1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/aer.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/ip.h> 11 #include <linux/pm_runtime.h> 12 #include <net/pkt_sched.h> 13 14 #include <net/ipv6.h> 15 16 #include "igc.h" 17 #include "igc_hw.h" 18 #include "igc_tsn.h" 19 20 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 21 22 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 23 24 static int debug = -1; 25 26 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 27 MODULE_DESCRIPTION(DRV_SUMMARY); 28 MODULE_LICENSE("GPL v2"); 29 module_param(debug, int, 0); 30 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 31 32 char igc_driver_name[] = "igc"; 33 static const char igc_driver_string[] = DRV_SUMMARY; 34 static const char igc_copyright[] = 35 "Copyright(c) 2018 Intel Corporation."; 36 37 static const struct igc_info *igc_info_tbl[] = { 38 [board_base] = &igc_base_info, 39 }; 40 41 static const struct pci_device_id igc_pci_tbl[] = { 42 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 47 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 48 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 49 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 56 /* required last entry */ 57 {0, } 58 }; 59 60 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 61 62 enum latency_range { 63 lowest_latency = 0, 64 low_latency = 1, 65 bulk_latency = 2, 66 latency_invalid = 255 67 }; 68 69 void igc_reset(struct igc_adapter *adapter) 70 { 71 struct net_device *dev = adapter->netdev; 72 struct igc_hw *hw = &adapter->hw; 73 struct igc_fc_info *fc = &hw->fc; 74 u32 pba, hwm; 75 76 /* Repartition PBA for greater than 9k MTU if required */ 77 pba = IGC_PBA_34K; 78 79 /* flow control settings 80 * The high water mark must be low enough to fit one full frame 81 * after transmitting the pause frame. As such we must have enough 82 * space to allow for us to complete our current transmit and then 83 * receive the frame that is in progress from the link partner. 84 * Set it to: 85 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 86 */ 87 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 88 89 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 90 fc->low_water = fc->high_water - 16; 91 fc->pause_time = 0xFFFF; 92 fc->send_xon = 1; 93 fc->current_mode = fc->requested_mode; 94 95 hw->mac.ops.reset_hw(hw); 96 97 if (hw->mac.ops.init_hw(hw)) 98 netdev_err(dev, "Error on hardware initialization\n"); 99 100 /* Re-establish EEE setting */ 101 igc_set_eee_i225(hw, true, true, true); 102 103 if (!netif_running(adapter->netdev)) 104 igc_power_down_phy_copper_base(&adapter->hw); 105 106 /* Re-enable PTP, where applicable. */ 107 igc_ptp_reset(adapter); 108 109 /* Re-enable TSN offloading, where applicable. */ 110 igc_tsn_offload_apply(adapter); 111 112 igc_get_phy_info(hw); 113 } 114 115 /** 116 * igc_power_up_link - Power up the phy link 117 * @adapter: address of board private structure 118 */ 119 static void igc_power_up_link(struct igc_adapter *adapter) 120 { 121 igc_reset_phy(&adapter->hw); 122 123 igc_power_up_phy_copper(&adapter->hw); 124 125 igc_setup_link(&adapter->hw); 126 } 127 128 /** 129 * igc_release_hw_control - release control of the h/w to f/w 130 * @adapter: address of board private structure 131 * 132 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 133 * For ASF and Pass Through versions of f/w this means that the 134 * driver is no longer loaded. 135 */ 136 static void igc_release_hw_control(struct igc_adapter *adapter) 137 { 138 struct igc_hw *hw = &adapter->hw; 139 u32 ctrl_ext; 140 141 /* Let firmware take over control of h/w */ 142 ctrl_ext = rd32(IGC_CTRL_EXT); 143 wr32(IGC_CTRL_EXT, 144 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 145 } 146 147 /** 148 * igc_get_hw_control - get control of the h/w from f/w 149 * @adapter: address of board private structure 150 * 151 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 152 * For ASF and Pass Through versions of f/w this means that 153 * the driver is loaded. 154 */ 155 static void igc_get_hw_control(struct igc_adapter *adapter) 156 { 157 struct igc_hw *hw = &adapter->hw; 158 u32 ctrl_ext; 159 160 /* Let firmware know the driver has taken over */ 161 ctrl_ext = rd32(IGC_CTRL_EXT); 162 wr32(IGC_CTRL_EXT, 163 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 164 } 165 166 /** 167 * igc_clean_tx_ring - Free Tx Buffers 168 * @tx_ring: ring to be cleaned 169 */ 170 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 171 { 172 u16 i = tx_ring->next_to_clean; 173 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 174 175 while (i != tx_ring->next_to_use) { 176 union igc_adv_tx_desc *eop_desc, *tx_desc; 177 178 /* Free all the Tx ring sk_buffs */ 179 dev_kfree_skb_any(tx_buffer->skb); 180 181 /* unmap skb header data */ 182 dma_unmap_single(tx_ring->dev, 183 dma_unmap_addr(tx_buffer, dma), 184 dma_unmap_len(tx_buffer, len), 185 DMA_TO_DEVICE); 186 187 /* check for eop_desc to determine the end of the packet */ 188 eop_desc = tx_buffer->next_to_watch; 189 tx_desc = IGC_TX_DESC(tx_ring, i); 190 191 /* unmap remaining buffers */ 192 while (tx_desc != eop_desc) { 193 tx_buffer++; 194 tx_desc++; 195 i++; 196 if (unlikely(i == tx_ring->count)) { 197 i = 0; 198 tx_buffer = tx_ring->tx_buffer_info; 199 tx_desc = IGC_TX_DESC(tx_ring, 0); 200 } 201 202 /* unmap any remaining paged data */ 203 if (dma_unmap_len(tx_buffer, len)) 204 dma_unmap_page(tx_ring->dev, 205 dma_unmap_addr(tx_buffer, dma), 206 dma_unmap_len(tx_buffer, len), 207 DMA_TO_DEVICE); 208 } 209 210 /* move us one more past the eop_desc for start of next pkt */ 211 tx_buffer++; 212 i++; 213 if (unlikely(i == tx_ring->count)) { 214 i = 0; 215 tx_buffer = tx_ring->tx_buffer_info; 216 } 217 } 218 219 /* reset BQL for queue */ 220 netdev_tx_reset_queue(txring_txq(tx_ring)); 221 222 /* reset next_to_use and next_to_clean */ 223 tx_ring->next_to_use = 0; 224 tx_ring->next_to_clean = 0; 225 } 226 227 /** 228 * igc_free_tx_resources - Free Tx Resources per Queue 229 * @tx_ring: Tx descriptor ring for a specific queue 230 * 231 * Free all transmit software resources 232 */ 233 void igc_free_tx_resources(struct igc_ring *tx_ring) 234 { 235 igc_clean_tx_ring(tx_ring); 236 237 vfree(tx_ring->tx_buffer_info); 238 tx_ring->tx_buffer_info = NULL; 239 240 /* if not set, then don't free */ 241 if (!tx_ring->desc) 242 return; 243 244 dma_free_coherent(tx_ring->dev, tx_ring->size, 245 tx_ring->desc, tx_ring->dma); 246 247 tx_ring->desc = NULL; 248 } 249 250 /** 251 * igc_free_all_tx_resources - Free Tx Resources for All Queues 252 * @adapter: board private structure 253 * 254 * Free all transmit software resources 255 */ 256 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 257 { 258 int i; 259 260 for (i = 0; i < adapter->num_tx_queues; i++) 261 igc_free_tx_resources(adapter->tx_ring[i]); 262 } 263 264 /** 265 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 266 * @adapter: board private structure 267 */ 268 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 269 { 270 int i; 271 272 for (i = 0; i < adapter->num_tx_queues; i++) 273 if (adapter->tx_ring[i]) 274 igc_clean_tx_ring(adapter->tx_ring[i]); 275 } 276 277 /** 278 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 279 * @tx_ring: tx descriptor ring (for a specific queue) to setup 280 * 281 * Return 0 on success, negative on failure 282 */ 283 int igc_setup_tx_resources(struct igc_ring *tx_ring) 284 { 285 struct net_device *ndev = tx_ring->netdev; 286 struct device *dev = tx_ring->dev; 287 int size = 0; 288 289 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 290 tx_ring->tx_buffer_info = vzalloc(size); 291 if (!tx_ring->tx_buffer_info) 292 goto err; 293 294 /* round up to nearest 4K */ 295 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 296 tx_ring->size = ALIGN(tx_ring->size, 4096); 297 298 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 299 &tx_ring->dma, GFP_KERNEL); 300 301 if (!tx_ring->desc) 302 goto err; 303 304 tx_ring->next_to_use = 0; 305 tx_ring->next_to_clean = 0; 306 307 return 0; 308 309 err: 310 vfree(tx_ring->tx_buffer_info); 311 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 312 return -ENOMEM; 313 } 314 315 /** 316 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 317 * @adapter: board private structure 318 * 319 * Return 0 on success, negative on failure 320 */ 321 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 322 { 323 struct net_device *dev = adapter->netdev; 324 int i, err = 0; 325 326 for (i = 0; i < adapter->num_tx_queues; i++) { 327 err = igc_setup_tx_resources(adapter->tx_ring[i]); 328 if (err) { 329 netdev_err(dev, "Error on Tx queue %u setup\n", i); 330 for (i--; i >= 0; i--) 331 igc_free_tx_resources(adapter->tx_ring[i]); 332 break; 333 } 334 } 335 336 return err; 337 } 338 339 /** 340 * igc_clean_rx_ring - Free Rx Buffers per Queue 341 * @rx_ring: ring to free buffers from 342 */ 343 static void igc_clean_rx_ring(struct igc_ring *rx_ring) 344 { 345 u16 i = rx_ring->next_to_clean; 346 347 dev_kfree_skb(rx_ring->skb); 348 rx_ring->skb = NULL; 349 350 /* Free all the Rx ring sk_buffs */ 351 while (i != rx_ring->next_to_alloc) { 352 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 353 354 /* Invalidate cache lines that may have been written to by 355 * device so that we avoid corrupting memory. 356 */ 357 dma_sync_single_range_for_cpu(rx_ring->dev, 358 buffer_info->dma, 359 buffer_info->page_offset, 360 igc_rx_bufsz(rx_ring), 361 DMA_FROM_DEVICE); 362 363 /* free resources associated with mapping */ 364 dma_unmap_page_attrs(rx_ring->dev, 365 buffer_info->dma, 366 igc_rx_pg_size(rx_ring), 367 DMA_FROM_DEVICE, 368 IGC_RX_DMA_ATTR); 369 __page_frag_cache_drain(buffer_info->page, 370 buffer_info->pagecnt_bias); 371 372 i++; 373 if (i == rx_ring->count) 374 i = 0; 375 } 376 377 rx_ring->next_to_alloc = 0; 378 rx_ring->next_to_clean = 0; 379 rx_ring->next_to_use = 0; 380 } 381 382 /** 383 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 384 * @adapter: board private structure 385 */ 386 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 387 { 388 int i; 389 390 for (i = 0; i < adapter->num_rx_queues; i++) 391 if (adapter->rx_ring[i]) 392 igc_clean_rx_ring(adapter->rx_ring[i]); 393 } 394 395 /** 396 * igc_free_rx_resources - Free Rx Resources 397 * @rx_ring: ring to clean the resources from 398 * 399 * Free all receive software resources 400 */ 401 void igc_free_rx_resources(struct igc_ring *rx_ring) 402 { 403 igc_clean_rx_ring(rx_ring); 404 405 vfree(rx_ring->rx_buffer_info); 406 rx_ring->rx_buffer_info = NULL; 407 408 /* if not set, then don't free */ 409 if (!rx_ring->desc) 410 return; 411 412 dma_free_coherent(rx_ring->dev, rx_ring->size, 413 rx_ring->desc, rx_ring->dma); 414 415 rx_ring->desc = NULL; 416 } 417 418 /** 419 * igc_free_all_rx_resources - Free Rx Resources for All Queues 420 * @adapter: board private structure 421 * 422 * Free all receive software resources 423 */ 424 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 425 { 426 int i; 427 428 for (i = 0; i < adapter->num_rx_queues; i++) 429 igc_free_rx_resources(adapter->rx_ring[i]); 430 } 431 432 /** 433 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 434 * @rx_ring: rx descriptor ring (for a specific queue) to setup 435 * 436 * Returns 0 on success, negative on failure 437 */ 438 int igc_setup_rx_resources(struct igc_ring *rx_ring) 439 { 440 struct net_device *ndev = rx_ring->netdev; 441 struct device *dev = rx_ring->dev; 442 int size, desc_len; 443 444 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 445 rx_ring->rx_buffer_info = vzalloc(size); 446 if (!rx_ring->rx_buffer_info) 447 goto err; 448 449 desc_len = sizeof(union igc_adv_rx_desc); 450 451 /* Round up to nearest 4K */ 452 rx_ring->size = rx_ring->count * desc_len; 453 rx_ring->size = ALIGN(rx_ring->size, 4096); 454 455 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 456 &rx_ring->dma, GFP_KERNEL); 457 458 if (!rx_ring->desc) 459 goto err; 460 461 rx_ring->next_to_alloc = 0; 462 rx_ring->next_to_clean = 0; 463 rx_ring->next_to_use = 0; 464 465 return 0; 466 467 err: 468 vfree(rx_ring->rx_buffer_info); 469 rx_ring->rx_buffer_info = NULL; 470 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 471 return -ENOMEM; 472 } 473 474 /** 475 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 476 * (Descriptors) for all queues 477 * @adapter: board private structure 478 * 479 * Return 0 on success, negative on failure 480 */ 481 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 482 { 483 struct net_device *dev = adapter->netdev; 484 int i, err = 0; 485 486 for (i = 0; i < adapter->num_rx_queues; i++) { 487 err = igc_setup_rx_resources(adapter->rx_ring[i]); 488 if (err) { 489 netdev_err(dev, "Error on Rx queue %u setup\n", i); 490 for (i--; i >= 0; i--) 491 igc_free_rx_resources(adapter->rx_ring[i]); 492 break; 493 } 494 } 495 496 return err; 497 } 498 499 /** 500 * igc_configure_rx_ring - Configure a receive ring after Reset 501 * @adapter: board private structure 502 * @ring: receive ring to be configured 503 * 504 * Configure the Rx unit of the MAC after a reset. 505 */ 506 static void igc_configure_rx_ring(struct igc_adapter *adapter, 507 struct igc_ring *ring) 508 { 509 struct igc_hw *hw = &adapter->hw; 510 union igc_adv_rx_desc *rx_desc; 511 int reg_idx = ring->reg_idx; 512 u32 srrctl = 0, rxdctl = 0; 513 u64 rdba = ring->dma; 514 515 /* disable the queue */ 516 wr32(IGC_RXDCTL(reg_idx), 0); 517 518 /* Set DMA base address registers */ 519 wr32(IGC_RDBAL(reg_idx), 520 rdba & 0x00000000ffffffffULL); 521 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 522 wr32(IGC_RDLEN(reg_idx), 523 ring->count * sizeof(union igc_adv_rx_desc)); 524 525 /* initialize head and tail */ 526 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 527 wr32(IGC_RDH(reg_idx), 0); 528 writel(0, ring->tail); 529 530 /* reset next-to- use/clean to place SW in sync with hardware */ 531 ring->next_to_clean = 0; 532 ring->next_to_use = 0; 533 534 /* set descriptor configuration */ 535 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; 536 if (ring_uses_large_buffer(ring)) 537 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT; 538 else 539 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT; 540 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 541 542 wr32(IGC_SRRCTL(reg_idx), srrctl); 543 544 rxdctl |= IGC_RX_PTHRESH; 545 rxdctl |= IGC_RX_HTHRESH << 8; 546 rxdctl |= IGC_RX_WTHRESH << 16; 547 548 /* initialize rx_buffer_info */ 549 memset(ring->rx_buffer_info, 0, 550 sizeof(struct igc_rx_buffer) * ring->count); 551 552 /* initialize Rx descriptor 0 */ 553 rx_desc = IGC_RX_DESC(ring, 0); 554 rx_desc->wb.upper.length = 0; 555 556 /* enable receive descriptor fetching */ 557 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 558 559 wr32(IGC_RXDCTL(reg_idx), rxdctl); 560 } 561 562 /** 563 * igc_configure_rx - Configure receive Unit after Reset 564 * @adapter: board private structure 565 * 566 * Configure the Rx unit of the MAC after a reset. 567 */ 568 static void igc_configure_rx(struct igc_adapter *adapter) 569 { 570 int i; 571 572 /* Setup the HW Rx Head and Tail Descriptor Pointers and 573 * the Base and Length of the Rx Descriptor Ring 574 */ 575 for (i = 0; i < adapter->num_rx_queues; i++) 576 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 577 } 578 579 /** 580 * igc_configure_tx_ring - Configure transmit ring after Reset 581 * @adapter: board private structure 582 * @ring: tx ring to configure 583 * 584 * Configure a transmit ring after a reset. 585 */ 586 static void igc_configure_tx_ring(struct igc_adapter *adapter, 587 struct igc_ring *ring) 588 { 589 struct igc_hw *hw = &adapter->hw; 590 int reg_idx = ring->reg_idx; 591 u64 tdba = ring->dma; 592 u32 txdctl = 0; 593 594 /* disable the queue */ 595 wr32(IGC_TXDCTL(reg_idx), 0); 596 wrfl(); 597 mdelay(10); 598 599 wr32(IGC_TDLEN(reg_idx), 600 ring->count * sizeof(union igc_adv_tx_desc)); 601 wr32(IGC_TDBAL(reg_idx), 602 tdba & 0x00000000ffffffffULL); 603 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 604 605 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 606 wr32(IGC_TDH(reg_idx), 0); 607 writel(0, ring->tail); 608 609 txdctl |= IGC_TX_PTHRESH; 610 txdctl |= IGC_TX_HTHRESH << 8; 611 txdctl |= IGC_TX_WTHRESH << 16; 612 613 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 614 wr32(IGC_TXDCTL(reg_idx), txdctl); 615 } 616 617 /** 618 * igc_configure_tx - Configure transmit Unit after Reset 619 * @adapter: board private structure 620 * 621 * Configure the Tx unit of the MAC after a reset. 622 */ 623 static void igc_configure_tx(struct igc_adapter *adapter) 624 { 625 int i; 626 627 for (i = 0; i < adapter->num_tx_queues; i++) 628 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 629 } 630 631 /** 632 * igc_setup_mrqc - configure the multiple receive queue control registers 633 * @adapter: Board private structure 634 */ 635 static void igc_setup_mrqc(struct igc_adapter *adapter) 636 { 637 struct igc_hw *hw = &adapter->hw; 638 u32 j, num_rx_queues; 639 u32 mrqc, rxcsum; 640 u32 rss_key[10]; 641 642 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 643 for (j = 0; j < 10; j++) 644 wr32(IGC_RSSRK(j), rss_key[j]); 645 646 num_rx_queues = adapter->rss_queues; 647 648 if (adapter->rss_indir_tbl_init != num_rx_queues) { 649 for (j = 0; j < IGC_RETA_SIZE; j++) 650 adapter->rss_indir_tbl[j] = 651 (j * num_rx_queues) / IGC_RETA_SIZE; 652 adapter->rss_indir_tbl_init = num_rx_queues; 653 } 654 igc_write_rss_indir_tbl(adapter); 655 656 /* Disable raw packet checksumming so that RSS hash is placed in 657 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 658 * offloads as they are enabled by default 659 */ 660 rxcsum = rd32(IGC_RXCSUM); 661 rxcsum |= IGC_RXCSUM_PCSD; 662 663 /* Enable Receive Checksum Offload for SCTP */ 664 rxcsum |= IGC_RXCSUM_CRCOFL; 665 666 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 667 wr32(IGC_RXCSUM, rxcsum); 668 669 /* Generate RSS hash based on packet types, TCP/UDP 670 * port numbers and/or IPv4/v6 src and dst addresses 671 */ 672 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 673 IGC_MRQC_RSS_FIELD_IPV4_TCP | 674 IGC_MRQC_RSS_FIELD_IPV6 | 675 IGC_MRQC_RSS_FIELD_IPV6_TCP | 676 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 677 678 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 679 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 680 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 681 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 682 683 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 684 685 wr32(IGC_MRQC, mrqc); 686 } 687 688 /** 689 * igc_setup_rctl - configure the receive control registers 690 * @adapter: Board private structure 691 */ 692 static void igc_setup_rctl(struct igc_adapter *adapter) 693 { 694 struct igc_hw *hw = &adapter->hw; 695 u32 rctl; 696 697 rctl = rd32(IGC_RCTL); 698 699 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 700 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 701 702 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 703 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 704 705 /* enable stripping of CRC. Newer features require 706 * that the HW strips the CRC. 707 */ 708 rctl |= IGC_RCTL_SECRC; 709 710 /* disable store bad packets and clear size bits. */ 711 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 712 713 /* enable LPE to allow for reception of jumbo frames */ 714 rctl |= IGC_RCTL_LPE; 715 716 /* disable queue 0 to prevent tail write w/o re-config */ 717 wr32(IGC_RXDCTL(0), 0); 718 719 /* This is useful for sniffing bad packets. */ 720 if (adapter->netdev->features & NETIF_F_RXALL) { 721 /* UPE and MPE will be handled by normal PROMISC logic 722 * in set_rx_mode 723 */ 724 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 725 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 726 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 727 728 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 729 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 730 } 731 732 wr32(IGC_RCTL, rctl); 733 } 734 735 /** 736 * igc_setup_tctl - configure the transmit control registers 737 * @adapter: Board private structure 738 */ 739 static void igc_setup_tctl(struct igc_adapter *adapter) 740 { 741 struct igc_hw *hw = &adapter->hw; 742 u32 tctl; 743 744 /* disable queue 0 which icould be enabled by default */ 745 wr32(IGC_TXDCTL(0), 0); 746 747 /* Program the Transmit Control Register */ 748 tctl = rd32(IGC_TCTL); 749 tctl &= ~IGC_TCTL_CT; 750 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 751 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 752 753 /* Enable transmits */ 754 tctl |= IGC_TCTL_EN; 755 756 wr32(IGC_TCTL, tctl); 757 } 758 759 /** 760 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 761 * @adapter: Pointer to adapter where the filter should be set 762 * @index: Filter index 763 * @type: MAC address filter type (source or destination) 764 * @addr: MAC address 765 * @queue: If non-negative, queue assignment feature is enabled and frames 766 * matching the filter are enqueued onto 'queue'. Otherwise, queue 767 * assignment is disabled. 