1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/aer.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/ip.h> 11 #include <linux/pm_runtime.h> 12 #include <net/pkt_sched.h> 13 #include <linux/bpf_trace.h> 14 #include <net/xdp_sock_drv.h> 15 #include <linux/pci.h> 16 17 #include <net/ipv6.h> 18 19 #include "igc.h" 20 #include "igc_hw.h" 21 #include "igc_tsn.h" 22 #include "igc_xdp.h" 23 24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 25 26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 27 28 #define IGC_XDP_PASS 0 29 #define IGC_XDP_CONSUMED BIT(0) 30 #define IGC_XDP_TX BIT(1) 31 #define IGC_XDP_REDIRECT BIT(2) 32 33 static int debug = -1; 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 module_param(debug, int, 0); 39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 40 41 char igc_driver_name[] = "igc"; 42 static const char igc_driver_string[] = DRV_SUMMARY; 43 static const char igc_copyright[] = 44 "Copyright(c) 2018 Intel Corporation."; 45 46 static const struct igc_info *igc_info_tbl[] = { 47 [board_base] = &igc_base_info, 48 }; 49 50 static const struct pci_device_id igc_pci_tbl[] = { 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 66 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 67 /* required last entry */ 68 {0, } 69 }; 70 71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 72 73 enum latency_range { 74 lowest_latency = 0, 75 low_latency = 1, 76 bulk_latency = 2, 77 latency_invalid = 255 78 }; 79 80 void igc_reset(struct igc_adapter *adapter) 81 { 82 struct net_device *dev = adapter->netdev; 83 struct igc_hw *hw = &adapter->hw; 84 struct igc_fc_info *fc = &hw->fc; 85 u32 pba, hwm; 86 87 /* Repartition PBA for greater than 9k MTU if required */ 88 pba = IGC_PBA_34K; 89 90 /* flow control settings 91 * The high water mark must be low enough to fit one full frame 92 * after transmitting the pause frame. As such we must have enough 93 * space to allow for us to complete our current transmit and then 94 * receive the frame that is in progress from the link partner. 95 * Set it to: 96 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 97 */ 98 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 99 100 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 101 fc->low_water = fc->high_water - 16; 102 fc->pause_time = 0xFFFF; 103 fc->send_xon = 1; 104 fc->current_mode = fc->requested_mode; 105 106 hw->mac.ops.reset_hw(hw); 107 108 if (hw->mac.ops.init_hw(hw)) 109 netdev_err(dev, "Error on hardware initialization\n"); 110 111 /* Re-establish EEE setting */ 112 igc_set_eee_i225(hw, true, true, true); 113 114 if (!netif_running(adapter->netdev)) 115 igc_power_down_phy_copper_base(&adapter->hw); 116 117 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 118 wr32(IGC_VET, ETH_P_8021Q); 119 120 /* Re-enable PTP, where applicable. */ 121 igc_ptp_reset(adapter); 122 123 /* Re-enable TSN offloading, where applicable. */ 124 igc_tsn_reset(adapter); 125 126 igc_get_phy_info(hw); 127 } 128 129 /** 130 * igc_power_up_link - Power up the phy link 131 * @adapter: address of board private structure 132 */ 133 static void igc_power_up_link(struct igc_adapter *adapter) 134 { 135 igc_reset_phy(&adapter->hw); 136 137 igc_power_up_phy_copper(&adapter->hw); 138 139 igc_setup_link(&adapter->hw); 140 } 141 142 /** 143 * igc_release_hw_control - release control of the h/w to f/w 144 * @adapter: address of board private structure 145 * 146 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 147 * For ASF and Pass Through versions of f/w this means that the 148 * driver is no longer loaded. 149 */ 150 static void igc_release_hw_control(struct igc_adapter *adapter) 151 { 152 struct igc_hw *hw = &adapter->hw; 153 u32 ctrl_ext; 154 155 if (!pci_device_is_present(adapter->pdev)) 156 return; 157 158 /* Let firmware take over control of h/w */ 159 ctrl_ext = rd32(IGC_CTRL_EXT); 160 wr32(IGC_CTRL_EXT, 161 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 162 } 163 164 /** 165 * igc_get_hw_control - get control of the h/w from f/w 166 * @adapter: address of board private structure 167 * 168 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 169 * For ASF and Pass Through versions of f/w this means that 170 * the driver is loaded. 171 */ 172 static void igc_get_hw_control(struct igc_adapter *adapter) 173 { 174 struct igc_hw *hw = &adapter->hw; 175 u32 ctrl_ext; 176 177 /* Let firmware know the driver has taken over */ 178 ctrl_ext = rd32(IGC_CTRL_EXT); 179 wr32(IGC_CTRL_EXT, 180 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 181 } 182 183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 184 { 185 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 186 dma_unmap_len(buf, len), DMA_TO_DEVICE); 187 188 dma_unmap_len_set(buf, len, 0); 189 } 190 191 /** 192 * igc_clean_tx_ring - Free Tx Buffers 193 * @tx_ring: ring to be cleaned 194 */ 195 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 196 { 197 u16 i = tx_ring->next_to_clean; 198 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 199 u32 xsk_frames = 0; 200 201 while (i != tx_ring->next_to_use) { 202 union igc_adv_tx_desc *eop_desc, *tx_desc; 203 204 switch (tx_buffer->type) { 205 case IGC_TX_BUFFER_TYPE_XSK: 206 xsk_frames++; 207 break; 208 case IGC_TX_BUFFER_TYPE_XDP: 209 xdp_return_frame(tx_buffer->xdpf); 210 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 211 break; 212 case IGC_TX_BUFFER_TYPE_SKB: 213 dev_kfree_skb_any(tx_buffer->skb); 214 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 215 break; 216 default: 217 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 218 break; 219 } 220 221 /* check for eop_desc to determine the end of the packet */ 222 eop_desc = tx_buffer->next_to_watch; 223 tx_desc = IGC_TX_DESC(tx_ring, i); 224 225 /* unmap remaining buffers */ 226 while (tx_desc != eop_desc) { 227 tx_buffer++; 228 tx_desc++; 229 i++; 230 if (unlikely(i == tx_ring->count)) { 231 i = 0; 232 tx_buffer = tx_ring->tx_buffer_info; 233 tx_desc = IGC_TX_DESC(tx_ring, 0); 234 } 235 236 /* unmap any remaining paged data */ 237 if (dma_unmap_len(tx_buffer, len)) 238 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 239 } 240 241 tx_buffer->next_to_watch = NULL; 242 243 /* move us one more past the eop_desc for start of next pkt */ 244 tx_buffer++; 245 i++; 246 if (unlikely(i == tx_ring->count)) { 247 i = 0; 248 tx_buffer = tx_ring->tx_buffer_info; 249 } 250 } 251 252 if (tx_ring->xsk_pool && xsk_frames) 253 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 254 255 /* reset BQL for queue */ 256 netdev_tx_reset_queue(txring_txq(tx_ring)); 257 258 /* reset next_to_use and next_to_clean */ 259 tx_ring->next_to_use = 0; 260 tx_ring->next_to_clean = 0; 261 } 262 263 /** 264 * igc_free_tx_resources - Free Tx Resources per Queue 265 * @tx_ring: Tx descriptor ring for a specific queue 266 * 267 * Free all transmit software resources 268 */ 269 void igc_free_tx_resources(struct igc_ring *tx_ring) 270 { 271 igc_clean_tx_ring(tx_ring); 272 273 vfree(tx_ring->tx_buffer_info); 274 tx_ring->tx_buffer_info = NULL; 275 276 /* if not set, then don't free */ 277 if (!tx_ring->desc) 278 return; 279 280 dma_free_coherent(tx_ring->dev, tx_ring->size, 281 tx_ring->desc, tx_ring->dma); 282 283 tx_ring->desc = NULL; 284 } 285 286 /** 287 * igc_free_all_tx_resources - Free Tx Resources for All Queues 288 * @adapter: board private structure 289 * 290 * Free all transmit software resources 291 */ 292 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 293 { 294 int i; 295 296 for (i = 0; i < adapter->num_tx_queues; i++) 297 igc_free_tx_resources(adapter->tx_ring[i]); 298 } 299 300 /** 301 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 302 * @adapter: board private structure 303 */ 304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 305 { 306 int i; 307 308 for (i = 0; i < adapter->num_tx_queues; i++) 309 if (adapter->tx_ring[i]) 310 igc_clean_tx_ring(adapter->tx_ring[i]); 311 } 312 313 /** 314 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 315 * @tx_ring: tx descriptor ring (for a specific queue) to setup 316 * 317 * Return 0 on success, negative on failure 318 */ 319 int igc_setup_tx_resources(struct igc_ring *tx_ring) 320 { 321 struct net_device *ndev = tx_ring->netdev; 322 struct device *dev = tx_ring->dev; 323 int size = 0; 324 325 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 326 tx_ring->tx_buffer_info = vzalloc(size); 327 if (!tx_ring->tx_buffer_info) 328 goto err; 329 330 /* round up to nearest 4K */ 331 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 332 tx_ring->size = ALIGN(tx_ring->size, 4096); 333 334 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 335 &tx_ring->dma, GFP_KERNEL); 336 337 if (!tx_ring->desc) 338 goto err; 339 340 tx_ring->next_to_use = 0; 341 tx_ring->next_to_clean = 0; 342 343 return 0; 344 345 err: 346 vfree(tx_ring->tx_buffer_info); 347 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 348 return -ENOMEM; 349 } 350 351 /** 352 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 353 * @adapter: board private structure 354 * 355 * Return 0 on success, negative on failure 356 */ 357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 358 { 359 struct net_device *dev = adapter->netdev; 360 int i, err = 0; 361 362 for (i = 0; i < adapter->num_tx_queues; i++) { 363 err = igc_setup_tx_resources(adapter->tx_ring[i]); 364 if (err) { 365 netdev_err(dev, "Error on Tx queue %u setup\n", i); 366 for (i--; i >= 0; i--) 367 igc_free_tx_resources(adapter->tx_ring[i]); 368 break; 369 } 370 } 371 372 return err; 373 } 374 375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 376 { 377 u16 i = rx_ring->next_to_clean; 378 379 dev_kfree_skb(rx_ring->skb); 380 rx_ring->skb = NULL; 381 382 /* Free all the Rx ring sk_buffs */ 383 while (i != rx_ring->next_to_alloc) { 384 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 385 386 /* Invalidate cache lines that may have been written to by 387 * device so that we avoid corrupting memory. 388 */ 389 dma_sync_single_range_for_cpu(rx_ring->dev, 390 buffer_info->dma, 391 buffer_info->page_offset, 392 igc_rx_bufsz(rx_ring), 393 DMA_FROM_DEVICE); 394 395 /* free resources associated with mapping */ 396 dma_unmap_page_attrs(rx_ring->dev, 397 buffer_info->dma, 398 igc_rx_pg_size(rx_ring), 399 DMA_FROM_DEVICE, 400 IGC_RX_DMA_ATTR); 401 __page_frag_cache_drain(buffer_info->page, 402 buffer_info->pagecnt_bias); 403 404 i++; 405 if (i == rx_ring->count) 406 i = 0; 407 } 408 } 409 410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 411 { 412 struct igc_rx_buffer *bi; 413 u16 i; 414 415 for (i = 0; i < ring->count; i++) { 416 bi = &ring->rx_buffer_info[i]; 417 if (!bi->xdp) 418 continue; 419 420 xsk_buff_free(bi->xdp); 421 bi->xdp = NULL; 422 } 423 } 424 425 /** 426 * igc_clean_rx_ring - Free Rx Buffers per Queue 427 * @ring: ring to free buffers from 428 */ 429 static void igc_clean_rx_ring(struct igc_ring *ring) 430 { 431 if (ring->xsk_pool) 432 igc_clean_rx_ring_xsk_pool(ring); 433 else 434 igc_clean_rx_ring_page_shared(ring); 435 436 clear_ring_uses_large_buffer(ring); 437 438 ring->next_to_alloc = 0; 439 ring->next_to_clean = 0; 440 ring->next_to_use = 0; 441 } 442 443 /** 444 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 445 * @adapter: board private structure 446 */ 447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 448 { 449 int i; 450 451 for (i = 0; i < adapter->num_rx_queues; i++) 452 if (adapter->rx_ring[i]) 453 igc_clean_rx_ring(adapter->rx_ring[i]); 454 } 455 456 /** 457 * igc_free_rx_resources - Free Rx Resources 458 * @rx_ring: ring to clean the resources from 459 * 460 * Free all receive software resources 461 */ 462 void igc_free_rx_resources(struct igc_ring *rx_ring) 463 { 464 igc_clean_rx_ring(rx_ring); 465 466 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 467 468 vfree(rx_ring->rx_buffer_info); 469 rx_ring->rx_buffer_info = NULL; 470 471 /* if not set, then don't free */ 472 if (!rx_ring->desc) 473 return; 474 475 dma_free_coherent(rx_ring->dev, rx_ring->size, 476 rx_ring->desc, rx_ring->dma); 477 478 rx_ring->desc = NULL; 479 } 480 481 /** 482 * igc_free_all_rx_resources - Free Rx Resources for All Queues 483 * @adapter: board private structure 484 * 485 * Free all receive software resources 486 */ 487 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 488 { 489 int i; 490 491 for (i = 0; i < adapter->num_rx_queues; i++) 492 igc_free_rx_resources(adapter->rx_ring[i]); 493 } 494 495 /** 496 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 497 * @rx_ring: rx descriptor ring (for a specific queue) to setup 498 * 499 * Returns 0 on success, negative on failure 500 */ 501 int igc_setup_rx_resources(struct igc_ring *rx_ring) 502 { 503 struct net_device *ndev = rx_ring->netdev; 504 struct device *dev = rx_ring->dev; 505 u8 index = rx_ring->queue_index; 506 int size, desc_len, res; 507 508 /* XDP RX-queue info */ 509 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 510 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 511 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 512 rx_ring->q_vector->napi.napi_id); 513 if (res < 0) { 514 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 515 index); 516 return res; 517 } 518 519 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 520 rx_ring->rx_buffer_info = vzalloc(size); 521 if (!rx_ring->rx_buffer_info) 522 goto err; 523 524 desc_len = sizeof(union igc_adv_rx_desc); 525 526 /* Round up to nearest 4K */ 527 rx_ring->size = rx_ring->count * desc_len; 528 rx_ring->size = ALIGN(rx_ring->size, 4096); 529 530 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 531 &rx_ring->dma, GFP_KERNEL); 532 533 if (!rx_ring->desc) 534 goto err; 535 536 rx_ring->next_to_alloc = 0; 537 rx_ring->next_to_clean = 0; 538 rx_ring->next_to_use = 0; 539 540 return 0; 541 542 err: 543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 544 vfree(rx_ring->rx_buffer_info); 545 rx_ring->rx_buffer_info = NULL; 546 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 547 return -ENOMEM; 548 } 549 550 /** 551 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 552 * (Descriptors) for all queues 553 * @adapter: board private structure 554 * 555 * Return 0 on success, negative on failure 556 */ 557 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 558 { 559 struct net_device *dev = adapter->netdev; 560 int i, err = 0; 561 562 for (i = 0; i < adapter->num_rx_queues; i++) { 563 err = igc_setup_rx_resources(adapter->rx_ring[i]); 564 if (err) { 565 netdev_err(dev, "Error on Rx queue %u setup\n", i); 566 for (i--; i >= 0; i--) 567 igc_free_rx_resources(adapter->rx_ring[i]); 568 break; 569 } 570 } 571 572 return err; 573 } 574 575 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 576 struct igc_ring *ring) 577 { 578 if (!igc_xdp_is_enabled(adapter) || 579 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 580 return NULL; 581 582 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 583 } 584 585 /** 586 * igc_configure_rx_ring - Configure a receive ring after Reset 587 * @adapter: board private structure 588 * @ring: receive ring to be configured 589 * 590 * Configure the Rx unit of the MAC after a reset. 591 */ 592 static void igc_configure_rx_ring(struct igc_adapter *adapter, 593 struct igc_ring *ring) 594 { 595 struct igc_hw *hw = &adapter->hw; 596 union igc_adv_rx_desc *rx_desc; 597 int reg_idx = ring->reg_idx; 598 u32 srrctl = 0, rxdctl = 0; 599 u64 rdba = ring->dma; 600 u32 buf_size; 601 602 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 603 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 604 if (ring->xsk_pool) { 605 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 606 MEM_TYPE_XSK_BUFF_POOL, 607 NULL)); 608 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 609 } else { 610 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 611 MEM_TYPE_PAGE_SHARED, 612 NULL)); 613 } 614 615 if (igc_xdp_is_enabled(adapter)) 616 set_ring_uses_large_buffer(ring); 617 618 /* disable the queue */ 619 wr32(IGC_RXDCTL(reg_idx), 0); 620 621 /* Set DMA base address registers */ 622 wr32(IGC_RDBAL(reg_idx), 623 rdba & 0x00000000ffffffffULL); 624 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 625 wr32(IGC_RDLEN(reg_idx), 626 ring->count * sizeof(union igc_adv_rx_desc)); 627 628 /* initialize head and tail */ 629 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 630 wr32(IGC_RDH(reg_idx), 0); 631 writel(0, ring->tail); 632 633 /* reset next-to- use/clean to place SW in sync with hardware */ 634 ring->next_to_clean = 0; 635 ring->next_to_use = 0; 636 637 if (ring->xsk_pool) 638 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 639 else if (ring_uses_large_buffer(ring)) 640 buf_size = IGC_RXBUFFER_3072; 641 else 642 buf_size = IGC_RXBUFFER_2048; 643 644 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; 645 srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT; 646 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 647 648 wr32(IGC_SRRCTL(reg_idx), srrctl); 649 650 rxdctl |= IGC_RX_PTHRESH; 651 rxdctl |= IGC_RX_HTHRESH << 8; 652 rxdctl |= IGC_RX_WTHRESH << 16; 653 654 /* initialize rx_buffer_info */ 655 memset(ring->rx_buffer_info, 0, 656 sizeof(struct igc_rx_buffer) * ring->count); 657 658 /* initialize Rx descriptor 0 */ 659 rx_desc = IGC_RX_DESC(ring, 0); 660 rx_desc->wb.upper.length = 0; 661 662 /* enable receive descriptor fetching */ 663 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 664 665 wr32(IGC_RXDCTL(reg_idx), rxdctl); 666 } 667 668 /** 669 * igc_configure_rx - Configure receive Unit after Reset 670 * @adapter: board private structure 671 * 672 * Configure the Rx unit of the MAC after a reset. 673 */ 674 static void igc_configure_rx(struct igc_adapter *adapter) 675 { 676 int i; 677 678 /* Setup the HW Rx Head and Tail Descriptor Pointers and 679 * the Base and Length of the Rx Descriptor Ring 680 */ 681 for (i = 0; i < adapter->num_rx_queues; i++) 682 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 683 } 684 685 /** 686 * igc_configure_tx_ring - Configure transmit ring after Reset 687 * @adapter: board private structure 688 * @ring: tx ring to configure 689 * 690 * Configure a transmit ring after a reset. 691 */ 692 static void igc_configure_tx_ring(struct igc_adapter *adapter, 693 struct igc_ring *ring) 694 { 695 struct igc_hw *hw = &adapter->hw; 696 int reg_idx = ring->reg_idx; 697 u64 tdba = ring->dma; 698 u32 txdctl = 0; 699 700 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 701 702 /* disable the queue */ 703 wr32(IGC_TXDCTL(reg_idx), 0); 704 wrfl(); 705 mdelay(10); 706 707 wr32(IGC_TDLEN(reg_idx), 708 ring->count * sizeof(union igc_adv_tx_desc)); 709 wr32(IGC_TDBAL(reg_idx), 710 tdba & 0x00000000ffffffffULL); 711 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 712 713 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 714 wr32(IGC_TDH(reg_idx), 0); 715 writel(0, ring->tail); 716 717 txdctl |= IGC_TX_PTHRESH; 718 txdctl |= IGC_TX_HTHRESH << 8; 719 txdctl |= IGC_TX_WTHRESH << 16; 720 721 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 722 wr32(IGC_TXDCTL(reg_idx), txdctl); 723 } 724 725 /** 726 * igc_configure_tx - Configure transmit Unit after Reset 727 * @adapter: board private structure 728 * 729 * Configure the Tx unit of the MAC after a reset. 730 */ 731 static void igc_configure_tx(struct igc_adapter *adapter) 732 { 733 int i; 734 735 for (i = 0; i < adapter->num_tx_queues; i++) 736 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 737 } 738 739 /** 740 * igc_setup_mrqc - configure the multiple receive queue control registers 741 * @adapter: Board private structure 742 */ 743 static void igc_setup_mrqc(struct igc_adapter *adapter) 744 { 745 struct igc_hw *hw = &adapter->hw; 746 u32 j, num_rx_queues; 747 u32 mrqc, rxcsum; 748 u32 rss_key[10]; 749 750 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 751 for (j = 0; j < 10; j++) 752 wr32(IGC_RSSRK(j), rss_key[j]); 753 754 num_rx_queues = adapter->rss_queues; 755 756 if (adapter->rss_indir_tbl_init != num_rx_queues) { 757 for (j = 0; j < IGC_RETA_SIZE; j++) 758 adapter->rss_indir_tbl[j] = 759 (j * num_rx_queues) / IGC_RETA_SIZE; 760 adapter->rss_indir_tbl_init = num_rx_queues; 761 } 762 igc_write_rss_indir_tbl(adapter); 763 764 /* Disable raw packet checksumming so that RSS hash is placed in 765 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 766 * offloads as they are enabled by default 767 */ 768 rxcsum = rd32(IGC_RXCSUM); 769 rxcsum |= IGC_RXCSUM_PCSD; 770 771 /* Enable Receive Checksum Offload for SCTP */ 772 rxcsum |= IGC_RXCSUM_CRCOFL; 773 774 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 775 wr32(IGC_RXCSUM, rxcsum); 776 777 /* Generate RSS hash based on packet types, TCP/UDP 778 * port numbers and/or IPv4/v6 src and dst addresses 779 */ 780 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 781 IGC_MRQC_RSS_FIELD_IPV4_TCP | 782 IGC_MRQC_RSS_FIELD_IPV6 | 783 IGC_MRQC_RSS_FIELD_IPV6_TCP | 784 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 785 786 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 787 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 788 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 789 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 790 791 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 792 793 wr32(IGC_MRQC, mrqc); 794 } 795 796 /** 797 * igc_setup_rctl - configure the receive control registers 798 * @adapter: Board private structure 799 */ 800 static void igc_setup_rctl(struct igc_adapter *adapter) 801 { 802 struct igc_hw *hw = &adapter->hw; 803 u32 rctl; 804 805 rctl = rd32(IGC_RCTL); 806 807 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 808 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 809 810 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 811 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 812 813 /* enable stripping of CRC. Newer features require 814 * that the HW strips the CRC. 815 */ 816 rctl |= IGC_RCTL_SECRC; 817 818 /* disable store bad packets and clear size bits. */ 819 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 820 821 /* enable LPE to allow for reception of jumbo frames */ 822 rctl |= IGC_RCTL_LPE; 823 824 /* disable queue 0 to prevent tail write w/o re-config */ 825 wr32(IGC_RXDCTL(0), 0); 826 827 /* This is useful for sniffing bad packets. */ 828 if (adapter->netdev->features & NETIF_F_RXALL) { 829 /* UPE and MPE will be handled by normal PROMISC logic 830 * in set_rx_mode 831 */ 832 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 833 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 834 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 835 836 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 837 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 838 } 839 840 wr32(IGC_RCTL, rctl); 841 } 842 843 /** 844 * igc_setup_tctl - configure the transmit control registers 845 * @adapter: Board private structure 846 */ 847 static void igc_setup_tctl(struct igc_adapter *adapter) 848 { 849 struct igc_hw *hw = &adapter->hw; 850 u32 tctl; 851 852 /* disable queue 0 which icould be enabled by default */ 853 wr32(IGC_TXDCTL(0), 0); 854 855 /* Program the Transmit Control Register */ 856 tctl = rd32(IGC_TCTL); 857 tctl &= ~IGC_TCTL_CT; 858 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 859 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 860 861 /* Enable transmits */ 862 tctl |= IGC_TCTL_EN; 863 864 wr32(IGC_TCTL, tctl); 865 } 866 867 /** 868 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 869 * @adapter: Pointer to adapter where the filter should be set 870 * @index: Filter index 871 * @type: MAC address filter type (source or destination) 872 * @addr: MAC address 873 * @queue: If non-negative, queue assignment feature is enabled and frames 874 * matching the filter are enqueued onto 'queue'. Otherwise, queue 875 * assignment is disabled. 