1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <net/ipv6.h>
16 
17 #include "igc.h"
18 #include "igc_hw.h"
19 #include "igc_tsn.h"
20 #include "igc_xdp.h"
21 
22 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
23 
24 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
25 
26 #define IGC_XDP_PASS		0
27 #define IGC_XDP_CONSUMED	BIT(0)
28 #define IGC_XDP_TX		BIT(1)
29 #define IGC_XDP_REDIRECT	BIT(2)
30 
31 static int debug = -1;
32 
33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34 MODULE_DESCRIPTION(DRV_SUMMARY);
35 MODULE_LICENSE("GPL v2");
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38 
39 char igc_driver_name[] = "igc";
40 static const char igc_driver_string[] = DRV_SUMMARY;
41 static const char igc_copyright[] =
42 	"Copyright(c) 2018 Intel Corporation.";
43 
44 static const struct igc_info *igc_info_tbl[] = {
45 	[board_base] = &igc_base_info,
46 };
47 
48 static const struct pci_device_id igc_pci_tbl[] = {
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
64 	/* required last entry */
65 	{0, }
66 };
67 
68 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
69 
70 enum latency_range {
71 	lowest_latency = 0,
72 	low_latency = 1,
73 	bulk_latency = 2,
74 	latency_invalid = 255
75 };
76 
77 void igc_reset(struct igc_adapter *adapter)
78 {
79 	struct net_device *dev = adapter->netdev;
80 	struct igc_hw *hw = &adapter->hw;
81 	struct igc_fc_info *fc = &hw->fc;
82 	u32 pba, hwm;
83 
84 	/* Repartition PBA for greater than 9k MTU if required */
85 	pba = IGC_PBA_34K;
86 
87 	/* flow control settings
88 	 * The high water mark must be low enough to fit one full frame
89 	 * after transmitting the pause frame.  As such we must have enough
90 	 * space to allow for us to complete our current transmit and then
91 	 * receive the frame that is in progress from the link partner.
92 	 * Set it to:
93 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94 	 */
95 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96 
97 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
98 	fc->low_water = fc->high_water - 16;
99 	fc->pause_time = 0xFFFF;
100 	fc->send_xon = 1;
101 	fc->current_mode = fc->requested_mode;
102 
103 	hw->mac.ops.reset_hw(hw);
104 
105 	if (hw->mac.ops.init_hw(hw))
106 		netdev_err(dev, "Error on hardware initialization\n");
107 
108 	/* Re-establish EEE setting */
109 	igc_set_eee_i225(hw, true, true, true);
110 
111 	if (!netif_running(adapter->netdev))
112 		igc_power_down_phy_copper_base(&adapter->hw);
113 
114 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
115 	wr32(IGC_VET, ETH_P_8021Q);
116 
117 	/* Re-enable PTP, where applicable. */
118 	igc_ptp_reset(adapter);
119 
120 	/* Re-enable TSN offloading, where applicable. */
121 	igc_tsn_offload_apply(adapter);
122 
123 	igc_get_phy_info(hw);
124 }
125 
126 /**
127  * igc_power_up_link - Power up the phy link
128  * @adapter: address of board private structure
129  */
130 static void igc_power_up_link(struct igc_adapter *adapter)
131 {
132 	igc_reset_phy(&adapter->hw);
133 
134 	igc_power_up_phy_copper(&adapter->hw);
135 
136 	igc_setup_link(&adapter->hw);
137 }
138 
139 /**
140  * igc_release_hw_control - release control of the h/w to f/w
141  * @adapter: address of board private structure
142  *
143  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
144  * For ASF and Pass Through versions of f/w this means that the
145  * driver is no longer loaded.
146  */
147 static void igc_release_hw_control(struct igc_adapter *adapter)
148 {
149 	struct igc_hw *hw = &adapter->hw;
150 	u32 ctrl_ext;
151 
152 	if (!pci_device_is_present(adapter->pdev))
153 		return;
154 
155 	/* Let firmware take over control of h/w */
156 	ctrl_ext = rd32(IGC_CTRL_EXT);
157 	wr32(IGC_CTRL_EXT,
158 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
159 }
160 
161 /**
162  * igc_get_hw_control - get control of the h/w from f/w
163  * @adapter: address of board private structure
164  *
165  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
166  * For ASF and Pass Through versions of f/w this means that
167  * the driver is loaded.
168  */
169 static void igc_get_hw_control(struct igc_adapter *adapter)
170 {
171 	struct igc_hw *hw = &adapter->hw;
172 	u32 ctrl_ext;
173 
174 	/* Let firmware know the driver has taken over */
175 	ctrl_ext = rd32(IGC_CTRL_EXT);
176 	wr32(IGC_CTRL_EXT,
177 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
178 }
179 
180 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
181 {
182 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
183 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
184 
185 	dma_unmap_len_set(buf, len, 0);
186 }
187 
188 /**
189  * igc_clean_tx_ring - Free Tx Buffers
190  * @tx_ring: ring to be cleaned
191  */
192 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
193 {
194 	u16 i = tx_ring->next_to_clean;
195 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
196 	u32 xsk_frames = 0;
197 
198 	while (i != tx_ring->next_to_use) {
199 		union igc_adv_tx_desc *eop_desc, *tx_desc;
200 
201 		switch (tx_buffer->type) {
202 		case IGC_TX_BUFFER_TYPE_XSK:
203 			xsk_frames++;
204 			break;
205 		case IGC_TX_BUFFER_TYPE_XDP:
206 			xdp_return_frame(tx_buffer->xdpf);
207 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
208 			break;
209 		case IGC_TX_BUFFER_TYPE_SKB:
210 			dev_kfree_skb_any(tx_buffer->skb);
211 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
212 			break;
213 		default:
214 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
215 			break;
216 		}
217 
218 		/* check for eop_desc to determine the end of the packet */
219 		eop_desc = tx_buffer->next_to_watch;
220 		tx_desc = IGC_TX_DESC(tx_ring, i);
221 
222 		/* unmap remaining buffers */
223 		while (tx_desc != eop_desc) {
224 			tx_buffer++;
225 			tx_desc++;
226 			i++;
227 			if (unlikely(i == tx_ring->count)) {
228 				i = 0;
229 				tx_buffer = tx_ring->tx_buffer_info;
230 				tx_desc = IGC_TX_DESC(tx_ring, 0);
231 			}
232 
233 			/* unmap any remaining paged data */
234 			if (dma_unmap_len(tx_buffer, len))
235 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
236 		}
237 
238 		tx_buffer->next_to_watch = NULL;
239 
240 		/* move us one more past the eop_desc for start of next pkt */
241 		tx_buffer++;
242 		i++;
243 		if (unlikely(i == tx_ring->count)) {
244 			i = 0;
245 			tx_buffer = tx_ring->tx_buffer_info;
246 		}
247 	}
248 
249 	if (tx_ring->xsk_pool && xsk_frames)
250 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
251 
252 	/* reset BQL for queue */
253 	netdev_tx_reset_queue(txring_txq(tx_ring));
254 
255 	/* reset next_to_use and next_to_clean */
256 	tx_ring->next_to_use = 0;
257 	tx_ring->next_to_clean = 0;
258 }
259 
260 /**
261  * igc_free_tx_resources - Free Tx Resources per Queue
262  * @tx_ring: Tx descriptor ring for a specific queue
263  *
264  * Free all transmit software resources
265  */
266 void igc_free_tx_resources(struct igc_ring *tx_ring)
267 {
268 	igc_clean_tx_ring(tx_ring);
269 
270 	vfree(tx_ring->tx_buffer_info);
271 	tx_ring->tx_buffer_info = NULL;
272 
273 	/* if not set, then don't free */
274 	if (!tx_ring->desc)
275 		return;
276 
277 	dma_free_coherent(tx_ring->dev, tx_ring->size,
278 			  tx_ring->desc, tx_ring->dma);
279 
280 	tx_ring->desc = NULL;
281 }
282 
283 /**
284  * igc_free_all_tx_resources - Free Tx Resources for All Queues
285  * @adapter: board private structure
286  *
287  * Free all transmit software resources
288  */
289 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
290 {
291 	int i;
292 
293 	for (i = 0; i < adapter->num_tx_queues; i++)
294 		igc_free_tx_resources(adapter->tx_ring[i]);
295 }
296 
297 /**
298  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
299  * @adapter: board private structure
300  */
301 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
302 {
303 	int i;
304 
305 	for (i = 0; i < adapter->num_tx_queues; i++)
306 		if (adapter->tx_ring[i])
307 			igc_clean_tx_ring(adapter->tx_ring[i]);
308 }
309 
310 /**
311  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
312  * @tx_ring: tx descriptor ring (for a specific queue) to setup
313  *
314  * Return 0 on success, negative on failure
315  */
316 int igc_setup_tx_resources(struct igc_ring *tx_ring)
317 {
318 	struct net_device *ndev = tx_ring->netdev;
319 	struct device *dev = tx_ring->dev;
320 	int size = 0;
321 
322 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
323 	tx_ring->tx_buffer_info = vzalloc(size);
324 	if (!tx_ring->tx_buffer_info)
325 		goto err;
326 
327 	/* round up to nearest 4K */
328 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
329 	tx_ring->size = ALIGN(tx_ring->size, 4096);
330 
331 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
332 					   &tx_ring->dma, GFP_KERNEL);
333 
334 	if (!tx_ring->desc)
335 		goto err;
336 
337 	tx_ring->next_to_use = 0;
338 	tx_ring->next_to_clean = 0;
339 
340 	return 0;
341 
342 err:
343 	vfree(tx_ring->tx_buffer_info);
344 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
345 	return -ENOMEM;
346 }
347 
348 /**
349  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
350  * @adapter: board private structure
351  *
352  * Return 0 on success, negative on failure
353  */
354 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
355 {
356 	struct net_device *dev = adapter->netdev;
357 	int i, err = 0;
358 
359 	for (i = 0; i < adapter->num_tx_queues; i++) {
360 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
361 		if (err) {
362 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
363 			for (i--; i >= 0; i--)
364 				igc_free_tx_resources(adapter->tx_ring[i]);
365 			break;
366 		}
367 	}
368 
369 	return err;
370 }
371 
372 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
373 {
374 	u16 i = rx_ring->next_to_clean;
375 
376 	dev_kfree_skb(rx_ring->skb);
377 	rx_ring->skb = NULL;
378 
379 	/* Free all the Rx ring sk_buffs */
380 	while (i != rx_ring->next_to_alloc) {
381 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
382 
383 		/* Invalidate cache lines that may have been written to by
384 		 * device so that we avoid corrupting memory.
385 		 */
386 		dma_sync_single_range_for_cpu(rx_ring->dev,
387 					      buffer_info->dma,
388 					      buffer_info->page_offset,
389 					      igc_rx_bufsz(rx_ring),
390 					      DMA_FROM_DEVICE);
391 
392 		/* free resources associated with mapping */
393 		dma_unmap_page_attrs(rx_ring->dev,
394 				     buffer_info->dma,
395 				     igc_rx_pg_size(rx_ring),
396 				     DMA_FROM_DEVICE,
397 				     IGC_RX_DMA_ATTR);
398 		__page_frag_cache_drain(buffer_info->page,
399 					buffer_info->pagecnt_bias);
400 
401 		i++;
402 		if (i == rx_ring->count)
403 			i = 0;
404 	}
405 }
406 
407 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
408 {
409 	struct igc_rx_buffer *bi;
410 	u16 i;
411 
412 	for (i = 0; i < ring->count; i++) {
413 		bi = &ring->rx_buffer_info[i];
414 		if (!bi->xdp)
415 			continue;
416 
417 		xsk_buff_free(bi->xdp);
418 		bi->xdp = NULL;
419 	}
420 }
421 
422 /**
423  * igc_clean_rx_ring - Free Rx Buffers per Queue
424  * @ring: ring to free buffers from
425  */
426 static void igc_clean_rx_ring(struct igc_ring *ring)
427 {
428 	if (ring->xsk_pool)
429 		igc_clean_rx_ring_xsk_pool(ring);
430 	else
431 		igc_clean_rx_ring_page_shared(ring);
432 
433 	clear_ring_uses_large_buffer(ring);
434 
435 	ring->next_to_alloc = 0;
436 	ring->next_to_clean = 0;
437 	ring->next_to_use = 0;
438 }
439 
440 /**
441  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
442  * @adapter: board private structure
443  */
444 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
445 {
446 	int i;
447 
448 	for (i = 0; i < adapter->num_rx_queues; i++)
449 		if (adapter->rx_ring[i])
450 			igc_clean_rx_ring(adapter->rx_ring[i]);
451 }
452 
453 /**
454  * igc_free_rx_resources - Free Rx Resources
455  * @rx_ring: ring to clean the resources from
456  *
457  * Free all receive software resources
458  */
459 void igc_free_rx_resources(struct igc_ring *rx_ring)
460 {
461 	igc_clean_rx_ring(rx_ring);
462 
463 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
464 
465 	vfree(rx_ring->rx_buffer_info);
466 	rx_ring->rx_buffer_info = NULL;
467 
468 	/* if not set, then don't free */
469 	if (!rx_ring->desc)
470 		return;
471 
472 	dma_free_coherent(rx_ring->dev, rx_ring->size,
473 			  rx_ring->desc, rx_ring->dma);
474 
475 	rx_ring->desc = NULL;
476 }
477 
478 /**
479  * igc_free_all_rx_resources - Free Rx Resources for All Queues
480  * @adapter: board private structure
481  *
482  * Free all receive software resources
483  */
484 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
485 {
486 	int i;
487 
488 	for (i = 0; i < adapter->num_rx_queues; i++)
489 		igc_free_rx_resources(adapter->rx_ring[i]);
490 }
491 
492 /**
493  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
494  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
495  *
496  * Returns 0 on success, negative on failure
497  */
498 int igc_setup_rx_resources(struct igc_ring *rx_ring)
499 {
500 	struct net_device *ndev = rx_ring->netdev;
501 	struct device *dev = rx_ring->dev;
502 	u8 index = rx_ring->queue_index;
503 	int size, desc_len, res;
504 
505 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
506 			       rx_ring->q_vector->napi.napi_id);
507 	if (res < 0) {
508 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
509 			   index);
510 		return res;
511 	}
512 
513 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
514 	rx_ring->rx_buffer_info = vzalloc(size);
515 	if (!rx_ring->rx_buffer_info)
516 		goto err;
517 
518 	desc_len = sizeof(union igc_adv_rx_desc);
519 
520 	/* Round up to nearest 4K */
521 	rx_ring->size = rx_ring->count * desc_len;
522 	rx_ring->size = ALIGN(rx_ring->size, 4096);
523 
524 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
525 					   &rx_ring->dma, GFP_KERNEL);
526 
527 	if (!rx_ring->desc)
528 		goto err;
529 
530 	rx_ring->next_to_alloc = 0;
531 	rx_ring->next_to_clean = 0;
532 	rx_ring->next_to_use = 0;
533 
534 	return 0;
535 
536 err:
537 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
538 	vfree(rx_ring->rx_buffer_info);
539 	rx_ring->rx_buffer_info = NULL;
540 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
541 	return -ENOMEM;
542 }
543 
544 /**
545  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
546  *                                (Descriptors) for all queues
547  * @adapter: board private structure
548  *
549  * Return 0 on success, negative on failure
550  */
551 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
552 {
553 	struct net_device *dev = adapter->netdev;
554 	int i, err = 0;
555 
556 	for (i = 0; i < adapter->num_rx_queues; i++) {
557 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
558 		if (err) {
559 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
560 			for (i--; i >= 0; i--)
561 				igc_free_rx_resources(adapter->rx_ring[i]);
562 			break;
563 		}
564 	}
565 
566 	return err;
567 }
568 
569 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
570 					      struct igc_ring *ring)
571 {
572 	if (!igc_xdp_is_enabled(adapter) ||
573 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
574 		return NULL;
575 
576 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
577 }
578 
579 /**
580  * igc_configure_rx_ring - Configure a receive ring after Reset
581  * @adapter: board private structure
582  * @ring: receive ring to be configured
583  *
584  * Configure the Rx unit of the MAC after a reset.
585  */
586 static void igc_configure_rx_ring(struct igc_adapter *adapter,
587 				  struct igc_ring *ring)
588 {
589 	struct igc_hw *hw = &adapter->hw;
590 	union igc_adv_rx_desc *rx_desc;
591 	int reg_idx = ring->reg_idx;
592 	u32 srrctl = 0, rxdctl = 0;
593 	u64 rdba = ring->dma;
594 	u32 buf_size;
595 
596 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
597 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
598 	if (ring->xsk_pool) {
599 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
600 						   MEM_TYPE_XSK_BUFF_POOL,
601 						   NULL));
602 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
603 	} else {
604 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
605 						   MEM_TYPE_PAGE_SHARED,
606 						   NULL));
607 	}
608 
609 	if (igc_xdp_is_enabled(adapter))
610 		set_ring_uses_large_buffer(ring);
611 
612 	/* disable the queue */
613 	wr32(IGC_RXDCTL(reg_idx), 0);
614 
615 	/* Set DMA base address registers */
616 	wr32(IGC_RDBAL(reg_idx),
617 	     rdba & 0x00000000ffffffffULL);
618 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
619 	wr32(IGC_RDLEN(reg_idx),
620 	     ring->count * sizeof(union igc_adv_rx_desc));
621 
622 	/* initialize head and tail */
623 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
624 	wr32(IGC_RDH(reg_idx), 0);
625 	writel(0, ring->tail);
626 
627 	/* reset next-to- use/clean to place SW in sync with hardware */
628 	ring->next_to_clean = 0;
629 	ring->next_to_use = 0;
630 
631 	if (ring->xsk_pool)
632 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
633 	else if (ring_uses_large_buffer(ring))
634 		buf_size = IGC_RXBUFFER_3072;
635 	else
636 		buf_size = IGC_RXBUFFER_2048;
637 
638 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
639 	srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
640 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
641 
642 	wr32(IGC_SRRCTL(reg_idx), srrctl);
643 
644 	rxdctl |= IGC_RX_PTHRESH;
645 	rxdctl |= IGC_RX_HTHRESH << 8;
646 	rxdctl |= IGC_RX_WTHRESH << 16;
647 
648 	/* initialize rx_buffer_info */
649 	memset(ring->rx_buffer_info, 0,
650 	       sizeof(struct igc_rx_buffer) * ring->count);
651 
652 	/* initialize Rx descriptor 0 */
653 	rx_desc = IGC_RX_DESC(ring, 0);
654 	rx_desc->wb.upper.length = 0;
655 
656 	/* enable receive descriptor fetching */
657 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
658 
659 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
660 }
661 
662 /**
663  * igc_configure_rx - Configure receive Unit after Reset
664  * @adapter: board private structure
665  *
666  * Configure the Rx unit of the MAC after a reset.
667  */
668 static void igc_configure_rx(struct igc_adapter *adapter)
669 {
670 	int i;
671 
672 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
673 	 * the Base and Length of the Rx Descriptor Ring
674 	 */
675 	for (i = 0; i < adapter->num_rx_queues; i++)
676 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
677 }
678 
679 /**
680  * igc_configure_tx_ring - Configure transmit ring after Reset
681  * @adapter: board private structure
682  * @ring: tx ring to configure
683  *
684  * Configure a transmit ring after a reset.
685  */
686 static void igc_configure_tx_ring(struct igc_adapter *adapter,
687 				  struct igc_ring *ring)
688 {
689 	struct igc_hw *hw = &adapter->hw;
690 	int reg_idx = ring->reg_idx;
691 	u64 tdba = ring->dma;
692 	u32 txdctl = 0;
693 
694 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
695 
696 	/* disable the queue */
697 	wr32(IGC_TXDCTL(reg_idx), 0);
698 	wrfl();
699 	mdelay(10);
700 
701 	wr32(IGC_TDLEN(reg_idx),
702 	     ring->count * sizeof(union igc_adv_tx_desc));
703 	wr32(IGC_TDBAL(reg_idx),
704 	     tdba & 0x00000000ffffffffULL);
705 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
706 
707 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
708 	wr32(IGC_TDH(reg_idx), 0);
709 	writel(0, ring->tail);
710 
711 	txdctl |= IGC_TX_PTHRESH;
712 	txdctl |= IGC_TX_HTHRESH << 8;
713 	txdctl |= IGC_TX_WTHRESH << 16;
714 
715 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
716 	wr32(IGC_TXDCTL(reg_idx), txdctl);
717 }
718 
719 /**
720  * igc_configure_tx - Configure transmit Unit after Reset
721  * @adapter: board private structure
722  *
723  * Configure the Tx unit of the MAC after a reset.
724  */
725 static void igc_configure_tx(struct igc_adapter *adapter)
726 {
727 	int i;
728 
729 	for (i = 0; i < adapter->num_tx_queues; i++)
730 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
731 }
732 
733 /**
734  * igc_setup_mrqc - configure the multiple receive queue control registers
735  * @adapter: Board private structure
736  */
737 static void igc_setup_mrqc(struct igc_adapter *adapter)
738 {
739 	struct igc_hw *hw = &adapter->hw;
740 	u32 j, num_rx_queues;
741 	u32 mrqc, rxcsum;
742 	u32 rss_key[10];
743 
744 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
745 	for (j = 0; j < 10; j++)
746 		wr32(IGC_RSSRK(j), rss_key[j]);
747 
748 	num_rx_queues = adapter->rss_queues;
749 
750 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
751 		for (j = 0; j < IGC_RETA_SIZE; j++)
752 			adapter->rss_indir_tbl[j] =
753 			(j * num_rx_queues) / IGC_RETA_SIZE;
754 		adapter->rss_indir_tbl_init = num_rx_queues;
755 	}
756 	igc_write_rss_indir_tbl(adapter);
757 
758 	/* Disable raw packet checksumming so that RSS hash is placed in
759 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
760 	 * offloads as they are enabled by default
761 	 */
762 	rxcsum = rd32(IGC_RXCSUM);
763 	rxcsum |= IGC_RXCSUM_PCSD;
764 
765 	/* Enable Receive Checksum Offload for SCTP */
766 	rxcsum |= IGC_RXCSUM_CRCOFL;
767 
768 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
769 	wr32(IGC_RXCSUM, rxcsum);
770 
771 	/* Generate RSS hash based on packet types, TCP/UDP
772 	 * port numbers and/or IPv4/v6 src and dst addresses
773 	 */
774 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
775 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
776 	       IGC_MRQC_RSS_FIELD_IPV6 |
777 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
778 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
779 
780 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
781 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
782 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
783 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
784 
785 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
786 
787 	wr32(IGC_MRQC, mrqc);
788 }
789 
790 /**
791  * igc_setup_rctl - configure the receive control registers
792  * @adapter: Board private structure
793  */
794 static void igc_setup_rctl(struct igc_adapter *adapter)
795 {
796 	struct igc_hw *hw = &adapter->hw;
797 	u32 rctl;
798 
799 	rctl = rd32(IGC_RCTL);
800 
801 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
802 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
803 
804 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
805 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
806 
807 	/* enable stripping of CRC. Newer features require
808 	 * that the HW strips the CRC.
809 	 */
810 	rctl |= IGC_RCTL_SECRC;
811 
812 	/* disable store bad packets and clear size bits. */
813 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
814 
815 	/* enable LPE to allow for reception of jumbo frames */
816 	rctl |= IGC_RCTL_LPE;
817 
818 	/* disable queue 0 to prevent tail write w/o re-config */
819 	wr32(IGC_RXDCTL(0), 0);
820 
821 	/* This is useful for sniffing bad packets. */
822 	if (adapter->netdev->features & NETIF_F_RXALL) {
823 		/* UPE and MPE will be handled by normal PROMISC logic
824 		 * in set_rx_mode
825 		 */
826 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
827 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
828 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
829 
830 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
831 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
832 	}
833 
834 	wr32(IGC_RCTL, rctl);
835 }
836 
837 /**
838  * igc_setup_tctl - configure the transmit control registers
839  * @adapter: Board private structure
840  */
841 static void igc_setup_tctl(struct igc_adapter *adapter)
842 {
843 	struct igc_hw *hw = &adapter->hw;
844 	u32 tctl;
845 
846 	/* disable queue 0 which icould be enabled by default */
847 	wr32(IGC_TXDCTL(0), 0);
848 
849 	/* Program the Transmit Control Register */
850 	tctl = rd32(IGC_TCTL);
851 	tctl &= ~IGC_TCTL_CT;
852 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
853 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
854 
855 	/* Enable transmits */
856 	tctl |= IGC_TCTL_EN;
857 
858 	wr32(IGC_TCTL, tctl);
859 }
860 
861 /**
862  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
863  * @adapter: Pointer to adapter where the filter should be set
864  * @index: Filter index
865  * @type: MAC address filter type (source or destination)
866  * @addr: MAC address
867  * @queue: If non-negative, queue assignment feature is enabled and frames
868  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
869  *         assignment is disabled.