768 */ 769 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 770 enum igc_mac_filter_type type, 771 const u8 *addr, int queue) 772 { 773 struct net_device *dev = adapter->netdev; 774 struct igc_hw *hw = &adapter->hw; 775 u32 ral, rah; 776 777 if (WARN_ON(index >= hw->mac.rar_entry_count)) 778 return; 779 780 ral = le32_to_cpup((__le32 *)(addr)); 781 rah = le16_to_cpup((__le16 *)(addr + 4)); 782 783 if (type == IGC_MAC_FILTER_TYPE_SRC) { 784 rah &= ~IGC_RAH_ASEL_MASK; 785 rah |= IGC_RAH_ASEL_SRC_ADDR; 786 } 787 788 if (queue >= 0) { 789 rah &= ~IGC_RAH_QSEL_MASK; 790 rah |= (queue << IGC_RAH_QSEL_SHIFT); 791 rah |= IGC_RAH_QSEL_ENABLE; 792 } 793 794 rah |= IGC_RAH_AV; 795 796 wr32(IGC_RAL(index), ral); 797 wr32(IGC_RAH(index), rah); 798 799 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 800 } 801 802 /** 803 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 804 * @adapter: Pointer to adapter where the filter should be cleared 805 * @index: Filter index 806 */ 807 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 808 { 809 struct net_device *dev = adapter->netdev; 810 struct igc_hw *hw = &adapter->hw; 811 812 if (WARN_ON(index >= hw->mac.rar_entry_count)) 813 return; 814 815 wr32(IGC_RAL(index), 0); 816 wr32(IGC_RAH(index), 0); 817 818 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 819 } 820 821 /* Set default MAC address for the PF in the first RAR entry */ 822 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 823 { 824 struct net_device *dev = adapter->netdev; 825 u8 *addr = adapter->hw.mac.addr; 826 827 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 828 829 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 830 } 831 832 /** 833 * igc_set_mac - Change the Ethernet Address of the NIC 834 * @netdev: network interface device structure 835 * @p: pointer to an address structure 836 * 837 * Returns 0 on success, negative on failure 838 */ 839 static int igc_set_mac(struct net_device *netdev, void *p) 840 { 841 struct igc_adapter *adapter = netdev_priv(netdev); 842 struct igc_hw *hw = &adapter->hw; 843 struct sockaddr *addr = p; 844 845 if (!is_valid_ether_addr(addr->sa_data)) 846 return -EADDRNOTAVAIL; 847 848 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 849 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 850 851 /* set the correct pool for the new PF MAC address in entry 0 */ 852 igc_set_default_mac_filter(adapter); 853 854 return 0; 855 } 856 857 /** 858 * igc_write_mc_addr_list - write multicast addresses to MTA 859 * @netdev: network interface device structure 860 * 861 * Writes multicast address list to the MTA hash table. 862 * Returns: -ENOMEM on failure 863 * 0 on no addresses written 864 * X on writing X addresses to MTA 865 **/ 866 static int igc_write_mc_addr_list(struct net_device *netdev) 867 { 868 struct igc_adapter *adapter = netdev_priv(netdev); 869 struct igc_hw *hw = &adapter->hw; 870 struct netdev_hw_addr *ha; 871 u8 *mta_list; 872 int i; 873 874 if (netdev_mc_empty(netdev)) { 875 /* nothing to program, so clear mc list */ 876 igc_update_mc_addr_list(hw, NULL, 0); 877 return 0; 878 } 879 880 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 881 if (!mta_list) 882 return -ENOMEM; 883 884 /* The shared function expects a packed array of only addresses. */ 885 i = 0; 886 netdev_for_each_mc_addr(ha, netdev) 887 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 888 889 igc_update_mc_addr_list(hw, mta_list, i); 890 kfree(mta_list); 891 892 return netdev_mc_count(netdev); 893 } 894 895 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime) 896 { 897 ktime_t cycle_time = adapter->cycle_time; 898 ktime_t base_time = adapter->base_time; 899 u32 launchtime; 900 901 /* FIXME: when using ETF together with taprio, we may have a 902 * case where 'delta' is larger than the cycle_time, this may 903 * cause problems if we don't read the current value of 904 * IGC_BASET, as the value writen into the launchtime 905 * descriptor field may be misinterpreted. 906 */ 907 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime); 908 909 return cpu_to_le32(launchtime); 910 } 911 912 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 913 struct igc_tx_buffer *first, 914 u32 vlan_macip_lens, u32 type_tucmd, 915 u32 mss_l4len_idx) 916 { 917 struct igc_adv_tx_context_desc *context_desc; 918 u16 i = tx_ring->next_to_use; 919 920 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 921 922 i++; 923 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 924 925 /* set bits to identify this as an advanced context descriptor */ 926 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 927 928 /* For i225, context index must be unique per ring. */ 929 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 930 mss_l4len_idx |= tx_ring->reg_idx << 4; 931 932 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 933 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 934 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 935 936 /* We assume there is always a valid Tx time available. Invalid times 937 * should have been handled by the upper layers. 938 */ 939 if (tx_ring->launchtime_enable) { 940 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 941 ktime_t txtime = first->skb->tstamp; 942 943 first->skb->tstamp = ktime_set(0, 0); 944 context_desc->launch_time = igc_tx_launchtime(adapter, 945 txtime); 946 } else { 947 context_desc->launch_time = 0; 948 } 949 } 950 951 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb) 952 { 953 unsigned int offset = 0; 954 955 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 956 957 return offset == skb_checksum_start_offset(skb); 958 } 959 960 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first) 961 { 962 struct sk_buff *skb = first->skb; 963 u32 vlan_macip_lens = 0; 964 u32 type_tucmd = 0; 965 966 if (skb->ip_summed != CHECKSUM_PARTIAL) { 967 csum_failed: 968 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 969 !tx_ring->launchtime_enable) 970 return; 971 goto no_csum; 972 } 973 974 switch (skb->csum_offset) { 975 case offsetof(struct tcphdr, check): 976 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 977 fallthrough; 978 case offsetof(struct udphdr, check): 979 break; 980 case offsetof(struct sctphdr, checksum): 981 /* validate that this is actually an SCTP request */ 982 if ((first->protocol == htons(ETH_P_IP) && 983 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 984 (first->protocol == htons(ETH_P_IPV6) && 985 igc_ipv6_csum_is_sctp(skb))) { 986 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 987 break; 988 } 989 fallthrough; 990 default: 991 skb_checksum_help(skb); 992 goto csum_failed; 993 } 994 995 /* update TX checksum flag */ 996 first->tx_flags |= IGC_TX_FLAGS_CSUM; 997 vlan_macip_lens = skb_checksum_start_offset(skb) - 998 skb_network_offset(skb); 999 no_csum: 1000 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1001 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1002 1003 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); 1004 } 1005 1006 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1007 { 1008 struct net_device *netdev = tx_ring->netdev; 1009 1010 netif_stop_subqueue(netdev, tx_ring->queue_index); 1011 1012 /* memory barriier comment */ 1013 smp_mb(); 1014 1015 /* We need to check again in a case another CPU has just 1016 * made room available. 1017 */ 1018 if (igc_desc_unused(tx_ring) < size) 1019 return -EBUSY; 1020 1021 /* A reprieve! */ 1022 netif_wake_subqueue(netdev, tx_ring->queue_index); 1023 1024 u64_stats_update_begin(&tx_ring->tx_syncp2); 1025 tx_ring->tx_stats.restart_queue2++; 1026 u64_stats_update_end(&tx_ring->tx_syncp2); 1027 1028 return 0; 1029 } 1030 1031 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1032 { 1033 if (igc_desc_unused(tx_ring) >= size) 1034 return 0; 1035 return __igc_maybe_stop_tx(tx_ring, size); 1036 } 1037 1038 #define IGC_SET_FLAG(_input, _flag, _result) \ 1039 (((_flag) <= (_result)) ? \ 1040 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1041 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1042 1043 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1044 { 1045 /* set type for advanced descriptor with frame checksum insertion */ 1046 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1047 IGC_ADVTXD_DCMD_DEXT | 1048 IGC_ADVTXD_DCMD_IFCS; 1049 1050 /* set segmentation bits for TSO */ 1051 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1052 (IGC_ADVTXD_DCMD_TSE)); 1053 1054 /* set timestamp bit if present */ 1055 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1056 (IGC_ADVTXD_MAC_TSTAMP)); 1057 1058 return cmd_type; 1059 } 1060 1061 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1062 union igc_adv_tx_desc *tx_desc, 1063 u32 tx_flags, unsigned int paylen) 1064 { 1065 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1066 1067 /* insert L4 checksum */ 1068 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 1069 ((IGC_TXD_POPTS_TXSM << 8) / 1070 IGC_TX_FLAGS_CSUM); 1071 1072 /* insert IPv4 checksum */ 1073 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 1074 (((IGC_TXD_POPTS_IXSM << 8)) / 1075 IGC_TX_FLAGS_IPV4); 1076 1077 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1078 } 1079 1080 static int igc_tx_map(struct igc_ring *tx_ring, 1081 struct igc_tx_buffer *first, 1082 const u8 hdr_len) 1083 { 1084 struct sk_buff *skb = first->skb; 1085 struct igc_tx_buffer *tx_buffer; 1086 union igc_adv_tx_desc *tx_desc; 1087 u32 tx_flags = first->tx_flags; 1088 skb_frag_t *frag; 1089 u16 i = tx_ring->next_to_use; 1090 unsigned int data_len, size; 1091 dma_addr_t dma; 1092 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1093 1094 tx_desc = IGC_TX_DESC(tx_ring, i); 1095 1096 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1097 1098 size = skb_headlen(skb); 1099 data_len = skb->data_len; 1100 1101 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1102 1103 tx_buffer = first; 1104 1105 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1106 if (dma_mapping_error(tx_ring->dev, dma)) 1107 goto dma_error; 1108 1109 /* record length, and DMA address */ 1110 dma_unmap_len_set(tx_buffer, len, size); 1111 dma_unmap_addr_set(tx_buffer, dma, dma); 1112 1113 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1114 1115 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1116 tx_desc->read.cmd_type_len = 1117 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1118 1119 i++; 1120 tx_desc++; 1121 if (i == tx_ring->count) { 1122 tx_desc = IGC_TX_DESC(tx_ring, 0); 1123 i = 0; 1124 } 1125 tx_desc->read.olinfo_status = 0; 1126 1127 dma += IGC_MAX_DATA_PER_TXD; 1128 size -= IGC_MAX_DATA_PER_TXD; 1129 1130 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1131 } 1132 1133 if (likely(!data_len)) 1134 break; 1135 1136 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1137 1138 i++; 1139 tx_desc++; 1140 if (i == tx_ring->count) { 1141 tx_desc = IGC_TX_DESC(tx_ring, 0); 1142 i = 0; 1143 } 1144 tx_desc->read.olinfo_status = 0; 1145 1146 size = skb_frag_size(frag); 1147 data_len -= size; 1148 1149 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1150 size, DMA_TO_DEVICE); 1151 1152 tx_buffer = &tx_ring->tx_buffer_info[i]; 1153 } 1154 1155 /* write last descriptor with RS and EOP bits */ 1156 cmd_type |= size | IGC_TXD_DCMD; 1157 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1158 1159 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1160 1161 /* set the timestamp */ 1162 first->time_stamp = jiffies; 1163 1164 skb_tx_timestamp(skb); 1165 1166 /* Force memory writes to complete before letting h/w know there 1167 * are new descriptors to fetch. (Only applicable for weak-ordered 1168 * memory model archs, such as IA-64). 1169 * 1170 * We also need this memory barrier to make certain all of the 1171 * status bits have been updated before next_to_watch is written. 1172 */ 1173 wmb(); 1174 1175 /* set next_to_watch value indicating a packet is present */ 1176 first->next_to_watch = tx_desc; 1177 1178 i++; 1179 if (i == tx_ring->count) 1180 i = 0; 1181 1182 tx_ring->next_to_use = i; 1183 1184 /* Make sure there is space in the ring for the next send. */ 1185 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1186 1187 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1188 writel(i, tx_ring->tail); 1189 } 1190 1191 return 0; 1192 dma_error: 1193 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1194 tx_buffer = &tx_ring->tx_buffer_info[i]; 1195 1196 /* clear dma mappings for failed tx_buffer_info map */ 1197 while (tx_buffer != first) { 1198 if (dma_unmap_len(tx_buffer, len)) 1199 dma_unmap_page(tx_ring->dev, 1200 dma_unmap_addr(tx_buffer, dma), 1201 dma_unmap_len(tx_buffer, len), 1202 DMA_TO_DEVICE); 1203 dma_unmap_len_set(tx_buffer, len, 0); 1204 1205 if (i-- == 0) 1206 i += tx_ring->count; 1207 tx_buffer = &tx_ring->tx_buffer_info[i]; 1208 } 1209 1210 if (dma_unmap_len(tx_buffer, len)) 1211 dma_unmap_single(tx_ring->dev, 1212 dma_unmap_addr(tx_buffer, dma), 1213 dma_unmap_len(tx_buffer, len), 1214 DMA_TO_DEVICE); 1215 dma_unmap_len_set(tx_buffer, len, 0); 1216 1217 dev_kfree_skb_any(tx_buffer->skb); 1218 tx_buffer->skb = NULL; 1219 1220 tx_ring->next_to_use = i; 1221 1222 return -1; 1223 } 1224 1225 static int igc_tso(struct igc_ring *tx_ring, 1226 struct igc_tx_buffer *first, 1227 u8 *hdr_len) 1228 { 1229 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1230 struct sk_buff *skb = first->skb; 1231 union { 1232 struct iphdr *v4; 1233 struct ipv6hdr *v6; 1234 unsigned char *hdr; 1235 } ip; 1236 union { 1237 struct tcphdr *tcp; 1238 struct udphdr *udp; 1239 unsigned char *hdr; 1240 } l4; 1241 u32 paylen, l4_offset; 1242 int err; 1243 1244 if (skb->ip_summed != CHECKSUM_PARTIAL) 1245 return 0; 1246 1247 if (!skb_is_gso(skb)) 1248 return 0; 1249 1250 err = skb_cow_head(skb, 0); 1251 if (err < 0) 1252 return err; 1253 1254 ip.hdr = skb_network_header(skb); 1255 l4.hdr = skb_checksum_start(skb); 1256 1257 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1258 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1259 1260 /* initialize outer IP header fields */ 1261 if (ip.v4->version == 4) { 1262 unsigned char *csum_start = skb_checksum_start(skb); 1263 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1264 1265 /* IP header will have to cancel out any data that 1266 * is not a part of the outer IP header 1267 */ 1268 ip.v4->check = csum_fold(csum_partial(trans_start, 1269 csum_start - trans_start, 1270 0)); 1271 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1272 1273 ip.v4->tot_len = 0; 1274 first->tx_flags |= IGC_TX_FLAGS_TSO | 1275 IGC_TX_FLAGS_CSUM | 1276 IGC_TX_FLAGS_IPV4; 1277 } else { 1278 ip.v6->payload_len = 0; 1279 first->tx_flags |= IGC_TX_FLAGS_TSO | 1280 IGC_TX_FLAGS_CSUM; 1281 } 1282 1283 /* determine offset of inner transport header */ 1284 l4_offset = l4.hdr - skb->data; 1285 1286 /* remove payload length from inner checksum */ 1287 paylen = skb->len - l4_offset; 1288 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1289 /* compute length of segmentation header */ 1290 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1291 csum_replace_by_diff(&l4.tcp->check, 1292 (__force __wsum)htonl(paylen)); 1293 } else { 1294 /* compute length of segmentation header */ 1295 *hdr_len = sizeof(*l4.udp) + l4_offset; 1296 csum_replace_by_diff(&l4.udp->check, 1297 (__force __wsum)htonl(paylen)); 1298 } 1299 1300 /* update gso size and bytecount with header size */ 1301 first->gso_segs = skb_shinfo(skb)->gso_segs; 1302 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1303 1304 /* MSS L4LEN IDX */ 1305 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1306 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1307 1308 /* VLAN MACLEN IPLEN */ 1309 vlan_macip_lens = l4.hdr - ip.hdr; 1310 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1311 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1312 1313 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, 1314 type_tucmd, mss_l4len_idx); 1315 1316 return 1; 1317 } 1318 1319 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1320 struct igc_ring *tx_ring) 1321 { 1322 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1323 __be16 protocol = vlan_get_protocol(skb); 1324 struct igc_tx_buffer *first; 1325 u32 tx_flags = 0; 1326 unsigned short f; 1327 u8 hdr_len = 0; 1328 int tso = 0; 1329 1330 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1331 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1332 * + 2 desc gap to keep tail from touching head, 1333 * + 1 desc for context descriptor, 1334 * otherwise try next time 1335 */ 1336 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1337 count += TXD_USE_COUNT(skb_frag_size( 1338 &skb_shinfo(skb)->frags[f])); 1339 1340 if (igc_maybe_stop_tx(tx_ring, count + 3)) { 1341 /* this is a hard error */ 1342 return NETDEV_TX_BUSY; 1343 } 1344 1345 /* record the location of the first descriptor for this packet */ 1346 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1347 first->skb = skb; 1348 first->bytecount = skb->len; 1349 first->gso_segs = 1; 1350 1351 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1352 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1353 1354 /* FIXME: add support for retrieving timestamps from 1355 * the other timer registers before skipping the 1356 * timestamping request. 1357 */ 1358 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 1359 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS, 1360 &adapter->state)) { 1361 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1362 tx_flags |= IGC_TX_FLAGS_TSTAMP; 1363 1364 adapter->ptp_tx_skb = skb_get(skb); 1365 adapter->ptp_tx_start = jiffies; 1366 } else { 1367 adapter->tx_hwtstamp_skipped++; 1368 } 1369 } 1370 1371 /* record initial flags and protocol */ 1372 first->tx_flags = tx_flags; 1373 first->protocol = protocol; 1374 1375 tso = igc_tso(tx_ring, first, &hdr_len); 1376 if (tso < 0) 1377 goto out_drop; 1378 else if (!tso) 1379 igc_tx_csum(tx_ring, first); 1380 1381 igc_tx_map(tx_ring, first, hdr_len); 1382 1383 return NETDEV_TX_OK; 1384 1385 out_drop: 1386 dev_kfree_skb_any(first->skb); 1387 first->skb = NULL; 1388 1389 return NETDEV_TX_OK; 1390 } 1391 1392 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1393 struct sk_buff *skb) 1394 { 1395 unsigned int r_idx = skb->queue_mapping; 1396 1397 if (r_idx >= adapter->num_tx_queues) 1398 r_idx = r_idx % adapter->num_tx_queues; 1399 1400 return adapter->tx_ring[r_idx]; 1401 } 1402 1403 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1404 struct net_device *netdev) 1405 { 1406 struct igc_adapter *adapter = netdev_priv(netdev); 1407 1408 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1409 * in order to meet this minimum size requirement. 1410 */ 1411 if (skb->len < 17) { 1412 if (skb_padto(skb, 17)) 1413 return NETDEV_TX_OK; 1414 skb->len = 17; 1415 } 1416 1417 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1418 } 1419 1420 static void igc_rx_checksum(struct igc_ring *ring, 1421 union igc_adv_rx_desc *rx_desc, 1422 struct sk_buff *skb) 1423 { 1424 skb_checksum_none_assert(skb); 1425 1426 /* Ignore Checksum bit is set */ 1427 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1428 return; 1429 1430 /* Rx checksum disabled via ethtool */ 1431 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1432 return; 1433 1434 /* TCP/UDP checksum error bit is set */ 1435 if (igc_test_staterr(rx_desc, 1436 IGC_RXDEXT_STATERR_L4E | 1437 IGC_RXDEXT_STATERR_IPE)) { 1438 /* work around errata with sctp packets where the TCPE aka 1439 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1440 * packets (aka let the stack check the crc32c) 1441 */ 1442 if (!