do { 2015 if (!igc_alloc_mapped_page(rx_ring, bi)) 2016 break; 2017 2018 /* sync the buffer for use by the device */ 2019 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2020 bi->page_offset, bufsz, 2021 DMA_FROM_DEVICE); 2022 2023 /* Refresh the desc even if buffer_addrs didn't change 2024 * because each write-back erases this info. 2025 */ 2026 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2027 2028 rx_desc++; 2029 bi++; 2030 i++; 2031 if (unlikely(!i)) { 2032 rx_desc = IGC_RX_DESC(rx_ring, 0); 2033 bi = rx_ring->rx_buffer_info; 2034 i -= rx_ring->count; 2035 } 2036 2037 /* clear the length for the next_to_use descriptor */ 2038 rx_desc->wb.upper.length = 0; 2039 2040 cleaned_count--; 2041 } while (cleaned_count); 2042 2043 i += rx_ring->count; 2044 2045 if (rx_ring->next_to_use != i) { 2046 /* record the next descriptor to use */ 2047 rx_ring->next_to_use = i; 2048 2049 /* update next to alloc since we have filled the ring */ 2050 rx_ring->next_to_alloc = i; 2051 2052 /* Force memory writes to complete before letting h/w 2053 * know there are new descriptors to fetch. (Only 2054 * applicable for weak-ordered memory model archs, 2055 * such as IA-64). 2056 */ 2057 wmb(); 2058 writel(i, rx_ring->tail); 2059 } 2060 } 2061 2062 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2063 { 2064 union igc_adv_rx_desc *desc; 2065 u16 i = ring->next_to_use; 2066 struct igc_rx_buffer *bi; 2067 dma_addr_t dma; 2068 bool ok = true; 2069 2070 if (!count) 2071 return ok; 2072 2073 desc = IGC_RX_DESC(ring, i); 2074 bi = &ring->rx_buffer_info[i]; 2075 i -= ring->count; 2076 2077 do { 2078 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2079 if (!bi->xdp) { 2080 ok = false; 2081 break; 2082 } 2083 2084 dma = xsk_buff_xdp_get_dma(bi->xdp); 2085 desc->read.pkt_addr = cpu_to_le64(dma); 2086 2087 desc++; 2088 bi++; 2089 i++; 2090 if (unlikely(!i)) { 2091 desc = IGC_RX_DESC(ring, 0); 2092 bi = ring->rx_buffer_info; 2093 i -= ring->count; 2094 } 2095 2096 /* Clear the length for the next_to_use descriptor. */ 2097 desc->wb.upper.length = 0; 2098 2099 count--; 2100 } while (count); 2101 2102 i += ring->count; 2103 2104 if (ring->next_to_use != i) { 2105 ring->next_to_use = i; 2106 2107 /* Force memory writes to complete before letting h/w 2108 * know there are new descriptors to fetch. (Only 2109 * applicable for weak-ordered memory model archs, 2110 * such as IA-64). 2111 */ 2112 wmb(); 2113 writel(i, ring->tail); 2114 } 2115 2116 return ok; 2117 } 2118 2119 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer, 2120 struct xdp_frame *xdpf, 2121 struct igc_ring *ring) 2122 { 2123 dma_addr_t dma; 2124 2125 dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE); 2126 if (dma_mapping_error(ring->dev, dma)) { 2127 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 2128 return -ENOMEM; 2129 } 2130 2131 buffer->type = IGC_TX_BUFFER_TYPE_XDP; 2132 buffer->xdpf = xdpf; 2133 buffer->protocol = 0; 2134 buffer->bytecount = xdpf->len; 2135 buffer->gso_segs = 1; 2136 buffer->time_stamp = jiffies; 2137 dma_unmap_len_set(buffer, len, xdpf->len); 2138 dma_unmap_addr_set(buffer, dma, dma); 2139 return 0; 2140 } 2141 2142 /* This function requires __netif_tx_lock is held by the caller. */ 2143 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2144 struct xdp_frame *xdpf) 2145 { 2146 struct igc_tx_buffer *buffer; 2147 union igc_adv_tx_desc *desc; 2148 u32 cmd_type, olinfo_status; 2149 int err; 2150 2151 if (!igc_desc_unused(ring)) 2152 return -EBUSY; 2153 2154 buffer = &ring->tx_buffer_info[ring->next_to_use]; 2155 err = igc_xdp_init_tx_buffer(buffer, xdpf, ring); 2156 if (err) 2157 return err; 2158 2159 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2160 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2161 buffer->bytecount; 2162 olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2163 2164 desc = IGC_TX_DESC(ring, ring->next_to_use); 2165 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2166 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2167 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma)); 2168 2169 netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount); 2170 2171 buffer->next_to_watch = desc; 2172 2173 ring->next_to_use++; 2174 if (ring->next_to_use == ring->count) 2175 ring->next_to_use = 0; 2176 2177 return 0; 2178 } 2179 2180 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2181 int cpu) 2182 { 2183 int index = cpu; 2184 2185 if (unlikely(index < 0)) 2186 index = 0; 2187 2188 while (index >= adapter->num_tx_queues) 2189 index -= adapter->num_tx_queues; 2190 2191 return adapter->tx_ring[index]; 2192 } 2193 2194 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2195 { 2196 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2197 int cpu = smp_processor_id(); 2198 struct netdev_queue *nq; 2199 struct igc_ring *ring; 2200 int res; 2201 2202 if (unlikely(!xdpf)) 2203 return -EFAULT; 2204 2205 ring = igc_xdp_get_tx_ring(adapter, cpu); 2206 nq = txring_txq(ring); 2207 2208 __netif_tx_lock(nq, cpu); 2209 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2210 __netif_tx_unlock(nq); 2211 return res; 2212 } 2213 2214 /* This function assumes rcu_read_lock() is held by the caller. */ 2215 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2216 struct bpf_prog *prog, 2217 struct xdp_buff *xdp) 2218 { 2219 u32 act = bpf_prog_run_xdp(prog, xdp); 2220 2221 switch (act) { 2222 case XDP_PASS: 2223 return IGC_XDP_PASS; 2224 case XDP_TX: 2225 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2226 goto out_failure; 2227 return IGC_XDP_TX; 2228 case XDP_REDIRECT: 2229 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2230 goto out_failure; 2231 return IGC_XDP_REDIRECT; 2232 break; 2233 default: 2234 bpf_warn_invalid_xdp_action(act); 2235 fallthrough; 2236 case XDP_ABORTED: 2237 out_failure: 2238 trace_xdp_exception(adapter->netdev, prog, act); 2239 fallthrough; 2240 case XDP_DROP: 2241 return IGC_XDP_CONSUMED; 2242 } 2243 } 2244 2245 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2246 struct xdp_buff *xdp) 2247 { 2248 struct bpf_prog *prog; 2249 int res; 2250 2251 prog = READ_ONCE(adapter->xdp_prog); 2252 if (!prog) { 2253 res = IGC_XDP_PASS; 2254 goto out; 2255 } 2256 2257 res = __igc_xdp_run_prog(adapter, prog, xdp); 2258 2259 out: 2260 return ERR_PTR(-res); 2261 } 2262 2263 /* This function assumes __netif_tx_lock is held by the caller. */ 2264 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2265 { 2266 /* Once tail pointer is updated, hardware can fetch the descriptors 2267 * any time so we issue a write membar here to ensure all memory 2268 * writes are complete before the tail pointer is updated. 2269 */ 2270 wmb(); 2271 writel(ring->next_to_use, ring->tail); 2272 } 2273 2274 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2275 { 2276 int cpu = smp_processor_id(); 2277 struct netdev_queue *nq; 2278 struct igc_ring *ring; 2279 2280 if (status & IGC_XDP_TX) { 2281 ring = igc_xdp_get_tx_ring(adapter, cpu); 2282 nq = txring_txq(ring); 2283 2284 __netif_tx_lock(nq, cpu); 2285 igc_flush_tx_descriptors(ring); 2286 __netif_tx_unlock(nq); 2287 } 2288 2289 if (status & IGC_XDP_REDIRECT) 2290 xdp_do_flush(); 2291 } 2292 2293 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2294 unsigned int packets, unsigned int bytes) 2295 { 2296 struct igc_ring *ring = q_vector->rx.ring; 2297 2298 u64_stats_update_begin(&ring->rx_syncp); 2299 ring->rx_stats.packets += packets; 2300 ring->rx_stats.bytes += bytes; 2301 u64_stats_update_end(&ring->rx_syncp); 2302 2303 q_vector->rx.total_packets += packets; 2304 q_vector->rx.total_bytes += bytes; 2305 } 2306 2307 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2308 { 2309 unsigned int total_bytes = 0, total_packets = 0; 2310 struct igc_adapter *adapter = q_vector->adapter; 2311 struct igc_ring *rx_ring = q_vector->rx.ring; 2312 struct sk_buff *skb = rx_ring->skb; 2313 u16 cleaned_count = igc_desc_unused(rx_ring); 2314 int xdp_status = 0, rx_buffer_pgcnt; 2315 2316 while (likely(total_packets < budget)) { 2317 union igc_adv_rx_desc *rx_desc; 2318 struct igc_rx_buffer *rx_buffer; 2319 unsigned int size, truesize; 2320 ktime_t timestamp = 0; 2321 struct xdp_buff xdp; 2322 int pkt_offset = 0; 2323 void *pktbuf; 2324 2325 /* return some buffers to hardware, one at a time is too slow */ 2326 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2327 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2328 cleaned_count = 0; 2329 } 2330 2331 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2332 size = le16_to_cpu(rx_desc->wb.upper.length); 2333 if (!size) 2334 break; 2335 2336 /* This memory barrier is needed to keep us from reading 2337 * any other fields out of the rx_desc until we know the 2338 * descriptor has been written back 2339 */ 2340 dma_rmb(); 2341 2342 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2343 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2344 2345 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2346 2347 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2348 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2349 pktbuf); 2350 pkt_offset = IGC_TS_HDR_LEN; 2351 size -= IGC_TS_HDR_LEN; 2352 } 2353 2354 if (!skb) { 2355 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq); 2356 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring), 2357 igc_rx_offset(rx_ring) + pkt_offset, size, false); 2358 2359 skb = igc_xdp_run_prog(adapter, &xdp); 2360 } 2361 2362 if (IS_ERR(skb)) { 2363 unsigned int xdp_res = -PTR_ERR(skb); 2364 2365 switch (xdp_res) { 2366 case IGC_XDP_CONSUMED: 2367 rx_buffer->pagecnt_bias++; 2368 break; 2369 case IGC_XDP_TX: 2370 case IGC_XDP_REDIRECT: 2371 igc_rx_buffer_flip(rx_buffer, truesize); 2372 xdp_status |= xdp_res; 2373 break; 2374 } 2375 2376 total_packets++; 2377 total_bytes += size; 2378 } else if (skb) 2379 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2380 else if (ring_uses_build_skb(rx_ring)) 2381 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size); 2382 else 2383 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp, 2384 timestamp); 2385 2386 /* exit if we failed to retrieve a buffer */ 2387 if (!skb) { 2388 rx_ring->rx_stats.alloc_failed++; 2389 rx_buffer->pagecnt_bias++; 2390 break; 2391 } 2392 2393 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2394 cleaned_count++; 2395 2396 /* fetch next buffer in frame if non-eop */ 2397 if (igc_is_non_eop(rx_ring, rx_desc)) 2398 continue; 2399 2400 /* verify the packet layout is correct */ 2401 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2402 skb = NULL; 2403 continue; 2404 } 2405 2406 /* probably a little skewed due to removing CRC */ 2407 total_bytes += skb->len; 2408 2409 /* populate checksum, VLAN, and protocol */ 2410 igc_process_skb_fields(rx_ring, rx_desc, skb); 2411 2412 napi_gro_receive(&q_vector->napi, skb); 2413 2414 /* reset skb pointer */ 2415 skb = NULL; 2416 2417 /* update budget accounting */ 2418 total_packets++; 2419 } 2420 2421 if (xdp_status) 2422 igc_finalize_xdp(adapter, xdp_status); 2423 2424 /* place incomplete frames back on ring for completion */ 2425 rx_ring->skb = skb; 2426 2427 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2428 2429 if (cleaned_count) 2430 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2431 2432 return total_packets; 2433 } 2434 2435 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2436 struct xdp_buff *xdp) 2437 { 2438 unsigned int metasize = xdp->data - xdp->data_meta; 2439 unsigned int datasize = xdp->data_end - xdp->data; 2440 unsigned int totalsize = metasize + datasize; 2441 struct sk_buff *skb; 2442 2443 skb = __napi_alloc_skb(&ring->q_vector->napi, 2444 xdp->data_end - xdp->data_hard_start, 2445 GFP_ATOMIC | __GFP_NOWARN); 2446 if (unlikely(!skb)) 2447 return NULL; 2448 2449 skb_reserve(skb, xdp->data_meta - xdp->data_hard_start); 2450 memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize); 2451 if (metasize) 2452 skb_metadata_set(skb, metasize); 2453 2454 return skb; 2455 } 2456 2457 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2458 union igc_adv_rx_desc *desc, 2459 struct xdp_buff *xdp, 2460 ktime_t timestamp) 2461 { 2462 struct igc_ring *ring = q_vector->rx.ring; 2463 struct sk_buff *skb; 2464 2465 skb = igc_construct_skb_zc(ring, xdp); 2466 if (!skb) { 2467 ring->rx_stats.alloc_failed++; 2468 return; 2469 } 2470 2471 if (timestamp) 2472 skb_hwtstamps(skb)->hwtstamp = timestamp; 2473 2474 if (igc_cleanup_headers(ring, desc, skb)) 2475 return; 2476 2477 igc_process_skb_fields(ring, desc, skb); 2478 napi_gro_receive(&q_vector->napi, skb); 2479 } 2480 2481 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2482 { 2483 struct igc_adapter *adapter = q_vector->adapter; 2484 struct igc_ring *ring = q_vector->rx.ring; 2485 u16 cleaned_count = igc_desc_unused(ring); 2486 int total_bytes = 0, total_packets = 0; 2487 u16 ntc = ring->next_to_clean; 2488 struct bpf_prog *prog; 2489 bool failure = false; 2490 int xdp_status = 0; 2491 2492 rcu_read_lock(); 2493 2494 prog = READ_ONCE(adapter->xdp_prog); 2495 2496 while (likely(total_packets < budget)) { 2497 union igc_adv_rx_desc *desc; 2498 struct igc_rx_buffer *bi; 2499 ktime_t timestamp = 0; 2500 unsigned int size; 2501 int res; 2502 2503 desc = IGC_RX_DESC(ring, ntc); 2504 size = le16_to_cpu(desc->wb.upper.length); 2505 if (!size) 2506 break; 2507 2508 /* This memory barrier is needed to keep us from reading 2509 * any other fields out of the rx_desc until we know the 2510 * descriptor has been written back 2511 */ 2512 dma_rmb(); 2513 2514 bi = &ring->rx_buffer_info[ntc]; 2515 2516 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2517 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2518 bi->xdp->data); 2519 2520 bi->xdp->data += IGC_TS_HDR_LEN; 2521 2522 /* HW timestamp has been copied into local variable. Metadata 2523 * length when XDP program is called should be 0. 2524 */ 2525 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2526 size -= IGC_TS_HDR_LEN; 2527 } 2528 2529 bi->xdp->data_end = bi->xdp->data + size; 2530 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); 2531 2532 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2533 switch (res) { 2534 case IGC_XDP_PASS: 2535 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2536 fallthrough; 2537 case IGC_XDP_CONSUMED: 2538 xsk_buff_free(bi->xdp); 2539 break; 2540 case IGC_XDP_TX: 2541 case IGC_XDP_REDIRECT: 2542 xdp_status |= res; 2543 break; 2544 } 2545 2546 bi->xdp = NULL; 2547 total_bytes += size; 2548 total_packets++; 2549 cleaned_count++; 2550 ntc++; 2551 if (ntc == ring->count) 2552 ntc = 0; 2553 } 2554 2555 ring->next_to_clean = ntc; 2556 rcu_read_unlock(); 2557 2558 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2559 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2560 2561 if (xdp_status) 2562 igc_finalize_xdp(adapter, xdp_status); 2563 2564 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2565 2566 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2567 if (failure || ring->next_to_clean == ring->next_to_use) 2568 xsk_set_rx_need_wakeup(ring->xsk_pool); 2569 else 2570 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2571 return total_packets; 2572 } 2573 2574 return failure ? budget : total_packets; 2575 } 2576 2577 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2578 unsigned int packets, unsigned int bytes) 2579 { 2580 struct igc_ring *ring = q_vector->tx.ring; 2581 2582 u64_stats_update_begin(&ring->tx_syncp); 2583 ring->tx_stats.bytes += bytes; 2584 ring->tx_stats.packets += packets; 2585 u64_stats_update_end(&ring->tx_syncp); 2586 2587 q_vector->tx.total_bytes += bytes; 2588 q_vector->tx.total_packets += packets; 2589 } 2590 2591 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2592 { 2593 struct xsk_buff_pool *pool = ring->xsk_pool; 2594 struct netdev_queue *nq = txring_txq(ring); 2595 union igc_adv_tx_desc *tx_desc = NULL; 2596 int cpu = smp_processor_id(); 2597 u16 ntu = ring->next_to_use; 2598 struct xdp_desc xdp_desc; 2599 u16 budget; 2600 2601 if (!netif_carrier_ok(ring->netdev)) 2602 return; 2603 2604 __netif_tx_lock(nq, cpu); 2605 2606 budget = igc_desc_unused(ring); 2607 2608 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2609 u32 cmd_type, olinfo_status; 2610 struct igc_tx_buffer *bi; 2611 dma_addr_t dma; 2612 2613 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2614 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2615 xdp_desc.len; 2616 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2617 2618 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2619 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2620 2621 tx_desc = IGC_TX_DESC(ring, ntu); 2622 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2623 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2624 tx_desc->read.buffer_addr = cpu_to_le64(dma); 2625 2626 bi = &ring->tx_buffer_info[ntu]; 2627 bi->type = IGC_TX_BUFFER_TYPE_XSK; 2628 bi->protocol = 0; 2629 bi->bytecount = xdp_desc.len; 2630 bi->gso_segs = 1; 2631 bi->time_stamp = jiffies; 2632 bi->next_to_watch = tx_desc; 2633 2634 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 2635 2636 ntu++; 2637 if (ntu == ring->count) 2638 ntu = 0; 2639 } 2640 2641 ring->next_to_use = ntu; 2642 if (tx_desc) { 2643 igc_flush_tx_descriptors(ring); 2644 xsk_tx_release(pool); 2645 } 2646 2647 __netif_tx_unlock(nq); 2648 } 2649 2650 /** 2651 * igc_clean_tx_irq - Reclaim resources after transmit completes 2652 * @q_vector: pointer to q_vector containing needed info 2653 * @napi_budget: Used to determine if we are in netpoll 2654 * 2655 * returns true if ring is completely cleaned 2656 */ 2657 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 