870  */
871 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
872 				  enum igc_mac_filter_type type,
873 				  const u8 *addr, int queue)
874 {
875 	struct net_device *dev = adapter->netdev;
876 	struct igc_hw *hw = &adapter->hw;
877 	u32 ral, rah;
878 
879 	if (WARN_ON(index >= hw->mac.rar_entry_count))
880 		return;
881 
882 	ral = le32_to_cpup((__le32 *)(addr));
883 	rah = le16_to_cpup((__le16 *)(addr + 4));
884 
885 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
886 		rah &= ~IGC_RAH_ASEL_MASK;
887 		rah |= IGC_RAH_ASEL_SRC_ADDR;
888 	}
889 
890 	if (queue >= 0) {
891 		rah &= ~IGC_RAH_QSEL_MASK;
892 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
893 		rah |= IGC_RAH_QSEL_ENABLE;
894 	}
895 
896 	rah |= IGC_RAH_AV;
897 
898 	wr32(IGC_RAL(index), ral);
899 	wr32(IGC_RAH(index), rah);
900 
901 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
902 }
903 
904 /**
905  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
906  * @adapter: Pointer to adapter where the filter should be cleared
907  * @index: Filter index
908  */
909 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
910 {
911 	struct net_device *dev = adapter->netdev;
912 	struct igc_hw *hw = &adapter->hw;
913 
914 	if (WARN_ON(index >= hw->mac.rar_entry_count))
915 		return;
916 
917 	wr32(IGC_RAL(index), 0);
918 	wr32(IGC_RAH(index), 0);
919 
920 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
921 }
922 
923 /* Set default MAC address for the PF in the first RAR entry */
924 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
925 {
926 	struct net_device *dev = adapter->netdev;
927 	u8 *addr = adapter->hw.mac.addr;
928 
929 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
930 
931 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
932 }
933 
934 /**
935  * igc_set_mac - Change the Ethernet Address of the NIC
936  * @netdev: network interface device structure
937  * @p: pointer to an address structure
938  *
939  * Returns 0 on success, negative on failure
940  */
941 static int igc_set_mac(struct net_device *netdev, void *p)
942 {
943 	struct igc_adapter *adapter = netdev_priv(netdev);
944 	struct igc_hw *hw = &adapter->hw;
945 	struct sockaddr *addr = p;
946 
947 	if (!is_valid_ether_addr(addr->sa_data))
948 		return -EADDRNOTAVAIL;
949 
950 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
951 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
952 
953 	/* set the correct pool for the new PF MAC address in entry 0 */
954 	igc_set_default_mac_filter(adapter);
955 
956 	return 0;
957 }
958 
959 /**
960  *  igc_write_mc_addr_list - write multicast addresses to MTA
961  *  @netdev: network interface device structure
962  *
963  *  Writes multicast address list to the MTA hash table.
964  *  Returns: -ENOMEM on failure
965  *           0 on no addresses written
966  *           X on writing X addresses to MTA
967  **/
968 static int igc_write_mc_addr_list(struct net_device *netdev)
969 {
970 	struct igc_adapter *adapter = netdev_priv(netdev);
971 	struct igc_hw *hw = &adapter->hw;
972 	struct netdev_hw_addr *ha;
973 	u8  *mta_list;
974 	int i;
975 
976 	if (netdev_mc_empty(netdev)) {
977 		/* nothing to program, so clear mc list */
978 		igc_update_mc_addr_list(hw, NULL, 0);
979 		return 0;
980 	}
981 
982 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
983 	if (!mta_list)
984 		return -ENOMEM;
985 
986 	/* The shared function expects a packed array of only addresses. */
987 	i = 0;
988 	netdev_for_each_mc_addr(ha, netdev)
989 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
990 
991 	igc_update_mc_addr_list(hw, mta_list, i);
992 	kfree(mta_list);
993 
994 	return netdev_mc_count(netdev);
995 }
996 
997 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
998 {
999 	ktime_t cycle_time = adapter->cycle_time;
1000 	ktime_t base_time = adapter->base_time;
1001 	u32 launchtime;
1002 
1003 	/* FIXME: when using ETF together with taprio, we may have a
1004 	 * case where 'delta' is larger than the cycle_time, this may
1005 	 * cause problems if we don't read the current value of
1006 	 * IGC_BASET, as the value writen into the launchtime
1007 	 * descriptor field may be misinterpreted.
1008 	 */
1009 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1010 
1011 	return cpu_to_le32(launchtime);
1012 }
1013 
1014 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1015 			    struct igc_tx_buffer *first,
1016 			    u32 vlan_macip_lens, u32 type_tucmd,
1017 			    u32 mss_l4len_idx)
1018 {
1019 	struct igc_adv_tx_context_desc *context_desc;
1020 	u16 i = tx_ring->next_to_use;
1021 
1022 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1023 
1024 	i++;
1025 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1026 
1027 	/* set bits to identify this as an advanced context descriptor */
1028 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1029 
1030 	/* For i225, context index must be unique per ring. */
1031 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1032 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1033 
1034 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1035 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1036 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1037 
1038 	/* We assume there is always a valid Tx time available. Invalid times
1039 	 * should have been handled by the upper layers.
1040 	 */
1041 	if (tx_ring->launchtime_enable) {
1042 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1043 		ktime_t txtime = first->skb->tstamp;
1044 
1045 		skb_txtime_consumed(first->skb);
1046 		context_desc->launch_time = igc_tx_launchtime(adapter,
1047 							      txtime);
1048 	} else {
1049 		context_desc->launch_time = 0;
1050 	}
1051 }
1052 
1053 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1054 {
1055 	struct sk_buff *skb = first->skb;
1056 	u32 vlan_macip_lens = 0;
1057 	u32 type_tucmd = 0;
1058 
1059 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1060 csum_failed:
1061 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1062 		    !tx_ring->launchtime_enable)
1063 			return;
1064 		goto no_csum;
1065 	}
1066 
1067 	switch (skb->csum_offset) {
1068 	case offsetof(struct tcphdr, check):
1069 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1070 		fallthrough;
1071 	case offsetof(struct udphdr, check):
1072 		break;
1073 	case offsetof(struct sctphdr, checksum):
1074 		/* validate that this is actually an SCTP request */
1075 		if (skb_csum_is_sctp(skb)) {
1076 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1077 			break;
1078 		}
1079 		fallthrough;
1080 	default:
1081 		skb_checksum_help(skb);
1082 		goto csum_failed;
1083 	}
1084 
1085 	/* update TX checksum flag */
1086 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1087 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1088 			  skb_network_offset(skb);
1089 no_csum:
1090 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1091 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1092 
1093 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1094 }
1095 
1096 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1097 {
1098 	struct net_device *netdev = tx_ring->netdev;
1099 
1100 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1101 
1102 	/* memory barriier comment */
1103 	smp_mb();
1104 
1105 	/* We need to check again in a case another CPU has just
1106 	 * made room available.
1107 	 */
1108 	if (igc_desc_unused(tx_ring) < size)
1109 		return -EBUSY;
1110 
1111 	/* A reprieve! */
1112 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1113 
1114 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1115 	tx_ring->tx_stats.restart_queue2++;
1116 	u64_stats_update_end(&tx_ring->tx_syncp2);
1117 
1118 	return 0;
1119 }
1120 
1121 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1122 {
1123 	if (igc_desc_unused(tx_ring) >= size)
1124 		return 0;
1125 	return __igc_maybe_stop_tx(tx_ring, size);
1126 }
1127 
1128 #define IGC_SET_FLAG(_input, _flag, _result) \
1129 	(((_flag) <= (_result)) ?				\
1130 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1131 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1132 
1133 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1134 {
1135 	/* set type for advanced descriptor with frame checksum insertion */
1136 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1137 		       IGC_ADVTXD_DCMD_DEXT |
1138 		       IGC_ADVTXD_DCMD_IFCS;
1139 
1140 	/* set HW vlan bit if vlan is present */
1141 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1142 				 IGC_ADVTXD_DCMD_VLE);
1143 
1144 	/* set segmentation bits for TSO */
1145 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1146 				 (IGC_ADVTXD_DCMD_TSE));
1147 
1148 	/* set timestamp bit if present */
1149 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1150 				 (IGC_ADVTXD_MAC_TSTAMP));
1151 
1152 	/* insert frame checksum */
1153 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1154 
1155 	return cmd_type;
1156 }
1157 
1158 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1159 				 union igc_adv_tx_desc *tx_desc,
1160 				 u32 tx_flags, unsigned int paylen)
1161 {
1162 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1163 
1164 	/* insert L4 checksum */
1165 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1166 			  ((IGC_TXD_POPTS_TXSM << 8) /
1167 			  IGC_TX_FLAGS_CSUM);
1168 
1169 	/* insert IPv4 checksum */
1170 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1171 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1172 			  IGC_TX_FLAGS_IPV4);
1173 
1174 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1175 }
1176 
1177 static int igc_tx_map(struct igc_ring *tx_ring,
1178 		      struct igc_tx_buffer *first,
1179 		      const u8 hdr_len)
1180 {
1181 	struct sk_buff *skb = first->skb;
1182 	struct igc_tx_buffer *tx_buffer;
1183 	union igc_adv_tx_desc *tx_desc;
1184 	u32 tx_flags = first->tx_flags;
1185 	skb_frag_t *frag;
1186 	u16 i = tx_ring->next_to_use;
1187 	unsigned int data_len, size;
1188 	dma_addr_t dma;
1189 	u32 cmd_type;
1190 
1191 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1192 	tx_desc = IGC_TX_DESC(tx_ring, i);
1193 
1194 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1195 
1196 	size = skb_headlen(skb);
1197 	data_len = skb->data_len;
1198 
1199 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1200 
1201 	tx_buffer = first;
1202 
1203 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1204 		if (dma_mapping_error(tx_ring->dev, dma))
1205 			goto dma_error;
1206 
1207 		/* record length, and DMA address */
1208 		dma_unmap_len_set(tx_buffer, len, size);
1209 		dma_unmap_addr_set(tx_buffer, dma, dma);
1210 
1211 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1212 
1213 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1214 			tx_desc->read.cmd_type_len =
1215 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1216 
1217 			i++;
1218 			tx_desc++;
1219 			if (i == tx_ring->count) {
1220 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1221 				i = 0;
1222 			}
1223 			tx_desc->read.olinfo_status = 0;
1224 
1225 			dma += IGC_MAX_DATA_PER_TXD;
1226 			size -= IGC_MAX_DATA_PER_TXD;
1227 
1228 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1229 		}
1230 
1231 		if (likely(!data_len))
1232 			break;
1233 
1234 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1235 
1236 		i++;
1237 		tx_desc++;
1238 		if (i == tx_ring->count) {
1239 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1240 			i = 0;
1241 		}
1242 		tx_desc->read.olinfo_status = 0;
1243 
1244 		size = skb_frag_size(frag);
1245 		data_len -= size;
1246 
1247 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1248 				       size, DMA_TO_DEVICE);
1249 
1250 		tx_buffer = &tx_ring->tx_buffer_info[i];
1251 	}
1252 
1253 	/* write last descriptor with RS and EOP bits */
1254 	cmd_type |= size | IGC_TXD_DCMD;
1255 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1256 
1257 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1258 
1259 	/* set the timestamp */
1260 	first->time_stamp = jiffies;
1261 
1262 	skb_tx_timestamp(skb);
1263 
1264 	/* Force memory writes to complete before letting h/w know there
1265 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1266 	 * memory model archs, such as IA-64).
1267 	 *
1268 	 * We also need this memory barrier to make certain all of the
1269 	 * status bits have been updated before next_to_watch is written.
1270 	 */
1271 	wmb();
1272 
1273 	/* set next_to_watch value indicating a packet is present */
1274 	first->next_to_watch = tx_desc;
1275 
1276 	i++;
1277 	if (i == tx_ring->count)
1278 		i = 0;
1279 
1280 	tx_ring->next_to_use = i;
1281 
1282 	/* Make sure there is space in the ring for the next send. */
1283 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1284 
1285 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1286 		writel(i, tx_ring->tail);
1287 	}
1288 
1289 	return 0;
1290 dma_error:
1291 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1292 	tx_buffer = &tx_ring->tx_buffer_info[i];
1293 
1294 	/* clear dma mappings for failed tx_buffer_info map */
1295 	while (tx_buffer != first) {
1296 		if (dma_unmap_len(tx_buffer, len))
1297 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1298 
1299 		if (i-- == 0)
1300 			i += tx_ring->count;
1301 		tx_buffer = &tx_ring->tx_buffer_info[i];
1302 	}
1303 
1304 	if (dma_unmap_len(tx_buffer, len))
1305 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1306 
1307 	dev_kfree_skb_any(tx_buffer->skb);
1308 	tx_buffer->skb = NULL;
1309 
1310 	tx_ring->next_to_use = i;
1311 
1312 	return -1;
1313 }
1314 
1315 static int igc_tso(struct igc_ring *tx_ring,
1316 		   struct igc_tx_buffer *first,
1317 		   u8 *hdr_len)
1318 {
1319 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1320 	struct sk_buff *skb = first->skb;
1321 	union {
1322 		struct iphdr *v4;
1323 		struct ipv6hdr *v6;
1324 		unsigned char *hdr;
1325 	} ip;
1326 	union {
1327 		struct tcphdr *tcp;
1328 		struct udphdr *udp;
1329 		unsigned char *hdr;
1330 	} l4;
1331 	u32 paylen, l4_offset;
1332 	int err;
1333 
1334 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1335 		return 0;
1336 
1337 	if (!skb_is_gso(skb))
1338 		return 0;
1339 
1340 	err = skb_cow_head(skb, 0);
1341 	if (err < 0)
1342 		return err;
1343 
1344 	ip.hdr = skb_network_header(skb);
1345 	l4.hdr = skb_checksum_start(skb);
1346 
1347 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1348 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1349 
1350 	/* initialize outer IP header fields */
1351 	if (ip.v4->version == 4) {
1352 		unsigned char *csum_start = skb_checksum_start(skb);
1353 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1354 
1355 		/* IP header will have to cancel out any data that
1356 		 * is not a part of the outer IP header
1357 		 */
1358 		ip.v4->check = csum_fold(csum_partial(trans_start,
1359 						      csum_start - trans_start,
1360 						      0));
1361 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1362 
1363 		ip.v4->tot_len = 0;
1364 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1365 				   IGC_TX_FLAGS_CSUM |
1366 				   IGC_TX_FLAGS_IPV4;
1367 	} else {
1368 		ip.v6->payload_len = 0;
1369 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1370 				   IGC_TX_FLAGS_CSUM;
1371 	}
1372 
1373 	/* determine offset of inner transport header */
1374 	l4_offset = l4.hdr - skb->data;
1375 
1376 	/* remove payload length from inner checksum */
1377 	paylen = skb->len - l4_offset;
1378 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1379 		/* compute length of segmentation header */
1380 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1381 		csum_replace_by_diff(&l4.tcp->check,
1382 				     (__force __wsum)htonl(paylen));
1383 	} else {
1384 		/* compute length of segmentation header */
1385 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1386 		csum_replace_by_diff(&l4.udp->check,
1387 				     (__force __wsum)htonl(paylen));
1388 	}
1389 
1390 	/* update gso size and bytecount with header size */
1391 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1392 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1393 
1394 	/* MSS L4LEN IDX */
1395 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1396 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1397 
1398 	/* VLAN MACLEN IPLEN */
1399 	vlan_macip_lens = l4.hdr - ip.hdr;
1400 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1401 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1402 
1403 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1404 			type_tucmd, mss_l4len_idx);
1405 
1406 	return 1;
1407 }
1408 
1409 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1410 				       struct igc_ring *tx_ring)
1411 {
1412 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1413 	__be16 protocol = vlan_get_protocol(skb);
1414 	struct igc_tx_buffer *first;
1415 	u32 tx_flags = 0;
1416 	unsigned short f;
1417 	u8 hdr_len = 0;
1418 	int tso = 0;
1419 
1420 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1421 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1422 	 *	+ 2 desc gap to keep tail from touching head,
1423 	 *	+ 1 desc for context descriptor,
1424 	 * otherwise try next time
1425 	 */
1426 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1427 		count += TXD_USE_COUNT(skb_frag_size(
1428 						&skb_shinfo(skb)->frags[f]));
1429 
1430 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1431 		/* this is a hard error */
1432 		return NETDEV_TX_BUSY;
1433 	}
1434 
1435 	/* record the location of the first descriptor for this packet */
1436 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1437 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1438 	first->skb = skb;
1439 	first->bytecount = skb->len;
1440 	first->gso_segs = 1;
1441 
1442 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1443 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1444 
1445 		/* FIXME: add support for retrieving timestamps from
1446 		 * the other timer registers before skipping the
1447 		 * timestamping request.
1448 		 */
1449 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1450 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1451 					   &adapter->state)) {
1452 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1453 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1454 
1455 			adapter->ptp_tx_skb = skb_get(skb);
1456 			adapter->ptp_tx_start = jiffies;
1457 		} else {
1458 			adapter->tx_hwtstamp_skipped++;
1459 		}
1460 	}
1461 
1462 	if (skb_vlan_tag_present(skb)) {
1463 		tx_flags |= IGC_TX_FLAGS_VLAN;
1464 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1465 	}
1466 
1467 	/* record initial flags and protocol */
1468 	first->tx_flags = tx_flags;
1469 	first->protocol = protocol;
1470 
1471 	tso = igc_tso(tx_ring, first, &hdr_len);
1472 	if (tso < 0)
1473 		goto out_drop;
1474 	else if (!tso)
1475 		igc_tx_csum(tx_ring, first);
1476 
1477 	igc_tx_map(tx_ring, first, hdr_len);
1478 
1479 	return NETDEV_TX_OK;
1480 
1481 out_drop:
1482 	dev_kfree_skb_any(first->skb);
1483 	first->skb = NULL;
1484 
1485 	return NETDEV_TX_OK;
1486 }
1487 
1488 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1489 						    struct sk_buff *skb)
1490 {
1491 	unsigned int r_idx = skb->queue_mapping;
1492 
1493 	if (r_idx >= adapter->num_tx_queues)
1494 		r_idx = r_idx % adapter->num_tx_queues;
1495 
1496 	return adapter->tx_ring[r_idx];
1497 }
1498 
1499 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1500 				  struct net_device *netdev)
1501 {
1502 	struct igc_adapter *adapter = netdev_priv(netdev);
1503 
1504 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1505 	 * in order to meet this minimum size requirement.
1506 	 */
1507 	if (skb->len < 17) {
1508 		if (skb_padto(skb, 17))
1509 			return NETDEV_TX_OK;
1510 		skb->len = 17;
1511 	}
1512 
1513 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1514 }
1515 
1516 static void igc_rx_checksum(struct igc_ring *ring,
1517 			    union igc_adv_rx_desc *rx_desc,
1518 			    struct sk_buff *skb)
1519 {
1520 	skb_checksum_none_assert(skb);
1521 
1522 	/* Ignore Checksum bit is set */
1523 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1524 		return;
1525 
1526 	/* Rx checksum disabled via ethtool */
1527 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1528 		return;
1529 
1530 	/* TCP/UDP checksum error bit is set */
1531 	if (igc_test_staterr(rx_desc,
1532 			     IGC_RXDEXT_STATERR_L4E |
1533 			     IGC_RXDEXT_STATERR_IPE)) {
1534 		/* work around errata with sctp packets where the TCPE aka
1535 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1536 		 * packets (aka let the stack check the crc32c)
1537 		 */
1538 		if (!(skb->len == 60 &&
1539 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1540 			u64_stats_update_begin(&ring->rx_syncp);
1541 			ring->rx_stats.csum_err++;
1542 			u64_stats_update_end(&ring->rx_syncp);
1543 		}
1544 		/* let the stack verify checksum errors */
1545 		return;
1546 	}
1547 	/* It must be a TCP or UDP packet with a valid checksum */
1548 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1549 				      IGC_RXD_STAT_UDPCS))
1550 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1551 
1552 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1553 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1554 }
1555 
1556 static inline void igc_rx_hash(struct igc_ring *ring,
1557 			       union igc_adv_rx_desc *rx_desc,
1558 			       struct sk_buff *skb)
1559 {
1560 	if (ring->netdev->features & NETIF_F_RXHASH)
1561 		skb_set_hash(skb,
1562 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1563 			     PKT_HASH_TYPE_L3);
1564 }
1565 
1566 static void igc_rx_vlan(struct igc_ring *rx_ring,
1567 			union igc_adv_rx_desc *rx_desc,
1568 			struct sk_buff *skb)
1569 {
1570 	struct net_device *dev = rx_ring->netdev;
1571 	u16 vid;
1572 
1573 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1574 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1575 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1576 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1577 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1578 		else
1579 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1580 
1581 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1582 	}
1583 }
1584 
1585 /**
1586  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1587  * @rx_ring: rx descriptor ring packet is being transacted on
1588  * @rx_desc: pointer to the EOP Rx descriptor
1589  * @skb: pointer to current skb being populated
1590  *
1591  * This function checks the ring, descriptor, and packet information in order
1592  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1593  * skb.
1594  */
1595 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1596 				   union igc_adv_rx_desc *rx_desc,
1597 				   struct sk_buff *skb)
1598 {
1599 	igc_rx_hash(rx_ring, rx_desc, skb);
1600 
1601 	igc_rx_checksum(rx_ring, rx_desc, skb);
1602 
1603 	igc_rx_vlan(rx_ring, rx_desc, skb);
1604 
1605 	skb_record_rx_queue(skb, rx_ring->queue_index);
1606 
1607 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1608 }
1609 
1610 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1611 {
1612 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1613 	struct igc_adapter *adapter = netdev_priv(netdev);
1614 	struct igc_hw *hw = &adapter->hw;
1615 	u32 ctrl;
1616 
1617 	ctrl = rd32(IGC_CTRL);
1618 
1619 	if (enable) {
1620 		/* enable VLAN tag insert/strip */
1621 		ctrl |= IGC_CTRL_VME;
1622 	} else {
1623 		/* disable VLAN tag insert/strip */
1624 		ctrl &= ~IGC_CTRL_VME;
1625 	}
1626 	wr32(IGC_CTRL, ctrl);
1627 }
1628 
1629 static void igc_restore_vlan(struct igc_adapter *adapter)
1630 {
1631 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1632 }
1633 
1634 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1635 					       const unsigned int size,
1636 					       int *rx_buffer_pgcnt)
1637 {
1638 	struct igc_rx_buffer *rx_buffer;
1639 
1640 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1641 	*rx_buffer_pgcnt =
1642 #if (PAGE_SIZE < 8192)
1643 		page_count(rx_buffer->page);
1644 #else
1645 		0;
1646 #endif
1647 	prefetchw(rx_buffer->page);
1648 
1649 	/* we are reusing so sync this buffer for CPU use */
1650 	dma_sync_single_range_for_cpu(rx_ring->dev,
1651 				      rx_buffer->dma,
1652 				      rx_buffer->page_offset,
1653 				      size,
1654 				      DMA_FROM_DEVICE);
1655 
1656 	rx_buffer->pagecnt_bias--;
1657 
1658 	return rx_buffer;
1659 }
1660 
1661 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1662 			       unsigned int truesize)
1663 {
1664 #if (PAGE_SIZE < 8192)
1665 	buffer->page_offset ^= truesize;
1666 #else
1667 	buffer->page_offset += truesize;
1668 #endif
1669 }
1670 
1671 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1672 					      unsigned int size)
1673 {
1674 	unsigned int truesize;
1675 
1676 #if (PAGE_SIZE < 8192)
1677 	truesize = igc_rx_pg_size(ring) / 2;
1678 #else
1679 	truesize = ring_uses_build_skb(ring) ?
1680 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1681 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1682 		   SKB_DATA_ALIGN(size);
1683 #endif
1684 	return truesize;
1685 }
1686 
1687 /**
1688  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1689  * @rx_ring: rx descriptor ring to transact packets on
1690  * @rx_buffer: buffer containing page to add
1691  * @skb: sk_buff to place the data into
1692  * @size: size of buffer to be added
1693  *
1694  * This function will add the data contained in rx_buffer->page to the skb.
1695  */
1696 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1697 			    struct igc_rx_buffer *rx_buffer,
1698 			    struct sk_buff *skb,
1699 			    unsigned int size)
1700 {
1701 	unsigned int truesize;
1702 
1703 #if (PAGE_SIZE < 8192)
1704 	truesize = igc_rx_pg_size(rx_ring) / 2;
1705 #else
1706 	truesize = ring_uses_build_skb(rx_ring) ?