(skb->len == 60 && 1443 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1444 u64_stats_update_begin(&ring->rx_syncp); 1445 ring->rx_stats.csum_err++; 1446 u64_stats_update_end(&ring->rx_syncp); 1447 } 1448 /* let the stack verify checksum errors */ 1449 return; 1450 } 1451 /* It must be a TCP or UDP packet with a valid checksum */ 1452 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1453 IGC_RXD_STAT_UDPCS)) 1454 skb->ip_summed = CHECKSUM_UNNECESSARY; 1455 1456 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1457 le32_to_cpu(rx_desc->wb.upper.status_error)); 1458 } 1459 1460 static inline void igc_rx_hash(struct igc_ring *ring, 1461 union igc_adv_rx_desc *rx_desc, 1462 struct sk_buff *skb) 1463 { 1464 if (ring->netdev->features & NETIF_F_RXHASH) 1465 skb_set_hash(skb, 1466 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1467 PKT_HASH_TYPE_L3); 1468 } 1469 1470 /** 1471 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1472 * @rx_ring: rx descriptor ring packet is being transacted on 1473 * @rx_desc: pointer to the EOP Rx descriptor 1474 * @skb: pointer to current skb being populated 1475 * 1476 * This function checks the ring, descriptor, and packet information in order 1477 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1478 * skb. 1479 */ 1480 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1481 union igc_adv_rx_desc *rx_desc, 1482 struct sk_buff *skb) 1483 { 1484 igc_rx_hash(rx_ring, rx_desc, skb); 1485 1486 igc_rx_checksum(rx_ring, rx_desc, skb); 1487 1488 skb_record_rx_queue(skb, rx_ring->queue_index); 1489 1490 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1491 } 1492 1493 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1494 const unsigned int size) 1495 { 1496 struct igc_rx_buffer *rx_buffer; 1497 1498 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1499 prefetchw(rx_buffer->page); 1500 1501 /* we are reusing so sync this buffer for CPU use */ 1502 dma_sync_single_range_for_cpu(rx_ring->dev, 1503 rx_buffer->dma, 1504 rx_buffer->page_offset, 1505 size, 1506 DMA_FROM_DEVICE); 1507 1508 rx_buffer->pagecnt_bias--; 1509 1510 return rx_buffer; 1511 } 1512 1513 /** 1514 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1515 * @rx_ring: rx descriptor ring to transact packets on 1516 * @rx_buffer: buffer containing page to add 1517 * @skb: sk_buff to place the data into 1518 * @size: size of buffer to be added 1519 * 1520 * This function will add the data contained in rx_buffer->page to the skb. 1521 */ 1522 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1523 struct igc_rx_buffer *rx_buffer, 1524 struct sk_buff *skb, 1525 unsigned int size) 1526 { 1527 #if (PAGE_SIZE < 8192) 1528 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1529 1530 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1531 rx_buffer->page_offset, size, truesize); 1532 rx_buffer->page_offset ^= truesize; 1533 #else 1534 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1535 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1536 SKB_DATA_ALIGN(size); 1537 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1538 rx_buffer->page_offset, size, truesize); 1539 rx_buffer->page_offset += truesize; 1540 #endif 1541 } 1542 1543 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1544 struct igc_rx_buffer *rx_buffer, 1545 union igc_adv_rx_desc *rx_desc, 1546 unsigned int size) 1547 { 1548 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1549 #if (PAGE_SIZE < 8192) 1550 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1551 #else 1552 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1553 SKB_DATA_ALIGN(IGC_SKB_PAD + size); 1554 #endif 1555 struct sk_buff *skb; 1556 1557 /* prefetch first cache line of first page */ 1558 net_prefetch(va); 1559 1560 /* build an skb around the page buffer */ 1561 skb = build_skb(va - IGC_SKB_PAD, truesize); 1562 if (unlikely(!skb)) 1563 return NULL; 1564 1565 /* update pointers within the skb to store the data */ 1566 skb_reserve(skb, IGC_SKB_PAD); 1567 __skb_put(skb, size); 1568 1569 /* update buffer offset */ 1570 #if (PAGE_SIZE < 8192) 1571 rx_buffer->page_offset ^= truesize; 1572 #else 1573 rx_buffer->page_offset += truesize; 1574 #endif 1575 1576 return skb; 1577 } 1578 1579 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1580 struct igc_rx_buffer *rx_buffer, 1581 union igc_adv_rx_desc *rx_desc, 1582 unsigned int size) 1583 { 1584 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1585 #if (PAGE_SIZE < 8192) 1586 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1587 #else 1588 unsigned int truesize = SKB_DATA_ALIGN(size); 1589 #endif 1590 unsigned int headlen; 1591 struct sk_buff *skb; 1592 1593 /* prefetch first cache line of first page */ 1594 net_prefetch(va); 1595 1596 /* allocate a skb to store the frags */ 1597 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN); 1598 if (unlikely(!skb)) 1599 return NULL; 1600 1601 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) { 1602 igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 1603 va += IGC_TS_HDR_LEN; 1604 size -= IGC_TS_HDR_LEN; 1605 } 1606 1607 /* Determine available headroom for copy */ 1608 headlen = size; 1609 if (headlen > IGC_RX_HDR_LEN) 1610 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1611 1612 /* align pull length to size of long to optimize memcpy performance */ 1613 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1614 1615 /* update all of the pointers */ 1616 size -= headlen; 1617 if (size) { 1618 skb_add_rx_frag(skb, 0, rx_buffer->page, 1619 (va + headlen) - page_address(rx_buffer->page), 1620 size, truesize); 1621 #if (PAGE_SIZE < 8192) 1622 rx_buffer->page_offset ^= truesize; 1623 #else 1624 rx_buffer->page_offset += truesize; 1625 #endif 1626 } else { 1627 rx_buffer->pagecnt_bias++; 1628 } 1629 1630 return skb; 1631 } 1632 1633 /** 1634 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1635 * @rx_ring: rx descriptor ring to store buffers on 1636 * @old_buff: donor buffer to have page reused 1637 * 1638 * Synchronizes page for reuse by the adapter 1639 */ 1640 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1641 struct igc_rx_buffer *old_buff) 1642 { 1643 u16 nta = rx_ring->next_to_alloc; 1644 struct igc_rx_buffer *new_buff; 1645 1646 new_buff = &rx_ring->rx_buffer_info[nta]; 1647 1648 /* update, and store next to alloc */ 1649 nta++; 1650 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1651 1652 /* Transfer page from old buffer to new buffer. 1653 * Move each member individually to avoid possible store 1654 * forwarding stalls. 1655 */ 1656 new_buff->dma = old_buff->dma; 1657 new_buff->page = old_buff->page; 1658 new_buff->page_offset = old_buff->page_offset; 1659 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1660 } 1661 1662 static inline bool igc_page_is_reserved(struct page *page) 1663 { 1664 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 1665 } 1666 1667 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer) 1668 { 1669 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1670 struct page *page = rx_buffer->page; 1671 1672 /* avoid re-using remote pages */ 1673 if (unlikely(igc_page_is_reserved(page))) 1674 return false; 1675 1676 #if (PAGE_SIZE < 8192) 1677 /* if we are only owner of page we can reuse it */ 1678 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 1679 return false; 1680 #else 1681 #define IGC_LAST_OFFSET \ 1682 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1683 1684 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1685 return false; 1686 #endif 1687 1688 /* If we have drained the page fragment pool we need to update 1689 * the pagecnt_bias and page count so that we fully restock the 1690 * number of references the driver holds. 1691 */ 1692 if (unlikely(!pagecnt_bias)) { 1693 page_ref_add(page, USHRT_MAX); 1694 rx_buffer->pagecnt_bias = USHRT_MAX; 1695 } 1696 1697 return true; 1698 } 1699 1700 /** 1701 * igc_is_non_eop - process handling of non-EOP buffers 1702 * @rx_ring: Rx ring being processed 1703 * @rx_desc: Rx descriptor for current buffer 1704 * 1705 * This function updates next to clean. If the buffer is an EOP buffer 1706 * this function exits returning false, otherwise it will place the 1707 * sk_buff in the next buffer to be chained and return true indicating 1708 * that this is in fact a non-EOP buffer. 1709 */ 1710 static bool igc_is_non_eop(struct igc_ring *rx_ring, 1711 union igc_adv_rx_desc *rx_desc) 1712 { 1713 u32 ntc = rx_ring->next_to_clean + 1; 1714 1715 /* fetch, update, and store next to clean */ 1716 ntc = (ntc < rx_ring->count) ? ntc : 0; 1717 rx_ring->next_to_clean = ntc; 1718 1719 prefetch(IGC_RX_DESC(rx_ring, ntc)); 1720 1721 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 1722 return false; 1723 1724 return true; 1725 } 1726 1727 /** 1728 * igc_cleanup_headers - Correct corrupted or empty headers 1729 * @rx_ring: rx descriptor ring packet is being transacted on 1730 * @rx_desc: pointer to the EOP Rx descriptor 1731 * @skb: pointer to current skb being fixed 1732 * 1733 * Address the case where we are pulling data in on pages only 1734 * and as such no data is present in the skb header. 1735 * 1736 * In addition if skb is not at least 60 bytes we need to pad it so that 1737 * it is large enough to qualify as a valid Ethernet frame. 1738 * 1739 * Returns true if an error was encountered and skb was freed. 1740 */ 1741 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 1742 union igc_adv_rx_desc *rx_desc, 1743 struct sk_buff *skb) 1744 { 1745 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 1746 struct net_device *netdev = rx_ring->netdev; 1747 1748 if (!(netdev->features & NETIF_F_RXALL)) { 1749 dev_kfree_skb_any(skb); 1750 return true; 1751 } 1752 } 1753 1754 /* if eth_skb_pad returns an error the skb was freed */ 1755 if (eth_skb_pad(skb)) 1756 return true; 1757 1758 return false; 1759 } 1760 1761 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 1762 struct igc_rx_buffer *rx_buffer) 1763 { 1764 if (igc_can_reuse_rx_page(rx_buffer)) { 1765 /* hand second half of page back to the ring */ 1766 igc_reuse_rx_page(rx_ring, rx_buffer); 1767 } else { 1768 /* We are not reusing the buffer so unmap it and free 1769 * any references we are holding to it 1770 */ 1771 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1772 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1773 IGC_RX_DMA_ATTR); 1774 __page_frag_cache_drain(rx_buffer->page, 1775 rx_buffer->pagecnt_bias); 1776 } 1777 1778 /* clear contents of rx_buffer */ 1779 rx_buffer->page = NULL; 1780 } 1781 1782 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 1783 { 1784 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0; 1785 } 1786 1787 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 1788 struct igc_rx_buffer *bi) 1789 { 1790 struct page *page = bi->page; 1791 dma_addr_t dma; 1792 1793 /* since we are recycling buffers we should seldom need to alloc */ 1794 if (likely(page)) 1795 return true; 1796 1797 /* alloc new page for storage */ 1798 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 1799 if (unlikely(!page)) { 1800 rx_ring->rx_stats.alloc_failed++; 1801 return false; 1802 } 1803 1804 /* map page for use */ 1805 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1806 igc_rx_pg_size(rx_ring), 1807 DMA_FROM_DEVICE, 1808 IGC_RX_DMA_ATTR); 1809 1810 /* if mapping failed free memory back to system since 1811 * there isn't much point in holding memory we can't use 1812 */ 1813 if (dma_mapping_error(rx_ring->dev, dma)) { 1814 __free_page(page); 1815 1816 rx_ring->rx_stats.alloc_failed++; 1817 return false; 1818 } 1819 1820 bi->dma = dma; 1821 bi->page = page; 1822 bi->page_offset = igc_rx_offset(rx_ring); 1823 bi->pagecnt_bias = 1; 1824 1825 return true; 1826 } 1827 1828 /** 1829 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 1830 * @rx_ring: rx descriptor ring 1831 * @cleaned_count: number of buffers to clean 1832 */ 1833 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 1834 { 1835 union igc_adv_rx_desc *rx_desc; 1836 u16 i = rx_ring->next_to_use; 1837 struct igc_rx_buffer *bi; 1838 u16 bufsz; 1839 1840 /* nothing to do */ 1841 if (!cleaned_count) 1842 return; 1843 1844 rx_desc = IGC_RX_DESC(rx_ring, i); 1845 bi = &rx_ring->rx_buffer_info[i]; 1846 i -= rx_ring->count; 1847 1848 bufsz = igc_rx_bufsz(rx_ring); 1849 1850 do { 1851 if (!igc_alloc_mapped_page(rx_ring, bi)) 1852 break; 1853 1854 /* sync the buffer for use by the device */ 1855 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1856 bi->page_offset, bufsz, 1857 DMA_FROM_DEVICE); 1858 1859 /* Refresh the desc even if buffer_addrs didn't change 1860 * because each write-back erases this info. 1861 */ 1862 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1863 1864 rx_desc++; 1865 bi++; 1866 i++; 1867 if (unlikely(!i)) { 1868 rx_desc = IGC_RX_DESC(rx_ring, 0); 1869 bi = rx_ring->rx_buffer_info; 1870 i -= rx_ring->count; 1871 } 1872 1873 /* clear the length for the next_to_use descriptor */ 1874 rx_desc->wb.upper.length = 0; 1875 1876 cleaned_count--; 1877 } while (cleaned_count); 1878 1879 i += rx_ring->count; 1880 1881 if (rx_ring->next_to_use != i) { 1882 /* record the next descriptor to use */ 1883 rx_ring->next_to_use = i; 1884 1885 /* update next to alloc since we have filled the ring */ 1886 rx_ring->next_to_alloc = i; 1887 1888 /* Force memory writes to complete before letting h/w 1889 * know there are new descriptors to fetch. (Only 1890 * applicable for weak-ordered memory model archs, 1891 * such as IA-64). 1892 */ 1893 wmb(); 1894 writel(i, rx_ring->tail); 1895 } 1896 } 1897 1898 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 1899 { 1900 unsigned int total_bytes = 0, total_packets = 0; 1901 struct igc_ring *rx_ring = q_vector->rx.ring; 1902 struct sk_buff *skb = rx_ring->skb; 1903 u16 cleaned_count = igc_desc_unused(rx_ring); 1904 1905 while (likely(total_packets < budget)) { 1906 union igc_adv_rx_desc *rx_desc; 1907 struct igc_rx_buffer *rx_buffer; 1908 unsigned int size; 1909 1910 /* return some buffers to hardware, one at a time is too slow */ 1911 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 1912 igc_alloc_rx_buffers(rx_ring, cleaned_count); 1913 cleaned_count = 0; 1914 } 1915 1916 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 1917 size = le16_to_cpu(rx_desc->wb.upper.length); 1918 if (!size) 1919 break; 1920 1921 /* This memory barrier is needed to keep us from reading 1922 * any other fields out of the rx_desc until we know the 1923 * descriptor has been written back 1924 */ 1925 dma_rmb(); 1926 1927 rx_buffer = igc_get_rx_buffer(rx_ring, size); 1928 1929 /* retrieve a buffer from the ring */ 1930 if (skb) 1931 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 1932 else if (ring_uses_build_skb(rx_ring)) 1933 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size); 1934 else 1935 skb = igc_construct_skb(rx_ring, rx_buffer, 1936 rx_desc, size); 1937 1938 /* exit if we failed to retrieve a buffer */ 1939 if (!skb) { 1940 rx_ring->rx_stats.alloc_failed++; 1941 rx_buffer->pagecnt_bias++; 1942 break; 1943 } 1944 1945 igc_put_rx_buffer(rx_ring, rx_buffer); 1946 cleaned_count++; 1947 1948 /* fetch next buffer in frame if non-eop */ 1949 if (igc_is_non_eop(rx_ring, rx_desc)) 1950 continue; 1951 1952 /* verify the packet layout is correct */ 1953 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 1954 skb = NULL; 1955 continue; 1956 } 1957 1958 /* probably a little skewed due to removing CRC */ 1959 total_bytes += skb->len; 1960 1961 /* populate checksum, VLAN, and protocol */ 1962 igc_process_skb_fields(rx_ring, rx_desc, skb); 1963 1964 napi_gro_receive(&q_vector->napi, skb); 1965 1966 /* reset skb pointer */ 1967 skb = NULL; 1968 1969 /* update budget accounting */ 1970 total_packets++; 1971 } 1972 1973 /* place incomplete frames back on ring for completion */ 1974 rx_ring->skb = skb; 1975 1976 u64_stats_update_begin(&rx_ring->rx_syncp); 1977 rx_ring->rx_stats.packets += total_packets; 1978 rx_ring->rx_stats.bytes += total_bytes; 1979 u64_stats_update_end(&rx_ring->rx_syncp); 1980 q_vector->rx.total_packets += total_packets; 1981 q_vector->rx.total_bytes += total_bytes; 1982 1983 if (cleaned_count) 1984 igc_alloc_rx_buffers(rx_ring, cleaned_count); 1985 1986 return total_packets; 1987 } 1988 1989 /** 1990 * igc_clean_tx_irq - Reclaim resources after transmit completes 1991 * @q_vector: pointer to q_vector containing needed info 1992 * @napi_budget: Used to determine if we are in netpoll 1993 * 1994 * returns true if ring is completely cleaned 1995 */ 1996 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 1997 { 1998 struct igc_adapter *adapter = q_vector->adapter; 1999 unsigned int total_bytes = 0, total_packets = 0; 2000 unsigned int budget = q_vector->tx.work_limit; 2001 struct igc_ring *tx_ring = q_vector->tx.ring; 2002 unsigned int i = tx_ring->next_to_clean; 2003 struct igc_tx_buffer *tx_buffer; 2004 union igc_adv_tx_desc *tx_desc; 2005 2006 if (test_bit(__IGC_DOWN, &adapter->state)) 2007 return true; 2008 2009 tx_buffer = &tx_ring->tx_buffer_info[i]; 2010 tx_desc = IGC_TX_DESC(tx_ring, i); 2011 i -= tx_ring->count; 2012 2013 do { 2014 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2015 2016 /* if next_to_watch is not set then there is no work pending */ 2017 if (!eop_desc) 2018 break; 2019 2020 /* prevent any other reads prior to eop_desc */ 2021 smp_rmb(); 2022 2023 /* if DD is not set pending work has not been completed */ 2024 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2025 break; 2026 2027 /* clear next_to_watch to prevent false hangs */ 2028 tx_buffer->next_to_watch = NULL; 2029 2030 /* update the statistics for this packet */ 2031 total_bytes += tx_buffer->bytecount; 2032 total_packets += tx_buffer->gso_segs; 2033 2034 /* free the skb */ 2035 napi_consume_skb(tx_buffer->skb, napi_budget); 2036 2037 /* unmap skb header data */ 2038 dma_unmap_single(tx_ring->dev, 2039 dma_unmap_addr(tx_buffer, dma), 2040 dma_unmap_len(tx_buffer, len), 2041 DMA_TO_DEVICE); 2042 2043 /* clear tx_buffer data */ 2044 dma_unmap_len_set(tx_buffer, len, 0); 2045 2046 /* clear last DMA location and unmap remaining buffers */ 2047 while (tx_desc != eop_desc) { 2048 tx_buffer++; 2049 tx_desc++; 2050 i++; 2051 if (unlikely(!i)) { 2052 i -= tx_ring->count; 2053 tx_buffer = tx_ring->tx_buffer_info; 2054 tx_desc = IGC_TX_DESC(tx_ring, 0); 2055 } 2056 2057 /* unmap any remaining paged data */ 2058 if (dma_unmap_len(tx_buffer, len)) { 2059 dma_unmap_page(tx_ring->dev, 2060 dma_unmap_addr(tx_buffer, dma), 2061 dma_unmap_len(tx_buffer, len), 2062 DMA_TO_DEVICE); 2063 dma_unmap_len_set(tx_buffer, len, 0); 2064 } 2065 } 2066 2067 /* move us one more past the eop_desc for start of next pkt */ 2068 tx_buffer++; 2069 tx_desc++; 2070 i++; 2071 if (unlikely(!i)) { 2072 i -= tx_ring->count; 2073 tx_buffer = tx_ring->tx_buffer_info; 2074 tx_desc = IGC_TX_DESC(tx_ring, 0); 2075 } 2076 2077 /* issue prefetch for next Tx descriptor */ 2078 prefetch(tx_desc); 2079 2080 /* update budget accounting */ 2081 budget--; 2082 } while (likely(budget)); 2083 2084 netdev_tx_completed_queue(txring_txq(tx_ring), 2085 total_packets, total_bytes); 2086 2087 i += tx_ring->count; 2088 tx_ring->next_to_clean = i; 2089 u64_stats_update_begin(&tx_ring->tx_syncp); 2090 tx_ring->tx_stats.bytes += total_bytes; 2091 tx_ring->tx_stats.packets += total_packets; 2092 u64_stats_update_end(&tx_ring->tx_syncp); 2093 q_vector->tx.total_bytes += total_bytes; 2094 q_vector->tx.total_packets += total_packets; 2095 2096 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 2097 struct igc_hw *hw = &adapter->hw; 2098 2099 /* Detect a transmit hang in hardware, this serializes the 2100 * check with the clearing of time_stamp and movement of i 2101 */ 2102 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2103 if (tx_buffer->next_to_watch && 2104 time_after(jiffies, tx_buffer->time_stamp + 2105 (adapter->tx_timeout_factor * HZ)) && 2106 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) { 2107 /* detected Tx unit hang */ 2108 netdev_err(tx_ring->netdev, 2109 "Detected Tx Unit Hang\n" 2110 " Tx Queue <%d>\n" 2111 " TDH <%x>\n" 2112 " TDT <%x>\n" 2113 " next_to_use <%x>\n" 2114 " next_to_clean <%x>\n" 2115 "buffer_info[next_to_clean]\n" 2116 " time_stamp <%lx>\n" 2117 " next_to_watch <%p>\n" 2118 " jiffies <%lx>\n" 2119 " desc.status <%x>\n", 2120 tx_ring->queue_index, 2121 rd32(IGC_TDH(tx_ring->reg_idx)), 2122 readl(tx_ring->tail), 2123 tx_ring->next_to_use, 2124 tx_ring->next_to_clean, 2125 tx_buffer->time_stamp, 2126 tx_buffer->next_to_watch, 2127 jiffies, 2128 tx_buffer->next_to_watch->wb.status); 2129 netif_stop_subqueue(tx_ring->netdev, 2130 tx_ring->queue_index); 2131 2132 /* we are about to reset, no point in enabling stuff */ 2133 return true; 2134 } 2135 } 2136 2137 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 2138 if (unlikely(total_packets && 2139 netif_carrier_ok(tx_ring->netdev) && 2140 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 2141 /* Make sure that anybody stopping the queue after this 2142 * sees the new next_to_clean. 