1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/aer.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/ip.h> 11 #include <linux/pm_runtime.h> 12 #include <net/pkt_sched.h> 13 #include <linux/bpf_trace.h> 14 #include <net/xdp_sock_drv.h> 15 #include <linux/pci.h> 16 17 #include <net/ipv6.h> 18 19 #include "igc.h" 20 #include "igc_hw.h" 21 #include "igc_tsn.h" 22 #include "igc_xdp.h" 23 24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 25 26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 27 28 #define IGC_XDP_PASS 0 29 #define IGC_XDP_CONSUMED BIT(0) 30 #define IGC_XDP_TX BIT(1) 31 #define IGC_XDP_REDIRECT BIT(2) 32 33 static int debug = -1; 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 module_param(debug, int, 0); 39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 40 41 char igc_driver_name[] = "igc"; 42 static const char igc_driver_string[] = DRV_SUMMARY; 43 static const char igc_copyright[] = 44 "Copyright(c) 2018 Intel Corporation."; 45 46 static const struct igc_info *igc_info_tbl[] = { 47 [board_base] = &igc_base_info, 48 }; 49 50 static const struct pci_device_id igc_pci_tbl[] = { 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 66 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 67 /* required last entry */ 68 {0, } 69 }; 70 71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 72 73 enum latency_range { 74 lowest_latency = 0, 75 low_latency = 1, 76 bulk_latency = 2, 77 latency_invalid = 255 78 }; 79 80 void igc_reset(struct igc_adapter *adapter) 81 { 82 struct net_device *dev = adapter->netdev; 83 struct igc_hw *hw = &adapter->hw; 84 struct igc_fc_info *fc = &hw->fc; 85 u32 pba, hwm; 86 87 /* Repartition PBA for greater than 9k MTU if required */ 88 pba = IGC_PBA_34K; 89 90 /* flow control settings 91 * The high water mark must be low enough to fit one full frame 92 * after transmitting the pause frame. As such we must have enough 93 * space to allow for us to complete our current transmit and then 94 * receive the frame that is in progress from the link partner. 95 * Set it to: 96 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 97 */ 98 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 99 100 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 101 fc->low_water = fc->high_water - 16; 102 fc->pause_time = 0xFFFF; 103 fc->send_xon = 1; 104 fc->current_mode = fc->requested_mode; 105 106 hw->mac.ops.reset_hw(hw); 107 108 if (hw->mac.ops.init_hw(hw)) 109 netdev_err(dev, "Error on hardware initialization\n"); 110 111 /* Re-establish EEE setting */ 112 igc_set_eee_i225(hw, true, true, true); 113 114 if (!netif_running(adapter->netdev)) 115 igc_power_down_phy_copper_base(&adapter->hw); 116 117 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 118 wr32(IGC_VET, ETH_P_8021Q); 119 120 /* Re-enable PTP, where applicable. */ 121 igc_ptp_reset(adapter); 122 123 /* Re-enable TSN offloading, where applicable. */ 124 igc_tsn_reset(adapter); 125 126 igc_get_phy_info(hw); 127 } 128 129 /** 130 * igc_power_up_link - Power up the phy link 131 * @adapter: address of board private structure 132 */ 133 static void igc_power_up_link(struct igc_adapter *adapter) 134 { 135 igc_reset_phy(&adapter->hw); 136 137 igc_power_up_phy_copper(&adapter->hw); 138 139 igc_setup_link(&adapter->hw); 140 } 141 142 /** 143 * igc_release_hw_control - release control of the h/w to f/w 144 * @adapter: address of board private structure 145 * 146 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 147 * For ASF and Pass Through versions of f/w this means that the 148 * driver is no longer loaded. 149 */ 150 static void igc_release_hw_control(struct igc_adapter *adapter) 151 { 152 struct igc_hw *hw = &adapter->hw; 153 u32 ctrl_ext; 154 155 if (!pci_device_is_present(adapter->pdev)) 156 return; 157 158 /* Let firmware take over control of h/w */ 159 ctrl_ext = rd32(IGC_CTRL_EXT); 160 wr32(IGC_CTRL_EXT, 161 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 162 } 163 164 /** 165 * igc_get_hw_control - get control of the h/w from f/w 166 * @adapter: address of board private structure 167 * 168 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 169 * For ASF and Pass Through versions of f/w this means that 170 * the driver is loaded. 