1707 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1708 		   SKB_DATA_ALIGN(size);
1709 #endif
1710 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1711 			rx_buffer->page_offset, size, truesize);
1712 
1713 	igc_rx_buffer_flip(rx_buffer, truesize);
1714 }
1715 
1716 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1717 				     struct igc_rx_buffer *rx_buffer,
1718 				     union igc_adv_rx_desc *rx_desc,
1719 				     unsigned int size)
1720 {
1721 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1722 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1723 	struct sk_buff *skb;
1724 
1725 	/* prefetch first cache line of first page */
1726 	net_prefetch(va);
1727 
1728 	/* build an skb around the page buffer */
1729 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1730 	if (unlikely(!skb))
1731 		return NULL;
1732 
1733 	/* update pointers within the skb to store the data */
1734 	skb_reserve(skb, IGC_SKB_PAD);
1735 	__skb_put(skb, size);
1736 
1737 	igc_rx_buffer_flip(rx_buffer, truesize);
1738 	return skb;
1739 }
1740 
1741 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1742 					 struct igc_rx_buffer *rx_buffer,
1743 					 struct xdp_buff *xdp,
1744 					 ktime_t timestamp)
1745 {
1746 	unsigned int size = xdp->data_end - xdp->data;
1747 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1748 	void *va = xdp->data;
1749 	unsigned int headlen;
1750 	struct sk_buff *skb;
1751 
1752 	/* prefetch first cache line of first page */
1753 	net_prefetch(va);
1754 
1755 	/* allocate a skb to store the frags */
1756 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1757 	if (unlikely(!skb))
1758 		return NULL;
1759 
1760 	if (timestamp)
1761 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1762 
1763 	/* Determine available headroom for copy */
1764 	headlen = size;
1765 	if (headlen > IGC_RX_HDR_LEN)
1766 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1767 
1768 	/* align pull length to size of long to optimize memcpy performance */
1769 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1770 
1771 	/* update all of the pointers */
1772 	size -= headlen;
1773 	if (size) {
1774 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1775 				(va + headlen) - page_address(rx_buffer->page),
1776 				size, truesize);
1777 		igc_rx_buffer_flip(rx_buffer, truesize);
1778 	} else {
1779 		rx_buffer->pagecnt_bias++;
1780 	}
1781 
1782 	return skb;
1783 }
1784 
1785 /**
1786  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1787  * @rx_ring: rx descriptor ring to store buffers on
1788  * @old_buff: donor buffer to have page reused
1789  *
1790  * Synchronizes page for reuse by the adapter
1791  */
1792 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1793 			      struct igc_rx_buffer *old_buff)
1794 {
1795 	u16 nta = rx_ring->next_to_alloc;
1796 	struct igc_rx_buffer *new_buff;
1797 
1798 	new_buff = &rx_ring->rx_buffer_info[nta];
1799 
1800 	/* update, and store next to alloc */
1801 	nta++;
1802 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1803 
1804 	/* Transfer page from old buffer to new buffer.
1805 	 * Move each member individually to avoid possible store
1806 	 * forwarding stalls.
1807 	 */
1808 	new_buff->dma		= old_buff->dma;
1809 	new_buff->page		= old_buff->page;
1810 	new_buff->page_offset	= old_buff->page_offset;
1811 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1812 }
1813 
1814 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1815 				  int rx_buffer_pgcnt)
1816 {
1817 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1818 	struct page *page = rx_buffer->page;
1819 
1820 	/* avoid re-using remote and pfmemalloc pages */
1821 	if (!dev_page_is_reusable(page))
1822 		return false;
1823 
1824 #if (PAGE_SIZE < 8192)
1825 	/* if we are only owner of page we can reuse it */
1826 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1827 		return false;
1828 #else
1829 #define IGC_LAST_OFFSET \
1830 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1831 
1832 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1833 		return false;
1834 #endif
1835 
1836 	/* If we have drained the page fragment pool we need to update
1837 	 * the pagecnt_bias and page count so that we fully restock the
1838 	 * number of references the driver holds.
1839 	 */
1840 	if (unlikely(pagecnt_bias == 1)) {
1841 		page_ref_add(page, USHRT_MAX - 1);
1842 		rx_buffer->pagecnt_bias = USHRT_MAX;
1843 	}
1844 
1845 	return true;
1846 }
1847 
1848 /**
1849  * igc_is_non_eop - process handling of non-EOP buffers
1850  * @rx_ring: Rx ring being processed
1851  * @rx_desc: Rx descriptor for current buffer
1852  *
1853  * This function updates next to clean.  If the buffer is an EOP buffer
1854  * this function exits returning false, otherwise it will place the
1855  * sk_buff in the next buffer to be chained and return true indicating
1856  * that this is in fact a non-EOP buffer.
1857  */
1858 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1859 			   union igc_adv_rx_desc *rx_desc)
1860 {
1861 	u32 ntc = rx_ring->next_to_clean + 1;
1862 
1863 	/* fetch, update, and store next to clean */
1864 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1865 	rx_ring->next_to_clean = ntc;
1866 
1867 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1868 
1869 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1870 		return false;
1871 
1872 	return true;
1873 }
1874 
1875 /**
1876  * igc_cleanup_headers - Correct corrupted or empty headers
1877  * @rx_ring: rx descriptor ring packet is being transacted on
1878  * @rx_desc: pointer to the EOP Rx descriptor
1879  * @skb: pointer to current skb being fixed
1880  *
1881  * Address the case where we are pulling data in on pages only
1882  * and as such no data is present in the skb header.
1883  *
1884  * In addition if skb is not at least 60 bytes we need to pad it so that
1885  * it is large enough to qualify as a valid Ethernet frame.
1886  *
1887  * Returns true if an error was encountered and skb was freed.
1888  */
1889 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1890 				union igc_adv_rx_desc *rx_desc,
1891 				struct sk_buff *skb)
1892 {
1893 	/* XDP packets use error pointer so abort at this point */
1894 	if (IS_ERR(skb))
1895 		return true;
1896 
1897 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1898 		struct net_device *netdev = rx_ring->netdev;
1899 
1900 		if (!(netdev->features & NETIF_F_RXALL)) {
1901 			dev_kfree_skb_any(skb);
1902 			return true;
1903 		}
1904 	}
1905 
1906 	/* if eth_skb_pad returns an error the skb was freed */
1907 	if (eth_skb_pad(skb))
1908 		return true;
1909 
1910 	return false;
1911 }
1912 
1913 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1914 			      struct igc_rx_buffer *rx_buffer,
1915 			      int rx_buffer_pgcnt)
1916 {
1917 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1918 		/* hand second half of page back to the ring */
1919 		igc_reuse_rx_page(rx_ring, rx_buffer);
1920 	} else {
1921 		/* We are not reusing the buffer so unmap it and free
1922 		 * any references we are holding to it
1923 		 */
1924 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1925 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1926 				     IGC_RX_DMA_ATTR);
1927 		__page_frag_cache_drain(rx_buffer->page,
1928 					rx_buffer->pagecnt_bias);
1929 	}
1930 
1931 	/* clear contents of rx_buffer */
1932 	rx_buffer->page = NULL;
1933 }
1934 
1935 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1936 {
1937 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1938 
1939 	if (ring_uses_build_skb(rx_ring))
1940 		return IGC_SKB_PAD;
1941 	if (igc_xdp_is_enabled(adapter))
1942 		return XDP_PACKET_HEADROOM;
1943 
1944 	return 0;
1945 }
1946 
1947 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1948 				  struct igc_rx_buffer *bi)
1949 {
1950 	struct page *page = bi->page;
1951 	dma_addr_t dma;
1952 
1953 	/* since we are recycling buffers we should seldom need to alloc */
1954 	if (likely(page))
1955 		return true;
1956 
1957 	/* alloc new page for storage */
1958 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1959 	if (unlikely(!page)) {
1960 		rx_ring->rx_stats.alloc_failed++;
1961 		return false;
1962 	}
1963 
1964 	/* map page for use */
1965 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1966 				 igc_rx_pg_size(rx_ring),
1967 				 DMA_FROM_DEVICE,
1968 				 IGC_RX_DMA_ATTR);
1969 
1970 	/* if mapping failed free memory back to system since
1971 	 * there isn't much point in holding memory we can't use
1972 	 */
1973 	if (dma_mapping_error(rx_ring->dev, dma)) {
1974 		__free_page(page);
1975 
1976 		rx_ring->rx_stats.alloc_failed++;
1977 		return false;
1978 	}
1979 
1980 	bi->dma = dma;
1981 	bi->page = page;
1982 	bi->page_offset = igc_rx_offset(rx_ring);
1983 	page_ref_add(page, USHRT_MAX - 1);
1984 	bi->pagecnt_bias = USHRT_MAX;
1985 
1986 	return true;
1987 }
1988 
1989 /**
1990  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1991  * @rx_ring: rx descriptor ring
1992  * @cleaned_count: number of buffers to clean
1993  */
1994 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1995 {
1996 	union igc_adv_rx_desc *rx_desc;
1997 	u16 i = rx_ring->next_to_use;
1998 	struct igc_rx_buffer *bi;
1999 	u16 bufsz;
2000 
2001 	/* nothing to do */
2002 	if (!cleaned_count)
2003 		return;
2004 
2005 	rx_desc = IGC_RX_DESC(rx_ring, i);
2006 	bi = &rx_ring->rx_buffer_info[i];
2007 	i -= rx_ring->count;
2008 
2009 	bufsz = igc_rx_bufsz(rx_ring);
2010 
2011 	do {
2012 		if (!igc_alloc_mapped_page(rx_ring, bi))
2013 			break;
2014 
2015 		/* sync the buffer for use by the device */
2016 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2017 						 bi->page_offset, bufsz,
2018 						 DMA_FROM_DEVICE);
2019 
2020 		/* Refresh the desc even if buffer_addrs didn't change
2021 		 * because each write-back erases this info.
2022 		 */
2023 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2024 
2025 		rx_desc++;
2026 		bi++;
2027 		i++;
2028 		if (unlikely(!i)) {
2029 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2030 			bi = rx_ring->rx_buffer_info;
2031 			i -= rx_ring->count;
2032 		}
2033 
2034 		/* clear the length for the next_to_use descriptor */
2035 		rx_desc->wb.upper.length = 0;
2036 
2037 		cleaned_count--;
2038 	} while (cleaned_count);
2039 
2040 	i += rx_ring->count;
2041 
2042 	if (rx_ring->next_to_use != i) {
2043 		/* record the next descriptor to use */
2044 		rx_ring->next_to_use = i;
2045 
2046 		/* update next to alloc since we have filled the ring */
2047 		rx_ring->next_to_alloc = i;
2048 
2049 		/* Force memory writes to complete before letting h/w
2050 		 * know there are new descriptors to fetch.  (Only
2051 		 * applicable for weak-ordered memory model archs,
2052 		 * such as IA-64).
2053 		 */
2054 		wmb();
2055 		writel(i, rx_ring->tail);
2056 	}
2057 }
2058 
2059 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2060 {
2061 	union igc_adv_rx_desc *desc;
2062 	u16 i = ring->next_to_use;
2063 	struct igc_rx_buffer *bi;
2064 	dma_addr_t dma;
2065 	bool ok = true;
2066 
2067 	if (!count)
2068 		return ok;
2069 
2070 	desc = IGC_RX_DESC(ring, i);
2071 	bi = &ring->rx_buffer_info[i];
2072 	i -= ring->count;
2073 
2074 	do {
2075 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2076 		if (!bi->xdp) {
2077 			ok = false;
2078 			break;
2079 		}
2080 
2081 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2082 		desc->read.pkt_addr = cpu_to_le64(dma);
2083 
2084 		desc++;
2085 		bi++;
2086 		i++;
2087 		if (unlikely(!i)) {
2088 			desc = IGC_RX_DESC(ring, 0);
2089 			bi = ring->rx_buffer_info;
2090 			i -= ring->count;
2091 		}
2092 
2093 		/* Clear the length for the next_to_use descriptor. */
2094 		desc->wb.upper.length = 0;
2095 
2096 		count--;
2097 	} while (count);
2098 
2099 	i += ring->count;
2100 
2101 	if (ring->next_to_use != i) {
2102 		ring->next_to_use = i;
2103 
2104 		/* Force memory writes to complete before letting h/w
2105 		 * know there are new descriptors to fetch.  (Only
2106 		 * applicable for weak-ordered memory model archs,
2107 		 * such as IA-64).
2108 		 */
2109 		wmb();
2110 		writel(i, ring->tail);
2111 	}
2112 
2113 	return ok;
2114 }
2115 
2116 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2117 				  struct xdp_frame *xdpf,
2118 				  struct igc_ring *ring)
2119 {
2120 	dma_addr_t dma;
2121 
2122 	dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2123 	if (dma_mapping_error(ring->dev, dma)) {
2124 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2125 		return -ENOMEM;
2126 	}
2127 
2128 	buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2129 	buffer->xdpf = xdpf;
2130 	buffer->protocol = 0;
2131 	buffer->bytecount = xdpf->len;
2132 	buffer->gso_segs = 1;
2133 	buffer->time_stamp = jiffies;
2134 	dma_unmap_len_set(buffer, len, xdpf->len);
2135 	dma_unmap_addr_set(buffer, dma, dma);
2136 	return 0;
2137 }
2138 
2139 /* This function requires __netif_tx_lock is held by the caller. */
2140 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2141 				      struct xdp_frame *xdpf)
2142 {
2143 	struct igc_tx_buffer *buffer;
2144 	union igc_adv_tx_desc *desc;
2145 	u32 cmd_type, olinfo_status;
2146 	int err;
2147 
2148 	if (!igc_desc_unused(ring))
2149 		return -EBUSY;
2150 
2151 	buffer = &ring->tx_buffer_info[ring->next_to_use];
2152 	err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2153 	if (err)
2154 		return err;
2155 
2156 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2157 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2158 		   buffer->bytecount;
2159 	olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2160 
2161 	desc = IGC_TX_DESC(ring, ring->next_to_use);
2162 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2163 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2164 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2165 
2166 	netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2167 
2168 	buffer->next_to_watch = desc;
2169 
2170 	ring->next_to_use++;
2171 	if (ring->next_to_use == ring->count)
2172 		ring->next_to_use = 0;
2173 
2174 	return 0;
2175 }
2176 
2177 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2178 					    int cpu)
2179 {
2180 	int index = cpu;
2181 
2182 	if (unlikely(index < 0))
2183 		index = 0;
2184 
2185 	while (index >= adapter->num_tx_queues)
2186 		index -= adapter->num_tx_queues;
2187 
2188 	return adapter->tx_ring[index];
2189 }
2190 
2191 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2192 {
2193 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2194 	int cpu = smp_processor_id();
2195 	struct netdev_queue *nq;
2196 	struct igc_ring *ring;
2197 	int res;
2198 
2199 	if (unlikely(!xdpf))
2200 		return -EFAULT;
2201 
2202 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2203 	nq = txring_txq(ring);
2204 
2205 	__netif_tx_lock(nq, cpu);
2206 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2207 	__netif_tx_unlock(nq);
2208 	return res;
2209 }
2210 
2211 /* This function assumes rcu_read_lock() is held by the caller. */
2212 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2213 			      struct bpf_prog *prog,
2214 			      struct xdp_buff *xdp)
2215 {
2216 	u32 act = bpf_prog_run_xdp(prog, xdp);
2217 
2218 	switch (act) {
2219 	case XDP_PASS:
2220 		return IGC_XDP_PASS;
2221 	case XDP_TX:
2222 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2223 			goto out_failure;
2224 		return IGC_XDP_TX;
2225 	case XDP_REDIRECT:
2226 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2227 			goto out_failure;
2228 		return IGC_XDP_REDIRECT;
2229 		break;
2230 	default:
2231 		bpf_warn_invalid_xdp_action(act);
2232 		fallthrough;
2233 	case XDP_ABORTED:
2234 out_failure:
2235 		trace_xdp_exception(adapter->netdev, prog, act);
2236 		fallthrough;
2237 	case XDP_DROP:
2238 		return IGC_XDP_CONSUMED;
2239 	}
2240 }
2241 
2242 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2243 					struct xdp_buff *xdp)
2244 {
2245 	struct bpf_prog *prog;
2246 	int res;
2247 
2248 	prog = READ_ONCE(adapter->xdp_prog);
2249 	if (!prog) {
2250 		res = IGC_XDP_PASS;
2251 		goto out;
2252 	}
2253 
2254 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2255 
2256 out:
2257 	return ERR_PTR(-res);
2258 }
2259 
2260 /* This function assumes __netif_tx_lock is held by the caller. */
2261 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2262 {
2263 	/* Once tail pointer is updated, hardware can fetch the descriptors
2264 	 * any time so we issue a write membar here to ensure all memory
2265 	 * writes are complete before the tail pointer is updated.
2266 	 */
2267 	wmb();
2268 	writel(ring->next_to_use, ring->tail);
2269 }
2270 
2271 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2272 {
2273 	int cpu = smp_processor_id();
2274 	struct netdev_queue *nq;
2275 	struct igc_ring *ring;
2276 
2277 	if (status & IGC_XDP_TX) {
2278 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2279 		nq = txring_txq(ring);
2280 
2281 		__netif_tx_lock(nq, cpu);
2282 		igc_flush_tx_descriptors(ring);
2283 		__netif_tx_unlock(nq);
2284 	}
2285 
2286 	if (status & IGC_XDP_REDIRECT)
2287 		xdp_do_flush();
2288 }
2289 
2290 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2291 				unsigned int packets, unsigned int bytes)
2292 {
2293 	struct igc_ring *ring = q_vector->rx.ring;
2294 
2295 	u64_stats_update_begin(&ring->rx_syncp);
2296 	ring->rx_stats.packets += packets;
2297 	ring->rx_stats.bytes += bytes;
2298 	u64_stats_update_end(&ring->rx_syncp);
2299 
2300 	q_vector->rx.total_packets += packets;
2301 	q_vector->rx.total_bytes += bytes;
2302 }
2303 
2304 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2305 {
2306 	unsigned int total_bytes = 0, total_packets = 0;
2307 	struct igc_adapter *adapter = q_vector->adapter;
2308 	struct igc_ring *rx_ring = q_vector->rx.ring;
2309 	struct sk_buff *skb = rx_ring->skb;
2310 	u16 cleaned_count = igc_desc_unused(rx_ring);
2311 	int xdp_status = 0, rx_buffer_pgcnt;
2312 
2313 	while (likely(total_packets < budget)) {
2314 		union igc_adv_rx_desc *rx_desc;
2315 		struct igc_rx_buffer *rx_buffer;
2316 		unsigned int size, truesize;
2317 		ktime_t timestamp = 0;
2318 		struct xdp_buff xdp;
2319 		int pkt_offset = 0;
2320 		void *pktbuf;
2321 
2322 		/* return some buffers to hardware, one at a time is too slow */
2323 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2324 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2325 			cleaned_count = 0;
2326 		}
2327 
2328 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2329 		size = le16_to_cpu(rx_desc->wb.upper.length);
2330 		if (!size)
2331 			break;
2332 
2333 		/* This memory barrier is needed to keep us from reading
2334 		 * any other fields out of the rx_desc until we know the
2335 		 * descriptor has been written back
2336 		 */
2337 		dma_rmb();
2338 
2339 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2340 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2341 
2342 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2343 
2344 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2345 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2346 							pktbuf);
2347 			pkt_offset = IGC_TS_HDR_LEN;
2348 			size -= IGC_TS_HDR_LEN;
2349 		}
2350 
2351 		if (!skb) {
2352 			xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2353 			xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2354 					 igc_rx_offset(rx_ring) + pkt_offset, size, false);
2355 
2356 			skb = igc_xdp_run_prog(adapter, &xdp);
2357 		}
2358 
2359 		if (IS_ERR(skb)) {
2360 			unsigned int xdp_res = -PTR_ERR(skb);
2361 
2362 			switch (xdp_res) {
2363 			case IGC_XDP_CONSUMED:
2364 				rx_buffer->pagecnt_bias++;
2365 				break;
2366 			case IGC_XDP_TX:
2367 			case IGC_XDP_REDIRECT:
2368 				igc_rx_buffer_flip(rx_buffer, truesize);
2369 				xdp_status |= xdp_res;
2370 				break;
2371 			}
2372 
2373 			total_packets++;
2374 			total_bytes += size;
2375 		} else if (skb)
2376 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2377 		else if (ring_uses_build_skb(rx_ring))
2378 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2379 		else
2380 			skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2381 						timestamp);
2382 
2383 		/* exit if we failed to retrieve a buffer */
2384 		if (!skb) {
2385 			rx_ring->rx_stats.alloc_failed++;
2386 			rx_buffer->pagecnt_bias++;
2387 			break;
2388 		}
2389 
2390 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2391 		cleaned_count++;
2392 
2393 		/* fetch next buffer in frame if non-eop */
2394 		if (igc_is_non_eop(rx_ring, rx_desc))
2395 			continue;
2396 
2397 		/* verify the packet layout is correct */
2398 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2399 			skb = NULL;
2400 			continue;
2401 		}
2402 
2403 		/* probably a little skewed due to removing CRC */
2404 		total_bytes += skb->len;
2405 
2406 		/* populate checksum, VLAN, and protocol */
2407 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2408 
2409 		napi_gro_receive(&q_vector->napi, skb);
2410 
2411 		/* reset skb pointer */
2412 		skb = NULL;
2413 
2414 		/* update budget accounting */
2415 		total_packets++;
2416 	}
2417 
2418 	if (xdp_status)
2419 		igc_finalize_xdp(adapter, xdp_status);
2420 
2421 	/* place incomplete frames back on ring for completion */
2422 	rx_ring->skb = skb;
2423 
2424 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2425 
2426 	if (cleaned_count)
2427 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2428 
2429 	return total_packets;
2430 }
2431 
2432 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2433 					    struct xdp_buff *xdp)
2434 {
2435 	unsigned int metasize = xdp->data - xdp->data_meta;
2436 	unsigned int datasize = xdp->data_end - xdp->data;
2437 	unsigned int totalsize = metasize + datasize;
2438 	struct sk_buff *skb;
2439 
2440 	skb = __napi_alloc_skb(&ring->q_vector->napi,
2441 			       xdp->data_end - xdp->data_hard_start,
2442 			       GFP_ATOMIC | __GFP_NOWARN);
2443 	if (unlikely(!skb))
2444 		return NULL;
2445 
2446 	skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
2447 	memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize);
2448 	if (metasize)
2449 		skb_metadata_set(skb, metasize);
2450 
2451 	return skb;
2452 }
2453 
2454 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2455 				union igc_adv_rx_desc *desc,
2456 				struct xdp_buff *xdp,
2457 				ktime_t timestamp)
2458 {
2459 	struct igc_ring *ring = q_vector->rx.ring;
2460 	struct sk_buff *skb;
2461 
2462 	skb = igc_construct_skb_zc(ring, xdp);
2463 	if (!skb) {
2464 		ring->rx_stats.alloc_failed++;
2465 		return;
2466 	}
2467 
2468 	if (timestamp)
2469 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2470 
2471 	if (igc_cleanup_headers(ring, desc, skb))
2472 		return;
2473 
2474 	igc_process_skb_fields(ring, desc, skb);
2475 	napi_gro_receive(&q_vector->napi, skb);
2476 }
2477 
2478 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2479 {
2480 	struct igc_adapter *adapter = q_vector->adapter;
2481 	struct igc_ring *ring = q_vector->rx.ring;
2482 	u16 cleaned_count = igc_desc_unused(ring);
2483 	int total_bytes = 0, total_packets = 0;
2484 	u16 ntc = ring->next_to_clean;
2485 	struct bpf_prog *prog;
2486 	bool failure = false;
2487 	int xdp_status = 0;
2488 
2489 	rcu_read_lock();
2490 
2491 	prog = READ_ONCE(adapter->xdp_prog);
2492 
2493 	while (likely(total_packets < budget)) {
2494 		union igc_adv_rx_desc *desc;
2495 		struct igc_rx_buffer *bi;
2496 		ktime_t timestamp = 0;
2497 		unsigned int size;
2498 		int res;
2499 
2500 		desc = IGC_RX_DESC(ring, ntc);
2501 		size = le16_to_cpu(desc->wb.upper.length);
2502 		if (!size)
2503 			break;
2504 
2505 		/* This memory barrier is needed to keep us from reading
2506 		 * any other fields out of the rx_desc until we know the
2507 		 * descriptor has been written back
2508 		 */
2509 		dma_rmb();
2510 
2511 		bi = &ring->rx_buffer_info[ntc];
2512 
2513 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2514 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2515 							bi->xdp->data);
2516 
2517 			bi->xdp->data += IGC_TS_HDR_LEN;
2518 
2519 			/* HW timestamp has been copied into local variable. Metadata
2520 			 * length when XDP program is called should be 0.