2143 */ 2144 smp_mb(); 2145 if (__netif_subqueue_stopped(tx_ring->netdev, 2146 tx_ring->queue_index) && 2147 !(test_bit(__IGC_DOWN, &adapter->state))) { 2148 netif_wake_subqueue(tx_ring->netdev, 2149 tx_ring->queue_index); 2150 2151 u64_stats_update_begin(&tx_ring->tx_syncp); 2152 tx_ring->tx_stats.restart_queue++; 2153 u64_stats_update_end(&tx_ring->tx_syncp); 2154 } 2155 } 2156 2157 return !!budget; 2158 } 2159 2160 static int igc_find_mac_filter(struct igc_adapter *adapter, 2161 enum igc_mac_filter_type type, const u8 *addr) 2162 { 2163 struct igc_hw *hw = &adapter->hw; 2164 int max_entries = hw->mac.rar_entry_count; 2165 u32 ral, rah; 2166 int i; 2167 2168 for (i = 0; i < max_entries; i++) { 2169 ral = rd32(IGC_RAL(i)); 2170 rah = rd32(IGC_RAH(i)); 2171 2172 if (!(rah & IGC_RAH_AV)) 2173 continue; 2174 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 2175 continue; 2176 if ((rah & IGC_RAH_RAH_MASK) != 2177 le16_to_cpup((__le16 *)(addr + 4))) 2178 continue; 2179 if (ral != le32_to_cpup((__le32 *)(addr))) 2180 continue; 2181 2182 return i; 2183 } 2184 2185 return -1; 2186 } 2187 2188 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 2189 { 2190 struct igc_hw *hw = &adapter->hw; 2191 int max_entries = hw->mac.rar_entry_count; 2192 u32 rah; 2193 int i; 2194 2195 for (i = 0; i < max_entries; i++) { 2196 rah = rd32(IGC_RAH(i)); 2197 2198 if (!(rah & IGC_RAH_AV)) 2199 return i; 2200 } 2201 2202 return -1; 2203 } 2204 2205 /** 2206 * igc_add_mac_filter() - Add MAC address filter 2207 * @adapter: Pointer to adapter where the filter should be added 2208 * @type: MAC address filter type (source or destination) 2209 * @addr: MAC address 2210 * @queue: If non-negative, queue assignment feature is enabled and frames 2211 * matching the filter are enqueued onto 'queue'. Otherwise, queue 2212 * assignment is disabled. 2213 * 2214 * Return: 0 in case of success, negative errno code otherwise. 2215 */ 2216 static int igc_add_mac_filter(struct igc_adapter *adapter, 2217 enum igc_mac_filter_type type, const u8 *addr, 2218 int queue) 2219 { 2220 struct net_device *dev = adapter->netdev; 2221 int index; 2222 2223 index = igc_find_mac_filter(adapter, type, addr); 2224 if (index >= 0) 2225 goto update_filter; 2226 2227 index = igc_get_avail_mac_filter_slot(adapter); 2228 if (index < 0) 2229 return -ENOSPC; 2230 2231 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 2232 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 2233 addr, queue); 2234 2235 update_filter: 2236 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 2237 return 0; 2238 } 2239 2240 /** 2241 * igc_del_mac_filter() - Delete MAC address filter 2242 * @adapter: Pointer to adapter where the filter should be deleted from 2243 * @type: MAC address filter type (source or destination) 2244 * @addr: MAC address 2245 */ 2246 static void igc_del_mac_filter(struct igc_adapter *adapter, 2247 enum igc_mac_filter_type type, const u8 *addr) 2248 { 2249 struct net_device *dev = adapter->netdev; 2250 int index; 2251 2252 index = igc_find_mac_filter(adapter, type, addr); 2253 if (index < 0) 2254 return; 2255 2256 if (index == 0) { 2257 /* If this is the default filter, we don't actually delete it. 2258 * We just reset to its default value i.e. disable queue 2259 * assignment. 2260 */ 2261 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 2262 2263 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 2264 } else { 2265 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 2266 index, 2267 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 2268 addr); 2269 2270 igc_clear_mac_filter_hw(adapter, index); 2271 } 2272 } 2273 2274 /** 2275 * igc_add_vlan_prio_filter() - Add VLAN priority filter 2276 * @adapter: Pointer to adapter where the filter should be added 2277 * @prio: VLAN priority value 2278 * @queue: Queue number which matching frames are assigned to 2279 * 2280 * Return: 0 in case of success, negative errno code otherwise. 2281 */ 2282 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 2283 int queue) 2284 { 2285 struct net_device *dev = adapter->netdev; 2286 struct igc_hw *hw = &adapter->hw; 2287 u32 vlanpqf; 2288 2289 vlanpqf = rd32(IGC_VLANPQF); 2290 2291 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 2292 netdev_dbg(dev, "VLAN priority filter already in use\n"); 2293 return -EEXIST; 2294 } 2295 2296 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 2297 vlanpqf |= IGC_VLANPQF_VALID(prio); 2298 2299 wr32(IGC_VLANPQF, vlanpqf); 2300 2301 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 2302 prio, queue); 2303 return 0; 2304 } 2305 2306 /** 2307 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 2308 * @adapter: Pointer to adapter where the filter should be deleted from 2309 * @prio: VLAN priority value 2310 */ 2311 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 2312 { 2313 struct igc_hw *hw = &adapter->hw; 2314 u32 vlanpqf; 2315 2316 vlanpqf = rd32(IGC_VLANPQF); 2317 2318 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 2319 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 2320 2321 wr32(IGC_VLANPQF, vlanpqf); 2322 2323 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 2324 prio); 2325 } 2326 2327 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 2328 { 2329 struct igc_hw *hw = &adapter->hw; 2330 int i; 2331 2332 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 2333 u32 etqf = rd32(IGC_ETQF(i)); 2334 2335 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 2336 return i; 2337 } 2338 2339 return -1; 2340 } 2341 2342 /** 2343 * igc_add_etype_filter() - Add ethertype filter 2344 * @adapter: Pointer to adapter where the filter should be added 2345 * @etype: Ethertype value 2346 * @queue: If non-negative, queue assignment feature is enabled and frames 2347 * matching the filter are enqueued onto 'queue'. Otherwise, queue 2348 * assignment is disabled. 2349 * 2350 * Return: 0 in case of success, negative errno code otherwise. 2351 */ 2352 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 2353 int queue) 2354 { 2355 struct igc_hw *hw = &adapter->hw; 2356 int index; 2357 u32 etqf; 2358 2359 index = igc_get_avail_etype_filter_slot(adapter); 2360 if (index < 0) 2361 return -ENOSPC; 2362 2363 etqf = rd32(IGC_ETQF(index)); 2364 2365 etqf &= ~IGC_ETQF_ETYPE_MASK; 2366 etqf |= etype; 2367 2368 if (queue >= 0) { 2369 etqf &= ~IGC_ETQF_QUEUE_MASK; 2370 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 2371 etqf |= IGC_ETQF_QUEUE_ENABLE; 2372 } 2373 2374 etqf |= IGC_ETQF_FILTER_ENABLE; 2375 2376 wr32(IGC_ETQF(index), etqf); 2377 2378 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 2379 etype, queue); 2380 return 0; 2381 } 2382 2383 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 2384 { 2385 struct igc_hw *hw = &adapter->hw; 2386 int i; 2387 2388 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 2389 u32 etqf = rd32(IGC_ETQF(i)); 2390 2391 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 2392 return i; 2393 } 2394 2395 return -1; 2396 } 2397 2398 /** 2399 * igc_del_etype_filter() - Delete ethertype filter 2400 * @adapter: Pointer to adapter where the filter should be deleted from 2401 * @etype: Ethertype value 2402 */ 2403 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 2404 { 2405 struct igc_hw *hw = &adapter->hw; 2406 int index; 2407 2408 index = igc_find_etype_filter(adapter, etype); 2409 if (index < 0) 2410 return; 2411 2412 wr32(IGC_ETQF(index), 0); 2413 2414 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 2415 etype); 2416 } 2417 2418 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 2419 const struct igc_nfc_rule *rule) 2420 { 2421 int err; 2422 2423 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 2424 err = igc_add_etype_filter(adapter, rule->filter.etype, 2425 rule->action); 2426 if (err) 2427 return err; 2428 } 2429 2430 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 2431 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 2432 rule->filter.src_addr, rule->action); 2433 if (err) 2434 return err; 2435 } 2436 2437 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 2438 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 2439 rule->filter.dst_addr, rule->action); 2440 if (err) 2441 return err; 2442 } 2443 2444 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 2445 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 2446 VLAN_PRIO_SHIFT; 2447 2448 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 2449 if (err) 2450 return err; 2451 } 2452 2453 return 0; 2454 } 2455 2456 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 2457 const struct igc_nfc_rule *rule) 2458 { 2459 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 2460 igc_del_etype_filter(adapter, rule->filter.etype); 2461 2462 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 2463 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 2464 VLAN_PRIO_SHIFT; 2465 2466 igc_del_vlan_prio_filter(adapter, prio); 2467 } 2468 2469 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 2470 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 2471 rule->filter.src_addr); 2472 2473 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 2474 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 2475 rule->filter.dst_addr); 2476 } 2477 2478 /** 2479 * igc_get_nfc_rule() - Get NFC rule 2480 * @adapter: Pointer to adapter 2481 * @location: Rule location 2482 * 2483 * Context: Expects adapter->nfc_rule_lock to be held by caller. 2484 * 2485 * Return: Pointer to NFC rule at @location. If not found, NULL. 2486 */ 2487 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 2488 u32 location) 2489 { 2490 struct igc_nfc_rule *rule; 2491 2492 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 2493 if (rule->location == location) 2494 return rule; 2495 if (rule->location > location) 2496 break; 2497 } 2498 2499 return NULL; 2500 } 2501 2502 /** 2503 * igc_del_nfc_rule() - Delete NFC rule 2504 * @adapter: Pointer to adapter 2505 * @rule: Pointer to rule to be deleted 2506 * 2507 * Disable NFC rule in hardware and delete it from adapter. 2508 * 2509 * Context: Expects adapter->nfc_rule_lock to be held by caller. 2510 */ 2511 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 2512 { 2513 igc_disable_nfc_rule(adapter, rule); 2514 2515 list_del(&rule->list); 2516 adapter->nfc_rule_count--; 2517 2518 kfree(rule); 2519 } 2520 2521 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 2522 { 2523 struct igc_nfc_rule *rule, *tmp; 2524 2525 mutex_lock(&adapter->nfc_rule_lock); 2526 2527 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 2528 igc_del_nfc_rule(adapter, rule); 2529 2530 mutex_unlock(&adapter->nfc_rule_lock); 2531 } 2532 2533 /** 2534 * igc_add_nfc_rule() - Add NFC rule 2535 * @adapter: Pointer to adapter 2536 * @rule: Pointer to rule to be added 2537 * 2538 * Enable NFC rule in hardware and add it to adapter. 2539 * 2540 * Context: Expects adapter->nfc_rule_lock to be held by caller. 2541 * 2542 * Return: 0 on success, negative errno on failure. 2543 */ 2544 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 2545 { 2546 struct igc_nfc_rule *pred, *cur; 2547 int err; 2548 2549 err = igc_enable_nfc_rule(adapter, rule); 2550 if (err) 2551 return err; 2552 2553 pred = NULL; 2554 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 2555 if (cur->location >= rule->location) 2556 break; 2557 pred = cur; 2558 } 2559 2560 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 2561 adapter->nfc_rule_count++; 2562 return 0; 2563 } 2564 2565 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 2566 { 2567 struct igc_nfc_rule *rule; 2568 2569 mutex_lock(&adapter->nfc_rule_lock); 2570 2571 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 2572 igc_enable_nfc_rule(adapter, rule); 2573 2574 mutex_unlock(&adapter->nfc_rule_lock); 2575 } 2576 2577 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 2578 { 2579 struct igc_adapter *adapter = netdev_priv(netdev); 2580 2581 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 2582 } 2583 2584 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 2585 { 2586 struct igc_adapter *adapter = netdev_priv(netdev); 2587 2588 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 2589 return 0; 2590 } 2591 2592 /** 2593 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2594 * @netdev: network interface device structure 2595 * 2596 * The set_rx_mode entry point is called whenever the unicast or multicast 2597 * address lists or the network interface flags are updated. This routine is 2598 * responsible for configuring the hardware for proper unicast, multicast, 2599 * promiscuous mode, and all-multi behavior. 2600 */ 2601 static void igc_set_rx_mode(struct net_device *netdev) 2602 { 2603 struct igc_adapter *adapter = netdev_priv(netdev); 2604 struct igc_hw *hw = &adapter->hw; 2605 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 2606 int count; 2607 2608 /* Check for Promiscuous and All Multicast modes */ 2609 if (netdev->flags & IFF_PROMISC) { 2610 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 2611 } else { 2612 if (netdev->flags & IFF_ALLMULTI) { 2613 rctl |= IGC_RCTL_MPE; 2614 } else { 2615 /* Write addresses to the MTA, if the attempt fails 2616 * then we should just turn on promiscuous mode so 2617 * that we can at least receive multicast traffic 2618 */ 2619 count = igc_write_mc_addr_list(netdev); 2620 if (count < 0) 2621 rctl |= IGC_RCTL_MPE; 2622 } 2623 } 2624 2625 /* Write addresses to available RAR registers, if there is not 2626 * sufficient space to store all the addresses then enable 2627 * unicast promiscuous mode 2628 */ 2629 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 2630 rctl |= IGC_RCTL_UPE; 2631 2632 /* update state of unicast and multicast */ 2633 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 2634 wr32(IGC_RCTL, rctl); 2635 2636 #if (PAGE_SIZE < 8192) 2637 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 2638 rlpml = IGC_MAX_FRAME_BUILD_SKB; 2639 #endif 2640 wr32(IGC_RLPML, rlpml); 2641 } 2642 2643 /** 2644 * igc_configure - configure the hardware for RX and TX 2645 * @adapter: private board structure 2646 */ 2647 static void igc_configure(struct igc_adapter *adapter) 2648 { 2649 struct net_device *netdev = adapter->netdev; 2650 int i = 0; 2651 2652 igc_get_hw_control(adapter); 2653 igc_set_rx_mode(netdev); 2654 2655 igc_setup_tctl(adapter); 2656 igc_setup_mrqc(adapter); 2657 igc_setup_rctl(adapter); 2658 2659 igc_set_default_mac_filter(adapter); 2660 igc_restore_nfc_rules(adapter); 2661 2662 igc_configure_tx(adapter); 2663 igc_configure_rx(adapter); 2664 2665 igc_rx_fifo_flush_base(&adapter->hw); 2666 2667 /* call igc_desc_unused which always leaves 2668 * at least 1 descriptor unused to make sure 2669 * next_to_use != next_to_clean 2670 */ 2671 for (i = 0; i < adapter->num_rx_queues; i++) { 2672 struct igc_ring *ring = adapter->rx_ring[i]; 2673 2674 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 2675 } 2676 } 2677 2678 /** 2679 * igc_write_ivar - configure ivar for given MSI-X vector 2680 * @hw: pointer to the HW structure 2681 * @msix_vector: vector number we are allocating to a given ring 2682 * @index: row index of IVAR register to write within IVAR table 2683 * @offset: column offset of in IVAR, should be multiple of 8 2684 * 2685 * The IVAR table consists of 2 columns, 2686 * each containing an cause allocation for an Rx and Tx ring, and a 2687 * variable number of rows depending on the number of queues supported. 2688 */ 2689 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 2690 int index, int offset) 2691 { 2692 u32 ivar = array_rd32(IGC_IVAR0, index); 2693 2694 /* clear any bits that are currently set */ 2695 ivar &= ~((u32)0xFF << offset); 2696 2697 /* write vector and valid bit */ 2698 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 2699 2700 array_wr32(IGC_IVAR0, index, ivar); 2701 } 2702 2703 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 2704 { 2705 struct igc_adapter *adapter = q_vector->adapter; 2706 struct igc_hw *hw = &adapter->hw; 2707 int rx_queue = IGC_N0_QUEUE; 2708 int tx_queue = IGC_N0_QUEUE; 2709 2710 if (q_vector->rx.ring) 2711 rx_queue = q_vector->rx.ring->reg_idx; 2712 if (q_vector->tx.ring) 2713 tx_queue = q_vector->tx.ring->reg_idx; 2714 2715 switch (hw->mac.type) { 2716 case igc_i225: 2717 if (rx_queue > IGC_N0_QUEUE) 2718 igc_write_ivar(hw, msix_vector, 2719 rx_queue >> 1, 2720 (rx_queue & 0x1) << 4); 2721 if (tx_queue > IGC_N0_QUEUE) 2722 igc_write_ivar(hw, msix_vector, 2723 tx_queue >> 1, 2724 ((tx_queue & 0x1) << 4) + 8); 2725 q_vector->eims_value = BIT(msix_vector); 2726 break; 2727 default: 2728 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 2729 break; 2730 } 2731 2732 /* add q_vector eims value to global eims_enable_mask */ 2733 adapter->eims_enable_mask |= q_vector->eims_value; 2734 2735 /* configure q_vector to set itr on first interrupt */ 2736 q_vector->set_itr = 1; 2737 } 2738 2739 /** 2740 * igc_configure_msix - Configure MSI-X hardware 2741 * @adapter: Pointer to adapter structure 2742 * 2743 * igc_configure_msix sets up the hardware to properly 2744 * generate MSI-X interrupts. 2745 */ 2746 static void igc_configure_msix(struct igc_adapter *adapter) 2747 { 2748 struct igc_hw *hw = &adapter->hw; 2749 int i, vector = 0; 2750 u32 tmp; 2751 2752 adapter->eims_enable_mask = 0; 2753 2754 /* set vector for other causes, i.e. link changes */ 2755 switch (hw->mac.type) { 2756 case igc_i225: 2757 /* Turn on MSI-X capability first, or our settings 2758 * won't stick. And it will take days to debug. 2759 */ 2760 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 2761 IGC_GPIE_PBA | IGC_GPIE_EIAME | 2762 IGC_GPIE_NSICR); 2763 2764 /* enable msix_other interrupt */ 2765 adapter->eims_other = BIT(vector); 2766 tmp = (vector++ | IGC_IVAR_VALID) << 8; 2767 2768 wr32(IGC_IVAR_MISC, tmp); 2769 break; 2770 default: 2771 /* do nothing, since nothing else supports MSI-X */ 2772 break; 2773 } /* switch (hw->mac.type) */ 2774 2775 adapter->eims_enable_mask |= adapter->eims_other; 2776 2777 for (i = 0; i < adapter->num_q_vectors; i++) 2778 igc_assign_vector(adapter->q_vector[i], vector++); 2779 2780 wrfl(); 2781 } 2782 2783 /** 2784 * igc_irq_enable - Enable default interrupt generation settings 2785 * @adapter: board private structure 2786 */ 2787 static void igc_irq_enable(struct igc_adapter *adapter) 2788 { 2789 struct igc_hw *hw = &adapter->hw; 2790 2791 if (adapter->msix_entries) { 2792 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 2793 u32 regval = rd32(IGC_EIAC); 2794 2795 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 2796 regval = rd32(IGC_EIAM); 2797 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 2798 wr32(IGC_EIMS, adapter->eims_enable_mask); 2799 wr32(IGC_IMS, ims); 2800 } else { 2801 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 2802 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 2803 } 2804 } 2805 2806 /** 2807 * igc_irq_disable - Mask off interrupt generation on the NIC 2808 * @adapter: board private structure 2809 */ 2810 static void igc_irq_disable(struct igc_adapter *adapter) 2811 { 2812 struct igc_hw *hw = &adapter->hw; 2813 2814 if (adapter->msix_entries) { 2815 u32 regval = rd32(IGC_EIAM); 2816 2817 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 2818 wr32(IGC_EIMC, adapter->eims_enable_mask); 2819 regval = rd32(IGC_EIAC); 2820 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 2821 } 2822 2823 wr32(IGC_IAM, 0); 2824 wr32(IGC_IMC, ~0); 2825 wrfl(); 2826 2827 if (adapter->msix_entries) { 2828 int vector = 0, i; 2829 2830 synchronize_irq(adapter->msix_entries[vector++].vector); 2831 2832 for (i = 0; i < adapter->num_q_vectors; i++) 2833 synchronize_irq(adapter->msix_entries[vector++].vector); 2834 } else { 2835 synchronize_irq(adapter->pdev->irq); 2836 } 2837 } 2838 2839 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 2840 const u32 max_rss_queues) 2841 { 2842 /* Determine if we need to pair queues. */ 2843 /* If rss_queues > half of max_rss_queues, pair the queues in 2844 * order to conserve interrupts due to limited supply. 