876 */ 877 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 878 enum igc_mac_filter_type type, 879 const u8 *addr, int queue) 880 { 881 struct net_device *dev = adapter->netdev; 882 struct igc_hw *hw = &adapter->hw; 883 u32 ral, rah; 884 885 if (WARN_ON(index >= hw->mac.rar_entry_count)) 886 return; 887 888 ral = le32_to_cpup((__le32 *)(addr)); 889 rah = le16_to_cpup((__le16 *)(addr + 4)); 890 891 if (type == IGC_MAC_FILTER_TYPE_SRC) { 892 rah &= ~IGC_RAH_ASEL_MASK; 893 rah |= IGC_RAH_ASEL_SRC_ADDR; 894 } 895 896 if (queue >= 0) { 897 rah &= ~IGC_RAH_QSEL_MASK; 898 rah |= (queue << IGC_RAH_QSEL_SHIFT); 899 rah |= IGC_RAH_QSEL_ENABLE; 900 } 901 902 rah |= IGC_RAH_AV; 903 904 wr32(IGC_RAL(index), ral); 905 wr32(IGC_RAH(index), rah); 906 907 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 908 } 909 910 /** 911 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 912 * @adapter: Pointer to adapter where the filter should be cleared 913 * @index: Filter index 914 */ 915 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 916 { 917 struct net_device *dev = adapter->netdev; 918 struct igc_hw *hw = &adapter->hw; 919 920 if (WARN_ON(index >= hw->mac.rar_entry_count)) 921 return; 922 923 wr32(IGC_RAL(index), 0); 924 wr32(IGC_RAH(index), 0); 925 926 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 927 } 928 929 /* Set default MAC address for the PF in the first RAR entry */ 930 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 931 { 932 struct net_device *dev = adapter->netdev; 933 u8 *addr = adapter->hw.mac.addr; 934 935 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 936 937 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 938 } 939 940 /** 941 * igc_set_mac - Change the Ethernet Address of the NIC 942 * @netdev: network interface device structure 943 * @p: pointer to an address structure 944 * 945 * Returns 0 on success, negative on failure 946 */ 947 static int igc_set_mac(struct net_device *netdev, void *p) 948 { 949 struct igc_adapter *adapter = netdev_priv(netdev); 950 struct igc_hw *hw = &adapter->hw; 951 struct sockaddr *addr = p; 952 953 if (!is_valid_ether_addr(addr->sa_data)) 954 return -EADDRNOTAVAIL; 955 956 eth_hw_addr_set(netdev, addr->sa_data); 957 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 958 959 /* set the correct pool for the new PF MAC address in entry 0 */ 960 igc_set_default_mac_filter(adapter); 961 962 return 0; 963 } 964 965 /** 966 * igc_write_mc_addr_list - write multicast addresses to MTA 967 * @netdev: network interface device structure 968 * 969 * Writes multicast address list to the MTA hash table. 970 * Returns: -ENOMEM on failure 971 * 0 on no addresses written 972 * X on writing X addresses to MTA 973 **/ 974 static int igc_write_mc_addr_list(struct net_device *netdev) 975 { 976 struct igc_adapter *adapter = netdev_priv(netdev); 977 struct igc_hw *hw = &adapter->hw; 978 struct netdev_hw_addr *ha; 979 u8 *mta_list; 980 int i; 981 982 if (netdev_mc_empty(netdev)) { 983 /* nothing to program, so clear mc list */ 984 igc_update_mc_addr_list(hw, NULL, 0); 985 return 0; 986 } 987 988 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 989 if (!mta_list) 990 return -ENOMEM; 991 992 /* The shared function expects a packed array of only addresses. */ 993 i = 0; 994 netdev_for_each_mc_addr(ha, netdev) 995 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 996 997 igc_update_mc_addr_list(hw, mta_list, i); 998 kfree(mta_list); 999 1000 return netdev_mc_count(netdev); 1001 } 1002 1003 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime) 1004 { 1005 ktime_t cycle_time = adapter->cycle_time; 1006 ktime_t base_time = adapter->base_time; 1007 u32 launchtime; 1008 1009 /* FIXME: when using ETF together with taprio, we may have a 1010 * case where 'delta' is larger than the cycle_time, this may 1011 * cause problems if we don't read the current value of 1012 * IGC_BASET, as the value writen into the launchtime 1013 * descriptor field may be misinterpreted. 1014 */ 1015 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime); 1016 1017 return cpu_to_le32(launchtime); 1018 } 1019 1020 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1021 struct igc_tx_buffer *first, 1022 u32 vlan_macip_lens, u32 type_tucmd, 1023 u32 mss_l4len_idx) 1024 { 1025 struct igc_adv_tx_context_desc *context_desc; 1026 u16 i = tx_ring->next_to_use; 1027 1028 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1029 1030 i++; 1031 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1032 1033 /* set bits to identify this as an advanced context descriptor */ 1034 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1035 1036 /* For i225, context index must be unique per ring. */ 1037 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1038 mss_l4len_idx |= tx_ring->reg_idx << 4; 1039 1040 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1041 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1042 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1043 1044 /* We assume there is always a valid Tx time available. Invalid times 1045 * should have been handled by the upper layers. 1046 */ 1047 if (tx_ring->launchtime_enable) { 1048 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1049 ktime_t txtime = first->skb->tstamp; 1050 1051 skb_txtime_consumed(first->skb); 1052 context_desc->launch_time = igc_tx_launchtime(adapter, 1053 txtime); 1054 } else { 1055 context_desc->launch_time = 0; 1056 } 1057 } 1058 1059 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first) 1060 { 1061 struct sk_buff *skb = first->skb; 1062 u32 vlan_macip_lens = 0; 1063 u32 type_tucmd = 0; 1064 1065 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1066 csum_failed: 1067 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1068 !tx_ring->launchtime_enable) 1069 return; 1070 goto no_csum; 1071 } 1072 1073 switch (skb->csum_offset) { 1074 case offsetof(struct tcphdr, check): 1075 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1076 fallthrough; 1077 case offsetof(struct udphdr, check): 1078 break; 1079 case offsetof(struct sctphdr, checksum): 1080 /* validate that this is actually an SCTP request */ 1081 if (skb_csum_is_sctp(skb)) { 1082 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1083 break; 1084 } 1085 fallthrough; 1086 default: 1087 skb_checksum_help(skb); 1088 goto csum_failed; 1089 } 1090 1091 /* update TX checksum flag */ 1092 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1093 vlan_macip_lens = skb_checksum_start_offset(skb) - 1094 skb_network_offset(skb); 1095 no_csum: 1096 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1097 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1098 1099 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); 1100 } 1101 1102 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1103 { 1104 struct net_device *netdev = tx_ring->netdev; 1105 1106 netif_stop_subqueue(netdev, tx_ring->queue_index); 1107 1108 /* memory barriier comment */ 1109 smp_mb(); 1110 1111 /* We need to check again in a case another CPU has just 1112 * made room available. 1113 */ 1114 if (igc_desc_unused(tx_ring) < size) 1115 return -EBUSY; 1116 1117 /* A reprieve! */ 1118 netif_wake_subqueue(netdev, tx_ring->queue_index); 1119 1120 u64_stats_update_begin(&tx_ring->tx_syncp2); 1121 tx_ring->tx_stats.restart_queue2++; 1122 u64_stats_update_end(&tx_ring->tx_syncp2); 1123 1124 return 0; 1125 } 1126 1127 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1128 { 1129 if (igc_desc_unused(tx_ring) >= size) 1130 return 0; 1131 return __igc_maybe_stop_tx(tx_ring, size); 1132 } 1133 1134 #define IGC_SET_FLAG(_input, _flag, _result) \ 1135 (((_flag) <= (_result)) ? \ 1136 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1137 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1138 1139 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1140 { 1141 /* set type for advanced descriptor with frame checksum insertion */ 1142 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1143 IGC_ADVTXD_DCMD_DEXT | 1144 IGC_ADVTXD_DCMD_IFCS; 1145 1146 /* set HW vlan bit if vlan is present */ 1147 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1148 IGC_ADVTXD_DCMD_VLE); 1149 1150 /* set segmentation bits for TSO */ 1151 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1152 (IGC_ADVTXD_DCMD_TSE)); 1153 1154 /* set timestamp bit if present */ 1155 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1156 (IGC_ADVTXD_MAC_TSTAMP)); 1157 1158 /* insert frame checksum */ 1159 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1160 1161 return cmd_type; 1162 } 1163 1164 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1165 union igc_adv_tx_desc *tx_desc, 1166 u32 tx_flags, unsigned int paylen) 1167 { 1168 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1169 1170 /* insert L4 checksum */ 1171 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 1172 ((IGC_TXD_POPTS_TXSM << 8) / 1173 IGC_TX_FLAGS_CSUM); 1174 1175 /* insert IPv4 checksum */ 1176 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 1177 (((IGC_TXD_POPTS_IXSM << 8)) / 1178 IGC_TX_FLAGS_IPV4); 1179 1180 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1181 } 1182 1183 static int igc_tx_map(struct igc_ring *tx_ring, 1184 struct igc_tx_buffer *first, 1185 const u8 hdr_len) 1186 { 1187 struct sk_buff *skb = first->skb; 1188 struct igc_tx_buffer *tx_buffer; 1189 union igc_adv_tx_desc *tx_desc; 1190 u32 tx_flags = first->tx_flags; 1191 skb_frag_t *frag; 1192 u16 i = tx_ring->next_to_use; 1193 unsigned int data_len, size; 1194 dma_addr_t dma; 1195 u32 cmd_type; 1196 1197 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1198 tx_desc = IGC_TX_DESC(tx_ring, i); 1199 1200 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1201 1202 size = skb_headlen(skb); 1203 data_len = skb->data_len; 1204 1205 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1206 1207 tx_buffer = first; 1208 1209 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1210 if (dma_mapping_error(tx_ring->dev, dma)) 1211 goto dma_error; 1212 1213 /* record length, and DMA address */ 1214 dma_unmap_len_set(tx_buffer, len, size); 1215 dma_unmap_addr_set(tx_buffer, dma, dma); 1216 1217 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1218 1219 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1220 tx_desc->read.cmd_type_len = 1221 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1222 1223 i++; 1224 tx_desc++; 1225 if (i == tx_ring->count) { 1226 tx_desc = IGC_TX_DESC(tx_ring, 0); 1227 i = 0; 1228 } 1229 tx_desc->read.olinfo_status = 0; 1230 1231 dma += IGC_MAX_DATA_PER_TXD; 1232 size -= IGC_MAX_DATA_PER_TXD; 1233 1234 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1235 } 1236 1237 if (likely(!data_len)) 1238 break; 1239 1240 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1241 1242 i++; 1243 tx_desc++; 1244 if (i == tx_ring->count) { 1245 tx_desc = IGC_TX_DESC(tx_ring, 0); 1246 i = 0; 1247 } 1248 tx_desc->read.olinfo_status = 0; 1249 1250 size = skb_frag_size(frag); 1251 data_len -= size; 1252 1253 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1254 size, DMA_TO_DEVICE); 1255 1256 tx_buffer = &tx_ring->tx_buffer_info[i]; 1257 } 1258 1259 /* write last descriptor with RS and EOP bits */ 1260 cmd_type |= size | IGC_TXD_DCMD; 1261 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1262 1263 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1264 1265 /* set the timestamp */ 1266 first->time_stamp = jiffies; 1267 1268 skb_tx_timestamp(skb); 1269 1270 /* Force memory writes to complete before letting h/w know there 1271 * are new descriptors to fetch. (Only applicable for weak-ordered 1272 * memory model archs, such as IA-64). 1273 * 1274 * We also need this memory barrier to make certain all of the 1275 * status bits have been updated before next_to_watch is written. 1276 */ 1277 wmb(); 1278 1279 /* set next_to_watch value indicating a packet is present */ 1280 first->next_to_watch = tx_desc; 1281 1282 i++; 1283 if (i == tx_ring->count) 1284 i = 0; 1285 1286 tx_ring->next_to_use = i; 1287 1288 /* Make sure there is space in the ring for the next send. */ 1289 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1290 1291 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1292 writel(i, tx_ring->tail); 1293 } 1294 1295 return 0; 1296 dma_error: 1297 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1298 tx_buffer = &tx_ring->tx_buffer_info[i]; 1299 1300 /* clear dma mappings for failed tx_buffer_info map */ 1301 while (tx_buffer != first) { 1302 if (dma_unmap_len(tx_buffer, len)) 1303 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1304 1305 if (i-- == 0) 1306 i += tx_ring->count; 1307 tx_buffer = &tx_ring->tx_buffer_info[i]; 1308 } 1309 1310 if (dma_unmap_len(tx_buffer, len)) 1311 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1312 1313 dev_kfree_skb_any(tx_buffer->skb); 1314 tx_buffer->skb = NULL; 1315 1316 tx_ring->next_to_use = i; 1317 1318 return -1; 1319 } 1320 1321 static int igc_tso(struct igc_ring *tx_ring, 1322 struct igc_tx_buffer *first, 1323 u8 *hdr_len) 1324 { 1325 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1326 struct sk_buff *skb = first->skb; 1327 union { 1328 struct iphdr *v4; 1329 struct ipv6hdr *v6; 1330 unsigned char *hdr; 1331 } ip; 1332 union { 1333 struct tcphdr *tcp; 1334 struct udphdr *udp; 1335 unsigned char *hdr; 1336 } l4; 1337 u32 paylen, l4_offset; 1338 int err; 1339 1340 if (skb->ip_summed != CHECKSUM_PARTIAL) 1341 return 0; 1342 1343 if (!skb_is_gso(skb)) 1344 return 0; 1345 1346 err = skb_cow_head(skb, 0); 1347 if (err < 0) 1348 return err; 1349 1350 ip.hdr = skb_network_header(skb); 1351 l4.hdr = skb_checksum_start(skb); 1352 1353 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1354 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1355 1356 /* initialize outer IP header fields */ 1357 if (ip.v4->version == 4) { 1358 unsigned char *csum_start = skb_checksum_start(skb); 1359 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1360 1361 /* IP header will have to cancel out any data that 1362 * is not a part of the outer IP header 1363 */ 1364 ip.v4->check = csum_fold(csum_partial(trans_start, 1365 csum_start - trans_start, 1366 0)); 1367 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1368 1369 ip.v4->tot_len = 0; 1370 first->tx_flags |= IGC_TX_FLAGS_TSO | 1371 IGC_TX_FLAGS_CSUM | 1372 IGC_TX_FLAGS_IPV4; 1373 } else { 1374 ip.v6->payload_len = 0; 1375 first->tx_flags |= IGC_TX_FLAGS_TSO | 1376 IGC_TX_FLAGS_CSUM; 1377 } 1378 1379 /* determine offset of inner transport header */ 1380 l4_offset = l4.hdr - skb->data; 1381 1382 /* remove payload length from inner checksum */ 1383 paylen = skb->len - l4_offset; 1384 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1385 /* compute length of segmentation header */ 1386 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1387 csum_replace_by_diff(&l4.tcp->check, 1388 (__force __wsum)htonl(paylen)); 1389 } else { 1390 /* compute length of segmentation header */ 1391 *hdr_len = sizeof(*l4.udp) + l4_offset; 1392 csum_replace_by_diff(&l4.udp->check, 1393 (__force __wsum)htonl(paylen)); 1394 } 1395 1396 /* update gso size and bytecount with header size */ 1397 first->gso_segs = skb_shinfo(skb)->gso_segs; 1398 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1399 1400 /* MSS L4LEN IDX */ 1401 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1402 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1403 1404 /* VLAN MACLEN IPLEN */ 1405 vlan_macip_lens = l4.hdr - ip.hdr; 1406 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1407 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1408 1409 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, 1410 type_tucmd, mss_l4len_idx); 1411 1412 return 1; 1413 } 1414 1415 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1416 struct igc_ring *tx_ring) 1417 { 1418 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1419 __be16 protocol = vlan_get_protocol(skb); 1420 struct igc_tx_buffer *first; 1421 u32 tx_flags = 0; 1422 unsigned short f; 1423 u8 hdr_len = 0; 1424 int tso = 0; 1425 1426 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1427 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1428 * + 2 desc gap to keep tail from touching head, 1429 * + 1 desc for context descriptor, 1430 * otherwise try next time 1431 */ 1432 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1433 count += TXD_USE_COUNT(skb_frag_size( 1434 &skb_shinfo(skb)->frags[f])); 1435 1436 if (igc_maybe_stop_tx(tx_ring, count + 3)) { 1437 /* this is a hard error */ 1438 return NETDEV_TX_BUSY; 1439 } 1440 1441 /* record the location of the first descriptor for this packet */ 1442 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1443 first->type = IGC_TX_BUFFER_TYPE_SKB; 1444 first->skb = skb; 1445 first->bytecount = skb->len; 1446 first->gso_segs = 1; 1447 1448 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1449 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1450 1451 /* FIXME: add support for retrieving timestamps from 1452 * the other timer registers before skipping the 1453 * timestamping request. 1454 */ 1455 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 1456 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS, 1457 &adapter->state)) { 1458 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1459 tx_flags |= IGC_TX_FLAGS_TSTAMP; 1460 1461 adapter->ptp_tx_skb = skb_get(skb); 1462 adapter->ptp_tx_start = jiffies; 1463 } else { 1464 adapter->tx_hwtstamp_skipped++; 1465 } 1466 } 1467 1468 if (skb_vlan_tag_present(skb)) { 1469 tx_flags |= IGC_TX_FLAGS_VLAN; 1470 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1471 } 1472 1473 /* record initial flags and protocol */ 1474 first->tx_flags = tx_flags; 1475 first->protocol = protocol; 1476 1477 tso = igc_tso(tx_ring, first, &hdr_len); 1478 if (tso < 0) 1479 goto out_drop; 1480 else if (!tso) 1481 igc_tx_csum(tx_ring, first); 1482 1483 igc_tx_map(tx_ring, first, hdr_len); 1484 1485 return NETDEV_TX_OK; 1486 1487 out_drop: 1488 dev_kfree_skb_any(first->skb); 1489 first->skb = NULL; 1490 1491 return NETDEV_TX_OK; 1492 } 1493 1494 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1495 struct sk_buff *skb) 1496 { 1497 unsigned int r_idx = skb->queue_mapping; 1498 1499 if (r_idx >= adapter->num_tx_queues) 1500 r_idx = r_idx % adapter->num_tx_queues; 1501 1502 return adapter->tx_ring[r_idx]; 1503 } 1504 1505 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1506 struct net_device *netdev) 1507 { 1508 struct igc_adapter *adapter = netdev_priv(netdev); 1509 1510 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1511 * in order to meet this minimum size requirement. 1512 */ 1513 if (skb->len < 17) { 1514 if (skb_padto(skb, 17)) 1515 return NETDEV_TX_OK; 1516 skb->len = 17; 1517 } 1518 1519 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1520 } 1521 1522 static void igc_rx_checksum(struct igc_ring *ring, 1523 union igc_adv_rx_desc *rx_desc, 1524 struct sk_buff *skb) 1525 { 1526 skb_checksum_none_assert(skb); 1527 1528 /* Ignore Checksum bit is set */ 1529 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1530 return; 1531 1532 /* Rx checksum disabled via ethtool */ 1533 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1534 return; 1535 1536 /* TCP/UDP checksum error bit is set */ 1537 if (igc_test_staterr(rx_desc, 1538 IGC_RXDEXT_STATERR_L4E | 1539 IGC_RXDEXT_STATERR_IPE)) { 1540 /* work around errata with sctp packets where the TCPE aka 1541 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1542 * packets (aka let the stack check the crc32c) 1543 */ 1544 if (!(skb->len == 60 && 1545 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1546 u64_stats_update_begin(&ring->rx_syncp); 1547 ring->rx_stats.csum_err++; 1548 u64_stats_update_end(&ring->rx_syncp); 1549 } 1550 /* let the stack verify checksum errors */ 1551 return; 1552 } 1553 /* It must be a TCP or UDP packet with a valid checksum */ 1554 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1555 IGC_RXD_STAT_UDPCS)) 1556 skb->ip_summed = CHECKSUM_UNNECESSARY; 1557 1558 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1559 le32_to_cpu(rx_desc->wb.upper.status_error)); 1560 } 1561 1562 static inline void igc_rx_hash(struct igc_ring *ring, 1563 union igc_adv_rx_desc *rx_desc, 1564 struct sk_buff *skb) 1565 { 1566 if (ring->netdev->features & NETIF_F_RXHASH) 1567 skb_set_hash(skb, 1568 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1569 PKT_HASH_TYPE_L3); 1570 } 1571 1572 static void igc_rx_vlan(struct igc_ring *rx_ring, 1573 union igc_adv_rx_desc *rx_desc, 1574 struct sk_buff *skb) 1575 { 1576 struct net_device *dev = rx_ring->netdev; 1577 u16 vid; 1578 1579 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1580 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1581 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1582 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1583 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1584 else 1585 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1586 1587 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1588 } 1589 } 1590 1591 /** 1592 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1593 * @rx_ring: rx descriptor ring packet is being transacted on 1594 * @rx_desc: pointer to the EOP Rx descriptor 1595 * @skb: pointer to current skb being populated 1596 * 1597 * This function checks the ring, descriptor, and packet information in order 1598 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1599 * skb. 1600 */ 1601 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1602 union igc_adv_rx_desc *rx_desc, 1603 struct sk_buff *skb) 1604 { 1605 igc_rx_hash(rx_ring, rx_desc, skb); 1606 1607 igc_rx_checksum(rx_ring, rx_desc, skb); 1608 1609 igc_rx_vlan(rx_ring, rx_desc, skb); 1610 1611 skb_record_rx_queue(skb, rx_ring->queue_index); 1612 1613 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1614 } 1615 1616 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1617 { 1618 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1619 struct igc_adapter *adapter = netdev_priv(netdev); 1620 struct igc_hw *hw = &adapter->hw; 1621 u32 ctrl; 1622 1623 ctrl = rd32(IGC_CTRL); 1624 1625 if (enable) { 1626 /* enable VLAN tag insert/strip */ 1627 ctrl |= IGC_CTRL_VME; 1628 } else { 1629 /* disable VLAN tag insert/strip */ 1630 ctrl &= ~IGC_CTRL_VME; 1631 } 1632 wr32(IGC_CTRL, ctrl); 1633 } 1634 1635 static void igc_restore_vlan(struct igc_adapter *adapter) 1636 { 1637 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1638 } 1639 1640 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1641 const unsigned int size, 1642 int *rx_buffer_pgcnt) 1643 { 1644 struct igc_rx_buffer *rx_buffer; 1645 1646 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1647 *rx_buffer_pgcnt = 1648 #if (PAGE_SIZE < 8192) 1649 page_count(rx_buffer->page); 1650 #else 1651 0; 1652 #endif 1653 prefetchw(rx_buffer->page); 1654 1655 /* we are reusing so sync this buffer for CPU use */ 1656 dma_sync_single_range_for_cpu(rx_ring->dev, 1657 rx_buffer->dma, 1658 rx_buffer->page_offset, 1659 size, 1660 DMA_FROM_DEVICE); 1661 1662 rx_buffer->pagecnt_bias--; 1663 1664 return rx_buffer; 1665 } 1666 1667 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1668 unsigned int truesize) 1669 { 1670 #if (PAGE_SIZE < 8192) 1671 buffer->page_offset ^= truesize; 1672 #else 1673 buffer->page_offset += truesize; 1674 #endif 1675 } 1676 1677 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1678 unsigned int size) 1679 { 1680 unsigned int truesize; 1681 1682 #if (PAGE_SIZE < 8192) 1683 truesize = igc_rx_pg_size(ring) / 2; 1684 #else 1685 truesize = ring_uses_build_skb(ring) ? 1686 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1687 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1688 SKB_DATA_ALIGN(size); 1689 #endif 1690 return truesize; 1691 } 1692 1693 /** 1694 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1695 * @rx_ring: rx descriptor ring to transact packets on 1696 * @rx_buffer: buffer containing page to add 1697 * @skb: sk_buff to place the data into 1698 * @size: size of buffer to be added 1699 * 1700 * This function will add the data contained in rx_buffer->page to the skb. 1701 */ 1702 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1703 struct igc_rx_buffer *rx_buffer, 1704 struct sk_buff *skb, 1705 unsigned int size) 1706 { 1707 unsigned int truesize; 1708 1709 #if (PAGE_SIZE < 8192) 1710 truesize = igc_rx_pg_size(rx_ring) / 2; 1711 #else 1712 truesize = ring_uses_build_skb(rx_ring) ? 