2521 			 */
2522 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2523 			size -= IGC_TS_HDR_LEN;
2524 		}
2525 
2526 		bi->xdp->data_end = bi->xdp->data + size;
2527 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2528 
2529 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2530 		switch (res) {
2531 		case IGC_XDP_PASS:
2532 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2533 			fallthrough;
2534 		case IGC_XDP_CONSUMED:
2535 			xsk_buff_free(bi->xdp);
2536 			break;
2537 		case IGC_XDP_TX:
2538 		case IGC_XDP_REDIRECT:
2539 			xdp_status |= res;
2540 			break;
2541 		}
2542 
2543 		bi->xdp = NULL;
2544 		total_bytes += size;
2545 		total_packets++;
2546 		cleaned_count++;
2547 		ntc++;
2548 		if (ntc == ring->count)
2549 			ntc = 0;
2550 	}
2551 
2552 	ring->next_to_clean = ntc;
2553 	rcu_read_unlock();
2554 
2555 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2556 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2557 
2558 	if (xdp_status)
2559 		igc_finalize_xdp(adapter, xdp_status);
2560 
2561 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2562 
2563 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2564 		if (failure || ring->next_to_clean == ring->next_to_use)
2565 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2566 		else
2567 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2568 		return total_packets;
2569 	}
2570 
2571 	return failure ? budget : total_packets;
2572 }
2573 
2574 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2575 				unsigned int packets, unsigned int bytes)
2576 {
2577 	struct igc_ring *ring = q_vector->tx.ring;
2578 
2579 	u64_stats_update_begin(&ring->tx_syncp);
2580 	ring->tx_stats.bytes += bytes;
2581 	ring->tx_stats.packets += packets;
2582 	u64_stats_update_end(&ring->tx_syncp);
2583 
2584 	q_vector->tx.total_bytes += bytes;
2585 	q_vector->tx.total_packets += packets;
2586 }
2587 
2588 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2589 {
2590 	struct xsk_buff_pool *pool = ring->xsk_pool;
2591 	struct netdev_queue *nq = txring_txq(ring);
2592 	union igc_adv_tx_desc *tx_desc = NULL;
2593 	int cpu = smp_processor_id();
2594 	u16 ntu = ring->next_to_use;
2595 	struct xdp_desc xdp_desc;
2596 	u16 budget;
2597 
2598 	if (!netif_carrier_ok(ring->netdev))
2599 		return;
2600 
2601 	__netif_tx_lock(nq, cpu);
2602 
2603 	budget = igc_desc_unused(ring);
2604 
2605 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2606 		u32 cmd_type, olinfo_status;
2607 		struct igc_tx_buffer *bi;
2608 		dma_addr_t dma;
2609 
2610 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2611 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2612 			   xdp_desc.len;
2613 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2614 
2615 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2616 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2617 
2618 		tx_desc = IGC_TX_DESC(ring, ntu);
2619 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2620 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2621 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2622 
2623 		bi = &ring->tx_buffer_info[ntu];
2624 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2625 		bi->protocol = 0;
2626 		bi->bytecount = xdp_desc.len;
2627 		bi->gso_segs = 1;
2628 		bi->time_stamp = jiffies;
2629 		bi->next_to_watch = tx_desc;
2630 
2631 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2632 
2633 		ntu++;
2634 		if (ntu == ring->count)
2635 			ntu = 0;
2636 	}
2637 
2638 	ring->next_to_use = ntu;
2639 	if (tx_desc) {
2640 		igc_flush_tx_descriptors(ring);
2641 		xsk_tx_release(pool);
2642 	}
2643 
2644 	__netif_tx_unlock(nq);
2645 }
2646 
2647 /**
2648  * igc_clean_tx_irq - Reclaim resources after transmit completes
2649  * @q_vector: pointer to q_vector containing needed info
2650  * @napi_budget: Used to determine if we are in netpoll
2651  *
2652  * returns true if ring is completely cleaned
2653  */
2654 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2655 {
2656 	struct igc_adapter *adapter = q_vector->adapter;
2657 	unsigned int total_bytes = 0, total_packets = 0;
2658 	unsigned int budget = q_vector->tx.work_limit;
2659 	struct igc_ring *tx_ring = q_vector->tx.ring;
2660 	unsigned int i = tx_ring->next_to_clean;
2661 	struct igc_tx_buffer *tx_buffer;
2662 	union igc_adv_tx_desc *tx_desc;
2663 	u32 xsk_frames = 0;
2664 
2665 	if (test_bit(__IGC_DOWN, &adapter->state))
2666 		return true;
2667 
2668 	tx_buffer = &tx_ring->tx_buffer_info[i];
2669 	tx_desc = IGC_TX_DESC(tx_ring, i);
2670 	i -= tx_ring->count;
2671 
2672 	do {
2673 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2674 
2675 		/* if next_to_watch is not set then there is no work pending */
2676 		if (!eop_desc)
2677 			break;
2678 
2679 		/* prevent any other reads prior to eop_desc */
2680 		smp_rmb();
2681 
2682 		/* if DD is not set pending work has not been completed */
2683 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2684 			break;
2685 
2686 		/* clear next_to_watch to prevent false hangs */
2687 		tx_buffer->next_to_watch = NULL;
2688 
2689 		/* update the statistics for this packet */
2690 		total_bytes += tx_buffer->bytecount;
2691 		total_packets += tx_buffer->gso_segs;
2692 
2693 		switch (tx_buffer->type) {
2694 		case IGC_TX_BUFFER_TYPE_XSK:
2695 			xsk_frames++;
2696 			break;
2697 		case IGC_TX_BUFFER_TYPE_XDP:
2698 			xdp_return_frame(tx_buffer->xdpf);
2699 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2700 			break;
2701 		case IGC_TX_BUFFER_TYPE_SKB:
2702 			napi_consume_skb(tx_buffer->skb, napi_budget);
2703 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2704 			break;
2705 		default:
2706 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2707 			break;
2708 		}
2709 
2710 		/* clear last DMA location and unmap remaining buffers */
2711 		while (tx_desc != eop_desc) {
2712 			tx_buffer++;
2713 			tx_desc++;
2714 			i++;
2715 			if (unlikely(!i)) {
2716 				i -= tx_ring->count;
2717 				tx_buffer = tx_ring->tx_buffer_info;
2718 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2719 			}
2720 
2721 			/* unmap any remaining paged data */
2722 			if (dma_unmap_len(tx_buffer, len))
2723 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2724 		}
2725 
2726 		/* move us one more past the eop_desc for start of next pkt */
2727 		tx_buffer++;
2728 		tx_desc++;
2729 		i++;
2730 		if (unlikely(!i)) {
2731 			i -= tx_ring->count;
2732 			tx_buffer = tx_ring->tx_buffer_info;
2733 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2734 		}
2735 
2736 		/* issue prefetch for next Tx descriptor */
2737 		prefetch(tx_desc);
2738 
2739 		/* update budget accounting */
2740 		budget--;
2741 	} while (likely(budget));
2742 
2743 	netdev_tx_completed_queue(txring_txq(tx_ring),
2744 				  total_packets, total_bytes);
2745 
2746 	i += tx_ring->count;
2747 	tx_ring->next_to_clean = i;
2748 
2749 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2750 
2751 	if (tx_ring->xsk_pool) {
2752 		if (xsk_frames)
2753 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2754 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2755 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2756 		igc_xdp_xmit_zc(tx_ring);
2757 	}
2758 
2759 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2760 		struct igc_hw *hw = &adapter->hw;
2761 
2762 		/* Detect a transmit hang in hardware, this serializes the
2763 		 * check with the clearing of time_stamp and movement of i
2764 		 */
2765 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2766 		if (tx_buffer->next_to_watch &&
2767 		    time_after(jiffies, tx_buffer->time_stamp +
2768 		    (adapter->tx_timeout_factor * HZ)) &&
2769 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2770 			/* detected Tx unit hang */
2771 			netdev_err(tx_ring->netdev,
2772 				   "Detected Tx Unit Hang\n"
2773 				   "  Tx Queue             <%d>\n"
2774 				   "  TDH                  <%x>\n"
2775 				   "  TDT                  <%x>\n"
2776 				   "  next_to_use          <%x>\n"
2777 				   "  next_to_clean        <%x>\n"
2778 				   "buffer_info[next_to_clean]\n"
2779 				   "  time_stamp           <%lx>\n"
2780 				   "  next_to_watch        <%p>\n"
2781 				   "  jiffies              <%lx>\n"
2782 				   "  desc.status          <%x>\n",
2783 				   tx_ring->queue_index,
2784 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2785 				   readl(tx_ring->tail),
2786 				   tx_ring->next_to_use,
2787 				   tx_ring->next_to_clean,
2788 				   tx_buffer->time_stamp,
2789 				   tx_buffer->next_to_watch,
2790 				   jiffies,
2791 				   tx_buffer->next_to_watch->wb.status);
2792 			netif_stop_subqueue(tx_ring->netdev,
2793 					    tx_ring->queue_index);
2794 
2795 			/* we are about to reset, no point in enabling stuff */
2796 			return true;
2797 		}
2798 	}
2799 
2800 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2801 	if (unlikely(total_packets &&
2802 		     netif_carrier_ok(tx_ring->netdev) &&
2803 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2804 		/* Make sure that anybody stopping the queue after this
2805 		 * sees the new next_to_clean.
2806 		 */
2807 		smp_mb();
2808 		if (__netif_subqueue_stopped(tx_ring->netdev,
2809 					     tx_ring->queue_index) &&
2810 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2811 			netif_wake_subqueue(tx_ring->netdev,
2812 					    tx_ring->queue_index);
2813 
2814 			u64_stats_update_begin(&tx_ring->tx_syncp);
2815 			tx_ring->tx_stats.restart_queue++;
2816 			u64_stats_update_end(&tx_ring->tx_syncp);
2817 		}
2818 	}
2819 
2820 	return !!budget;
2821 }
2822 
2823 static int igc_find_mac_filter(struct igc_adapter *adapter,
2824 			       enum igc_mac_filter_type type, const u8 *addr)
2825 {
2826 	struct igc_hw *hw = &adapter->hw;
2827 	int max_entries = hw->mac.rar_entry_count;
2828 	u32 ral, rah;
2829 	int i;
2830 
2831 	for (i = 0; i < max_entries; i++) {
2832 		ral = rd32(IGC_RAL(i));
2833 		rah = rd32(IGC_RAH(i));
2834 
2835 		if (!(rah & IGC_RAH_AV))
2836 			continue;
2837 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2838 			continue;
2839 		if ((rah & IGC_RAH_RAH_MASK) !=
2840 		    le16_to_cpup((__le16 *)(addr + 4)))
2841 			continue;
2842 		if (ral != le32_to_cpup((__le32 *)(addr)))
2843 			continue;
2844 
2845 		return i;
2846 	}
2847 
2848 	return -1;
2849 }
2850 
2851 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2852 {
2853 	struct igc_hw *hw = &adapter->hw;
2854 	int max_entries = hw->mac.rar_entry_count;
2855 	u32 rah;
2856 	int i;
2857 
2858 	for (i = 0; i < max_entries; i++) {
2859 		rah = rd32(IGC_RAH(i));
2860 
2861 		if (!(rah & IGC_RAH_AV))
2862 			return i;
2863 	}
2864 
2865 	return -1;
2866 }
2867 
2868 /**
2869  * igc_add_mac_filter() - Add MAC address filter
2870  * @adapter: Pointer to adapter where the filter should be added
2871  * @type: MAC address filter type (source or destination)
2872  * @addr: MAC address
2873  * @queue: If non-negative, queue assignment feature is enabled and frames
2874  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2875  *         assignment is disabled.
2876  *
2877  * Return: 0 in case of success, negative errno code otherwise.
2878  */
2879 static int igc_add_mac_filter(struct igc_adapter *adapter,
2880 			      enum igc_mac_filter_type type, const u8 *addr,
2881 			      int queue)
2882 {
2883 	struct net_device *dev = adapter->netdev;
2884 	int index;
2885 
2886 	index = igc_find_mac_filter(adapter, type, addr);
2887 	if (index >= 0)
2888 		goto update_filter;
2889 
2890 	index = igc_get_avail_mac_filter_slot(adapter);
2891 	if (index < 0)
2892 		return -ENOSPC;
2893 
2894 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2895 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2896 		   addr, queue);
2897 
2898 update_filter:
2899 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2900 	return 0;
2901 }
2902 
2903 /**
2904  * igc_del_mac_filter() - Delete MAC address filter
2905  * @adapter: Pointer to adapter where the filter should be deleted from
2906  * @type: MAC address filter type (source or destination)
2907  * @addr: MAC address
2908  */
2909 static void igc_del_mac_filter(struct igc_adapter *adapter,
2910 			       enum igc_mac_filter_type type, const u8 *addr)
2911 {
2912 	struct net_device *dev = adapter->netdev;
2913 	int index;
2914 
2915 	index = igc_find_mac_filter(adapter, type, addr);
2916 	if (index < 0)
2917 		return;
2918 
2919 	if (index == 0) {
2920 		/* If this is the default filter, we don't actually delete it.
2921 		 * We just reset to its default value i.e. disable queue
2922 		 * assignment.
2923 		 */
2924 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2925 
2926 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2927 	} else {
2928 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2929 			   index,
2930 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2931 			   addr);
2932 
2933 		igc_clear_mac_filter_hw(adapter, index);
2934 	}
2935 }
2936 
2937 /**
2938  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2939  * @adapter: Pointer to adapter where the filter should be added
2940  * @prio: VLAN priority value
2941  * @queue: Queue number which matching frames are assigned to
2942  *
2943  * Return: 0 in case of success, negative errno code otherwise.
2944  */
2945 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2946 				    int queue)
2947 {
2948 	struct net_device *dev = adapter->netdev;
2949 	struct igc_hw *hw = &adapter->hw;
2950 	u32 vlanpqf;
2951 
2952 	vlanpqf = rd32(IGC_VLANPQF);
2953 
2954 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2955 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2956 		return -EEXIST;
2957 	}
2958 
2959 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2960 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2961 
2962 	wr32(IGC_VLANPQF, vlanpqf);
2963 
2964 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2965 		   prio, queue);
2966 	return 0;
2967 }
2968 
2969 /**
2970  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2971  * @adapter: Pointer to adapter where the filter should be deleted from
2972  * @prio: VLAN priority value
2973  */
2974 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2975 {
2976 	struct igc_hw *hw = &adapter->hw;
2977 	u32 vlanpqf;
2978 
2979 	vlanpqf = rd32(IGC_VLANPQF);
2980 
2981 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2982 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2983 
2984 	wr32(IGC_VLANPQF, vlanpqf);
2985 
2986 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2987 		   prio);
2988 }
2989 
2990 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2991 {
2992 	struct igc_hw *hw = &adapter->hw;
2993 	int i;
2994 
2995 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2996 		u32 etqf = rd32(IGC_ETQF(i));
2997 
2998 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2999 			return i;
3000 	}
3001 
3002 	return -1;
3003 }
3004 
3005 /**
3006  * igc_add_etype_filter() - Add ethertype filter
3007  * @adapter: Pointer to adapter where the filter should be added
3008  * @etype: Ethertype value
3009  * @queue: If non-negative, queue assignment feature is enabled and frames
3010  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3011  *         assignment is disabled.
3012  *
3013  * Return: 0 in case of success, negative errno code otherwise.
3014  */
3015 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3016 				int queue)
3017 {
3018 	struct igc_hw *hw = &adapter->hw;
3019 	int index;
3020 	u32 etqf;
3021 
3022 	index = igc_get_avail_etype_filter_slot(adapter);
3023 	if (index < 0)
3024 		return -ENOSPC;
3025 
3026 	etqf = rd32(IGC_ETQF(index));
3027 
3028 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3029 	etqf |= etype;
3030 
3031 	if (queue >= 0) {
3032 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3033 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3034 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3035 	}
3036 
3037 	etqf |= IGC_ETQF_FILTER_ENABLE;
3038 
3039 	wr32(IGC_ETQF(index), etqf);
3040 
3041 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3042 		   etype, queue);
3043 	return 0;
3044 }
3045 
3046 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3047 {
3048 	struct igc_hw *hw = &adapter->hw;
3049 	int i;
3050 
3051 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3052 		u32 etqf = rd32(IGC_ETQF(i));
3053 
3054 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3055 			return i;
3056 	}
3057 
3058 	return -1;
3059 }
3060 
3061 /**
3062  * igc_del_etype_filter() - Delete ethertype filter
3063  * @adapter: Pointer to adapter where the filter should be deleted from
3064  * @etype: Ethertype value
3065  */
3066 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3067 {
3068 	struct igc_hw *hw = &adapter->hw;
3069 	int index;
3070 
3071 	index = igc_find_etype_filter(adapter, etype);
3072 	if (index < 0)
3073 		return;
3074 
3075 	wr32(IGC_ETQF(index), 0);
3076 
3077 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3078 		   etype);
3079 }
3080 
3081 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3082 			       const struct igc_nfc_rule *rule)
3083 {
3084 	int err;
3085 
3086 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3087 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3088 					   rule->action);
3089 		if (err)
3090 			return err;
3091 	}
3092 
3093 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3094 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3095 					 rule->filter.src_addr, rule->action);
3096 		if (err)
3097 			return err;
3098 	}
3099 
3100 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3101 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3102 					 rule->filter.dst_addr, rule->action);
3103 		if (err)
3104 			return err;
3105 	}
3106 
3107 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3108 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3109 			   VLAN_PRIO_SHIFT;
3110 
3111 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3112 		if (err)
3113 			return err;
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3120 				 const struct igc_nfc_rule *rule)
3121 {
3122 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3123 		igc_del_etype_filter(adapter, rule->filter.etype);
3124 
3125 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3126 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3127 			   VLAN_PRIO_SHIFT;
3128 
3129 		igc_del_vlan_prio_filter(adapter, prio);
3130 	}
3131 
3132 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3133 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3134 				   rule->filter.src_addr);
3135 
3136 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3137 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3138 				   rule->filter.dst_addr);
3139 }
3140 
3141 /**
3142  * igc_get_nfc_rule() - Get NFC rule
3143  * @adapter: Pointer to adapter
3144  * @location: Rule location
3145  *
3146  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3147  *
3148  * Return: Pointer to NFC rule at @location. If not found, NULL.
3149  */
3150 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3151 				      u32 location)
3152 {
3153 	struct igc_nfc_rule *rule;
3154 
3155 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3156 		if (rule->location == location)
3157 			return rule;
3158 		if (rule->location > location)
3159 			break;
3160 	}
3161 
3162 	return NULL;
3163 }
3164 
3165 /**
3166  * igc_del_nfc_rule() - Delete NFC rule
3167  * @adapter: Pointer to adapter
3168  * @rule: Pointer to rule to be deleted
3169  *
3170  * Disable NFC rule in hardware and delete it from adapter.
3171  *
3172  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3173  */
3174 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3175 {
3176 	igc_disable_nfc_rule(adapter, rule);
3177 
3178 	list_del(&rule->list);
3179 	adapter->nfc_rule_count--;
3180 
3181 	kfree(rule);
3182 }
3183 
3184 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3185 {
3186 	struct igc_nfc_rule *rule, *tmp;
3187 
3188 	mutex_lock(&adapter->nfc_rule_lock);
3189 
3190 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3191 		igc_del_nfc_rule(adapter, rule);
3192 
3193 	mutex_unlock(&adapter->nfc_rule_lock);
3194 }
3195 
3196 /**
3197  * igc_add_nfc_rule() - Add NFC rule
3198  * @adapter: Pointer to adapter
3199  * @rule: Pointer to rule to be added
3200  *
3201  * Enable NFC rule in hardware and add it to adapter.
3202  *
3203  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3204  *
3205  * Return: 0 on success, negative errno on failure.
3206  */
3207 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3208 {
3209 	struct igc_nfc_rule *pred, *cur;
3210 	int err;
3211 
3212 	err = igc_enable_nfc_rule(adapter, rule);
3213 	if (err)
3214 		return err;
3215 
3216 	pred = NULL;
3217 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3218 		if (cur->location >= rule->location)
3219 			break;
3220 		pred = cur;
3221 	}
3222 
3223 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3224 	adapter->nfc_rule_count++;
3225 	return 0;
3226 }
3227 
3228 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3229 {
3230 	struct igc_nfc_rule *rule;
3231 
3232 	mutex_lock(&adapter->nfc_rule_lock);
3233 
3234 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3235 		igc_enable_nfc_rule(adapter, rule);
3236 
3237 	mutex_unlock(&adapter->nfc_rule_lock);
3238 }
3239 
3240 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3241 {
3242 	struct igc_adapter *adapter = netdev_priv(netdev);
3243 
3244 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3245 }
3246 
3247 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3248 {
3249 	struct igc_adapter *adapter = netdev_priv(netdev);
3250 
3251 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3252 	return 0;
3253 }
3254 
3255 /**
3256  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3257  * @netdev: network interface device structure
3258  *
3259  * The set_rx_mode entry point is called whenever the unicast or multicast
3260  * address lists or the network interface flags are updated.  This routine is
3261  * responsible for configuring the hardware for proper unicast, multicast,
3262  * promiscuous mode, and all-multi behavior.
3263  */
3264 static void igc_set_rx_mode(struct net_device *netdev)
3265 {
3266 	struct igc_adapter *adapter = netdev_priv(netdev);
3267 	struct igc_hw *hw = &adapter->hw;
3268 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3269 	int count;
3270 
3271 	/* Check for Promiscuous and All Multicast modes */
3272 	if (netdev->flags & IFF_PROMISC) {
3273 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3274 	} else {
3275 		if (netdev->flags & IFF_ALLMULTI) {
3276 			rctl |= IGC_RCTL_MPE;
3277 		} else {
3278 			/* Write addresses to the MTA, if the attempt fails
3279 			 * then we should just turn on promiscuous mode so
3280 			 * that we can at least receive multicast traffic
3281 			 */
3282 			count = igc_write_mc_addr_list(netdev);
3283 			if (count < 0)
3284 				rctl |= IGC_RCTL_MPE;
3285 		}
3286 	}
3287 
3288 	/* Write addresses to available RAR registers, if there is not
3289 	 * sufficient space to store all the addresses then enable
3290 	 * unicast promiscuous mode
3291 	 */
3292 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3293 		rctl |= IGC_RCTL_UPE;
3294 
3295 	/* update state of unicast and multicast */
3296 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3297 	wr32(IGC_RCTL, rctl);
3298 
3299 #if (PAGE_SIZE < 8192)
3300 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3301 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3302 #endif
3303 	wr32(IGC_RLPML, rlpml);
3304 }
3305 
3306 /**
3307  * igc_configure - configure the hardware for RX and TX
3308  * @adapter: private board structure
3309  */
3310 static void igc_configure(struct igc_adapter *adapter)
3311 {
3312 	struct net_device *netdev = adapter->netdev;
3313 	int i = 0;
3314 
3315 	igc_get_hw_control(adapter);
3316 	igc_set_rx_mode(netdev);
3317 
3318 	igc_restore_vlan(adapter);
3319 
3320 	igc_setup_tctl(adapter);
3321 	igc_setup_mrqc(adapter);
3322 	igc_setup_rctl(adapter);
3323 
3324 	igc_set_default_mac_filter(adapter);
3325 	igc_restore_nfc_rules(adapter);
3326 
3327 	igc_configure_tx(adapter);
3328 	igc_configure_rx(adapter);
3329 
3330 	igc_rx_fifo_flush_base(&adapter->hw);
3331 
3332 	/* call igc_desc_unused which always leaves
3333 	 * at least 1 descriptor unused to make sure
3334 	 * next_to_use != next_to_clean
3335 	 */
3336 	for (i = 0; i < adapter->num_rx_queues; i++) {
3337 		struct igc_ring *ring = adapter->rx_ring[i];
3338 
3339 		if (ring->xsk_pool)
3340 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3341 		else
3342 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3343 	}
3344 }
3345 
3346 /**
3347  * igc_write_ivar - configure ivar for given MSI-X vector
3348  * @hw: pointer to the HW structure
3349  * @msix_vector: vector number we are allocating to a given ring
3350  * @index: row index of IVAR register to write within IVAR table
3351  * @offset: column offset of in IVAR, should be multiple of 8
3352  *
3353  * The IVAR table consists of 2 columns,
3354  * each containing an cause allocation for an Rx and Tx ring, and a
3355  * variable number of rows depending on the number of queues supported.
3356  */
3357 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3358 			   int index, int offset)
3359 {
3360 	u32 ivar = array_rd32(IGC_IVAR0, index);
3361 
3362 	/* clear any bits that are currently set */
3363 	ivar &= ~((u32)0xFF << offset);
3364 
3365 	/* write vector and valid bit */
3366 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3367 
3368 	array_wr32(IGC_IVAR0, index, ivar);
3369 }
3370 
3371 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3372 {
3373 	struct igc_adapter *adapter = q_vector->adapter;
3374 	struct igc_hw *hw = &adapter->hw;
3375 	int rx_queue = IGC_N0_QUEUE;
3376 	int tx_queue = IGC_N0_QUEUE;
3377 
3378 	if (q_vector->rx.ring)
3379 		rx_queue = q_vector->rx.ring->reg_idx;
3380 	if (q_vector->tx.ring)
3381 		tx_queue = q_vector->tx.ring->reg_idx;
3382 
3383 	switch (hw->mac.type) {
3384 	case igc_i225:
3385 		if (rx_queue > IGC_N0_QUEUE)
3386 			igc_write_ivar(hw, msix_vector,
3387 				       rx_queue >> 1,
3388 				       (rx_queue & 0x1) << 4);
3389 		if (tx_queue > IGC_N0_QUEUE)
3390 			igc_write_ivar(hw, msix_vector,
3391 				       tx_queue >> 1,
3392 				       ((tx_queue & 0x1) << 4) + 8);
3393 		q_vector->eims_value = BIT(msix_vector);
3394 		break;
3395 	default:
3396 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3397 		break;
3398 	}
3399 
3400 	/* add q_vector eims value to global eims_enable_mask */
3401 	adapter->eims_enable_mask |= q_vector->eims_value;
3402 
3403 	/* configure q_vector to set itr on first interrupt */
3404 	q_vector->set_itr = 1;
3405 }
3406 
3407 /**
3408  * igc_configure_msix - Configure MSI-X hardware
3409  * @adapter: Pointer to adapter structure
3410  *
3411  * igc_configure_msix sets up the hardware to properly
3412  * generate MSI-X interrupts.
3413  */
3414 static void igc_configure_msix(struct igc_adapter *adapter)
3415 {
3416 	struct igc_hw *hw = &adapter->hw;
3417 	int i, vector = 0;
3418 	u32 tmp;
3419 
3420 	adapter->eims_enable_mask = 0;
3421 
3422 	/* set vector for other causes, i.e. link changes */
3423 	switch (hw->mac.type) {
3424 	case igc_i225:
3425 		/* Turn on MSI-X capability first, or our settings
3426 		 * won't stick.  And it will take days to debug.