2845 */ 2846 if (adapter->rss_queues > (max_rss_queues / 2)) 2847 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 2848 else 2849 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 2850 } 2851 2852 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 2853 { 2854 return IGC_MAX_RX_QUEUES; 2855 } 2856 2857 static void igc_init_queue_configuration(struct igc_adapter *adapter) 2858 { 2859 u32 max_rss_queues; 2860 2861 max_rss_queues = igc_get_max_rss_queues(adapter); 2862 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 2863 2864 igc_set_flag_queue_pairs(adapter, max_rss_queues); 2865 } 2866 2867 /** 2868 * igc_reset_q_vector - Reset config for interrupt vector 2869 * @adapter: board private structure to initialize 2870 * @v_idx: Index of vector to be reset 2871 * 2872 * If NAPI is enabled it will delete any references to the 2873 * NAPI struct. This is preparation for igc_free_q_vector. 2874 */ 2875 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 2876 { 2877 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 2878 2879 /* if we're coming from igc_set_interrupt_capability, the vectors are 2880 * not yet allocated 2881 */ 2882 if (!q_vector) 2883 return; 2884 2885 if (q_vector->tx.ring) 2886 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 2887 2888 if (q_vector->rx.ring) 2889 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 2890 2891 netif_napi_del(&q_vector->napi); 2892 } 2893 2894 /** 2895 * igc_free_q_vector - Free memory allocated for specific interrupt vector 2896 * @adapter: board private structure to initialize 2897 * @v_idx: Index of vector to be freed 2898 * 2899 * This function frees the memory allocated to the q_vector. 2900 */ 2901 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 2902 { 2903 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 2904 2905 adapter->q_vector[v_idx] = NULL; 2906 2907 /* igc_get_stats64() might access the rings on this vector, 2908 * we must wait a grace period before freeing it. 2909 */ 2910 if (q_vector) 2911 kfree_rcu(q_vector, rcu); 2912 } 2913 2914 /** 2915 * igc_free_q_vectors - Free memory allocated for interrupt vectors 2916 * @adapter: board private structure to initialize 2917 * 2918 * This function frees the memory allocated to the q_vectors. In addition if 2919 * NAPI is enabled it will delete any references to the NAPI struct prior 2920 * to freeing the q_vector. 2921 */ 2922 static void igc_free_q_vectors(struct igc_adapter *adapter) 2923 { 2924 int v_idx = adapter->num_q_vectors; 2925 2926 adapter->num_tx_queues = 0; 2927 adapter->num_rx_queues = 0; 2928 adapter->num_q_vectors = 0; 2929 2930 while (v_idx--) { 2931 igc_reset_q_vector(adapter, v_idx); 2932 igc_free_q_vector(adapter, v_idx); 2933 } 2934 } 2935 2936 /** 2937 * igc_update_itr - update the dynamic ITR value based on statistics 2938 * @q_vector: pointer to q_vector 2939 * @ring_container: ring info to update the itr for 2940 * 2941 * Stores a new ITR value based on packets and byte 2942 * counts during the last interrupt. The advantage of per interrupt 2943 * computation is faster updates and more accurate ITR for the current 2944 * traffic pattern. Constants in this function were computed 2945 * based on theoretical maximum wire speed and thresholds were set based 2946 * on testing data as well as attempting to minimize response time 2947 * while increasing bulk throughput. 2948 * NOTE: These calculations are only valid when operating in a single- 2949 * queue environment. 2950 */ 2951 static void igc_update_itr(struct igc_q_vector *q_vector, 2952 struct igc_ring_container *ring_container) 2953 { 2954 unsigned int packets = ring_container->total_packets; 2955 unsigned int bytes = ring_container->total_bytes; 2956 u8 itrval = ring_container->itr; 2957 2958 /* no packets, exit with status unchanged */ 2959 if (packets == 0) 2960 return; 2961 2962 switch (itrval) { 2963 case lowest_latency: 2964 /* handle TSO and jumbo frames */ 2965 if (bytes / packets > 8000) 2966 itrval = bulk_latency; 2967 else if ((packets < 5) && (bytes > 512)) 2968 itrval = low_latency; 2969 break; 2970 case low_latency: /* 50 usec aka 20000 ints/s */ 2971 if (bytes > 10000) { 2972 /* this if handles the TSO accounting */ 2973 if (bytes / packets > 8000) 2974 itrval = bulk_latency; 2975 else if ((packets < 10) || ((bytes / packets) > 1200)) 2976 itrval = bulk_latency; 2977 else if ((packets > 35)) 2978 itrval = lowest_latency; 2979 } else if (bytes / packets > 2000) { 2980 itrval = bulk_latency; 2981 } else if (packets <= 2 && bytes < 512) { 2982 itrval = lowest_latency; 2983 } 2984 break; 2985 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2986 if (bytes > 25000) { 2987 if (packets > 35) 2988 itrval = low_latency; 2989 } else if (bytes < 1500) { 2990 itrval = low_latency; 2991 } 2992 break; 2993 } 2994 2995 /* clear work counters since we have the values we need */ 2996 ring_container->total_bytes = 0; 2997 ring_container->total_packets = 0; 2998 2999 /* write updated itr to ring container */ 3000 ring_container->itr = itrval; 3001 } 3002 3003 static void igc_set_itr(struct igc_q_vector *q_vector) 3004 { 3005 struct igc_adapter *adapter = q_vector->adapter; 3006 u32 new_itr = q_vector->itr_val; 3007 u8 current_itr = 0; 3008 3009 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 3010 switch (adapter->link_speed) { 3011 case SPEED_10: 3012 case SPEED_100: 3013 current_itr = 0; 3014 new_itr = IGC_4K_ITR; 3015 goto set_itr_now; 3016 default: 3017 break; 3018 } 3019 3020 igc_update_itr(q_vector, &q_vector->tx); 3021 igc_update_itr(q_vector, &q_vector->rx); 3022 3023 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 3024 3025 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 3026 if (current_itr == lowest_latency && 3027 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 3028 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 3029 current_itr = low_latency; 3030 3031 switch (current_itr) { 3032 /* counts and packets in update_itr are dependent on these numbers */ 3033 case lowest_latency: 3034 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 3035 break; 3036 case low_latency: 3037 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 3038 break; 3039 case bulk_latency: 3040 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 3041 break; 3042 default: 3043 break; 3044 } 3045 3046 set_itr_now: 3047 if (new_itr != q_vector->itr_val) { 3048 /* this attempts to bias the interrupt rate towards Bulk 3049 * by adding intermediate steps when interrupt rate is 3050 * increasing 3051 */ 3052 new_itr = new_itr > q_vector->itr_val ? 3053 max((new_itr * q_vector->itr_val) / 3054 (new_itr + (q_vector->itr_val >> 2)), 3055 new_itr) : new_itr; 3056 /* Don't write the value here; it resets the adapter's 3057 * internal timer, and causes us to delay far longer than 3058 * we should between interrupts. Instead, we write the ITR 3059 * value at the beginning of the next interrupt so the timing 3060 * ends up being correct. 3061 */ 3062 q_vector->itr_val = new_itr; 3063 q_vector->set_itr = 1; 3064 } 3065 } 3066 3067 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 3068 { 3069 int v_idx = adapter->num_q_vectors; 3070 3071 if (adapter->msix_entries) { 3072 pci_disable_msix(adapter->pdev); 3073 kfree(adapter->msix_entries); 3074 adapter->msix_entries = NULL; 3075 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 3076 pci_disable_msi(adapter->pdev); 3077 } 3078 3079 while (v_idx--) 3080 igc_reset_q_vector(adapter, v_idx); 3081 } 3082 3083 /** 3084 * igc_set_interrupt_capability - set MSI or MSI-X if supported 3085 * @adapter: Pointer to adapter structure 3086 * @msix: boolean value for MSI-X capability 3087 * 3088 * Attempt to configure interrupts using the best available 3089 * capabilities of the hardware and kernel. 3090 */ 3091 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 3092 bool msix) 3093 { 3094 int numvecs, i; 3095 int err; 3096 3097 if (!msix) 3098 goto msi_only; 3099 adapter->flags |= IGC_FLAG_HAS_MSIX; 3100 3101 /* Number of supported queues. */ 3102 adapter->num_rx_queues = adapter->rss_queues; 3103 3104 adapter->num_tx_queues = adapter->rss_queues; 3105 3106 /* start with one vector for every Rx queue */ 3107 numvecs = adapter->num_rx_queues; 3108 3109 /* if Tx handler is separate add 1 for every Tx queue */ 3110 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 3111 numvecs += adapter->num_tx_queues; 3112 3113 /* store the number of vectors reserved for queues */ 3114 adapter->num_q_vectors = numvecs; 3115 3116 /* add 1 vector for link status interrupts */ 3117 numvecs++; 3118 3119 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 3120 GFP_KERNEL); 3121 3122 if (!adapter->msix_entries) 3123 return; 3124 3125 /* populate entry values */ 3126 for (i = 0; i < numvecs; i++) 3127 adapter->msix_entries[i].entry = i; 3128 3129 err = pci_enable_msix_range(adapter->pdev, 3130 adapter->msix_entries, 3131 numvecs, 3132 numvecs); 3133 if (err > 0) 3134 return; 3135 3136 kfree(adapter->msix_entries); 3137 adapter->msix_entries = NULL; 3138 3139 igc_reset_interrupt_capability(adapter); 3140 3141 msi_only: 3142 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 3143 3144 adapter->rss_queues = 1; 3145 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 3146 adapter->num_rx_queues = 1; 3147 adapter->num_tx_queues = 1; 3148 adapter->num_q_vectors = 1; 3149 if (!pci_enable_msi(adapter->pdev)) 3150 adapter->flags |= IGC_FLAG_HAS_MSI; 3151 } 3152 3153 /** 3154 * igc_update_ring_itr - update the dynamic ITR value based on packet size 3155 * @q_vector: pointer to q_vector 3156 * 3157 * Stores a new ITR value based on strictly on packet size. This 3158 * algorithm is less sophisticated than that used in igc_update_itr, 3159 * due to the difficulty of synchronizing statistics across multiple 3160 * receive rings. The divisors and thresholds used by this function 3161 * were determined based on theoretical maximum wire speed and testing 3162 * data, in order to minimize response time while increasing bulk 3163 * throughput. 3164 * NOTE: This function is called only when operating in a multiqueue 3165 * receive environment. 3166 */ 3167 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 3168 { 3169 struct igc_adapter *adapter = q_vector->adapter; 3170 int new_val = q_vector->itr_val; 3171 int avg_wire_size = 0; 3172 unsigned int packets; 3173 3174 /* For non-gigabit speeds, just fix the interrupt rate at 4000 3175 * ints/sec - ITR timer value of 120 ticks. 3176 */ 3177 switch (adapter->link_speed) { 3178 case SPEED_10: 3179 case SPEED_100: 3180 new_val = IGC_4K_ITR; 3181 goto set_itr_val; 3182 default: 3183 break; 3184 } 3185 3186 packets = q_vector->rx.total_packets; 3187 if (packets) 3188 avg_wire_size = q_vector->rx.total_bytes / packets; 3189 3190 packets = q_vector->tx.total_packets; 3191 if (packets) 3192 avg_wire_size = max_t(u32, avg_wire_size, 3193 q_vector->tx.total_bytes / packets); 3194 3195 /* if avg_wire_size isn't set no work was done */ 3196 if (!avg_wire_size) 3197 goto clear_counts; 3198 3199 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 3200 avg_wire_size += 24; 3201 3202 /* Don't starve jumbo frames */ 3203 avg_wire_size = min(avg_wire_size, 3000); 3204 3205 /* Give a little boost to mid-size frames */ 3206 if (avg_wire_size > 300 && avg_wire_size < 1200) 3207 new_val = avg_wire_size / 3; 3208 else 3209 new_val = avg_wire_size / 2; 3210 3211 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 3212 if (new_val < IGC_20K_ITR && 3213 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 3214 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 3215 new_val = IGC_20K_ITR; 3216 3217 set_itr_val: 3218 if (new_val != q_vector->itr_val) { 3219 q_vector->itr_val = new_val; 3220 q_vector->set_itr = 1; 3221 } 3222 clear_counts: 3223 q_vector->rx.total_bytes = 0; 3224 q_vector->rx.total_packets = 0; 3225 q_vector->tx.total_bytes = 0; 3226 q_vector->tx.total_packets = 0; 3227 } 3228 3229 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 3230 { 3231 struct igc_adapter *adapter = q_vector->adapter; 3232 struct igc_hw *hw = &adapter->hw; 3233 3234 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 3235 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 3236 if (adapter->num_q_vectors == 1) 3237 igc_set_itr(q_vector); 3238 else 3239 igc_update_ring_itr(q_vector); 3240 } 3241 3242 if (!test_bit(__IGC_DOWN, &adapter->state)) { 3243 if (adapter->msix_entries) 3244 wr32(IGC_EIMS, q_vector->eims_value); 3245 else 3246 igc_irq_enable(adapter); 3247 } 3248 } 3249 3250 static void igc_add_ring(struct igc_ring *ring, 3251 struct igc_ring_container *head) 3252 { 3253 head->ring = ring; 3254 head->count++; 3255 } 3256 3257 /** 3258 * igc_cache_ring_register - Descriptor ring to register mapping 3259 * @adapter: board private structure to initialize 3260 * 3261 * Once we know the feature-set enabled for the device, we'll cache 3262 * the register offset the descriptor ring is assigned to. 3263 */ 3264 static void igc_cache_ring_register(struct igc_adapter *adapter) 3265 { 3266 int i = 0, j = 0; 3267 3268 switch (adapter->hw.mac.type) { 3269 case igc_i225: 3270 default: 3271 for (; i < adapter->num_rx_queues; i++) 3272 adapter->rx_ring[i]->reg_idx = i; 3273 for (; j < adapter->num_tx_queues; j++) 3274 adapter->tx_ring[j]->reg_idx = j; 3275 break; 3276 } 3277 } 3278 3279 /** 3280 * igc_poll - NAPI Rx polling callback 3281 * @napi: napi polling structure 3282 * @budget: count of how many packets we should handle 3283 */ 3284 static int igc_poll(struct napi_struct *napi, int budget) 3285 { 3286 struct igc_q_vector *q_vector = container_of(napi, 3287 struct igc_q_vector, 3288 napi); 3289 bool clean_complete = true; 3290 int work_done = 0; 3291 3292 if (q_vector->tx.ring) 3293 clean_complete = igc_clean_tx_irq(q_vector, budget); 3294 3295 if (q_vector->rx.ring) { 3296 int cleaned = igc_clean_rx_irq(q_vector, budget); 3297 3298 work_done += cleaned; 3299 if (cleaned >= budget) 3300 clean_complete = false; 3301 } 3302 3303 /* If all work not completed, return budget and keep polling */ 3304 if (!clean_complete) 3305 return budget; 3306 3307 /* Exit the polling mode, but don't re-enable interrupts if stack might 3308 * poll us due to busy-polling 3309 */ 3310 if (likely(napi_complete_done(napi, work_done))) 3311 igc_ring_irq_enable(q_vector); 3312 3313 return min(work_done, budget - 1); 3314 } 3315 3316 /** 3317 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 3318 * @adapter: board private structure to initialize 3319 * @v_count: q_vectors allocated on adapter, used for ring interleaving 3320 * @v_idx: index of vector in adapter struct 3321 * @txr_count: total number of Tx rings to allocate 3322 * @txr_idx: index of first Tx ring to allocate 3323 * @rxr_count: total number of Rx rings to allocate 3324 * @rxr_idx: index of first Rx ring to allocate 3325 * 3326 * We allocate one q_vector. If allocation fails we return -ENOMEM. 3327 */ 3328 static int igc_alloc_q_vector(struct igc_adapter *adapter, 3329 unsigned int v_count, unsigned int v_idx, 3330 unsigned int txr_count, unsigned int txr_idx, 3331 unsigned int rxr_count, unsigned int rxr_idx) 3332 { 3333 struct igc_q_vector *q_vector; 3334 struct igc_ring *ring; 3335 int ring_count; 3336 3337 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 3338 if (txr_count > 1 || rxr_count > 1) 3339 return -ENOMEM; 3340 3341 ring_count = txr_count + rxr_count; 3342 3343 /* allocate q_vector and rings */ 3344 q_vector = adapter->q_vector[v_idx]; 3345 if (!q_vector) 3346 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 3347 GFP_KERNEL); 3348 else 3349 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 3350 if (!q_vector) 3351 return -ENOMEM; 3352 3353 /* initialize NAPI */ 3354 netif_napi_add(adapter->netdev, &q_vector->napi, 3355 igc_poll, 64); 3356 3357 /* tie q_vector and adapter together */ 3358 adapter->q_vector[v_idx] = q_vector; 3359 q_vector->adapter = adapter; 3360 3361 /* initialize work limits */ 3362 q_vector->tx.work_limit = adapter->tx_work_limit; 3363 3364 /* initialize ITR configuration */ 3365 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 3366 q_vector->itr_val = IGC_START_ITR; 3367 3368 /* initialize pointer to rings */ 3369 ring = q_vector->ring; 3370 3371 /* initialize ITR */ 3372 if (rxr_count) { 3373 /* rx or rx/tx vector */ 3374 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 3375 q_vector->itr_val = adapter->rx_itr_setting; 3376 } else { 3377 /* tx only vector */ 3378 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 3379 q_vector->itr_val = adapter->tx_itr_setting; 3380 } 3381 3382 if (txr_count) { 3383 /* assign generic ring traits */ 3384 ring->dev = &adapter->pdev->dev; 3385 ring->netdev = adapter->netdev; 3386 3387 /* configure backlink on ring */ 3388 ring->q_vector = q_vector; 3389 3390 /* update q_vector Tx values */ 3391 igc_add_ring(ring, &q_vector->tx); 3392 3393 /* apply Tx specific ring traits */ 3394 ring->count = adapter->tx_ring_count; 3395 ring->queue_index = txr_idx; 3396 3397 /* assign ring to adapter */ 3398 adapter->tx_ring[txr_idx] = ring; 3399 3400 /* push pointer to next ring */ 3401 ring++; 3402 } 3403 3404 if (rxr_count) { 3405 /* assign generic ring traits */ 3406 ring->dev = &adapter->pdev->dev; 3407 ring->netdev = adapter->netdev; 3408 3409 /* configure backlink on ring */ 3410 ring->q_vector = q_vector; 3411 3412 /* update q_vector Rx values */ 3413 igc_add_ring(ring, &q_vector->rx); 3414 3415 /* apply Rx specific ring traits */ 3416 ring->count = adapter->rx_ring_count; 3417 ring->queue_index = rxr_idx; 3418 3419 /* assign ring to adapter */ 3420 adapter->rx_ring[rxr_idx] = ring; 3421 } 3422 3423 return 0; 3424 } 3425 3426 /** 3427 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 3428 * @adapter: board private structure to initialize 3429 * 3430 * We allocate one q_vector per queue interrupt. If allocation fails we 3431 * return -ENOMEM. 3432 */ 3433 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 3434 { 3435 int rxr_remaining = adapter->num_rx_queues; 3436 int txr_remaining = adapter->num_tx_queues; 3437 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 3438 int q_vectors = adapter->num_q_vectors; 3439 int err; 3440 3441 if (q_vectors >= (rxr_remaining + txr_remaining)) { 3442 for (; rxr_remaining; v_idx++) { 3443 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 3444 0, 0, 1, rxr_idx); 3445 3446 if (err) 3447 goto err_out; 3448 3449 /* update counts and index */ 3450 rxr_remaining--; 3451 rxr_idx++; 3452 } 3453 } 3454 3455 for (; v_idx < q_vectors; v_idx++) { 3456 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 3457 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 3458 3459 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 3460 tqpv, txr_idx, rqpv, rxr_idx); 3461 3462 if (err) 3463 goto err_out; 3464 3465 /* update counts and index */ 3466 rxr_remaining -= rqpv; 3467 txr_remaining -= tqpv; 3468 rxr_idx++; 3469 txr_idx++; 3470 } 3471 3472 return 0; 3473 3474 err_out: 3475 adapter->num_tx_queues = 0; 3476 adapter->num_rx_queues = 0; 3477 adapter->num_q_vectors = 0; 3478 3479 while (v_idx--) 3480 igc_free_q_vector(adapter, v_idx); 3481 3482 return -ENOMEM; 3483 } 3484 3485 /** 3486 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 3487 * @adapter: Pointer to adapter structure 3488 * @msix: boolean for MSI-X capability 3489 * 3490 * This function initializes the interrupts and allocates all of the queues. 3491 */ 3492 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 3493 { 3494 struct net_device *dev = adapter->netdev; 3495 int err = 0; 3496 3497 igc_set_interrupt_capability(adapter, msix); 3498 3499 err = igc_alloc_q_vectors(adapter); 3500 if (err) { 3501 netdev_err(dev, "Unable to allocate memory for vectors\n"); 3502 goto err_alloc_q_vectors; 3503 } 3504 3505 igc_cache_ring_register(adapter); 3506 3507 return 0; 3508 3509 err_alloc_q_vectors: 3510 igc_reset_interrupt_capability(adapter); 3511 return err; 3512 } 3513 3514 /** 3515 * igc_sw_init - Initialize general software structures (struct igc_adapter) 3516 * @adapter: board private structure to initialize 3517 * 3518 * igc_sw_init initializes the Adapter private data structure. 