2658 { 2659 struct igc_adapter *adapter = q_vector->adapter; 2660 unsigned int total_bytes = 0, total_packets = 0; 2661 unsigned int budget = q_vector->tx.work_limit; 2662 struct igc_ring *tx_ring = q_vector->tx.ring; 2663 unsigned int i = tx_ring->next_to_clean; 2664 struct igc_tx_buffer *tx_buffer; 2665 union igc_adv_tx_desc *tx_desc; 2666 u32 xsk_frames = 0; 2667 2668 if (test_bit(__IGC_DOWN, &adapter->state)) 2669 return true; 2670 2671 tx_buffer = &tx_ring->tx_buffer_info[i]; 2672 tx_desc = IGC_TX_DESC(tx_ring, i); 2673 i -= tx_ring->count; 2674 2675 do { 2676 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2677 2678 /* if next_to_watch is not set then there is no work pending */ 2679 if (!eop_desc) 2680 break; 2681 2682 /* prevent any other reads prior to eop_desc */ 2683 smp_rmb(); 2684 2685 /* if DD is not set pending work has not been completed */ 2686 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2687 break; 2688 2689 /* clear next_to_watch to prevent false hangs */ 2690 tx_buffer->next_to_watch = NULL; 2691 2692 /* update the statistics for this packet */ 2693 total_bytes += tx_buffer->bytecount; 2694 total_packets += tx_buffer->gso_segs; 2695 2696 switch (tx_buffer->type) { 2697 case IGC_TX_BUFFER_TYPE_XSK: 2698 xsk_frames++; 2699 break; 2700 case IGC_TX_BUFFER_TYPE_XDP: 2701 xdp_return_frame(tx_buffer->xdpf); 2702 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2703 break; 2704 case IGC_TX_BUFFER_TYPE_SKB: 2705 napi_consume_skb(tx_buffer->skb, napi_budget); 2706 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2707 break; 2708 default: 2709 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 2710 break; 2711 } 2712 2713 /* clear last DMA location and unmap remaining buffers */ 2714 while (tx_desc != eop_desc) { 2715 tx_buffer++; 2716 tx_desc++; 2717 i++; 2718 if (unlikely(!i)) { 2719 i -= tx_ring->count; 2720 tx_buffer = tx_ring->tx_buffer_info; 2721 tx_desc = IGC_TX_DESC(tx_ring, 0); 2722 } 2723 2724 /* unmap any remaining paged data */ 2725 if (dma_unmap_len(tx_buffer, len)) 2726 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2727 } 2728 2729 /* move us one more past the eop_desc for start of next pkt */ 2730 tx_buffer++; 2731 tx_desc++; 2732 i++; 2733 if (unlikely(!i)) { 2734 i -= tx_ring->count; 2735 tx_buffer = tx_ring->tx_buffer_info; 2736 tx_desc = IGC_TX_DESC(tx_ring, 0); 2737 } 2738 2739 /* issue prefetch for next Tx descriptor */ 2740 prefetch(tx_desc); 2741 2742 /* update budget accounting */ 2743 budget--; 2744 } while (likely(budget)); 2745 2746 netdev_tx_completed_queue(txring_txq(tx_ring), 2747 total_packets, total_bytes); 2748 2749 i += tx_ring->count; 2750 tx_ring->next_to_clean = i; 2751 2752 igc_update_tx_stats(q_vector, total_packets, total_bytes); 2753 2754 if (tx_ring->xsk_pool) { 2755 if (xsk_frames) 2756 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 2757 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 2758 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 2759 igc_xdp_xmit_zc(tx_ring); 2760 } 2761 2762 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 2763 struct igc_hw *hw = &adapter->hw; 2764 2765 /* Detect a transmit hang in hardware, this serializes the 2766 * check with the clearing of time_stamp and movement of i 2767 */ 2768 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2769 if (tx_buffer->next_to_watch && 2770 time_after(jiffies, tx_buffer->time_stamp + 2771 (adapter->tx_timeout_factor * HZ)) && 2772 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) { 2773 /* detected Tx unit hang */ 2774 netdev_err(tx_ring->netdev, 2775 "Detected Tx Unit Hang\n" 2776 " Tx Queue <%d>\n" 2777 " TDH <%x>\n" 2778 " TDT <%x>\n" 2779 " next_to_use <%x>\n" 2780 " next_to_clean <%x>\n" 2781 "buffer_info[next_to_clean]\n" 2782 " time_stamp <%lx>\n" 2783 " next_to_watch <%p>\n" 2784 " jiffies <%lx>\n" 2785 " desc.status <%x>\n", 2786 tx_ring->queue_index, 2787 rd32(IGC_TDH(tx_ring->reg_idx)), 2788 readl(tx_ring->tail), 2789 tx_ring->next_to_use, 2790 tx_ring->next_to_clean, 2791 tx_buffer->time_stamp, 2792 tx_buffer->next_to_watch, 2793 jiffies, 2794 tx_buffer->next_to_watch->wb.status); 2795 netif_stop_subqueue(tx_ring->netdev, 2796 tx_ring->queue_index); 2797 2798 /* we are about to reset, no point in enabling stuff */ 2799 return true; 2800 } 2801 } 2802 2803 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 2804 if (unlikely(total_packets && 2805 netif_carrier_ok(tx_ring->netdev) && 2806 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 2807 /* Make sure that anybody stopping the queue after this 2808 * sees the new next_to_clean. 2809 */ 2810 smp_mb(); 2811 if (__netif_subqueue_stopped(tx_ring->netdev, 2812 tx_ring->queue_index) && 2813 !(test_bit(__IGC_DOWN, &adapter->state))) { 2814 netif_wake_subqueue(tx_ring->netdev, 2815 tx_ring->queue_index); 2816 2817 u64_stats_update_begin(&tx_ring->tx_syncp); 2818 tx_ring->tx_stats.restart_queue++; 2819 u64_stats_update_end(&tx_ring->tx_syncp); 2820 } 2821 } 2822 2823 return !!budget; 2824 } 2825 2826 static int igc_find_mac_filter(struct igc_adapter *adapter, 2827 enum igc_mac_filter_type type, const u8 *addr) 2828 { 2829 struct igc_hw *hw = &adapter->hw; 2830 int max_entries = hw->mac.rar_entry_count; 2831 u32 ral, rah; 2832 int i; 2833 2834 for (i = 0; i < max_entries; i++) { 2835 ral = rd32(IGC_RAL(i)); 2836 rah = rd32(IGC_RAH(i)); 2837 2838 if (!(rah & IGC_RAH_AV)) 2839 continue; 2840 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 2841 continue; 2842 if ((rah & IGC_RAH_RAH_MASK) != 2843 le16_to_cpup((__le16 *)(addr + 4))) 2844 continue; 2845 if (ral != le32_to_cpup((__le32 *)(addr))) 2846 continue; 2847 2848 return i; 2849 } 2850 2851 return -1; 2852 } 2853 2854 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 2855 { 2856 struct igc_hw *hw = &adapter->hw; 2857 int max_entries = hw->mac.rar_entry_count; 2858 u32 rah; 2859 int i; 2860 2861 for (i = 0; i < max_entries; i++) { 2862 rah = rd32(IGC_RAH(i)); 2863 2864 if (!(rah & IGC_RAH_AV)) 2865 return i; 2866 } 2867 2868 return -1; 2869 } 2870 2871 /** 2872 * igc_add_mac_filter() - Add MAC address filter 2873 * @adapter: Pointer to adapter where the filter should be added 2874 * @type: MAC address filter type (source or destination) 2875 * @addr: MAC address 2876 * @queue: If non-negative, queue assignment feature is enabled and frames 2877 * matching the filter are enqueued onto 'queue'. Otherwise, queue 2878 * assignment is disabled. 2879 * 2880 * Return: 0 in case of success, negative errno code otherwise. 2881 */ 2882 static int igc_add_mac_filter(struct igc_adapter *adapter, 2883 enum igc_mac_filter_type type, const u8 *addr, 2884 int queue) 2885 { 2886 struct net_device *dev = adapter->netdev; 2887 int index; 2888 2889 index = igc_find_mac_filter(adapter, type, addr); 2890 if (index >= 0) 2891 goto update_filter; 2892 2893 index = igc_get_avail_mac_filter_slot(adapter); 2894 if (index < 0) 2895 return -ENOSPC; 2896 2897 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 2898 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 2899 addr, queue); 2900 2901 update_filter: 2902 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 2903 return 0; 2904 } 2905 2906 /** 2907 * igc_del_mac_filter() - Delete MAC address filter 2908 * @adapter: Pointer to adapter where the filter should be deleted from 2909 * @type: MAC address filter type (source or destination) 2910 * @addr: MAC address 2911 */ 2912 static void igc_del_mac_filter(struct igc_adapter *adapter, 2913 enum igc_mac_filter_type type, const u8 *addr) 2914 { 2915 struct net_device *dev = adapter->netdev; 2916 int index; 2917 2918 index = igc_find_mac_filter(adapter, type, addr); 2919 if (index < 0) 2920 return; 2921 2922 if (index == 0) { 2923 /* If this is the default filter, we don't actually delete it. 2924 * We just reset to its default value i.e. disable queue 2925 * assignment. 2926 */ 2927 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 2928 2929 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 2930 } else { 2931 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 2932 index, 2933 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 2934 addr); 2935 2936 igc_clear_mac_filter_hw(adapter, index); 2937 } 2938 } 2939 2940 /** 2941 * igc_add_vlan_prio_filter() - Add VLAN priority filter 2942 * @adapter: Pointer to adapter where the filter should be added 2943 * @prio: VLAN priority value 2944 * @queue: Queue number which matching frames are assigned to 2945 * 2946 * Return: 0 in case of success, negative errno code otherwise. 2947 */ 2948 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 2949 int queue) 2950 { 2951 struct net_device *dev = adapter->netdev; 2952 struct igc_hw *hw = &adapter->hw; 2953 u32 vlanpqf; 2954 2955 vlanpqf = rd32(IGC_VLANPQF); 2956 2957 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 2958 netdev_dbg(dev, "VLAN priority filter already in use\n"); 2959 return -EEXIST; 2960 } 2961 2962 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 2963 vlanpqf |= IGC_VLANPQF_VALID(prio); 2964 2965 wr32(IGC_VLANPQF, vlanpqf); 2966 2967 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 2968 prio, queue); 2969 return 0; 2970 } 2971 2972 /** 2973 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 2974 * @adapter: Pointer to adapter where the filter should be deleted from 2975 * @prio: VLAN priority value 2976 */ 2977 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 2978 { 2979 struct igc_hw *hw = &adapter->hw; 2980 u32 vlanpqf; 2981 2982 vlanpqf = rd32(IGC_VLANPQF); 2983 2984 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 2985 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 2986 2987 wr32(IGC_VLANPQF, vlanpqf); 2988 2989 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 2990 prio); 2991 } 2992 2993 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 2994 { 2995 struct igc_hw *hw = &adapter->hw; 2996 int i; 2997 2998 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 2999 u32 etqf = rd32(IGC_ETQF(i)); 3000 3001 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3002 return i; 3003 } 3004 3005 return -1; 3006 } 3007 3008 /** 3009 * igc_add_etype_filter() - Add ethertype filter 3010 * @adapter: Pointer to adapter where the filter should be added 3011 * @etype: Ethertype value 3012 * @queue: If non-negative, queue assignment feature is enabled and frames 3013 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3014 * assignment is disabled. 3015 * 3016 * Return: 0 in case of success, negative errno code otherwise. 3017 */ 3018 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3019 int queue) 3020 { 3021 struct igc_hw *hw = &adapter->hw; 3022 int index; 3023 u32 etqf; 3024 3025 index = igc_get_avail_etype_filter_slot(adapter); 3026 if (index < 0) 3027 return -ENOSPC; 3028 3029 etqf = rd32(IGC_ETQF(index)); 3030 3031 etqf &= ~IGC_ETQF_ETYPE_MASK; 3032 etqf |= etype; 3033 3034 if (queue >= 0) { 3035 etqf &= ~IGC_ETQF_QUEUE_MASK; 3036 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3037 etqf |= IGC_ETQF_QUEUE_ENABLE; 3038 } 3039 3040 etqf |= IGC_ETQF_FILTER_ENABLE; 3041 3042 wr32(IGC_ETQF(index), etqf); 3043 3044 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3045 etype, queue); 3046 return 0; 3047 } 3048 3049 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3050 { 3051 struct igc_hw *hw = &adapter->hw; 3052 int i; 3053 3054 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3055 u32 etqf = rd32(IGC_ETQF(i)); 3056 3057 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3058 return i; 3059 } 3060 3061 return -1; 3062 } 3063 3064 /** 3065 * igc_del_etype_filter() - Delete ethertype filter 3066 * @adapter: Pointer to adapter where the filter should be deleted from 3067 * @etype: Ethertype value 3068 */ 3069 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3070 { 3071 struct igc_hw *hw = &adapter->hw; 3072 int index; 3073 3074 index = igc_find_etype_filter(adapter, etype); 3075 if (index < 0) 3076 return; 3077 3078 wr32(IGC_ETQF(index), 0); 3079 3080 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3081 etype); 3082 } 3083 3084 static int igc_flex_filter_select(struct igc_adapter *adapter, 3085 struct igc_flex_filter *input, 3086 u32 *fhft) 3087 { 3088 struct igc_hw *hw = &adapter->hw; 3089 u8 fhft_index; 3090 u32 fhftsl; 3091 3092 if (input->index >= MAX_FLEX_FILTER) { 3093 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n"); 3094 return -EINVAL; 3095 } 3096 3097 /* Indirect table select register */ 3098 fhftsl = rd32(IGC_FHFTSL); 3099 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3100 switch (input->index) { 3101 case 0 ... 7: 3102 fhftsl |= 0x00; 3103 break; 3104 case 8 ... 15: 3105 fhftsl |= 0x01; 3106 break; 3107 case 16 ... 23: 3108 fhftsl |= 0x02; 3109 break; 3110 case 24 ... 31: 3111 fhftsl |= 0x03; 3112 break; 3113 } 3114 wr32(IGC_FHFTSL, fhftsl); 3115 3116 /* Normalize index down to host table register */ 3117 fhft_index = input->index % 8; 3118 3119 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3120 IGC_FHFT_EXT(fhft_index - 4); 3121 3122 return 0; 3123 } 3124 3125 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3126 struct igc_flex_filter *input) 3127 { 3128 struct device *dev = &adapter->pdev->dev; 3129 struct igc_hw *hw = &adapter->hw; 3130 u8 *data = input->data; 3131 u8 *mask = input->mask; 3132 u32 queuing; 3133 u32 fhft; 3134 u32 wufc; 3135 int ret; 3136 int i; 3137 3138 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3139 * out early to avoid surprises later. 3140 */ 3141 if (input->length % 8 != 0) { 3142 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n"); 3143 return -EINVAL; 3144 } 3145 3146 /* Select corresponding flex filter register and get base for host table. */ 3147 ret = igc_flex_filter_select(adapter, input, &fhft); 3148 if (ret) 3149 return ret; 3150 3151 /* When adding a filter globally disable flex filter feature. That is 3152 * recommended within the datasheet. 3153 */ 3154 wufc = rd32(IGC_WUFC); 3155 wufc &= ~IGC_WUFC_FLEX_HQ; 3156 wr32(IGC_WUFC, wufc); 3157 3158 /* Configure filter */ 3159 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3160 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK; 3161 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK; 3162 3163 if (input->immediate_irq) 3164 queuing |= IGC_FHFT_IMM_INT; 3165 3166 if (input->drop) 3167 queuing |= IGC_FHFT_DROP; 3168 3169 wr32(fhft + 0xFC, queuing); 3170 3171 /* Write data (128 byte) and mask (128 bit) */ 3172 for (i = 0; i < 16; ++i) { 3173 const size_t data_idx = i * 8; 3174 const size_t row_idx = i * 16; 3175 u32 dw0 = 3176 (data[data_idx + 0] << 0) | 3177 (data[data_idx + 1] << 8) | 3178 (data[data_idx + 2] << 16) | 3179 (data[data_idx + 3] << 24); 3180 u32 dw1 = 3181 (data[data_idx + 4] << 0) | 3182 (data[data_idx + 5] << 8) | 3183 (data[data_idx + 6] << 16) | 3184 (data[data_idx + 7] << 24); 3185 u32 tmp; 3186 3187 /* Write row: dw0, dw1 and mask */ 3188 wr32(fhft + row_idx, dw0); 3189 wr32(fhft + row_idx + 4, dw1); 3190 3191 /* mask is only valid for MASK(7, 0) */ 3192 tmp = rd32(fhft + row_idx + 8); 3193 tmp &= ~GENMASK(7, 0); 3194 tmp |= mask[i]; 3195 wr32(fhft + row_idx + 8, tmp); 3196 } 3197 3198 /* Enable filter. */ 3199 wufc |= IGC_WUFC_FLEX_HQ; 3200 if (input->index > 8) { 3201 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3202 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3203 3204 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3205 3206 wr32(IGC_WUFC_EXT, wufc_ext); 3207 } else { 3208 wufc |= (IGC_WUFC_FLX0 << input->index); 3209 } 3210 wr32(IGC_WUFC, wufc); 3211 3212 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n", 3213 input->index); 3214 3215 return 0; 3216 } 3217 3218 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3219 const void *src, unsigned int offset, 3220 size_t len, const void *mask) 3221 { 3222 int i; 3223 3224 /* data */ 3225 memcpy(&flex->data[offset], src, len); 3226 3227 /* mask */ 3228 for (i = 0; i < len; ++i) { 3229 const unsigned int idx = i + offset; 3230 const u8 *ptr = mask; 3231 3232 if (mask) { 3233 if (ptr[i] & 0xff) 3234 flex->mask[idx / 8] |= BIT(idx % 8); 3235 3236 continue; 3237 } 3238 3239 flex->mask[idx / 8] |= BIT(idx % 8); 3240 } 3241 } 3242 3243 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3244 { 3245 struct igc_hw *hw = &adapter->hw; 3246 u32 wufc, wufc_ext; 3247 int i; 3248 3249 wufc = rd32(IGC_WUFC); 3250 wufc_ext = rd32(IGC_WUFC_EXT); 3251 3252 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3253 if (i < 8) { 3254 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3255 return i; 3256 } else { 3257 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3258 return i; 3259 } 3260 } 3261 3262 return -ENOSPC; 3263 } 3264 3265 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3266 { 3267 struct igc_hw *hw = &adapter->hw; 3268 u32 wufc, wufc_ext; 3269 3270 wufc = rd32(IGC_WUFC); 3271 wufc_ext = rd32(IGC_WUFC_EXT); 3272 3273 if (wufc & IGC_WUFC_FILTER_MASK) 3274 return true; 3275 3276 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3277 return true; 3278 3279 return false; 3280 } 3281 3282 static int igc_add_flex_filter(struct igc_adapter *adapter, 3283 struct igc_nfc_rule *rule) 3284 { 3285 struct igc_flex_filter flex = { }; 3286 struct igc_nfc_filter *filter = &rule->filter; 3287 unsigned int eth_offset, user_offset; 3288 int ret, index; 3289 bool vlan; 3290 3291 index = igc_find_avail_flex_filter_slot(adapter); 3292 if (index < 0) 3293 return -ENOSPC; 3294 3295 /* Construct the flex filter: 3296 * -> dest_mac [6] 3297 * -> src_mac [6] 3298 * -> tpid [2] 3299 * -> vlan tci [2] 3300 * -> ether type [2] 3301 * -> user data [8] 3302 * -> = 26 bytes => 32 length 3303 */ 3304 flex.index = index; 3305 flex.length = 32; 3306 flex.rx_queue = rule->action; 3307 3308 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3309 eth_offset = vlan ? 