1713 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1714 SKB_DATA_ALIGN(size); 1715 #endif 1716 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1717 rx_buffer->page_offset, size, truesize); 1718 1719 igc_rx_buffer_flip(rx_buffer, truesize); 1720 } 1721 1722 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1723 struct igc_rx_buffer *rx_buffer, 1724 struct xdp_buff *xdp) 1725 { 1726 unsigned int size = xdp->data_end - xdp->data; 1727 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1728 unsigned int metasize = xdp->data - xdp->data_meta; 1729 struct sk_buff *skb; 1730 1731 /* prefetch first cache line of first page */ 1732 net_prefetch(xdp->data_meta); 1733 1734 /* build an skb around the page buffer */ 1735 skb = napi_build_skb(xdp->data_hard_start, truesize); 1736 if (unlikely(!skb)) 1737 return NULL; 1738 1739 /* update pointers within the skb to store the data */ 1740 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1741 __skb_put(skb, size); 1742 if (metasize) 1743 skb_metadata_set(skb, metasize); 1744 1745 igc_rx_buffer_flip(rx_buffer, truesize); 1746 return skb; 1747 } 1748 1749 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1750 struct igc_rx_buffer *rx_buffer, 1751 struct xdp_buff *xdp, 1752 ktime_t timestamp) 1753 { 1754 unsigned int metasize = xdp->data - xdp->data_meta; 1755 unsigned int size = xdp->data_end - xdp->data; 1756 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1757 void *va = xdp->data; 1758 unsigned int headlen; 1759 struct sk_buff *skb; 1760 1761 /* prefetch first cache line of first page */ 1762 net_prefetch(xdp->data_meta); 1763 1764 /* allocate a skb to store the frags */ 1765 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1766 IGC_RX_HDR_LEN + metasize); 1767 if (unlikely(!skb)) 1768 return NULL; 1769 1770 if (timestamp) 1771 skb_hwtstamps(skb)->hwtstamp = timestamp; 1772 1773 /* Determine available headroom for copy */ 1774 headlen = size; 1775 if (headlen > IGC_RX_HDR_LEN) 1776 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1777 1778 /* align pull length to size of long to optimize memcpy performance */ 1779 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1780 ALIGN(headlen + metasize, sizeof(long))); 1781 1782 if (metasize) { 1783 skb_metadata_set(skb, metasize); 1784 __skb_pull(skb, metasize); 1785 } 1786 1787 /* update all of the pointers */ 1788 size -= headlen; 1789 if (size) { 1790 skb_add_rx_frag(skb, 0, rx_buffer->page, 1791 (va + headlen) - page_address(rx_buffer->page), 1792 size, truesize); 1793 igc_rx_buffer_flip(rx_buffer, truesize); 1794 } else { 1795 rx_buffer->pagecnt_bias++; 1796 } 1797 1798 return skb; 1799 } 1800 1801 /** 1802 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1803 * @rx_ring: rx descriptor ring to store buffers on 1804 * @old_buff: donor buffer to have page reused 1805 * 1806 * Synchronizes page for reuse by the adapter 1807 */ 1808 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1809 struct igc_rx_buffer *old_buff) 1810 { 1811 u16 nta = rx_ring->next_to_alloc; 1812 struct igc_rx_buffer *new_buff; 1813 1814 new_buff = &rx_ring->rx_buffer_info[nta]; 1815 1816 /* update, and store next to alloc */ 1817 nta++; 1818 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1819 1820 /* Transfer page from old buffer to new buffer. 1821 * Move each member individually to avoid possible store 1822 * forwarding stalls. 1823 */ 1824 new_buff->dma = old_buff->dma; 1825 new_buff->page = old_buff->page; 1826 new_buff->page_offset = old_buff->page_offset; 1827 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1828 } 1829 1830 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 1831 int rx_buffer_pgcnt) 1832 { 1833 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1834 struct page *page = rx_buffer->page; 1835 1836 /* avoid re-using remote and pfmemalloc pages */ 1837 if (!dev_page_is_reusable(page)) 1838 return false; 1839 1840 #if (PAGE_SIZE < 8192) 1841 /* if we are only owner of page we can reuse it */ 1842 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 1843 return false; 1844 #else 1845 #define IGC_LAST_OFFSET \ 1846 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1847 1848 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1849 return false; 1850 #endif 1851 1852 /* If we have drained the page fragment pool we need to update 1853 * the pagecnt_bias and page count so that we fully restock the 1854 * number of references the driver holds. 1855 */ 1856 if (unlikely(pagecnt_bias == 1)) { 1857 page_ref_add(page, USHRT_MAX - 1); 1858 rx_buffer->pagecnt_bias = USHRT_MAX; 1859 } 1860 1861 return true; 1862 } 1863 1864 /** 1865 * igc_is_non_eop - process handling of non-EOP buffers 1866 * @rx_ring: Rx ring being processed 1867 * @rx_desc: Rx descriptor for current buffer 1868 * 1869 * This function updates next to clean. If the buffer is an EOP buffer 1870 * this function exits returning false, otherwise it will place the 1871 * sk_buff in the next buffer to be chained and return true indicating 1872 * that this is in fact a non-EOP buffer. 1873 */ 1874 static bool igc_is_non_eop(struct igc_ring *rx_ring, 1875 union igc_adv_rx_desc *rx_desc) 1876 { 1877 u32 ntc = rx_ring->next_to_clean + 1; 1878 1879 /* fetch, update, and store next to clean */ 1880 ntc = (ntc < rx_ring->count) ? ntc : 0; 1881 rx_ring->next_to_clean = ntc; 1882 1883 prefetch(IGC_RX_DESC(rx_ring, ntc)); 1884 1885 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 1886 return false; 1887 1888 return true; 1889 } 1890 1891 /** 1892 * igc_cleanup_headers - Correct corrupted or empty headers 1893 * @rx_ring: rx descriptor ring packet is being transacted on 1894 * @rx_desc: pointer to the EOP Rx descriptor 1895 * @skb: pointer to current skb being fixed 1896 * 1897 * Address the case where we are pulling data in on pages only 1898 * and as such no data is present in the skb header. 1899 * 1900 * In addition if skb is not at least 60 bytes we need to pad it so that 1901 * it is large enough to qualify as a valid Ethernet frame. 1902 * 1903 * Returns true if an error was encountered and skb was freed. 1904 */ 1905 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 1906 union igc_adv_rx_desc *rx_desc, 1907 struct sk_buff *skb) 1908 { 1909 /* XDP packets use error pointer so abort at this point */ 1910 if (IS_ERR(skb)) 1911 return true; 1912 1913 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 1914 struct net_device *netdev = rx_ring->netdev; 1915 1916 if (!(netdev->features & NETIF_F_RXALL)) { 1917 dev_kfree_skb_any(skb); 1918 return true; 1919 } 1920 } 1921 1922 /* if eth_skb_pad returns an error the skb was freed */ 1923 if (eth_skb_pad(skb)) 1924 return true; 1925 1926 return false; 1927 } 1928 1929 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 1930 struct igc_rx_buffer *rx_buffer, 1931 int rx_buffer_pgcnt) 1932 { 1933 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 1934 /* hand second half of page back to the ring */ 1935 igc_reuse_rx_page(rx_ring, rx_buffer); 1936 } else { 1937 /* We are not reusing the buffer so unmap it and free 1938 * any references we are holding to it 1939 */ 1940 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1941 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1942 IGC_RX_DMA_ATTR); 1943 __page_frag_cache_drain(rx_buffer->page, 1944 rx_buffer->pagecnt_bias); 1945 } 1946 1947 /* clear contents of rx_buffer */ 1948 rx_buffer->page = NULL; 1949 } 1950 1951 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 1952 { 1953 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 1954 1955 if (ring_uses_build_skb(rx_ring)) 1956 return IGC_SKB_PAD; 1957 if (igc_xdp_is_enabled(adapter)) 1958 return XDP_PACKET_HEADROOM; 1959 1960 return 0; 1961 } 1962 1963 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 1964 struct igc_rx_buffer *bi) 1965 { 1966 struct page *page = bi->page; 1967 dma_addr_t dma; 1968 1969 /* since we are recycling buffers we should seldom need to alloc */ 1970 if (likely(page)) 1971 return true; 1972 1973 /* alloc new page for storage */ 1974 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 1975 if (unlikely(!page)) { 1976 rx_ring->rx_stats.alloc_failed++; 1977 return false; 1978 } 1979 1980 /* map page for use */ 1981 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1982 igc_rx_pg_size(rx_ring), 1983 DMA_FROM_DEVICE, 1984 IGC_RX_DMA_ATTR); 1985 1986 /* if mapping failed free memory back to system since 1987 * there isn't much point in holding memory we can't use 1988 */ 1989 if (dma_mapping_error(rx_ring->dev, dma)) { 1990 __free_page(page); 1991 1992 rx_ring->rx_stats.alloc_failed++; 1993 return false; 1994 } 1995 1996 bi->dma = dma; 1997 bi->page = page; 1998 bi->page_offset = igc_rx_offset(rx_ring); 1999 page_ref_add(page, USHRT_MAX - 1); 2000 bi->pagecnt_bias = USHRT_MAX; 2001 2002 return true; 2003 } 2004 2005 /** 2006 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2007 * @rx_ring: rx descriptor ring 2008 * @cleaned_count: number of buffers to clean 2009 */ 2010 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2011 { 2012 union igc_adv_rx_desc *rx_desc; 2013 u16 i = rx_ring->next_to_use; 2014 struct igc_rx_buffer *bi; 2015 u16 bufsz; 2016 2017 /* nothing to do */ 2018 if (!cleaned_count) 2019 return; 2020 2021 rx_desc = IGC_RX_DESC(rx_ring, i); 2022 bi = &rx_ring->rx_buffer_info[i]; 2023 i -= rx_ring->count; 2024 2025 bufsz = igc_rx_bufsz(rx_ring); 2026 2027 do { 2028 if (!igc_alloc_mapped_page(rx_ring, bi)) 2029 break; 2030 2031 /* sync the buffer for use by the device */ 2032 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2033 bi->page_offset, bufsz, 2034 DMA_FROM_DEVICE); 2035 2036 /* Refresh the desc even if buffer_addrs didn't change 2037 * because each write-back erases this info. 2038 */ 2039 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2040 2041 rx_desc++; 2042 bi++; 2043 i++; 2044 if (unlikely(!i)) { 2045 rx_desc = IGC_RX_DESC(rx_ring, 0); 2046 bi = rx_ring->rx_buffer_info; 2047 i -= rx_ring->count; 2048 } 2049 2050 /* clear the length for the next_to_use descriptor */ 2051 rx_desc->wb.upper.length = 0; 2052 2053 cleaned_count--; 2054 } while (cleaned_count); 2055 2056 i += rx_ring->count; 2057 2058 if (rx_ring->next_to_use != i) { 2059 /* record the next descriptor to use */ 2060 rx_ring->next_to_use = i; 2061 2062 /* update next to alloc since we have filled the ring */ 2063 rx_ring->next_to_alloc = i; 2064 2065 /* Force memory writes to complete before letting h/w 2066 * know there are new descriptors to fetch. (Only 2067 * applicable for weak-ordered memory model archs, 2068 * such as IA-64). 2069 */ 2070 wmb(); 2071 writel(i, rx_ring->tail); 2072 } 2073 } 2074 2075 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2076 { 2077 union igc_adv_rx_desc *desc; 2078 u16 i = ring->next_to_use; 2079 struct igc_rx_buffer *bi; 2080 dma_addr_t dma; 2081 bool ok = true; 2082 2083 if (!count) 2084 return ok; 2085 2086 desc = IGC_RX_DESC(ring, i); 2087 bi = &ring->rx_buffer_info[i]; 2088 i -= ring->count; 2089 2090 do { 2091 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2092 if (!bi->xdp) { 2093 ok = false; 2094 break; 2095 } 2096 2097 dma = xsk_buff_xdp_get_dma(bi->xdp); 2098 desc->read.pkt_addr = cpu_to_le64(dma); 2099 2100 desc++; 2101 bi++; 2102 i++; 2103 if (unlikely(!i)) { 2104 desc = IGC_RX_DESC(ring, 0); 2105 bi = ring->rx_buffer_info; 2106 i -= ring->count; 2107 } 2108 2109 /* Clear the length for the next_to_use descriptor. */ 2110 desc->wb.upper.length = 0; 2111 2112 count--; 2113 } while (count); 2114 2115 i += ring->count; 2116 2117 if (ring->next_to_use != i) { 2118 ring->next_to_use = i; 2119 2120 /* Force memory writes to complete before letting h/w 2121 * know there are new descriptors to fetch. (Only 2122 * applicable for weak-ordered memory model archs, 2123 * such as IA-64). 2124 */ 2125 wmb(); 2126 writel(i, ring->tail); 2127 } 2128 2129 return ok; 2130 } 2131 2132 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer, 2133 struct xdp_frame *xdpf, 2134 struct igc_ring *ring) 2135 { 2136 dma_addr_t dma; 2137 2138 dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE); 2139 if (dma_mapping_error(ring->dev, dma)) { 2140 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 2141 return -ENOMEM; 2142 } 2143 2144 buffer->type = IGC_TX_BUFFER_TYPE_XDP; 2145 buffer->xdpf = xdpf; 2146 buffer->protocol = 0; 2147 buffer->bytecount = xdpf->len; 2148 buffer->gso_segs = 1; 2149 buffer->time_stamp = jiffies; 2150 dma_unmap_len_set(buffer, len, xdpf->len); 2151 dma_unmap_addr_set(buffer, dma, dma); 2152 return 0; 2153 } 2154 2155 /* This function requires __netif_tx_lock is held by the caller. */ 2156 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2157 struct xdp_frame *xdpf) 2158 { 2159 struct igc_tx_buffer *buffer; 2160 union igc_adv_tx_desc *desc; 2161 u32 cmd_type, olinfo_status; 2162 int err; 2163 2164 if (!igc_desc_unused(ring)) 2165 return -EBUSY; 2166 2167 buffer = &ring->tx_buffer_info[ring->next_to_use]; 2168 err = igc_xdp_init_tx_buffer(buffer, xdpf, ring); 2169 if (err) 2170 return err; 2171 2172 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2173 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2174 buffer->bytecount; 2175 olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2176 2177 desc = IGC_TX_DESC(ring, ring->next_to_use); 2178 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2179 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2180 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma)); 2181 2182 netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount); 2183 2184 buffer->next_to_watch = desc; 2185 2186 ring->next_to_use++; 2187 if (ring->next_to_use == ring->count) 2188 ring->next_to_use = 0; 2189 2190 return 0; 2191 } 2192 2193 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2194 int cpu) 2195 { 2196 int index = cpu; 2197 2198 if (unlikely(index < 0)) 2199 index = 0; 2200 2201 while (index >= adapter->num_tx_queues) 2202 index -= adapter->num_tx_queues; 2203 2204 return adapter->tx_ring[index]; 2205 } 2206 2207 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2208 { 2209 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2210 int cpu = smp_processor_id(); 2211 struct netdev_queue *nq; 2212 struct igc_ring *ring; 2213 int res; 2214 2215 if (unlikely(!xdpf)) 2216 return -EFAULT; 2217 2218 ring = igc_xdp_get_tx_ring(adapter, cpu); 2219 nq = txring_txq(ring); 2220 2221 __netif_tx_lock(nq, cpu); 2222 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2223 __netif_tx_unlock(nq); 2224 return res; 2225 } 2226 2227 /* This function assumes rcu_read_lock() is held by the caller. */ 2228 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2229 struct bpf_prog *prog, 2230 struct xdp_buff *xdp) 2231 { 2232 u32 act = bpf_prog_run_xdp(prog, xdp); 2233 2234 switch (act) { 2235 case XDP_PASS: 2236 return IGC_XDP_PASS; 2237 case XDP_TX: 2238 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2239 goto out_failure; 2240 return IGC_XDP_TX; 2241 case XDP_REDIRECT: 2242 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2243 goto out_failure; 2244 return IGC_XDP_REDIRECT; 2245 break; 2246 default: 2247 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2248 fallthrough; 2249 case XDP_ABORTED: 2250 out_failure: 2251 trace_xdp_exception(adapter->netdev, prog, act); 2252 fallthrough; 2253 case XDP_DROP: 2254 return IGC_XDP_CONSUMED; 2255 } 2256 } 2257 2258 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2259 struct xdp_buff *xdp) 2260 { 2261 struct bpf_prog *prog; 2262 int res; 2263 2264 prog = READ_ONCE(adapter->xdp_prog); 2265 if (!prog) { 2266 res = IGC_XDP_PASS; 2267 goto out; 2268 } 2269 2270 res = __igc_xdp_run_prog(adapter, prog, xdp); 2271 2272 out: 2273 return ERR_PTR(-res); 2274 } 2275 2276 /* This function assumes __netif_tx_lock is held by the caller. */ 2277 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2278 { 2279 /* Once tail pointer is updated, hardware can fetch the descriptors 2280 * any time so we issue a write membar here to ensure all memory 2281 * writes are complete before the tail pointer is updated. 2282 */ 2283 wmb(); 2284 writel(ring->next_to_use, ring->tail); 2285 } 2286 2287 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2288 { 2289 int cpu = smp_processor_id(); 2290 struct netdev_queue *nq; 2291 struct igc_ring *ring; 2292 2293 if (status & IGC_XDP_TX) { 2294 ring = igc_xdp_get_tx_ring(adapter, cpu); 2295 nq = txring_txq(ring); 2296 2297 __netif_tx_lock(nq, cpu); 2298 igc_flush_tx_descriptors(ring); 2299 __netif_tx_unlock(nq); 2300 } 2301 2302 if (status & IGC_XDP_REDIRECT) 2303 xdp_do_flush(); 2304 } 2305 2306 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2307 unsigned int packets, unsigned int bytes) 2308 { 2309 struct igc_ring *ring = q_vector->rx.ring; 2310 2311 u64_stats_update_begin(&ring->rx_syncp); 2312 ring->rx_stats.packets += packets; 2313 ring->rx_stats.bytes += bytes; 2314 u64_stats_update_end(&ring->rx_syncp); 2315 2316 q_vector->rx.total_packets += packets; 2317 q_vector->rx.total_bytes += bytes; 2318 } 2319 2320 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2321 { 2322 unsigned int total_bytes = 0, total_packets = 0; 2323 struct igc_adapter *adapter = q_vector->adapter; 2324 struct igc_ring *rx_ring = q_vector->rx.ring; 2325 struct sk_buff *skb = rx_ring->skb; 2326 u16 cleaned_count = igc_desc_unused(rx_ring); 2327 int xdp_status = 0, rx_buffer_pgcnt; 2328 2329 while (likely(total_packets < budget)) { 2330 union igc_adv_rx_desc *rx_desc; 2331 struct igc_rx_buffer *rx_buffer; 2332 unsigned int size, truesize; 2333 ktime_t timestamp = 0; 2334 struct xdp_buff xdp; 2335 int pkt_offset = 0; 2336 void *pktbuf; 2337 2338 /* return some buffers to hardware, one at a time is too slow */ 2339 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2340 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2341 cleaned_count = 0; 2342 } 2343 2344 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2345 size = le16_to_cpu(rx_desc->wb.upper.length); 2346 if (!size) 2347 break; 2348 2349 /* This memory barrier is needed to keep us from reading 2350 * any other fields out of the rx_desc until we know the 2351 * descriptor has been written back 2352 */ 2353 dma_rmb(); 2354 2355 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2356 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2357 2358 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2359 2360 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2361 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2362 pktbuf); 2363 pkt_offset = IGC_TS_HDR_LEN; 2364 size -= IGC_TS_HDR_LEN; 2365 } 2366 2367 if (!skb) { 2368 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq); 2369 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring), 2370 igc_rx_offset(rx_ring) + pkt_offset, 2371 size, true); 2372 2373 skb = igc_xdp_run_prog(adapter, &xdp); 2374 } 2375 2376 if (IS_ERR(skb)) { 2377 unsigned int xdp_res = -PTR_ERR(skb); 2378 2379 switch (xdp_res) { 2380 case IGC_XDP_CONSUMED: 2381 rx_buffer->pagecnt_bias++; 2382 break; 2383 case IGC_XDP_TX: 2384 case IGC_XDP_REDIRECT: 2385 igc_rx_buffer_flip(rx_buffer, truesize); 2386 xdp_status |= xdp_res; 2387 break; 2388 } 2389 2390 total_packets++; 2391 total_bytes += size; 2392 } else if (skb) 2393 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2394 else if (ring_uses_build_skb(rx_ring)) 2395 skb = igc_build_skb(rx_ring, rx_buffer, &xdp); 2396 else 2397 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp, 2398 timestamp); 2399 2400 /* exit if we failed to retrieve a buffer */ 2401 if (!skb) { 2402 rx_ring->rx_stats.alloc_failed++; 2403 rx_buffer->pagecnt_bias++; 2404 break; 2405 } 2406 2407 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2408 cleaned_count++; 2409 2410 /* fetch next buffer in frame if non-eop */ 2411 if (igc_is_non_eop(rx_ring, rx_desc)) 2412 continue; 2413 2414 /* verify the packet layout is correct */ 2415 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2416 skb = NULL; 2417 continue; 2418 } 2419 2420 /* probably a little skewed due to removing CRC */ 2421 total_bytes += skb->len; 2422 2423 /* populate checksum, VLAN, and protocol */ 2424 igc_process_skb_fields(rx_ring, rx_desc, skb); 2425 2426 napi_gro_receive(&q_vector->napi, skb); 2427 2428 /* reset skb pointer */ 2429 skb = NULL; 2430 2431 /* update budget accounting */ 2432 total_packets++; 2433 } 2434 2435 if (xdp_status) 2436 igc_finalize_xdp(adapter, xdp_status); 2437 2438 /* place incomplete frames back on ring for completion */ 2439 rx_ring->skb = skb; 2440 2441 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2442 2443 if (cleaned_count) 2444 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2445 2446 return total_packets; 2447 } 2448 2449 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2450 struct xdp_buff *xdp) 2451 { 2452 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2453 unsigned int metasize = xdp->data - xdp->data_meta; 2454 struct sk_buff *skb; 2455 2456 net_prefetch(xdp->data_meta); 2457 2458 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize, 2459 GFP_ATOMIC | __GFP_NOWARN); 2460 if (unlikely(!skb)) 2461 return NULL; 2462 2463 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2464 ALIGN(totalsize, sizeof(long))); 2465 2466 if (metasize) { 2467 skb_metadata_set(skb, metasize); 2468 __skb_pull(skb, metasize); 2469 } 2470 2471 return skb; 2472 } 2473 2474 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2475 union igc_adv_rx_desc *desc, 2476 struct xdp_buff *xdp, 2477 ktime_t timestamp) 2478 { 2479 struct igc_ring *ring = q_vector->rx.ring; 2480 struct sk_buff *skb; 2481 2482 skb = igc_construct_skb_zc(ring, xdp); 2483 if (!skb) { 2484 ring->rx_stats.alloc_failed++; 2485 return; 2486 } 2487 2488 if (timestamp) 2489 skb_hwtstamps(skb)->hwtstamp = timestamp; 2490 2491 if (igc_cleanup_headers(ring, desc, skb)) 2492 return; 2493 2494 igc_process_skb_fields(ring, desc, skb); 2495 napi_gro_receive(&q_vector->napi, skb); 2496 } 2497 2498 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2499 { 2500 struct igc_adapter *adapter = q_vector->adapter; 2501 struct igc_ring *ring = q_vector->rx.ring; 2502 u16 cleaned_count = igc_desc_unused(ring); 2503 int total_bytes = 0, total_packets = 0; 2504 u16 ntc = ring->next_to_clean; 2505 struct bpf_prog *prog; 2506 bool failure = false; 2507 int xdp_status = 0; 2508 2509 rcu_read_lock(); 2510 2511 prog = READ_ONCE(adapter->xdp_prog); 2512 2513 while (likely(total_packets < budget)) { 2514 union igc_adv_rx_desc *desc; 2515 struct igc_rx_buffer *bi; 2516 ktime_t timestamp = 0; 2517 unsigned int size; 2518 int res; 2519 2520 desc = IGC_RX_DESC(ring, ntc); 2521 size = le16_to_cpu(desc->wb.upper.length); 2522 if (!size) 2523 break; 2524 2525 /* This memory barrier is needed to keep us from reading 2526 * any other fields out of the rx_desc until we know the 2527 * descriptor has been written back 2528 */ 2529 dma_rmb(); 2530 2531 bi = &ring->rx_buffer_info[ntc]; 2532 2533 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2534 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2535 bi->xdp->data); 2536 2537 bi->xdp->data += IGC_TS_HDR_LEN; 2538 2539 /* HW timestamp has been copied into local variable. Metadata 2540 * length when XDP program is called should be 0. 