3427 		 */
3428 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3429 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3430 		     IGC_GPIE_NSICR);
3431 
3432 		/* enable msix_other interrupt */
3433 		adapter->eims_other = BIT(vector);
3434 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3435 
3436 		wr32(IGC_IVAR_MISC, tmp);
3437 		break;
3438 	default:
3439 		/* do nothing, since nothing else supports MSI-X */
3440 		break;
3441 	} /* switch (hw->mac.type) */
3442 
3443 	adapter->eims_enable_mask |= adapter->eims_other;
3444 
3445 	for (i = 0; i < adapter->num_q_vectors; i++)
3446 		igc_assign_vector(adapter->q_vector[i], vector++);
3447 
3448 	wrfl();
3449 }
3450 
3451 /**
3452  * igc_irq_enable - Enable default interrupt generation settings
3453  * @adapter: board private structure
3454  */
3455 static void igc_irq_enable(struct igc_adapter *adapter)
3456 {
3457 	struct igc_hw *hw = &adapter->hw;
3458 
3459 	if (adapter->msix_entries) {
3460 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3461 		u32 regval = rd32(IGC_EIAC);
3462 
3463 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3464 		regval = rd32(IGC_EIAM);
3465 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3466 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3467 		wr32(IGC_IMS, ims);
3468 	} else {
3469 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3470 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3471 	}
3472 }
3473 
3474 /**
3475  * igc_irq_disable - Mask off interrupt generation on the NIC
3476  * @adapter: board private structure
3477  */
3478 static void igc_irq_disable(struct igc_adapter *adapter)
3479 {
3480 	struct igc_hw *hw = &adapter->hw;
3481 
3482 	if (adapter->msix_entries) {
3483 		u32 regval = rd32(IGC_EIAM);
3484 
3485 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3486 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3487 		regval = rd32(IGC_EIAC);
3488 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3489 	}
3490 
3491 	wr32(IGC_IAM, 0);
3492 	wr32(IGC_IMC, ~0);
3493 	wrfl();
3494 
3495 	if (adapter->msix_entries) {
3496 		int vector = 0, i;
3497 
3498 		synchronize_irq(adapter->msix_entries[vector++].vector);
3499 
3500 		for (i = 0; i < adapter->num_q_vectors; i++)
3501 			synchronize_irq(adapter->msix_entries[vector++].vector);
3502 	} else {
3503 		synchronize_irq(adapter->pdev->irq);
3504 	}
3505 }
3506 
3507 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3508 			      const u32 max_rss_queues)
3509 {
3510 	/* Determine if we need to pair queues. */
3511 	/* If rss_queues > half of max_rss_queues, pair the queues in
3512 	 * order to conserve interrupts due to limited supply.
3513 	 */
3514 	if (adapter->rss_queues > (max_rss_queues / 2))
3515 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3516 	else
3517 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3518 }
3519 
3520 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3521 {
3522 	return IGC_MAX_RX_QUEUES;
3523 }
3524 
3525 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3526 {
3527 	u32 max_rss_queues;
3528 
3529 	max_rss_queues = igc_get_max_rss_queues(adapter);
3530 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3531 
3532 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3533 }
3534 
3535 /**
3536  * igc_reset_q_vector - Reset config for interrupt vector
3537  * @adapter: board private structure to initialize
3538  * @v_idx: Index of vector to be reset
3539  *
3540  * If NAPI is enabled it will delete any references to the
3541  * NAPI struct. This is preparation for igc_free_q_vector.
3542  */
3543 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3544 {
3545 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3546 
3547 	/* if we're coming from igc_set_interrupt_capability, the vectors are
3548 	 * not yet allocated
3549 	 */
3550 	if (!q_vector)
3551 		return;
3552 
3553 	if (q_vector->tx.ring)
3554 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3555 
3556 	if (q_vector->rx.ring)
3557 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3558 
3559 	netif_napi_del(&q_vector->napi);
3560 }
3561 
3562 /**
3563  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3564  * @adapter: board private structure to initialize
3565  * @v_idx: Index of vector to be freed
3566  *
3567  * This function frees the memory allocated to the q_vector.
3568  */
3569 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3570 {
3571 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3572 
3573 	adapter->q_vector[v_idx] = NULL;
3574 
3575 	/* igc_get_stats64() might access the rings on this vector,
3576 	 * we must wait a grace period before freeing it.
3577 	 */
3578 	if (q_vector)
3579 		kfree_rcu(q_vector, rcu);
3580 }
3581 
3582 /**
3583  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3584  * @adapter: board private structure to initialize
3585  *
3586  * This function frees the memory allocated to the q_vectors.  In addition if
3587  * NAPI is enabled it will delete any references to the NAPI struct prior
3588  * to freeing the q_vector.
3589  */
3590 static void igc_free_q_vectors(struct igc_adapter *adapter)
3591 {
3592 	int v_idx = adapter->num_q_vectors;
3593 
3594 	adapter->num_tx_queues = 0;
3595 	adapter->num_rx_queues = 0;
3596 	adapter->num_q_vectors = 0;
3597 
3598 	while (v_idx--) {
3599 		igc_reset_q_vector(adapter, v_idx);
3600 		igc_free_q_vector(adapter, v_idx);
3601 	}
3602 }
3603 
3604 /**
3605  * igc_update_itr - update the dynamic ITR value based on statistics
3606  * @q_vector: pointer to q_vector
3607  * @ring_container: ring info to update the itr for
3608  *
3609  * Stores a new ITR value based on packets and byte
3610  * counts during the last interrupt.  The advantage of per interrupt
3611  * computation is faster updates and more accurate ITR for the current
3612  * traffic pattern.  Constants in this function were computed
3613  * based on theoretical maximum wire speed and thresholds were set based
3614  * on testing data as well as attempting to minimize response time
3615  * while increasing bulk throughput.
3616  * NOTE: These calculations are only valid when operating in a single-
3617  * queue environment.
3618  */
3619 static void igc_update_itr(struct igc_q_vector *q_vector,
3620 			   struct igc_ring_container *ring_container)
3621 {
3622 	unsigned int packets = ring_container->total_packets;
3623 	unsigned int bytes = ring_container->total_bytes;
3624 	u8 itrval = ring_container->itr;
3625 
3626 	/* no packets, exit with status unchanged */
3627 	if (packets == 0)
3628 		return;
3629 
3630 	switch (itrval) {
3631 	case lowest_latency:
3632 		/* handle TSO and jumbo frames */
3633 		if (bytes / packets > 8000)
3634 			itrval = bulk_latency;
3635 		else if ((packets < 5) && (bytes > 512))
3636 			itrval = low_latency;
3637 		break;
3638 	case low_latency:  /* 50 usec aka 20000 ints/s */
3639 		if (bytes > 10000) {
3640 			/* this if handles the TSO accounting */
3641 			if (bytes / packets > 8000)
3642 				itrval = bulk_latency;
3643 			else if ((packets < 10) || ((bytes / packets) > 1200))
3644 				itrval = bulk_latency;
3645 			else if ((packets > 35))
3646 				itrval = lowest_latency;
3647 		} else if (bytes / packets > 2000) {
3648 			itrval = bulk_latency;
3649 		} else if (packets <= 2 && bytes < 512) {
3650 			itrval = lowest_latency;
3651 		}
3652 		break;
3653 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3654 		if (bytes > 25000) {
3655 			if (packets > 35)
3656 				itrval = low_latency;
3657 		} else if (bytes < 1500) {
3658 			itrval = low_latency;
3659 		}
3660 		break;
3661 	}
3662 
3663 	/* clear work counters since we have the values we need */
3664 	ring_container->total_bytes = 0;
3665 	ring_container->total_packets = 0;
3666 
3667 	/* write updated itr to ring container */
3668 	ring_container->itr = itrval;
3669 }
3670 
3671 static void igc_set_itr(struct igc_q_vector *q_vector)
3672 {
3673 	struct igc_adapter *adapter = q_vector->adapter;
3674 	u32 new_itr = q_vector->itr_val;
3675 	u8 current_itr = 0;
3676 
3677 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3678 	switch (adapter->link_speed) {
3679 	case SPEED_10:
3680 	case SPEED_100:
3681 		current_itr = 0;
3682 		new_itr = IGC_4K_ITR;
3683 		goto set_itr_now;
3684 	default:
3685 		break;
3686 	}
3687 
3688 	igc_update_itr(q_vector, &q_vector->tx);
3689 	igc_update_itr(q_vector, &q_vector->rx);
3690 
3691 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3692 
3693 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3694 	if (current_itr == lowest_latency &&
3695 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3696 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3697 		current_itr = low_latency;
3698 
3699 	switch (current_itr) {
3700 	/* counts and packets in update_itr are dependent on these numbers */
3701 	case lowest_latency:
3702 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3703 		break;
3704 	case low_latency:
3705 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3706 		break;
3707 	case bulk_latency:
3708 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3709 		break;
3710 	default:
3711 		break;
3712 	}
3713 
3714 set_itr_now:
3715 	if (new_itr != q_vector->itr_val) {
3716 		/* this attempts to bias the interrupt rate towards Bulk
3717 		 * by adding intermediate steps when interrupt rate is
3718 		 * increasing
3719 		 */
3720 		new_itr = new_itr > q_vector->itr_val ?
3721 			  max((new_itr * q_vector->itr_val) /
3722 			  (new_itr + (q_vector->itr_val >> 2)),
3723 			  new_itr) : new_itr;
3724 		/* Don't write the value here; it resets the adapter's
3725 		 * internal timer, and causes us to delay far longer than
3726 		 * we should between interrupts.  Instead, we write the ITR
3727 		 * value at the beginning of the next interrupt so the timing
3728 		 * ends up being correct.
3729 		 */
3730 		q_vector->itr_val = new_itr;
3731 		q_vector->set_itr = 1;
3732 	}
3733 }
3734 
3735 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3736 {
3737 	int v_idx = adapter->num_q_vectors;
3738 
3739 	if (adapter->msix_entries) {
3740 		pci_disable_msix(adapter->pdev);
3741 		kfree(adapter->msix_entries);
3742 		adapter->msix_entries = NULL;
3743 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3744 		pci_disable_msi(adapter->pdev);
3745 	}
3746 
3747 	while (v_idx--)
3748 		igc_reset_q_vector(adapter, v_idx);
3749 }
3750 
3751 /**
3752  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3753  * @adapter: Pointer to adapter structure
3754  * @msix: boolean value for MSI-X capability
3755  *
3756  * Attempt to configure interrupts using the best available
3757  * capabilities of the hardware and kernel.
3758  */
3759 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3760 					 bool msix)
3761 {
3762 	int numvecs, i;
3763 	int err;
3764 
3765 	if (!msix)
3766 		goto msi_only;
3767 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3768 
3769 	/* Number of supported queues. */
3770 	adapter->num_rx_queues = adapter->rss_queues;
3771 
3772 	adapter->num_tx_queues = adapter->rss_queues;
3773 
3774 	/* start with one vector for every Rx queue */
3775 	numvecs = adapter->num_rx_queues;
3776 
3777 	/* if Tx handler is separate add 1 for every Tx queue */
3778 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3779 		numvecs += adapter->num_tx_queues;
3780 
3781 	/* store the number of vectors reserved for queues */
3782 	adapter->num_q_vectors = numvecs;
3783 
3784 	/* add 1 vector for link status interrupts */
3785 	numvecs++;
3786 
3787 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3788 					GFP_KERNEL);
3789 
3790 	if (!adapter->msix_entries)
3791 		return;
3792 
3793 	/* populate entry values */
3794 	for (i = 0; i < numvecs; i++)
3795 		adapter->msix_entries[i].entry = i;
3796 
3797 	err = pci_enable_msix_range(adapter->pdev,
3798 				    adapter->msix_entries,
3799 				    numvecs,
3800 				    numvecs);
3801 	if (err > 0)
3802 		return;
3803 
3804 	kfree(adapter->msix_entries);
3805 	adapter->msix_entries = NULL;
3806 
3807 	igc_reset_interrupt_capability(adapter);
3808 
3809 msi_only:
3810 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3811 
3812 	adapter->rss_queues = 1;
3813 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3814 	adapter->num_rx_queues = 1;
3815 	adapter->num_tx_queues = 1;
3816 	adapter->num_q_vectors = 1;
3817 	if (!pci_enable_msi(adapter->pdev))
3818 		adapter->flags |= IGC_FLAG_HAS_MSI;
3819 }
3820 
3821 /**
3822  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3823  * @q_vector: pointer to q_vector
3824  *
3825  * Stores a new ITR value based on strictly on packet size.  This
3826  * algorithm is less sophisticated than that used in igc_update_itr,
3827  * due to the difficulty of synchronizing statistics across multiple
3828  * receive rings.  The divisors and thresholds used by this function
3829  * were determined based on theoretical maximum wire speed and testing
3830  * data, in order to minimize response time while increasing bulk
3831  * throughput.
3832  * NOTE: This function is called only when operating in a multiqueue
3833  * receive environment.
3834  */
3835 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3836 {
3837 	struct igc_adapter *adapter = q_vector->adapter;
3838 	int new_val = q_vector->itr_val;
3839 	int avg_wire_size = 0;
3840 	unsigned int packets;
3841 
3842 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3843 	 * ints/sec - ITR timer value of 120 ticks.
3844 	 */
3845 	switch (adapter->link_speed) {
3846 	case SPEED_10:
3847 	case SPEED_100:
3848 		new_val = IGC_4K_ITR;
3849 		goto set_itr_val;
3850 	default:
3851 		break;
3852 	}
3853 
3854 	packets = q_vector->rx.total_packets;
3855 	if (packets)
3856 		avg_wire_size = q_vector->rx.total_bytes / packets;
3857 
3858 	packets = q_vector->tx.total_packets;
3859 	if (packets)
3860 		avg_wire_size = max_t(u32, avg_wire_size,
3861 				      q_vector->tx.total_bytes / packets);
3862 
3863 	/* if avg_wire_size isn't set no work was done */
3864 	if (!avg_wire_size)
3865 		goto clear_counts;
3866 
3867 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3868 	avg_wire_size += 24;
3869 
3870 	/* Don't starve jumbo frames */
3871 	avg_wire_size = min(avg_wire_size, 3000);
3872 
3873 	/* Give a little boost to mid-size frames */
3874 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3875 		new_val = avg_wire_size / 3;
3876 	else
3877 		new_val = avg_wire_size / 2;
3878 
3879 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3880 	if (new_val < IGC_20K_ITR &&
3881 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3882 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3883 		new_val = IGC_20K_ITR;
3884 
3885 set_itr_val:
3886 	if (new_val != q_vector->itr_val) {
3887 		q_vector->itr_val = new_val;
3888 		q_vector->set_itr = 1;
3889 	}
3890 clear_counts:
3891 	q_vector->rx.total_bytes = 0;
3892 	q_vector->rx.total_packets = 0;
3893 	q_vector->tx.total_bytes = 0;
3894 	q_vector->tx.total_packets = 0;
3895 }
3896 
3897 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3898 {
3899 	struct igc_adapter *adapter = q_vector->adapter;
3900 	struct igc_hw *hw = &adapter->hw;
3901 
3902 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3903 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3904 		if (adapter->num_q_vectors == 1)
3905 			igc_set_itr(q_vector);
3906 		else
3907 			igc_update_ring_itr(q_vector);
3908 	}
3909 
3910 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3911 		if (adapter->msix_entries)
3912 			wr32(IGC_EIMS, q_vector->eims_value);
3913 		else
3914 			igc_irq_enable(adapter);
3915 	}
3916 }
3917 
3918 static void igc_add_ring(struct igc_ring *ring,
3919 			 struct igc_ring_container *head)
3920 {
3921 	head->ring = ring;
3922 	head->count++;
3923 }
3924 
3925 /**
3926  * igc_cache_ring_register - Descriptor ring to register mapping
3927  * @adapter: board private structure to initialize
3928  *
3929  * Once we know the feature-set enabled for the device, we'll cache
3930  * the register offset the descriptor ring is assigned to.
3931  */
3932 static void igc_cache_ring_register(struct igc_adapter *adapter)
3933 {
3934 	int i = 0, j = 0;
3935 
3936 	switch (adapter->hw.mac.type) {
3937 	case igc_i225:
3938 	default:
3939 		for (; i < adapter->num_rx_queues; i++)
3940 			adapter->rx_ring[i]->reg_idx = i;
3941 		for (; j < adapter->num_tx_queues; j++)
3942 			adapter->tx_ring[j]->reg_idx = j;
3943 		break;
3944 	}
3945 }
3946 
3947 /**
3948  * igc_poll - NAPI Rx polling callback
3949  * @napi: napi polling structure
3950  * @budget: count of how many packets we should handle
3951  */
3952 static int igc_poll(struct napi_struct *napi, int budget)
3953 {
3954 	struct igc_q_vector *q_vector = container_of(napi,
3955 						     struct igc_q_vector,
3956 						     napi);
3957 	struct igc_ring *rx_ring = q_vector->rx.ring;
3958 	bool clean_complete = true;
3959 	int work_done = 0;
3960 
3961 	if (q_vector->tx.ring)
3962 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3963 
3964 	if (rx_ring) {
3965 		int cleaned = rx_ring->xsk_pool ?
3966 			      igc_clean_rx_irq_zc(q_vector, budget) :
3967 			      igc_clean_rx_irq(q_vector, budget);
3968 
3969 		work_done += cleaned;
3970 		if (cleaned >= budget)
3971 			clean_complete = false;
3972 	}
3973 
3974 	/* If all work not completed, return budget and keep polling */
3975 	if (!clean_complete)
3976 		return budget;
3977 
3978 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3979 	 * poll us due to busy-polling
3980 	 */
3981 	if (likely(napi_complete_done(napi, work_done)))
3982 		igc_ring_irq_enable(q_vector);
3983 
3984 	return min(work_done, budget - 1);
3985 }
3986 
3987 /**
3988  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3989  * @adapter: board private structure to initialize
3990  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3991  * @v_idx: index of vector in adapter struct
3992  * @txr_count: total number of Tx rings to allocate
3993  * @txr_idx: index of first Tx ring to allocate
3994  * @rxr_count: total number of Rx rings to allocate
3995  * @rxr_idx: index of first Rx ring to allocate
3996  *
3997  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3998  */
3999 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4000 			      unsigned int v_count, unsigned int v_idx,
4001 			      unsigned int txr_count, unsigned int txr_idx,
4002 			      unsigned int rxr_count, unsigned int rxr_idx)
4003 {
4004 	struct igc_q_vector *q_vector;
4005 	struct igc_ring *ring;
4006 	int ring_count;
4007 
4008 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4009 	if (txr_count > 1 || rxr_count > 1)
4010 		return -ENOMEM;
4011 
4012 	ring_count = txr_count + rxr_count;
4013 
4014 	/* allocate q_vector and rings */
4015 	q_vector = adapter->q_vector[v_idx];
4016 	if (!q_vector)
4017 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4018 				   GFP_KERNEL);
4019 	else
4020 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4021 	if (!q_vector)
4022 		return -ENOMEM;
4023 
4024 	/* initialize NAPI */
4025 	netif_napi_add(adapter->netdev, &q_vector->napi,
4026 		       igc_poll, 64);
4027 
4028 	/* tie q_vector and adapter together */
4029 	adapter->q_vector[v_idx] = q_vector;
4030 	q_vector->adapter = adapter;
4031 
4032 	/* initialize work limits */
4033 	q_vector->tx.work_limit = adapter->tx_work_limit;
4034 
4035 	/* initialize ITR configuration */
4036 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4037 	q_vector->itr_val = IGC_START_ITR;
4038 
4039 	/* initialize pointer to rings */
4040 	ring = q_vector->ring;
4041 
4042 	/* initialize ITR */
4043 	if (rxr_count) {
4044 		/* rx or rx/tx vector */
4045 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4046 			q_vector->itr_val = adapter->rx_itr_setting;
4047 	} else {
4048 		/* tx only vector */
4049 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4050 			q_vector->itr_val = adapter->tx_itr_setting;
4051 	}
4052 
4053 	if (txr_count) {
4054 		/* assign generic ring traits */
4055 		ring->dev = &adapter->pdev->dev;
4056 		ring->netdev = adapter->netdev;
4057 
4058 		/* configure backlink on ring */
4059 		ring->q_vector = q_vector;
4060 
4061 		/* update q_vector Tx values */
4062 		igc_add_ring(ring, &q_vector->tx);
4063 
4064 		/* apply Tx specific ring traits */
4065 		ring->count = adapter->tx_ring_count;
4066 		ring->queue_index = txr_idx;
4067 
4068 		/* assign ring to adapter */
4069 		adapter->tx_ring[txr_idx] = ring;
4070 
4071 		/* push pointer to next ring */
4072 		ring++;
4073 	}
4074 
4075 	if (rxr_count) {
4076 		/* assign generic ring traits */
4077 		ring->dev = &adapter->pdev->dev;
4078 		ring->netdev = adapter->netdev;
4079 
4080 		/* configure backlink on ring */
4081 		ring->q_vector = q_vector;
4082 
4083 		/* update q_vector Rx values */
4084 		igc_add_ring(ring, &q_vector->rx);
4085 
4086 		/* apply Rx specific ring traits */
4087 		ring->count = adapter->rx_ring_count;
4088 		ring->queue_index = rxr_idx;
4089 
4090 		/* assign ring to adapter */
4091 		adapter->rx_ring[rxr_idx] = ring;
4092 	}
4093 
4094 	return 0;
4095 }
4096 
4097 /**
4098  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4099  * @adapter: board private structure to initialize
4100  *
4101  * We allocate one q_vector per queue interrupt.  If allocation fails we
4102  * return -ENOMEM.
4103  */
4104 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4105 {
4106 	int rxr_remaining = adapter->num_rx_queues;
4107 	int txr_remaining = adapter->num_tx_queues;
4108 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4109 	int q_vectors = adapter->num_q_vectors;
4110 	int err;
4111 
4112 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4113 		for (; rxr_remaining; v_idx++) {
4114 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4115 						 0, 0, 1, rxr_idx);
4116 
4117 			if (err)
4118 				goto err_out;
4119 
4120 			/* update counts and index */
4121 			rxr_remaining--;
4122 			rxr_idx++;
4123 		}
4124 	}
4125 
4126 	for (; v_idx < q_vectors; v_idx++) {
4127 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4128 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4129 
4130 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4131 					 tqpv, txr_idx, rqpv, rxr_idx);
4132 
4133 		if (err)
4134 			goto err_out;
4135 
4136 		/* update counts and index */
4137 		rxr_remaining -= rqpv;
4138 		txr_remaining -= tqpv;
4139 		rxr_idx++;
4140 		txr_idx++;
4141 	}
4142 
4143 	return 0;
4144 
4145 err_out:
4146 	adapter->num_tx_queues = 0;
4147 	adapter->num_rx_queues = 0;
4148 	adapter->num_q_vectors = 0;
4149 
4150 	while (v_idx--)
4151 		igc_free_q_vector(adapter, v_idx);
4152 
4153 	return -ENOMEM;
4154 }
4155 
4156 /**
4157  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4158  * @adapter: Pointer to adapter structure
4159  * @msix: boolean for MSI-X capability
4160  *
4161  * This function initializes the interrupts and allocates all of the queues.
4162  */
4163 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4164 {
4165 	struct net_device *dev = adapter->netdev;
4166 	int err = 0;
4167 
4168 	igc_set_interrupt_capability(adapter, msix);
4169 
4170 	err = igc_alloc_q_vectors(adapter);
4171 	if (err) {
4172 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4173 		goto err_alloc_q_vectors;
4174 	}
4175 
4176 	igc_cache_ring_register(adapter);
4177 
4178 	return 0;
4179 
4180 err_alloc_q_vectors:
4181 	igc_reset_interrupt_capability(adapter);
4182 	return err;
4183 }
4184 
4185 /**
4186  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4187  * @adapter: board private structure to initialize
4188  *
4189  * igc_sw_init initializes the Adapter private data structure.
4190  * Fields are initialized based on PCI device information and
4191  * OS network device settings (MTU size).