16 : 12; 3310 user_offset = vlan ? 18 : 14; 3311 3312 /* Add destination MAC */ 3313 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3314 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3315 ETH_ALEN, NULL); 3316 3317 /* Add source MAC */ 3318 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3319 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3320 ETH_ALEN, NULL); 3321 3322 /* Add VLAN etype */ 3323 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) 3324 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12, 3325 sizeof(filter->vlan_etype), 3326 NULL); 3327 3328 /* Add VLAN TCI */ 3329 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3330 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3331 sizeof(filter->vlan_tci), NULL); 3332 3333 /* Add Ether type */ 3334 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3335 __be16 etype = cpu_to_be16(filter->etype); 3336 3337 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3338 sizeof(etype), NULL); 3339 } 3340 3341 /* Add user data */ 3342 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3343 igc_flex_filter_add_field(&flex, &filter->user_data, 3344 user_offset, 3345 sizeof(filter->user_data), 3346 filter->user_mask); 3347 3348 /* Add it down to the hardware and enable it. */ 3349 ret = igc_write_flex_filter_ll(adapter, &flex); 3350 if (ret) 3351 return ret; 3352 3353 filter->flex_index = index; 3354 3355 return 0; 3356 } 3357 3358 static void igc_del_flex_filter(struct igc_adapter *adapter, 3359 u16 reg_index) 3360 { 3361 struct igc_hw *hw = &adapter->hw; 3362 u32 wufc; 3363 3364 /* Just disable the filter. The filter table itself is kept 3365 * intact. Another flex_filter_add() should override the "old" data 3366 * then. 3367 */ 3368 if (reg_index > 8) { 3369 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3370 3371 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3372 wr32(IGC_WUFC_EXT, wufc_ext); 3373 } else { 3374 wufc = rd32(IGC_WUFC); 3375 3376 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3377 wr32(IGC_WUFC, wufc); 3378 } 3379 3380 if (igc_flex_filter_in_use(adapter)) 3381 return; 3382 3383 /* No filters are in use, we may disable flex filters */ 3384 wufc = rd32(IGC_WUFC); 3385 wufc &= ~IGC_WUFC_FLEX_HQ; 3386 wr32(IGC_WUFC, wufc); 3387 } 3388 3389 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3390 struct igc_nfc_rule *rule) 3391 { 3392 int err; 3393 3394 if (rule->flex) { 3395 return igc_add_flex_filter(adapter, rule); 3396 } 3397 3398 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3399 err = igc_add_etype_filter(adapter, rule->filter.etype, 3400 rule->action); 3401 if (err) 3402 return err; 3403 } 3404 3405 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3406 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3407 rule->filter.src_addr, rule->action); 3408 if (err) 3409 return err; 3410 } 3411 3412 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3413 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3414 rule->filter.dst_addr, rule->action); 3415 if (err) 3416 return err; 3417 } 3418 3419 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3420 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3421 VLAN_PRIO_SHIFT; 3422 3423 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3424 if (err) 3425 return err; 3426 } 3427 3428 return 0; 3429 } 3430 3431 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3432 const struct igc_nfc_rule *rule) 3433 { 3434 if (rule->flex) { 3435 igc_del_flex_filter(adapter, rule->filter.flex_index); 3436 return; 3437 } 3438 3439 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3440 igc_del_etype_filter(adapter, rule->filter.etype); 3441 3442 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3443 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3444 VLAN_PRIO_SHIFT; 3445 3446 igc_del_vlan_prio_filter(adapter, prio); 3447 } 3448 3449 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3450 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3451 rule->filter.src_addr); 3452 3453 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3454 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3455 rule->filter.dst_addr); 3456 } 3457 3458 /** 3459 * igc_get_nfc_rule() - Get NFC rule 3460 * @adapter: Pointer to adapter 3461 * @location: Rule location 3462 * 3463 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3464 * 3465 * Return: Pointer to NFC rule at @location. If not found, NULL. 3466 */ 3467 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3468 u32 location) 3469 { 3470 struct igc_nfc_rule *rule; 3471 3472 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3473 if (rule->location == location) 3474 return rule; 3475 if (rule->location > location) 3476 break; 3477 } 3478 3479 return NULL; 3480 } 3481 3482 /** 3483 * igc_del_nfc_rule() - Delete NFC rule 3484 * @adapter: Pointer to adapter 3485 * @rule: Pointer to rule to be deleted 3486 * 3487 * Disable NFC rule in hardware and delete it from adapter. 3488 * 3489 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3490 */ 3491 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3492 { 3493 igc_disable_nfc_rule(adapter, rule); 3494 3495 list_del(&rule->list); 3496 adapter->nfc_rule_count--; 3497 3498 kfree(rule); 3499 } 3500 3501 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3502 { 3503 struct igc_nfc_rule *rule, *tmp; 3504 3505 mutex_lock(&adapter->nfc_rule_lock); 3506 3507 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3508 igc_del_nfc_rule(adapter, rule); 3509 3510 mutex_unlock(&adapter->nfc_rule_lock); 3511 } 3512 3513 /** 3514 * igc_add_nfc_rule() - Add NFC rule 3515 * @adapter: Pointer to adapter 3516 * @rule: Pointer to rule to be added 3517 * 3518 * Enable NFC rule in hardware and add it to adapter. 3519 * 3520 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3521 * 3522 * Return: 0 on success, negative errno on failure. 3523 */ 3524 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3525 { 3526 struct igc_nfc_rule *pred, *cur; 3527 int err; 3528 3529 err = igc_enable_nfc_rule(adapter, rule); 3530 if (err) 3531 return err; 3532 3533 pred = NULL; 3534 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3535 if (cur->location >= rule->location) 3536 break; 3537 pred = cur; 3538 } 3539 3540 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3541 adapter->nfc_rule_count++; 3542 return 0; 3543 } 3544 3545 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3546 { 3547 struct igc_nfc_rule *rule; 3548 3549 mutex_lock(&adapter->nfc_rule_lock); 3550 3551 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3552 igc_enable_nfc_rule(adapter, rule); 3553 3554 mutex_unlock(&adapter->nfc_rule_lock); 3555 } 3556 3557 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3558 { 3559 struct igc_adapter *adapter = netdev_priv(netdev); 3560 3561 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3562 } 3563 3564 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3565 { 3566 struct igc_adapter *adapter = netdev_priv(netdev); 3567 3568 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3569 return 0; 3570 } 3571 3572 /** 3573 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3574 * @netdev: network interface device structure 3575 * 3576 * The set_rx_mode entry point is called whenever the unicast or multicast 3577 * address lists or the network interface flags are updated. This routine is 3578 * responsible for configuring the hardware for proper unicast, multicast, 3579 * promiscuous mode, and all-multi behavior. 3580 */ 3581 static void igc_set_rx_mode(struct net_device *netdev) 3582 { 3583 struct igc_adapter *adapter = netdev_priv(netdev); 3584 struct igc_hw *hw = &adapter->hw; 3585 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3586 int count; 3587 3588 /* Check for Promiscuous and All Multicast modes */ 3589 if (netdev->flags & IFF_PROMISC) { 3590 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3591 } else { 3592 if (netdev->flags & IFF_ALLMULTI) { 3593 rctl |= IGC_RCTL_MPE; 3594 } else { 3595 /* Write addresses to the MTA, if the attempt fails 3596 * then we should just turn on promiscuous mode so 3597 * that we can at least receive multicast traffic 3598 */ 3599 count = igc_write_mc_addr_list(netdev); 3600 if (count < 0) 3601 rctl |= IGC_RCTL_MPE; 3602 } 3603 } 3604 3605 /* Write addresses to available RAR registers, if there is not 3606 * sufficient space to store all the addresses then enable 3607 * unicast promiscuous mode 3608 */ 3609 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3610 rctl |= IGC_RCTL_UPE; 3611 3612 /* update state of unicast and multicast */ 3613 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 3614 wr32(IGC_RCTL, rctl); 3615 3616 #if (PAGE_SIZE < 8192) 3617 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 3618 rlpml = IGC_MAX_FRAME_BUILD_SKB; 3619 #endif 3620 wr32(IGC_RLPML, rlpml); 3621 } 3622 3623 /** 3624 * igc_configure - configure the hardware for RX and TX 3625 * @adapter: private board structure 3626 */ 3627 static void igc_configure(struct igc_adapter *adapter) 3628 { 3629 struct net_device *netdev = adapter->netdev; 3630 int i = 0; 3631 3632 igc_get_hw_control(adapter); 3633 igc_set_rx_mode(netdev); 3634 3635 igc_restore_vlan(adapter); 3636 3637 igc_setup_tctl(adapter); 3638 igc_setup_mrqc(adapter); 3639 igc_setup_rctl(adapter); 3640 3641 igc_set_default_mac_filter(adapter); 3642 igc_restore_nfc_rules(adapter); 3643 3644 igc_configure_tx(adapter); 3645 igc_configure_rx(adapter); 3646 3647 igc_rx_fifo_flush_base(&adapter->hw); 3648 3649 /* call igc_desc_unused which always leaves 3650 * at least 1 descriptor unused to make sure 3651 * next_to_use != next_to_clean 3652 */ 3653 for (i = 0; i < adapter->num_rx_queues; i++) { 3654 struct igc_ring *ring = adapter->rx_ring[i]; 3655 3656 if (ring->xsk_pool) 3657 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 3658 else 3659 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 3660 } 3661 } 3662 3663 /** 3664 * igc_write_ivar - configure ivar for given MSI-X vector 3665 * @hw: pointer to the HW structure 3666 * @msix_vector: vector number we are allocating to a given ring 3667 * @index: row index of IVAR register to write within IVAR table 3668 * @offset: column offset of in IVAR, should be multiple of 8 3669 * 3670 * The IVAR table consists of 2 columns, 3671 * each containing an cause allocation for an Rx and Tx ring, and a 3672 * variable number of rows depending on the number of queues supported. 3673 */ 3674 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 3675 int index, int offset) 3676 { 3677 u32 ivar = array_rd32(IGC_IVAR0, index); 3678 3679 /* clear any bits that are currently set */ 3680 ivar &= ~((u32)0xFF << offset); 3681 3682 /* write vector and valid bit */ 3683 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 3684 3685 array_wr32(IGC_IVAR0, index, ivar); 3686 } 3687 3688 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 3689 { 3690 struct igc_adapter *adapter = q_vector->adapter; 3691 struct igc_hw *hw = &adapter->hw; 3692 int rx_queue = IGC_N0_QUEUE; 3693 int tx_queue = IGC_N0_QUEUE; 3694 3695 if (q_vector->rx.ring) 3696 rx_queue = q_vector->rx.ring->reg_idx; 3697 if (q_vector->tx.ring) 3698 tx_queue = q_vector->tx.ring->reg_idx; 3699 3700 switch (hw->mac.type) { 3701 case igc_i225: 3702 if (rx_queue > IGC_N0_QUEUE) 3703 igc_write_ivar(hw, msix_vector, 3704 rx_queue >> 1, 3705 (rx_queue & 0x1) << 4); 3706 if (tx_queue > IGC_N0_QUEUE) 3707 igc_write_ivar(hw, msix_vector, 3708 tx_queue >> 1, 3709 ((tx_queue & 0x1) << 4) + 8); 3710 q_vector->eims_value = BIT(msix_vector); 3711 break; 3712 default: 3713 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 3714 break; 3715 } 3716 3717 /* add q_vector eims value to global eims_enable_mask */ 3718 adapter->eims_enable_mask |= q_vector->eims_value; 3719 3720 /* configure q_vector to set itr on first interrupt */ 3721 q_vector->set_itr = 1; 3722 } 3723 3724 /** 3725 * igc_configure_msix - Configure MSI-X hardware 3726 * @adapter: Pointer to adapter structure 3727 * 3728 * igc_configure_msix sets up the hardware to properly 3729 * generate MSI-X interrupts. 3730 */ 3731 static void igc_configure_msix(struct igc_adapter *adapter) 3732 { 3733 struct igc_hw *hw = &adapter->hw; 3734 int i, vector = 0; 3735 u32 tmp; 3736 3737 adapter->eims_enable_mask = 0; 3738 3739 /* set vector for other causes, i.e. link changes */ 3740 switch (hw->mac.type) { 3741 case igc_i225: 3742 /* Turn on MSI-X capability first, or our settings 3743 * won't stick. And it will take days to debug. 3744 */ 3745 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 3746 IGC_GPIE_PBA | IGC_GPIE_EIAME | 3747 IGC_GPIE_NSICR); 3748 3749 /* enable msix_other interrupt */ 3750 adapter->eims_other = BIT(vector); 3751 tmp = (vector++ | IGC_IVAR_VALID) << 8; 3752 3753 wr32(IGC_IVAR_MISC, tmp); 3754 break; 3755 default: 3756 /* do nothing, since nothing else supports MSI-X */ 3757 break; 3758 } /* switch (hw->mac.type) */ 3759 3760 adapter->eims_enable_mask |= adapter->eims_other; 3761 3762 for (i = 0; i < adapter->num_q_vectors; i++) 3763 igc_assign_vector(adapter->q_vector[i], vector++); 3764 3765 wrfl(); 3766 } 3767 3768 /** 3769 * igc_irq_enable - Enable default interrupt generation settings 3770 * @adapter: board private structure 3771 */ 3772 static void igc_irq_enable(struct igc_adapter *adapter) 3773 { 3774 struct igc_hw *hw = &adapter->hw; 3775 3776 if (adapter->msix_entries) { 3777 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3778 u32 regval = rd32(IGC_EIAC); 3779 3780 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3781 regval = rd32(IGC_EIAM); 3782 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3783 wr32(IGC_EIMS, adapter->eims_enable_mask); 3784 wr32(IGC_IMS, ims); 3785 } else { 3786 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3787 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3788 } 3789 } 3790 3791 /** 3792 * igc_irq_disable - Mask off interrupt generation on the NIC 3793 * @adapter: board private structure 3794 */ 3795 static void igc_irq_disable(struct igc_adapter *adapter) 3796 { 3797 struct igc_hw *hw = &adapter->hw; 3798 3799 if (adapter->msix_entries) { 3800 u32 regval = rd32(IGC_EIAM); 3801 3802 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3803 wr32(IGC_EIMC, adapter->eims_enable_mask); 3804 regval = rd32(IGC_EIAC); 3805 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 3806 } 3807 3808 wr32(IGC_IAM, 0); 3809 wr32(IGC_IMC, ~0); 3810 wrfl(); 3811 3812 if (adapter->msix_entries) { 3813 int vector = 0, i; 3814 3815 synchronize_irq(adapter->msix_entries[vector++].vector); 3816 3817 for (i = 0; i < adapter->num_q_vectors; i++) 3818 synchronize_irq(adapter->msix_entries[vector++].vector); 3819 } else { 3820 synchronize_irq(adapter->pdev->irq); 3821 } 3822 } 3823 3824 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 3825 const u32 max_rss_queues) 3826 { 3827 /* Determine if we need to pair queues. */ 3828 /* If rss_queues > half of max_rss_queues, pair the queues in 3829 * order to conserve interrupts due to limited supply. 3830 */ 3831 if (adapter->rss_queues > (max_rss_queues / 2)) 3832 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 3833 else 3834 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 3835 } 3836 3837 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 3838 { 3839 return IGC_MAX_RX_QUEUES; 3840 } 3841 3842 static void igc_init_queue_configuration(struct igc_adapter *adapter) 3843 { 3844 u32 max_rss_queues; 3845 3846 max_rss_queues = igc_get_max_rss_queues(adapter); 3847 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3848 3849 igc_set_flag_queue_pairs(adapter, max_rss_queues); 3850 } 3851 3852 /** 3853 * igc_reset_q_vector - Reset config for interrupt vector 3854 * @adapter: board private structure to initialize 3855 * @v_idx: Index of vector to be reset 3856 * 3857 * If NAPI is enabled it will delete any references to the 3858 * NAPI struct. This is preparation for igc_free_q_vector. 3859 */ 3860 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 3861 { 3862 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 3863 3864 /* if we're coming from igc_set_interrupt_capability, the vectors are 3865 * not yet allocated 3866 */ 3867 if (!q_vector) 3868 return; 3869 3870 if (q_vector->tx.ring) 3871 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 3872 3873 if (q_vector->rx.ring) 3874 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 3875 3876 netif_napi_del(&q_vector->napi); 3877 } 3878 3879 /** 3880 * igc_free_q_vector - Free memory allocated for specific interrupt vector 3881 * @adapter: board private structure to initialize 3882 * @v_idx: Index of vector to be freed 3883 * 3884 * This function frees the memory allocated to the q_vector. 3885 */ 3886 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 3887 { 3888 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 3889 3890 adapter->q_vector[v_idx] = NULL; 3891 3892 /* igc_get_stats64() might access the rings on this vector, 3893 * we must wait a grace period before freeing it. 3894 */ 3895 if (q_vector) 3896 kfree_rcu(q_vector, rcu); 3897 } 3898 3899 /** 3900 * igc_free_q_vectors - Free memory allocated for interrupt vectors 3901 * @adapter: board private structure to initialize 3902 * 3903 * This function frees the memory allocated to the q_vectors. In addition if 3904 * NAPI is enabled it will delete any references to the NAPI struct prior 3905 * to freeing the q_vector. 