2541 */ 2542 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2543 size -= IGC_TS_HDR_LEN; 2544 } 2545 2546 bi->xdp->data_end = bi->xdp->data + size; 2547 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); 2548 2549 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2550 switch (res) { 2551 case IGC_XDP_PASS: 2552 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2553 fallthrough; 2554 case IGC_XDP_CONSUMED: 2555 xsk_buff_free(bi->xdp); 2556 break; 2557 case IGC_XDP_TX: 2558 case IGC_XDP_REDIRECT: 2559 xdp_status |= res; 2560 break; 2561 } 2562 2563 bi->xdp = NULL; 2564 total_bytes += size; 2565 total_packets++; 2566 cleaned_count++; 2567 ntc++; 2568 if (ntc == ring->count) 2569 ntc = 0; 2570 } 2571 2572 ring->next_to_clean = ntc; 2573 rcu_read_unlock(); 2574 2575 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2576 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2577 2578 if (xdp_status) 2579 igc_finalize_xdp(adapter, xdp_status); 2580 2581 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2582 2583 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2584 if (failure || ring->next_to_clean == ring->next_to_use) 2585 xsk_set_rx_need_wakeup(ring->xsk_pool); 2586 else 2587 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2588 return total_packets; 2589 } 2590 2591 return failure ? budget : total_packets; 2592 } 2593 2594 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2595 unsigned int packets, unsigned int bytes) 2596 { 2597 struct igc_ring *ring = q_vector->tx.ring; 2598 2599 u64_stats_update_begin(&ring->tx_syncp); 2600 ring->tx_stats.bytes += bytes; 2601 ring->tx_stats.packets += packets; 2602 u64_stats_update_end(&ring->tx_syncp); 2603 2604 q_vector->tx.total_bytes += bytes; 2605 q_vector->tx.total_packets += packets; 2606 } 2607 2608 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2609 { 2610 struct xsk_buff_pool *pool = ring->xsk_pool; 2611 struct netdev_queue *nq = txring_txq(ring); 2612 union igc_adv_tx_desc *tx_desc = NULL; 2613 int cpu = smp_processor_id(); 2614 u16 ntu = ring->next_to_use; 2615 struct xdp_desc xdp_desc; 2616 u16 budget; 2617 2618 if (!netif_carrier_ok(ring->netdev)) 2619 return; 2620 2621 __netif_tx_lock(nq, cpu); 2622 2623 budget = igc_desc_unused(ring); 2624 2625 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2626 u32 cmd_type, olinfo_status; 2627 struct igc_tx_buffer *bi; 2628 dma_addr_t dma; 2629 2630 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2631 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2632 xdp_desc.len; 2633 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2634 2635 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2636 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2637 2638 tx_desc = IGC_TX_DESC(ring, ntu); 2639 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2640 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2641 tx_desc->read.buffer_addr = cpu_to_le64(dma); 2642 2643 bi = &ring->tx_buffer_info[ntu]; 2644 bi->type = IGC_TX_BUFFER_TYPE_XSK; 2645 bi->protocol = 0; 2646 bi->bytecount = xdp_desc.len; 2647 bi->gso_segs = 1; 2648 bi->time_stamp = jiffies; 2649 bi->next_to_watch = tx_desc; 2650 2651 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 2652 2653 ntu++; 2654 if (ntu == ring->count) 2655 ntu = 0; 2656 } 2657 2658 ring->next_to_use = ntu; 2659 if (tx_desc) { 2660 igc_flush_tx_descriptors(ring); 2661 xsk_tx_release(pool); 2662 } 2663 2664 __netif_tx_unlock(nq); 2665 } 2666 2667 /** 2668 * igc_clean_tx_irq - Reclaim resources after transmit completes 2669 * @q_vector: pointer to q_vector containing needed info 2670 * @napi_budget: Used to determine if we are in netpoll 2671 * 2672 * returns true if ring is completely cleaned 2673 */ 2674 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 2675 { 2676 struct igc_adapter *adapter = q_vector->adapter; 2677 unsigned int total_bytes = 0, total_packets = 0; 2678 unsigned int budget = q_vector->tx.work_limit; 2679 struct igc_ring *tx_ring = q_vector->tx.ring; 2680 unsigned int i = tx_ring->next_to_clean; 2681 struct igc_tx_buffer *tx_buffer; 2682 union igc_adv_tx_desc *tx_desc; 2683 u32 xsk_frames = 0; 2684 2685 if (test_bit(__IGC_DOWN, &adapter->state)) 2686 return true; 2687 2688 tx_buffer = &tx_ring->tx_buffer_info[i]; 2689 tx_desc = IGC_TX_DESC(tx_ring, i); 2690 i -= tx_ring->count; 2691 2692 do { 2693 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2694 2695 /* if next_to_watch is not set then there is no work pending */ 2696 if (!eop_desc) 2697 break; 2698 2699 /* prevent any other reads prior to eop_desc */ 2700 smp_rmb(); 2701 2702 /* if DD is not set pending work has not been completed */ 2703 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2704 break; 2705 2706 /* clear next_to_watch to prevent false hangs */ 2707 tx_buffer->next_to_watch = NULL; 2708 2709 /* update the statistics for this packet */ 2710 total_bytes += tx_buffer->bytecount; 2711 total_packets += tx_buffer->gso_segs; 2712 2713 switch (tx_buffer->type) { 2714 case IGC_TX_BUFFER_TYPE_XSK: 2715 xsk_frames++; 2716 break; 2717 case IGC_TX_BUFFER_TYPE_XDP: 2718 xdp_return_frame(tx_buffer->xdpf); 2719 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2720 break; 2721 case IGC_TX_BUFFER_TYPE_SKB: 2722 napi_consume_skb(tx_buffer->skb, napi_budget); 2723 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2724 break; 2725 default: 2726 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 2727 break; 2728 } 2729 2730 /* clear last DMA location and unmap remaining buffers */ 2731 while (tx_desc != eop_desc) { 2732 tx_buffer++; 2733 tx_desc++; 2734 i++; 2735 if (unlikely(!i)) { 2736 i -= tx_ring->count; 2737 tx_buffer = tx_ring->tx_buffer_info; 2738 tx_desc = IGC_TX_DESC(tx_ring, 0); 2739 } 2740 2741 /* unmap any remaining paged data */ 2742 if (dma_unmap_len(tx_buffer, len)) 2743 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2744 } 2745 2746 /* move us one more past the eop_desc for start of next pkt */ 2747 tx_buffer++; 2748 tx_desc++; 2749 i++; 2750 if (unlikely(!i)) { 2751 i -= tx_ring->count; 2752 tx_buffer = tx_ring->tx_buffer_info; 2753 tx_desc = IGC_TX_DESC(tx_ring, 0); 2754 } 2755 2756 /* issue prefetch for next Tx descriptor */ 2757 prefetch(tx_desc); 2758 2759 /* update budget accounting */ 2760 budget--; 2761 } while (likely(budget)); 2762 2763 netdev_tx_completed_queue(txring_txq(tx_ring), 2764 total_packets, total_bytes); 2765 2766 i += tx_ring->count; 2767 tx_ring->next_to_clean = i; 2768 2769 igc_update_tx_stats(q_vector, total_packets, total_bytes); 2770 2771 if (tx_ring->xsk_pool) { 2772 if (xsk_frames) 2773 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 2774 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 2775 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 2776 igc_xdp_xmit_zc(tx_ring); 2777 } 2778 2779 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 2780 struct igc_hw *hw = &adapter->hw; 2781 2782 /* Detect a transmit hang in hardware, this serializes the 2783 * check with the clearing of time_stamp and movement of i 2784 */ 2785 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2786 if (tx_buffer->next_to_watch && 2787 time_after(jiffies, tx_buffer->time_stamp + 2788 (adapter->tx_timeout_factor * HZ)) && 2789 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) { 2790 /* detected Tx unit hang */ 2791 netdev_err(tx_ring->netdev, 2792 "Detected Tx Unit Hang\n" 2793 " Tx Queue <%d>\n" 2794 " TDH <%x>\n" 2795 " TDT <%x>\n" 2796 " next_to_use <%x>\n" 2797 " next_to_clean <%x>\n" 2798 "buffer_info[next_to_clean]\n" 2799 " time_stamp <%lx>\n" 2800 " next_to_watch <%p>\n" 2801 " jiffies <%lx>\n" 2802 " desc.status <%x>\n", 2803 tx_ring->queue_index, 2804 rd32(IGC_TDH(tx_ring->reg_idx)), 2805 readl(tx_ring->tail), 2806 tx_ring->next_to_use, 2807 tx_ring->next_to_clean, 2808 tx_buffer->time_stamp, 2809 tx_buffer->next_to_watch, 2810 jiffies, 2811 tx_buffer->next_to_watch->wb.status); 2812 netif_stop_subqueue(tx_ring->netdev, 2813 tx_ring->queue_index); 2814 2815 /* we are about to reset, no point in enabling stuff */ 2816 return true; 2817 } 2818 } 2819 2820 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 2821 if (unlikely(total_packets && 2822 netif_carrier_ok(tx_ring->netdev) && 2823 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 2824 /* Make sure that anybody stopping the queue after this 2825 * sees the new next_to_clean. 2826 */ 2827 smp_mb(); 2828 if (__netif_subqueue_stopped(tx_ring->netdev, 2829 tx_ring->queue_index) && 2830 !(test_bit(__IGC_DOWN, &adapter->state))) { 2831 netif_wake_subqueue(tx_ring->netdev, 2832 tx_ring->queue_index); 2833 2834 u64_stats_update_begin(&tx_ring->tx_syncp); 2835 tx_ring->tx_stats.restart_queue++; 2836 u64_stats_update_end(&tx_ring->tx_syncp); 2837 } 2838 } 2839 2840 return !!budget; 2841 } 2842 2843 static int igc_find_mac_filter(struct igc_adapter *adapter, 2844 enum igc_mac_filter_type type, const u8 *addr) 2845 { 2846 struct igc_hw *hw = &adapter->hw; 2847 int max_entries = hw->mac.rar_entry_count; 2848 u32 ral, rah; 2849 int i; 2850 2851 for (i = 0; i < max_entries; i++) { 2852 ral = rd32(IGC_RAL(i)); 2853 rah = rd32(IGC_RAH(i)); 2854 2855 if (!(rah & IGC_RAH_AV)) 2856 continue; 2857 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 2858 continue; 2859 if ((rah & IGC_RAH_RAH_MASK) != 2860 le16_to_cpup((__le16 *)(addr + 4))) 2861 continue; 2862 if (ral != le32_to_cpup((__le32 *)(addr))) 2863 continue; 2864 2865 return i; 2866 } 2867 2868 return -1; 2869 } 2870 2871 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 2872 { 2873 struct igc_hw *hw = &adapter->hw; 2874 int max_entries = hw->mac.rar_entry_count; 2875 u32 rah; 2876 int i; 2877 2878 for (i = 0; i < max_entries; i++) { 2879 rah = rd32(IGC_RAH(i)); 2880 2881 if (!(rah & IGC_RAH_AV)) 2882 return i; 2883 } 2884 2885 return -1; 2886 } 2887 2888 /** 2889 * igc_add_mac_filter() - Add MAC address filter 2890 * @adapter: Pointer to adapter where the filter should be added 2891 * @type: MAC address filter type (source or destination) 2892 * @addr: MAC address 2893 * @queue: If non-negative, queue assignment feature is enabled and frames 2894 * matching the filter are enqueued onto 'queue'. Otherwise, queue 2895 * assignment is disabled. 2896 * 2897 * Return: 0 in case of success, negative errno code otherwise. 2898 */ 2899 static int igc_add_mac_filter(struct igc_adapter *adapter, 2900 enum igc_mac_filter_type type, const u8 *addr, 2901 int queue) 2902 { 2903 struct net_device *dev = adapter->netdev; 2904 int index; 2905 2906 index = igc_find_mac_filter(adapter, type, addr); 2907 if (index >= 0) 2908 goto update_filter; 2909 2910 index = igc_get_avail_mac_filter_slot(adapter); 2911 if (index < 0) 2912 return -ENOSPC; 2913 2914 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 2915 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 2916 addr, queue); 2917 2918 update_filter: 2919 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 2920 return 0; 2921 } 2922 2923 /** 2924 * igc_del_mac_filter() - Delete MAC address filter 2925 * @adapter: Pointer to adapter where the filter should be deleted from 2926 * @type: MAC address filter type (source or destination) 2927 * @addr: MAC address 2928 */ 2929 static void igc_del_mac_filter(struct igc_adapter *adapter, 2930 enum igc_mac_filter_type type, const u8 *addr) 2931 { 2932 struct net_device *dev = adapter->netdev; 2933 int index; 2934 2935 index = igc_find_mac_filter(adapter, type, addr); 2936 if (index < 0) 2937 return; 2938 2939 if (index == 0) { 2940 /* If this is the default filter, we don't actually delete it. 2941 * We just reset to its default value i.e. disable queue 2942 * assignment. 2943 */ 2944 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 2945 2946 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 2947 } else { 2948 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 2949 index, 2950 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 2951 addr); 2952 2953 igc_clear_mac_filter_hw(adapter, index); 2954 } 2955 } 2956 2957 /** 2958 * igc_add_vlan_prio_filter() - Add VLAN priority filter 2959 * @adapter: Pointer to adapter where the filter should be added 2960 * @prio: VLAN priority value 2961 * @queue: Queue number which matching frames are assigned to 2962 * 2963 * Return: 0 in case of success, negative errno code otherwise. 2964 */ 2965 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 2966 int queue) 2967 { 2968 struct net_device *dev = adapter->netdev; 2969 struct igc_hw *hw = &adapter->hw; 2970 u32 vlanpqf; 2971 2972 vlanpqf = rd32(IGC_VLANPQF); 2973 2974 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 2975 netdev_dbg(dev, "VLAN priority filter already in use\n"); 2976 return -EEXIST; 2977 } 2978 2979 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 2980 vlanpqf |= IGC_VLANPQF_VALID(prio); 2981 2982 wr32(IGC_VLANPQF, vlanpqf); 2983 2984 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 2985 prio, queue); 2986 return 0; 2987 } 2988 2989 /** 2990 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 2991 * @adapter: Pointer to adapter where the filter should be deleted from 2992 * @prio: VLAN priority value 2993 */ 2994 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 2995 { 2996 struct igc_hw *hw = &adapter->hw; 2997 u32 vlanpqf; 2998 2999 vlanpqf = rd32(IGC_VLANPQF); 3000 3001 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3002 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3003 3004 wr32(IGC_VLANPQF, vlanpqf); 3005 3006 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3007 prio); 3008 } 3009 3010 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3011 { 3012 struct igc_hw *hw = &adapter->hw; 3013 int i; 3014 3015 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3016 u32 etqf = rd32(IGC_ETQF(i)); 3017 3018 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3019 return i; 3020 } 3021 3022 return -1; 3023 } 3024 3025 /** 3026 * igc_add_etype_filter() - Add ethertype filter 3027 * @adapter: Pointer to adapter where the filter should be added 3028 * @etype: Ethertype value 3029 * @queue: If non-negative, queue assignment feature is enabled and frames 3030 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3031 * assignment is disabled. 3032 * 3033 * Return: 0 in case of success, negative errno code otherwise. 3034 */ 3035 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3036 int queue) 3037 { 3038 struct igc_hw *hw = &adapter->hw; 3039 int index; 3040 u32 etqf; 3041 3042 index = igc_get_avail_etype_filter_slot(adapter); 3043 if (index < 0) 3044 return -ENOSPC; 3045 3046 etqf = rd32(IGC_ETQF(index)); 3047 3048 etqf &= ~IGC_ETQF_ETYPE_MASK; 3049 etqf |= etype; 3050 3051 if (queue >= 0) { 3052 etqf &= ~IGC_ETQF_QUEUE_MASK; 3053 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3054 etqf |= IGC_ETQF_QUEUE_ENABLE; 3055 } 3056 3057 etqf |= IGC_ETQF_FILTER_ENABLE; 3058 3059 wr32(IGC_ETQF(index), etqf); 3060 3061 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3062 etype, queue); 3063 return 0; 3064 } 3065 3066 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3067 { 3068 struct igc_hw *hw = &adapter->hw; 3069 int i; 3070 3071 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3072 u32 etqf = rd32(IGC_ETQF(i)); 3073 3074 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3075 return i; 3076 } 3077 3078 return -1; 3079 } 3080 3081 /** 3082 * igc_del_etype_filter() - Delete ethertype filter 3083 * @adapter: Pointer to adapter where the filter should be deleted from 3084 * @etype: Ethertype value 3085 */ 3086 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3087 { 3088 struct igc_hw *hw = &adapter->hw; 3089 int index; 3090 3091 index = igc_find_etype_filter(adapter, etype); 3092 if (index < 0) 3093 return; 3094 3095 wr32(IGC_ETQF(index), 0); 3096 3097 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3098 etype); 3099 } 3100 3101 static int igc_flex_filter_select(struct igc_adapter *adapter, 3102 struct igc_flex_filter *input, 3103 u32 *fhft) 3104 { 3105 struct igc_hw *hw = &adapter->hw; 3106 u8 fhft_index; 3107 u32 fhftsl; 3108 3109 if (input->index >= MAX_FLEX_FILTER) { 3110 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n"); 3111 return -EINVAL; 3112 } 3113 3114 /* Indirect table select register */ 3115 fhftsl = rd32(IGC_FHFTSL); 3116 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3117 switch (input->index) { 3118 case 0 ... 7: 3119 fhftsl |= 0x00; 3120 break; 3121 case 8 ... 15: 3122 fhftsl |= 0x01; 3123 break; 3124 case 16 ... 23: 3125 fhftsl |= 0x02; 3126 break; 3127 case 24 ... 31: 3128 fhftsl |= 0x03; 3129 break; 3130 } 3131 wr32(IGC_FHFTSL, fhftsl); 3132 3133 /* Normalize index down to host table register */ 3134 fhft_index = input->index % 8; 3135 3136 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3137 IGC_FHFT_EXT(fhft_index - 4); 3138 3139 return 0; 3140 } 3141 3142 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3143 struct igc_flex_filter *input) 3144 { 3145 struct device *dev = &adapter->pdev->dev; 3146 struct igc_hw *hw = &adapter->hw; 3147 u8 *data = input->data; 3148 u8 *mask = input->mask; 3149 u32 queuing; 3150 u32 fhft; 3151 u32 wufc; 3152 int ret; 3153 int i; 3154 3155 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3156 * out early to avoid surprises later. 3157 */ 3158 if (input->length % 8 != 0) { 3159 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n"); 3160 return -EINVAL; 3161 } 3162 3163 /* Select corresponding flex filter register and get base for host table. */ 3164 ret = igc_flex_filter_select(adapter, input, &fhft); 3165 if (ret) 3166 return ret; 3167 3168 /* When adding a filter globally disable flex filter feature. That is 3169 * recommended within the datasheet. 3170 */ 3171 wufc = rd32(IGC_WUFC); 3172 wufc &= ~IGC_WUFC_FLEX_HQ; 3173 wr32(IGC_WUFC, wufc); 3174 3175 /* Configure filter */ 3176 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3177 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK; 3178 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK; 3179 3180 if (input->immediate_irq) 3181 queuing |= IGC_FHFT_IMM_INT; 3182 3183 if (input->drop) 3184 queuing |= IGC_FHFT_DROP; 3185 3186 wr32(fhft + 0xFC, queuing); 3187 3188 /* Write data (128 byte) and mask (128 bit) */ 3189 for (i = 0; i < 16; ++i) { 3190 const size_t data_idx = i * 8; 3191 const size_t row_idx = i * 16; 3192 u32 dw0 = 3193 (data[data_idx + 0] << 0) | 3194 (data[data_idx + 1] << 8) | 3195 (data[data_idx + 2] << 16) | 3196 (data[data_idx + 3] << 24); 3197 u32 dw1 = 3198 (data[data_idx + 4] << 0) | 3199 (data[data_idx + 5] << 8) | 3200 (data[data_idx + 6] << 16) | 3201 (data[data_idx + 7] << 24); 3202 u32 tmp; 3203 3204 /* Write row: dw0, dw1 and mask */ 3205 wr32(fhft + row_idx, dw0); 3206 wr32(fhft + row_idx + 4, dw1); 3207 3208 /* mask is only valid for MASK(7, 0) */ 3209 tmp = rd32(fhft + row_idx + 8); 3210 tmp &= ~GENMASK(7, 0); 3211 tmp |= mask[i]; 3212 wr32(fhft + row_idx + 8, tmp); 3213 } 3214 3215 /* Enable filter. */ 3216 wufc |= IGC_WUFC_FLEX_HQ; 3217 if (input->index > 8) { 3218 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3219 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3220 3221 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3222 3223 wr32(IGC_WUFC_EXT, wufc_ext); 3224 } else { 3225 wufc |= (IGC_WUFC_FLX0 << input->index); 3226 } 3227 wr32(IGC_WUFC, wufc); 3228 3229 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n", 3230 input->index); 3231 3232 return 0; 3233 } 3234 3235 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3236 const void *src, unsigned int offset, 3237 size_t len, const void *mask) 3238 { 3239 int i; 3240 3241 /* data */ 3242 memcpy(&flex->data[offset], src, len); 3243 3244 /* mask */ 3245 for (i = 0; i < len; ++i) { 3246 const unsigned int idx = i + offset; 3247 const u8 *ptr = mask; 3248 3249 if (mask) { 3250 if (ptr[i] & 0xff) 3251 flex->mask[idx / 8] |= BIT(idx % 8); 3252 3253 continue; 3254 } 3255 3256 flex->mask[idx / 8] |= BIT(idx % 8); 3257 } 3258 } 3259 3260 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3261 { 3262 struct igc_hw *hw = &adapter->hw; 3263 u32 wufc, wufc_ext; 3264 int i; 3265 3266 wufc = rd32(IGC_WUFC); 3267 wufc_ext = rd32(IGC_WUFC_EXT); 3268 3269 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3270 if (i < 8) { 3271 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3272 return i; 3273 } else { 3274 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3275 return i; 3276 } 3277 } 3278 3279 return -ENOSPC; 3280 } 3281 3282 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3283 { 3284 struct igc_hw *hw = &adapter->hw; 3285 u32 wufc, wufc_ext; 3286 3287 wufc = rd32(IGC_WUFC); 3288 wufc_ext = rd32(IGC_WUFC_EXT); 3289 3290 if (wufc & IGC_WUFC_FILTER_MASK) 3291 return true; 3292 3293 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3294 return true; 3295 3296 return false; 3297 } 3298 3299 static int igc_add_flex_filter(struct igc_adapter *adapter, 3300 struct igc_nfc_rule *rule) 3301 { 3302 struct igc_flex_filter flex = { }; 3303 struct igc_nfc_filter *filter = &rule->filter; 3304 unsigned int eth_offset, user_offset; 3305 int ret, index; 3306 bool vlan; 3307 3308 index = igc_find_avail_flex_filter_slot(adapter); 3309 if (index < 0) 3310 return -ENOSPC; 3311 3312 /* Construct the flex filter: 3313 * -> dest_mac [6] 3314 * -> src_mac [6] 3315 * -> tpid [2] 3316 * -> vlan tci [2] 3317 * -> ether type [2] 3318 * -> user data [8] 3319 * -> = 26 bytes => 32 length 3320 */ 3321 flex.index = index; 3322 flex.length = 32; 3323 flex.rx_queue = rule->action; 3324 3325 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3326 eth_offset = vlan ? 16 : 12; 3327 user_offset = vlan ? 18 : 14; 3328 3329 /* Add destination MAC */ 3330 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3331 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3332 ETH_ALEN, NULL); 3333 3334 /* Add source MAC */ 3335 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3336 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3337 ETH_ALEN, NULL); 3338 3339 /* Add VLAN etype */ 3340 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) 3341 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12, 3342 sizeof(filter->vlan_etype), 3343 NULL); 3344 3345 /* Add VLAN TCI */ 3346 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3347 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3348 sizeof(filter->vlan_tci), NULL); 3349 3350 /* Add Ether type */ 3351 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3352 __be16 etype = cpu_to_be16(filter->etype); 3353 3354 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3355 sizeof(etype), NULL); 3356 } 3357 3358 /* Add user data */ 3359 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3360 igc_flex_filter_add_field(&flex, &filter->user_data, 3361 user_offset, 3362 sizeof(filter->user_data), 3363 filter->user_mask); 3364 3365 /* Add it down to the hardware and enable it. */ 3366 ret = igc_write_flex_filter_ll(adapter, &flex); 3367 if (ret) 3368 return ret; 3369 3370 filter->flex_index = index; 3371 3372 return 0; 3373 } 3374 3375 static void igc_del_flex_filter(struct igc_adapter *adapter, 3376 u16 reg_index) 3377 { 3378 struct igc_hw *hw = &adapter->hw; 3379 u32 wufc; 3380 3381 /* Just disable the filter. The filter table itself is kept 3382 * intact. Another flex_filter_add() should override the "old" data 3383 * then. 3384 */ 3385 if (reg_index > 8) { 3386 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3387 3388 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3389 wr32(IGC_WUFC_EXT, wufc_ext); 3390 } else { 3391 wufc = rd32(IGC_WUFC); 3392 3393 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3394 wr32(IGC_WUFC, wufc); 3395 } 3396 3397 if (igc_flex_filter_in_use(adapter)) 3398 return; 3399 3400 /* No filters are in use, we may disable flex filters */ 3401 wufc = rd32(IGC_WUFC); 3402 wufc &= ~IGC_WUFC_FLEX_HQ; 3403 wr32(IGC_WUFC, wufc); 3404 } 3405 3406 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3407 struct igc_nfc_rule *rule) 3408 { 3409 int err; 3410 3411 if (rule->flex) { 3412 return igc_add_flex_filter(adapter, rule); 3413 } 3414 3415 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3416 err = igc_add_etype_filter(adapter, rule->filter.etype, 3417 rule->action); 3418 if (err) 3419 return err; 3420 } 3421 3422 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3423 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3424 rule->filter.src_addr, rule->action); 3425 if (err) 3426 return err; 3427 } 3428 3429 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3430 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3431 rule->filter.dst_addr, rule->action); 3432 if (err) 3433 return err; 3434 } 3435 3436 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3437 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3438 VLAN_PRIO_SHIFT; 3439 3440 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3441 if (err) 3442 return err; 3443 } 3444 3445 return 0; 3446 } 3447 3448 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3449 const struct igc_nfc_rule *rule) 3450 { 3451 if (rule->flex) { 3452 igc_del_flex_filter(adapter, rule->filter.flex_index); 3453 return; 3454 } 3455 3456 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3457 igc_del_etype_filter(adapter, rule->filter.etype); 3458 3459 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3460 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3461 VLAN_PRIO_SHIFT; 3462 3463 igc_del_vlan_prio_filter(adapter, prio); 3464 } 3465 3466 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3467 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3468 rule->filter.src_addr); 3469 3470 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3471 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3472 rule->filter.dst_addr); 3473 } 3474 3475 /** 3476 * igc_get_nfc_rule() - Get NFC rule 3477 * @adapter: Pointer to adapter 3478 * @location: Rule location 3479 * 3480 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3481 * 3482 * Return: Pointer to NFC rule at @location. If not found, NULL. 3483 */ 3484 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3485 u32 location) 3486 { 3487 struct igc_nfc_rule *rule; 3488 3489 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3490 if (rule->location == location) 3491 return rule; 3492 if (rule->location > location) 3493 break; 3494 } 3495 3496 return NULL; 3497 } 3498 3499 /** 3500 * igc_del_nfc_rule() - Delete NFC rule 3501 * @adapter: Pointer to adapter 3502 * @rule: Pointer to rule to be deleted 3503 * 3504 * Disable NFC rule in hardware and delete it from adapter. 3505 * 3506 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3507 */ 3508 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3509 { 3510 igc_disable_nfc_rule(adapter, rule); 3511 3512 list_del(&rule->list); 3513 adapter->nfc_rule_count--; 3514 3515 kfree(rule); 3516 } 3517 3518 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3519 { 3520 struct igc_nfc_rule *rule, *tmp; 3521 3522 mutex_lock(&adapter->nfc_rule_lock); 3523 3524 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3525 igc_del_nfc_rule(adapter, rule); 3526 3527 mutex_unlock(&adapter->nfc_rule_lock); 3528 } 3529 3530 /** 3531 * igc_add_nfc_rule() - Add NFC rule 3532 * @adapter: Pointer to adapter 3533 * @rule: Pointer to rule to be added 3534 * 3535 * Enable NFC rule in hardware and add it to adapter. 3536 * 3537 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3538 * 3539 * Return: 0 on success, negative errno on failure. 