4192  */
4193 static int igc_sw_init(struct igc_adapter *adapter)
4194 {
4195 	struct net_device *netdev = adapter->netdev;
4196 	struct pci_dev *pdev = adapter->pdev;
4197 	struct igc_hw *hw = &adapter->hw;
4198 
4199 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4200 
4201 	/* set default ring sizes */
4202 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4203 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4204 
4205 	/* set default ITR values */
4206 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4207 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4208 
4209 	/* set default work limits */
4210 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4211 
4212 	/* adjust max frame to be at least the size of a standard frame */
4213 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4214 				VLAN_HLEN;
4215 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4216 
4217 	mutex_init(&adapter->nfc_rule_lock);
4218 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4219 	adapter->nfc_rule_count = 0;
4220 
4221 	spin_lock_init(&adapter->stats64_lock);
4222 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4223 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4224 
4225 	igc_init_queue_configuration(adapter);
4226 
4227 	/* This call may decrease the number of queues */
4228 	if (igc_init_interrupt_scheme(adapter, true)) {
4229 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4230 		return -ENOMEM;
4231 	}
4232 
4233 	/* Explicitly disable IRQ since the NIC can be in any state. */
4234 	igc_irq_disable(adapter);
4235 
4236 	set_bit(__IGC_DOWN, &adapter->state);
4237 
4238 	return 0;
4239 }
4240 
4241 /**
4242  * igc_up - Open the interface and prepare it to handle traffic
4243  * @adapter: board private structure
4244  */
4245 void igc_up(struct igc_adapter *adapter)
4246 {
4247 	struct igc_hw *hw = &adapter->hw;
4248 	int i = 0;
4249 
4250 	/* hardware has been reset, we need to reload some things */
4251 	igc_configure(adapter);
4252 
4253 	clear_bit(__IGC_DOWN, &adapter->state);
4254 
4255 	for (i = 0; i < adapter->num_q_vectors; i++)
4256 		napi_enable(&adapter->q_vector[i]->napi);
4257 
4258 	if (adapter->msix_entries)
4259 		igc_configure_msix(adapter);
4260 	else
4261 		igc_assign_vector(adapter->q_vector[0], 0);
4262 
4263 	/* Clear any pending interrupts. */
4264 	rd32(IGC_ICR);
4265 	igc_irq_enable(adapter);
4266 
4267 	netif_tx_start_all_queues(adapter->netdev);
4268 
4269 	/* start the watchdog. */
4270 	hw->mac.get_link_status = true;
4271 	schedule_work(&adapter->watchdog_task);
4272 }
4273 
4274 /**
4275  * igc_update_stats - Update the board statistics counters
4276  * @adapter: board private structure
4277  */
4278 void igc_update_stats(struct igc_adapter *adapter)
4279 {
4280 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4281 	struct pci_dev *pdev = adapter->pdev;
4282 	struct igc_hw *hw = &adapter->hw;
4283 	u64 _bytes, _packets;
4284 	u64 bytes, packets;
4285 	unsigned int start;
4286 	u32 mpc;
4287 	int i;
4288 
4289 	/* Prevent stats update while adapter is being reset, or if the pci
4290 	 * connection is down.
4291 	 */
4292 	if (adapter->link_speed == 0)
4293 		return;
4294 	if (pci_channel_offline(pdev))
4295 		return;
4296 
4297 	packets = 0;
4298 	bytes = 0;
4299 
4300 	rcu_read_lock();
4301 	for (i = 0; i < adapter->num_rx_queues; i++) {
4302 		struct igc_ring *ring = adapter->rx_ring[i];
4303 		u32 rqdpc = rd32(IGC_RQDPC(i));
4304 
4305 		if (hw->mac.type >= igc_i225)
4306 			wr32(IGC_RQDPC(i), 0);
4307 
4308 		if (rqdpc) {
4309 			ring->rx_stats.drops += rqdpc;
4310 			net_stats->rx_fifo_errors += rqdpc;
4311 		}
4312 
4313 		do {
4314 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4315 			_bytes = ring->rx_stats.bytes;
4316 			_packets = ring->rx_stats.packets;
4317 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4318 		bytes += _bytes;
4319 		packets += _packets;
4320 	}
4321 
4322 	net_stats->rx_bytes = bytes;
4323 	net_stats->rx_packets = packets;
4324 
4325 	packets = 0;
4326 	bytes = 0;
4327 	for (i = 0; i < adapter->num_tx_queues; i++) {
4328 		struct igc_ring *ring = adapter->tx_ring[i];
4329 
4330 		do {
4331 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4332 			_bytes = ring->tx_stats.bytes;
4333 			_packets = ring->tx_stats.packets;
4334 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4335 		bytes += _bytes;
4336 		packets += _packets;
4337 	}
4338 	net_stats->tx_bytes = bytes;
4339 	net_stats->tx_packets = packets;
4340 	rcu_read_unlock();
4341 
4342 	/* read stats registers */
4343 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4344 	adapter->stats.gprc += rd32(IGC_GPRC);
4345 	adapter->stats.gorc += rd32(IGC_GORCL);
4346 	rd32(IGC_GORCH); /* clear GORCL */
4347 	adapter->stats.bprc += rd32(IGC_BPRC);
4348 	adapter->stats.mprc += rd32(IGC_MPRC);
4349 	adapter->stats.roc += rd32(IGC_ROC);
4350 
4351 	adapter->stats.prc64 += rd32(IGC_PRC64);
4352 	adapter->stats.prc127 += rd32(IGC_PRC127);
4353 	adapter->stats.prc255 += rd32(IGC_PRC255);
4354 	adapter->stats.prc511 += rd32(IGC_PRC511);
4355 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4356 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4357 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4358 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4359 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4360 
4361 	mpc = rd32(IGC_MPC);
4362 	adapter->stats.mpc += mpc;
4363 	net_stats->rx_fifo_errors += mpc;
4364 	adapter->stats.scc += rd32(IGC_SCC);
4365 	adapter->stats.ecol += rd32(IGC_ECOL);
4366 	adapter->stats.mcc += rd32(IGC_MCC);
4367 	adapter->stats.latecol += rd32(IGC_LATECOL);
4368 	adapter->stats.dc += rd32(IGC_DC);
4369 	adapter->stats.rlec += rd32(IGC_RLEC);
4370 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4371 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4372 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4373 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4374 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4375 	adapter->stats.gptc += rd32(IGC_GPTC);
4376 	adapter->stats.gotc += rd32(IGC_GOTCL);
4377 	rd32(IGC_GOTCH); /* clear GOTCL */
4378 	adapter->stats.rnbc += rd32(IGC_RNBC);
4379 	adapter->stats.ruc += rd32(IGC_RUC);
4380 	adapter->stats.rfc += rd32(IGC_RFC);
4381 	adapter->stats.rjc += rd32(IGC_RJC);
4382 	adapter->stats.tor += rd32(IGC_TORH);
4383 	adapter->stats.tot += rd32(IGC_TOTH);
4384 	adapter->stats.tpr += rd32(IGC_TPR);
4385 
4386 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4387 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4388 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4389 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4390 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4391 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4392 
4393 	adapter->stats.mptc += rd32(IGC_MPTC);
4394 	adapter->stats.bptc += rd32(IGC_BPTC);
4395 
4396 	adapter->stats.tpt += rd32(IGC_TPT);
4397 	adapter->stats.colc += rd32(IGC_COLC);
4398 	adapter->stats.colc += rd32(IGC_RERC);
4399 
4400 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4401 
4402 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4403 
4404 	adapter->stats.iac += rd32(IGC_IAC);
4405 
4406 	/* Fill out the OS statistics structure */
4407 	net_stats->multicast = adapter->stats.mprc;
4408 	net_stats->collisions = adapter->stats.colc;
4409 
4410 	/* Rx Errors */
4411 
4412 	/* RLEC on some newer hardware can be incorrect so build
4413 	 * our own version based on RUC and ROC
4414 	 */
4415 	net_stats->rx_errors = adapter->stats.rxerrc +
4416 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4417 		adapter->stats.ruc + adapter->stats.roc +
4418 		adapter->stats.cexterr;
4419 	net_stats->rx_length_errors = adapter->stats.ruc +
4420 				      adapter->stats.roc;
4421 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4422 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4423 	net_stats->rx_missed_errors = adapter->stats.mpc;
4424 
4425 	/* Tx Errors */
4426 	net_stats->tx_errors = adapter->stats.ecol +
4427 			       adapter->stats.latecol;
4428 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4429 	net_stats->tx_window_errors = adapter->stats.latecol;
4430 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4431 
4432 	/* Tx Dropped needs to be maintained elsewhere */
4433 
4434 	/* Management Stats */
4435 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4436 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4437 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4438 }
4439 
4440 /**
4441  * igc_down - Close the interface
4442  * @adapter: board private structure
4443  */
4444 void igc_down(struct igc_adapter *adapter)
4445 {
4446 	struct net_device *netdev = adapter->netdev;
4447 	struct igc_hw *hw = &adapter->hw;
4448 	u32 tctl, rctl;
4449 	int i = 0;
4450 
4451 	set_bit(__IGC_DOWN, &adapter->state);
4452 
4453 	igc_ptp_suspend(adapter);
4454 
4455 	if (pci_device_is_present(adapter->pdev)) {
4456 		/* disable receives in the hardware */
4457 		rctl = rd32(IGC_RCTL);
4458 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4459 		/* flush and sleep below */
4460 	}
4461 	/* set trans_start so we don't get spurious watchdogs during reset */
4462 	netif_trans_update(netdev);
4463 
4464 	netif_carrier_off(netdev);
4465 	netif_tx_stop_all_queues(netdev);
4466 
4467 	if (pci_device_is_present(adapter->pdev)) {
4468 		/* disable transmits in the hardware */
4469 		tctl = rd32(IGC_TCTL);
4470 		tctl &= ~IGC_TCTL_EN;
4471 		wr32(IGC_TCTL, tctl);
4472 		/* flush both disables and wait for them to finish */
4473 		wrfl();
4474 		usleep_range(10000, 20000);
4475 
4476 		igc_irq_disable(adapter);
4477 	}
4478 
4479 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4480 
4481 	for (i = 0; i < adapter->num_q_vectors; i++) {
4482 		if (adapter->q_vector[i]) {
4483 			napi_synchronize(&adapter->q_vector[i]->napi);
4484 			napi_disable(&adapter->q_vector[i]->napi);
4485 		}
4486 	}
4487 
4488 	del_timer_sync(&adapter->watchdog_timer);
4489 	del_timer_sync(&adapter->phy_info_timer);
4490 
4491 	/* record the stats before reset*/
4492 	spin_lock(&adapter->stats64_lock);
4493 	igc_update_stats(adapter);
4494 	spin_unlock(&adapter->stats64_lock);
4495 
4496 	adapter->link_speed = 0;
4497 	adapter->link_duplex = 0;
4498 
4499 	if (!pci_channel_offline(adapter->pdev))
4500 		igc_reset(adapter);
4501 
4502 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
4503 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4504 
4505 	igc_clean_all_tx_rings(adapter);
4506 	igc_clean_all_rx_rings(adapter);
4507 }
4508 
4509 void igc_reinit_locked(struct igc_adapter *adapter)
4510 {
4511 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4512 		usleep_range(1000, 2000);
4513 	igc_down(adapter);
4514 	igc_up(adapter);
4515 	clear_bit(__IGC_RESETTING, &adapter->state);
4516 }
4517 
4518 static void igc_reset_task(struct work_struct *work)
4519 {
4520 	struct igc_adapter *adapter;
4521 
4522 	adapter = container_of(work, struct igc_adapter, reset_task);
4523 
4524 	rtnl_lock();
4525 	/* If we're already down or resetting, just bail */
4526 	if (test_bit(__IGC_DOWN, &adapter->state) ||
4527 	    test_bit(__IGC_RESETTING, &adapter->state)) {
4528 		rtnl_unlock();
4529 		return;
4530 	}
4531 
4532 	igc_rings_dump(adapter);
4533 	igc_regs_dump(adapter);
4534 	netdev_err(adapter->netdev, "Reset adapter\n");
4535 	igc_reinit_locked(adapter);
4536 	rtnl_unlock();
4537 }
4538 
4539 /**
4540  * igc_change_mtu - Change the Maximum Transfer Unit
4541  * @netdev: network interface device structure
4542  * @new_mtu: new value for maximum frame size
4543  *
4544  * Returns 0 on success, negative on failure
4545  */
4546 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4547 {
4548 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4549 	struct igc_adapter *adapter = netdev_priv(netdev);
4550 
4551 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4552 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4553 		return -EINVAL;
4554 	}
4555 
4556 	/* adjust max frame to be at least the size of a standard frame */
4557 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4558 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4559 
4560 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4561 		usleep_range(1000, 2000);
4562 
4563 	/* igc_down has a dependency on max_frame_size */
4564 	adapter->max_frame_size = max_frame;
4565 
4566 	if (netif_running(netdev))
4567 		igc_down(adapter);
4568 
4569 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4570 	netdev->mtu = new_mtu;
4571 
4572 	if (netif_running(netdev))
4573 		igc_up(adapter);
4574 	else
4575 		igc_reset(adapter);
4576 
4577 	clear_bit(__IGC_RESETTING, &adapter->state);
4578 
4579 	return 0;
4580 }
4581 
4582 /**
4583  * igc_get_stats64 - Get System Network Statistics
4584  * @netdev: network interface device structure
4585  * @stats: rtnl_link_stats64 pointer
4586  *
4587  * Returns the address of the device statistics structure.
4588  * The statistics are updated here and also from the timer callback.
4589  */
4590 static void igc_get_stats64(struct net_device *netdev,
4591 			    struct rtnl_link_stats64 *stats)
4592 {
4593 	struct igc_adapter *adapter = netdev_priv(netdev);
4594 
4595 	spin_lock(&adapter->stats64_lock);
4596 	if (!test_bit(__IGC_RESETTING, &adapter->state))
4597 		igc_update_stats(adapter);
4598 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4599 	spin_unlock(&adapter->stats64_lock);
4600 }
4601 
4602 static netdev_features_t igc_fix_features(struct net_device *netdev,
4603 					  netdev_features_t features)
4604 {
4605 	/* Since there is no support for separate Rx/Tx vlan accel
4606 	 * enable/disable make sure Tx flag is always in same state as Rx.
4607 	 */
4608 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4609 		features |= NETIF_F_HW_VLAN_CTAG_TX;
4610 	else
4611 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4612 
4613 	return features;
4614 }
4615 
4616 static int igc_set_features(struct net_device *netdev,
4617 			    netdev_features_t features)
4618 {
4619 	netdev_features_t changed = netdev->features ^ features;
4620 	struct igc_adapter *adapter = netdev_priv(netdev);
4621 
4622 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4623 		igc_vlan_mode(netdev, features);
4624 
4625 	/* Add VLAN support */
4626 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4627 		return 0;
4628 
4629 	if (!(features & NETIF_F_NTUPLE))
4630 		igc_flush_nfc_rules(adapter);
4631 
4632 	netdev->features = features;
4633 
4634 	if (netif_running(netdev))
4635 		igc_reinit_locked(adapter);
4636 	else
4637 		igc_reset(adapter);
4638 
4639 	return 1;
4640 }
4641 
4642 static netdev_features_t
4643 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4644 		   netdev_features_t features)
4645 {
4646 	unsigned int network_hdr_len, mac_hdr_len;
4647 
4648 	/* Make certain the headers can be described by a context descriptor */
4649 	mac_hdr_len = skb_network_header(skb) - skb->data;
4650 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4651 		return features & ~(NETIF_F_HW_CSUM |
4652 				    NETIF_F_SCTP_CRC |
4653 				    NETIF_F_HW_VLAN_CTAG_TX |
4654 				    NETIF_F_TSO |
4655 				    NETIF_F_TSO6);
4656 
4657 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4658 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4659 		return features & ~(NETIF_F_HW_CSUM |
4660 				    NETIF_F_SCTP_CRC |
4661 				    NETIF_F_TSO |
4662 				    NETIF_F_TSO6);
4663 
4664 	/* We can only support IPv4 TSO in tunnels if we can mangle the
4665 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4666 	 */
4667 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4668 		features &= ~NETIF_F_TSO;
4669 
4670 	return features;
4671 }
4672 
4673 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4674 {
4675 	u32 ack, tsauxc, sec, nsec, tsicr;
4676 	struct igc_hw *hw = &adapter->hw;
4677 	struct ptp_clock_event event;
4678 	struct timespec64 ts;
4679 
4680 	tsicr = rd32(IGC_TSICR);
4681 	ack = 0;
4682 
4683 	if (tsicr & IGC_TSICR_SYS_WRAP) {
4684 		event.type = PTP_CLOCK_PPS;
4685 		if (adapter->ptp_caps.pps)
4686 			ptp_clock_event(adapter->ptp_clock, &event);
4687 		ack |= IGC_TSICR_SYS_WRAP;
4688 	}
4689 
4690 	if (tsicr & IGC_TSICR_TXTS) {
4691 		/* retrieve hardware timestamp */
4692 		schedule_work(&adapter->ptp_tx_work);
4693 		ack |= IGC_TSICR_TXTS;
4694 	}
4695 
4696 	if (tsicr & IGC_TSICR_TT0) {
4697 		spin_lock(&adapter->tmreg_lock);
4698 		ts = timespec64_add(adapter->perout[0].start,
4699 				    adapter->perout[0].period);
4700 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4701 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
4702 		tsauxc = rd32(IGC_TSAUXC);
4703 		tsauxc |= IGC_TSAUXC_EN_TT0;
4704 		wr32(IGC_TSAUXC, tsauxc);
4705 		adapter->perout[0].start = ts;
4706 		spin_unlock(&adapter->tmreg_lock);
4707 		ack |= IGC_TSICR_TT0;
4708 	}
4709 
4710 	if (tsicr & IGC_TSICR_TT1) {
4711 		spin_lock(&adapter->tmreg_lock);
4712 		ts = timespec64_add(adapter->perout[1].start,
4713 				    adapter->perout[1].period);
4714 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4715 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
4716 		tsauxc = rd32(IGC_TSAUXC);
4717 		tsauxc |= IGC_TSAUXC_EN_TT1;
4718 		wr32(IGC_TSAUXC, tsauxc);
4719 		adapter->perout[1].start = ts;
4720 		spin_unlock(&adapter->tmreg_lock);
4721 		ack |= IGC_TSICR_TT1;
4722 	}
4723 
4724 	if (tsicr & IGC_TSICR_AUTT0) {
4725 		nsec = rd32(IGC_AUXSTMPL0);
4726 		sec  = rd32(IGC_AUXSTMPH0);
4727 		event.type = PTP_CLOCK_EXTTS;
4728 		event.index = 0;
4729 		event.timestamp = sec * NSEC_PER_SEC + nsec;
4730 		ptp_clock_event(adapter->ptp_clock, &event);
4731 		ack |= IGC_TSICR_AUTT0;
4732 	}
4733 
4734 	if (tsicr & IGC_TSICR_AUTT1) {
4735 		nsec = rd32(IGC_AUXSTMPL1);
4736 		sec  = rd32(IGC_AUXSTMPH1);
4737 		event.type = PTP_CLOCK_EXTTS;
4738 		event.index = 1;
4739 		event.timestamp = sec * NSEC_PER_SEC + nsec;
4740 		ptp_clock_event(adapter->ptp_clock, &event);
4741 		ack |= IGC_TSICR_AUTT1;
4742 	}
4743 
4744 	/* acknowledge the interrupts */
4745 	wr32(IGC_TSICR, ack);
4746 }
4747 
4748 /**
4749  * igc_msix_other - msix other interrupt handler
4750  * @irq: interrupt number
4751  * @data: pointer to a q_vector
4752  */
4753 static irqreturn_t igc_msix_other(int irq, void *data)
4754 {
4755 	struct igc_adapter *adapter = data;
4756 	struct igc_hw *hw = &adapter->hw;
4757 	u32 icr = rd32(IGC_ICR);
4758 
4759 	/* reading ICR causes bit 31 of EICR to be cleared */
4760 	if (icr & IGC_ICR_DRSTA)
4761 		schedule_work(&adapter->reset_task);
4762 
4763 	if (icr & IGC_ICR_DOUTSYNC) {
4764 		/* HW is reporting DMA is out of sync */
4765 		adapter->stats.doosync++;
4766 	}
4767 
4768 	if (icr & IGC_ICR_LSC) {
4769 		hw->mac.get_link_status = true;
4770 		/* guard against interrupt when we're going down */
4771 		if (!test_bit(__IGC_DOWN, &adapter->state))
4772 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4773 	}
4774 
4775 	if (icr & IGC_ICR_TS)
4776 		igc_tsync_interrupt(adapter);
4777 
4778 	wr32(IGC_EIMS, adapter->eims_other);
4779 
4780 	return IRQ_HANDLED;
4781 }
4782 
4783 static void igc_write_itr(struct igc_q_vector *q_vector)
4784 {
4785 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4786 
4787 	if (!q_vector->set_itr)
4788 		return;
4789 
4790 	if (!itr_val)
4791 		itr_val = IGC_ITR_VAL_MASK;
4792 
4793 	itr_val |= IGC_EITR_CNT_IGNR;
4794 
4795 	writel(itr_val, q_vector->itr_register);
4796 	q_vector->set_itr = 0;
4797 }
4798 
4799 static irqreturn_t igc_msix_ring(int irq, void *data)
4800 {
4801 	struct igc_q_vector *q_vector = data;
4802 
4803 	/* Write the ITR value calculated from the previous interrupt. */
4804 	igc_write_itr(q_vector);
4805 
4806 	napi_schedule(&q_vector->napi);
4807 
4808 	return IRQ_HANDLED;
4809 }
4810 
4811 /**
4812  * igc_request_msix - Initialize MSI-X interrupts
4813  * @adapter: Pointer to adapter structure
4814  *
4815  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4816  * kernel.
4817  */
4818 static int igc_request_msix(struct igc_adapter *adapter)
4819 {
4820 	int i = 0, err = 0, vector = 0, free_vector = 0;
4821 	struct net_device *netdev = adapter->netdev;
4822 
4823 	err = request_irq(adapter->msix_entries[vector].vector,
4824 			  &igc_msix_other, 0, netdev->name, adapter);
4825 	if (err)
4826 		goto err_out;
4827 
4828 	for (i = 0; i < adapter->num_q_vectors; i++) {
4829 		struct igc_q_vector *q_vector = adapter->q_vector[i];
4830 
4831 		vector++;
4832 
4833 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4834 
4835 		if (q_vector->rx.ring && q_vector->tx.ring)
4836 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4837 				q_vector->rx.ring->queue_index);
4838 		else if (q_vector->tx.ring)
4839 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4840 				q_vector->tx.ring->queue_index);
4841 		else if (q_vector->rx.ring)
4842 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4843 				q_vector->rx.ring->queue_index);
4844 		else
4845 			sprintf(q_vector->name, "%s-unused", netdev->name);
4846 
4847 		err = request_irq(adapter->msix_entries[vector].vector,
4848 				  igc_msix_ring, 0, q_vector->name,
4849 				  q_vector);
4850 		if (err)
4851 			goto err_free;
4852 	}
4853 
4854 	igc_configure_msix(adapter);
4855 	return 0;
4856 
4857 err_free:
4858 	/* free already assigned IRQs */
4859 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4860 
4861 	vector--;
4862 	for (i = 0; i < vector; i++) {
4863 		free_irq(adapter->msix_entries[free_vector++].vector,
4864 			 adapter->q_vector[i]);
4865 	}
4866 err_out:
4867 	return err;
4868 }
4869 
4870 /**
4871  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4872  * @adapter: Pointer to adapter structure
4873  *
4874  * This function resets the device so that it has 0 rx queues, tx queues, and
4875  * MSI-X interrupts allocated.
4876  */
4877 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4878 {
4879 	igc_free_q_vectors(adapter);
4880 	igc_reset_interrupt_capability(adapter);
4881 }
4882 
4883 /* Need to wait a few seconds after link up to get diagnostic information from
4884  * the phy
4885  */
4886 static void igc_update_phy_info(struct timer_list *t)
4887 {
4888 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4889 
4890 	igc_get_phy_info(&adapter->hw);
4891 }
4892 
4893 /**
4894  * igc_has_link - check shared code for link and determine up/down
4895  * @adapter: pointer to driver private info
4896  */
4897 bool igc_has_link(struct igc_adapter *adapter)
4898 {
4899 	struct igc_hw *hw = &adapter->hw;
4900 	bool link_active = false;
4901 
4902 	/* get_link_status is set on LSC (link status) interrupt or
4903 	 * rx sequence error interrupt.  get_link_status will stay
4904 	 * false until the igc_check_for_link establishes link
4905 	 * for copper adapters ONLY
4906 	 */
4907 	switch (hw->phy.media_type) {
4908 	case igc_media_type_copper:
4909 		if (!hw->mac.get_link_status)
4910 			return true;
4911 		hw->mac.ops.check_for_link(hw);
4912 		link_active = !hw->mac.get_link_status;
4913 		break;
4914 	default:
4915 	case igc_media_type_unknown:
4916 		break;
4917 	}
4918 
4919 	if (hw->mac.type == igc_i225 &&
4920 	    hw->phy.id == I225_I_PHY_ID) {
4921 		if (!netif_carrier_ok(adapter->netdev)) {
4922 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4923 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4924 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4925 			adapter->link_check_timeout = jiffies;
4926 		}
4927 	}
4928 
4929 	return link_active;
4930 }
4931 
4932 /**
4933  * igc_watchdog - Timer Call-back
4934  * @t: timer for the watchdog
4935  */
4936 static void igc_watchdog(struct timer_list *t)
4937 {
4938 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4939 	/* Do the rest outside of interrupt context */
4940 	schedule_work(&adapter->watchdog_task);
4941 }
4942 
4943 static void igc_watchdog_task(struct work_struct *work)
4944 {
4945 	struct igc_adapter *adapter = container_of(work,
4946 						   struct igc_adapter,
4947 						   watchdog_task);
4948 	struct net_device *netdev = adapter->netdev;
4949 	struct igc_hw *hw = &adapter->hw;
4950 	struct igc_phy_info *phy = &hw->phy;
4951 	u16 phy_data, retry_count = 20;
4952 	u32 link;
4953 	int i;
4954 
4955 	link = igc_has_link(adapter);
4956 
4957 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4958 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4959 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4960 		else
4961 			link = false;
4962 	}
4963 
4964 	if (link) {
4965 		/* Cancel scheduled suspend requests. */
4966 		pm_runtime_resume(netdev->dev.parent);
4967 
4968 		if (!netif_carrier_ok(netdev)) {
4969 			u32 ctrl;
4970 
4971 			hw->mac.ops.get_speed_and_duplex(hw,
4972 							 &adapter->link_speed,
4973 							 &adapter->link_duplex);
4974 
4975 			ctrl = rd32(IGC_CTRL);
4976 			/* Link status message must follow this format */
4977 			netdev_info(netdev,
4978 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4979 				    adapter->link_speed,
4980 				    adapter->link_duplex == FULL_DUPLEX ?