3906 */ 3907 static void igc_free_q_vectors(struct igc_adapter *adapter) 3908 { 3909 int v_idx = adapter->num_q_vectors; 3910 3911 adapter->num_tx_queues = 0; 3912 adapter->num_rx_queues = 0; 3913 adapter->num_q_vectors = 0; 3914 3915 while (v_idx--) { 3916 igc_reset_q_vector(adapter, v_idx); 3917 igc_free_q_vector(adapter, v_idx); 3918 } 3919 } 3920 3921 /** 3922 * igc_update_itr - update the dynamic ITR value based on statistics 3923 * @q_vector: pointer to q_vector 3924 * @ring_container: ring info to update the itr for 3925 * 3926 * Stores a new ITR value based on packets and byte 3927 * counts during the last interrupt. The advantage of per interrupt 3928 * computation is faster updates and more accurate ITR for the current 3929 * traffic pattern. Constants in this function were computed 3930 * based on theoretical maximum wire speed and thresholds were set based 3931 * on testing data as well as attempting to minimize response time 3932 * while increasing bulk throughput. 3933 * NOTE: These calculations are only valid when operating in a single- 3934 * queue environment. 3935 */ 3936 static void igc_update_itr(struct igc_q_vector *q_vector, 3937 struct igc_ring_container *ring_container) 3938 { 3939 unsigned int packets = ring_container->total_packets; 3940 unsigned int bytes = ring_container->total_bytes; 3941 u8 itrval = ring_container->itr; 3942 3943 /* no packets, exit with status unchanged */ 3944 if (packets == 0) 3945 return; 3946 3947 switch (itrval) { 3948 case lowest_latency: 3949 /* handle TSO and jumbo frames */ 3950 if (bytes / packets > 8000) 3951 itrval = bulk_latency; 3952 else if ((packets < 5) && (bytes > 512)) 3953 itrval = low_latency; 3954 break; 3955 case low_latency: /* 50 usec aka 20000 ints/s */ 3956 if (bytes > 10000) { 3957 /* this if handles the TSO accounting */ 3958 if (bytes / packets > 8000) 3959 itrval = bulk_latency; 3960 else if ((packets < 10) || ((bytes / packets) > 1200)) 3961 itrval = bulk_latency; 3962 else if ((packets > 35)) 3963 itrval = lowest_latency; 3964 } else if (bytes / packets > 2000) { 3965 itrval = bulk_latency; 3966 } else if (packets <= 2 && bytes < 512) { 3967 itrval = lowest_latency; 3968 } 3969 break; 3970 case bulk_latency: /* 250 usec aka 4000 ints/s */ 3971 if (bytes > 25000) { 3972 if (packets > 35) 3973 itrval = low_latency; 3974 } else if (bytes < 1500) { 3975 itrval = low_latency; 3976 } 3977 break; 3978 } 3979 3980 /* clear work counters since we have the values we need */ 3981 ring_container->total_bytes = 0; 3982 ring_container->total_packets = 0; 3983 3984 /* write updated itr to ring container */ 3985 ring_container->itr = itrval; 3986 } 3987 3988 static void igc_set_itr(struct igc_q_vector *q_vector) 3989 { 3990 struct igc_adapter *adapter = q_vector->adapter; 3991 u32 new_itr = q_vector->itr_val; 3992 u8 current_itr = 0; 3993 3994 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 3995 switch (adapter->link_speed) { 3996 case SPEED_10: 3997 case SPEED_100: 3998 current_itr = 0; 3999 new_itr = IGC_4K_ITR; 4000 goto set_itr_now; 4001 default: 4002 break; 4003 } 4004 4005 igc_update_itr(q_vector, &q_vector->tx); 4006 igc_update_itr(q_vector, &q_vector->rx); 4007 4008 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4009 4010 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4011 if (current_itr == lowest_latency && 4012 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4013 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4014 current_itr = low_latency; 4015 4016 switch (current_itr) { 4017 /* counts and packets in update_itr are dependent on these numbers */ 4018 case lowest_latency: 4019 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4020 break; 4021 case low_latency: 4022 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4023 break; 4024 case bulk_latency: 4025 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4026 break; 4027 default: 4028 break; 4029 } 4030 4031 set_itr_now: 4032 if (new_itr != q_vector->itr_val) { 4033 /* this attempts to bias the interrupt rate towards Bulk 4034 * by adding intermediate steps when interrupt rate is 4035 * increasing 4036 */ 4037 new_itr = new_itr > q_vector->itr_val ? 4038 max((new_itr * q_vector->itr_val) / 4039 (new_itr + (q_vector->itr_val >> 2)), 4040 new_itr) : new_itr; 4041 /* Don't write the value here; it resets the adapter's 4042 * internal timer, and causes us to delay far longer than 4043 * we should between interrupts. Instead, we write the ITR 4044 * value at the beginning of the next interrupt so the timing 4045 * ends up being correct. 4046 */ 4047 q_vector->itr_val = new_itr; 4048 q_vector->set_itr = 1; 4049 } 4050 } 4051 4052 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4053 { 4054 int v_idx = adapter->num_q_vectors; 4055 4056 if (adapter->msix_entries) { 4057 pci_disable_msix(adapter->pdev); 4058 kfree(adapter->msix_entries); 4059 adapter->msix_entries = NULL; 4060 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4061 pci_disable_msi(adapter->pdev); 4062 } 4063 4064 while (v_idx--) 4065 igc_reset_q_vector(adapter, v_idx); 4066 } 4067 4068 /** 4069 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4070 * @adapter: Pointer to adapter structure 4071 * @msix: boolean value for MSI-X capability 4072 * 4073 * Attempt to configure interrupts using the best available 4074 * capabilities of the hardware and kernel. 4075 */ 4076 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4077 bool msix) 4078 { 4079 int numvecs, i; 4080 int err; 4081 4082 if (!msix) 4083 goto msi_only; 4084 adapter->flags |= IGC_FLAG_HAS_MSIX; 4085 4086 /* Number of supported queues. */ 4087 adapter->num_rx_queues = adapter->rss_queues; 4088 4089 adapter->num_tx_queues = adapter->rss_queues; 4090 4091 /* start with one vector for every Rx queue */ 4092 numvecs = adapter->num_rx_queues; 4093 4094 /* if Tx handler is separate add 1 for every Tx queue */ 4095 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4096 numvecs += adapter->num_tx_queues; 4097 4098 /* store the number of vectors reserved for queues */ 4099 adapter->num_q_vectors = numvecs; 4100 4101 /* add 1 vector for link status interrupts */ 4102 numvecs++; 4103 4104 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4105 GFP_KERNEL); 4106 4107 if (!adapter->msix_entries) 4108 return; 4109 4110 /* populate entry values */ 4111 for (i = 0; i < numvecs; i++) 4112 adapter->msix_entries[i].entry = i; 4113 4114 err = pci_enable_msix_range(adapter->pdev, 4115 adapter->msix_entries, 4116 numvecs, 4117 numvecs); 4118 if (err > 0) 4119 return; 4120 4121 kfree(adapter->msix_entries); 4122 adapter->msix_entries = NULL; 4123 4124 igc_reset_interrupt_capability(adapter); 4125 4126 msi_only: 4127 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4128 4129 adapter->rss_queues = 1; 4130 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4131 adapter->num_rx_queues = 1; 4132 adapter->num_tx_queues = 1; 4133 adapter->num_q_vectors = 1; 4134 if (!pci_enable_msi(adapter->pdev)) 4135 adapter->flags |= IGC_FLAG_HAS_MSI; 4136 } 4137 4138 /** 4139 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4140 * @q_vector: pointer to q_vector 4141 * 4142 * Stores a new ITR value based on strictly on packet size. This 4143 * algorithm is less sophisticated than that used in igc_update_itr, 4144 * due to the difficulty of synchronizing statistics across multiple 4145 * receive rings. The divisors and thresholds used by this function 4146 * were determined based on theoretical maximum wire speed and testing 4147 * data, in order to minimize response time while increasing bulk 4148 * throughput. 4149 * NOTE: This function is called only when operating in a multiqueue 4150 * receive environment. 4151 */ 4152 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4153 { 4154 struct igc_adapter *adapter = q_vector->adapter; 4155 int new_val = q_vector->itr_val; 4156 int avg_wire_size = 0; 4157 unsigned int packets; 4158 4159 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4160 * ints/sec - ITR timer value of 120 ticks. 4161 */ 4162 switch (adapter->link_speed) { 4163 case SPEED_10: 4164 case SPEED_100: 4165 new_val = IGC_4K_ITR; 4166 goto set_itr_val; 4167 default: 4168 break; 4169 } 4170 4171 packets = q_vector->rx.total_packets; 4172 if (packets) 4173 avg_wire_size = q_vector->rx.total_bytes / packets; 4174 4175 packets = q_vector->tx.total_packets; 4176 if (packets) 4177 avg_wire_size = max_t(u32, avg_wire_size, 4178 q_vector->tx.total_bytes / packets); 4179 4180 /* if avg_wire_size isn't set no work was done */ 4181 if (!avg_wire_size) 4182 goto clear_counts; 4183 4184 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4185 avg_wire_size += 24; 4186 4187 /* Don't starve jumbo frames */ 4188 avg_wire_size = min(avg_wire_size, 3000); 4189 4190 /* Give a little boost to mid-size frames */ 4191 if (avg_wire_size > 300 && avg_wire_size < 1200) 4192 new_val = avg_wire_size / 3; 4193 else 4194 new_val = avg_wire_size / 2; 4195 4196 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4197 if (new_val < IGC_20K_ITR && 4198 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4199 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4200 new_val = IGC_20K_ITR; 4201 4202 set_itr_val: 4203 if (new_val != q_vector->itr_val) { 4204 q_vector->itr_val = new_val; 4205 q_vector->set_itr = 1; 4206 } 4207 clear_counts: 4208 q_vector->rx.total_bytes = 0; 4209 q_vector->rx.total_packets = 0; 4210 q_vector->tx.total_bytes = 0; 4211 q_vector->tx.total_packets = 0; 4212 } 4213 4214 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4215 { 4216 struct igc_adapter *adapter = q_vector->adapter; 4217 struct igc_hw *hw = &adapter->hw; 4218 4219 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4220 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4221 if (adapter->num_q_vectors == 1) 4222 igc_set_itr(q_vector); 4223 else 4224 igc_update_ring_itr(q_vector); 4225 } 4226 4227 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4228 if (adapter->msix_entries) 4229 wr32(IGC_EIMS, q_vector->eims_value); 4230 else 4231 igc_irq_enable(adapter); 4232 } 4233 } 4234 4235 static void igc_add_ring(struct igc_ring *ring, 4236 struct igc_ring_container *head) 4237 { 4238 head->ring = ring; 4239 head->count++; 4240 } 4241 4242 /** 4243 * igc_cache_ring_register - Descriptor ring to register mapping 4244 * @adapter: board private structure to initialize 4245 * 4246 * Once we know the feature-set enabled for the device, we'll cache 4247 * the register offset the descriptor ring is assigned to. 4248 */ 4249 static void igc_cache_ring_register(struct igc_adapter *adapter) 4250 { 4251 int i = 0, j = 0; 4252 4253 switch (adapter->hw.mac.type) { 4254 case igc_i225: 4255 default: 4256 for (; i < adapter->num_rx_queues; i++) 4257 adapter->rx_ring[i]->reg_idx = i; 4258 for (; j < adapter->num_tx_queues; j++) 4259 adapter->tx_ring[j]->reg_idx = j; 4260 break; 4261 } 4262 } 4263 4264 /** 4265 * igc_poll - NAPI Rx polling callback 4266 * @napi: napi polling structure 4267 * @budget: count of how many packets we should handle 4268 */ 4269 static int igc_poll(struct napi_struct *napi, int budget) 4270 { 4271 struct igc_q_vector *q_vector = container_of(napi, 4272 struct igc_q_vector, 4273 napi); 4274 struct igc_ring *rx_ring = q_vector->rx.ring; 4275 bool clean_complete = true; 4276 int work_done = 0; 4277 4278 if (q_vector->tx.ring) 4279 clean_complete = igc_clean_tx_irq(q_vector, budget); 4280 4281 if (rx_ring) { 4282 int cleaned = rx_ring->xsk_pool ? 4283 igc_clean_rx_irq_zc(q_vector, budget) : 4284 igc_clean_rx_irq(q_vector, budget); 4285 4286 work_done += cleaned; 4287 if (cleaned >= budget) 4288 clean_complete = false; 4289 } 4290 4291 /* If all work not completed, return budget and keep polling */ 4292 if (!clean_complete) 4293 return budget; 4294 4295 /* Exit the polling mode, but don't re-enable interrupts if stack might 4296 * poll us due to busy-polling 4297 */ 4298 if (likely(napi_complete_done(napi, work_done))) 4299 igc_ring_irq_enable(q_vector); 4300 4301 return min(work_done, budget - 1); 4302 } 4303 4304 /** 4305 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4306 * @adapter: board private structure to initialize 4307 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4308 * @v_idx: index of vector in adapter struct 4309 * @txr_count: total number of Tx rings to allocate 4310 * @txr_idx: index of first Tx ring to allocate 4311 * @rxr_count: total number of Rx rings to allocate 4312 * @rxr_idx: index of first Rx ring to allocate 4313 * 4314 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4315 */ 4316 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4317 unsigned int v_count, unsigned int v_idx, 4318 unsigned int txr_count, unsigned int txr_idx, 4319 unsigned int rxr_count, unsigned int rxr_idx) 4320 { 4321 struct igc_q_vector *q_vector; 4322 struct igc_ring *ring; 4323 int ring_count; 4324 4325 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4326 if (txr_count > 1 || rxr_count > 1) 4327 return -ENOMEM; 4328 4329 ring_count = txr_count + rxr_count; 4330 4331 /* allocate q_vector and rings */ 4332 q_vector = adapter->q_vector[v_idx]; 4333 if (!q_vector) 4334 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4335 GFP_KERNEL); 4336 else 4337 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4338 if (!q_vector) 4339 return -ENOMEM; 4340 4341 /* initialize NAPI */ 4342 netif_napi_add(adapter->netdev, &q_vector->napi, 4343 igc_poll, 64); 4344 4345 /* tie q_vector and adapter together */ 4346 adapter->q_vector[v_idx] = q_vector; 4347 q_vector->adapter = adapter; 4348 4349 /* initialize work limits */ 4350 q_vector->tx.work_limit = adapter->tx_work_limit; 4351 4352 /* initialize ITR configuration */ 4353 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4354 q_vector->itr_val = IGC_START_ITR; 4355 4356 /* initialize pointer to rings */ 4357 ring = q_vector->ring; 4358 4359 /* initialize ITR */ 4360 if (rxr_count) { 4361 /* rx or rx/tx vector */ 4362 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4363 q_vector->itr_val = adapter->rx_itr_setting; 4364 } else { 4365 /* tx only vector */ 4366 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4367 q_vector->itr_val = adapter->tx_itr_setting; 4368 } 4369 4370 if (txr_count) { 4371 /* assign generic ring traits */ 4372 ring->dev = &adapter->pdev->dev; 4373 ring->netdev = adapter->netdev; 4374 4375 /* configure backlink on ring */ 4376 ring->q_vector = q_vector; 4377 4378 /* update q_vector Tx values */ 4379 igc_add_ring(ring, &q_vector->tx); 4380 4381 /* apply Tx specific ring traits */ 4382 ring->count = adapter->tx_ring_count; 4383 ring->queue_index = txr_idx; 4384 4385 /* assign ring to adapter */ 4386 adapter->tx_ring[txr_idx] = ring; 4387 4388 /* push pointer to next ring */ 4389 ring++; 4390 } 4391 4392 if (rxr_count) { 4393 /* assign generic ring traits */ 4394 ring->dev = &adapter->pdev->dev; 4395 ring->netdev = adapter->netdev; 4396 4397 /* configure backlink on ring */ 4398 ring->q_vector = q_vector; 4399 4400 /* update q_vector Rx values */ 4401 igc_add_ring(ring, &q_vector->rx); 4402 4403 /* apply Rx specific ring traits */ 4404 ring->count = adapter->rx_ring_count; 4405 ring->queue_index = rxr_idx; 4406 4407 /* assign ring to adapter */ 4408 adapter->rx_ring[rxr_idx] = ring; 4409 } 4410 4411 return 0; 4412 } 4413 4414 /** 4415 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4416 * @adapter: board private structure to initialize 4417 * 4418 * We allocate one q_vector per queue interrupt. If allocation fails we 4419 * return -ENOMEM. 4420 */ 4421 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4422 { 4423 int rxr_remaining = adapter->num_rx_queues; 4424 int txr_remaining = adapter->num_tx_queues; 4425 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4426 int q_vectors = adapter->num_q_vectors; 4427 int err; 4428 4429 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4430 for (; rxr_remaining; v_idx++) { 4431 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4432 0, 0, 1, rxr_idx); 4433 4434 if (err) 4435 goto err_out; 4436 4437 /* update counts and index */ 4438 rxr_remaining--; 4439 rxr_idx++; 4440 } 4441 } 4442 4443 for (; v_idx < q_vectors; v_idx++) { 4444 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4445 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4446 4447 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4448 tqpv, txr_idx, rqpv, rxr_idx); 4449 4450 if (err) 4451 goto err_out; 4452 4453 /* update counts and index */ 4454 rxr_remaining -= rqpv; 4455 txr_remaining -= tqpv; 4456 rxr_idx++; 4457 txr_idx++; 4458 } 4459 4460 return 0; 4461 4462 err_out: 4463 adapter->num_tx_queues = 0; 4464 adapter->num_rx_queues = 0; 4465 adapter->num_q_vectors = 0; 4466 4467 while (v_idx--) 4468 igc_free_q_vector(adapter, v_idx); 4469 4470 return -ENOMEM; 4471 } 4472 4473 /** 4474 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4475 * @adapter: Pointer to adapter structure 4476 * @msix: boolean for MSI-X capability 4477 * 4478 * This function initializes the interrupts and allocates all of the queues. 4479 */ 4480 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4481 { 4482 struct net_device *dev = adapter->netdev; 4483 int err = 0; 4484 4485 igc_set_interrupt_capability(adapter, msix); 4486 4487 err = igc_alloc_q_vectors(adapter); 4488 if (err) { 4489 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4490 goto err_alloc_q_vectors; 4491 } 4492 4493 igc_cache_ring_register(adapter); 4494 4495 return 0; 4496 4497 err_alloc_q_vectors: 4498 igc_reset_interrupt_capability(adapter); 4499 return err; 4500 } 4501 4502 /** 4503 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4504 * @adapter: board private structure to initialize 4505 * 4506 * igc_sw_init initializes the Adapter private data structure. 