3540 */ 3541 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3542 { 3543 struct igc_nfc_rule *pred, *cur; 3544 int err; 3545 3546 err = igc_enable_nfc_rule(adapter, rule); 3547 if (err) 3548 return err; 3549 3550 pred = NULL; 3551 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3552 if (cur->location >= rule->location) 3553 break; 3554 pred = cur; 3555 } 3556 3557 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3558 adapter->nfc_rule_count++; 3559 return 0; 3560 } 3561 3562 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3563 { 3564 struct igc_nfc_rule *rule; 3565 3566 mutex_lock(&adapter->nfc_rule_lock); 3567 3568 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3569 igc_enable_nfc_rule(adapter, rule); 3570 3571 mutex_unlock(&adapter->nfc_rule_lock); 3572 } 3573 3574 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3575 { 3576 struct igc_adapter *adapter = netdev_priv(netdev); 3577 3578 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3579 } 3580 3581 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3582 { 3583 struct igc_adapter *adapter = netdev_priv(netdev); 3584 3585 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3586 return 0; 3587 } 3588 3589 /** 3590 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3591 * @netdev: network interface device structure 3592 * 3593 * The set_rx_mode entry point is called whenever the unicast or multicast 3594 * address lists or the network interface flags are updated. This routine is 3595 * responsible for configuring the hardware for proper unicast, multicast, 3596 * promiscuous mode, and all-multi behavior. 3597 */ 3598 static void igc_set_rx_mode(struct net_device *netdev) 3599 { 3600 struct igc_adapter *adapter = netdev_priv(netdev); 3601 struct igc_hw *hw = &adapter->hw; 3602 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3603 int count; 3604 3605 /* Check for Promiscuous and All Multicast modes */ 3606 if (netdev->flags & IFF_PROMISC) { 3607 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3608 } else { 3609 if (netdev->flags & IFF_ALLMULTI) { 3610 rctl |= IGC_RCTL_MPE; 3611 } else { 3612 /* Write addresses to the MTA, if the attempt fails 3613 * then we should just turn on promiscuous mode so 3614 * that we can at least receive multicast traffic 3615 */ 3616 count = igc_write_mc_addr_list(netdev); 3617 if (count < 0) 3618 rctl |= IGC_RCTL_MPE; 3619 } 3620 } 3621 3622 /* Write addresses to available RAR registers, if there is not 3623 * sufficient space to store all the addresses then enable 3624 * unicast promiscuous mode 3625 */ 3626 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3627 rctl |= IGC_RCTL_UPE; 3628 3629 /* update state of unicast and multicast */ 3630 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 3631 wr32(IGC_RCTL, rctl); 3632 3633 #if (PAGE_SIZE < 8192) 3634 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 3635 rlpml = IGC_MAX_FRAME_BUILD_SKB; 3636 #endif 3637 wr32(IGC_RLPML, rlpml); 3638 } 3639 3640 /** 3641 * igc_configure - configure the hardware for RX and TX 3642 * @adapter: private board structure 3643 */ 3644 static void igc_configure(struct igc_adapter *adapter) 3645 { 3646 struct net_device *netdev = adapter->netdev; 3647 int i = 0; 3648 3649 igc_get_hw_control(adapter); 3650 igc_set_rx_mode(netdev); 3651 3652 igc_restore_vlan(adapter); 3653 3654 igc_setup_tctl(adapter); 3655 igc_setup_mrqc(adapter); 3656 igc_setup_rctl(adapter); 3657 3658 igc_set_default_mac_filter(adapter); 3659 igc_restore_nfc_rules(adapter); 3660 3661 igc_configure_tx(adapter); 3662 igc_configure_rx(adapter); 3663 3664 igc_rx_fifo_flush_base(&adapter->hw); 3665 3666 /* call igc_desc_unused which always leaves 3667 * at least 1 descriptor unused to make sure 3668 * next_to_use != next_to_clean 3669 */ 3670 for (i = 0; i < adapter->num_rx_queues; i++) { 3671 struct igc_ring *ring = adapter->rx_ring[i]; 3672 3673 if (ring->xsk_pool) 3674 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 3675 else 3676 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 3677 } 3678 } 3679 3680 /** 3681 * igc_write_ivar - configure ivar for given MSI-X vector 3682 * @hw: pointer to the HW structure 3683 * @msix_vector: vector number we are allocating to a given ring 3684 * @index: row index of IVAR register to write within IVAR table 3685 * @offset: column offset of in IVAR, should be multiple of 8 3686 * 3687 * The IVAR table consists of 2 columns, 3688 * each containing an cause allocation for an Rx and Tx ring, and a 3689 * variable number of rows depending on the number of queues supported. 3690 */ 3691 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 3692 int index, int offset) 3693 { 3694 u32 ivar = array_rd32(IGC_IVAR0, index); 3695 3696 /* clear any bits that are currently set */ 3697 ivar &= ~((u32)0xFF << offset); 3698 3699 /* write vector and valid bit */ 3700 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 3701 3702 array_wr32(IGC_IVAR0, index, ivar); 3703 } 3704 3705 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 3706 { 3707 struct igc_adapter *adapter = q_vector->adapter; 3708 struct igc_hw *hw = &adapter->hw; 3709 int rx_queue = IGC_N0_QUEUE; 3710 int tx_queue = IGC_N0_QUEUE; 3711 3712 if (q_vector->rx.ring) 3713 rx_queue = q_vector->rx.ring->reg_idx; 3714 if (q_vector->tx.ring) 3715 tx_queue = q_vector->tx.ring->reg_idx; 3716 3717 switch (hw->mac.type) { 3718 case igc_i225: 3719 if (rx_queue > IGC_N0_QUEUE) 3720 igc_write_ivar(hw, msix_vector, 3721 rx_queue >> 1, 3722 (rx_queue & 0x1) << 4); 3723 if (tx_queue > IGC_N0_QUEUE) 3724 igc_write_ivar(hw, msix_vector, 3725 tx_queue >> 1, 3726 ((tx_queue & 0x1) << 4) + 8); 3727 q_vector->eims_value = BIT(msix_vector); 3728 break; 3729 default: 3730 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 3731 break; 3732 } 3733 3734 /* add q_vector eims value to global eims_enable_mask */ 3735 adapter->eims_enable_mask |= q_vector->eims_value; 3736 3737 /* configure q_vector to set itr on first interrupt */ 3738 q_vector->set_itr = 1; 3739 } 3740 3741 /** 3742 * igc_configure_msix - Configure MSI-X hardware 3743 * @adapter: Pointer to adapter structure 3744 * 3745 * igc_configure_msix sets up the hardware to properly 3746 * generate MSI-X interrupts. 3747 */ 3748 static void igc_configure_msix(struct igc_adapter *adapter) 3749 { 3750 struct igc_hw *hw = &adapter->hw; 3751 int i, vector = 0; 3752 u32 tmp; 3753 3754 adapter->eims_enable_mask = 0; 3755 3756 /* set vector for other causes, i.e. link changes */ 3757 switch (hw->mac.type) { 3758 case igc_i225: 3759 /* Turn on MSI-X capability first, or our settings 3760 * won't stick. And it will take days to debug. 3761 */ 3762 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 3763 IGC_GPIE_PBA | IGC_GPIE_EIAME | 3764 IGC_GPIE_NSICR); 3765 3766 /* enable msix_other interrupt */ 3767 adapter->eims_other = BIT(vector); 3768 tmp = (vector++ | IGC_IVAR_VALID) << 8; 3769 3770 wr32(IGC_IVAR_MISC, tmp); 3771 break; 3772 default: 3773 /* do nothing, since nothing else supports MSI-X */ 3774 break; 3775 } /* switch (hw->mac.type) */ 3776 3777 adapter->eims_enable_mask |= adapter->eims_other; 3778 3779 for (i = 0; i < adapter->num_q_vectors; i++) 3780 igc_assign_vector(adapter->q_vector[i], vector++); 3781 3782 wrfl(); 3783 } 3784 3785 /** 3786 * igc_irq_enable - Enable default interrupt generation settings 3787 * @adapter: board private structure 3788 */ 3789 static void igc_irq_enable(struct igc_adapter *adapter) 3790 { 3791 struct igc_hw *hw = &adapter->hw; 3792 3793 if (adapter->msix_entries) { 3794 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3795 u32 regval = rd32(IGC_EIAC); 3796 3797 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3798 regval = rd32(IGC_EIAM); 3799 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3800 wr32(IGC_EIMS, adapter->eims_enable_mask); 3801 wr32(IGC_IMS, ims); 3802 } else { 3803 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3804 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3805 } 3806 } 3807 3808 /** 3809 * igc_irq_disable - Mask off interrupt generation on the NIC 3810 * @adapter: board private structure 3811 */ 3812 static void igc_irq_disable(struct igc_adapter *adapter) 3813 { 3814 struct igc_hw *hw = &adapter->hw; 3815 3816 if (adapter->msix_entries) { 3817 u32 regval = rd32(IGC_EIAM); 3818 3819 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3820 wr32(IGC_EIMC, adapter->eims_enable_mask); 3821 regval = rd32(IGC_EIAC); 3822 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 3823 } 3824 3825 wr32(IGC_IAM, 0); 3826 wr32(IGC_IMC, ~0); 3827 wrfl(); 3828 3829 if (adapter->msix_entries) { 3830 int vector = 0, i; 3831 3832 synchronize_irq(adapter->msix_entries[vector++].vector); 3833 3834 for (i = 0; i < adapter->num_q_vectors; i++) 3835 synchronize_irq(adapter->msix_entries[vector++].vector); 3836 } else { 3837 synchronize_irq(adapter->pdev->irq); 3838 } 3839 } 3840 3841 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 3842 const u32 max_rss_queues) 3843 { 3844 /* Determine if we need to pair queues. */ 3845 /* If rss_queues > half of max_rss_queues, pair the queues in 3846 * order to conserve interrupts due to limited supply. 3847 */ 3848 if (adapter->rss_queues > (max_rss_queues / 2)) 3849 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 3850 else 3851 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 3852 } 3853 3854 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 3855 { 3856 return IGC_MAX_RX_QUEUES; 3857 } 3858 3859 static void igc_init_queue_configuration(struct igc_adapter *adapter) 3860 { 3861 u32 max_rss_queues; 3862 3863 max_rss_queues = igc_get_max_rss_queues(adapter); 3864 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3865 3866 igc_set_flag_queue_pairs(adapter, max_rss_queues); 3867 } 3868 3869 /** 3870 * igc_reset_q_vector - Reset config for interrupt vector 3871 * @adapter: board private structure to initialize 3872 * @v_idx: Index of vector to be reset 3873 * 3874 * If NAPI is enabled it will delete any references to the 3875 * NAPI struct. This is preparation for igc_free_q_vector. 3876 */ 3877 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 3878 { 3879 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 3880 3881 /* if we're coming from igc_set_interrupt_capability, the vectors are 3882 * not yet allocated 3883 */ 3884 if (!q_vector) 3885 return; 3886 3887 if (q_vector->tx.ring) 3888 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 3889 3890 if (q_vector->rx.ring) 3891 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 3892 3893 netif_napi_del(&q_vector->napi); 3894 } 3895 3896 /** 3897 * igc_free_q_vector - Free memory allocated for specific interrupt vector 3898 * @adapter: board private structure to initialize 3899 * @v_idx: Index of vector to be freed 3900 * 3901 * This function frees the memory allocated to the q_vector. 3902 */ 3903 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 3904 { 3905 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 3906 3907 adapter->q_vector[v_idx] = NULL; 3908 3909 /* igc_get_stats64() might access the rings on this vector, 3910 * we must wait a grace period before freeing it. 3911 */ 3912 if (q_vector) 3913 kfree_rcu(q_vector, rcu); 3914 } 3915 3916 /** 3917 * igc_free_q_vectors - Free memory allocated for interrupt vectors 3918 * @adapter: board private structure to initialize 3919 * 3920 * This function frees the memory allocated to the q_vectors. In addition if 3921 * NAPI is enabled it will delete any references to the NAPI struct prior 3922 * to freeing the q_vector. 3923 */ 3924 static void igc_free_q_vectors(struct igc_adapter *adapter) 3925 { 3926 int v_idx = adapter->num_q_vectors; 3927 3928 adapter->num_tx_queues = 0; 3929 adapter->num_rx_queues = 0; 3930 adapter->num_q_vectors = 0; 3931 3932 while (v_idx--) { 3933 igc_reset_q_vector(adapter, v_idx); 3934 igc_free_q_vector(adapter, v_idx); 3935 } 3936 } 3937 3938 /** 3939 * igc_update_itr - update the dynamic ITR value based on statistics 3940 * @q_vector: pointer to q_vector 3941 * @ring_container: ring info to update the itr for 3942 * 3943 * Stores a new ITR value based on packets and byte 3944 * counts during the last interrupt. The advantage of per interrupt 3945 * computation is faster updates and more accurate ITR for the current 3946 * traffic pattern. Constants in this function were computed 3947 * based on theoretical maximum wire speed and thresholds were set based 3948 * on testing data as well as attempting to minimize response time 3949 * while increasing bulk throughput. 3950 * NOTE: These calculations are only valid when operating in a single- 3951 * queue environment. 3952 */ 3953 static void igc_update_itr(struct igc_q_vector *q_vector, 3954 struct igc_ring_container *ring_container) 3955 { 3956 unsigned int packets = ring_container->total_packets; 3957 unsigned int bytes = ring_container->total_bytes; 3958 u8 itrval = ring_container->itr; 3959 3960 /* no packets, exit with status unchanged */ 3961 if (packets == 0) 3962 return; 3963 3964 switch (itrval) { 3965 case lowest_latency: 3966 /* handle TSO and jumbo frames */ 3967 if (bytes / packets > 8000) 3968 itrval = bulk_latency; 3969 else if ((packets < 5) && (bytes > 512)) 3970 itrval = low_latency; 3971 break; 3972 case low_latency: /* 50 usec aka 20000 ints/s */ 3973 if (bytes > 10000) { 3974 /* this if handles the TSO accounting */ 3975 if (bytes / packets > 8000) 3976 itrval = bulk_latency; 3977 else if ((packets < 10) || ((bytes / packets) > 1200)) 3978 itrval = bulk_latency; 3979 else if ((packets > 35)) 3980 itrval = lowest_latency; 3981 } else if (bytes / packets > 2000) { 3982 itrval = bulk_latency; 3983 } else if (packets <= 2 && bytes < 512) { 3984 itrval = lowest_latency; 3985 } 3986 break; 3987 case bulk_latency: /* 250 usec aka 4000 ints/s */ 3988 if (bytes > 25000) { 3989 if (packets > 35) 3990 itrval = low_latency; 3991 } else if (bytes < 1500) { 3992 itrval = low_latency; 3993 } 3994 break; 3995 } 3996 3997 /* clear work counters since we have the values we need */ 3998 ring_container->total_bytes = 0; 3999 ring_container->total_packets = 0; 4000 4001 /* write updated itr to ring container */ 4002 ring_container->itr = itrval; 4003 } 4004 4005 static void igc_set_itr(struct igc_q_vector *q_vector) 4006 { 4007 struct igc_adapter *adapter = q_vector->adapter; 4008 u32 new_itr = q_vector->itr_val; 4009 u8 current_itr = 0; 4010 4011 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4012 switch (adapter->link_speed) { 4013 case SPEED_10: 4014 case SPEED_100: 4015 current_itr = 0; 4016 new_itr = IGC_4K_ITR; 4017 goto set_itr_now; 4018 default: 4019 break; 4020 } 4021 4022 igc_update_itr(q_vector, &q_vector->tx); 4023 igc_update_itr(q_vector, &q_vector->rx); 4024 4025 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4026 4027 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4028 if (current_itr == lowest_latency && 4029 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4030 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4031 current_itr = low_latency; 4032 4033 switch (current_itr) { 4034 /* counts and packets in update_itr are dependent on these numbers */ 4035 case lowest_latency: 4036 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4037 break; 4038 case low_latency: 4039 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4040 break; 4041 case bulk_latency: 4042 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4043 break; 4044 default: 4045 break; 4046 } 4047 4048 set_itr_now: 4049 if (new_itr != q_vector->itr_val) { 4050 /* this attempts to bias the interrupt rate towards Bulk 4051 * by adding intermediate steps when interrupt rate is 4052 * increasing 4053 */ 4054 new_itr = new_itr > q_vector->itr_val ? 4055 max((new_itr * q_vector->itr_val) / 4056 (new_itr + (q_vector->itr_val >> 2)), 4057 new_itr) : new_itr; 4058 /* Don't write the value here; it resets the adapter's 4059 * internal timer, and causes us to delay far longer than 4060 * we should between interrupts. Instead, we write the ITR 4061 * value at the beginning of the next interrupt so the timing 4062 * ends up being correct. 4063 */ 4064 q_vector->itr_val = new_itr; 4065 q_vector->set_itr = 1; 4066 } 4067 } 4068 4069 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4070 { 4071 int v_idx = adapter->num_q_vectors; 4072 4073 if (adapter->msix_entries) { 4074 pci_disable_msix(adapter->pdev); 4075 kfree(adapter->msix_entries); 4076 adapter->msix_entries = NULL; 4077 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4078 pci_disable_msi(adapter->pdev); 4079 } 4080 4081 while (v_idx--) 4082 igc_reset_q_vector(adapter, v_idx); 4083 } 4084 4085 /** 4086 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4087 * @adapter: Pointer to adapter structure 4088 * @msix: boolean value for MSI-X capability 4089 * 4090 * Attempt to configure interrupts using the best available 4091 * capabilities of the hardware and kernel. 4092 */ 4093 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4094 bool msix) 4095 { 4096 int numvecs, i; 4097 int err; 4098 4099 if (!msix) 4100 goto msi_only; 4101 adapter->flags |= IGC_FLAG_HAS_MSIX; 4102 4103 /* Number of supported queues. */ 4104 adapter->num_rx_queues = adapter->rss_queues; 4105 4106 adapter->num_tx_queues = adapter->rss_queues; 4107 4108 /* start with one vector for every Rx queue */ 4109 numvecs = adapter->num_rx_queues; 4110 4111 /* if Tx handler is separate add 1 for every Tx queue */ 4112 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4113 numvecs += adapter->num_tx_queues; 4114 4115 /* store the number of vectors reserved for queues */ 4116 adapter->num_q_vectors = numvecs; 4117 4118 /* add 1 vector for link status interrupts */ 4119 numvecs++; 4120 4121 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4122 GFP_KERNEL); 4123 4124 if (!adapter->msix_entries) 4125 return; 4126 4127 /* populate entry values */ 4128 for (i = 0; i < numvecs; i++) 4129 adapter->msix_entries[i].entry = i; 4130 4131 err = pci_enable_msix_range(adapter->pdev, 4132 adapter->msix_entries, 4133 numvecs, 4134 numvecs); 4135 if (err > 0) 4136 return; 4137 4138 kfree(adapter->msix_entries); 4139 adapter->msix_entries = NULL; 4140 4141 igc_reset_interrupt_capability(adapter); 4142 4143 msi_only: 4144 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4145 4146 adapter->rss_queues = 1; 4147 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4148 adapter->num_rx_queues = 1; 4149 adapter->num_tx_queues = 1; 4150 adapter->num_q_vectors = 1; 4151 if (!pci_enable_msi(adapter->pdev)) 4152 adapter->flags |= IGC_FLAG_HAS_MSI; 4153 } 4154 4155 /** 4156 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4157 * @q_vector: pointer to q_vector 4158 * 4159 * Stores a new ITR value based on strictly on packet size. This 4160 * algorithm is less sophisticated than that used in igc_update_itr, 4161 * due to the difficulty of synchronizing statistics across multiple 4162 * receive rings. The divisors and thresholds used by this function 4163 * were determined based on theoretical maximum wire speed and testing 4164 * data, in order to minimize response time while increasing bulk 4165 * throughput. 4166 * NOTE: This function is called only when operating in a multiqueue 4167 * receive environment. 4168 */ 4169 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4170 { 4171 struct igc_adapter *adapter = q_vector->adapter; 4172 int new_val = q_vector->itr_val; 4173 int avg_wire_size = 0; 4174 unsigned int packets; 4175 4176 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4177 * ints/sec - ITR timer value of 120 ticks. 4178 */ 4179 switch (adapter->link_speed) { 4180 case SPEED_10: 4181 case SPEED_100: 4182 new_val = IGC_4K_ITR; 4183 goto set_itr_val; 4184 default: 4185 break; 4186 } 4187 4188 packets = q_vector->rx.total_packets; 4189 if (packets) 4190 avg_wire_size = q_vector->rx.total_bytes / packets; 4191 4192 packets = q_vector->tx.total_packets; 4193 if (packets) 4194 avg_wire_size = max_t(u32, avg_wire_size, 4195 q_vector->tx.total_bytes / packets); 4196 4197 /* if avg_wire_size isn't set no work was done */ 4198 if (!avg_wire_size) 4199 goto clear_counts; 4200 4201 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4202 avg_wire_size += 24; 4203 4204 /* Don't starve jumbo frames */ 4205 avg_wire_size = min(avg_wire_size, 3000); 4206 4207 /* Give a little boost to mid-size frames */ 4208 if (avg_wire_size > 300 && avg_wire_size < 1200) 4209 new_val = avg_wire_size / 3; 4210 else 4211 new_val = avg_wire_size / 2; 4212 4213 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4214 if (new_val < IGC_20K_ITR && 4215 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4216 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4217 new_val = IGC_20K_ITR; 4218 4219 set_itr_val: 4220 if (new_val != q_vector->itr_val) { 4221 q_vector->itr_val = new_val; 4222 q_vector->set_itr = 1; 4223 } 4224 clear_counts: 4225 q_vector->rx.total_bytes = 0; 4226 q_vector->rx.total_packets = 0; 4227 q_vector->tx.total_bytes = 0; 4228 q_vector->tx.total_packets = 0; 4229 } 4230 4231 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4232 { 4233 struct igc_adapter *adapter = q_vector->adapter; 4234 struct igc_hw *hw = &adapter->hw; 4235 4236 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4237 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4238 if (adapter->num_q_vectors == 1) 4239 igc_set_itr(q_vector); 4240 else 4241 igc_update_ring_itr(q_vector); 4242 } 4243 4244 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4245 if (adapter->msix_entries) 4246 wr32(IGC_EIMS, q_vector->eims_value); 4247 else 4248 igc_irq_enable(adapter); 4249 } 4250 } 4251 4252 static void igc_add_ring(struct igc_ring *ring, 4253 struct igc_ring_container *head) 4254 { 4255 head->ring = ring; 4256 head->count++; 4257 } 4258 4259 /** 4260 * igc_cache_ring_register - Descriptor ring to register mapping 4261 * @adapter: board private structure to initialize 4262 * 4263 * Once we know the feature-set enabled for the device, we'll cache 4264 * the register offset the descriptor ring is assigned to. 4265 */ 4266 static void igc_cache_ring_register(struct igc_adapter *adapter) 4267 { 4268 int i = 0, j = 0; 4269 4270 switch (adapter->hw.mac.type) { 4271 case igc_i225: 4272 default: 4273 for (; i < adapter->num_rx_queues; i++) 4274 adapter->rx_ring[i]->reg_idx = i; 4275 for (; j < adapter->num_tx_queues; j++) 4276 adapter->tx_ring[j]->reg_idx = j; 4277 break; 4278 } 4279 } 4280 4281 /** 4282 * igc_poll - NAPI Rx polling callback 4283 * @napi: napi polling structure 4284 * @budget: count of how many packets we should handle 4285 */ 4286 static int igc_poll(struct napi_struct *napi, int budget) 4287 { 4288 struct igc_q_vector *q_vector = container_of(napi, 4289 struct igc_q_vector, 4290 napi); 4291 struct igc_ring *rx_ring = q_vector->rx.ring; 4292 bool clean_complete = true; 4293 int work_done = 0; 4294 4295 if (q_vector->tx.ring) 4296 clean_complete = igc_clean_tx_irq(q_vector, budget); 4297 4298 if (rx_ring) { 4299 int cleaned = rx_ring->xsk_pool ? 4300 igc_clean_rx_irq_zc(q_vector, budget) : 4301 igc_clean_rx_irq(q_vector, budget); 4302 4303 work_done += cleaned; 4304 if (cleaned >= budget) 4305 clean_complete = false; 4306 } 4307 4308 /* If all work not completed, return budget and keep polling */ 4309 if (!clean_complete) 4310 return budget; 4311 4312 /* Exit the polling mode, but don't re-enable interrupts if stack might 4313 * poll us due to busy-polling 4314 */ 4315 if (likely(napi_complete_done(napi, work_done))) 4316 igc_ring_irq_enable(q_vector); 4317 4318 return min(work_done, budget - 1); 4319 } 4320 4321 /** 4322 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4323 * @adapter: board private structure to initialize 4324 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4325 * @v_idx: index of vector in adapter struct 4326 * @txr_count: total number of Tx rings to allocate 4327 * @txr_idx: index of first Tx ring to allocate 4328 * @rxr_count: total number of Rx rings to allocate 4329 * @rxr_idx: index of first Rx ring to allocate 4330 * 4331 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4332 */ 4333 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4334 unsigned int v_count, unsigned int v_idx, 4335 unsigned int txr_count, unsigned int txr_idx, 4336 unsigned int rxr_count, unsigned int rxr_idx) 4337 { 4338 struct igc_q_vector *q_vector; 4339 struct igc_ring *ring; 4340 int ring_count; 4341 4342 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4343 if (txr_count > 1 || rxr_count > 1) 4344 return -ENOMEM; 4345 4346 ring_count = txr_count + rxr_count; 4347 4348 /* allocate q_vector and rings */ 4349 q_vector = adapter->q_vector[v_idx]; 4350 if (!q_vector) 4351 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4352 GFP_KERNEL); 4353 else 4354 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4355 if (!q_vector) 4356 return -ENOMEM; 4357 4358 /* initialize NAPI */ 4359 netif_napi_add(adapter->netdev, &q_vector->napi, 4360 igc_poll, 64); 4361 4362 /* tie q_vector and adapter together */ 4363 adapter->q_vector[v_idx] = q_vector; 4364 q_vector->adapter = adapter; 4365 4366 /* initialize work limits */ 4367 q_vector->tx.work_limit = adapter->tx_work_limit; 4368 4369 /* initialize ITR configuration */ 4370 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4371 q_vector->itr_val = IGC_START_ITR; 4372 4373 /* initialize pointer to rings */ 4374 ring = q_vector->ring; 4375 4376 /* initialize ITR */ 4377 if (rxr_count) { 4378 /* rx or rx/tx vector */ 4379 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4380 q_vector->itr_val = adapter->rx_itr_setting; 4381 } else { 4382 /* tx only vector */ 4383 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4384 q_vector->itr_val = adapter->tx_itr_setting; 4385 } 4386 4387 if (txr_count) { 4388 /* assign generic ring traits */ 4389 ring->dev = &adapter->pdev->dev; 4390 ring->netdev = adapter->netdev; 4391 4392 /* configure backlink on ring */ 4393 ring->q_vector = q_vector; 4394 4395 /* update q_vector Tx values */ 4396 igc_add_ring(ring, &q_vector->tx); 4397 4398 /* apply Tx specific ring traits */ 4399 ring->count = adapter->tx_ring_count; 4400 ring->queue_index = txr_idx; 4401 4402 /* assign ring to adapter */ 4403 adapter->tx_ring[txr_idx] = ring; 4404 4405 /* push pointer to next ring */ 4406 ring++; 4407 } 4408 4409 if (rxr_count) { 4410 /* assign generic ring traits */ 4411 ring->dev = &adapter->pdev->dev; 4412 ring->netdev = adapter->netdev; 4413 4414 /* configure backlink on ring */ 4415 ring->q_vector = q_vector; 4416 4417 /* update q_vector Rx values */ 4418 igc_add_ring(ring, &q_vector->rx); 4419 4420 /* apply Rx specific ring traits */ 4421 ring->count = adapter->rx_ring_count; 4422 ring->queue_index = rxr_idx; 4423 4424 /* assign ring to adapter */ 4425 adapter->rx_ring[rxr_idx] = ring; 4426 } 4427 4428 return 0; 4429 } 4430 4431 /** 4432 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4433 * @adapter: board private structure to initialize 4434 * 4435 * We allocate one q_vector per queue interrupt. If allocation fails we 4436 * return -ENOMEM. 