3519 * Fields are initialized based on PCI device information and 3520 * OS network device settings (MTU size). 3521 */ 3522 static int igc_sw_init(struct igc_adapter *adapter) 3523 { 3524 struct net_device *netdev = adapter->netdev; 3525 struct pci_dev *pdev = adapter->pdev; 3526 struct igc_hw *hw = &adapter->hw; 3527 3528 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 3529 3530 /* set default ring sizes */ 3531 adapter->tx_ring_count = IGC_DEFAULT_TXD; 3532 adapter->rx_ring_count = IGC_DEFAULT_RXD; 3533 3534 /* set default ITR values */ 3535 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 3536 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 3537 3538 /* set default work limits */ 3539 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 3540 3541 /* adjust max frame to be at least the size of a standard frame */ 3542 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 3543 VLAN_HLEN; 3544 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3545 3546 mutex_init(&adapter->nfc_rule_lock); 3547 INIT_LIST_HEAD(&adapter->nfc_rule_list); 3548 adapter->nfc_rule_count = 0; 3549 3550 spin_lock_init(&adapter->stats64_lock); 3551 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 3552 adapter->flags |= IGC_FLAG_HAS_MSIX; 3553 3554 igc_init_queue_configuration(adapter); 3555 3556 /* This call may decrease the number of queues */ 3557 if (igc_init_interrupt_scheme(adapter, true)) { 3558 netdev_err(netdev, "Unable to allocate memory for queues\n"); 3559 return -ENOMEM; 3560 } 3561 3562 /* Explicitly disable IRQ since the NIC can be in any state. */ 3563 igc_irq_disable(adapter); 3564 3565 set_bit(__IGC_DOWN, &adapter->state); 3566 3567 return 0; 3568 } 3569 3570 /** 3571 * igc_up - Open the interface and prepare it to handle traffic 3572 * @adapter: board private structure 3573 */ 3574 void igc_up(struct igc_adapter *adapter) 3575 { 3576 struct igc_hw *hw = &adapter->hw; 3577 int i = 0; 3578 3579 /* hardware has been reset, we need to reload some things */ 3580 igc_configure(adapter); 3581 3582 clear_bit(__IGC_DOWN, &adapter->state); 3583 3584 for (i = 0; i < adapter->num_q_vectors; i++) 3585 napi_enable(&adapter->q_vector[i]->napi); 3586 3587 if (adapter->msix_entries) 3588 igc_configure_msix(adapter); 3589 else 3590 igc_assign_vector(adapter->q_vector[0], 0); 3591 3592 /* Clear any pending interrupts. */ 3593 rd32(IGC_ICR); 3594 igc_irq_enable(adapter); 3595 3596 netif_tx_start_all_queues(adapter->netdev); 3597 3598 /* start the watchdog. */ 3599 hw->mac.get_link_status = 1; 3600 schedule_work(&adapter->watchdog_task); 3601 } 3602 3603 /** 3604 * igc_update_stats - Update the board statistics counters 3605 * @adapter: board private structure 3606 */ 3607 void igc_update_stats(struct igc_adapter *adapter) 3608 { 3609 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 3610 struct pci_dev *pdev = adapter->pdev; 3611 struct igc_hw *hw = &adapter->hw; 3612 u64 _bytes, _packets; 3613 u64 bytes, packets; 3614 unsigned int start; 3615 u32 mpc; 3616 int i; 3617 3618 /* Prevent stats update while adapter is being reset, or if the pci 3619 * connection is down. 3620 */ 3621 if (adapter->link_speed == 0) 3622 return; 3623 if (pci_channel_offline(pdev)) 3624 return; 3625 3626 packets = 0; 3627 bytes = 0; 3628 3629 rcu_read_lock(); 3630 for (i = 0; i < adapter->num_rx_queues; i++) { 3631 struct igc_ring *ring = adapter->rx_ring[i]; 3632 u32 rqdpc = rd32(IGC_RQDPC(i)); 3633 3634 if (hw->mac.type >= igc_i225) 3635 wr32(IGC_RQDPC(i), 0); 3636 3637 if (rqdpc) { 3638 ring->rx_stats.drops += rqdpc; 3639 net_stats->rx_fifo_errors += rqdpc; 3640 } 3641 3642 do { 3643 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 3644 _bytes = ring->rx_stats.bytes; 3645 _packets = ring->rx_stats.packets; 3646 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 3647 bytes += _bytes; 3648 packets += _packets; 3649 } 3650 3651 net_stats->rx_bytes = bytes; 3652 net_stats->rx_packets = packets; 3653 3654 packets = 0; 3655 bytes = 0; 3656 for (i = 0; i < adapter->num_tx_queues; i++) { 3657 struct igc_ring *ring = adapter->tx_ring[i]; 3658 3659 do { 3660 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 3661 _bytes = ring->tx_stats.bytes; 3662 _packets = ring->tx_stats.packets; 3663 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 3664 bytes += _bytes; 3665 packets += _packets; 3666 } 3667 net_stats->tx_bytes = bytes; 3668 net_stats->tx_packets = packets; 3669 rcu_read_unlock(); 3670 3671 /* read stats registers */ 3672 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 3673 adapter->stats.gprc += rd32(IGC_GPRC); 3674 adapter->stats.gorc += rd32(IGC_GORCL); 3675 rd32(IGC_GORCH); /* clear GORCL */ 3676 adapter->stats.bprc += rd32(IGC_BPRC); 3677 adapter->stats.mprc += rd32(IGC_MPRC); 3678 adapter->stats.roc += rd32(IGC_ROC); 3679 3680 adapter->stats.prc64 += rd32(IGC_PRC64); 3681 adapter->stats.prc127 += rd32(IGC_PRC127); 3682 adapter->stats.prc255 += rd32(IGC_PRC255); 3683 adapter->stats.prc511 += rd32(IGC_PRC511); 3684 adapter->stats.prc1023 += rd32(IGC_PRC1023); 3685 adapter->stats.prc1522 += rd32(IGC_PRC1522); 3686 adapter->stats.tlpic += rd32(IGC_TLPIC); 3687 adapter->stats.rlpic += rd32(IGC_RLPIC); 3688 3689 mpc = rd32(IGC_MPC); 3690 adapter->stats.mpc += mpc; 3691 net_stats->rx_fifo_errors += mpc; 3692 adapter->stats.scc += rd32(IGC_SCC); 3693 adapter->stats.ecol += rd32(IGC_ECOL); 3694 adapter->stats.mcc += rd32(IGC_MCC); 3695 adapter->stats.latecol += rd32(IGC_LATECOL); 3696 adapter->stats.dc += rd32(IGC_DC); 3697 adapter->stats.rlec += rd32(IGC_RLEC); 3698 adapter->stats.xonrxc += rd32(IGC_XONRXC); 3699 adapter->stats.xontxc += rd32(IGC_XONTXC); 3700 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 3701 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 3702 adapter->stats.fcruc += rd32(IGC_FCRUC); 3703 adapter->stats.gptc += rd32(IGC_GPTC); 3704 adapter->stats.gotc += rd32(IGC_GOTCL); 3705 rd32(IGC_GOTCH); /* clear GOTCL */ 3706 adapter->stats.rnbc += rd32(IGC_RNBC); 3707 adapter->stats.ruc += rd32(IGC_RUC); 3708 adapter->stats.rfc += rd32(IGC_RFC); 3709 adapter->stats.rjc += rd32(IGC_RJC); 3710 adapter->stats.tor += rd32(IGC_TORH); 3711 adapter->stats.tot += rd32(IGC_TOTH); 3712 adapter->stats.tpr += rd32(IGC_TPR); 3713 3714 adapter->stats.ptc64 += rd32(IGC_PTC64); 3715 adapter->stats.ptc127 += rd32(IGC_PTC127); 3716 adapter->stats.ptc255 += rd32(IGC_PTC255); 3717 adapter->stats.ptc511 += rd32(IGC_PTC511); 3718 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 3719 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 3720 3721 adapter->stats.mptc += rd32(IGC_MPTC); 3722 adapter->stats.bptc += rd32(IGC_BPTC); 3723 3724 adapter->stats.tpt += rd32(IGC_TPT); 3725 adapter->stats.colc += rd32(IGC_COLC); 3726 adapter->stats.colc += rd32(IGC_RERC); 3727 3728 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 3729 3730 adapter->stats.tsctc += rd32(IGC_TSCTC); 3731 3732 adapter->stats.iac += rd32(IGC_IAC); 3733 3734 /* Fill out the OS statistics structure */ 3735 net_stats->multicast = adapter->stats.mprc; 3736 net_stats->collisions = adapter->stats.colc; 3737 3738 /* Rx Errors */ 3739 3740 /* RLEC on some newer hardware can be incorrect so build 3741 * our own version based on RUC and ROC 3742 */ 3743 net_stats->rx_errors = adapter->stats.rxerrc + 3744 adapter->stats.crcerrs + adapter->stats.algnerrc + 3745 adapter->stats.ruc + adapter->stats.roc + 3746 adapter->stats.cexterr; 3747 net_stats->rx_length_errors = adapter->stats.ruc + 3748 adapter->stats.roc; 3749 net_stats->rx_crc_errors = adapter->stats.crcerrs; 3750 net_stats->rx_frame_errors = adapter->stats.algnerrc; 3751 net_stats->rx_missed_errors = adapter->stats.mpc; 3752 3753 /* Tx Errors */ 3754 net_stats->tx_errors = adapter->stats.ecol + 3755 adapter->stats.latecol; 3756 net_stats->tx_aborted_errors = adapter->stats.ecol; 3757 net_stats->tx_window_errors = adapter->stats.latecol; 3758 net_stats->tx_carrier_errors = adapter->stats.tncrs; 3759 3760 /* Tx Dropped needs to be maintained elsewhere */ 3761 3762 /* Management Stats */ 3763 adapter->stats.mgptc += rd32(IGC_MGTPTC); 3764 adapter->stats.mgprc += rd32(IGC_MGTPRC); 3765 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 3766 } 3767 3768 /** 3769 * igc_down - Close the interface 3770 * @adapter: board private structure 3771 */ 3772 void igc_down(struct igc_adapter *adapter) 3773 { 3774 struct net_device *netdev = adapter->netdev; 3775 struct igc_hw *hw = &adapter->hw; 3776 u32 tctl, rctl; 3777 int i = 0; 3778 3779 set_bit(__IGC_DOWN, &adapter->state); 3780 3781 igc_ptp_suspend(adapter); 3782 3783 /* disable receives in the hardware */ 3784 rctl = rd32(IGC_RCTL); 3785 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 3786 /* flush and sleep below */ 3787 3788 /* set trans_start so we don't get spurious watchdogs during reset */ 3789 netif_trans_update(netdev); 3790 3791 netif_carrier_off(netdev); 3792 netif_tx_stop_all_queues(netdev); 3793 3794 /* disable transmits in the hardware */ 3795 tctl = rd32(IGC_TCTL); 3796 tctl &= ~IGC_TCTL_EN; 3797 wr32(IGC_TCTL, tctl); 3798 /* flush both disables and wait for them to finish */ 3799 wrfl(); 3800 usleep_range(10000, 20000); 3801 3802 igc_irq_disable(adapter); 3803 3804 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 3805 3806 for (i = 0; i < adapter->num_q_vectors; i++) { 3807 if (adapter->q_vector[i]) { 3808 napi_synchronize(&adapter->q_vector[i]->napi); 3809 napi_disable(&adapter->q_vector[i]->napi); 3810 } 3811 } 3812 3813 del_timer_sync(&adapter->watchdog_timer); 3814 del_timer_sync(&adapter->phy_info_timer); 3815 3816 /* record the stats before reset*/ 3817 spin_lock(&adapter->stats64_lock); 3818 igc_update_stats(adapter); 3819 spin_unlock(&adapter->stats64_lock); 3820 3821 adapter->link_speed = 0; 3822 adapter->link_duplex = 0; 3823 3824 if (!pci_channel_offline(adapter->pdev)) 3825 igc_reset(adapter); 3826 3827 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 3828 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 3829 3830 igc_clean_all_tx_rings(adapter); 3831 igc_clean_all_rx_rings(adapter); 3832 } 3833 3834 void igc_reinit_locked(struct igc_adapter *adapter) 3835 { 3836 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 3837 usleep_range(1000, 2000); 3838 igc_down(adapter); 3839 igc_up(adapter); 3840 clear_bit(__IGC_RESETTING, &adapter->state); 3841 } 3842 3843 static void igc_reset_task(struct work_struct *work) 3844 { 3845 struct igc_adapter *adapter; 3846 3847 adapter = container_of(work, struct igc_adapter, reset_task); 3848 3849 igc_rings_dump(adapter); 3850 igc_regs_dump(adapter); 3851 netdev_err(adapter->netdev, "Reset adapter\n"); 3852 igc_reinit_locked(adapter); 3853 } 3854 3855 /** 3856 * igc_change_mtu - Change the Maximum Transfer Unit 3857 * @netdev: network interface device structure 3858 * @new_mtu: new value for maximum frame size 3859 * 3860 * Returns 0 on success, negative on failure 3861 */ 3862 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 3863 { 3864 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 3865 struct igc_adapter *adapter = netdev_priv(netdev); 3866 3867 /* adjust max frame to be at least the size of a standard frame */ 3868 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 3869 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 3870 3871 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 3872 usleep_range(1000, 2000); 3873 3874 /* igc_down has a dependency on max_frame_size */ 3875 adapter->max_frame_size = max_frame; 3876 3877 if (netif_running(netdev)) 3878 igc_down(adapter); 3879 3880 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 3881 netdev->mtu = new_mtu; 3882 3883 if (netif_running(netdev)) 3884 igc_up(adapter); 3885 else 3886 igc_reset(adapter); 3887 3888 clear_bit(__IGC_RESETTING, &adapter->state); 3889 3890 return 0; 3891 } 3892 3893 /** 3894 * igc_get_stats - Get System Network Statistics 3895 * @netdev: network interface device structure 3896 * 3897 * Returns the address of the device statistics structure. 3898 * The statistics are updated here and also from the timer callback. 3899 */ 3900 static struct net_device_stats *igc_get_stats(struct net_device *netdev) 3901 { 3902 struct igc_adapter *adapter = netdev_priv(netdev); 3903 3904 if (!test_bit(__IGC_RESETTING, &adapter->state)) 3905 igc_update_stats(adapter); 3906 3907 /* only return the current stats */ 3908 return &netdev->stats; 3909 } 3910 3911 static netdev_features_t igc_fix_features(struct net_device *netdev, 3912 netdev_features_t features) 3913 { 3914 /* Since there is no support for separate Rx/Tx vlan accel 3915 * enable/disable make sure Tx flag is always in same state as Rx. 3916 */ 3917 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3918 features |= NETIF_F_HW_VLAN_CTAG_TX; 3919 else 3920 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 3921 3922 return features; 3923 } 3924 3925 static int igc_set_features(struct net_device *netdev, 3926 netdev_features_t features) 3927 { 3928 netdev_features_t changed = netdev->features ^ features; 3929 struct igc_adapter *adapter = netdev_priv(netdev); 3930 3931 /* Add VLAN support */ 3932 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 3933 return 0; 3934 3935 if (!(features & NETIF_F_NTUPLE)) 3936 igc_flush_nfc_rules(adapter); 3937 3938 netdev->features = features; 3939 3940 if (netif_running(netdev)) 3941 igc_reinit_locked(adapter); 3942 else 3943 igc_reset(adapter); 3944 3945 return 1; 3946 } 3947 3948 static netdev_features_t 3949 igc_features_check(struct sk_buff *skb, struct net_device *dev, 3950 netdev_features_t features) 3951 { 3952 unsigned int network_hdr_len, mac_hdr_len; 3953 3954 /* Make certain the headers can be described by a context descriptor */ 3955 mac_hdr_len = skb_network_header(skb) - skb->data; 3956 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 3957 return features & ~(NETIF_F_HW_CSUM | 3958 NETIF_F_SCTP_CRC | 3959 NETIF_F_HW_VLAN_CTAG_TX | 3960 NETIF_F_TSO | 3961 NETIF_F_TSO6); 3962 3963 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 3964 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 3965 return features & ~(NETIF_F_HW_CSUM | 3966 NETIF_F_SCTP_CRC | 3967 NETIF_F_TSO | 3968 NETIF_F_TSO6); 3969 3970 /* We can only support IPv4 TSO in tunnels if we can mangle the 3971 * inner IP ID field, so strip TSO if MANGLEID is not supported. 3972 */ 3973 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 3974 features &= ~NETIF_F_TSO; 3975 3976 return features; 3977 } 3978 3979 static void igc_tsync_interrupt(struct igc_adapter *adapter) 3980 { 3981 struct igc_hw *hw = &adapter->hw; 3982 u32 tsicr = rd32(IGC_TSICR); 3983 u32 ack = 0; 3984 3985 if (tsicr & IGC_TSICR_TXTS) { 3986 /* retrieve hardware timestamp */ 3987 schedule_work(&adapter->ptp_tx_work); 3988 ack |= IGC_TSICR_TXTS; 3989 } 3990 3991 /* acknowledge the interrupts */ 3992 wr32(IGC_TSICR, ack); 3993 } 3994 3995 /** 3996 * igc_msix_other - msix other interrupt handler 3997 * @irq: interrupt number 3998 * @data: pointer to a q_vector 3999 */ 4000 static irqreturn_t igc_msix_other(int irq, void *data) 4001 { 4002 struct igc_adapter *adapter = data; 4003 struct igc_hw *hw = &adapter->hw; 4004 u32 icr = rd32(IGC_ICR); 4005 4006 /* reading ICR causes bit 31 of EICR to be cleared */ 4007 if (icr & IGC_ICR_DRSTA) 4008 schedule_work(&adapter->reset_task); 4009 4010 if (icr & IGC_ICR_DOUTSYNC) { 4011 /* HW is reporting DMA is out of sync */ 4012 adapter->stats.doosync++; 4013 } 4014 4015 if (icr & IGC_ICR_LSC) { 4016 hw->mac.get_link_status = 1; 4017 /* guard against interrupt when we're going down */ 4018 if (!test_bit(__IGC_DOWN, &adapter->state)) 4019 mod_timer(&adapter->watchdog_timer, jiffies + 1); 4020 } 4021 4022 if (icr & IGC_ICR_TS) 4023 igc_tsync_interrupt(adapter); 4024 4025 wr32(IGC_EIMS, adapter->eims_other); 4026 4027 return IRQ_HANDLED; 4028 } 4029 4030 static void igc_write_itr(struct igc_q_vector *q_vector) 4031 { 4032 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 4033 4034 if (!q_vector->set_itr) 4035 return; 4036 4037 if (!itr_val) 4038 itr_val = IGC_ITR_VAL_MASK; 4039 4040 itr_val |= IGC_EITR_CNT_IGNR; 4041 4042 writel(itr_val, q_vector->itr_register); 4043 q_vector->set_itr = 0; 4044 } 4045 4046 static irqreturn_t igc_msix_ring(int irq, void *data) 4047 { 4048 struct igc_q_vector *q_vector = data; 4049 4050 /* Write the ITR value calculated from the previous interrupt. */ 4051 igc_write_itr(q_vector); 4052 4053 napi_schedule(&q_vector->napi); 4054 4055 return IRQ_HANDLED; 4056 } 4057 4058 /** 4059 * igc_request_msix - Initialize MSI-X interrupts 4060 * @adapter: Pointer to adapter structure 4061 * 4062 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 4063 * kernel. 4064 */ 4065 static int igc_request_msix(struct igc_adapter *adapter) 4066 { 4067 int i = 0, err = 0, vector = 0, free_vector = 0; 4068 struct net_device *netdev = adapter->netdev; 4069 4070 err = request_irq(adapter->msix_entries[vector].vector, 4071 &igc_msix_other, 0, netdev->name, adapter); 4072 if (err) 4073 goto err_out; 4074 4075 for (i = 0; i < adapter->num_q_vectors; i++) { 4076 struct igc_q_vector *q_vector = adapter->q_vector[i]; 4077 4078 vector++; 4079 4080 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 4081 4082 if (q_vector->rx.ring && q_vector->tx.ring) 4083 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 4084 q_vector->rx.ring->queue_index); 4085 else if (q_vector->tx.ring) 4086 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 4087 q_vector->tx.ring->queue_index); 4088 else if (q_vector->rx.ring) 4089 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 4090 q_vector->rx.ring->queue_index); 4091 else 4092 sprintf(q_vector->name, "%s-unused", netdev->name); 4093 4094 err = request_irq(adapter->msix_entries[vector].vector, 4095 igc_msix_ring, 0, q_vector->name, 4096 q_vector); 4097 if (err) 4098 goto err_free; 4099 } 4100 4101 igc_configure_msix(adapter); 4102 return 0; 4103 4104 err_free: 4105 /* free already assigned IRQs */ 4106 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 4107 4108 vector--; 4109 for (i = 0; i < vector; i++) { 4110 free_irq(adapter->msix_entries[free_vector++].vector, 4111 adapter->q_vector[i]); 4112 } 4113 err_out: 4114 return err; 4115 } 4116 4117 /** 4118 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 4119 * @adapter: Pointer to adapter structure 4120 * 4121 * This function resets the device so that it has 0 rx queues, tx queues, and 4122 * MSI-X interrupts allocated. 4123 */ 4124 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 4125 { 4126 igc_free_q_vectors(adapter); 4127 igc_reset_interrupt_capability(adapter); 4128 } 4129 4130 /* Need to wait a few seconds after link up to get diagnostic information from 4131 * the phy 4132 */ 4133 static void igc_update_phy_info(struct timer_list *t) 4134 { 4135 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 4136 4137 igc_get_phy_info(&adapter->hw); 4138 } 4139 4140 /** 4141 * igc_has_link - check shared code for link and determine up/down 4142 * @adapter: pointer to driver private info 4143 */ 4144 bool igc_has_link(struct igc_adapter *adapter) 4145 { 4146 struct igc_hw *hw = &adapter->hw; 4147 bool link_active = false; 4148 4149 /* get_link_status is set on LSC (link status) interrupt or 4150 * rx sequence error interrupt. get_link_status will stay 4151 * false until the igc_check_for_link establishes link 4152 * for copper adapters ONLY 4153 */ 4154 switch (hw->phy.media_type) { 4155 case igc_media_type_copper: 4156 if (!hw->mac.get_link_status) 4157 return true; 4158 hw->mac.ops.check_for_link(hw); 4159 link_active = !hw->mac.get_link_status; 4160 break; 4161 default: 4162 case igc_media_type_unknown: 4163 break; 4164 } 4165 4166 if (hw->mac.type == igc_i225 && 4167 hw->phy.id == I225_I_PHY_ID) { 4168 if (!netif_carrier_ok(adapter->netdev)) { 4169 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 4170 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 4171 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 4172 adapter->link_check_timeout = jiffies; 4173 } 4174 } 4175 4176 return link_active; 4177 } 4178 4179 /** 4180 * igc_watchdog - Timer Call-back 4181 * @t: timer for the watchdog 4182 */ 4183 static void igc_watchdog(struct timer_list *t) 4184 { 4185 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 4186 /* Do the rest outside of interrupt context */ 4187 schedule_work(&adapter->watchdog_task); 4188 } 4189 4190 static void igc_watchdog_task(struct work_struct *work) 4191 { 4192 struct igc_adapter *adapter = container_of(work, 4193 struct igc_adapter, 4194 watchdog_task); 4195 struct net_device *netdev = adapter->netdev; 4196 struct igc_hw *hw = &adapter->hw; 4197 struct igc_phy_info *phy = &hw->phy; 4198 u16 phy_data, retry_count = 20; 4199 u32 link; 4200 int i; 4201 4202 link = igc_has_link(adapter); 4203 4204 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 4205 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 4206 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 4207 else 4208 link = false; 4209 } 4210 4211 if (link) { 4212 /* Cancel scheduled suspend requests. */ 4213 pm_runtime_resume(netdev->dev.parent); 4214 4215 if (!netif_carrier_ok(netdev)) { 4216 u32 ctrl; 4217 4218 hw->mac.ops.get_speed_and_duplex(hw, 4219 &adapter->link_speed, 4220 &adapter->link_duplex); 4221 4222 ctrl = rd32(IGC_CTRL); 4223 /* Link status message must follow this format */ 4224 netdev_info(netdev, 4225 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 4226 adapter->link_speed, 4227 adapter->link_duplex == FULL_DUPLEX ? 