4981 				    "Full" : "Half",
4982 				    (ctrl & IGC_CTRL_TFCE) &&
4983 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4984 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4985 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4986 
4987 			/* disable EEE if enabled */
4988 			if ((adapter->flags & IGC_FLAG_EEE) &&
4989 			    adapter->link_duplex == HALF_DUPLEX) {
4990 				netdev_info(netdev,
4991 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4992 				adapter->hw.dev_spec._base.eee_enable = false;
4993 				adapter->flags &= ~IGC_FLAG_EEE;
4994 			}
4995 
4996 			/* check if SmartSpeed worked */
4997 			igc_check_downshift(hw);
4998 			if (phy->speed_downgraded)
4999 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5000 
5001 			/* adjust timeout factor according to speed/duplex */
5002 			adapter->tx_timeout_factor = 1;
5003 			switch (adapter->link_speed) {
5004 			case SPEED_10:
5005 				adapter->tx_timeout_factor = 14;
5006 				break;
5007 			case SPEED_100:
5008 				/* maybe add some timeout factor ? */
5009 				break;
5010 			}
5011 
5012 			if (adapter->link_speed != SPEED_1000)
5013 				goto no_wait;
5014 
5015 			/* wait for Remote receiver status OK */
5016 retry_read_status:
5017 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5018 					      &phy_data)) {
5019 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5020 				    retry_count) {
5021 					msleep(100);
5022 					retry_count--;
5023 					goto retry_read_status;
5024 				} else if (!retry_count) {
5025 					netdev_err(netdev, "exceed max 2 second\n");
5026 				}
5027 			} else {
5028 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5029 			}
5030 no_wait:
5031 			netif_carrier_on(netdev);
5032 
5033 			/* link state has changed, schedule phy info update */
5034 			if (!test_bit(__IGC_DOWN, &adapter->state))
5035 				mod_timer(&adapter->phy_info_timer,
5036 					  round_jiffies(jiffies + 2 * HZ));
5037 		}
5038 	} else {
5039 		if (netif_carrier_ok(netdev)) {
5040 			adapter->link_speed = 0;
5041 			adapter->link_duplex = 0;
5042 
5043 			/* Links status message must follow this format */
5044 			netdev_info(netdev, "NIC Link is Down\n");
5045 			netif_carrier_off(netdev);
5046 
5047 			/* link state has changed, schedule phy info update */
5048 			if (!test_bit(__IGC_DOWN, &adapter->state))
5049 				mod_timer(&adapter->phy_info_timer,
5050 					  round_jiffies(jiffies + 2 * HZ));
5051 
5052 			/* link is down, time to check for alternate media */
5053 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5054 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5055 					schedule_work(&adapter->reset_task);
5056 					/* return immediately */
5057 					return;
5058 				}
5059 			}
5060 			pm_schedule_suspend(netdev->dev.parent,
5061 					    MSEC_PER_SEC * 5);
5062 
5063 		/* also check for alternate media here */
5064 		} else if (!netif_carrier_ok(netdev) &&
5065 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5066 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5067 				schedule_work(&adapter->reset_task);
5068 				/* return immediately */
5069 				return;
5070 			}
5071 		}
5072 	}
5073 
5074 	spin_lock(&adapter->stats64_lock);
5075 	igc_update_stats(adapter);
5076 	spin_unlock(&adapter->stats64_lock);
5077 
5078 	for (i = 0; i < adapter->num_tx_queues; i++) {
5079 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5080 
5081 		if (!netif_carrier_ok(netdev)) {
5082 			/* We've lost link, so the controller stops DMA,
5083 			 * but we've got queued Tx work that's never going
5084 			 * to get done, so reset controller to flush Tx.
5085 			 * (Do the reset outside of interrupt context).
5086 			 */
5087 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5088 				adapter->tx_timeout_count++;
5089 				schedule_work(&adapter->reset_task);
5090 				/* return immediately since reset is imminent */
5091 				return;
5092 			}
5093 		}
5094 
5095 		/* Force detection of hung controller every watchdog period */
5096 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5097 	}
5098 
5099 	/* Cause software interrupt to ensure Rx ring is cleaned */
5100 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5101 		u32 eics = 0;
5102 
5103 		for (i = 0; i < adapter->num_q_vectors; i++)
5104 			eics |= adapter->q_vector[i]->eims_value;
5105 		wr32(IGC_EICS, eics);
5106 	} else {
5107 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5108 	}
5109 
5110 	igc_ptp_tx_hang(adapter);
5111 
5112 	/* Reset the timer */
5113 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5114 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5115 			mod_timer(&adapter->watchdog_timer,
5116 				  round_jiffies(jiffies +  HZ));
5117 		else
5118 			mod_timer(&adapter->watchdog_timer,
5119 				  round_jiffies(jiffies + 2 * HZ));
5120 	}
5121 }
5122 
5123 /**
5124  * igc_intr_msi - Interrupt Handler
5125  * @irq: interrupt number
5126  * @data: pointer to a network interface device structure
5127  */
5128 static irqreturn_t igc_intr_msi(int irq, void *data)
5129 {
5130 	struct igc_adapter *adapter = data;
5131 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5132 	struct igc_hw *hw = &adapter->hw;
5133 	/* read ICR disables interrupts using IAM */
5134 	u32 icr = rd32(IGC_ICR);
5135 
5136 	igc_write_itr(q_vector);
5137 
5138 	if (icr & IGC_ICR_DRSTA)
5139 		schedule_work(&adapter->reset_task);
5140 
5141 	if (icr & IGC_ICR_DOUTSYNC) {
5142 		/* HW is reporting DMA is out of sync */
5143 		adapter->stats.doosync++;
5144 	}
5145 
5146 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5147 		hw->mac.get_link_status = true;
5148 		if (!test_bit(__IGC_DOWN, &adapter->state))
5149 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5150 	}
5151 
5152 	napi_schedule(&q_vector->napi);
5153 
5154 	return IRQ_HANDLED;
5155 }
5156 
5157 /**
5158  * igc_intr - Legacy Interrupt Handler
5159  * @irq: interrupt number
5160  * @data: pointer to a network interface device structure
5161  */
5162 static irqreturn_t igc_intr(int irq, void *data)
5163 {
5164 	struct igc_adapter *adapter = data;
5165 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5166 	struct igc_hw *hw = &adapter->hw;
5167 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5168 	 * need for the IMC write
5169 	 */
5170 	u32 icr = rd32(IGC_ICR);
5171 
5172 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5173 	 * not set, then the adapter didn't send an interrupt
5174 	 */
5175 	if (!(icr & IGC_ICR_INT_ASSERTED))
5176 		return IRQ_NONE;
5177 
5178 	igc_write_itr(q_vector);
5179 
5180 	if (icr & IGC_ICR_DRSTA)
5181 		schedule_work(&adapter->reset_task);
5182 
5183 	if (icr & IGC_ICR_DOUTSYNC) {
5184 		/* HW is reporting DMA is out of sync */
5185 		adapter->stats.doosync++;
5186 	}
5187 
5188 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5189 		hw->mac.get_link_status = true;
5190 		/* guard against interrupt when we're going down */
5191 		if (!test_bit(__IGC_DOWN, &adapter->state))
5192 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5193 	}
5194 
5195 	napi_schedule(&q_vector->napi);
5196 
5197 	return IRQ_HANDLED;
5198 }
5199 
5200 static void igc_free_irq(struct igc_adapter *adapter)
5201 {
5202 	if (adapter->msix_entries) {
5203 		int vector = 0, i;
5204 
5205 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5206 
5207 		for (i = 0; i < adapter->num_q_vectors; i++)
5208 			free_irq(adapter->msix_entries[vector++].vector,
5209 				 adapter->q_vector[i]);
5210 	} else {
5211 		free_irq(adapter->pdev->irq, adapter);
5212 	}
5213 }
5214 
5215 /**
5216  * igc_request_irq - initialize interrupts
5217  * @adapter: Pointer to adapter structure
5218  *
5219  * Attempts to configure interrupts using the best available
5220  * capabilities of the hardware and kernel.
5221  */
5222 static int igc_request_irq(struct igc_adapter *adapter)
5223 {
5224 	struct net_device *netdev = adapter->netdev;
5225 	struct pci_dev *pdev = adapter->pdev;
5226 	int err = 0;
5227 
5228 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5229 		err = igc_request_msix(adapter);
5230 		if (!err)
5231 			goto request_done;
5232 		/* fall back to MSI */
5233 		igc_free_all_tx_resources(adapter);
5234 		igc_free_all_rx_resources(adapter);
5235 
5236 		igc_clear_interrupt_scheme(adapter);
5237 		err = igc_init_interrupt_scheme(adapter, false);
5238 		if (err)
5239 			goto request_done;
5240 		igc_setup_all_tx_resources(adapter);
5241 		igc_setup_all_rx_resources(adapter);
5242 		igc_configure(adapter);
5243 	}
5244 
5245 	igc_assign_vector(adapter->q_vector[0], 0);
5246 
5247 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5248 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5249 				  netdev->name, adapter);
5250 		if (!err)
5251 			goto request_done;
5252 
5253 		/* fall back to legacy interrupts */
5254 		igc_reset_interrupt_capability(adapter);
5255 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5256 	}
5257 
5258 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5259 			  netdev->name, adapter);
5260 
5261 	if (err)
5262 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5263 
5264 request_done:
5265 	return err;
5266 }
5267 
5268 /**
5269  * __igc_open - Called when a network interface is made active
5270  * @netdev: network interface device structure
5271  * @resuming: boolean indicating if the device is resuming
5272  *
5273  * Returns 0 on success, negative value on failure
5274  *
5275  * The open entry point is called when a network interface is made
5276  * active by the system (IFF_UP).  At this point all resources needed
5277  * for transmit and receive operations are allocated, the interrupt
5278  * handler is registered with the OS, the watchdog timer is started,
5279  * and the stack is notified that the interface is ready.
5280  */
5281 static int __igc_open(struct net_device *netdev, bool resuming)
5282 {
5283 	struct igc_adapter *adapter = netdev_priv(netdev);
5284 	struct pci_dev *pdev = adapter->pdev;
5285 	struct igc_hw *hw = &adapter->hw;
5286 	int err = 0;
5287 	int i = 0;
5288 
5289 	/* disallow open during test */
5290 
5291 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5292 		WARN_ON(resuming);
5293 		return -EBUSY;
5294 	}
5295 
5296 	if (!resuming)
5297 		pm_runtime_get_sync(&pdev->dev);
5298 
5299 	netif_carrier_off(netdev);
5300 
5301 	/* allocate transmit descriptors */
5302 	err = igc_setup_all_tx_resources(adapter);
5303 	if (err)
5304 		goto err_setup_tx;
5305 
5306 	/* allocate receive descriptors */
5307 	err = igc_setup_all_rx_resources(adapter);
5308 	if (err)
5309 		goto err_setup_rx;
5310 
5311 	igc_power_up_link(adapter);
5312 
5313 	igc_configure(adapter);
5314 
5315 	err = igc_request_irq(adapter);
5316 	if (err)
5317 		goto err_req_irq;
5318 
5319 	/* Notify the stack of the actual queue counts. */
5320 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5321 	if (err)
5322 		goto err_set_queues;
5323 
5324 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5325 	if (err)
5326 		goto err_set_queues;
5327 
5328 	clear_bit(__IGC_DOWN, &adapter->state);
5329 
5330 	for (i = 0; i < adapter->num_q_vectors; i++)
5331 		napi_enable(&adapter->q_vector[i]->napi);
5332 
5333 	/* Clear any pending interrupts. */
5334 	rd32(IGC_ICR);
5335 	igc_irq_enable(adapter);
5336 
5337 	if (!resuming)
5338 		pm_runtime_put(&pdev->dev);
5339 
5340 	netif_tx_start_all_queues(netdev);
5341 
5342 	/* start the watchdog. */
5343 	hw->mac.get_link_status = true;
5344 	schedule_work(&adapter->watchdog_task);
5345 
5346 	return IGC_SUCCESS;
5347 
5348 err_set_queues:
5349 	igc_free_irq(adapter);
5350 err_req_irq:
5351 	igc_release_hw_control(adapter);
5352 	igc_power_down_phy_copper_base(&adapter->hw);
5353 	igc_free_all_rx_resources(adapter);
5354 err_setup_rx:
5355 	igc_free_all_tx_resources(adapter);
5356 err_setup_tx:
5357 	igc_reset(adapter);
5358 	if (!resuming)
5359 		pm_runtime_put(&pdev->dev);
5360 
5361 	return err;
5362 }
5363 
5364 int igc_open(struct net_device *netdev)
5365 {
5366 	return __igc_open(netdev, false);
5367 }
5368 
5369 /**
5370  * __igc_close - Disables a network interface
5371  * @netdev: network interface device structure
5372  * @suspending: boolean indicating the device is suspending
5373  *
5374  * Returns 0, this is not allowed to fail
5375  *
5376  * The close entry point is called when an interface is de-activated
5377  * by the OS.  The hardware is still under the driver's control, but
5378  * needs to be disabled.  A global MAC reset is issued to stop the
5379  * hardware, and all transmit and receive resources are freed.
5380  */
5381 static int __igc_close(struct net_device *netdev, bool suspending)
5382 {
5383 	struct igc_adapter *adapter = netdev_priv(netdev);
5384 	struct pci_dev *pdev = adapter->pdev;
5385 
5386 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5387 
5388 	if (!suspending)
5389 		pm_runtime_get_sync(&pdev->dev);
5390 
5391 	igc_down(adapter);
5392 
5393 	igc_release_hw_control(adapter);
5394 
5395 	igc_free_irq(adapter);
5396 
5397 	igc_free_all_tx_resources(adapter);
5398 	igc_free_all_rx_resources(adapter);
5399 
5400 	if (!suspending)
5401 		pm_runtime_put_sync(&pdev->dev);
5402 
5403 	return 0;
5404 }
5405 
5406 int igc_close(struct net_device *netdev)
5407 {
5408 	if (netif_device_present(netdev) || netdev->dismantle)
5409 		return __igc_close(netdev, false);
5410 	return 0;
5411 }
5412 
5413 /**
5414  * igc_ioctl - Access the hwtstamp interface
5415  * @netdev: network interface device structure
5416  * @ifr: interface request data
5417  * @cmd: ioctl command
5418  **/
5419 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5420 {
5421 	switch (cmd) {
5422 	case SIOCGHWTSTAMP:
5423 		return igc_ptp_get_ts_config(netdev, ifr);
5424 	case SIOCSHWTSTAMP:
5425 		return igc_ptp_set_ts_config(netdev, ifr);
5426 	default:
5427 		return -EOPNOTSUPP;
5428 	}
5429 }
5430 
5431 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5432 				      bool enable)
5433 {
5434 	struct igc_ring *ring;
5435 	int i;
5436 
5437 	if (queue < 0 || queue >= adapter->num_tx_queues)
5438 		return -EINVAL;
5439 
5440 	ring = adapter->tx_ring[queue];
5441 	ring->launchtime_enable = enable;
5442 
5443 	if (adapter->base_time)
5444 		return 0;
5445 
5446 	adapter->cycle_time = NSEC_PER_SEC;
5447 
5448 	for (i = 0; i < adapter->num_tx_queues; i++) {
5449 		ring = adapter->tx_ring[i];
5450 		ring->start_time = 0;
5451 		ring->end_time = NSEC_PER_SEC;
5452 	}
5453 
5454 	return 0;
5455 }
5456 
5457 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5458 {
5459 	struct timespec64 b;
5460 
5461 	b = ktime_to_timespec64(base_time);
5462 
5463 	return timespec64_compare(now, &b) > 0;
5464 }
5465 
5466 static bool validate_schedule(struct igc_adapter *adapter,
5467 			      const struct tc_taprio_qopt_offload *qopt)
5468 {
5469 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
5470 	struct timespec64 now;
5471 	size_t n;
5472 
5473 	if (qopt->cycle_time_extension)
5474 		return false;
5475 
5476 	igc_ptp_read(adapter, &now);
5477 
5478 	/* If we program the controller's BASET registers with a time
5479 	 * in the future, it will hold all the packets until that
5480 	 * time, causing a lot of TX Hangs, so to avoid that, we
5481 	 * reject schedules that would start in the future.
5482 	 */
5483 	if (!is_base_time_past(qopt->base_time, &now))
5484 		return false;
5485 
5486 	for (n = 0; n < qopt->num_entries; n++) {
5487 		const struct tc_taprio_sched_entry *e;
5488 		int i;
5489 
5490 		e = &qopt->entries[n];
5491 
5492 		/* i225 only supports "global" frame preemption
5493 		 * settings.
5494 		 */
5495 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
5496 			return false;
5497 
5498 		for (i = 0; i < adapter->num_tx_queues; i++) {
5499 			if (e->gate_mask & BIT(i))
5500 				queue_uses[i]++;
5501 
5502 			if (queue_uses[i] > 1)
5503 				return false;
5504 		}
5505 	}
5506 
5507 	return true;
5508 }
5509 
5510 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5511 				     struct tc_etf_qopt_offload *qopt)
5512 {
5513 	struct igc_hw *hw = &adapter->hw;
5514 	int err;
5515 
5516 	if (hw->mac.type != igc_i225)
5517 		return -EOPNOTSUPP;
5518 
5519 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5520 	if (err)
5521 		return err;
5522 
5523 	return igc_tsn_offload_apply(adapter);
5524 }
5525 
5526 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5527 				 struct tc_taprio_qopt_offload *qopt)
5528 {
5529 	u32 start_time = 0, end_time = 0;
5530 	size_t n;
5531 
5532 	if (!qopt->enable) {
5533 		adapter->base_time = 0;
5534 		return 0;
5535 	}
5536 
5537 	if (adapter->base_time)
5538 		return -EALREADY;
5539 
5540 	if (!validate_schedule(adapter, qopt))
5541 		return -EINVAL;
5542 
5543 	adapter->cycle_time = qopt->cycle_time;
5544 	adapter->base_time = qopt->base_time;
5545 
5546 	/* FIXME: be a little smarter about cases when the gate for a
5547 	 * queue stays open for more than one entry.
5548 	 */
5549 	for (n = 0; n < qopt->num_entries; n++) {
5550 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
5551 		int i;
5552 
5553 		end_time += e->interval;
5554 
5555 		for (i = 0; i < adapter->num_tx_queues; i++) {
5556 			struct igc_ring *ring = adapter->tx_ring[i];
5557 
5558 			if (!(e->gate_mask & BIT(i)))
5559 				continue;
5560 
5561 			ring->start_time = start_time;
5562 			ring->end_time = end_time;
5563 		}
5564 
5565 		start_time += e->interval;
5566 	}
5567 
5568 	return 0;
5569 }
5570 
5571 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5572 					 struct tc_taprio_qopt_offload *qopt)
5573 {
5574 	struct igc_hw *hw = &adapter->hw;
5575 	int err;
5576 
5577 	if (hw->mac.type != igc_i225)
5578 		return -EOPNOTSUPP;
5579 
5580 	err = igc_save_qbv_schedule(adapter, qopt);
5581 	if (err)
5582 		return err;
5583 
5584 	return igc_tsn_offload_apply(adapter);
5585 }
5586 
5587 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5588 			void *type_data)
5589 {
5590 	struct igc_adapter *adapter = netdev_priv(dev);
5591 
5592 	switch (type) {
5593 	case TC_SETUP_QDISC_TAPRIO:
5594 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5595 
5596 	case TC_SETUP_QDISC_ETF:
5597 		return igc_tsn_enable_launchtime(adapter, type_data);
5598 
5599 	default:
5600 		return -EOPNOTSUPP;
5601 	}
5602 }
5603 
5604 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5605 {
5606 	struct igc_adapter *adapter = netdev_priv(dev);
5607 
5608 	switch (bpf->command) {
5609 	case XDP_SETUP_PROG:
5610 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5611 	case XDP_SETUP_XSK_POOL:
5612 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
5613 					  bpf->xsk.queue_id);
5614 	default:
5615 		return -EOPNOTSUPP;
5616 	}
5617 }
5618 
5619 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5620 			struct xdp_frame **frames, u32 flags)
5621 {
5622 	struct igc_adapter *adapter = netdev_priv(dev);
5623 	int cpu = smp_processor_id();
5624 	struct netdev_queue *nq;
5625 	struct igc_ring *ring;
5626 	int i, drops;
5627 
5628 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5629 		return -ENETDOWN;
5630 
5631 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5632 		return -EINVAL;
5633 
5634 	ring = igc_xdp_get_tx_ring(adapter, cpu);
5635 	nq = txring_txq(ring);
5636 
5637 	__netif_tx_lock(nq, cpu);
5638 
5639 	drops = 0;
5640 	for (i = 0; i < num_frames; i++) {
5641 		int err;
5642 		struct xdp_frame *xdpf = frames[i];
5643 
5644 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
5645 		if (err) {
5646 			xdp_return_frame_rx_napi(xdpf);
5647 			drops++;
5648 		}
5649 	}
5650 
5651 	if (flags & XDP_XMIT_FLUSH)
5652 		igc_flush_tx_descriptors(ring);
5653 
5654 	__netif_tx_unlock(nq);
5655 
5656 	return num_frames - drops;
5657 }
5658 
5659 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
5660 					struct igc_q_vector *q_vector)
5661 {
5662 	struct igc_hw *hw = &adapter->hw;
5663 	u32 eics = 0;
5664 
5665 	eics |= q_vector->eims_value;
5666 	wr32(IGC_EICS, eics);
5667 }
5668 
5669 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
5670 {
5671 	struct igc_adapter *adapter = netdev_priv(dev);
5672 	struct igc_q_vector *q_vector;
5673 	struct igc_ring *ring;
5674 
5675 	if (test_bit(__IGC_DOWN, &adapter->state))
5676 		return -ENETDOWN;
5677 
5678 	if (!igc_xdp_is_enabled(adapter))
5679 		return -ENXIO;
5680 
5681 	if (queue_id >= adapter->num_rx_queues)
5682 		return -EINVAL;
5683 
5684 	ring = adapter->rx_ring[queue_id];
5685 
5686 	if (!ring->xsk_pool)
5687 		return -ENXIO;
5688 
5689 	q_vector = adapter->q_vector[queue_id];
5690 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
5691 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
5692 
5693 	return 0;
5694 }
5695 
5696 static const struct net_device_ops igc_netdev_ops = {
5697 	.ndo_open		= igc_open,
5698 	.ndo_stop		= igc_close,
5699 	.ndo_start_xmit		= igc_xmit_frame,
5700 	.ndo_set_rx_mode	= igc_set_rx_mode,
5701 	.ndo_set_mac_address	= igc_set_mac,
5702 	.ndo_change_mtu		= igc_change_mtu,
5703 	.ndo_get_stats64	= igc_get_stats64,
5704 	.ndo_fix_features	= igc_fix_features,
5705 	.ndo_set_features	= igc_set_features,
5706 	.ndo_features_check	= igc_features_check,
5707 	.ndo_do_ioctl		= igc_ioctl,
5708 	.ndo_setup_tc		= igc_setup_tc,
5709 	.ndo_bpf		= igc_bpf,
5710 	.ndo_xdp_xmit		= igc_xdp_xmit,
5711 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
5712 };
5713 
5714 /* PCIe configuration access */
5715 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5716 {
5717 	struct igc_adapter *adapter = hw->back;
5718 
5719 	pci_read_config_word(adapter->pdev, reg, value);
5720 }
5721 
5722 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5723 {
5724 	struct igc_adapter *adapter = hw->back;
5725 
5726 	pci_write_config_word(adapter->pdev, reg, *value);
5727 }
5728 
5729 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5730 {
5731 	struct igc_adapter *adapter = hw->back;
5732 
5733 	if (!pci_is_pcie(adapter->pdev))
5734 		return -IGC_ERR_CONFIG;
5735 
5736 	pcie_capability_read_word(adapter->pdev, reg, value);
5737 
5738 	return IGC_SUCCESS;
5739 }
5740 
5741 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5742 {
5743 	struct igc_adapter *adapter = hw->back;
5744 
5745 	if (!pci_is_pcie(adapter->pdev))
5746 		return -IGC_ERR_CONFIG;
5747 
5748 	pcie_capability_write_word(adapter->pdev, reg, *value);
5749 
5750 	return IGC_SUCCESS;
5751 }
5752 
5753 u32 igc_rd32(struct igc_hw *hw, u32 reg)
5754 {
5755 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5756 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5757 	u32 value = 0;
5758 
5759 	value = readl(&hw_addr[reg]);
5760 
5761 	/* reads should not return all F's */
5762 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5763 		struct net_device *netdev = igc->netdev;
5764 
5765 		hw->hw_addr = NULL;
5766 		netif_device_detach(netdev);
5767 		netdev_err(netdev, "PCIe link lost, device now detached\n");
5768 		WARN(pci_device_is_present(igc->pdev),
5769 		     "igc: Failed to read reg 0x%x!\n", reg);
5770 	}
5771 
5772 	return value;
5773 }
5774 
5775 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5776 {
5777 	struct igc_mac_info *mac = &adapter->hw.mac;
5778 
5779 	mac->autoneg = false;
5780 
5781 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5782 	 * for the switch() below to work
5783 	 */
5784 	if ((spd & 1) || (dplx & ~1))
5785 		goto err_inval;
5786 
5787 	switch (spd + dplx) {
5788 	case SPEED_10 + DUPLEX_HALF:
5789 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
5790 		break;
5791 	case SPEED_10 + DUPLEX_FULL:
5792 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
5793 		break;
5794 	case SPEED_100 + DUPLEX_HALF:
5795 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
5796 		break;
5797 	case SPEED_100 + DUPLEX_FULL:
5798 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
5799 		break;
5800 	case SPEED_1000 + DUPLEX_FULL:
5801 		mac->autoneg = true;
5802 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5803 		break;
5804 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5805 		goto err_inval;
5806 	case SPEED_2500 + DUPLEX_FULL:
5807 		mac->autoneg = true;
5808 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5809 		break;
5810 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
5811 	default:
5812 		goto err_inval;
5813 	}
5814 
5815 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5816 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
5817 
5818 	return 0;
5819 
5820 err_inval:
5821 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5822 	return -EINVAL;
5823 }
5824 
5825 /**
5826  * igc_probe - Device Initialization Routine
5827  * @pdev: PCI device information struct
5828  * @ent: entry in igc_pci_tbl
5829  *
5830  * Returns 0 on success, negative on failure
5831  *
5832  * igc_probe initializes an adapter identified by a pci_dev structure.