4437 */ 4438 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4439 { 4440 int rxr_remaining = adapter->num_rx_queues; 4441 int txr_remaining = adapter->num_tx_queues; 4442 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4443 int q_vectors = adapter->num_q_vectors; 4444 int err; 4445 4446 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4447 for (; rxr_remaining; v_idx++) { 4448 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4449 0, 0, 1, rxr_idx); 4450 4451 if (err) 4452 goto err_out; 4453 4454 /* update counts and index */ 4455 rxr_remaining--; 4456 rxr_idx++; 4457 } 4458 } 4459 4460 for (; v_idx < q_vectors; v_idx++) { 4461 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4462 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4463 4464 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4465 tqpv, txr_idx, rqpv, rxr_idx); 4466 4467 if (err) 4468 goto err_out; 4469 4470 /* update counts and index */ 4471 rxr_remaining -= rqpv; 4472 txr_remaining -= tqpv; 4473 rxr_idx++; 4474 txr_idx++; 4475 } 4476 4477 return 0; 4478 4479 err_out: 4480 adapter->num_tx_queues = 0; 4481 adapter->num_rx_queues = 0; 4482 adapter->num_q_vectors = 0; 4483 4484 while (v_idx--) 4485 igc_free_q_vector(adapter, v_idx); 4486 4487 return -ENOMEM; 4488 } 4489 4490 /** 4491 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4492 * @adapter: Pointer to adapter structure 4493 * @msix: boolean for MSI-X capability 4494 * 4495 * This function initializes the interrupts and allocates all of the queues. 4496 */ 4497 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4498 { 4499 struct net_device *dev = adapter->netdev; 4500 int err = 0; 4501 4502 igc_set_interrupt_capability(adapter, msix); 4503 4504 err = igc_alloc_q_vectors(adapter); 4505 if (err) { 4506 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4507 goto err_alloc_q_vectors; 4508 } 4509 4510 igc_cache_ring_register(adapter); 4511 4512 return 0; 4513 4514 err_alloc_q_vectors: 4515 igc_reset_interrupt_capability(adapter); 4516 return err; 4517 } 4518 4519 /** 4520 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4521 * @adapter: board private structure to initialize 4522 * 4523 * igc_sw_init initializes the Adapter private data structure. 4524 * Fields are initialized based on PCI device information and 4525 * OS network device settings (MTU size). 4526 */ 4527 static int igc_sw_init(struct igc_adapter *adapter) 4528 { 4529 struct net_device *netdev = adapter->netdev; 4530 struct pci_dev *pdev = adapter->pdev; 4531 struct igc_hw *hw = &adapter->hw; 4532 4533 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4534 4535 /* set default ring sizes */ 4536 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4537 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4538 4539 /* set default ITR values */ 4540 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4541 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4542 4543 /* set default work limits */ 4544 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4545 4546 /* adjust max frame to be at least the size of a standard frame */ 4547 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4548 VLAN_HLEN; 4549 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4550 4551 mutex_init(&adapter->nfc_rule_lock); 4552 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4553 adapter->nfc_rule_count = 0; 4554 4555 spin_lock_init(&adapter->stats64_lock); 4556 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4557 adapter->flags |= IGC_FLAG_HAS_MSIX; 4558 4559 igc_init_queue_configuration(adapter); 4560 4561 /* This call may decrease the number of queues */ 4562 if (igc_init_interrupt_scheme(adapter, true)) { 4563 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4564 return -ENOMEM; 4565 } 4566 4567 /* Explicitly disable IRQ since the NIC can be in any state. */ 4568 igc_irq_disable(adapter); 4569 4570 set_bit(__IGC_DOWN, &adapter->state); 4571 4572 return 0; 4573 } 4574 4575 /** 4576 * igc_up - Open the interface and prepare it to handle traffic 4577 * @adapter: board private structure 4578 */ 4579 void igc_up(struct igc_adapter *adapter) 4580 { 4581 struct igc_hw *hw = &adapter->hw; 4582 int i = 0; 4583 4584 /* hardware has been reset, we need to reload some things */ 4585 igc_configure(adapter); 4586 4587 clear_bit(__IGC_DOWN, &adapter->state); 4588 4589 for (i = 0; i < adapter->num_q_vectors; i++) 4590 napi_enable(&adapter->q_vector[i]->napi); 4591 4592 if (adapter->msix_entries) 4593 igc_configure_msix(adapter); 4594 else 4595 igc_assign_vector(adapter->q_vector[0], 0); 4596 4597 /* Clear any pending interrupts. */ 4598 rd32(IGC_ICR); 4599 igc_irq_enable(adapter); 4600 4601 netif_tx_start_all_queues(adapter->netdev); 4602 4603 /* start the watchdog. */ 4604 hw->mac.get_link_status = true; 4605 schedule_work(&adapter->watchdog_task); 4606 } 4607 4608 /** 4609 * igc_update_stats - Update the board statistics counters 4610 * @adapter: board private structure 4611 */ 4612 void igc_update_stats(struct igc_adapter *adapter) 4613 { 4614 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4615 struct pci_dev *pdev = adapter->pdev; 4616 struct igc_hw *hw = &adapter->hw; 4617 u64 _bytes, _packets; 4618 u64 bytes, packets; 4619 unsigned int start; 4620 u32 mpc; 4621 int i; 4622 4623 /* Prevent stats update while adapter is being reset, or if the pci 4624 * connection is down. 4625 */ 4626 if (adapter->link_speed == 0) 4627 return; 4628 if (pci_channel_offline(pdev)) 4629 return; 4630 4631 packets = 0; 4632 bytes = 0; 4633 4634 rcu_read_lock(); 4635 for (i = 0; i < adapter->num_rx_queues; i++) { 4636 struct igc_ring *ring = adapter->rx_ring[i]; 4637 u32 rqdpc = rd32(IGC_RQDPC(i)); 4638 4639 if (hw->mac.type >= igc_i225) 4640 wr32(IGC_RQDPC(i), 0); 4641 4642 if (rqdpc) { 4643 ring->rx_stats.drops += rqdpc; 4644 net_stats->rx_fifo_errors += rqdpc; 4645 } 4646 4647 do { 4648 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 4649 _bytes = ring->rx_stats.bytes; 4650 _packets = ring->rx_stats.packets; 4651 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 4652 bytes += _bytes; 4653 packets += _packets; 4654 } 4655 4656 net_stats->rx_bytes = bytes; 4657 net_stats->rx_packets = packets; 4658 4659 packets = 0; 4660 bytes = 0; 4661 for (i = 0; i < adapter->num_tx_queues; i++) { 4662 struct igc_ring *ring = adapter->tx_ring[i]; 4663 4664 do { 4665 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 4666 _bytes = ring->tx_stats.bytes; 4667 _packets = ring->tx_stats.packets; 4668 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 4669 bytes += _bytes; 4670 packets += _packets; 4671 } 4672 net_stats->tx_bytes = bytes; 4673 net_stats->tx_packets = packets; 4674 rcu_read_unlock(); 4675 4676 /* read stats registers */ 4677 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 4678 adapter->stats.gprc += rd32(IGC_GPRC); 4679 adapter->stats.gorc += rd32(IGC_GORCL); 4680 rd32(IGC_GORCH); /* clear GORCL */ 4681 adapter->stats.bprc += rd32(IGC_BPRC); 4682 adapter->stats.mprc += rd32(IGC_MPRC); 4683 adapter->stats.roc += rd32(IGC_ROC); 4684 4685 adapter->stats.prc64 += rd32(IGC_PRC64); 4686 adapter->stats.prc127 += rd32(IGC_PRC127); 4687 adapter->stats.prc255 += rd32(IGC_PRC255); 4688 adapter->stats.prc511 += rd32(IGC_PRC511); 4689 adapter->stats.prc1023 += rd32(IGC_PRC1023); 4690 adapter->stats.prc1522 += rd32(IGC_PRC1522); 4691 adapter->stats.tlpic += rd32(IGC_TLPIC); 4692 adapter->stats.rlpic += rd32(IGC_RLPIC); 4693 adapter->stats.hgptc += rd32(IGC_HGPTC); 4694 4695 mpc = rd32(IGC_MPC); 4696 adapter->stats.mpc += mpc; 4697 net_stats->rx_fifo_errors += mpc; 4698 adapter->stats.scc += rd32(IGC_SCC); 4699 adapter->stats.ecol += rd32(IGC_ECOL); 4700 adapter->stats.mcc += rd32(IGC_MCC); 4701 adapter->stats.latecol += rd32(IGC_LATECOL); 4702 adapter->stats.dc += rd32(IGC_DC); 4703 adapter->stats.rlec += rd32(IGC_RLEC); 4704 adapter->stats.xonrxc += rd32(IGC_XONRXC); 4705 adapter->stats.xontxc += rd32(IGC_XONTXC); 4706 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 4707 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 4708 adapter->stats.fcruc += rd32(IGC_FCRUC); 4709 adapter->stats.gptc += rd32(IGC_GPTC); 4710 adapter->stats.gotc += rd32(IGC_GOTCL); 4711 rd32(IGC_GOTCH); /* clear GOTCL */ 4712 adapter->stats.rnbc += rd32(IGC_RNBC); 4713 adapter->stats.ruc += rd32(IGC_RUC); 4714 adapter->stats.rfc += rd32(IGC_RFC); 4715 adapter->stats.rjc += rd32(IGC_RJC); 4716 adapter->stats.tor += rd32(IGC_TORH); 4717 adapter->stats.tot += rd32(IGC_TOTH); 4718 adapter->stats.tpr += rd32(IGC_TPR); 4719 4720 adapter->stats.ptc64 += rd32(IGC_PTC64); 4721 adapter->stats.ptc127 += rd32(IGC_PTC127); 4722 adapter->stats.ptc255 += rd32(IGC_PTC255); 4723 adapter->stats.ptc511 += rd32(IGC_PTC511); 4724 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 4725 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 4726 4727 adapter->stats.mptc += rd32(IGC_MPTC); 4728 adapter->stats.bptc += rd32(IGC_BPTC); 4729 4730 adapter->stats.tpt += rd32(IGC_TPT); 4731 adapter->stats.colc += rd32(IGC_COLC); 4732 adapter->stats.colc += rd32(IGC_RERC); 4733 4734 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 4735 4736 adapter->stats.tsctc += rd32(IGC_TSCTC); 4737 4738 adapter->stats.iac += rd32(IGC_IAC); 4739 4740 /* Fill out the OS statistics structure */ 4741 net_stats->multicast = adapter->stats.mprc; 4742 net_stats->collisions = adapter->stats.colc; 4743 4744 /* Rx Errors */ 4745 4746 /* RLEC on some newer hardware can be incorrect so build 4747 * our own version based on RUC and ROC 4748 */ 4749 net_stats->rx_errors = adapter->stats.rxerrc + 4750 adapter->stats.crcerrs + adapter->stats.algnerrc + 4751 adapter->stats.ruc + adapter->stats.roc + 4752 adapter->stats.cexterr; 4753 net_stats->rx_length_errors = adapter->stats.ruc + 4754 adapter->stats.roc; 4755 net_stats->rx_crc_errors = adapter->stats.crcerrs; 4756 net_stats->rx_frame_errors = adapter->stats.algnerrc; 4757 net_stats->rx_missed_errors = adapter->stats.mpc; 4758 4759 /* Tx Errors */ 4760 net_stats->tx_errors = adapter->stats.ecol + 4761 adapter->stats.latecol; 4762 net_stats->tx_aborted_errors = adapter->stats.ecol; 4763 net_stats->tx_window_errors = adapter->stats.latecol; 4764 net_stats->tx_carrier_errors = adapter->stats.tncrs; 4765 4766 /* Tx Dropped needs to be maintained elsewhere */ 4767 4768 /* Management Stats */ 4769 adapter->stats.mgptc += rd32(IGC_MGTPTC); 4770 adapter->stats.mgprc += rd32(IGC_MGTPRC); 4771 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 4772 } 4773 4774 /** 4775 * igc_down - Close the interface 4776 * @adapter: board private structure 4777 */ 4778 void igc_down(struct igc_adapter *adapter) 4779 { 4780 struct net_device *netdev = adapter->netdev; 4781 struct igc_hw *hw = &adapter->hw; 4782 u32 tctl, rctl; 4783 int i = 0; 4784 4785 set_bit(__IGC_DOWN, &adapter->state); 4786 4787 igc_ptp_suspend(adapter); 4788 4789 if (pci_device_is_present(adapter->pdev)) { 4790 /* disable receives in the hardware */ 4791 rctl = rd32(IGC_RCTL); 4792 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 4793 /* flush and sleep below */ 4794 } 4795 /* set trans_start so we don't get spurious watchdogs during reset */ 4796 netif_trans_update(netdev); 4797 4798 netif_carrier_off(netdev); 4799 netif_tx_stop_all_queues(netdev); 4800 4801 if (pci_device_is_present(adapter->pdev)) { 4802 /* disable transmits in the hardware */ 4803 tctl = rd32(IGC_TCTL); 4804 tctl &= ~IGC_TCTL_EN; 4805 wr32(IGC_TCTL, tctl); 4806 /* flush both disables and wait for them to finish */ 4807 wrfl(); 4808 usleep_range(10000, 20000); 4809 4810 igc_irq_disable(adapter); 4811 } 4812 4813 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 4814 4815 for (i = 0; i < adapter->num_q_vectors; i++) { 4816 if (adapter->q_vector[i]) { 4817 napi_synchronize(&adapter->q_vector[i]->napi); 4818 napi_disable(&adapter->q_vector[i]->napi); 4819 } 4820 } 4821 4822 del_timer_sync(&adapter->watchdog_timer); 4823 del_timer_sync(&adapter->phy_info_timer); 4824 4825 /* record the stats before reset*/ 4826 spin_lock(&adapter->stats64_lock); 4827 igc_update_stats(adapter); 4828 spin_unlock(&adapter->stats64_lock); 4829 4830 adapter->link_speed = 0; 4831 adapter->link_duplex = 0; 4832 4833 if (!pci_channel_offline(adapter->pdev)) 4834 igc_reset(adapter); 4835 4836 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 4837 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 4838 4839 igc_clean_all_tx_rings(adapter); 4840 igc_clean_all_rx_rings(adapter); 4841 } 4842 4843 void igc_reinit_locked(struct igc_adapter *adapter) 4844 { 4845 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 4846 usleep_range(1000, 2000); 4847 igc_down(adapter); 4848 igc_up(adapter); 4849 clear_bit(__IGC_RESETTING, &adapter->state); 4850 } 4851 4852 static void igc_reset_task(struct work_struct *work) 4853 { 4854 struct igc_adapter *adapter; 4855 4856 adapter = container_of(work, struct igc_adapter, reset_task); 4857 4858 rtnl_lock(); 4859 /* If we're already down or resetting, just bail */ 4860 if (test_bit(__IGC_DOWN, &adapter->state) || 4861 test_bit(__IGC_RESETTING, &adapter->state)) { 4862 rtnl_unlock(); 4863 return; 4864 } 4865 4866 igc_rings_dump(adapter); 4867 igc_regs_dump(adapter); 4868 netdev_err(adapter->netdev, "Reset adapter\n"); 4869 igc_reinit_locked(adapter); 4870 rtnl_unlock(); 4871 } 4872 4873 /** 4874 * igc_change_mtu - Change the Maximum Transfer Unit 4875 * @netdev: network interface device structure 4876 * @new_mtu: new value for maximum frame size 4877 * 4878 * Returns 0 on success, negative on failure 4879 */ 4880 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 4881 { 4882 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4883 struct igc_adapter *adapter = netdev_priv(netdev); 4884 4885 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 4886 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 4887 return -EINVAL; 4888 } 4889 4890 /* adjust max frame to be at least the size of a standard frame */ 4891 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 4892 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 4893 4894 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 4895 usleep_range(1000, 2000); 4896 4897 /* igc_down has a dependency on max_frame_size */ 4898 adapter->max_frame_size = max_frame; 4899 4900 if (netif_running(netdev)) 4901 igc_down(adapter); 4902 4903 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 4904 netdev->mtu = new_mtu; 4905 4906 if (netif_running(netdev)) 4907 igc_up(adapter); 4908 else 4909 igc_reset(adapter); 4910 4911 clear_bit(__IGC_RESETTING, &adapter->state); 4912 4913 return 0; 4914 } 4915 4916 /** 4917 * igc_get_stats64 - Get System Network Statistics 4918 * @netdev: network interface device structure 4919 * @stats: rtnl_link_stats64 pointer 4920 * 4921 * Returns the address of the device statistics structure. 4922 * The statistics are updated here and also from the timer callback. 4923 */ 4924 static void igc_get_stats64(struct net_device *netdev, 4925 struct rtnl_link_stats64 *stats) 4926 { 4927 struct igc_adapter *adapter = netdev_priv(netdev); 4928 4929 spin_lock(&adapter->stats64_lock); 4930 if (!test_bit(__IGC_RESETTING, &adapter->state)) 4931 igc_update_stats(adapter); 4932 memcpy(stats, &adapter->stats64, sizeof(*stats)); 4933 spin_unlock(&adapter->stats64_lock); 4934 } 4935 4936 static netdev_features_t igc_fix_features(struct net_device *netdev, 4937 netdev_features_t features) 4938 { 4939 /* Since there is no support for separate Rx/Tx vlan accel 4940 * enable/disable make sure Tx flag is always in same state as Rx. 4941 */ 4942 if (features & NETIF_F_HW_VLAN_CTAG_RX) 4943 features |= NETIF_F_HW_VLAN_CTAG_TX; 4944 else 4945 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4946 4947 return features; 4948 } 4949 4950 static int igc_set_features(struct net_device *netdev, 4951 netdev_features_t features) 4952 { 4953 netdev_features_t changed = netdev->features ^ features; 4954 struct igc_adapter *adapter = netdev_priv(netdev); 4955 4956 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 4957 igc_vlan_mode(netdev, features); 4958 4959 /* Add VLAN support */ 4960 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 4961 return 0; 4962 4963 if (!(features & NETIF_F_NTUPLE)) 4964 igc_flush_nfc_rules(adapter); 4965 4966 netdev->features = features; 4967 4968 if (netif_running(netdev)) 4969 igc_reinit_locked(adapter); 4970 else 4971 igc_reset(adapter); 4972 4973 return 1; 4974 } 4975 4976 static netdev_features_t 4977 igc_features_check(struct sk_buff *skb, struct net_device *dev, 4978 netdev_features_t features) 4979 { 4980 unsigned int network_hdr_len, mac_hdr_len; 4981 4982 /* Make certain the headers can be described by a context descriptor */ 4983 mac_hdr_len = skb_network_header(skb) - skb->data; 4984 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 4985 return features & ~(NETIF_F_HW_CSUM | 4986 NETIF_F_SCTP_CRC | 4987 NETIF_F_HW_VLAN_CTAG_TX | 4988 NETIF_F_TSO | 4989 NETIF_F_TSO6); 4990 4991 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4992 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 4993 return features & ~(NETIF_F_HW_CSUM | 4994 NETIF_F_SCTP_CRC | 4995 NETIF_F_TSO | 4996 NETIF_F_TSO6); 4997 4998 /* We can only support IPv4 TSO in tunnels if we can mangle the 4999 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5000 */ 5001 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5002 features &= ~NETIF_F_TSO; 5003 5004 return features; 5005 } 5006 5007 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5008 { 5009 u32 ack, tsauxc, sec, nsec, tsicr; 5010 struct igc_hw *hw = &adapter->hw; 5011 struct ptp_clock_event event; 5012 struct timespec64 ts; 5013 5014 tsicr = rd32(IGC_TSICR); 5015 ack = 0; 5016 5017 if (tsicr & IGC_TSICR_SYS_WRAP) { 5018 event.type = PTP_CLOCK_PPS; 5019 if (adapter->ptp_caps.pps) 5020 ptp_clock_event(adapter->ptp_clock, &event); 5021 ack |= IGC_TSICR_SYS_WRAP; 5022 } 5023 5024 if (tsicr & IGC_TSICR_TXTS) { 5025 /* retrieve hardware timestamp */ 5026 schedule_work(&adapter->ptp_tx_work); 5027 ack |= IGC_TSICR_TXTS; 5028 } 5029 5030 if (tsicr & IGC_TSICR_TT0) { 5031 spin_lock(&adapter->tmreg_lock); 5032 ts = timespec64_add(adapter->perout[0].start, 5033 adapter->perout[0].period); 5034 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5035 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5036 tsauxc = rd32(IGC_TSAUXC); 5037 tsauxc |= IGC_TSAUXC_EN_TT0; 5038 wr32(IGC_TSAUXC, tsauxc); 5039 adapter->perout[0].start = ts; 5040 spin_unlock(&adapter->tmreg_lock); 5041 ack |= IGC_TSICR_TT0; 5042 } 5043 5044 if (tsicr & IGC_TSICR_TT1) { 5045 spin_lock(&adapter->tmreg_lock); 5046 ts = timespec64_add(adapter->perout[1].start, 5047 adapter->perout[1].period); 5048 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5049 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5050 tsauxc = rd32(IGC_TSAUXC); 5051 tsauxc |= IGC_TSAUXC_EN_TT1; 5052 wr32(IGC_TSAUXC, tsauxc); 5053 adapter->perout[1].start = ts; 5054 spin_unlock(&adapter->tmreg_lock); 5055 ack |= IGC_TSICR_TT1; 5056 } 5057 5058 if (tsicr & IGC_TSICR_AUTT0) { 5059 nsec = rd32(IGC_AUXSTMPL0); 5060 sec = rd32(IGC_AUXSTMPH0); 5061 event.type = PTP_CLOCK_EXTTS; 5062 event.index = 0; 5063 event.timestamp = sec * NSEC_PER_SEC + nsec; 5064 ptp_clock_event(adapter->ptp_clock, &event); 5065 ack |= IGC_TSICR_AUTT0; 5066 } 5067 5068 if (tsicr & IGC_TSICR_AUTT1) { 5069 nsec = rd32(IGC_AUXSTMPL1); 5070 sec = rd32(IGC_AUXSTMPH1); 5071 event.type = PTP_CLOCK_EXTTS; 5072 event.index = 1; 5073 event.timestamp = sec * NSEC_PER_SEC + nsec; 5074 ptp_clock_event(adapter->ptp_clock, &event); 5075 ack |= IGC_TSICR_AUTT1; 5076 } 5077 5078 /* acknowledge the interrupts */ 5079 wr32(IGC_TSICR, ack); 5080 } 5081 5082 /** 5083 * igc_msix_other - msix other interrupt handler 5084 * @irq: interrupt number 5085 * @data: pointer to a q_vector 5086 */ 5087 static irqreturn_t igc_msix_other(int irq, void *data) 5088 { 5089 struct igc_adapter *adapter = data; 5090 struct igc_hw *hw = &adapter->hw; 5091 u32 icr = rd32(IGC_ICR); 5092 5093 /* reading ICR causes bit 31 of EICR to be cleared */ 5094 if (icr & IGC_ICR_DRSTA) 5095 schedule_work(&adapter->reset_task); 5096 5097 if (icr & IGC_ICR_DOUTSYNC) { 5098 /* HW is reporting DMA is out of sync */ 5099 adapter->stats.doosync++; 5100 } 5101 5102 if (icr & IGC_ICR_LSC) { 5103 hw->mac.get_link_status = true; 5104 /* guard against interrupt when we're going down */ 5105 if (!test_bit(__IGC_DOWN, &adapter->state)) 5106 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5107 } 5108 5109 if (icr & IGC_ICR_TS) 5110 igc_tsync_interrupt(adapter); 5111 5112 wr32(IGC_EIMS, adapter->eims_other); 5113 5114 return IRQ_HANDLED; 5115 } 5116 5117 static void igc_write_itr(struct igc_q_vector *q_vector) 5118 { 5119 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5120 5121 if (!q_vector->set_itr) 5122 return; 5123 5124 if (!itr_val) 5125 itr_val = IGC_ITR_VAL_MASK; 5126 5127 itr_val |= IGC_EITR_CNT_IGNR; 5128 5129 writel(itr_val, q_vector->itr_register); 5130 q_vector->set_itr = 0; 5131 } 5132 5133 static irqreturn_t igc_msix_ring(int irq, void *data) 5134 { 5135 struct igc_q_vector *q_vector = data; 5136 5137 /* Write the ITR value calculated from the previous interrupt. */ 5138 igc_write_itr(q_vector); 5139 5140 napi_schedule(&q_vector->napi); 5141 5142 return IRQ_HANDLED; 5143 } 5144 5145 /** 5146 * igc_request_msix - Initialize MSI-X interrupts 5147 * @adapter: Pointer to adapter structure 5148 * 5149 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5150 * kernel. 5151 */ 5152 static int igc_request_msix(struct igc_adapter *adapter) 5153 { 5154 unsigned int num_q_vectors = adapter->num_q_vectors; 5155 int i = 0, err = 0, vector = 0, free_vector = 0; 5156 struct net_device *netdev = adapter->netdev; 5157 5158 err = request_irq(adapter->msix_entries[vector].vector, 5159 &igc_msix_other, 0, netdev->name, adapter); 5160 if (err) 5161 goto err_out; 5162 5163 if (num_q_vectors > MAX_Q_VECTORS) { 5164 num_q_vectors = MAX_Q_VECTORS; 5165 dev_warn(&adapter->pdev->dev, 5166 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5167 adapter->num_q_vectors, MAX_Q_VECTORS); 5168 } 5169 for (i = 0; i < num_q_vectors; i++) { 5170 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5171 5172 vector++; 5173 5174 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5175 5176 if (q_vector->rx.ring && q_vector->tx.ring) 5177 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5178 q_vector->rx.ring->queue_index); 5179 else if (q_vector->tx.ring) 5180 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5181 q_vector->tx.ring->queue_index); 5182 else if (q_vector->rx.ring) 5183 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5184 q_vector->rx.ring->queue_index); 5185 else 5186 sprintf(q_vector->name, "%s-unused", netdev->name); 5187 5188 err = request_irq(adapter->msix_entries[vector].vector, 5189 igc_msix_ring, 0, q_vector->name, 5190 q_vector); 5191 if (err) 5192 goto err_free; 5193 } 5194 5195 igc_configure_msix(adapter); 5196 return 0; 5197 5198 err_free: 5199 /* free already assigned IRQs */ 5200 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5201 5202 vector--; 5203 for (i = 0; i < vector; i++) { 5204 free_irq(adapter->msix_entries[free_vector++].vector, 5205 adapter->q_vector[i]); 5206 } 5207 err_out: 5208 return err; 5209 } 5210 5211 /** 5212 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5213 * @adapter: Pointer to adapter structure 5214 * 5215 * This function resets the device so that it has 0 rx queues, tx queues, and 5216 * MSI-X interrupts allocated. 