4507 * Fields are initialized based on PCI device information and 4508 * OS network device settings (MTU size). 4509 */ 4510 static int igc_sw_init(struct igc_adapter *adapter) 4511 { 4512 struct net_device *netdev = adapter->netdev; 4513 struct pci_dev *pdev = adapter->pdev; 4514 struct igc_hw *hw = &adapter->hw; 4515 4516 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4517 4518 /* set default ring sizes */ 4519 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4520 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4521 4522 /* set default ITR values */ 4523 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4524 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4525 4526 /* set default work limits */ 4527 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4528 4529 /* adjust max frame to be at least the size of a standard frame */ 4530 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4531 VLAN_HLEN; 4532 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4533 4534 mutex_init(&adapter->nfc_rule_lock); 4535 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4536 adapter->nfc_rule_count = 0; 4537 4538 spin_lock_init(&adapter->stats64_lock); 4539 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4540 adapter->flags |= IGC_FLAG_HAS_MSIX; 4541 4542 igc_init_queue_configuration(adapter); 4543 4544 /* This call may decrease the number of queues */ 4545 if (igc_init_interrupt_scheme(adapter, true)) { 4546 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4547 return -ENOMEM; 4548 } 4549 4550 /* Explicitly disable IRQ since the NIC can be in any state. */ 4551 igc_irq_disable(adapter); 4552 4553 set_bit(__IGC_DOWN, &adapter->state); 4554 4555 return 0; 4556 } 4557 4558 /** 4559 * igc_up - Open the interface and prepare it to handle traffic 4560 * @adapter: board private structure 4561 */ 4562 void igc_up(struct igc_adapter *adapter) 4563 { 4564 struct igc_hw *hw = &adapter->hw; 4565 int i = 0; 4566 4567 /* hardware has been reset, we need to reload some things */ 4568 igc_configure(adapter); 4569 4570 clear_bit(__IGC_DOWN, &adapter->state); 4571 4572 for (i = 0; i < adapter->num_q_vectors; i++) 4573 napi_enable(&adapter->q_vector[i]->napi); 4574 4575 if (adapter->msix_entries) 4576 igc_configure_msix(adapter); 4577 else 4578 igc_assign_vector(adapter->q_vector[0], 0); 4579 4580 /* Clear any pending interrupts. */ 4581 rd32(IGC_ICR); 4582 igc_irq_enable(adapter); 4583 4584 netif_tx_start_all_queues(adapter->netdev); 4585 4586 /* start the watchdog. */ 4587 hw->mac.get_link_status = true; 4588 schedule_work(&adapter->watchdog_task); 4589 } 4590 4591 /** 4592 * igc_update_stats - Update the board statistics counters 4593 * @adapter: board private structure 4594 */ 4595 void igc_update_stats(struct igc_adapter *adapter) 4596 { 4597 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4598 struct pci_dev *pdev = adapter->pdev; 4599 struct igc_hw *hw = &adapter->hw; 4600 u64 _bytes, _packets; 4601 u64 bytes, packets; 4602 unsigned int start; 4603 u32 mpc; 4604 int i; 4605 4606 /* Prevent stats update while adapter is being reset, or if the pci 4607 * connection is down. 4608 */ 4609 if (adapter->link_speed == 0) 4610 return; 4611 if (pci_channel_offline(pdev)) 4612 return; 4613 4614 packets = 0; 4615 bytes = 0; 4616 4617 rcu_read_lock(); 4618 for (i = 0; i < adapter->num_rx_queues; i++) { 4619 struct igc_ring *ring = adapter->rx_ring[i]; 4620 u32 rqdpc = rd32(IGC_RQDPC(i)); 4621 4622 if (hw->mac.type >= igc_i225) 4623 wr32(IGC_RQDPC(i), 0); 4624 4625 if (rqdpc) { 4626 ring->rx_stats.drops += rqdpc; 4627 net_stats->rx_fifo_errors += rqdpc; 4628 } 4629 4630 do { 4631 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 4632 _bytes = ring->rx_stats.bytes; 4633 _packets = ring->rx_stats.packets; 4634 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 4635 bytes += _bytes; 4636 packets += _packets; 4637 } 4638 4639 net_stats->rx_bytes = bytes; 4640 net_stats->rx_packets = packets; 4641 4642 packets = 0; 4643 bytes = 0; 4644 for (i = 0; i < adapter->num_tx_queues; i++) { 4645 struct igc_ring *ring = adapter->tx_ring[i]; 4646 4647 do { 4648 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 4649 _bytes = ring->tx_stats.bytes; 4650 _packets = ring->tx_stats.packets; 4651 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 4652 bytes += _bytes; 4653 packets += _packets; 4654 } 4655 net_stats->tx_bytes = bytes; 4656 net_stats->tx_packets = packets; 4657 rcu_read_unlock(); 4658 4659 /* read stats registers */ 4660 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 4661 adapter->stats.gprc += rd32(IGC_GPRC); 4662 adapter->stats.gorc += rd32(IGC_GORCL); 4663 rd32(IGC_GORCH); /* clear GORCL */ 4664 adapter->stats.bprc += rd32(IGC_BPRC); 4665 adapter->stats.mprc += rd32(IGC_MPRC); 4666 adapter->stats.roc += rd32(IGC_ROC); 4667 4668 adapter->stats.prc64 += rd32(IGC_PRC64); 4669 adapter->stats.prc127 += rd32(IGC_PRC127); 4670 adapter->stats.prc255 += rd32(IGC_PRC255); 4671 adapter->stats.prc511 += rd32(IGC_PRC511); 4672 adapter->stats.prc1023 += rd32(IGC_PRC1023); 4673 adapter->stats.prc1522 += rd32(IGC_PRC1522); 4674 adapter->stats.tlpic += rd32(IGC_TLPIC); 4675 adapter->stats.rlpic += rd32(IGC_RLPIC); 4676 adapter->stats.hgptc += rd32(IGC_HGPTC); 4677 4678 mpc = rd32(IGC_MPC); 4679 adapter->stats.mpc += mpc; 4680 net_stats->rx_fifo_errors += mpc; 4681 adapter->stats.scc += rd32(IGC_SCC); 4682 adapter->stats.ecol += rd32(IGC_ECOL); 4683 adapter->stats.mcc += rd32(IGC_MCC); 4684 adapter->stats.latecol += rd32(IGC_LATECOL); 4685 adapter->stats.dc += rd32(IGC_DC); 4686 adapter->stats.rlec += rd32(IGC_RLEC); 4687 adapter->stats.xonrxc += rd32(IGC_XONRXC); 4688 adapter->stats.xontxc += rd32(IGC_XONTXC); 4689 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 4690 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 4691 adapter->stats.fcruc += rd32(IGC_FCRUC); 4692 adapter->stats.gptc += rd32(IGC_GPTC); 4693 adapter->stats.gotc += rd32(IGC_GOTCL); 4694 rd32(IGC_GOTCH); /* clear GOTCL */ 4695 adapter->stats.rnbc += rd32(IGC_RNBC); 4696 adapter->stats.ruc += rd32(IGC_RUC); 4697 adapter->stats.rfc += rd32(IGC_RFC); 4698 adapter->stats.rjc += rd32(IGC_RJC); 4699 adapter->stats.tor += rd32(IGC_TORH); 4700 adapter->stats.tot += rd32(IGC_TOTH); 4701 adapter->stats.tpr += rd32(IGC_TPR); 4702 4703 adapter->stats.ptc64 += rd32(IGC_PTC64); 4704 adapter->stats.ptc127 += rd32(IGC_PTC127); 4705 adapter->stats.ptc255 += rd32(IGC_PTC255); 4706 adapter->stats.ptc511 += rd32(IGC_PTC511); 4707 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 4708 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 4709 4710 adapter->stats.mptc += rd32(IGC_MPTC); 4711 adapter->stats.bptc += rd32(IGC_BPTC); 4712 4713 adapter->stats.tpt += rd32(IGC_TPT); 4714 adapter->stats.colc += rd32(IGC_COLC); 4715 adapter->stats.colc += rd32(IGC_RERC); 4716 4717 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 4718 4719 adapter->stats.tsctc += rd32(IGC_TSCTC); 4720 4721 adapter->stats.iac += rd32(IGC_IAC); 4722 4723 /* Fill out the OS statistics structure */ 4724 net_stats->multicast = adapter->stats.mprc; 4725 net_stats->collisions = adapter->stats.colc; 4726 4727 /* Rx Errors */ 4728 4729 /* RLEC on some newer hardware can be incorrect so build 4730 * our own version based on RUC and ROC 4731 */ 4732 net_stats->rx_errors = adapter->stats.rxerrc + 4733 adapter->stats.crcerrs + adapter->stats.algnerrc + 4734 adapter->stats.ruc + adapter->stats.roc + 4735 adapter->stats.cexterr; 4736 net_stats->rx_length_errors = adapter->stats.ruc + 4737 adapter->stats.roc; 4738 net_stats->rx_crc_errors = adapter->stats.crcerrs; 4739 net_stats->rx_frame_errors = adapter->stats.algnerrc; 4740 net_stats->rx_missed_errors = adapter->stats.mpc; 4741 4742 /* Tx Errors */ 4743 net_stats->tx_errors = adapter->stats.ecol + 4744 adapter->stats.latecol; 4745 net_stats->tx_aborted_errors = adapter->stats.ecol; 4746 net_stats->tx_window_errors = adapter->stats.latecol; 4747 net_stats->tx_carrier_errors = adapter->stats.tncrs; 4748 4749 /* Tx Dropped needs to be maintained elsewhere */ 4750 4751 /* Management Stats */ 4752 adapter->stats.mgptc += rd32(IGC_MGTPTC); 4753 adapter->stats.mgprc += rd32(IGC_MGTPRC); 4754 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 4755 } 4756 4757 /** 4758 * igc_down - Close the interface 4759 * @adapter: board private structure 4760 */ 4761 void igc_down(struct igc_adapter *adapter) 4762 { 4763 struct net_device *netdev = adapter->netdev; 4764 struct igc_hw *hw = &adapter->hw; 4765 u32 tctl, rctl; 4766 int i = 0; 4767 4768 set_bit(__IGC_DOWN, &adapter->state); 4769 4770 igc_ptp_suspend(adapter); 4771 4772 if (pci_device_is_present(adapter->pdev)) { 4773 /* disable receives in the hardware */ 4774 rctl = rd32(IGC_RCTL); 4775 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 4776 /* flush and sleep below */ 4777 } 4778 /* set trans_start so we don't get spurious watchdogs during reset */ 4779 netif_trans_update(netdev); 4780 4781 netif_carrier_off(netdev); 4782 netif_tx_stop_all_queues(netdev); 4783 4784 if (pci_device_is_present(adapter->pdev)) { 4785 /* disable transmits in the hardware */ 4786 tctl = rd32(IGC_TCTL); 4787 tctl &= ~IGC_TCTL_EN; 4788 wr32(IGC_TCTL, tctl); 4789 /* flush both disables and wait for them to finish */ 4790 wrfl(); 4791 usleep_range(10000, 20000); 4792 4793 igc_irq_disable(adapter); 4794 } 4795 4796 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 4797 4798 for (i = 0; i < adapter->num_q_vectors; i++) { 4799 if (adapter->q_vector[i]) { 4800 napi_synchronize(&adapter->q_vector[i]->napi); 4801 napi_disable(&adapter->q_vector[i]->napi); 4802 } 4803 } 4804 4805 del_timer_sync(&adapter->watchdog_timer); 4806 del_timer_sync(&adapter->phy_info_timer); 4807 4808 /* record the stats before reset*/ 4809 spin_lock(&adapter->stats64_lock); 4810 igc_update_stats(adapter); 4811 spin_unlock(&adapter->stats64_lock); 4812 4813 adapter->link_speed = 0; 4814 adapter->link_duplex = 0; 4815 4816 if (!pci_channel_offline(adapter->pdev)) 4817 igc_reset(adapter); 4818 4819 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 4820 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 4821 4822 igc_clean_all_tx_rings(adapter); 4823 igc_clean_all_rx_rings(adapter); 4824 } 4825 4826 void igc_reinit_locked(struct igc_adapter *adapter) 4827 { 4828 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 4829 usleep_range(1000, 2000); 4830 igc_down(adapter); 4831 igc_up(adapter); 4832 clear_bit(__IGC_RESETTING, &adapter->state); 4833 } 4834 4835 static void igc_reset_task(struct work_struct *work) 4836 { 4837 struct igc_adapter *adapter; 4838 4839 adapter = container_of(work, struct igc_adapter, reset_task); 4840 4841 rtnl_lock(); 4842 /* If we're already down or resetting, just bail */ 4843 if (test_bit(__IGC_DOWN, &adapter->state) || 4844 test_bit(__IGC_RESETTING, &adapter->state)) { 4845 rtnl_unlock(); 4846 return; 4847 } 4848 4849 igc_rings_dump(adapter); 4850 igc_regs_dump(adapter); 4851 netdev_err(adapter->netdev, "Reset adapter\n"); 4852 igc_reinit_locked(adapter); 4853 rtnl_unlock(); 4854 } 4855 4856 /** 4857 * igc_change_mtu - Change the Maximum Transfer Unit 4858 * @netdev: network interface device structure 4859 * @new_mtu: new value for maximum frame size 4860 * 4861 * Returns 0 on success, negative on failure 4862 */ 4863 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 4864 { 4865 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4866 struct igc_adapter *adapter = netdev_priv(netdev); 4867 4868 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 4869 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 4870 return -EINVAL; 4871 } 4872 4873 /* adjust max frame to be at least the size of a standard frame */ 4874 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 4875 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 4876 4877 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 4878 usleep_range(1000, 2000); 4879 4880 /* igc_down has a dependency on max_frame_size */ 4881 adapter->max_frame_size = max_frame; 4882 4883 if (netif_running(netdev)) 4884 igc_down(adapter); 4885 4886 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 4887 netdev->mtu = new_mtu; 4888 4889 if (netif_running(netdev)) 4890 igc_up(adapter); 4891 else 4892 igc_reset(adapter); 4893 4894 clear_bit(__IGC_RESETTING, &adapter->state); 4895 4896 return 0; 4897 } 4898 4899 /** 4900 * igc_get_stats64 - Get System Network Statistics 4901 * @netdev: network interface device structure 4902 * @stats: rtnl_link_stats64 pointer 4903 * 4904 * Returns the address of the device statistics structure. 4905 * The statistics are updated here and also from the timer callback. 4906 */ 4907 static void igc_get_stats64(struct net_device *netdev, 4908 struct rtnl_link_stats64 *stats) 4909 { 4910 struct igc_adapter *adapter = netdev_priv(netdev); 4911 4912 spin_lock(&adapter->stats64_lock); 4913 if (!test_bit(__IGC_RESETTING, &adapter->state)) 4914 igc_update_stats(adapter); 4915 memcpy(stats, &adapter->stats64, sizeof(*stats)); 4916 spin_unlock(&adapter->stats64_lock); 4917 } 4918 4919 static netdev_features_t igc_fix_features(struct net_device *netdev, 4920 netdev_features_t features) 4921 { 4922 /* Since there is no support for separate Rx/Tx vlan accel 4923 * enable/disable make sure Tx flag is always in same state as Rx. 4924 */ 4925 if (features & NETIF_F_HW_VLAN_CTAG_RX) 4926 features |= NETIF_F_HW_VLAN_CTAG_TX; 4927 else 4928 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4929 4930 return features; 4931 } 4932 4933 static int igc_set_features(struct net_device *netdev, 4934 netdev_features_t features) 4935 { 4936 netdev_features_t changed = netdev->features ^ features; 4937 struct igc_adapter *adapter = netdev_priv(netdev); 4938 4939 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 4940 igc_vlan_mode(netdev, features); 4941 4942 /* Add VLAN support */ 4943 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 4944 return 0; 4945 4946 if (!(features & NETIF_F_NTUPLE)) 4947 igc_flush_nfc_rules(adapter); 4948 4949 netdev->features = features; 4950 4951 if (netif_running(netdev)) 4952 igc_reinit_locked(adapter); 4953 else 4954 igc_reset(adapter); 4955 4956 return 1; 4957 } 4958 4959 static netdev_features_t 4960 igc_features_check(struct sk_buff *skb, struct net_device *dev, 4961 netdev_features_t features) 4962 { 4963 unsigned int network_hdr_len, mac_hdr_len; 4964 4965 /* Make certain the headers can be described by a context descriptor */ 4966 mac_hdr_len = skb_network_header(skb) - skb->data; 4967 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 4968 return features & ~(NETIF_F_HW_CSUM | 4969 NETIF_F_SCTP_CRC | 4970 NETIF_F_HW_VLAN_CTAG_TX | 4971 NETIF_F_TSO | 4972 NETIF_F_TSO6); 4973 4974 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4975 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 4976 return features & ~(NETIF_F_HW_CSUM | 4977 NETIF_F_SCTP_CRC | 4978 NETIF_F_TSO | 4979 NETIF_F_TSO6); 4980 4981 /* We can only support IPv4 TSO in tunnels if we can mangle the 4982 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4983 */ 4984 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4985 features &= ~NETIF_F_TSO; 4986 4987 return features; 4988 } 4989 4990 static void igc_tsync_interrupt(struct igc_adapter *adapter) 4991 { 4992 u32 ack, tsauxc, sec, nsec, tsicr; 4993 struct igc_hw *hw = &adapter->hw; 4994 struct ptp_clock_event event; 4995 struct timespec64 ts; 4996 4997 tsicr = rd32(IGC_TSICR); 4998 ack = 0; 4999 5000 if (tsicr & IGC_TSICR_SYS_WRAP) { 5001 event.type = PTP_CLOCK_PPS; 5002 if (adapter->ptp_caps.pps) 5003 ptp_clock_event(adapter->ptp_clock, &event); 5004 ack |= IGC_TSICR_SYS_WRAP; 5005 } 5006 5007 if (tsicr & IGC_TSICR_TXTS) { 5008 /* retrieve hardware timestamp */ 5009 schedule_work(&adapter->ptp_tx_work); 5010 ack |= IGC_TSICR_TXTS; 5011 } 5012 5013 if (tsicr & IGC_TSICR_TT0) { 5014 spin_lock(&adapter->tmreg_lock); 5015 ts = timespec64_add(adapter->perout[0].start, 5016 adapter->perout[0].period); 5017 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5018 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5019 tsauxc = rd32(IGC_TSAUXC); 5020 tsauxc |= IGC_TSAUXC_EN_TT0; 5021 wr32(IGC_TSAUXC, tsauxc); 5022 adapter->perout[0].start = ts; 5023 spin_unlock(&adapter->tmreg_lock); 5024 ack |= IGC_TSICR_TT0; 5025 } 5026 5027 if (tsicr & IGC_TSICR_TT1) { 5028 spin_lock(&adapter->tmreg_lock); 5029 ts = timespec64_add(adapter->perout[1].start, 5030 adapter->perout[1].period); 5031 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5032 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5033 tsauxc = rd32(IGC_TSAUXC); 5034 tsauxc |= IGC_TSAUXC_EN_TT1; 5035 wr32(IGC_TSAUXC, tsauxc); 5036 adapter->perout[1].start = ts; 5037 spin_unlock(&adapter->tmreg_lock); 5038 ack |= IGC_TSICR_TT1; 5039 } 5040 5041 if (tsicr & IGC_TSICR_AUTT0) { 5042 nsec = rd32(IGC_AUXSTMPL0); 5043 sec = rd32(IGC_AUXSTMPH0); 5044 event.type = PTP_CLOCK_EXTTS; 5045 event.index = 0; 5046 event.timestamp = sec * NSEC_PER_SEC + nsec; 5047 ptp_clock_event(adapter->ptp_clock, &event); 5048 ack |= IGC_TSICR_AUTT0; 5049 } 5050 5051 if (tsicr & IGC_TSICR_AUTT1) { 5052 nsec = rd32(IGC_AUXSTMPL1); 5053 sec = rd32(IGC_AUXSTMPH1); 5054 event.type = PTP_CLOCK_EXTTS; 5055 event.index = 1; 5056 event.timestamp = sec * NSEC_PER_SEC + nsec; 5057 ptp_clock_event(adapter->ptp_clock, &event); 5058 ack |= IGC_TSICR_AUTT1; 5059 } 5060 5061 /* acknowledge the interrupts */ 5062 wr32(IGC_TSICR, ack); 5063 } 5064 5065 /** 5066 * igc_msix_other - msix other interrupt handler 5067 * @irq: interrupt number 5068 * @data: pointer to a q_vector 5069 */ 5070 static irqreturn_t igc_msix_other(int irq, void *data) 5071 { 5072 struct igc_adapter *adapter = data; 5073 struct igc_hw *hw = &adapter->hw; 5074 u32 icr = rd32(IGC_ICR); 5075 5076 /* reading ICR causes bit 31 of EICR to be cleared */ 5077 if (icr & IGC_ICR_DRSTA) 5078 schedule_work(&adapter->reset_task); 5079 5080 if (icr & IGC_ICR_DOUTSYNC) { 5081 /* HW is reporting DMA is out of sync */ 5082 adapter->stats.doosync++; 5083 } 5084 5085 if (icr & IGC_ICR_LSC) { 5086 hw->mac.get_link_status = true; 5087 /* guard against interrupt when we're going down */ 5088 if (!test_bit(__IGC_DOWN, &adapter->state)) 5089 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5090 } 5091 5092 if (icr & IGC_ICR_TS) 5093 igc_tsync_interrupt(adapter); 5094 5095 wr32(IGC_EIMS, adapter->eims_other); 5096 5097 return IRQ_HANDLED; 5098 } 5099 5100 static void igc_write_itr(struct igc_q_vector *q_vector) 5101 { 5102 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5103 5104 if (!q_vector->set_itr) 5105 return; 5106 5107 if (!itr_val) 5108 itr_val = IGC_ITR_VAL_MASK; 5109 5110 itr_val |= IGC_EITR_CNT_IGNR; 5111 5112 writel(itr_val, q_vector->itr_register); 5113 q_vector->set_itr = 0; 5114 } 5115 5116 static irqreturn_t igc_msix_ring(int irq, void *data) 5117 { 5118 struct igc_q_vector *q_vector = data; 5119 5120 /* Write the ITR value calculated from the previous interrupt. */ 5121 igc_write_itr(q_vector); 5122 5123 napi_schedule(&q_vector->napi); 5124 5125 return IRQ_HANDLED; 5126 } 5127 5128 /** 5129 * igc_request_msix - Initialize MSI-X interrupts 5130 * @adapter: Pointer to adapter structure 5131 * 5132 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5133 * kernel. 