4228 "Full" : "Half", 4229 (ctrl & IGC_CTRL_TFCE) && 4230 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 4231 (ctrl & IGC_CTRL_RFCE) ? "RX" : 4232 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 4233 4234 /* disable EEE if enabled */ 4235 if ((adapter->flags & IGC_FLAG_EEE) && 4236 adapter->link_duplex == HALF_DUPLEX) { 4237 netdev_info(netdev, 4238 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 4239 adapter->hw.dev_spec._base.eee_enable = false; 4240 adapter->flags &= ~IGC_FLAG_EEE; 4241 } 4242 4243 /* check if SmartSpeed worked */ 4244 igc_check_downshift(hw); 4245 if (phy->speed_downgraded) 4246 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 4247 4248 /* adjust timeout factor according to speed/duplex */ 4249 adapter->tx_timeout_factor = 1; 4250 switch (adapter->link_speed) { 4251 case SPEED_10: 4252 adapter->tx_timeout_factor = 14; 4253 break; 4254 case SPEED_100: 4255 /* maybe add some timeout factor ? */ 4256 break; 4257 } 4258 4259 if (adapter->link_speed != SPEED_1000) 4260 goto no_wait; 4261 4262 /* wait for Remote receiver status OK */ 4263 retry_read_status: 4264 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 4265 &phy_data)) { 4266 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 4267 retry_count) { 4268 msleep(100); 4269 retry_count--; 4270 goto retry_read_status; 4271 } else if (!retry_count) { 4272 netdev_err(netdev, "exceed max 2 second\n"); 4273 } 4274 } else { 4275 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 4276 } 4277 no_wait: 4278 netif_carrier_on(netdev); 4279 4280 /* link state has changed, schedule phy info update */ 4281 if (!test_bit(__IGC_DOWN, &adapter->state)) 4282 mod_timer(&adapter->phy_info_timer, 4283 round_jiffies(jiffies + 2 * HZ)); 4284 } 4285 } else { 4286 if (netif_carrier_ok(netdev)) { 4287 adapter->link_speed = 0; 4288 adapter->link_duplex = 0; 4289 4290 /* Links status message must follow this format */ 4291 netdev_info(netdev, "NIC Link is Down\n"); 4292 netif_carrier_off(netdev); 4293 4294 /* link state has changed, schedule phy info update */ 4295 if (!test_bit(__IGC_DOWN, &adapter->state)) 4296 mod_timer(&adapter->phy_info_timer, 4297 round_jiffies(jiffies + 2 * HZ)); 4298 4299 /* link is down, time to check for alternate media */ 4300 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 4301 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 4302 schedule_work(&adapter->reset_task); 4303 /* return immediately */ 4304 return; 4305 } 4306 } 4307 pm_schedule_suspend(netdev->dev.parent, 4308 MSEC_PER_SEC * 5); 4309 4310 /* also check for alternate media here */ 4311 } else if (!netif_carrier_ok(netdev) && 4312 (adapter->flags & IGC_FLAG_MAS_ENABLE)) { 4313 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 4314 schedule_work(&adapter->reset_task); 4315 /* return immediately */ 4316 return; 4317 } 4318 } 4319 } 4320 4321 spin_lock(&adapter->stats64_lock); 4322 igc_update_stats(adapter); 4323 spin_unlock(&adapter->stats64_lock); 4324 4325 for (i = 0; i < adapter->num_tx_queues; i++) { 4326 struct igc_ring *tx_ring = adapter->tx_ring[i]; 4327 4328 if (!netif_carrier_ok(netdev)) { 4329 /* We've lost link, so the controller stops DMA, 4330 * but we've got queued Tx work that's never going 4331 * to get done, so reset controller to flush Tx. 4332 * (Do the reset outside of interrupt context). 4333 */ 4334 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 4335 adapter->tx_timeout_count++; 4336 schedule_work(&adapter->reset_task); 4337 /* return immediately since reset is imminent */ 4338 return; 4339 } 4340 } 4341 4342 /* Force detection of hung controller every watchdog period */ 4343 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 4344 } 4345 4346 /* Cause software interrupt to ensure Rx ring is cleaned */ 4347 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 4348 u32 eics = 0; 4349 4350 for (i = 0; i < adapter->num_q_vectors; i++) 4351 eics |= adapter->q_vector[i]->eims_value; 4352 wr32(IGC_EICS, eics); 4353 } else { 4354 wr32(IGC_ICS, IGC_ICS_RXDMT0); 4355 } 4356 4357 igc_ptp_tx_hang(adapter); 4358 4359 /* Reset the timer */ 4360 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4361 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 4362 mod_timer(&adapter->watchdog_timer, 4363 round_jiffies(jiffies + HZ)); 4364 else 4365 mod_timer(&adapter->watchdog_timer, 4366 round_jiffies(jiffies + 2 * HZ)); 4367 } 4368 } 4369 4370 /** 4371 * igc_intr_msi - Interrupt Handler 4372 * @irq: interrupt number 4373 * @data: pointer to a network interface device structure 4374 */ 4375 static irqreturn_t igc_intr_msi(int irq, void *data) 4376 { 4377 struct igc_adapter *adapter = data; 4378 struct igc_q_vector *q_vector = adapter->q_vector[0]; 4379 struct igc_hw *hw = &adapter->hw; 4380 /* read ICR disables interrupts using IAM */ 4381 u32 icr = rd32(IGC_ICR); 4382 4383 igc_write_itr(q_vector); 4384 4385 if (icr & IGC_ICR_DRSTA) 4386 schedule_work(&adapter->reset_task); 4387 4388 if (icr & IGC_ICR_DOUTSYNC) { 4389 /* HW is reporting DMA is out of sync */ 4390 adapter->stats.doosync++; 4391 } 4392 4393 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 4394 hw->mac.get_link_status = 1; 4395 if (!test_bit(__IGC_DOWN, &adapter->state)) 4396 mod_timer(&adapter->watchdog_timer, jiffies + 1); 4397 } 4398 4399 napi_schedule(&q_vector->napi); 4400 4401 return IRQ_HANDLED; 4402 } 4403 4404 /** 4405 * igc_intr - Legacy Interrupt Handler 4406 * @irq: interrupt number 4407 * @data: pointer to a network interface device structure 4408 */ 4409 static irqreturn_t igc_intr(int irq, void *data) 4410 { 4411 struct igc_adapter *adapter = data; 4412 struct igc_q_vector *q_vector = adapter->q_vector[0]; 4413 struct igc_hw *hw = &adapter->hw; 4414 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 4415 * need for the IMC write 4416 */ 4417 u32 icr = rd32(IGC_ICR); 4418 4419 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 4420 * not set, then the adapter didn't send an interrupt 4421 */ 4422 if (!(icr & IGC_ICR_INT_ASSERTED)) 4423 return IRQ_NONE; 4424 4425 igc_write_itr(q_vector); 4426 4427 if (icr & IGC_ICR_DRSTA) 4428 schedule_work(&adapter->reset_task); 4429 4430 if (icr & IGC_ICR_DOUTSYNC) { 4431 /* HW is reporting DMA is out of sync */ 4432 adapter->stats.doosync++; 4433 } 4434 4435 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 4436 hw->mac.get_link_status = 1; 4437 /* guard against interrupt when we're going down */ 4438 if (!test_bit(__IGC_DOWN, &adapter->state)) 4439 mod_timer(&adapter->watchdog_timer, jiffies + 1); 4440 } 4441 4442 napi_schedule(&q_vector->napi); 4443 4444 return IRQ_HANDLED; 4445 } 4446 4447 static void igc_free_irq(struct igc_adapter *adapter) 4448 { 4449 if (adapter->msix_entries) { 4450 int vector = 0, i; 4451 4452 free_irq(adapter->msix_entries[vector++].vector, adapter); 4453 4454 for (i = 0; i < adapter->num_q_vectors; i++) 4455 free_irq(adapter->msix_entries[vector++].vector, 4456 adapter->q_vector[i]); 4457 } else { 4458 free_irq(adapter->pdev->irq, adapter); 4459 } 4460 } 4461 4462 /** 4463 * igc_request_irq - initialize interrupts 4464 * @adapter: Pointer to adapter structure 4465 * 4466 * Attempts to configure interrupts using the best available 4467 * capabilities of the hardware and kernel. 4468 */ 4469 static int igc_request_irq(struct igc_adapter *adapter) 4470 { 4471 struct net_device *netdev = adapter->netdev; 4472 struct pci_dev *pdev = adapter->pdev; 4473 int err = 0; 4474 4475 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 4476 err = igc_request_msix(adapter); 4477 if (!err) 4478 goto request_done; 4479 /* fall back to MSI */ 4480 igc_free_all_tx_resources(adapter); 4481 igc_free_all_rx_resources(adapter); 4482 4483 igc_clear_interrupt_scheme(adapter); 4484 err = igc_init_interrupt_scheme(adapter, false); 4485 if (err) 4486 goto request_done; 4487 igc_setup_all_tx_resources(adapter); 4488 igc_setup_all_rx_resources(adapter); 4489 igc_configure(adapter); 4490 } 4491 4492 igc_assign_vector(adapter->q_vector[0], 0); 4493 4494 if (adapter->flags & IGC_FLAG_HAS_MSI) { 4495 err = request_irq(pdev->irq, &igc_intr_msi, 0, 4496 netdev->name, adapter); 4497 if (!err) 4498 goto request_done; 4499 4500 /* fall back to legacy interrupts */ 4501 igc_reset_interrupt_capability(adapter); 4502 adapter->flags &= ~IGC_FLAG_HAS_MSI; 4503 } 4504 4505 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 4506 netdev->name, adapter); 4507 4508 if (err) 4509 netdev_err(netdev, "Error %d getting interrupt\n", err); 4510 4511 request_done: 4512 return err; 4513 } 4514 4515 /** 4516 * __igc_open - Called when a network interface is made active 4517 * @netdev: network interface device structure 4518 * @resuming: boolean indicating if the device is resuming 4519 * 4520 * Returns 0 on success, negative value on failure 4521 * 4522 * The open entry point is called when a network interface is made 4523 * active by the system (IFF_UP). At this point all resources needed 4524 * for transmit and receive operations are allocated, the interrupt 4525 * handler is registered with the OS, the watchdog timer is started, 4526 * and the stack is notified that the interface is ready. 4527 */ 4528 static int __igc_open(struct net_device *netdev, bool resuming) 4529 { 4530 struct igc_adapter *adapter = netdev_priv(netdev); 4531 struct pci_dev *pdev = adapter->pdev; 4532 struct igc_hw *hw = &adapter->hw; 4533 int err = 0; 4534 int i = 0; 4535 4536 /* disallow open during test */ 4537 4538 if (test_bit(__IGC_TESTING, &adapter->state)) { 4539 WARN_ON(resuming); 4540 return -EBUSY; 4541 } 4542 4543 if (!resuming) 4544 pm_runtime_get_sync(&pdev->dev); 4545 4546 netif_carrier_off(netdev); 4547 4548 /* allocate transmit descriptors */ 4549 err = igc_setup_all_tx_resources(adapter); 4550 if (err) 4551 goto err_setup_tx; 4552 4553 /* allocate receive descriptors */ 4554 err = igc_setup_all_rx_resources(adapter); 4555 if (err) 4556 goto err_setup_rx; 4557 4558 igc_power_up_link(adapter); 4559 4560 igc_configure(adapter); 4561 4562 err = igc_request_irq(adapter); 4563 if (err) 4564 goto err_req_irq; 4565 4566 /* Notify the stack of the actual queue counts. */ 4567 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 4568 if (err) 4569 goto err_set_queues; 4570 4571 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 4572 if (err) 4573 goto err_set_queues; 4574 4575 clear_bit(__IGC_DOWN, &adapter->state); 4576 4577 for (i = 0; i < adapter->num_q_vectors; i++) 4578 napi_enable(&adapter->q_vector[i]->napi); 4579 4580 /* Clear any pending interrupts. */ 4581 rd32(IGC_ICR); 4582 igc_irq_enable(adapter); 4583 4584 if (!resuming) 4585 pm_runtime_put(&pdev->dev); 4586 4587 netif_tx_start_all_queues(netdev); 4588 4589 /* start the watchdog. */ 4590 hw->mac.get_link_status = 1; 4591 schedule_work(&adapter->watchdog_task); 4592 4593 return IGC_SUCCESS; 4594 4595 err_set_queues: 4596 igc_free_irq(adapter); 4597 err_req_irq: 4598 igc_release_hw_control(adapter); 4599 igc_power_down_phy_copper_base(&adapter->hw); 4600 igc_free_all_rx_resources(adapter); 4601 err_setup_rx: 4602 igc_free_all_tx_resources(adapter); 4603 err_setup_tx: 4604 igc_reset(adapter); 4605 if (!resuming) 4606 pm_runtime_put(&pdev->dev); 4607 4608 return err; 4609 } 4610 4611 int igc_open(struct net_device *netdev) 4612 { 4613 return __igc_open(netdev, false); 4614 } 4615 4616 /** 4617 * __igc_close - Disables a network interface 4618 * @netdev: network interface device structure 4619 * @suspending: boolean indicating the device is suspending 4620 * 4621 * Returns 0, this is not allowed to fail 4622 * 4623 * The close entry point is called when an interface is de-activated 4624 * by the OS. The hardware is still under the driver's control, but 4625 * needs to be disabled. A global MAC reset is issued to stop the 4626 * hardware, and all transmit and receive resources are freed. 4627 */ 4628 static int __igc_close(struct net_device *netdev, bool suspending) 4629 { 4630 struct igc_adapter *adapter = netdev_priv(netdev); 4631 struct pci_dev *pdev = adapter->pdev; 4632 4633 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 4634 4635 if (!suspending) 4636 pm_runtime_get_sync(&pdev->dev); 4637 4638 igc_down(adapter); 4639 4640 igc_release_hw_control(adapter); 4641 4642 igc_free_irq(adapter); 4643 4644 igc_free_all_tx_resources(adapter); 4645 igc_free_all_rx_resources(adapter); 4646 4647 if (!suspending) 4648 pm_runtime_put_sync(&pdev->dev); 4649 4650 return 0; 4651 } 4652 4653 int igc_close(struct net_device *netdev) 4654 { 4655 if (netif_device_present(netdev) || netdev->dismantle) 4656 return __igc_close(netdev, false); 4657 return 0; 4658 } 4659 4660 /** 4661 * igc_ioctl - Access the hwtstamp interface 4662 * @netdev: network interface device structure 4663 * @ifr: interface request data 4664 * @cmd: ioctl command 4665 **/ 4666 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4667 { 4668 switch (cmd) { 4669 case SIOCGHWTSTAMP: 4670 return igc_ptp_get_ts_config(netdev, ifr); 4671 case SIOCSHWTSTAMP: 4672 return igc_ptp_set_ts_config(netdev, ifr); 4673 default: 4674 return -EOPNOTSUPP; 4675 } 4676 } 4677 4678 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 4679 bool enable) 4680 { 4681 struct igc_ring *ring; 4682 int i; 4683 4684 if (queue < 0 || queue >= adapter->num_tx_queues) 4685 return -EINVAL; 4686 4687 ring = adapter->tx_ring[queue]; 4688 ring->launchtime_enable = enable; 4689 4690 if (adapter->base_time) 4691 return 0; 4692 4693 adapter->cycle_time = NSEC_PER_SEC; 4694 4695 for (i = 0; i < adapter->num_tx_queues; i++) { 4696 ring = adapter->tx_ring[i]; 4697 ring->start_time = 0; 4698 ring->end_time = NSEC_PER_SEC; 4699 } 4700 4701 return 0; 4702 } 4703 4704 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 4705 { 4706 struct timespec64 b; 4707 4708 b = ktime_to_timespec64(base_time); 4709 4710 return timespec64_compare(now, &b) > 0; 4711 } 4712 4713 static bool validate_schedule(struct igc_adapter *adapter, 4714 const struct tc_taprio_qopt_offload *qopt) 4715 { 4716 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 4717 struct timespec64 now; 4718 size_t n; 4719 4720 if (qopt->cycle_time_extension) 4721 return false; 4722 4723 igc_ptp_read(adapter, &now); 4724 4725 /* If we program the controller's BASET registers with a time 4726 * in the future, it will hold all the packets until that 4727 * time, causing a lot of TX Hangs, so to avoid that, we 4728 * reject schedules that would start in the future. 4729 */ 4730 if (!is_base_time_past(qopt->base_time, &now)) 4731 return false; 4732 4733 for (n = 0; n < qopt->num_entries; n++) { 4734 const struct tc_taprio_sched_entry *e; 4735 int i; 4736 4737 e = &qopt->entries[n]; 4738 4739 /* i225 only supports "global" frame preemption 4740 * settings. 4741 */ 4742 if (e->command != TC_TAPRIO_CMD_SET_GATES) 4743 return false; 4744 4745 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) { 4746 if (e->gate_mask & BIT(i)) 4747 queue_uses[i]++; 4748 4749 if (queue_uses[i] > 1) 4750 return false; 4751 } 4752 } 4753 4754 return true; 4755 } 4756 4757 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 4758 struct tc_etf_qopt_offload *qopt) 4759 { 4760 struct igc_hw *hw = &adapter->hw; 4761 int err; 4762 4763 if (hw->mac.type != igc_i225) 4764 return -EOPNOTSUPP; 4765 4766 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 4767 if (err) 4768 return err; 4769 4770 return igc_tsn_offload_apply(adapter); 4771 } 4772 4773 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 4774 struct tc_taprio_qopt_offload *qopt) 4775 { 4776 u32 start_time = 0, end_time = 0; 4777 size_t n; 4778 4779 if (!qopt->enable) { 4780 adapter->base_time = 0; 4781 return 0; 4782 } 4783 4784 if (adapter->base_time) 4785 return -EALREADY; 4786 4787 if (!validate_schedule(adapter, qopt)) 4788 return -EINVAL; 4789 4790 adapter->cycle_time = qopt->cycle_time; 4791 adapter->base_time = qopt->base_time; 4792 4793 /* FIXME: be a little smarter about cases when the gate for a 4794 * queue stays open for more than one entry. 4795 */ 4796 for (n = 0; n < qopt->num_entries; n++) { 4797 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 4798 int i; 4799 4800 end_time += e->interval; 4801 4802 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) { 4803 struct igc_ring *ring = adapter->tx_ring[i]; 4804 4805 if (!(e->gate_mask & BIT(i))) 4806 continue; 4807 4808 ring->start_time = start_time; 4809 ring->end_time = end_time; 4810 } 4811 4812 start_time += e->interval; 4813 } 4814 4815 return 0; 4816 } 4817 4818 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 4819 struct tc_taprio_qopt_offload *qopt) 4820 { 4821 struct igc_hw *hw = &adapter->hw; 4822 int err; 4823 4824 if (hw->mac.type != igc_i225) 4825 return -EOPNOTSUPP; 4826 4827 err = igc_save_qbv_schedule(adapter, qopt); 4828 if (err) 4829 return err; 4830 4831 return igc_tsn_offload_apply(adapter); 4832 } 4833 4834 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 4835 void *type_data) 4836 { 4837 struct igc_adapter *adapter = netdev_priv(dev); 4838 4839 switch (type) { 4840 case TC_SETUP_QDISC_TAPRIO: 4841 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 4842 4843 case TC_SETUP_QDISC_ETF: 4844 return igc_tsn_enable_launchtime(adapter, type_data); 4845 4846 default: 4847 return -EOPNOTSUPP; 4848 } 4849 } 4850 4851 static const struct net_device_ops igc_netdev_ops = { 4852 .ndo_open = igc_open, 4853 .ndo_stop = igc_close, 4854 .ndo_start_xmit = igc_xmit_frame, 4855 .ndo_set_rx_mode = igc_set_rx_mode, 4856 .ndo_set_mac_address = igc_set_mac, 4857 .ndo_change_mtu = igc_change_mtu, 4858 .ndo_get_stats = igc_get_stats, 4859 .ndo_fix_features = igc_fix_features, 4860 .ndo_set_features = igc_set_features, 4861 .ndo_features_check = igc_features_check, 4862 .ndo_do_ioctl = igc_ioctl, 4863 .ndo_setup_tc = igc_setup_tc, 4864 }; 4865 4866 /* PCIe configuration access */ 4867 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 4868 { 4869 struct igc_adapter *adapter = hw->back; 4870 4871 pci_read_config_word(adapter->pdev, reg, value); 4872 } 4873 4874 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 4875 { 4876 struct igc_adapter *adapter = hw->back; 4877 4878 pci_write_config_word(adapter->pdev, reg, *value); 4879 } 4880 4881 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 4882 { 4883 struct igc_adapter *adapter = hw->back; 4884 4885 if (!pci_is_pcie(adapter->pdev)) 4886 return -IGC_ERR_CONFIG; 4887 4888 pcie_capability_read_word(adapter->pdev, reg, value); 4889 4890 return IGC_SUCCESS; 4891 } 4892 4893 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 4894 { 4895 struct igc_adapter *adapter = hw->back; 4896 4897 if (!pci_is_pcie(adapter->pdev)) 4898 return -IGC_ERR_CONFIG; 4899 4900 pcie_capability_write_word(adapter->pdev, reg, *value); 4901 4902 return IGC_SUCCESS; 4903 } 4904 4905 u32 igc_rd32(struct igc_hw *hw, u32 reg) 4906 { 4907 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 4908 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 4909 u32 value = 0; 4910 4911 value = readl(&hw_addr[reg]); 4912 4913 /* reads should not return all F's */ 4914 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 4915 struct net_device *netdev = igc->netdev; 4916 4917 hw->hw_addr = NULL; 4918 netif_device_detach(netdev); 4919 netdev_err(netdev, "PCIe link lost, device now detached\n"); 4920 WARN(pci_device_is_present(igc->pdev), 4921 "igc: Failed to read reg 0x%x!