5217 */ 5218 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5219 { 5220 igc_free_q_vectors(adapter); 5221 igc_reset_interrupt_capability(adapter); 5222 } 5223 5224 /* Need to wait a few seconds after link up to get diagnostic information from 5225 * the phy 5226 */ 5227 static void igc_update_phy_info(struct timer_list *t) 5228 { 5229 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5230 5231 igc_get_phy_info(&adapter->hw); 5232 } 5233 5234 /** 5235 * igc_has_link - check shared code for link and determine up/down 5236 * @adapter: pointer to driver private info 5237 */ 5238 bool igc_has_link(struct igc_adapter *adapter) 5239 { 5240 struct igc_hw *hw = &adapter->hw; 5241 bool link_active = false; 5242 5243 /* get_link_status is set on LSC (link status) interrupt or 5244 * rx sequence error interrupt. get_link_status will stay 5245 * false until the igc_check_for_link establishes link 5246 * for copper adapters ONLY 5247 */ 5248 if (!hw->mac.get_link_status) 5249 return true; 5250 hw->mac.ops.check_for_link(hw); 5251 link_active = !hw->mac.get_link_status; 5252 5253 if (hw->mac.type == igc_i225) { 5254 if (!netif_carrier_ok(adapter->netdev)) { 5255 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5256 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5257 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5258 adapter->link_check_timeout = jiffies; 5259 } 5260 } 5261 5262 return link_active; 5263 } 5264 5265 /** 5266 * igc_watchdog - Timer Call-back 5267 * @t: timer for the watchdog 5268 */ 5269 static void igc_watchdog(struct timer_list *t) 5270 { 5271 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5272 /* Do the rest outside of interrupt context */ 5273 schedule_work(&adapter->watchdog_task); 5274 } 5275 5276 static void igc_watchdog_task(struct work_struct *work) 5277 { 5278 struct igc_adapter *adapter = container_of(work, 5279 struct igc_adapter, 5280 watchdog_task); 5281 struct net_device *netdev = adapter->netdev; 5282 struct igc_hw *hw = &adapter->hw; 5283 struct igc_phy_info *phy = &hw->phy; 5284 u16 phy_data, retry_count = 20; 5285 u32 link; 5286 int i; 5287 5288 link = igc_has_link(adapter); 5289 5290 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5291 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5292 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5293 else 5294 link = false; 5295 } 5296 5297 if (link) { 5298 /* Cancel scheduled suspend requests. */ 5299 pm_runtime_resume(netdev->dev.parent); 5300 5301 if (!netif_carrier_ok(netdev)) { 5302 u32 ctrl; 5303 5304 hw->mac.ops.get_speed_and_duplex(hw, 5305 &adapter->link_speed, 5306 &adapter->link_duplex); 5307 5308 ctrl = rd32(IGC_CTRL); 5309 /* Link status message must follow this format */ 5310 netdev_info(netdev, 5311 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5312 adapter->link_speed, 5313 adapter->link_duplex == FULL_DUPLEX ? 5314 "Full" : "Half", 5315 (ctrl & IGC_CTRL_TFCE) && 5316 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5317 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5318 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5319 5320 /* disable EEE if enabled */ 5321 if ((adapter->flags & IGC_FLAG_EEE) && 5322 adapter->link_duplex == HALF_DUPLEX) { 5323 netdev_info(netdev, 5324 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5325 adapter->hw.dev_spec._base.eee_enable = false; 5326 adapter->flags &= ~IGC_FLAG_EEE; 5327 } 5328 5329 /* check if SmartSpeed worked */ 5330 igc_check_downshift(hw); 5331 if (phy->speed_downgraded) 5332 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5333 5334 /* adjust timeout factor according to speed/duplex */ 5335 adapter->tx_timeout_factor = 1; 5336 switch (adapter->link_speed) { 5337 case SPEED_10: 5338 adapter->tx_timeout_factor = 14; 5339 break; 5340 case SPEED_100: 5341 case SPEED_1000: 5342 case SPEED_2500: 5343 adapter->tx_timeout_factor = 7; 5344 break; 5345 } 5346 5347 if (adapter->link_speed != SPEED_1000) 5348 goto no_wait; 5349 5350 /* wait for Remote receiver status OK */ 5351 retry_read_status: 5352 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5353 &phy_data)) { 5354 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5355 retry_count) { 5356 msleep(100); 5357 retry_count--; 5358 goto retry_read_status; 5359 } else if (!retry_count) { 5360 netdev_err(netdev, "exceed max 2 second\n"); 5361 } 5362 } else { 5363 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5364 } 5365 no_wait: 5366 netif_carrier_on(netdev); 5367 5368 /* link state has changed, schedule phy info update */ 5369 if (!test_bit(__IGC_DOWN, &adapter->state)) 5370 mod_timer(&adapter->phy_info_timer, 5371 round_jiffies(jiffies + 2 * HZ)); 5372 } 5373 } else { 5374 if (netif_carrier_ok(netdev)) { 5375 adapter->link_speed = 0; 5376 adapter->link_duplex = 0; 5377 5378 /* Links status message must follow this format */ 5379 netdev_info(netdev, "NIC Link is Down\n"); 5380 netif_carrier_off(netdev); 5381 5382 /* link state has changed, schedule phy info update */ 5383 if (!test_bit(__IGC_DOWN, &adapter->state)) 5384 mod_timer(&adapter->phy_info_timer, 5385 round_jiffies(jiffies + 2 * HZ)); 5386 5387 /* link is down, time to check for alternate media */ 5388 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 5389 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 5390 schedule_work(&adapter->reset_task); 5391 /* return immediately */ 5392 return; 5393 } 5394 } 5395 pm_schedule_suspend(netdev->dev.parent, 5396 MSEC_PER_SEC * 5); 5397 5398 /* also check for alternate media here */ 5399 } else if (!netif_carrier_ok(netdev) && 5400 (adapter->flags & IGC_FLAG_MAS_ENABLE)) { 5401 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 5402 schedule_work(&adapter->reset_task); 5403 /* return immediately */ 5404 return; 5405 } 5406 } 5407 } 5408 5409 spin_lock(&adapter->stats64_lock); 5410 igc_update_stats(adapter); 5411 spin_unlock(&adapter->stats64_lock); 5412 5413 for (i = 0; i < adapter->num_tx_queues; i++) { 5414 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5415 5416 if (!netif_carrier_ok(netdev)) { 5417 /* We've lost link, so the controller stops DMA, 5418 * but we've got queued Tx work that's never going 5419 * to get done, so reset controller to flush Tx. 5420 * (Do the reset outside of interrupt context). 5421 */ 5422 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5423 adapter->tx_timeout_count++; 5424 schedule_work(&adapter->reset_task); 5425 /* return immediately since reset is imminent */ 5426 return; 5427 } 5428 } 5429 5430 /* Force detection of hung controller every watchdog period */ 5431 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5432 } 5433 5434 /* Cause software interrupt to ensure Rx ring is cleaned */ 5435 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5436 u32 eics = 0; 5437 5438 for (i = 0; i < adapter->num_q_vectors; i++) 5439 eics |= adapter->q_vector[i]->eims_value; 5440 wr32(IGC_EICS, eics); 5441 } else { 5442 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5443 } 5444 5445 igc_ptp_tx_hang(adapter); 5446 5447 /* Reset the timer */ 5448 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5449 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5450 mod_timer(&adapter->watchdog_timer, 5451 round_jiffies(jiffies + HZ)); 5452 else 5453 mod_timer(&adapter->watchdog_timer, 5454 round_jiffies(jiffies + 2 * HZ)); 5455 } 5456 } 5457 5458 /** 5459 * igc_intr_msi - Interrupt Handler 5460 * @irq: interrupt number 5461 * @data: pointer to a network interface device structure 5462 */ 5463 static irqreturn_t igc_intr_msi(int irq, void *data) 5464 { 5465 struct igc_adapter *adapter = data; 5466 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5467 struct igc_hw *hw = &adapter->hw; 5468 /* read ICR disables interrupts using IAM */ 5469 u32 icr = rd32(IGC_ICR); 5470 5471 igc_write_itr(q_vector); 5472 5473 if (icr & IGC_ICR_DRSTA) 5474 schedule_work(&adapter->reset_task); 5475 5476 if (icr & IGC_ICR_DOUTSYNC) { 5477 /* HW is reporting DMA is out of sync */ 5478 adapter->stats.doosync++; 5479 } 5480 5481 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5482 hw->mac.get_link_status = true; 5483 if (!test_bit(__IGC_DOWN, &adapter->state)) 5484 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5485 } 5486 5487 if (icr & IGC_ICR_TS) 5488 igc_tsync_interrupt(adapter); 5489 5490 napi_schedule(&q_vector->napi); 5491 5492 return IRQ_HANDLED; 5493 } 5494 5495 /** 5496 * igc_intr - Legacy Interrupt Handler 5497 * @irq: interrupt number 5498 * @data: pointer to a network interface device structure 5499 */ 5500 static irqreturn_t igc_intr(int irq, void *data) 5501 { 5502 struct igc_adapter *adapter = data; 5503 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5504 struct igc_hw *hw = &adapter->hw; 5505 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5506 * need for the IMC write 5507 */ 5508 u32 icr = rd32(IGC_ICR); 5509 5510 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5511 * not set, then the adapter didn't send an interrupt 5512 */ 5513 if (!(icr & IGC_ICR_INT_ASSERTED)) 5514 return IRQ_NONE; 5515 5516 igc_write_itr(q_vector); 5517 5518 if (icr & IGC_ICR_DRSTA) 5519 schedule_work(&adapter->reset_task); 5520 5521 if (icr & IGC_ICR_DOUTSYNC) { 5522 /* HW is reporting DMA is out of sync */ 5523 adapter->stats.doosync++; 5524 } 5525 5526 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5527 hw->mac.get_link_status = true; 5528 /* guard against interrupt when we're going down */ 5529 if (!test_bit(__IGC_DOWN, &adapter->state)) 5530 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5531 } 5532 5533 if (icr & IGC_ICR_TS) 5534 igc_tsync_interrupt(adapter); 5535 5536 napi_schedule(&q_vector->napi); 5537 5538 return IRQ_HANDLED; 5539 } 5540 5541 static void igc_free_irq(struct igc_adapter *adapter) 5542 { 5543 if (adapter->msix_entries) { 5544 int vector = 0, i; 5545 5546 free_irq(adapter->msix_entries[vector++].vector, adapter); 5547 5548 for (i = 0; i < adapter->num_q_vectors; i++) 5549 free_irq(adapter->msix_entries[vector++].vector, 5550 adapter->q_vector[i]); 5551 } else { 5552 free_irq(adapter->pdev->irq, adapter); 5553 } 5554 } 5555 5556 /** 5557 * igc_request_irq - initialize interrupts 5558 * @adapter: Pointer to adapter structure 5559 * 5560 * Attempts to configure interrupts using the best available 5561 * capabilities of the hardware and kernel. 5562 */ 5563 static int igc_request_irq(struct igc_adapter *adapter) 5564 { 5565 struct net_device *netdev = adapter->netdev; 5566 struct pci_dev *pdev = adapter->pdev; 5567 int err = 0; 5568 5569 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5570 err = igc_request_msix(adapter); 5571 if (!err) 5572 goto request_done; 5573 /* fall back to MSI */ 5574 igc_free_all_tx_resources(adapter); 5575 igc_free_all_rx_resources(adapter); 5576 5577 igc_clear_interrupt_scheme(adapter); 5578 err = igc_init_interrupt_scheme(adapter, false); 5579 if (err) 5580 goto request_done; 5581 igc_setup_all_tx_resources(adapter); 5582 igc_setup_all_rx_resources(adapter); 5583 igc_configure(adapter); 5584 } 5585 5586 igc_assign_vector(adapter->q_vector[0], 0); 5587 5588 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5589 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5590 netdev->name, adapter); 5591 if (!err) 5592 goto request_done; 5593 5594 /* fall back to legacy interrupts */ 5595 igc_reset_interrupt_capability(adapter); 5596 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5597 } 5598 5599 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5600 netdev->name, adapter); 5601 5602 if (err) 5603 netdev_err(netdev, "Error %d getting interrupt\n", err); 5604 5605 request_done: 5606 return err; 5607 } 5608 5609 /** 5610 * __igc_open - Called when a network interface is made active 5611 * @netdev: network interface device structure 5612 * @resuming: boolean indicating if the device is resuming 5613 * 5614 * Returns 0 on success, negative value on failure 5615 * 5616 * The open entry point is called when a network interface is made 5617 * active by the system (IFF_UP). At this point all resources needed 5618 * for transmit and receive operations are allocated, the interrupt 5619 * handler is registered with the OS, the watchdog timer is started, 5620 * and the stack is notified that the interface is ready. 5621 */ 5622 static int __igc_open(struct net_device *netdev, bool resuming) 5623 { 5624 struct igc_adapter *adapter = netdev_priv(netdev); 5625 struct pci_dev *pdev = adapter->pdev; 5626 struct igc_hw *hw = &adapter->hw; 5627 int err = 0; 5628 int i = 0; 5629 5630 /* disallow open during test */ 5631 5632 if (test_bit(__IGC_TESTING, &adapter->state)) { 5633 WARN_ON(resuming); 5634 return -EBUSY; 5635 } 5636 5637 if (!resuming) 5638 pm_runtime_get_sync(&pdev->dev); 5639 5640 netif_carrier_off(netdev); 5641 5642 /* allocate transmit descriptors */ 5643 err = igc_setup_all_tx_resources(adapter); 5644 if (err) 5645 goto err_setup_tx; 5646 5647 /* allocate receive descriptors */ 5648 err = igc_setup_all_rx_resources(adapter); 5649 if (err) 5650 goto err_setup_rx; 5651 5652 igc_power_up_link(adapter); 5653 5654 igc_configure(adapter); 5655 5656 err = igc_request_irq(adapter); 5657 if (err) 5658 goto err_req_irq; 5659 5660 /* Notify the stack of the actual queue counts. */ 5661 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 5662 if (err) 5663 goto err_set_queues; 5664 5665 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 5666 if (err) 5667 goto err_set_queues; 5668 5669 clear_bit(__IGC_DOWN, &adapter->state); 5670 5671 for (i = 0; i < adapter->num_q_vectors; i++) 5672 napi_enable(&adapter->q_vector[i]->napi); 5673 5674 /* Clear any pending interrupts. */ 5675 rd32(IGC_ICR); 5676 igc_irq_enable(adapter); 5677 5678 if (!resuming) 5679 pm_runtime_put(&pdev->dev); 5680 5681 netif_tx_start_all_queues(netdev); 5682 5683 /* start the watchdog. */ 5684 hw->mac.get_link_status = true; 5685 schedule_work(&adapter->watchdog_task); 5686 5687 return IGC_SUCCESS; 5688 5689 err_set_queues: 5690 igc_free_irq(adapter); 5691 err_req_irq: 5692 igc_release_hw_control(adapter); 5693 igc_power_down_phy_copper_base(&adapter->hw); 5694 igc_free_all_rx_resources(adapter); 5695 err_setup_rx: 5696 igc_free_all_tx_resources(adapter); 5697 err_setup_tx: 5698 igc_reset(adapter); 5699 if (!resuming) 5700 pm_runtime_put(&pdev->dev); 5701 5702 return err; 5703 } 5704 5705 int igc_open(struct net_device *netdev) 5706 { 5707 return __igc_open(netdev, false); 5708 } 5709 5710 /** 5711 * __igc_close - Disables a network interface 5712 * @netdev: network interface device structure 5713 * @suspending: boolean indicating the device is suspending 5714 * 5715 * Returns 0, this is not allowed to fail 5716 * 5717 * The close entry point is called when an interface is de-activated 5718 * by the OS. The hardware is still under the driver's control, but 5719 * needs to be disabled. A global MAC reset is issued to stop the 5720 * hardware, and all transmit and receive resources are freed. 5721 */ 5722 static int __igc_close(struct net_device *netdev, bool suspending) 5723 { 5724 struct igc_adapter *adapter = netdev_priv(netdev); 5725 struct pci_dev *pdev = adapter->pdev; 5726 5727 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 5728 5729 if (!suspending) 5730 pm_runtime_get_sync(&pdev->dev); 5731 5732 igc_down(adapter); 5733 5734 igc_release_hw_control(adapter); 5735 5736 igc_free_irq(adapter); 5737 5738 igc_free_all_tx_resources(adapter); 5739 igc_free_all_rx_resources(adapter); 5740 5741 if (!suspending) 5742 pm_runtime_put_sync(&pdev->dev); 5743 5744 return 0; 5745 } 5746 5747 int igc_close(struct net_device *netdev) 5748 { 5749 if (netif_device_present(netdev) || netdev->dismantle) 5750 return __igc_close(netdev, false); 5751 return 0; 5752 } 5753 5754 /** 5755 * igc_ioctl - Access the hwtstamp interface 5756 * @netdev: network interface device structure 5757 * @ifr: interface request data 5758 * @cmd: ioctl command 5759 **/ 5760 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5761 { 5762 switch (cmd) { 5763 case SIOCGHWTSTAMP: 5764 return igc_ptp_get_ts_config(netdev, ifr); 5765 case SIOCSHWTSTAMP: 5766 return igc_ptp_set_ts_config(netdev, ifr); 5767 default: 5768 return -EOPNOTSUPP; 5769 } 5770 } 5771 5772 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 5773 bool enable) 5774 { 5775 struct igc_ring *ring; 5776 5777 if (queue < 0 || queue >= adapter->num_tx_queues) 5778 return -EINVAL; 5779 5780 ring = adapter->tx_ring[queue]; 5781 ring->launchtime_enable = enable; 5782 5783 return 0; 5784 } 5785 5786 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 5787 { 5788 struct timespec64 b; 5789 5790 b = ktime_to_timespec64(base_time); 5791 5792 return timespec64_compare(now, &b) > 0; 5793 } 5794 5795 static bool validate_schedule(struct igc_adapter *adapter, 5796 const struct tc_taprio_qopt_offload *qopt) 5797 { 5798 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 5799 struct timespec64 now; 5800 size_t n; 5801 5802 if (qopt->cycle_time_extension) 5803 return false; 5804 5805 igc_ptp_read(adapter, &now); 5806 5807 /* If we program the controller's BASET registers with a time 5808 * in the future, it will hold all the packets until that 5809 * time, causing a lot of TX Hangs, so to avoid that, we 5810 * reject schedules that would start in the future. 5811 */ 5812 if (!is_base_time_past(qopt->base_time, &now)) 5813 return false; 5814 5815 for (n = 0; n < qopt->num_entries; n++) { 5816 const struct tc_taprio_sched_entry *e; 5817 int i; 5818 5819 e = &qopt->entries[n]; 5820 5821 /* i225 only supports "global" frame preemption 5822 * settings. 5823 */ 5824 if (e->command != TC_TAPRIO_CMD_SET_GATES) 5825 return false; 5826 5827 for (i = 0; i < adapter->num_tx_queues; i++) { 5828 if (e->gate_mask & BIT(i)) 5829 queue_uses[i]++; 5830 5831 if (queue_uses[i] > 1) 5832 return false; 5833 } 5834 } 5835 5836 return true; 5837 } 5838 5839 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 5840 struct tc_etf_qopt_offload *qopt) 5841 { 5842 struct igc_hw *hw = &adapter->hw; 5843 int err; 5844 5845 if (hw->mac.type != igc_i225) 5846 return -EOPNOTSUPP; 5847 5848 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 5849 if (err) 5850 return err; 5851 5852 return igc_tsn_offload_apply(adapter); 5853 } 5854 5855 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 5856 { 5857 int i; 5858 5859 adapter->base_time = 0; 5860 adapter->cycle_time = NSEC_PER_SEC; 5861 5862 for (i = 0; i < adapter->num_tx_queues; i++) { 5863 struct igc_ring *ring = adapter->tx_ring[i]; 5864 5865 ring->start_time = 0; 5866 ring->end_time = NSEC_PER_SEC; 5867 } 5868 5869 return 0; 5870 } 5871 5872 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 5873 struct tc_taprio_qopt_offload *qopt) 5874 { 5875 u32 start_time = 0, end_time = 0; 5876 size_t n; 5877 5878 if (!qopt->enable) 5879 return igc_tsn_clear_schedule(adapter); 5880 5881 if (adapter->base_time) 5882 return -EALREADY; 5883 5884 if (!validate_schedule(adapter, qopt)) 5885 return -EINVAL; 5886 5887 adapter->cycle_time = qopt->cycle_time; 5888 adapter->base_time = qopt->base_time; 5889 5890 /* FIXME: be a little smarter about cases when the gate for a 5891 * queue stays open for more than one entry. 5892 */ 5893 for (n = 0; n < qopt->num_entries; n++) { 5894 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 5895 int i; 5896 5897 end_time += e->interval; 5898 5899 for (i = 0; i < adapter->num_tx_queues; i++) { 5900 struct igc_ring *ring = adapter->tx_ring[i]; 5901 5902 if (!(e->gate_mask & BIT(i))) 5903 continue; 5904 5905 ring->start_time = start_time; 5906 ring->end_time = end_time; 5907 } 5908 5909 start_time += e->interval; 5910 } 5911 5912 return 0; 5913 } 5914 5915 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 5916 struct tc_taprio_qopt_offload *qopt) 5917 { 5918 struct igc_hw *hw = &adapter->hw; 5919 int err; 5920 5921 if (hw->mac.type != igc_i225) 5922 return -EOPNOTSUPP; 5923 5924 err = igc_save_qbv_schedule(adapter, qopt); 5925 if (err) 5926 return err; 5927 5928 return igc_tsn_offload_apply(adapter); 5929 } 5930 5931 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 5932 bool enable, int idleslope, int sendslope, 5933 int hicredit, int locredit) 5934 { 5935 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 5936 struct net_device *netdev = adapter->netdev; 5937 struct igc_ring *ring; 5938 int i; 5939 5940 /* i225 has two sets of credit-based shaper logic. 5941 * Supporting it only on the top two priority queues 5942 */ 5943 if (queue < 0 || queue > 1) 5944 return -EINVAL; 5945 5946 ring = adapter->tx_ring[queue]; 5947 5948 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 5949 if (adapter->tx_ring[i]) 5950 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 5951 5952 /* CBS should be enabled on the highest priority queue first in order 5953 * for the CBS algorithm to operate as intended. 5954 */ 5955 if (enable) { 5956 if (queue == 1 && !cbs_status[0]) { 5957 netdev_err(netdev, 5958 "Enabling CBS on queue1 before queue0\n"); 5959 return -EINVAL; 5960 } 5961 } else { 5962 if (queue == 0 && cbs_status[1]) { 5963 netdev_err(netdev, 5964 "Disabling CBS on queue0 before queue1\n"); 5965 return -EINVAL; 5966 } 5967 } 5968 5969 ring->cbs_enable = enable; 5970 ring->idleslope = idleslope; 5971 ring->sendslope = sendslope; 5972 ring->hicredit = hicredit; 5973 ring->locredit = locredit; 5974 5975 return 0; 5976 } 5977 5978 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 5979 struct tc_cbs_qopt_offload *qopt) 5980 { 5981 struct igc_hw *hw = &adapter->hw; 5982 int err; 5983 5984 if (hw->mac.type != igc_i225) 5985 return -EOPNOTSUPP; 5986 5987 if (qopt->queue < 0 || qopt->queue > 1) 5988 return -EINVAL; 5989 5990 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 5991 qopt->idleslope, qopt->sendslope, 5992 qopt->hicredit, qopt->locredit); 5993 if (err) 5994 return err; 5995 5996 return igc_tsn_offload_apply(adapter); 5997 } 5998 5999 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6000 void *type_data) 6001 { 6002 struct igc_adapter *adapter = netdev_priv(dev); 6003 6004 switch (type) { 6005 case TC_SETUP_QDISC_TAPRIO: 6006 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6007 6008 case TC_SETUP_QDISC_ETF: 6009 return igc_tsn_enable_launchtime(adapter, type_data); 6010 6011 case TC_SETUP_QDISC_CBS: 6012 return igc_tsn_enable_cbs(adapter, type_data); 6013 6014 default: 6015 return -EOPNOTSUPP; 6016 } 6017 } 6018 6019 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6020 { 6021 struct igc_adapter *adapter = netdev_priv(dev); 6022 6023 switch (bpf->command) { 6024 case XDP_SETUP_PROG: 6025 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6026 case XDP_SETUP_XSK_POOL: 6027 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6028 bpf->xsk.queue_id); 6029 default: 6030 return -EOPNOTSUPP; 6031 } 6032 } 6033 6034 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6035 struct xdp_frame **frames, u32 flags) 6036 { 6037 struct igc_adapter *adapter = netdev_priv(dev); 6038 int cpu = smp_processor_id(); 6039 struct netdev_queue *nq; 6040 struct igc_ring *ring; 6041 int i, drops; 6042 6043 if (unlikely(test_bit(__IGC_DOWN, &adapter->state))) 6044 return -ENETDOWN; 6045 6046 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6047 return -EINVAL; 6048 6049 ring = igc_xdp_get_tx_ring(adapter, cpu); 6050 nq = txring_txq(ring); 6051 6052 __netif_tx_lock(nq, cpu); 6053 6054 drops = 0; 6055 for (i = 0; i < num_frames; i++) { 6056 int err; 6057 struct xdp_frame *xdpf = frames[i]; 6058 6059 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6060 if (err) { 6061 xdp_return_frame_rx_napi(xdpf); 6062 drops++; 6063 } 6064 } 6065 6066 if (flags & XDP_XMIT_FLUSH) 6067 igc_flush_tx_descriptors(ring); 6068 6069 __netif_tx_unlock(nq); 6070 6071 return num_frames - drops; 6072 } 6073 6074 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6075 struct igc_q_vector *q_vector) 6076 { 6077 struct igc_hw *hw = &adapter->hw; 6078 u32 eics = 0; 6079 6080 eics |= q_vector->eims_value; 6081 wr32(IGC_EICS, eics); 6082 } 6083 6084 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6085 { 6086 struct igc_adapter *adapter = netdev_priv(dev); 6087 struct igc_q_vector *q_vector; 6088 struct igc_ring *ring; 6089 6090 if (test_bit(__IGC_DOWN, &adapter->state)) 6091 return -ENETDOWN; 6092 6093 if (!igc_xdp_is_enabled(adapter)) 6094 return -ENXIO; 6095 6096 if (queue_id >= adapter->num_rx_queues) 6097 return -EINVAL; 6098 6099 ring = adapter->rx_ring[queue_id]; 6100 6101 if (!ring->xsk_pool) 6102 return -ENXIO; 6103 6104 q_vector = adapter->q_vector[queue_id]; 6105 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6106 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6107 6108 return 0; 6109 } 6110 6111 static const struct net_device_ops igc_netdev_ops = { 6112 .ndo_open = igc_open, 6113 .ndo_stop = igc_close, 6114 .ndo_start_xmit = igc_xmit_frame, 6115 .ndo_set_rx_mode = igc_set_rx_mode, 6116 .ndo_set_mac_address = igc_set_mac, 6117 .ndo_change_mtu = igc_change_mtu, 6118 .ndo_get_stats64 = igc_get_stats64, 6119 .ndo_fix_features = igc_fix_features, 6120 .ndo_set_features = igc_set_features, 6121 .ndo_features_check = igc_features_check, 6122 .ndo_eth_ioctl = igc_ioctl, 6123 .ndo_setup_tc = igc_setup_tc, 6124 .ndo_bpf = igc_bpf, 6125 .ndo_xdp_xmit = igc_xdp_xmit, 6126 .ndo_xsk_wakeup = igc_xsk_wakeup, 6127 }; 6128 6129 /* PCIe configuration access */ 6130 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6131 { 6132 struct igc_adapter *adapter = hw->back; 6133 6134 pci_read_config_word(adapter->pdev, reg, value); 6135 } 6136 6137 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6138 { 6139 struct igc_adapter *adapter = hw->back; 6140 6141 pci_write_config_word(adapter->pdev, reg, *value); 6142 } 6143 6144 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6145 { 6146 struct igc_adapter *adapter = hw->back; 6147 6148 if (!pci_is_pcie(adapter->pdev)) 6149 return -IGC_ERR_CONFIG; 6150 6151 pcie_capability_read_word(adapter->pdev, reg, value); 6152 6153 return IGC_SUCCESS; 6154 } 6155 6156 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6157 { 6158 struct igc_adapter *adapter = hw->back; 6159 6160 if (!pci_is_pcie(adapter->pdev)) 6161 return -IGC_ERR_CONFIG; 6162 6163 pcie_capability_write_word(adapter->pdev, reg, *value); 6164 6165 return IGC_SUCCESS; 6166 } 6167 6168 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6169 { 6170 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6171 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6172 u32 value = 0; 6173 6174 value = readl(&hw_addr[reg]); 6175 6176 /* reads should not return all F's */ 6177 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6178 struct net_device *netdev = igc->netdev; 6179 6180 hw->hw_addr = NULL; 6181 netif_device_detach(netdev); 6182 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6183 WARN(pci_device_is_present(igc->pdev), 6184 "igc: Failed to read reg 0x%x!