5134 */ 5135 static int igc_request_msix(struct igc_adapter *adapter) 5136 { 5137 unsigned int num_q_vectors = adapter->num_q_vectors; 5138 int i = 0, err = 0, vector = 0, free_vector = 0; 5139 struct net_device *netdev = adapter->netdev; 5140 5141 err = request_irq(adapter->msix_entries[vector].vector, 5142 &igc_msix_other, 0, netdev->name, adapter); 5143 if (err) 5144 goto err_out; 5145 5146 if (num_q_vectors > MAX_Q_VECTORS) { 5147 num_q_vectors = MAX_Q_VECTORS; 5148 dev_warn(&adapter->pdev->dev, 5149 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5150 adapter->num_q_vectors, MAX_Q_VECTORS); 5151 } 5152 for (i = 0; i < num_q_vectors; i++) { 5153 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5154 5155 vector++; 5156 5157 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5158 5159 if (q_vector->rx.ring && q_vector->tx.ring) 5160 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5161 q_vector->rx.ring->queue_index); 5162 else if (q_vector->tx.ring) 5163 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5164 q_vector->tx.ring->queue_index); 5165 else if (q_vector->rx.ring) 5166 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5167 q_vector->rx.ring->queue_index); 5168 else 5169 sprintf(q_vector->name, "%s-unused", netdev->name); 5170 5171 err = request_irq(adapter->msix_entries[vector].vector, 5172 igc_msix_ring, 0, q_vector->name, 5173 q_vector); 5174 if (err) 5175 goto err_free; 5176 } 5177 5178 igc_configure_msix(adapter); 5179 return 0; 5180 5181 err_free: 5182 /* free already assigned IRQs */ 5183 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5184 5185 vector--; 5186 for (i = 0; i < vector; i++) { 5187 free_irq(adapter->msix_entries[free_vector++].vector, 5188 adapter->q_vector[i]); 5189 } 5190 err_out: 5191 return err; 5192 } 5193 5194 /** 5195 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5196 * @adapter: Pointer to adapter structure 5197 * 5198 * This function resets the device so that it has 0 rx queues, tx queues, and 5199 * MSI-X interrupts allocated. 5200 */ 5201 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5202 { 5203 igc_free_q_vectors(adapter); 5204 igc_reset_interrupt_capability(adapter); 5205 } 5206 5207 /* Need to wait a few seconds after link up to get diagnostic information from 5208 * the phy 5209 */ 5210 static void igc_update_phy_info(struct timer_list *t) 5211 { 5212 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5213 5214 igc_get_phy_info(&adapter->hw); 5215 } 5216 5217 /** 5218 * igc_has_link - check shared code for link and determine up/down 5219 * @adapter: pointer to driver private info 5220 */ 5221 bool igc_has_link(struct igc_adapter *adapter) 5222 { 5223 struct igc_hw *hw = &adapter->hw; 5224 bool link_active = false; 5225 5226 /* get_link_status is set on LSC (link status) interrupt or 5227 * rx sequence error interrupt. get_link_status will stay 5228 * false until the igc_check_for_link establishes link 5229 * for copper adapters ONLY 5230 */ 5231 if (!hw->mac.get_link_status) 5232 return true; 5233 hw->mac.ops.check_for_link(hw); 5234 link_active = !hw->mac.get_link_status; 5235 5236 if (hw->mac.type == igc_i225) { 5237 if (!netif_carrier_ok(adapter->netdev)) { 5238 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5239 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5240 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5241 adapter->link_check_timeout = jiffies; 5242 } 5243 } 5244 5245 return link_active; 5246 } 5247 5248 /** 5249 * igc_watchdog - Timer Call-back 5250 * @t: timer for the watchdog 5251 */ 5252 static void igc_watchdog(struct timer_list *t) 5253 { 5254 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5255 /* Do the rest outside of interrupt context */ 5256 schedule_work(&adapter->watchdog_task); 5257 } 5258 5259 static void igc_watchdog_task(struct work_struct *work) 5260 { 5261 struct igc_adapter *adapter = container_of(work, 5262 struct igc_adapter, 5263 watchdog_task); 5264 struct net_device *netdev = adapter->netdev; 5265 struct igc_hw *hw = &adapter->hw; 5266 struct igc_phy_info *phy = &hw->phy; 5267 u16 phy_data, retry_count = 20; 5268 u32 link; 5269 int i; 5270 5271 link = igc_has_link(adapter); 5272 5273 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5274 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5275 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5276 else 5277 link = false; 5278 } 5279 5280 if (link) { 5281 /* Cancel scheduled suspend requests. */ 5282 pm_runtime_resume(netdev->dev.parent); 5283 5284 if (!netif_carrier_ok(netdev)) { 5285 u32 ctrl; 5286 5287 hw->mac.ops.get_speed_and_duplex(hw, 5288 &adapter->link_speed, 5289 &adapter->link_duplex); 5290 5291 ctrl = rd32(IGC_CTRL); 5292 /* Link status message must follow this format */ 5293 netdev_info(netdev, 5294 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5295 adapter->link_speed, 5296 adapter->link_duplex == FULL_DUPLEX ? 5297 "Full" : "Half", 5298 (ctrl & IGC_CTRL_TFCE) && 5299 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5300 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5301 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5302 5303 /* disable EEE if enabled */ 5304 if ((adapter->flags & IGC_FLAG_EEE) && 5305 adapter->link_duplex == HALF_DUPLEX) { 5306 netdev_info(netdev, 5307 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5308 adapter->hw.dev_spec._base.eee_enable = false; 5309 adapter->flags &= ~IGC_FLAG_EEE; 5310 } 5311 5312 /* check if SmartSpeed worked */ 5313 igc_check_downshift(hw); 5314 if (phy->speed_downgraded) 5315 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5316 5317 /* adjust timeout factor according to speed/duplex */ 5318 adapter->tx_timeout_factor = 1; 5319 switch (adapter->link_speed) { 5320 case SPEED_10: 5321 adapter->tx_timeout_factor = 14; 5322 break; 5323 case SPEED_100: 5324 case SPEED_1000: 5325 case SPEED_2500: 5326 adapter->tx_timeout_factor = 7; 5327 break; 5328 } 5329 5330 if (adapter->link_speed != SPEED_1000) 5331 goto no_wait; 5332 5333 /* wait for Remote receiver status OK */ 5334 retry_read_status: 5335 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5336 &phy_data)) { 5337 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5338 retry_count) { 5339 msleep(100); 5340 retry_count--; 5341 goto retry_read_status; 5342 } else if (!retry_count) { 5343 netdev_err(netdev, "exceed max 2 second\n"); 5344 } 5345 } else { 5346 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5347 } 5348 no_wait: 5349 netif_carrier_on(netdev); 5350 5351 /* link state has changed, schedule phy info update */ 5352 if (!test_bit(__IGC_DOWN, &adapter->state)) 5353 mod_timer(&adapter->phy_info_timer, 5354 round_jiffies(jiffies + 2 * HZ)); 5355 } 5356 } else { 5357 if (netif_carrier_ok(netdev)) { 5358 adapter->link_speed = 0; 5359 adapter->link_duplex = 0; 5360 5361 /* Links status message must follow this format */ 5362 netdev_info(netdev, "NIC Link is Down\n"); 5363 netif_carrier_off(netdev); 5364 5365 /* link state has changed, schedule phy info update */ 5366 if (!test_bit(__IGC_DOWN, &adapter->state)) 5367 mod_timer(&adapter->phy_info_timer, 5368 round_jiffies(jiffies + 2 * HZ)); 5369 5370 /* link is down, time to check for alternate media */ 5371 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 5372 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 5373 schedule_work(&adapter->reset_task); 5374 /* return immediately */ 5375 return; 5376 } 5377 } 5378 pm_schedule_suspend(netdev->dev.parent, 5379 MSEC_PER_SEC * 5); 5380 5381 /* also check for alternate media here */ 5382 } else if (!netif_carrier_ok(netdev) && 5383 (adapter->flags & IGC_FLAG_MAS_ENABLE)) { 5384 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 5385 schedule_work(&adapter->reset_task); 5386 /* return immediately */ 5387 return; 5388 } 5389 } 5390 } 5391 5392 spin_lock(&adapter->stats64_lock); 5393 igc_update_stats(adapter); 5394 spin_unlock(&adapter->stats64_lock); 5395 5396 for (i = 0; i < adapter->num_tx_queues; i++) { 5397 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5398 5399 if (!netif_carrier_ok(netdev)) { 5400 /* We've lost link, so the controller stops DMA, 5401 * but we've got queued Tx work that's never going 5402 * to get done, so reset controller to flush Tx. 5403 * (Do the reset outside of interrupt context). 5404 */ 5405 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5406 adapter->tx_timeout_count++; 5407 schedule_work(&adapter->reset_task); 5408 /* return immediately since reset is imminent */ 5409 return; 5410 } 5411 } 5412 5413 /* Force detection of hung controller every watchdog period */ 5414 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5415 } 5416 5417 /* Cause software interrupt to ensure Rx ring is cleaned */ 5418 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5419 u32 eics = 0; 5420 5421 for (i = 0; i < adapter->num_q_vectors; i++) 5422 eics |= adapter->q_vector[i]->eims_value; 5423 wr32(IGC_EICS, eics); 5424 } else { 5425 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5426 } 5427 5428 igc_ptp_tx_hang(adapter); 5429 5430 /* Reset the timer */ 5431 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5432 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5433 mod_timer(&adapter->watchdog_timer, 5434 round_jiffies(jiffies + HZ)); 5435 else 5436 mod_timer(&adapter->watchdog_timer, 5437 round_jiffies(jiffies + 2 * HZ)); 5438 } 5439 } 5440 5441 /** 5442 * igc_intr_msi - Interrupt Handler 5443 * @irq: interrupt number 5444 * @data: pointer to a network interface device structure 5445 */ 5446 static irqreturn_t igc_intr_msi(int irq, void *data) 5447 { 5448 struct igc_adapter *adapter = data; 5449 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5450 struct igc_hw *hw = &adapter->hw; 5451 /* read ICR disables interrupts using IAM */ 5452 u32 icr = rd32(IGC_ICR); 5453 5454 igc_write_itr(q_vector); 5455 5456 if (icr & IGC_ICR_DRSTA) 5457 schedule_work(&adapter->reset_task); 5458 5459 if (icr & IGC_ICR_DOUTSYNC) { 5460 /* HW is reporting DMA is out of sync */ 5461 adapter->stats.doosync++; 5462 } 5463 5464 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5465 hw->mac.get_link_status = true; 5466 if (!test_bit(__IGC_DOWN, &adapter->state)) 5467 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5468 } 5469 5470 napi_schedule(&q_vector->napi); 5471 5472 return IRQ_HANDLED; 5473 } 5474 5475 /** 5476 * igc_intr - Legacy Interrupt Handler 5477 * @irq: interrupt number 5478 * @data: pointer to a network interface device structure 5479 */ 5480 static irqreturn_t igc_intr(int irq, void *data) 5481 { 5482 struct igc_adapter *adapter = data; 5483 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5484 struct igc_hw *hw = &adapter->hw; 5485 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5486 * need for the IMC write 5487 */ 5488 u32 icr = rd32(IGC_ICR); 5489 5490 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5491 * not set, then the adapter didn't send an interrupt 5492 */ 5493 if (!(icr & IGC_ICR_INT_ASSERTED)) 5494 return IRQ_NONE; 5495 5496 igc_write_itr(q_vector); 5497 5498 if (icr & IGC_ICR_DRSTA) 5499 schedule_work(&adapter->reset_task); 5500 5501 if (icr & IGC_ICR_DOUTSYNC) { 5502 /* HW is reporting DMA is out of sync */ 5503 adapter->stats.doosync++; 5504 } 5505 5506 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5507 hw->mac.get_link_status = true; 5508 /* guard against interrupt when we're going down */ 5509 if (!test_bit(__IGC_DOWN, &adapter->state)) 5510 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5511 } 5512 5513 napi_schedule(&q_vector->napi); 5514 5515 return IRQ_HANDLED; 5516 } 5517 5518 static void igc_free_irq(struct igc_adapter *adapter) 5519 { 5520 if (adapter->msix_entries) { 5521 int vector = 0, i; 5522 5523 free_irq(adapter->msix_entries[vector++].vector, adapter); 5524 5525 for (i = 0; i < adapter->num_q_vectors; i++) 5526 free_irq(adapter->msix_entries[vector++].vector, 5527 adapter->q_vector[i]); 5528 } else { 5529 free_irq(adapter->pdev->irq, adapter); 5530 } 5531 } 5532 5533 /** 5534 * igc_request_irq - initialize interrupts 5535 * @adapter: Pointer to adapter structure 5536 * 5537 * Attempts to configure interrupts using the best available 5538 * capabilities of the hardware and kernel. 5539 */ 5540 static int igc_request_irq(struct igc_adapter *adapter) 5541 { 5542 struct net_device *netdev = adapter->netdev; 5543 struct pci_dev *pdev = adapter->pdev; 5544 int err = 0; 5545 5546 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5547 err = igc_request_msix(adapter); 5548 if (!err) 5549 goto request_done; 5550 /* fall back to MSI */ 5551 igc_free_all_tx_resources(adapter); 5552 igc_free_all_rx_resources(adapter); 5553 5554 igc_clear_interrupt_scheme(adapter); 5555 err = igc_init_interrupt_scheme(adapter, false); 5556 if (err) 5557 goto request_done; 5558 igc_setup_all_tx_resources(adapter); 5559 igc_setup_all_rx_resources(adapter); 5560 igc_configure(adapter); 5561 } 5562 5563 igc_assign_vector(adapter->q_vector[0], 0); 5564 5565 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5566 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5567 netdev->name, adapter); 5568 if (!err) 5569 goto request_done; 5570 5571 /* fall back to legacy interrupts */ 5572 igc_reset_interrupt_capability(adapter); 5573 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5574 } 5575 5576 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5577 netdev->name, adapter); 5578 5579 if (err) 5580 netdev_err(netdev, "Error %d getting interrupt\n", err); 5581 5582 request_done: 5583 return err; 5584 } 5585 5586 /** 5587 * __igc_open - Called when a network interface is made active 5588 * @netdev: network interface device structure 5589 * @resuming: boolean indicating if the device is resuming 5590 * 5591 * Returns 0 on success, negative value on failure 5592 * 5593 * The open entry point is called when a network interface is made 5594 * active by the system (IFF_UP). At this point all resources needed 5595 * for transmit and receive operations are allocated, the interrupt 5596 * handler is registered with the OS, the watchdog timer is started, 5597 * and the stack is notified that the interface is ready. 5598 */ 5599 static int __igc_open(struct net_device *netdev, bool resuming) 5600 { 5601 struct igc_adapter *adapter = netdev_priv(netdev); 5602 struct pci_dev *pdev = adapter->pdev; 5603 struct igc_hw *hw = &adapter->hw; 5604 int err = 0; 5605 int i = 0; 5606 5607 /* disallow open during test */ 5608 5609 if (test_bit(__IGC_TESTING, &adapter->state)) { 5610 WARN_ON(resuming); 5611 return -EBUSY; 5612 } 5613 5614 if (!resuming) 5615 pm_runtime_get_sync(&pdev->dev); 5616 5617 netif_carrier_off(netdev); 5618 5619 /* allocate transmit descriptors */ 5620 err = igc_setup_all_tx_resources(adapter); 5621 if (err) 5622 goto err_setup_tx; 5623 5624 /* allocate receive descriptors */ 5625 err = igc_setup_all_rx_resources(adapter); 5626 if (err) 5627 goto err_setup_rx; 5628 5629 igc_power_up_link(adapter); 5630 5631 igc_configure(adapter); 5632 5633 err = igc_request_irq(adapter); 5634 if (err) 5635 goto err_req_irq; 5636 5637 /* Notify the stack of the actual queue counts. */ 5638 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 5639 if (err) 5640 goto err_set_queues; 5641 5642 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 5643 if (err) 5644 goto err_set_queues; 5645 5646 clear_bit(__IGC_DOWN, &adapter->state); 5647 5648 for (i = 0; i < adapter->num_q_vectors; i++) 5649 napi_enable(&adapter->q_vector[i]->napi); 5650 5651 /* Clear any pending interrupts. */ 5652 rd32(IGC_ICR); 5653 igc_irq_enable(adapter); 5654 5655 if (!resuming) 5656 pm_runtime_put(&pdev->dev); 5657 5658 netif_tx_start_all_queues(netdev); 5659 5660 /* start the watchdog. */ 5661 hw->mac.get_link_status = true; 5662 schedule_work(&adapter->watchdog_task); 5663 5664 return IGC_SUCCESS; 5665 5666 err_set_queues: 5667 igc_free_irq(adapter); 5668 err_req_irq: 5669 igc_release_hw_control(adapter); 5670 igc_power_down_phy_copper_base(&adapter->hw); 5671 igc_free_all_rx_resources(adapter); 5672 err_setup_rx: 5673 igc_free_all_tx_resources(adapter); 5674 err_setup_tx: 5675 igc_reset(adapter); 5676 if (!resuming) 5677 pm_runtime_put(&pdev->dev); 5678 5679 return err; 5680 } 5681 5682 int igc_open(struct net_device *netdev) 5683 { 5684 return __igc_open(netdev, false); 5685 } 5686 5687 /** 5688 * __igc_close - Disables a network interface 5689 * @netdev: network interface device structure 5690 * @suspending: boolean indicating the device is suspending 5691 * 5692 * Returns 0, this is not allowed to fail 5693 * 5694 * The close entry point is called when an interface is de-activated 5695 * by the OS. The hardware is still under the driver's control, but 5696 * needs to be disabled. A global MAC reset is issued to stop the 5697 * hardware, and all transmit and receive resources are freed. 