\n", reg); 4922 } 4923 4924 return value; 4925 } 4926 4927 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx) 4928 { 4929 struct igc_mac_info *mac = &adapter->hw.mac; 4930 4931 mac->autoneg = 0; 4932 4933 /* Make sure dplx is at most 1 bit and lsb of speed is not set 4934 * for the switch() below to work 4935 */ 4936 if ((spd & 1) || (dplx & ~1)) 4937 goto err_inval; 4938 4939 switch (spd + dplx) { 4940 case SPEED_10 + DUPLEX_HALF: 4941 mac->forced_speed_duplex = ADVERTISE_10_HALF; 4942 break; 4943 case SPEED_10 + DUPLEX_FULL: 4944 mac->forced_speed_duplex = ADVERTISE_10_FULL; 4945 break; 4946 case SPEED_100 + DUPLEX_HALF: 4947 mac->forced_speed_duplex = ADVERTISE_100_HALF; 4948 break; 4949 case SPEED_100 + DUPLEX_FULL: 4950 mac->forced_speed_duplex = ADVERTISE_100_FULL; 4951 break; 4952 case SPEED_1000 + DUPLEX_FULL: 4953 mac->autoneg = 1; 4954 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 4955 break; 4956 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 4957 goto err_inval; 4958 case SPEED_2500 + DUPLEX_FULL: 4959 mac->autoneg = 1; 4960 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL; 4961 break; 4962 case SPEED_2500 + DUPLEX_HALF: /* not supported */ 4963 default: 4964 goto err_inval; 4965 } 4966 4967 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 4968 adapter->hw.phy.mdix = AUTO_ALL_MODES; 4969 4970 return 0; 4971 4972 err_inval: 4973 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n"); 4974 return -EINVAL; 4975 } 4976 4977 /** 4978 * igc_probe - Device Initialization Routine 4979 * @pdev: PCI device information struct 4980 * @ent: entry in igc_pci_tbl 4981 * 4982 * Returns 0 on success, negative on failure 4983 * 4984 * igc_probe initializes an adapter identified by a pci_dev structure. 4985 * The OS initialization, configuring the adapter private structure, 4986 * and a hardware reset occur. 4987 */ 4988 static int igc_probe(struct pci_dev *pdev, 4989 const struct pci_device_id *ent) 4990 { 4991 struct igc_adapter *adapter; 4992 struct net_device *netdev; 4993 struct igc_hw *hw; 4994 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 4995 int err, pci_using_dac; 4996 4997 err = pci_enable_device_mem(pdev); 4998 if (err) 4999 return err; 5000 5001 pci_using_dac = 0; 5002 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 5003 if (!err) { 5004 pci_using_dac = 1; 5005 } else { 5006 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 5007 if (err) { 5008 dev_err(&pdev->dev, 5009 "No usable DMA configuration, aborting\n"); 5010 goto err_dma; 5011 } 5012 } 5013 5014 err = pci_request_mem_regions(pdev, igc_driver_name); 5015 if (err) 5016 goto err_pci_reg; 5017 5018 pci_enable_pcie_error_reporting(pdev); 5019 5020 pci_set_master(pdev); 5021 5022 err = -ENOMEM; 5023 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 5024 IGC_MAX_TX_QUEUES); 5025 5026 if (!netdev) 5027 goto err_alloc_etherdev; 5028 5029 SET_NETDEV_DEV(netdev, &pdev->dev); 5030 5031 pci_set_drvdata(pdev, netdev); 5032 adapter = netdev_priv(netdev); 5033 adapter->netdev = netdev; 5034 adapter->pdev = pdev; 5035 hw = &adapter->hw; 5036 hw->back = adapter; 5037 adapter->port_num = hw->bus.func; 5038 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 5039 5040 err = pci_save_state(pdev); 5041 if (err) 5042 goto err_ioremap; 5043 5044 err = -EIO; 5045 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 5046 pci_resource_len(pdev, 0)); 5047 if (!adapter->io_addr) 5048 goto err_ioremap; 5049 5050 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 5051 hw->hw_addr = adapter->io_addr; 5052 5053 netdev->netdev_ops = &igc_netdev_ops; 5054 igc_ethtool_set_ops(netdev); 5055 netdev->watchdog_timeo = 5 * HZ; 5056 5057 netdev->mem_start = pci_resource_start(pdev, 0); 5058 netdev->mem_end = pci_resource_end(pdev, 0); 5059 5060 /* PCI config space info */ 5061 hw->vendor_id = pdev->vendor; 5062 hw->device_id = pdev->device; 5063 hw->revision_id = pdev->revision; 5064 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5065 hw->subsystem_device_id = pdev->subsystem_device; 5066 5067 /* Copy the default MAC and PHY function pointers */ 5068 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 5069 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 5070 5071 /* Initialize skew-specific constants */ 5072 err = ei->get_invariants(hw); 5073 if (err) 5074 goto err_sw_init; 5075 5076 /* Add supported features to the features list*/ 5077 netdev->features |= NETIF_F_SG; 5078 netdev->features |= NETIF_F_TSO; 5079 netdev->features |= NETIF_F_TSO6; 5080 netdev->features |= NETIF_F_TSO_ECN; 5081 netdev->features |= NETIF_F_RXCSUM; 5082 netdev->features |= NETIF_F_HW_CSUM; 5083 netdev->features |= NETIF_F_SCTP_CRC; 5084 netdev->features |= NETIF_F_HW_TC; 5085 5086 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 5087 NETIF_F_GSO_GRE_CSUM | \ 5088 NETIF_F_GSO_IPXIP4 | \ 5089 NETIF_F_GSO_IPXIP6 | \ 5090 NETIF_F_GSO_UDP_TUNNEL | \ 5091 NETIF_F_GSO_UDP_TUNNEL_CSUM) 5092 5093 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 5094 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 5095 5096 /* setup the private structure */ 5097 err = igc_sw_init(adapter); 5098 if (err) 5099 goto err_sw_init; 5100 5101 /* copy netdev features into list of user selectable features */ 5102 netdev->hw_features |= NETIF_F_NTUPLE; 5103 netdev->hw_features |= netdev->features; 5104 5105 if (pci_using_dac) 5106 netdev->features |= NETIF_F_HIGHDMA; 5107 5108 /* MTU range: 68 - 9216 */ 5109 netdev->min_mtu = ETH_MIN_MTU; 5110 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 5111 5112 /* before reading the NVM, reset the controller to put the device in a 5113 * known good starting state 5114 */ 5115 hw->mac.ops.reset_hw(hw); 5116 5117 if (igc_get_flash_presence_i225(hw)) { 5118 if (hw->nvm.ops.validate(hw) < 0) { 5119 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 5120 err = -EIO; 5121 goto err_eeprom; 5122 } 5123 } 5124 5125 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 5126 /* copy the MAC address out of the NVM */ 5127 if (hw->mac.ops.read_mac_addr(hw)) 5128 dev_err(&pdev->dev, "NVM Read Error\n"); 5129 } 5130 5131 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 5132 5133 if (!is_valid_ether_addr(netdev->dev_addr)) { 5134 dev_err(&pdev->dev, "Invalid MAC Address\n"); 5135 err = -EIO; 5136 goto err_eeprom; 5137 } 5138 5139 /* configure RXPBSIZE and TXPBSIZE */ 5140 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 5141 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 5142 5143 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 5144 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 5145 5146 INIT_WORK(&adapter->reset_task, igc_reset_task); 5147 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 5148 5149 /* Initialize link properties that are user-changeable */ 5150 adapter->fc_autoneg = true; 5151 hw->mac.autoneg = true; 5152 hw->phy.autoneg_advertised = 0xaf; 5153 5154 hw->fc.requested_mode = igc_fc_default; 5155 hw->fc.current_mode = igc_fc_default; 5156 5157 /* By default, support wake on port A */ 5158 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 5159 5160 /* initialize the wol settings based on the eeprom settings */ 5161 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 5162 adapter->wol |= IGC_WUFC_MAG; 5163 5164 device_set_wakeup_enable(&adapter->pdev->dev, 5165 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 5166 5167 igc_ptp_init(adapter); 5168 5169 /* reset the hardware with the new settings */ 5170 igc_reset(adapter); 5171 5172 /* let the f/w know that the h/w is now under the control of the 5173 * driver. 5174 */ 5175 igc_get_hw_control(adapter); 5176 5177 strncpy(netdev->name, "eth%d", IFNAMSIZ); 5178 err = register_netdev(netdev); 5179 if (err) 5180 goto err_register; 5181 5182 /* carrier off reporting is important to ethtool even BEFORE open */ 5183 netif_carrier_off(netdev); 5184 5185 /* Check if Media Autosense is enabled */ 5186 adapter->ei = *ei; 5187 5188 /* print pcie link status and MAC address */ 5189 pcie_print_link_status(pdev); 5190 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 5191 5192 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 5193 /* Disable EEE for internal PHY devices */ 5194 hw->dev_spec._base.eee_enable = false; 5195 adapter->flags &= ~IGC_FLAG_EEE; 5196 igc_set_eee_i225(hw, false, false, false); 5197 5198 pm_runtime_put_noidle(&pdev->dev); 5199 5200 return 0; 5201 5202 err_register: 5203 igc_release_hw_control(adapter); 5204 err_eeprom: 5205 if (!igc_check_reset_block(hw)) 5206 igc_reset_phy(hw); 5207 err_sw_init: 5208 igc_clear_interrupt_scheme(adapter); 5209 iounmap(adapter->io_addr); 5210 err_ioremap: 5211 free_netdev(netdev); 5212 err_alloc_etherdev: 5213 pci_release_mem_regions(pdev); 5214 err_pci_reg: 5215 err_dma: 5216 pci_disable_device(pdev); 5217 return err; 5218 } 5219 5220 /** 5221 * igc_remove - Device Removal Routine 5222 * @pdev: PCI device information struct 5223 * 5224 * igc_remove is called by the PCI subsystem to alert the driver 5225 * that it should release a PCI device. This could be caused by a 5226 * Hot-Plug event, or because the driver is going to be removed from 5227 * memory. 5228 */ 5229 static void igc_remove(struct pci_dev *pdev) 5230 { 5231 struct net_device *netdev = pci_get_drvdata(pdev); 5232 struct igc_adapter *adapter = netdev_priv(netdev); 5233 5234 pm_runtime_get_noresume(&pdev->dev); 5235 5236 igc_flush_nfc_rules(adapter); 5237 5238 igc_ptp_stop(adapter); 5239 5240 set_bit(__IGC_DOWN, &adapter->state); 5241 5242 del_timer_sync(&adapter->watchdog_timer); 5243 del_timer_sync(&adapter->phy_info_timer); 5244 5245 cancel_work_sync(&adapter->reset_task); 5246 cancel_work_sync(&adapter->watchdog_task); 5247 5248 /* Release control of h/w to f/w. If f/w is AMT enabled, this 5249 * would have already happened in close and is redundant. 5250 */ 5251 igc_release_hw_control(adapter); 5252 unregister_netdev(netdev); 5253 5254 igc_clear_interrupt_scheme(adapter); 5255 pci_iounmap(pdev, adapter->io_addr); 5256 pci_release_mem_regions(pdev); 5257 5258 free_netdev(netdev); 5259 5260 pci_disable_pcie_error_reporting(pdev); 5261 5262 pci_disable_device(pdev); 5263 } 5264 5265 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 5266 bool runtime) 5267 { 5268 struct net_device *netdev = pci_get_drvdata(pdev); 5269 struct igc_adapter *adapter = netdev_priv(netdev); 5270 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 5271 struct igc_hw *hw = &adapter->hw; 5272 u32 ctrl, rctl, status; 5273 bool wake; 5274 5275 rtnl_lock(); 5276 netif_device_detach(netdev); 5277 5278 if (netif_running(netdev)) 5279 __igc_close(netdev, true); 5280 5281 igc_ptp_suspend(adapter); 5282 5283 igc_clear_interrupt_scheme(adapter); 5284 rtnl_unlock(); 5285 5286 status = rd32(IGC_STATUS); 5287 if (status & IGC_STATUS_LU) 5288 wufc &= ~IGC_WUFC_LNKC; 5289 5290 if (wufc) { 5291 igc_setup_rctl(adapter); 5292 igc_set_rx_mode(netdev); 5293 5294 /* turn on all-multi mode if wake on multicast is enabled */ 5295 if (wufc & IGC_WUFC_MC) { 5296 rctl = rd32(IGC_RCTL); 5297 rctl |= IGC_RCTL_MPE; 5298 wr32(IGC_RCTL, rctl); 5299 } 5300 5301 ctrl = rd32(IGC_CTRL); 5302 ctrl |= IGC_CTRL_ADVD3WUC; 5303 wr32(IGC_CTRL, ctrl); 5304 5305 /* Allow time for pending master requests to run */ 5306 igc_disable_pcie_master(hw); 5307 5308 wr32(IGC_WUC, IGC_WUC_PME_EN); 5309 wr32(IGC_WUFC, wufc); 5310 } else { 5311 wr32(IGC_WUC, 0); 5312 wr32(IGC_WUFC, 0); 5313 } 5314 5315 wake = wufc || adapter->en_mng_pt; 5316 if (!wake) 5317 igc_power_down_phy_copper_base(&adapter->hw); 5318 else 5319 igc_power_up_link(adapter); 5320 5321 if (enable_wake) 5322 *enable_wake = wake; 5323 5324 /* Release control of h/w to f/w. If f/w is AMT enabled, this 5325 * would have already happened in close and is redundant. 5326 */ 5327 igc_release_hw_control(adapter); 5328 5329 pci_disable_device(pdev); 5330 5331 return 0; 5332 } 5333 5334 #ifdef CONFIG_PM 5335 static int __maybe_unused igc_runtime_suspend(struct device *dev) 5336 { 5337 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 5338 } 5339 5340 static void igc_deliver_wake_packet(struct net_device *netdev) 5341 { 5342 struct igc_adapter *adapter = netdev_priv(netdev); 5343 struct igc_hw *hw = &adapter->hw; 5344 struct sk_buff *skb; 5345 u32 wupl; 5346 5347 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 5348 5349 /* WUPM stores only the first 128 bytes of the wake packet. 5350 * Read the packet only if we have the whole thing. 5351 */ 5352 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 5353 return; 5354 5355 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 5356 if (!skb) 5357 return; 5358 5359 skb_put(skb, wupl); 5360 5361 /* Ensure reads are 32-bit aligned */ 5362 wupl = roundup(wupl, 4); 5363 5364 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 5365 5366 skb->protocol = eth_type_trans(skb, netdev); 5367 netif_rx(skb); 5368 } 5369 5370 static int __maybe_unused igc_resume(struct device *dev) 5371 { 5372 struct pci_dev *pdev = to_pci_dev(dev); 5373 struct net_device *netdev = pci_get_drvdata(pdev); 5374 struct igc_adapter *adapter = netdev_priv(netdev); 5375 struct igc_hw *hw = &adapter->hw; 5376 u32 err, val; 5377 5378 pci_set_power_state(pdev, PCI_D0); 5379 pci_restore_state(pdev); 5380 pci_save_state(pdev); 5381 5382 if (!pci_device_is_present(pdev)) 5383 return -ENODEV; 5384 err = pci_enable_device_mem(pdev); 5385 if (err) { 5386 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 5387 return err; 5388 } 5389 pci_set_master(pdev); 5390 5391 pci_enable_wake(pdev, PCI_D3hot, 0); 5392 pci_enable_wake(pdev, PCI_D3cold, 0); 5393 5394 if (igc_init_interrupt_scheme(adapter, true)) { 5395 netdev_err(netdev, "Unable to allocate memory for queues\n"); 5396 return -ENOMEM; 5397 } 5398 5399 igc_reset(adapter); 5400 5401 /* let the f/w know that the h/w is now under the control of the 5402 * driver. 5403 */ 5404 igc_get_hw_control(adapter); 5405 5406 val = rd32(IGC_WUS); 5407 if (val & WAKE_PKT_WUS) 5408 igc_deliver_wake_packet(netdev); 5409 5410 wr32(IGC_WUS, ~0); 5411 5412 rtnl_lock(); 5413 if (!err && netif_running(netdev)) 5414 err = __igc_open(netdev, true); 5415 5416 if (!err) 5417 netif_device_attach(netdev); 5418 rtnl_unlock(); 5419 5420 return err; 5421 } 5422 5423 static int __maybe_unused igc_runtime_resume(struct device *dev) 5424 { 5425 return igc_resume(dev); 5426 } 5427 5428 static int __maybe_unused igc_suspend(struct device *dev) 5429 { 5430 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 5431 } 5432 5433 static int __maybe_unused igc_runtime_idle(struct device *dev) 5434 { 5435 struct net_device *netdev = dev_get_drvdata(dev); 5436 struct igc_adapter *adapter = netdev_priv(netdev); 5437 5438 if (!igc_has_link(adapter)) 5439 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 5440 5441 return -EBUSY; 5442 } 5443 #endif /* CONFIG_PM */ 5444 5445 static void igc_shutdown(struct pci_dev *pdev) 5446 { 5447 bool wake; 5448 5449 __igc_shutdown(pdev, &wake, 0); 5450 5451 if (system_state == SYSTEM_POWER_OFF) { 5452 pci_wake_from_d3(pdev, wake); 5453 pci_set_power_state(pdev, PCI_D3hot); 5454 } 5455 } 5456 5457 /** 5458 * igc_io_error_detected - called when PCI error is detected 5459 * @pdev: Pointer to PCI device 5460 * @state: The current PCI connection state 5461 * 5462 * This function is called after a PCI bus error affecting 5463 * this device has been detected. 5464 **/ 5465 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 5466 pci_channel_state_t state) 5467 { 5468 struct net_device *netdev = pci_get_drvdata(pdev); 5469 struct igc_adapter *adapter = netdev_priv(netdev); 5470 5471 netif_device_detach(netdev); 5472 5473 if (state == pci_channel_io_perm_failure) 5474 return PCI_ERS_RESULT_DISCONNECT; 5475 5476 if (netif_running(netdev)) 5477 igc_down(adapter); 5478 pci_disable_device(pdev); 5479 5480 /* Request a slot reset. */ 5481 return PCI_ERS_RESULT_NEED_RESET; 5482 } 5483 5484 /** 5485 * igc_io_slot_reset - called after the PCI bus has been reset. 5486 * @pdev: Pointer to PCI device 5487 * 5488 * Restart the card from scratch, as if from a cold-boot. Implementation 5489 * resembles the first-half of the igc_resume routine. 5490 **/ 5491 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 5492 { 5493 struct net_device *netdev = pci_get_drvdata(pdev); 5494 struct igc_adapter *adapter = netdev_priv(netdev); 5495 struct igc_hw *hw = &adapter->hw; 5496 pci_ers_result_t result; 5497 5498 if (pci_enable_device_mem(pdev)) { 5499 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 5500 result = PCI_ERS_RESULT_DISCONNECT; 5501 } else { 5502 pci_set_master(pdev); 5503 pci_restore_state(pdev); 5504 pci_save_state(pdev); 5505 5506 pci_enable_wake(pdev, PCI_D3hot, 0); 5507 pci_enable_wake(pdev, PCI_D3cold, 0); 5508 5509 /* In case of PCI error, adapter loses its HW address 5510 * so we should re-assign it here. 5511 */ 5512 hw->hw_addr = adapter->io_addr; 5513 5514 igc_reset(adapter); 5515 wr32(IGC_WUS, ~0); 5516 result = PCI_ERS_RESULT_RECOVERED; 5517 } 5518 5519 return result; 5520 } 5521 5522 /** 5523 * igc_io_resume - called when traffic can start to flow again. 5524 * @pdev: Pointer to PCI device 5525 * 5526 * This callback is called when the error recovery driver tells us that 5527 * its OK to resume normal operation. Implementation resembles the 5528 * second-half of the igc_resume routine. 5529 */ 5530 static void igc_io_resume(struct pci_dev *pdev) 5531 { 5532 struct net_device *netdev = pci_get_drvdata(pdev); 5533 struct igc_adapter *adapter = netdev_priv(netdev); 5534 5535 rtnl_lock(); 5536 if (netif_running(netdev)) { 5537 if (igc_open(netdev)) { 5538 netdev_err(netdev, "igc_open failed after reset\n"); 5539 return; 5540 } 5541 } 5542 5543 netif_device_attach(netdev); 5544 5545 /* let the f/w know that the h/w is now under the control of the 5546 * driver. 5547 */ 5548 igc_get_hw_control(adapter); 5549 rtnl_unlock(); 5550 } 5551 5552 static const struct pci_error_handlers igc_err_handler = { 5553 .error_detected = igc_io_error_detected, 5554 .slot_reset = igc_io_slot_reset, 5555 .resume = igc_io_resume, 5556 }; 5557 5558 #ifdef CONFIG_PM 5559 static const struct dev_pm_ops igc_pm_ops = { 5560 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 5561 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 5562 igc_runtime_idle) 5563 }; 5564 #endif 5565 5566 static struct pci_driver igc_driver = { 5567 .name = igc_driver_name, 5568 .id_table = igc_pci_tbl, 5569 .probe = igc_probe, 5570 .remove = igc_remove, 5571 #ifdef CONFIG_PM 5572 .driver.pm = &igc_pm_ops, 5573 #endif 5574 .shutdown = igc_shutdown, 5575 .err_handler = &igc_err_handler, 5576 }; 5577 5578 /** 5579 * igc_reinit_queues - return error 5580 * @adapter: pointer to adapter structure 5581 */ 5582 int igc_reinit_queues(struct igc_adapter *adapter) 5583 { 5584 struct net_device *netdev = adapter->netdev; 5585 int err = 0; 5586 5587 if (netif_running(netdev)) 5588 igc_close(netdev); 5589 5590 igc_reset_interrupt_capability(adapter); 5591 5592 if (igc_init_interrupt_scheme(adapter, true)) { 5593 netdev_err(netdev, "Unable to allocate memory for queues\n"); 5594 return -ENOMEM; 5595 } 5596 5597 if (netif_running(netdev)) 5598 err = igc_open(netdev); 5599 5600 return err; 5601 } 5602 5603 /** 5604 * igc_get_hw_dev - return device 5605 * @hw: pointer to hardware structure 5606 * 5607 * used by hardware layer to print debugging information 5608 */ 5609 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 5610 { 5611 struct igc_adapter *adapter = hw->back; 5612 5613 return adapter->netdev; 5614 } 5615 5616 /** 5617 * igc_init_module - Driver Registration Routine 5618 * 5619 * igc_init_module is the first routine called when the driver is 5620 * loaded. All it does is register with the PCI subsystem. 5621 */ 5622 static int __init igc_init_module(void) 5623 { 5624 int ret; 5625 5626 pr_info("%s\n", igc_driver_string); 5627 pr_info("%s\n", igc_copyright); 5628 5629 ret = pci_register_driver(&igc_driver); 5630 return ret; 5631 } 5632 5633 module_init(igc_init_module); 5634 5635 /** 5636 * igc_exit_module - Driver Exit Cleanup Routine 5637 * 5638 * igc_exit_module is called just before the driver is removed 5639 * from memory. 5640 */ 5641 static void __exit igc_exit_module(void) 5642 { 5643 pci_unregister_driver(&igc_driver); 5644 } 5645 5646 module_exit(igc_exit_module); 5647 /* igc_main.c */ 5648