\n", reg); 6185 } 6186 6187 return value; 6188 } 6189 6190 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx) 6191 { 6192 struct igc_mac_info *mac = &adapter->hw.mac; 6193 6194 mac->autoneg = false; 6195 6196 /* Make sure dplx is at most 1 bit and lsb of speed is not set 6197 * for the switch() below to work 6198 */ 6199 if ((spd & 1) || (dplx & ~1)) 6200 goto err_inval; 6201 6202 switch (spd + dplx) { 6203 case SPEED_10 + DUPLEX_HALF: 6204 mac->forced_speed_duplex = ADVERTISE_10_HALF; 6205 break; 6206 case SPEED_10 + DUPLEX_FULL: 6207 mac->forced_speed_duplex = ADVERTISE_10_FULL; 6208 break; 6209 case SPEED_100 + DUPLEX_HALF: 6210 mac->forced_speed_duplex = ADVERTISE_100_HALF; 6211 break; 6212 case SPEED_100 + DUPLEX_FULL: 6213 mac->forced_speed_duplex = ADVERTISE_100_FULL; 6214 break; 6215 case SPEED_1000 + DUPLEX_FULL: 6216 mac->autoneg = true; 6217 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 6218 break; 6219 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 6220 goto err_inval; 6221 case SPEED_2500 + DUPLEX_FULL: 6222 mac->autoneg = true; 6223 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL; 6224 break; 6225 case SPEED_2500 + DUPLEX_HALF: /* not supported */ 6226 default: 6227 goto err_inval; 6228 } 6229 6230 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 6231 adapter->hw.phy.mdix = AUTO_ALL_MODES; 6232 6233 return 0; 6234 6235 err_inval: 6236 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n"); 6237 return -EINVAL; 6238 } 6239 6240 /** 6241 * igc_probe - Device Initialization Routine 6242 * @pdev: PCI device information struct 6243 * @ent: entry in igc_pci_tbl 6244 * 6245 * Returns 0 on success, negative on failure 6246 * 6247 * igc_probe initializes an adapter identified by a pci_dev structure. 6248 * The OS initialization, configuring the adapter private structure, 6249 * and a hardware reset occur. 6250 */ 6251 static int igc_probe(struct pci_dev *pdev, 6252 const struct pci_device_id *ent) 6253 { 6254 struct igc_adapter *adapter; 6255 struct net_device *netdev; 6256 struct igc_hw *hw; 6257 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6258 int err; 6259 6260 err = pci_enable_device_mem(pdev); 6261 if (err) 6262 return err; 6263 6264 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6265 if (err) { 6266 dev_err(&pdev->dev, 6267 "No usable DMA configuration, aborting\n"); 6268 goto err_dma; 6269 } 6270 6271 err = pci_request_mem_regions(pdev, igc_driver_name); 6272 if (err) 6273 goto err_pci_reg; 6274 6275 pci_enable_pcie_error_reporting(pdev); 6276 6277 err = pci_enable_ptm(pdev, NULL); 6278 if (err < 0) 6279 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6280 6281 pci_set_master(pdev); 6282 6283 err = -ENOMEM; 6284 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6285 IGC_MAX_TX_QUEUES); 6286 6287 if (!netdev) 6288 goto err_alloc_etherdev; 6289 6290 SET_NETDEV_DEV(netdev, &pdev->dev); 6291 6292 pci_set_drvdata(pdev, netdev); 6293 adapter = netdev_priv(netdev); 6294 adapter->netdev = netdev; 6295 adapter->pdev = pdev; 6296 hw = &adapter->hw; 6297 hw->back = adapter; 6298 adapter->port_num = hw->bus.func; 6299 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6300 6301 err = pci_save_state(pdev); 6302 if (err) 6303 goto err_ioremap; 6304 6305 err = -EIO; 6306 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6307 pci_resource_len(pdev, 0)); 6308 if (!adapter->io_addr) 6309 goto err_ioremap; 6310 6311 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6312 hw->hw_addr = adapter->io_addr; 6313 6314 netdev->netdev_ops = &igc_netdev_ops; 6315 igc_ethtool_set_ops(netdev); 6316 netdev->watchdog_timeo = 5 * HZ; 6317 6318 netdev->mem_start = pci_resource_start(pdev, 0); 6319 netdev->mem_end = pci_resource_end(pdev, 0); 6320 6321 /* PCI config space info */ 6322 hw->vendor_id = pdev->vendor; 6323 hw->device_id = pdev->device; 6324 hw->revision_id = pdev->revision; 6325 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6326 hw->subsystem_device_id = pdev->subsystem_device; 6327 6328 /* Copy the default MAC and PHY function pointers */ 6329 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6330 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6331 6332 /* Initialize skew-specific constants */ 6333 err = ei->get_invariants(hw); 6334 if (err) 6335 goto err_sw_init; 6336 6337 /* Add supported features to the features list*/ 6338 netdev->features |= NETIF_F_SG; 6339 netdev->features |= NETIF_F_TSO; 6340 netdev->features |= NETIF_F_TSO6; 6341 netdev->features |= NETIF_F_TSO_ECN; 6342 netdev->features |= NETIF_F_RXCSUM; 6343 netdev->features |= NETIF_F_HW_CSUM; 6344 netdev->features |= NETIF_F_SCTP_CRC; 6345 netdev->features |= NETIF_F_HW_TC; 6346 6347 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6348 NETIF_F_GSO_GRE_CSUM | \ 6349 NETIF_F_GSO_IPXIP4 | \ 6350 NETIF_F_GSO_IPXIP6 | \ 6351 NETIF_F_GSO_UDP_TUNNEL | \ 6352 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6353 6354 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6355 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6356 6357 /* setup the private structure */ 6358 err = igc_sw_init(adapter); 6359 if (err) 6360 goto err_sw_init; 6361 6362 /* copy netdev features into list of user selectable features */ 6363 netdev->hw_features |= NETIF_F_NTUPLE; 6364 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6365 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6366 netdev->hw_features |= netdev->features; 6367 6368 netdev->features |= NETIF_F_HIGHDMA; 6369 6370 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6371 netdev->mpls_features |= NETIF_F_HW_CSUM; 6372 netdev->hw_enc_features |= netdev->vlan_features; 6373 6374 /* MTU range: 68 - 9216 */ 6375 netdev->min_mtu = ETH_MIN_MTU; 6376 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6377 6378 /* before reading the NVM, reset the controller to put the device in a 6379 * known good starting state 6380 */ 6381 hw->mac.ops.reset_hw(hw); 6382 6383 if (igc_get_flash_presence_i225(hw)) { 6384 if (hw->nvm.ops.validate(hw) < 0) { 6385 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6386 err = -EIO; 6387 goto err_eeprom; 6388 } 6389 } 6390 6391 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6392 /* copy the MAC address out of the NVM */ 6393 if (hw->mac.ops.read_mac_addr(hw)) 6394 dev_err(&pdev->dev, "NVM Read Error\n"); 6395 } 6396 6397 eth_hw_addr_set(netdev, hw->mac.addr); 6398 6399 if (!is_valid_ether_addr(netdev->dev_addr)) { 6400 dev_err(&pdev->dev, "Invalid MAC Address\n"); 6401 err = -EIO; 6402 goto err_eeprom; 6403 } 6404 6405 /* configure RXPBSIZE and TXPBSIZE */ 6406 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 6407 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 6408 6409 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 6410 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 6411 6412 INIT_WORK(&adapter->reset_task, igc_reset_task); 6413 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 6414 6415 /* Initialize link properties that are user-changeable */ 6416 adapter->fc_autoneg = true; 6417 hw->mac.autoneg = true; 6418 hw->phy.autoneg_advertised = 0xaf; 6419 6420 hw->fc.requested_mode = igc_fc_default; 6421 hw->fc.current_mode = igc_fc_default; 6422 6423 /* By default, support wake on port A */ 6424 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 6425 6426 /* initialize the wol settings based on the eeprom settings */ 6427 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 6428 adapter->wol |= IGC_WUFC_MAG; 6429 6430 device_set_wakeup_enable(&adapter->pdev->dev, 6431 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 6432 6433 igc_ptp_init(adapter); 6434 6435 igc_tsn_clear_schedule(adapter); 6436 6437 /* reset the hardware with the new settings */ 6438 igc_reset(adapter); 6439 6440 /* let the f/w know that the h/w is now under the control of the 6441 * driver. 6442 */ 6443 igc_get_hw_control(adapter); 6444 6445 strncpy(netdev->name, "eth%d", IFNAMSIZ); 6446 err = register_netdev(netdev); 6447 if (err) 6448 goto err_register; 6449 6450 /* carrier off reporting is important to ethtool even BEFORE open */ 6451 netif_carrier_off(netdev); 6452 6453 /* Check if Media Autosense is enabled */ 6454 adapter->ei = *ei; 6455 6456 /* print pcie link status and MAC address */ 6457 pcie_print_link_status(pdev); 6458 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 6459 6460 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 6461 /* Disable EEE for internal PHY devices */ 6462 hw->dev_spec._base.eee_enable = false; 6463 adapter->flags &= ~IGC_FLAG_EEE; 6464 igc_set_eee_i225(hw, false, false, false); 6465 6466 pm_runtime_put_noidle(&pdev->dev); 6467 6468 return 0; 6469 6470 err_register: 6471 igc_release_hw_control(adapter); 6472 err_eeprom: 6473 if (!igc_check_reset_block(hw)) 6474 igc_reset_phy(hw); 6475 err_sw_init: 6476 igc_clear_interrupt_scheme(adapter); 6477 iounmap(adapter->io_addr); 6478 err_ioremap: 6479 free_netdev(netdev); 6480 err_alloc_etherdev: 6481 pci_disable_pcie_error_reporting(pdev); 6482 pci_release_mem_regions(pdev); 6483 err_pci_reg: 6484 err_dma: 6485 pci_disable_device(pdev); 6486 return err; 6487 } 6488 6489 /** 6490 * igc_remove - Device Removal Routine 6491 * @pdev: PCI device information struct 6492 * 6493 * igc_remove is called by the PCI subsystem to alert the driver 6494 * that it should release a PCI device. This could be caused by a 6495 * Hot-Plug event, or because the driver is going to be removed from 6496 * memory. 6497 */ 6498 static void igc_remove(struct pci_dev *pdev) 6499 { 6500 struct net_device *netdev = pci_get_drvdata(pdev); 6501 struct igc_adapter *adapter = netdev_priv(netdev); 6502 6503 pm_runtime_get_noresume(&pdev->dev); 6504 6505 igc_flush_nfc_rules(adapter); 6506 6507 igc_ptp_stop(adapter); 6508 6509 set_bit(__IGC_DOWN, &adapter->state); 6510 6511 del_timer_sync(&adapter->watchdog_timer); 6512 del_timer_sync(&adapter->phy_info_timer); 6513 6514 cancel_work_sync(&adapter->reset_task); 6515 cancel_work_sync(&adapter->watchdog_task); 6516 6517 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6518 * would have already happened in close and is redundant. 6519 */ 6520 igc_release_hw_control(adapter); 6521 unregister_netdev(netdev); 6522 6523 igc_clear_interrupt_scheme(adapter); 6524 pci_iounmap(pdev, adapter->io_addr); 6525 pci_release_mem_regions(pdev); 6526 6527 free_netdev(netdev); 6528 6529 pci_disable_pcie_error_reporting(pdev); 6530 6531 pci_disable_device(pdev); 6532 } 6533 6534 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 6535 bool runtime) 6536 { 6537 struct net_device *netdev = pci_get_drvdata(pdev); 6538 struct igc_adapter *adapter = netdev_priv(netdev); 6539 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 6540 struct igc_hw *hw = &adapter->hw; 6541 u32 ctrl, rctl, status; 6542 bool wake; 6543 6544 rtnl_lock(); 6545 netif_device_detach(netdev); 6546 6547 if (netif_running(netdev)) 6548 __igc_close(netdev, true); 6549 6550 igc_ptp_suspend(adapter); 6551 6552 igc_clear_interrupt_scheme(adapter); 6553 rtnl_unlock(); 6554 6555 status = rd32(IGC_STATUS); 6556 if (status & IGC_STATUS_LU) 6557 wufc &= ~IGC_WUFC_LNKC; 6558 6559 if (wufc) { 6560 igc_setup_rctl(adapter); 6561 igc_set_rx_mode(netdev); 6562 6563 /* turn on all-multi mode if wake on multicast is enabled */ 6564 if (wufc & IGC_WUFC_MC) { 6565 rctl = rd32(IGC_RCTL); 6566 rctl |= IGC_RCTL_MPE; 6567 wr32(IGC_RCTL, rctl); 6568 } 6569 6570 ctrl = rd32(IGC_CTRL); 6571 ctrl |= IGC_CTRL_ADVD3WUC; 6572 wr32(IGC_CTRL, ctrl); 6573 6574 /* Allow time for pending master requests to run */ 6575 igc_disable_pcie_master(hw); 6576 6577 wr32(IGC_WUC, IGC_WUC_PME_EN); 6578 wr32(IGC_WUFC, wufc); 6579 } else { 6580 wr32(IGC_WUC, 0); 6581 wr32(IGC_WUFC, 0); 6582 } 6583 6584 wake = wufc || adapter->en_mng_pt; 6585 if (!wake) 6586 igc_power_down_phy_copper_base(&adapter->hw); 6587 else 6588 igc_power_up_link(adapter); 6589 6590 if (enable_wake) 6591 *enable_wake = wake; 6592 6593 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6594 * would have already happened in close and is redundant. 6595 */ 6596 igc_release_hw_control(adapter); 6597 6598 pci_disable_device(pdev); 6599 6600 return 0; 6601 } 6602 6603 #ifdef CONFIG_PM 6604 static int __maybe_unused igc_runtime_suspend(struct device *dev) 6605 { 6606 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 6607 } 6608 6609 static void igc_deliver_wake_packet(struct net_device *netdev) 6610 { 6611 struct igc_adapter *adapter = netdev_priv(netdev); 6612 struct igc_hw *hw = &adapter->hw; 6613 struct sk_buff *skb; 6614 u32 wupl; 6615 6616 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 6617 6618 /* WUPM stores only the first 128 bytes of the wake packet. 6619 * Read the packet only if we have the whole thing. 6620 */ 6621 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 6622 return; 6623 6624 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 6625 if (!skb) 6626 return; 6627 6628 skb_put(skb, wupl); 6629 6630 /* Ensure reads are 32-bit aligned */ 6631 wupl = roundup(wupl, 4); 6632 6633 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 6634 6635 skb->protocol = eth_type_trans(skb, netdev); 6636 netif_rx(skb); 6637 } 6638 6639 static int __maybe_unused igc_resume(struct device *dev) 6640 { 6641 struct pci_dev *pdev = to_pci_dev(dev); 6642 struct net_device *netdev = pci_get_drvdata(pdev); 6643 struct igc_adapter *adapter = netdev_priv(netdev); 6644 struct igc_hw *hw = &adapter->hw; 6645 u32 err, val; 6646 6647 pci_set_power_state(pdev, PCI_D0); 6648 pci_restore_state(pdev); 6649 pci_save_state(pdev); 6650 6651 if (!pci_device_is_present(pdev)) 6652 return -ENODEV; 6653 err = pci_enable_device_mem(pdev); 6654 if (err) { 6655 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 6656 return err; 6657 } 6658 pci_set_master(pdev); 6659 6660 pci_enable_wake(pdev, PCI_D3hot, 0); 6661 pci_enable_wake(pdev, PCI_D3cold, 0); 6662 6663 if (igc_init_interrupt_scheme(adapter, true)) { 6664 netdev_err(netdev, "Unable to allocate memory for queues\n"); 6665 return -ENOMEM; 6666 } 6667 6668 igc_reset(adapter); 6669 6670 /* let the f/w know that the h/w is now under the control of the 6671 * driver. 6672 */ 6673 igc_get_hw_control(adapter); 6674 6675 val = rd32(IGC_WUS); 6676 if (val & WAKE_PKT_WUS) 6677 igc_deliver_wake_packet(netdev); 6678 6679 wr32(IGC_WUS, ~0); 6680 6681 rtnl_lock(); 6682 if (!err && netif_running(netdev)) 6683 err = __igc_open(netdev, true); 6684 6685 if (!err) 6686 netif_device_attach(netdev); 6687 rtnl_unlock(); 6688 6689 return err; 6690 } 6691 6692 static int __maybe_unused igc_runtime_resume(struct device *dev) 6693 { 6694 return igc_resume(dev); 6695 } 6696 6697 static int __maybe_unused igc_suspend(struct device *dev) 6698 { 6699 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 6700 } 6701 6702 static int __maybe_unused igc_runtime_idle(struct device *dev) 6703 { 6704 struct net_device *netdev = dev_get_drvdata(dev); 6705 struct igc_adapter *adapter = netdev_priv(netdev); 6706 6707 if (!igc_has_link(adapter)) 6708 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 6709 6710 return -EBUSY; 6711 } 6712 #endif /* CONFIG_PM */ 6713 6714 static void igc_shutdown(struct pci_dev *pdev) 6715 { 6716 bool wake; 6717 6718 __igc_shutdown(pdev, &wake, 0); 6719 6720 if (system_state == SYSTEM_POWER_OFF) { 6721 pci_wake_from_d3(pdev, wake); 6722 pci_set_power_state(pdev, PCI_D3hot); 6723 } 6724 } 6725 6726 /** 6727 * igc_io_error_detected - called when PCI error is detected 6728 * @pdev: Pointer to PCI device 6729 * @state: The current PCI connection state 6730 * 6731 * This function is called after a PCI bus error affecting 6732 * this device has been detected. 6733 **/ 6734 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 6735 pci_channel_state_t state) 6736 { 6737 struct net_device *netdev = pci_get_drvdata(pdev); 6738 struct igc_adapter *adapter = netdev_priv(netdev); 6739 6740 netif_device_detach(netdev); 6741 6742 if (state == pci_channel_io_perm_failure) 6743 return PCI_ERS_RESULT_DISCONNECT; 6744 6745 if (netif_running(netdev)) 6746 igc_down(adapter); 6747 pci_disable_device(pdev); 6748 6749 /* Request a slot reset. */ 6750 return PCI_ERS_RESULT_NEED_RESET; 6751 } 6752 6753 /** 6754 * igc_io_slot_reset - called after the PCI bus has been reset. 6755 * @pdev: Pointer to PCI device 6756 * 6757 * Restart the card from scratch, as if from a cold-boot. Implementation 6758 * resembles the first-half of the igc_resume routine. 6759 **/ 6760 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 6761 { 6762 struct net_device *netdev = pci_get_drvdata(pdev); 6763 struct igc_adapter *adapter = netdev_priv(netdev); 6764 struct igc_hw *hw = &adapter->hw; 6765 pci_ers_result_t result; 6766 6767 if (pci_enable_device_mem(pdev)) { 6768 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 6769 result = PCI_ERS_RESULT_DISCONNECT; 6770 } else { 6771 pci_set_master(pdev); 6772 pci_restore_state(pdev); 6773 pci_save_state(pdev); 6774 6775 pci_enable_wake(pdev, PCI_D3hot, 0); 6776 pci_enable_wake(pdev, PCI_D3cold, 0); 6777 6778 /* In case of PCI error, adapter loses its HW address 6779 * so we should re-assign it here. 6780 */ 6781 hw->hw_addr = adapter->io_addr; 6782 6783 igc_reset(adapter); 6784 wr32(IGC_WUS, ~0); 6785 result = PCI_ERS_RESULT_RECOVERED; 6786 } 6787 6788 return result; 6789 } 6790 6791 /** 6792 * igc_io_resume - called when traffic can start to flow again. 6793 * @pdev: Pointer to PCI device 6794 * 6795 * This callback is called when the error recovery driver tells us that 6796 * its OK to resume normal operation. Implementation resembles the 6797 * second-half of the igc_resume routine. 6798 */ 6799 static void igc_io_resume(struct pci_dev *pdev) 6800 { 6801 struct net_device *netdev = pci_get_drvdata(pdev); 6802 struct igc_adapter *adapter = netdev_priv(netdev); 6803 6804 rtnl_lock(); 6805 if (netif_running(netdev)) { 6806 if (igc_open(netdev)) { 6807 netdev_err(netdev, "igc_open failed after reset\n"); 6808 return; 6809 } 6810 } 6811 6812 netif_device_attach(netdev); 6813 6814 /* let the f/w know that the h/w is now under the control of the 6815 * driver. 6816 */ 6817 igc_get_hw_control(adapter); 6818 rtnl_unlock(); 6819 } 6820 6821 static const struct pci_error_handlers igc_err_handler = { 6822 .error_detected = igc_io_error_detected, 6823 .slot_reset = igc_io_slot_reset, 6824 .resume = igc_io_resume, 6825 }; 6826 6827 #ifdef CONFIG_PM 6828 static const struct dev_pm_ops igc_pm_ops = { 6829 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 6830 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 6831 igc_runtime_idle) 6832 }; 6833 #endif 6834 6835 static struct pci_driver igc_driver = { 6836 .name = igc_driver_name, 6837 .id_table = igc_pci_tbl, 6838 .probe = igc_probe, 6839 .remove = igc_remove, 6840 #ifdef CONFIG_PM 6841 .driver.pm = &igc_pm_ops, 6842 #endif 6843 .shutdown = igc_shutdown, 6844 .err_handler = &igc_err_handler, 6845 }; 6846 6847 /** 6848 * igc_reinit_queues - return error 6849 * @adapter: pointer to adapter structure 6850 */ 6851 int igc_reinit_queues(struct igc_adapter *adapter) 6852 { 6853 struct net_device *netdev = adapter->netdev; 6854 int err = 0; 6855 6856 if (netif_running(netdev)) 6857 igc_close(netdev); 6858 6859 igc_reset_interrupt_capability(adapter); 6860 6861 if (igc_init_interrupt_scheme(adapter, true)) { 6862 netdev_err(netdev, "Unable to allocate memory for queues\n"); 6863 return -ENOMEM; 6864 } 6865 6866 if (netif_running(netdev)) 6867 err = igc_open(netdev); 6868 6869 return err; 6870 } 6871 6872 /** 6873 * igc_get_hw_dev - return device 6874 * @hw: pointer to hardware structure 6875 * 6876 * used by hardware layer to print debugging information 6877 */ 6878 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 6879 { 6880 struct igc_adapter *adapter = hw->back; 6881 6882 return adapter->netdev; 6883 } 6884 6885 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 6886 { 6887 struct igc_hw *hw = &ring->q_vector->adapter->hw; 6888 u8 idx = ring->reg_idx; 6889 u32 rxdctl; 6890 6891 rxdctl = rd32(IGC_RXDCTL(idx)); 6892 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 6893 rxdctl |= IGC_RXDCTL_SWFLUSH; 6894 wr32(IGC_RXDCTL(idx), rxdctl); 6895 } 6896 6897 void igc_disable_rx_ring(struct igc_ring *ring) 6898 { 6899 igc_disable_rx_ring_hw(ring); 6900 igc_clean_rx_ring(ring); 6901 } 6902 6903 void igc_enable_rx_ring(struct igc_ring *ring) 6904 { 6905 struct igc_adapter *adapter = ring->q_vector->adapter; 6906 6907 igc_configure_rx_ring(adapter, ring); 6908 6909 if (ring->xsk_pool) 6910 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 6911 else 6912 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 6913 } 6914 6915 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 6916 { 6917 struct igc_hw *hw = &ring->q_vector->adapter->hw; 6918 u8 idx = ring->reg_idx; 6919 u32 txdctl; 6920 6921 txdctl = rd32(IGC_TXDCTL(idx)); 6922 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 6923 txdctl |= IGC_TXDCTL_SWFLUSH; 6924 wr32(IGC_TXDCTL(idx), txdctl); 6925 } 6926 6927 void igc_disable_tx_ring(struct igc_ring *ring) 6928 { 6929 igc_disable_tx_ring_hw(ring); 6930 igc_clean_tx_ring(ring); 6931 } 6932 6933 void igc_enable_tx_ring(struct igc_ring *ring) 6934 { 6935 struct igc_adapter *adapter = ring->q_vector->adapter; 6936 6937 igc_configure_tx_ring(adapter, ring); 6938 } 6939 6940 /** 6941 * igc_init_module - Driver Registration Routine 6942 * 6943 * igc_init_module is the first routine called when the driver is 6944 * loaded. All it does is register with the PCI subsystem. 6945 */ 6946 static int __init igc_init_module(void) 6947 { 6948 int ret; 6949 6950 pr_info("%s\n", igc_driver_string); 6951 pr_info("%s\n", igc_copyright); 6952 6953 ret = pci_register_driver(&igc_driver); 6954 return ret; 6955 } 6956 6957 module_init(igc_init_module); 6958 6959 /** 6960 * igc_exit_module - Driver Exit Cleanup Routine 6961 * 6962 * igc_exit_module is called just before the driver is removed 6963 * from memory. 6964 */ 6965 static void __exit igc_exit_module(void) 6966 { 6967 pci_unregister_driver(&igc_driver); 6968 } 6969 6970 module_exit(igc_exit_module); 6971 /* igc_main.c */ 6972