5833  * The OS initialization, configuring the adapter private structure,
5834  * and a hardware reset occur.
5835  */
5836 static int igc_probe(struct pci_dev *pdev,
5837 		     const struct pci_device_id *ent)
5838 {
5839 	struct igc_adapter *adapter;
5840 	struct net_device *netdev;
5841 	struct igc_hw *hw;
5842 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5843 	int err, pci_using_dac;
5844 
5845 	err = pci_enable_device_mem(pdev);
5846 	if (err)
5847 		return err;
5848 
5849 	pci_using_dac = 0;
5850 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5851 	if (!err) {
5852 		pci_using_dac = 1;
5853 	} else {
5854 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5855 		if (err) {
5856 			dev_err(&pdev->dev,
5857 				"No usable DMA configuration, aborting\n");
5858 			goto err_dma;
5859 		}
5860 	}
5861 
5862 	err = pci_request_mem_regions(pdev, igc_driver_name);
5863 	if (err)
5864 		goto err_pci_reg;
5865 
5866 	pci_enable_pcie_error_reporting(pdev);
5867 
5868 	pci_set_master(pdev);
5869 
5870 	err = -ENOMEM;
5871 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5872 				   IGC_MAX_TX_QUEUES);
5873 
5874 	if (!netdev)
5875 		goto err_alloc_etherdev;
5876 
5877 	SET_NETDEV_DEV(netdev, &pdev->dev);
5878 
5879 	pci_set_drvdata(pdev, netdev);
5880 	adapter = netdev_priv(netdev);
5881 	adapter->netdev = netdev;
5882 	adapter->pdev = pdev;
5883 	hw = &adapter->hw;
5884 	hw->back = adapter;
5885 	adapter->port_num = hw->bus.func;
5886 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5887 
5888 	err = pci_save_state(pdev);
5889 	if (err)
5890 		goto err_ioremap;
5891 
5892 	err = -EIO;
5893 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5894 				   pci_resource_len(pdev, 0));
5895 	if (!adapter->io_addr)
5896 		goto err_ioremap;
5897 
5898 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5899 	hw->hw_addr = adapter->io_addr;
5900 
5901 	netdev->netdev_ops = &igc_netdev_ops;
5902 	igc_ethtool_set_ops(netdev);
5903 	netdev->watchdog_timeo = 5 * HZ;
5904 
5905 	netdev->mem_start = pci_resource_start(pdev, 0);
5906 	netdev->mem_end = pci_resource_end(pdev, 0);
5907 
5908 	/* PCI config space info */
5909 	hw->vendor_id = pdev->vendor;
5910 	hw->device_id = pdev->device;
5911 	hw->revision_id = pdev->revision;
5912 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5913 	hw->subsystem_device_id = pdev->subsystem_device;
5914 
5915 	/* Copy the default MAC and PHY function pointers */
5916 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5917 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5918 
5919 	/* Initialize skew-specific constants */
5920 	err = ei->get_invariants(hw);
5921 	if (err)
5922 		goto err_sw_init;
5923 
5924 	/* Add supported features to the features list*/
5925 	netdev->features |= NETIF_F_SG;
5926 	netdev->features |= NETIF_F_TSO;
5927 	netdev->features |= NETIF_F_TSO6;
5928 	netdev->features |= NETIF_F_TSO_ECN;
5929 	netdev->features |= NETIF_F_RXCSUM;
5930 	netdev->features |= NETIF_F_HW_CSUM;
5931 	netdev->features |= NETIF_F_SCTP_CRC;
5932 	netdev->features |= NETIF_F_HW_TC;
5933 
5934 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5935 				  NETIF_F_GSO_GRE_CSUM | \
5936 				  NETIF_F_GSO_IPXIP4 | \
5937 				  NETIF_F_GSO_IPXIP6 | \
5938 				  NETIF_F_GSO_UDP_TUNNEL | \
5939 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5940 
5941 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5942 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5943 
5944 	/* setup the private structure */
5945 	err = igc_sw_init(adapter);
5946 	if (err)
5947 		goto err_sw_init;
5948 
5949 	/* copy netdev features into list of user selectable features */
5950 	netdev->hw_features |= NETIF_F_NTUPLE;
5951 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
5952 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
5953 	netdev->hw_features |= netdev->features;
5954 
5955 	if (pci_using_dac)
5956 		netdev->features |= NETIF_F_HIGHDMA;
5957 
5958 	netdev->vlan_features |= netdev->features;
5959 
5960 	/* MTU range: 68 - 9216 */
5961 	netdev->min_mtu = ETH_MIN_MTU;
5962 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5963 
5964 	/* before reading the NVM, reset the controller to put the device in a
5965 	 * known good starting state
5966 	 */
5967 	hw->mac.ops.reset_hw(hw);
5968 
5969 	if (igc_get_flash_presence_i225(hw)) {
5970 		if (hw->nvm.ops.validate(hw) < 0) {
5971 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5972 			err = -EIO;
5973 			goto err_eeprom;
5974 		}
5975 	}
5976 
5977 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5978 		/* copy the MAC address out of the NVM */
5979 		if (hw->mac.ops.read_mac_addr(hw))
5980 			dev_err(&pdev->dev, "NVM Read Error\n");
5981 	}
5982 
5983 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5984 
5985 	if (!is_valid_ether_addr(netdev->dev_addr)) {
5986 		dev_err(&pdev->dev, "Invalid MAC Address\n");
5987 		err = -EIO;
5988 		goto err_eeprom;
5989 	}
5990 
5991 	/* configure RXPBSIZE and TXPBSIZE */
5992 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5993 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5994 
5995 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5996 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5997 
5998 	INIT_WORK(&adapter->reset_task, igc_reset_task);
5999 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6000 
6001 	/* Initialize link properties that are user-changeable */
6002 	adapter->fc_autoneg = true;
6003 	hw->mac.autoneg = true;
6004 	hw->phy.autoneg_advertised = 0xaf;
6005 
6006 	hw->fc.requested_mode = igc_fc_default;
6007 	hw->fc.current_mode = igc_fc_default;
6008 
6009 	/* By default, support wake on port A */
6010 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6011 
6012 	/* initialize the wol settings based on the eeprom settings */
6013 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6014 		adapter->wol |= IGC_WUFC_MAG;
6015 
6016 	device_set_wakeup_enable(&adapter->pdev->dev,
6017 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6018 
6019 	igc_ptp_init(adapter);
6020 
6021 	/* reset the hardware with the new settings */
6022 	igc_reset(adapter);
6023 
6024 	/* let the f/w know that the h/w is now under the control of the
6025 	 * driver.
6026 	 */
6027 	igc_get_hw_control(adapter);
6028 
6029 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6030 	err = register_netdev(netdev);
6031 	if (err)
6032 		goto err_register;
6033 
6034 	 /* carrier off reporting is important to ethtool even BEFORE open */
6035 	netif_carrier_off(netdev);
6036 
6037 	/* Check if Media Autosense is enabled */
6038 	adapter->ei = *ei;
6039 
6040 	/* print pcie link status and MAC address */
6041 	pcie_print_link_status(pdev);
6042 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6043 
6044 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6045 	/* Disable EEE for internal PHY devices */
6046 	hw->dev_spec._base.eee_enable = false;
6047 	adapter->flags &= ~IGC_FLAG_EEE;
6048 	igc_set_eee_i225(hw, false, false, false);
6049 
6050 	pm_runtime_put_noidle(&pdev->dev);
6051 
6052 	return 0;
6053 
6054 err_register:
6055 	igc_release_hw_control(adapter);
6056 err_eeprom:
6057 	if (!igc_check_reset_block(hw))
6058 		igc_reset_phy(hw);
6059 err_sw_init:
6060 	igc_clear_interrupt_scheme(adapter);
6061 	iounmap(adapter->io_addr);
6062 err_ioremap:
6063 	free_netdev(netdev);
6064 err_alloc_etherdev:
6065 	pci_disable_pcie_error_reporting(pdev);
6066 	pci_release_mem_regions(pdev);
6067 err_pci_reg:
6068 err_dma:
6069 	pci_disable_device(pdev);
6070 	return err;
6071 }
6072 
6073 /**
6074  * igc_remove - Device Removal Routine
6075  * @pdev: PCI device information struct
6076  *
6077  * igc_remove is called by the PCI subsystem to alert the driver
6078  * that it should release a PCI device.  This could be caused by a
6079  * Hot-Plug event, or because the driver is going to be removed from
6080  * memory.
6081  */
6082 static void igc_remove(struct pci_dev *pdev)
6083 {
6084 	struct net_device *netdev = pci_get_drvdata(pdev);
6085 	struct igc_adapter *adapter = netdev_priv(netdev);
6086 
6087 	pm_runtime_get_noresume(&pdev->dev);
6088 
6089 	igc_flush_nfc_rules(adapter);
6090 
6091 	igc_ptp_stop(adapter);
6092 
6093 	set_bit(__IGC_DOWN, &adapter->state);
6094 
6095 	del_timer_sync(&adapter->watchdog_timer);
6096 	del_timer_sync(&adapter->phy_info_timer);
6097 
6098 	cancel_work_sync(&adapter->reset_task);
6099 	cancel_work_sync(&adapter->watchdog_task);
6100 
6101 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6102 	 * would have already happened in close and is redundant.
6103 	 */
6104 	igc_release_hw_control(adapter);
6105 	unregister_netdev(netdev);
6106 
6107 	igc_clear_interrupt_scheme(adapter);
6108 	pci_iounmap(pdev, adapter->io_addr);
6109 	pci_release_mem_regions(pdev);
6110 
6111 	free_netdev(netdev);
6112 
6113 	pci_disable_pcie_error_reporting(pdev);
6114 
6115 	pci_disable_device(pdev);
6116 }
6117 
6118 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6119 			  bool runtime)
6120 {
6121 	struct net_device *netdev = pci_get_drvdata(pdev);
6122 	struct igc_adapter *adapter = netdev_priv(netdev);
6123 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6124 	struct igc_hw *hw = &adapter->hw;
6125 	u32 ctrl, rctl, status;
6126 	bool wake;
6127 
6128 	rtnl_lock();
6129 	netif_device_detach(netdev);
6130 
6131 	if (netif_running(netdev))
6132 		__igc_close(netdev, true);
6133 
6134 	igc_ptp_suspend(adapter);
6135 
6136 	igc_clear_interrupt_scheme(adapter);
6137 	rtnl_unlock();
6138 
6139 	status = rd32(IGC_STATUS);
6140 	if (status & IGC_STATUS_LU)
6141 		wufc &= ~IGC_WUFC_LNKC;
6142 
6143 	if (wufc) {
6144 		igc_setup_rctl(adapter);
6145 		igc_set_rx_mode(netdev);
6146 
6147 		/* turn on all-multi mode if wake on multicast is enabled */
6148 		if (wufc & IGC_WUFC_MC) {
6149 			rctl = rd32(IGC_RCTL);
6150 			rctl |= IGC_RCTL_MPE;
6151 			wr32(IGC_RCTL, rctl);
6152 		}
6153 
6154 		ctrl = rd32(IGC_CTRL);
6155 		ctrl |= IGC_CTRL_ADVD3WUC;
6156 		wr32(IGC_CTRL, ctrl);
6157 
6158 		/* Allow time for pending master requests to run */
6159 		igc_disable_pcie_master(hw);
6160 
6161 		wr32(IGC_WUC, IGC_WUC_PME_EN);
6162 		wr32(IGC_WUFC, wufc);
6163 	} else {
6164 		wr32(IGC_WUC, 0);
6165 		wr32(IGC_WUFC, 0);
6166 	}
6167 
6168 	wake = wufc || adapter->en_mng_pt;
6169 	if (!wake)
6170 		igc_power_down_phy_copper_base(&adapter->hw);
6171 	else
6172 		igc_power_up_link(adapter);
6173 
6174 	if (enable_wake)
6175 		*enable_wake = wake;
6176 
6177 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6178 	 * would have already happened in close and is redundant.
6179 	 */
6180 	igc_release_hw_control(adapter);
6181 
6182 	pci_disable_device(pdev);
6183 
6184 	return 0;
6185 }
6186 
6187 #ifdef CONFIG_PM
6188 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6189 {
6190 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6191 }
6192 
6193 static void igc_deliver_wake_packet(struct net_device *netdev)
6194 {
6195 	struct igc_adapter *adapter = netdev_priv(netdev);
6196 	struct igc_hw *hw = &adapter->hw;
6197 	struct sk_buff *skb;
6198 	u32 wupl;
6199 
6200 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6201 
6202 	/* WUPM stores only the first 128 bytes of the wake packet.
6203 	 * Read the packet only if we have the whole thing.
6204 	 */
6205 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6206 		return;
6207 
6208 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6209 	if (!skb)
6210 		return;
6211 
6212 	skb_put(skb, wupl);
6213 
6214 	/* Ensure reads are 32-bit aligned */
6215 	wupl = roundup(wupl, 4);
6216 
6217 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6218 
6219 	skb->protocol = eth_type_trans(skb, netdev);
6220 	netif_rx(skb);
6221 }
6222 
6223 static int __maybe_unused igc_resume(struct device *dev)
6224 {
6225 	struct pci_dev *pdev = to_pci_dev(dev);
6226 	struct net_device *netdev = pci_get_drvdata(pdev);
6227 	struct igc_adapter *adapter = netdev_priv(netdev);
6228 	struct igc_hw *hw = &adapter->hw;
6229 	u32 err, val;
6230 
6231 	pci_set_power_state(pdev, PCI_D0);
6232 	pci_restore_state(pdev);
6233 	pci_save_state(pdev);
6234 
6235 	if (!pci_device_is_present(pdev))
6236 		return -ENODEV;
6237 	err = pci_enable_device_mem(pdev);
6238 	if (err) {
6239 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6240 		return err;
6241 	}
6242 	pci_set_master(pdev);
6243 
6244 	pci_enable_wake(pdev, PCI_D3hot, 0);
6245 	pci_enable_wake(pdev, PCI_D3cold, 0);
6246 
6247 	if (igc_init_interrupt_scheme(adapter, true)) {
6248 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6249 		return -ENOMEM;
6250 	}
6251 
6252 	igc_reset(adapter);
6253 
6254 	/* let the f/w know that the h/w is now under the control of the
6255 	 * driver.
6256 	 */
6257 	igc_get_hw_control(adapter);
6258 
6259 	val = rd32(IGC_WUS);
6260 	if (val & WAKE_PKT_WUS)
6261 		igc_deliver_wake_packet(netdev);
6262 
6263 	wr32(IGC_WUS, ~0);
6264 
6265 	rtnl_lock();
6266 	if (!err && netif_running(netdev))
6267 		err = __igc_open(netdev, true);
6268 
6269 	if (!err)
6270 		netif_device_attach(netdev);
6271 	rtnl_unlock();
6272 
6273 	return err;
6274 }
6275 
6276 static int __maybe_unused igc_runtime_resume(struct device *dev)
6277 {
6278 	return igc_resume(dev);
6279 }
6280 
6281 static int __maybe_unused igc_suspend(struct device *dev)
6282 {
6283 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6284 }
6285 
6286 static int __maybe_unused igc_runtime_idle(struct device *dev)
6287 {
6288 	struct net_device *netdev = dev_get_drvdata(dev);
6289 	struct igc_adapter *adapter = netdev_priv(netdev);
6290 
6291 	if (!igc_has_link(adapter))
6292 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6293 
6294 	return -EBUSY;
6295 }
6296 #endif /* CONFIG_PM */
6297 
6298 static void igc_shutdown(struct pci_dev *pdev)
6299 {
6300 	bool wake;
6301 
6302 	__igc_shutdown(pdev, &wake, 0);
6303 
6304 	if (system_state == SYSTEM_POWER_OFF) {
6305 		pci_wake_from_d3(pdev, wake);
6306 		pci_set_power_state(pdev, PCI_D3hot);
6307 	}
6308 }
6309 
6310 /**
6311  *  igc_io_error_detected - called when PCI error is detected
6312  *  @pdev: Pointer to PCI device
6313  *  @state: The current PCI connection state
6314  *
6315  *  This function is called after a PCI bus error affecting
6316  *  this device has been detected.
6317  **/
6318 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6319 					      pci_channel_state_t state)
6320 {
6321 	struct net_device *netdev = pci_get_drvdata(pdev);
6322 	struct igc_adapter *adapter = netdev_priv(netdev);
6323 
6324 	netif_device_detach(netdev);
6325 
6326 	if (state == pci_channel_io_perm_failure)
6327 		return PCI_ERS_RESULT_DISCONNECT;
6328 
6329 	if (netif_running(netdev))
6330 		igc_down(adapter);
6331 	pci_disable_device(pdev);
6332 
6333 	/* Request a slot reset. */
6334 	return PCI_ERS_RESULT_NEED_RESET;
6335 }
6336 
6337 /**
6338  *  igc_io_slot_reset - called after the PCI bus has been reset.
6339  *  @pdev: Pointer to PCI device
6340  *
6341  *  Restart the card from scratch, as if from a cold-boot. Implementation
6342  *  resembles the first-half of the igc_resume routine.
6343  **/
6344 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6345 {
6346 	struct net_device *netdev = pci_get_drvdata(pdev);
6347 	struct igc_adapter *adapter = netdev_priv(netdev);
6348 	struct igc_hw *hw = &adapter->hw;
6349 	pci_ers_result_t result;
6350 
6351 	if (pci_enable_device_mem(pdev)) {
6352 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6353 		result = PCI_ERS_RESULT_DISCONNECT;
6354 	} else {
6355 		pci_set_master(pdev);
6356 		pci_restore_state(pdev);
6357 		pci_save_state(pdev);
6358 
6359 		pci_enable_wake(pdev, PCI_D3hot, 0);
6360 		pci_enable_wake(pdev, PCI_D3cold, 0);
6361 
6362 		/* In case of PCI error, adapter loses its HW address
6363 		 * so we should re-assign it here.
6364 		 */
6365 		hw->hw_addr = adapter->io_addr;
6366 
6367 		igc_reset(adapter);
6368 		wr32(IGC_WUS, ~0);
6369 		result = PCI_ERS_RESULT_RECOVERED;
6370 	}
6371 
6372 	return result;
6373 }
6374 
6375 /**
6376  *  igc_io_resume - called when traffic can start to flow again.
6377  *  @pdev: Pointer to PCI device
6378  *
6379  *  This callback is called when the error recovery driver tells us that
6380  *  its OK to resume normal operation. Implementation resembles the
6381  *  second-half of the igc_resume routine.
6382  */
6383 static void igc_io_resume(struct pci_dev *pdev)
6384 {
6385 	struct net_device *netdev = pci_get_drvdata(pdev);
6386 	struct igc_adapter *adapter = netdev_priv(netdev);
6387 
6388 	rtnl_lock();
6389 	if (netif_running(netdev)) {
6390 		if (igc_open(netdev)) {
6391 			netdev_err(netdev, "igc_open failed after reset\n");
6392 			return;
6393 		}
6394 	}
6395 
6396 	netif_device_attach(netdev);
6397 
6398 	/* let the f/w know that the h/w is now under the control of the
6399 	 * driver.
6400 	 */
6401 	igc_get_hw_control(adapter);
6402 	rtnl_unlock();
6403 }
6404 
6405 static const struct pci_error_handlers igc_err_handler = {
6406 	.error_detected = igc_io_error_detected,
6407 	.slot_reset = igc_io_slot_reset,
6408 	.resume = igc_io_resume,
6409 };
6410 
6411 #ifdef CONFIG_PM
6412 static const struct dev_pm_ops igc_pm_ops = {
6413 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6414 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6415 			   igc_runtime_idle)
6416 };
6417 #endif
6418 
6419 static struct pci_driver igc_driver = {
6420 	.name     = igc_driver_name,
6421 	.id_table = igc_pci_tbl,
6422 	.probe    = igc_probe,
6423 	.remove   = igc_remove,
6424 #ifdef CONFIG_PM
6425 	.driver.pm = &igc_pm_ops,
6426 #endif
6427 	.shutdown = igc_shutdown,
6428 	.err_handler = &igc_err_handler,
6429 };
6430 
6431 /**
6432  * igc_reinit_queues - return error
6433  * @adapter: pointer to adapter structure
6434  */
6435 int igc_reinit_queues(struct igc_adapter *adapter)
6436 {
6437 	struct net_device *netdev = adapter->netdev;
6438 	int err = 0;
6439 
6440 	if (netif_running(netdev))
6441 		igc_close(netdev);
6442 
6443 	igc_reset_interrupt_capability(adapter);
6444 
6445 	if (igc_init_interrupt_scheme(adapter, true)) {
6446 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6447 		return -ENOMEM;
6448 	}
6449 
6450 	if (netif_running(netdev))
6451 		err = igc_open(netdev);
6452 
6453 	return err;
6454 }
6455 
6456 /**
6457  * igc_get_hw_dev - return device
6458  * @hw: pointer to hardware structure
6459  *
6460  * used by hardware layer to print debugging information
6461  */
6462 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6463 {
6464 	struct igc_adapter *adapter = hw->back;
6465 
6466 	return adapter->netdev;
6467 }
6468 
6469 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6470 {
6471 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6472 	u8 idx = ring->reg_idx;
6473 	u32 rxdctl;
6474 
6475 	rxdctl = rd32(IGC_RXDCTL(idx));
6476 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6477 	rxdctl |= IGC_RXDCTL_SWFLUSH;
6478 	wr32(IGC_RXDCTL(idx), rxdctl);
6479 }
6480 
6481 void igc_disable_rx_ring(struct igc_ring *ring)
6482 {
6483 	igc_disable_rx_ring_hw(ring);
6484 	igc_clean_rx_ring(ring);
6485 }
6486 
6487 void igc_enable_rx_ring(struct igc_ring *ring)
6488 {
6489 	struct igc_adapter *adapter = ring->q_vector->adapter;
6490 
6491 	igc_configure_rx_ring(adapter, ring);
6492 
6493 	if (ring->xsk_pool)
6494 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6495 	else
6496 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6497 }
6498 
6499 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6500 {
6501 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6502 	u8 idx = ring->reg_idx;
6503 	u32 txdctl;
6504 
6505 	txdctl = rd32(IGC_TXDCTL(idx));
6506 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6507 	txdctl |= IGC_TXDCTL_SWFLUSH;
6508 	wr32(IGC_TXDCTL(idx), txdctl);
6509 }
6510 
6511 void igc_disable_tx_ring(struct igc_ring *ring)
6512 {
6513 	igc_disable_tx_ring_hw(ring);
6514 	igc_clean_tx_ring(ring);
6515 }
6516 
6517 void igc_enable_tx_ring(struct igc_ring *ring)
6518 {
6519 	struct igc_adapter *adapter = ring->q_vector->adapter;
6520 
6521 	igc_configure_tx_ring(adapter, ring);
6522 }
6523 
6524 /**
6525  * igc_init_module - Driver Registration Routine
6526  *
6527  * igc_init_module is the first routine called when the driver is
6528  * loaded. All it does is register with the PCI subsystem.
6529  */
6530 static int __init igc_init_module(void)
6531 {
6532 	int ret;
6533 
6534 	pr_info("%s\n", igc_driver_string);
6535 	pr_info("%s\n", igc_copyright);
6536 
6537 	ret = pci_register_driver(&igc_driver);
6538 	return ret;
6539 }
6540 
6541 module_init(igc_init_module);
6542 
6543 /**
6544  * igc_exit_module - Driver Exit Cleanup Routine
6545  *
6546  * igc_exit_module is called just before the driver is removed
6547  * from memory.
6548  */
6549 static void __exit igc_exit_module(void)
6550 {
6551 	pci_unregister_driver(&igc_driver);
6552 }
6553 
6554 module_exit(igc_exit_module);
6555 /* igc_main.c */
6556