5698 */ 5699 static int __igc_close(struct net_device *netdev, bool suspending) 5700 { 5701 struct igc_adapter *adapter = netdev_priv(netdev); 5702 struct pci_dev *pdev = adapter->pdev; 5703 5704 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 5705 5706 if (!suspending) 5707 pm_runtime_get_sync(&pdev->dev); 5708 5709 igc_down(adapter); 5710 5711 igc_release_hw_control(adapter); 5712 5713 igc_free_irq(adapter); 5714 5715 igc_free_all_tx_resources(adapter); 5716 igc_free_all_rx_resources(adapter); 5717 5718 if (!suspending) 5719 pm_runtime_put_sync(&pdev->dev); 5720 5721 return 0; 5722 } 5723 5724 int igc_close(struct net_device *netdev) 5725 { 5726 if (netif_device_present(netdev) || netdev->dismantle) 5727 return __igc_close(netdev, false); 5728 return 0; 5729 } 5730 5731 /** 5732 * igc_ioctl - Access the hwtstamp interface 5733 * @netdev: network interface device structure 5734 * @ifr: interface request data 5735 * @cmd: ioctl command 5736 **/ 5737 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5738 { 5739 switch (cmd) { 5740 case SIOCGHWTSTAMP: 5741 return igc_ptp_get_ts_config(netdev, ifr); 5742 case SIOCSHWTSTAMP: 5743 return igc_ptp_set_ts_config(netdev, ifr); 5744 default: 5745 return -EOPNOTSUPP; 5746 } 5747 } 5748 5749 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 5750 bool enable) 5751 { 5752 struct igc_ring *ring; 5753 5754 if (queue < 0 || queue >= adapter->num_tx_queues) 5755 return -EINVAL; 5756 5757 ring = adapter->tx_ring[queue]; 5758 ring->launchtime_enable = enable; 5759 5760 return 0; 5761 } 5762 5763 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 5764 { 5765 struct timespec64 b; 5766 5767 b = ktime_to_timespec64(base_time); 5768 5769 return timespec64_compare(now, &b) > 0; 5770 } 5771 5772 static bool validate_schedule(struct igc_adapter *adapter, 5773 const struct tc_taprio_qopt_offload *qopt) 5774 { 5775 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 5776 struct timespec64 now; 5777 size_t n; 5778 5779 if (qopt->cycle_time_extension) 5780 return false; 5781 5782 igc_ptp_read(adapter, &now); 5783 5784 /* If we program the controller's BASET registers with a time 5785 * in the future, it will hold all the packets until that 5786 * time, causing a lot of TX Hangs, so to avoid that, we 5787 * reject schedules that would start in the future. 5788 */ 5789 if (!is_base_time_past(qopt->base_time, &now)) 5790 return false; 5791 5792 for (n = 0; n < qopt->num_entries; n++) { 5793 const struct tc_taprio_sched_entry *e; 5794 int i; 5795 5796 e = &qopt->entries[n]; 5797 5798 /* i225 only supports "global" frame preemption 5799 * settings. 5800 */ 5801 if (e->command != TC_TAPRIO_CMD_SET_GATES) 5802 return false; 5803 5804 for (i = 0; i < adapter->num_tx_queues; i++) { 5805 if (e->gate_mask & BIT(i)) 5806 queue_uses[i]++; 5807 5808 if (queue_uses[i] > 1) 5809 return false; 5810 } 5811 } 5812 5813 return true; 5814 } 5815 5816 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 5817 struct tc_etf_qopt_offload *qopt) 5818 { 5819 struct igc_hw *hw = &adapter->hw; 5820 int err; 5821 5822 if (hw->mac.type != igc_i225) 5823 return -EOPNOTSUPP; 5824 5825 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 5826 if (err) 5827 return err; 5828 5829 return igc_tsn_offload_apply(adapter); 5830 } 5831 5832 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 5833 { 5834 int i; 5835 5836 adapter->base_time = 0; 5837 adapter->cycle_time = NSEC_PER_SEC; 5838 5839 for (i = 0; i < adapter->num_tx_queues; i++) { 5840 struct igc_ring *ring = adapter->tx_ring[i]; 5841 5842 ring->start_time = 0; 5843 ring->end_time = NSEC_PER_SEC; 5844 } 5845 5846 return 0; 5847 } 5848 5849 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 5850 struct tc_taprio_qopt_offload *qopt) 5851 { 5852 u32 start_time = 0, end_time = 0; 5853 size_t n; 5854 5855 if (!qopt->enable) 5856 return igc_tsn_clear_schedule(adapter); 5857 5858 if (adapter->base_time) 5859 return -EALREADY; 5860 5861 if (!validate_schedule(adapter, qopt)) 5862 return -EINVAL; 5863 5864 adapter->cycle_time = qopt->cycle_time; 5865 adapter->base_time = qopt->base_time; 5866 5867 /* FIXME: be a little smarter about cases when the gate for a 5868 * queue stays open for more than one entry. 5869 */ 5870 for (n = 0; n < qopt->num_entries; n++) { 5871 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 5872 int i; 5873 5874 end_time += e->interval; 5875 5876 for (i = 0; i < adapter->num_tx_queues; i++) { 5877 struct igc_ring *ring = adapter->tx_ring[i]; 5878 5879 if (!(e->gate_mask & BIT(i))) 5880 continue; 5881 5882 ring->start_time = start_time; 5883 ring->end_time = end_time; 5884 } 5885 5886 start_time += e->interval; 5887 } 5888 5889 return 0; 5890 } 5891 5892 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 5893 struct tc_taprio_qopt_offload *qopt) 5894 { 5895 struct igc_hw *hw = &adapter->hw; 5896 int err; 5897 5898 if (hw->mac.type != igc_i225) 5899 return -EOPNOTSUPP; 5900 5901 err = igc_save_qbv_schedule(adapter, qopt); 5902 if (err) 5903 return err; 5904 5905 return igc_tsn_offload_apply(adapter); 5906 } 5907 5908 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 5909 bool enable, int idleslope, int sendslope, 5910 int hicredit, int locredit) 5911 { 5912 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 5913 struct net_device *netdev = adapter->netdev; 5914 struct igc_ring *ring; 5915 int i; 5916 5917 /* i225 has two sets of credit-based shaper logic. 5918 * Supporting it only on the top two priority queues 5919 */ 5920 if (queue < 0 || queue > 1) 5921 return -EINVAL; 5922 5923 ring = adapter->tx_ring[queue]; 5924 5925 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 5926 if (adapter->tx_ring[i]) 5927 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 5928 5929 /* CBS should be enabled on the highest priority queue first in order 5930 * for the CBS algorithm to operate as intended. 5931 */ 5932 if (enable) { 5933 if (queue == 1 && !cbs_status[0]) { 5934 netdev_err(netdev, 5935 "Enabling CBS on queue1 before queue0\n"); 5936 return -EINVAL; 5937 } 5938 } else { 5939 if (queue == 0 && cbs_status[1]) { 5940 netdev_err(netdev, 5941 "Disabling CBS on queue0 before queue1\n"); 5942 return -EINVAL; 5943 } 5944 } 5945 5946 ring->cbs_enable = enable; 5947 ring->idleslope = idleslope; 5948 ring->sendslope = sendslope; 5949 ring->hicredit = hicredit; 5950 ring->locredit = locredit; 5951 5952 return 0; 5953 } 5954 5955 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 5956 struct tc_cbs_qopt_offload *qopt) 5957 { 5958 struct igc_hw *hw = &adapter->hw; 5959 int err; 5960 5961 if (hw->mac.type != igc_i225) 5962 return -EOPNOTSUPP; 5963 5964 if (qopt->queue < 0 || qopt->queue > 1) 5965 return -EINVAL; 5966 5967 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 5968 qopt->idleslope, qopt->sendslope, 5969 qopt->hicredit, qopt->locredit); 5970 if (err) 5971 return err; 5972 5973 return igc_tsn_offload_apply(adapter); 5974 } 5975 5976 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 5977 void *type_data) 5978 { 5979 struct igc_adapter *adapter = netdev_priv(dev); 5980 5981 switch (type) { 5982 case TC_SETUP_QDISC_TAPRIO: 5983 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 5984 5985 case TC_SETUP_QDISC_ETF: 5986 return igc_tsn_enable_launchtime(adapter, type_data); 5987 5988 case TC_SETUP_QDISC_CBS: 5989 return igc_tsn_enable_cbs(adapter, type_data); 5990 5991 default: 5992 return -EOPNOTSUPP; 5993 } 5994 } 5995 5996 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 5997 { 5998 struct igc_adapter *adapter = netdev_priv(dev); 5999 6000 switch (bpf->command) { 6001 case XDP_SETUP_PROG: 6002 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6003 case XDP_SETUP_XSK_POOL: 6004 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6005 bpf->xsk.queue_id); 6006 default: 6007 return -EOPNOTSUPP; 6008 } 6009 } 6010 6011 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6012 struct xdp_frame **frames, u32 flags) 6013 { 6014 struct igc_adapter *adapter = netdev_priv(dev); 6015 int cpu = smp_processor_id(); 6016 struct netdev_queue *nq; 6017 struct igc_ring *ring; 6018 int i, drops; 6019 6020 if (unlikely(test_bit(__IGC_DOWN, &adapter->state))) 6021 return -ENETDOWN; 6022 6023 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6024 return -EINVAL; 6025 6026 ring = igc_xdp_get_tx_ring(adapter, cpu); 6027 nq = txring_txq(ring); 6028 6029 __netif_tx_lock(nq, cpu); 6030 6031 drops = 0; 6032 for (i = 0; i < num_frames; i++) { 6033 int err; 6034 struct xdp_frame *xdpf = frames[i]; 6035 6036 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6037 if (err) { 6038 xdp_return_frame_rx_napi(xdpf); 6039 drops++; 6040 } 6041 } 6042 6043 if (flags & XDP_XMIT_FLUSH) 6044 igc_flush_tx_descriptors(ring); 6045 6046 __netif_tx_unlock(nq); 6047 6048 return num_frames - drops; 6049 } 6050 6051 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6052 struct igc_q_vector *q_vector) 6053 { 6054 struct igc_hw *hw = &adapter->hw; 6055 u32 eics = 0; 6056 6057 eics |= q_vector->eims_value; 6058 wr32(IGC_EICS, eics); 6059 } 6060 6061 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6062 { 6063 struct igc_adapter *adapter = netdev_priv(dev); 6064 struct igc_q_vector *q_vector; 6065 struct igc_ring *ring; 6066 6067 if (test_bit(__IGC_DOWN, &adapter->state)) 6068 return -ENETDOWN; 6069 6070 if (!igc_xdp_is_enabled(adapter)) 6071 return -ENXIO; 6072 6073 if (queue_id >= adapter->num_rx_queues) 6074 return -EINVAL; 6075 6076 ring = adapter->rx_ring[queue_id]; 6077 6078 if (!ring->xsk_pool) 6079 return -ENXIO; 6080 6081 q_vector = adapter->q_vector[queue_id]; 6082 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6083 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6084 6085 return 0; 6086 } 6087 6088 static const struct net_device_ops igc_netdev_ops = { 6089 .ndo_open = igc_open, 6090 .ndo_stop = igc_close, 6091 .ndo_start_xmit = igc_xmit_frame, 6092 .ndo_set_rx_mode = igc_set_rx_mode, 6093 .ndo_set_mac_address = igc_set_mac, 6094 .ndo_change_mtu = igc_change_mtu, 6095 .ndo_get_stats64 = igc_get_stats64, 6096 .ndo_fix_features = igc_fix_features, 6097 .ndo_set_features = igc_set_features, 6098 .ndo_features_check = igc_features_check, 6099 .ndo_eth_ioctl = igc_ioctl, 6100 .ndo_setup_tc = igc_setup_tc, 6101 .ndo_bpf = igc_bpf, 6102 .ndo_xdp_xmit = igc_xdp_xmit, 6103 .ndo_xsk_wakeup = igc_xsk_wakeup, 6104 }; 6105 6106 /* PCIe configuration access */ 6107 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6108 { 6109 struct igc_adapter *adapter = hw->back; 6110 6111 pci_read_config_word(adapter->pdev, reg, value); 6112 } 6113 6114 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6115 { 6116 struct igc_adapter *adapter = hw->back; 6117 6118 pci_write_config_word(adapter->pdev, reg, *value); 6119 } 6120 6121 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6122 { 6123 struct igc_adapter *adapter = hw->back; 6124 6125 if (!pci_is_pcie(adapter->pdev)) 6126 return -IGC_ERR_CONFIG; 6127 6128 pcie_capability_read_word(adapter->pdev, reg, value); 6129 6130 return IGC_SUCCESS; 6131 } 6132 6133 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6134 { 6135 struct igc_adapter *adapter = hw->back; 6136 6137 if (!pci_is_pcie(adapter->pdev)) 6138 return -IGC_ERR_CONFIG; 6139 6140 pcie_capability_write_word(adapter->pdev, reg, *value); 6141 6142 return IGC_SUCCESS; 6143 } 6144 6145 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6146 { 6147 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6148 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6149 u32 value = 0; 6150 6151 value = readl(&hw_addr[reg]); 6152 6153 /* reads should not return all F's */ 6154 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6155 struct net_device *netdev = igc->netdev; 6156 6157 hw->hw_addr = NULL; 6158 netif_device_detach(netdev); 6159 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6160 WARN(pci_device_is_present(igc->pdev), 6161 "igc: Failed to read reg 0x%x!\n", reg); 6162 } 6163 6164 return value; 6165 } 6166 6167 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx) 6168 { 6169 struct igc_mac_info *mac = &adapter->hw.mac; 6170 6171 mac->autoneg = false; 6172 6173 /* Make sure dplx is at most 1 bit and lsb of speed is not set 6174 * for the switch() below to work 6175 */ 6176 if ((spd & 1) || (dplx & ~1)) 6177 goto err_inval; 6178 6179 switch (spd + dplx) { 6180 case SPEED_10 + DUPLEX_HALF: 6181 mac->forced_speed_duplex = ADVERTISE_10_HALF; 6182 break; 6183 case SPEED_10 + DUPLEX_FULL: 6184 mac->forced_speed_duplex = ADVERTISE_10_FULL; 6185 break; 6186 case SPEED_100 + DUPLEX_HALF: 6187 mac->forced_speed_duplex = ADVERTISE_100_HALF; 6188 break; 6189 case SPEED_100 + DUPLEX_FULL: 6190 mac->forced_speed_duplex = ADVERTISE_100_FULL; 6191 break; 6192 case SPEED_1000 + DUPLEX_FULL: 6193 mac->autoneg = true; 6194 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 6195 break; 6196 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 6197 goto err_inval; 6198 case SPEED_2500 + DUPLEX_FULL: 6199 mac->autoneg = true; 6200 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL; 6201 break; 6202 case SPEED_2500 + DUPLEX_HALF: /* not supported */ 6203 default: 6204 goto err_inval; 6205 } 6206 6207 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 6208 adapter->hw.phy.mdix = AUTO_ALL_MODES; 6209 6210 return 0; 6211 6212 err_inval: 6213 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n"); 6214 return -EINVAL; 6215 } 6216 6217 /** 6218 * igc_probe - Device Initialization Routine 6219 * @pdev: PCI device information struct 6220 * @ent: entry in igc_pci_tbl 6221 * 6222 * Returns 0 on success, negative on failure 6223 * 6224 * igc_probe initializes an adapter identified by a pci_dev structure. 6225 * The OS initialization, configuring the adapter private structure, 6226 * and a hardware reset occur. 6227 */ 6228 static int igc_probe(struct pci_dev *pdev, 6229 const struct pci_device_id *ent) 6230 { 6231 struct igc_adapter *adapter; 6232 struct net_device *netdev; 6233 struct igc_hw *hw; 6234 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6235 int err, pci_using_dac; 6236 6237 err = pci_enable_device_mem(pdev); 6238 if (err) 6239 return err; 6240 6241 pci_using_dac = 0; 6242 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6243 if (!err) { 6244 pci_using_dac = 1; 6245 } else { 6246 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 6247 if (err) { 6248 dev_err(&pdev->dev, 6249 "No usable DMA configuration, aborting\n"); 6250 goto err_dma; 6251 } 6252 } 6253 6254 err = pci_request_mem_regions(pdev, igc_driver_name); 6255 if (err) 6256 goto err_pci_reg; 6257 6258 pci_enable_pcie_error_reporting(pdev); 6259 6260 err = pci_enable_ptm(pdev, NULL); 6261 if (err < 0) 6262 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6263 6264 pci_set_master(pdev); 6265 6266 err = -ENOMEM; 6267 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6268 IGC_MAX_TX_QUEUES); 6269 6270 if (!netdev) 6271 goto err_alloc_etherdev; 6272 6273 SET_NETDEV_DEV(netdev, &pdev->dev); 6274 6275 pci_set_drvdata(pdev, netdev); 6276 adapter = netdev_priv(netdev); 6277 adapter->netdev = netdev; 6278 adapter->pdev = pdev; 6279 hw = &adapter->hw; 6280 hw->back = adapter; 6281 adapter->port_num = hw->bus.func; 6282 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6283 6284 err = pci_save_state(pdev); 6285 if (err) 6286 goto err_ioremap; 6287 6288 err = -EIO; 6289 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6290 pci_resource_len(pdev, 0)); 6291 if (!adapter->io_addr) 6292 goto err_ioremap; 6293 6294 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6295 hw->hw_addr = adapter->io_addr; 6296 6297 netdev->netdev_ops = &igc_netdev_ops; 6298 igc_ethtool_set_ops(netdev); 6299 netdev->watchdog_timeo = 5 * HZ; 6300 6301 netdev->mem_start = pci_resource_start(pdev, 0); 6302 netdev->mem_end = pci_resource_end(pdev, 0); 6303 6304 /* PCI config space info */ 6305 hw->vendor_id = pdev->vendor; 6306 hw->device_id = pdev->device; 6307 hw->revision_id = pdev->revision; 6308 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6309 hw->subsystem_device_id = pdev->subsystem_device; 6310 6311 /* Copy the default MAC and PHY function pointers */ 6312 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6313 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6314 6315 /* Initialize skew-specific constants */ 6316 err = ei->get_invariants(hw); 6317 if (err) 6318 goto err_sw_init; 6319 6320 /* Add supported features to the features list*/ 6321 netdev->features |= NETIF_F_SG; 6322 netdev->features |= NETIF_F_TSO; 6323 netdev->features |= NETIF_F_TSO6; 6324 netdev->features |= NETIF_F_TSO_ECN; 6325 netdev->features |= NETIF_F_RXCSUM; 6326 netdev->features |= NETIF_F_HW_CSUM; 6327 netdev->features |= NETIF_F_SCTP_CRC; 6328 netdev->features |= NETIF_F_HW_TC; 6329 6330 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6331 NETIF_F_GSO_GRE_CSUM | \ 6332 NETIF_F_GSO_IPXIP4 | \ 6333 NETIF_F_GSO_IPXIP6 | \ 6334 NETIF_F_GSO_UDP_TUNNEL | \ 6335 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6336 6337 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6338 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6339 6340 /* setup the private structure */ 6341 err = igc_sw_init(adapter); 6342 if (err) 6343 goto err_sw_init; 6344 6345 /* copy netdev features into list of user selectable features */ 6346 netdev->hw_features |= NETIF_F_NTUPLE; 6347 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6348 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6349 netdev->hw_features |= netdev->features; 6350 6351 if (pci_using_dac) 6352 netdev->features |= NETIF_F_HIGHDMA; 6353 6354 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6355 netdev->mpls_features |= NETIF_F_HW_CSUM; 6356 netdev->hw_enc_features |= netdev->vlan_features; 6357 6358 /* MTU range: 68 - 9216 */ 6359 netdev->min_mtu = ETH_MIN_MTU; 6360 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6361 6362 /* before reading the NVM, reset the controller to put the device in a 6363 * known good starting state 6364 */ 6365 hw->mac.ops.reset_hw(hw); 6366 6367 if (igc_get_flash_presence_i225(hw)) { 6368 if (hw->nvm.ops.validate(hw) < 0) { 6369 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6370 err = -EIO; 6371 goto err_eeprom; 6372 } 6373 } 6374 6375 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6376 /* copy the MAC address out of the NVM */ 6377 if (hw->mac.ops.read_mac_addr(hw)) 6378 dev_err(&pdev->dev, "NVM Read Error\n"); 6379 } 6380 6381 eth_hw_addr_set(netdev, hw->mac.addr); 6382 6383 if (!is_valid_ether_addr(netdev->dev_addr)) { 6384 dev_err(&pdev->dev, "Invalid MAC Address\n"); 6385 err = -EIO; 6386 goto err_eeprom; 6387 } 6388 6389 /* configure RXPBSIZE and TXPBSIZE */ 6390 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 6391 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 6392 6393 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 6394 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 6395 6396 INIT_WORK(&adapter->reset_task, igc_reset_task); 6397 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 6398 6399 /* Initialize link properties that are user-changeable */ 6400 adapter->fc_autoneg = true; 6401 hw->mac.autoneg = true; 6402 hw->phy.autoneg_advertised = 0xaf; 6403 6404 hw->fc.requested_mode = igc_fc_default; 6405 hw->fc.current_mode = igc_fc_default; 6406 6407 /* By default, support wake on port A */ 6408 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 6409 6410 /* initialize the wol settings based on the eeprom settings */ 6411 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 6412 adapter->wol |= IGC_WUFC_MAG; 6413 6414 device_set_wakeup_enable(&adapter->pdev->dev, 6415 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 6416 6417 igc_ptp_init(adapter); 6418 6419 igc_tsn_clear_schedule(adapter); 6420 6421 /* reset the hardware with the new settings */ 6422 igc_reset(adapter); 6423 6424 /* let the f/w know that the h/w is now under the control of the 6425 * driver. 6426 */ 6427 igc_get_hw_control(adapter); 6428 6429 strncpy(netdev->name, "eth%d", IFNAMSIZ); 6430 err = register_netdev(netdev); 6431 if (err) 6432 goto err_register; 6433 6434 /* carrier off reporting is important to ethtool even BEFORE open */ 6435 netif_carrier_off(netdev); 6436 6437 /* Check if Media Autosense is enabled */ 6438 adapter->ei = *ei; 6439 6440 /* print pcie link status and MAC address */ 6441 pcie_print_link_status(pdev); 6442 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 6443 6444 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 6445 /* Disable EEE for internal PHY devices */ 6446 hw->dev_spec._base.eee_enable = false; 6447 adapter->flags &= ~IGC_FLAG_EEE; 6448 igc_set_eee_i225(hw, false, false, false); 6449 6450 pm_runtime_put_noidle(&pdev->dev); 6451 6452 return 0; 6453 6454 err_register: 6455 igc_release_hw_control(adapter); 6456 err_eeprom: 6457 if (!igc_check_reset_block(hw)) 6458 igc_reset_phy(hw); 6459 err_sw_init: 6460 igc_clear_interrupt_scheme(adapter); 6461 iounmap(adapter->io_addr); 6462 err_ioremap: 6463 free_netdev(netdev); 6464 err_alloc_etherdev: 6465 pci_disable_pcie_error_reporting(pdev); 6466 pci_release_mem_regions(pdev); 6467 err_pci_reg: 6468 err_dma: 6469 pci_disable_device(pdev); 6470 return err; 6471 } 6472 6473 /** 6474 * igc_remove - Device Removal Routine 6475 * @pdev: PCI device information struct 6476 * 6477 * igc_remove is called by the PCI subsystem to alert the driver 6478 * that it should release a PCI device. This could be caused by a 6479 * Hot-Plug event, or because the driver is going to be removed from 6480 * memory. 6481 */ 6482 static void igc_remove(struct pci_dev *pdev) 6483 { 6484 struct net_device *netdev = pci_get_drvdata(pdev); 6485 struct igc_adapter *adapter = netdev_priv(netdev); 6486 6487 pm_runtime_get_noresume(&pdev->dev); 6488 6489 igc_flush_nfc_rules(adapter); 6490 6491 igc_ptp_stop(adapter); 6492 6493 set_bit(__IGC_DOWN, &adapter->state); 6494 6495 del_timer_sync(&adapter->watchdog_timer); 6496 del_timer_sync(&adapter->phy_info_timer); 6497 6498 cancel_work_sync(&adapter->reset_task); 6499 cancel_work_sync(&adapter->watchdog_task); 6500 6501 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6502 * would have already happened in close and is redundant. 6503 */ 6504 igc_release_hw_control(adapter); 6505 unregister_netdev(netdev); 6506 6507 igc_clear_interrupt_scheme(adapter); 6508 pci_iounmap(pdev, adapter->io_addr); 6509 pci_release_mem_regions(pdev); 6510 6511 free_netdev(netdev); 6512 6513 pci_disable_pcie_error_reporting(pdev); 6514 6515 pci_disable_device(pdev); 6516 } 6517 6518 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 6519 bool runtime) 6520 { 6521 struct net_device *netdev = pci_get_drvdata(pdev); 6522 struct igc_adapter *adapter = netdev_priv(netdev); 6523 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 6524 struct igc_hw *hw = &adapter->hw; 6525 u32 ctrl, rctl, status; 6526 bool wake; 6527 6528 rtnl_lock(); 6529 netif_device_detach(netdev); 6530 6531 if (netif_running(netdev)) 6532 __igc_close(netdev, true); 6533 6534 igc_ptp_suspend(adapter); 6535 6536 igc_clear_interrupt_scheme(adapter); 6537 rtnl_unlock(); 6538 6539 status = rd32(IGC_STATUS); 6540 if (status & IGC_STATUS_LU) 6541 wufc &= ~IGC_WUFC_LNKC; 6542 6543 if (wufc) { 6544 igc_setup_rctl(adapter); 6545 igc_set_rx_mode(netdev); 6546 6547 /* turn on all-multi mode if wake on multicast is enabled */ 6548 if (wufc & IGC_WUFC_MC) { 6549 rctl = rd32(IGC_RCTL); 6550 rctl |= IGC_RCTL_MPE; 6551 wr32(IGC_RCTL, rctl); 6552 } 6553 6554 ctrl = rd32(IGC_CTRL); 6555 ctrl |= IGC_CTRL_ADVD3WUC; 6556 wr32(IGC_CTRL, ctrl); 6557 6558 /* Allow time for pending master requests to run */ 6559 igc_disable_pcie_master(hw); 6560 6561 wr32(IGC_WUC, IGC_WUC_PME_EN); 6562 wr32(IGC_WUFC, wufc); 6563 } else { 6564 wr32(IGC_WUC, 0); 6565 wr32(IGC_WUFC, 0); 6566 } 6567 6568 wake = wufc || adapter->en_mng_pt; 6569 if (!wake) 6570 igc_power_down_phy_copper_base(&adapter->hw); 6571 else 6572 igc_power_up_link(adapter); 6573 6574 if (enable_wake) 6575 *enable_wake = wake; 6576 6577 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6578 * would have already happened in close and is redundant. 6579 */ 6580 igc_release_hw_control(adapter); 6581 6582 pci_disable_device(pdev); 6583 6584 return 0; 6585 } 6586 6587 #ifdef CONFIG_PM 6588 static int __maybe_unused igc_runtime_suspend(struct device *dev) 6589 { 6590 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 6591 } 6592 6593 static void igc_deliver_wake_packet(struct net_device *netdev) 6594 { 6595 struct igc_adapter *adapter = netdev_priv(netdev); 6596 struct igc_hw *hw = &adapter->hw; 6597 struct sk_buff *skb; 6598 u32 wupl; 6599 6600 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 6601 6602 /* WUPM stores only the first 128 bytes of the wake packet. 6603 * Read the packet only if we have the whole thing. 6604 */ 6605 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 6606 return; 6607 6608 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 6609 if (!skb) 6610 return; 6611 6612 skb_put(skb, wupl); 6613 6614 /* Ensure reads are 32-bit aligned */ 6615 wupl = roundup(wupl, 4); 6616 6617 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 6618 6619 skb->protocol = eth_type_trans(skb, netdev); 6620 netif_rx(skb); 6621 } 6622 6623 static int __maybe_unused igc_resume(struct device *dev) 6624 { 6625 struct pci_dev *pdev = to_pci_dev(dev); 6626 struct net_device *netdev = pci_get_drvdata(pdev); 6627 struct igc_adapter *adapter = netdev_priv(netdev); 6628 struct igc_hw *hw = &adapter->hw; 6629 u32 err, val; 6630 6631 pci_set_power_state(pdev, PCI_D0); 6632 pci_restore_state(pdev); 6633 pci_save_state(pdev); 6634 6635 if (!pci_device_is_present(pdev)) 6636 return -ENODEV; 6637 err = pci_enable_device_mem(pdev); 6638 if (err) { 6639 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 6640 return err; 6641 } 6642 pci_set_master(pdev); 6643 6644 pci_enable_wake(pdev, PCI_D3hot, 0); 6645 pci_enable_wake(pdev, PCI_D3cold, 0); 6646 6647 if (igc_init_interrupt_scheme(adapter, true)) { 6648 netdev_err(netdev, "Unable to allocate memory for queues\n"); 6649 return -ENOMEM; 6650 } 6651 6652 igc_reset(adapter); 6653 6654 /* let the f/w know that the h/w is now under the control of the 6655 * driver. 6656 */ 6657 igc_get_hw_control(adapter); 6658 6659 val = rd32(IGC_WUS); 6660 if (val & WAKE_PKT_WUS) 6661 igc_deliver_wake_packet(netdev); 6662 6663 wr32(IGC_WUS, ~0); 6664 6665 rtnl_lock(); 6666 if (!err && netif_running(netdev)) 6667 err = __igc_open(netdev, true); 6668 6669 if (!err) 6670 netif_device_attach(netdev); 6671 rtnl_unlock(); 6672 6673 return err; 6674 } 6675 6676 static int __maybe_unused igc_runtime_resume(struct device *dev) 6677 { 6678 return igc_resume(dev); 6679 } 6680 6681 static int __maybe_unused igc_suspend(struct device *dev) 6682 { 6683 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 6684 } 6685 6686 static int __maybe_unused igc_runtime_idle(struct device *dev) 6687 { 6688 struct net_device *netdev = dev_get_drvdata(dev); 6689 struct igc_adapter *adapter = netdev_priv(netdev); 6690 6691 if (!igc_has_link(adapter)) 6692 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 6693 6694 return -EBUSY; 6695 } 6696 #endif /* CONFIG_PM */ 6697 6698 static void igc_shutdown(struct pci_dev *pdev) 6699 { 6700 bool wake; 6701 6702 __igc_shutdown(pdev, &wake, 0); 6703 6704 if (system_state == SYSTEM_POWER_OFF) { 6705 pci_wake_from_d3(pdev, wake); 6706 pci_set_power_state(pdev, PCI_D3hot); 6707 } 6708 } 6709 6710 /** 6711 * igc_io_error_detected - called when PCI error is detected 6712 * @pdev: Pointer to PCI device 6713 * @state: The current PCI connection state 6714 * 6715 * This function is called after a PCI bus error affecting 6716 * this device has been detected. 6717 **/ 6718 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 6719 pci_channel_state_t state) 6720 { 6721 struct net_device *netdev = pci_get_drvdata(pdev); 6722 struct igc_adapter *adapter = netdev_priv(netdev); 6723 6724 netif_device_detach(netdev); 6725 6726 if (state == pci_channel_io_perm_failure) 6727 return PCI_ERS_RESULT_DISCONNECT; 6728 6729 if (netif_running(netdev)) 6730 igc_down(adapter); 6731 pci_disable_device(pdev); 6732 6733 /* Request a slot reset. */ 6734 return PCI_ERS_RESULT_NEED_RESET; 6735 } 6736 6737 /** 6738 * igc_io_slot_reset - called after the PCI bus has been reset. 6739 * @pdev: Pointer to PCI device 6740 * 6741 * Restart the card from scratch, as if from a cold-boot. Implementation 6742 * resembles the first-half of the igc_resume routine. 6743 **/ 6744 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 6745 { 6746 struct net_device *netdev = pci_get_drvdata(pdev); 6747 struct igc_adapter *adapter = netdev_priv(netdev); 6748 struct igc_hw *hw = &adapter->hw; 6749 pci_ers_result_t result; 6750 6751 if (pci_enable_device_mem(pdev)) { 6752 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 6753 result = PCI_ERS_RESULT_DISCONNECT; 6754 } else { 6755 pci_set_master(pdev); 6756 pci_restore_state(pdev); 6757 pci_save_state(pdev); 6758 6759 pci_enable_wake(pdev, PCI_D3hot, 0); 6760 pci_enable_wake(pdev, PCI_D3cold, 0); 6761 6762 /* In case of PCI error, adapter loses its HW address 6763 * so we should re-assign it here. 6764 */ 6765 hw->hw_addr = adapter->io_addr; 6766 6767 igc_reset(adapter); 6768 wr32(IGC_WUS, ~0); 6769 result = PCI_ERS_RESULT_RECOVERED; 6770 } 6771 6772 return result; 6773 } 6774 6775 /** 6776 * igc_io_resume - called when traffic can start to flow again. 6777 * @pdev: Pointer to PCI device 6778 * 6779 * This callback is called when the error recovery driver tells us that 6780 * its OK to resume normal operation. Implementation resembles the 6781 * second-half of the igc_resume routine. 6782 */ 6783 static void igc_io_resume(struct pci_dev *pdev) 6784 { 6785 struct net_device *netdev = pci_get_drvdata(pdev); 6786 struct igc_adapter *adapter = netdev_priv(netdev); 6787 6788 rtnl_lock(); 6789 if (netif_running(netdev)) { 6790 if (igc_open(netdev)) { 6791 netdev_err(netdev, "igc_open failed after reset\n"); 6792 return; 6793 } 6794 } 6795 6796 netif_device_attach(netdev); 6797 6798 /* let the f/w know that the h/w is now under the control of the 6799 * driver. 6800 */ 6801 igc_get_hw_control(adapter); 6802 rtnl_unlock(); 6803 } 6804 6805 static const struct pci_error_handlers igc_err_handler = { 6806 .error_detected = igc_io_error_detected, 6807 .slot_reset = igc_io_slot_reset, 6808 .resume = igc_io_resume, 6809 }; 6810 6811 #ifdef CONFIG_PM 6812 static const struct dev_pm_ops igc_pm_ops = { 6813 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 6814 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 6815 igc_runtime_idle) 6816 }; 6817 #endif 6818 6819 static struct pci_driver igc_driver = { 6820 .name = igc_driver_name, 6821 .id_table = igc_pci_tbl, 6822 .probe = igc_probe, 6823 .remove = igc_remove, 6824 #ifdef CONFIG_PM 6825 .driver.pm = &igc_pm_ops, 6826 #endif 6827 .shutdown = igc_shutdown, 6828 .err_handler = &igc_err_handler, 6829 }; 6830 6831 /** 6832 * igc_reinit_queues - return error 6833 * @adapter: pointer to adapter structure 6834 */ 6835 int igc_reinit_queues(struct igc_adapter *adapter) 6836 { 6837 struct net_device *netdev = adapter->netdev; 6838 int err = 0; 6839 6840 if (netif_running(netdev)) 6841 igc_close(netdev); 6842 6843 igc_reset_interrupt_capability(adapter); 6844 6845 if (igc_init_interrupt_scheme(adapter, true)) { 6846 netdev_err(netdev, "Unable to allocate memory for queues\n"); 6847 return -ENOMEM; 6848 } 6849 6850 if (netif_running(netdev)) 6851 err = igc_open(netdev); 6852 6853 return err; 6854 } 6855 6856 /** 6857 * igc_get_hw_dev - return device 6858 * @hw: pointer to hardware structure 6859 * 6860 * used by hardware layer to print debugging information 6861 */ 6862 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 6863 { 6864 struct igc_adapter *adapter = hw->back; 6865 6866 return adapter->netdev; 6867 } 6868 6869 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 6870 { 6871 struct igc_hw *hw = &ring->q_vector->adapter->hw; 6872 u8 idx = ring->reg_idx; 6873 u32 rxdctl; 6874 6875 rxdctl = rd32(IGC_RXDCTL(idx)); 6876 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 6877 rxdctl |= IGC_RXDCTL_SWFLUSH; 6878 wr32(IGC_RXDCTL(idx), rxdctl); 6879 } 6880 6881 void igc_disable_rx_ring(struct igc_ring *ring) 6882 { 6883 igc_disable_rx_ring_hw(ring); 6884 igc_clean_rx_ring(ring); 6885 } 6886 6887 void igc_enable_rx_ring(struct igc_ring *ring) 6888 { 6889 struct igc_adapter *adapter = ring->q_vector->adapter; 6890 6891 igc_configure_rx_ring(adapter, ring); 6892 6893 if (ring->xsk_pool) 6894 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 6895 else 6896 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 6897 } 6898 6899 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 6900 { 6901 struct igc_hw *hw = &ring->q_vector->adapter->hw; 6902 u8 idx = ring->reg_idx; 6903 u32 txdctl; 6904 6905 txdctl = rd32(IGC_TXDCTL(idx)); 6906 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 6907 txdctl |= IGC_TXDCTL_SWFLUSH; 6908 wr32(IGC_TXDCTL(idx), txdctl); 6909 } 6910 6911 void igc_disable_tx_ring(struct igc_ring *ring) 6912 { 6913 igc_disable_tx_ring_hw(ring); 6914 igc_clean_tx_ring(ring); 6915 } 6916 6917 void igc_enable_tx_ring(struct igc_ring *ring) 6918 { 6919 struct igc_adapter *adapter = ring->q_vector->adapter; 6920 6921 igc_configure_tx_ring(adapter, ring); 6922 } 6923 6924 /** 6925 * igc_init_module - Driver Registration Routine 6926 * 6927 * igc_init_module is the first routine called when the driver is 6928 * loaded. All it does is register with the PCI subsystem. 6929 */ 6930 static int __init igc_init_module(void) 6931 { 6932 int ret; 6933 6934 pr_info("%s\n", igc_driver_string); 6935 pr_info("%s\n", igc_copyright); 6936 6937 ret = pci_register_driver(&igc_driver); 6938 return ret; 6939 } 6940 6941 module_init(igc_init_module); 6942 6943 /** 6944 * igc_exit_module - Driver Exit Cleanup Routine 6945 * 6946 * igc_exit_module is called just before the driver is removed 6947 * from memory. 6948 */ 6949 static void __exit igc_exit_module(void) 6950 { 6951 pci_unregister_driver(&igc_driver); 6952 } 6953 6954 module_exit(igc_exit_module); 6955 /* igc_main.c */ 6956