171 */ 172 static void igc_get_hw_control(struct igc_adapter *adapter) 173 { 174 struct igc_hw *hw = &adapter->hw; 175 u32 ctrl_ext; 176 177 /* Let firmware know the driver has taken over */ 178 ctrl_ext = rd32(IGC_CTRL_EXT); 179 wr32(IGC_CTRL_EXT, 180 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 181 } 182 183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 184 { 185 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 186 dma_unmap_len(buf, len), DMA_TO_DEVICE); 187 188 dma_unmap_len_set(buf, len, 0); 189 } 190 191 /** 192 * igc_clean_tx_ring - Free Tx Buffers 193 * @tx_ring: ring to be cleaned 194 */ 195 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 196 { 197 u16 i = tx_ring->next_to_clean; 198 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 199 u32 xsk_frames = 0; 200 201 while (i != tx_ring->next_to_use) { 202 union igc_adv_tx_desc *eop_desc, *tx_desc; 203 204 switch (tx_buffer->type) { 205 case IGC_TX_BUFFER_TYPE_XSK: 206 xsk_frames++; 207 break; 208 case IGC_TX_BUFFER_TYPE_XDP: 209 xdp_return_frame(tx_buffer->xdpf); 210 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 211 break; 212 case IGC_TX_BUFFER_TYPE_SKB: 213 dev_kfree_skb_any(tx_buffer->skb); 214 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 215 break; 216 default: 217 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 218 break; 219 } 220 221 /* check for eop_desc to determine the end of the packet */ 222 eop_desc = tx_buffer->next_to_watch; 223 tx_desc = IGC_TX_DESC(tx_ring, i); 224 225 /* unmap remaining buffers */ 226 while (tx_desc != eop_desc) { 227 tx_buffer++; 228 tx_desc++; 229 i++; 230 if (unlikely(i == tx_ring->count)) { 231 i = 0; 232 tx_buffer = tx_ring->tx_buffer_info; 233 tx_desc = IGC_TX_DESC(tx_ring, 0); 234 } 235 236 /* unmap any remaining paged data */ 237 if (dma_unmap_len(tx_buffer, len)) 238 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 239 } 240 241 tx_buffer->next_to_watch = NULL; 242 243 /* move us one more past the eop_desc for start of next pkt */ 244 tx_buffer++; 245 i++; 246 if (unlikely(i == tx_ring->count)) { 247 i = 0; 248 tx_buffer = tx_ring->tx_buffer_info; 249 } 250 } 251 252 if (tx_ring->xsk_pool && xsk_frames) 253 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 254 255 /* reset BQL for queue */ 256 netdev_tx_reset_queue(txring_txq(tx_ring)); 257 258 /* reset next_to_use and next_to_clean */ 259 tx_ring->next_to_use = 0; 260 tx_ring->next_to_clean = 0; 261 } 262 263 /** 264 * igc_free_tx_resources - Free Tx Resources per Queue 265 * @tx_ring: Tx descriptor ring for a specific queue 266 * 267 * Free all transmit software resources 268 */ 269 void igc_free_tx_resources(struct igc_ring *tx_ring) 270 { 271 igc_clean_tx_ring(tx_ring); 272 273 vfree(tx_ring->tx_buffer_info); 274 tx_ring->tx_buffer_info = NULL; 275 276 /* if not set, then don't free */ 277 if (!tx_ring->desc) 278 return; 279 280 dma_free_coherent(tx_ring->dev, tx_ring->size, 281 tx_ring->desc, tx_ring->dma); 282 283 tx_ring->desc = NULL; 284 } 285 286 /** 287 * igc_free_all_tx_resources - Free Tx Resources for All Queues 288 * @adapter: board private structure 289 * 290 * Free all transmit software resources 291 */ 292 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 293 { 294 int i; 295 296 for (i = 0; i < adapter->num_tx_queues; i++) 297 igc_free_tx_resources(adapter->tx_ring[i]); 298 } 299 300 /** 301 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 302 * @adapter: board private structure 303 */ 304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 305 { 306 int i; 307 308 for (i = 0; i < adapter->num_tx_queues; i++) 309 if (adapter->tx_ring[i]) 310 igc_clean_tx_ring(adapter->tx_ring[i]); 311 } 312 313 /** 314 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 315 * @tx_ring: tx descriptor ring (for a specific queue) to setup 316 * 317 * Return 0 on success, negative on failure 318 */ 319 int igc_setup_tx_resources(struct igc_ring *tx_ring) 320 { 321 struct net_device *ndev = tx_ring->netdev; 322 struct device *dev = tx_ring->dev; 323 int size = 0; 324 325 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 326 tx_ring->tx_buffer_info = vzalloc(size); 327 if (!tx_ring->tx_buffer_info) 328 goto err; 329 330 /* round up to nearest 4K */ 331 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 332 tx_ring->size = ALIGN(tx_ring->size, 4096); 333 334 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 335 &tx_ring->dma, GFP_KERNEL); 336 337 if (!tx_ring->desc) 338 goto err; 339 340 tx_ring->next_to_use = 0; 341 tx_ring->next_to_clean = 0; 342 343 return 0; 344 345 err: 346 vfree(tx_ring->tx_buffer_info); 347 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 348 return -ENOMEM; 349 } 350 351 /** 352 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 353 * @adapter: board private structure 354 * 355 * Return 0 on success, negative on failure 356 */ 357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 358 { 359 struct net_device *dev = adapter->netdev; 360 int i, err = 0; 361 362 for (i = 0; i < adapter->num_tx_queues; i++) { 363 err = igc_setup_tx_resources(adapter->tx_ring[i]); 364 if (err) { 365 netdev_err(dev, "Error on Tx queue %u setup\n", i); 366 for (i--; i >= 0; i--) 367 igc_free_tx_resources(adapter->tx_ring[i]); 368 break; 369 } 370 } 371 372 return err; 373 } 374 375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 376 { 377 u16 i = rx_ring->next_to_clean; 378 379 dev_kfree_skb(rx_ring->skb); 380 rx_ring->skb = NULL; 381 382 /* Free all the Rx ring sk_buffs */ 383 while (i != rx_ring->next_to_alloc) { 384 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 385 386 /* Invalidate cache lines that may have been written to by 387 * device so that we avoid corrupting memory. 388 */ 389 dma_sync_single_range_for_cpu(rx_ring->dev, 390 buffer_info->dma, 391 buffer_info->page_offset, 392 igc_rx_bufsz(rx_ring), 393 DMA_FROM_DEVICE); 394 395 /* free resources associated with mapping */ 396 dma_unmap_page_attrs(rx_ring->dev, 397 buffer_info->dma, 398 igc_rx_pg_size(rx_ring), 399 DMA_FROM_DEVICE, 400 IGC_RX_DMA_ATTR); 401 __page_frag_cache_drain(buffer_info->page, 402 buffer_info->pagecnt_bias); 403 404 i++; 405 if (i == rx_ring->count) 406 i = 0; 407 } 408 } 409 410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 411 { 412 struct igc_rx_buffer *bi; 413 u16 i; 414 415 for (i = 0; i < ring->count; i++) { 416 bi = &ring->rx_buffer_info[i]; 417 if (!bi->xdp) 418 continue; 419 420 xsk_buff_free(bi->xdp); 421 bi->xdp = NULL; 422 } 423 } 424 425 /** 426 * igc_clean_rx_ring - Free Rx Buffers per Queue 427 * @ring: ring to free buffers from 428 */ 429 static void igc_clean_rx_ring(struct igc_ring *ring) 430 { 431 if (ring->xsk_pool) 432 igc_clean_rx_ring_xsk_pool(ring); 433 else 434 igc_clean_rx_ring_page_shared(ring); 435 436 clear_ring_uses_large_buffer(ring); 437 438 ring->next_to_alloc = 0; 439 ring->next_to_clean = 0; 440 ring->next_to_use = 0; 441 } 442 443 /** 444 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 445 * @adapter: board private structure 446 */ 447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 448 { 449 int i; 450 451 for (i = 0; i < adapter->num_rx_queues; i++) 452 if (adapter->rx_ring[i]) 453 igc_clean_rx_ring(adapter->rx_ring[i]); 454 } 455 456 /** 457 * igc_free_rx_resources - Free Rx Resources 458 * @rx_ring: ring to clean the resources from 459 * 460 * Free all receive software resources 461 */ 462 void igc_free_rx_resources(struct igc_ring *rx_ring) 463 { 464 igc_clean_rx_ring(rx_ring); 465 466 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 467 468 vfree(rx_ring->rx_buffer_info); 469 rx_ring->rx_buffer_info = NULL; 470 471 /* if not set, then don't free */ 472 if (!rx_ring->desc) 473 return; 474 475 dma_free_coherent(rx_ring->dev, rx_ring->size, 476 rx_ring->desc, rx_ring->dma); 477 478 rx_ring->desc = NULL; 479 } 480 481 /** 482 * igc_free_all_rx_resources - Free Rx Resources for All Queues 483 * @adapter: board private structure 484 * 485 * Free all receive software resources 486 */ 487 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 488 { 489 int i; 490 491 for (i = 0; i < adapter->num_rx_queues; i++) 492 igc_free_rx_resources(adapter->rx_ring[i]); 493 } 494 495 /** 496 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 497 * @rx_ring: rx descriptor ring (for a specific queue) to setup 498 * 499 * Returns 0 on success, negative on failure 500 */ 501 int igc_setup_rx_resources(struct igc_ring *rx_ring) 502 { 503 struct net_device *ndev = rx_ring->netdev; 504 struct device *dev = rx_ring->dev; 505 u8 index = rx_ring->queue_index; 506 int size, desc_len, res; 507 508 /* XDP RX-queue info */ 509 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 510 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 511 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 512 rx_ring->q_vector->napi.napi_id); 513 if (res < 0) { 514 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 515 index); 516 return res; 517 } 518 519 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 520 rx_ring->rx_buffer_info = vzalloc(size); 521 if (!rx_ring->rx_buffer_info) 522 goto err; 523 524 desc_len = sizeof(union igc_adv_rx_desc); 525 526 /* Round up to nearest 4K */ 527 rx_ring->size = rx_ring->count * desc_len; 528 rx_ring->size = ALIGN(rx_ring->size, 4096); 529 530 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 531 &rx_ring->dma, GFP_KERNEL); 532 533 if (!rx_ring->desc) 534 goto err; 535 536 rx_ring->next_to_alloc = 0; 537 rx_ring->next_to_clean = 0; 538 rx_ring->next_to_use = 0; 539 540 return 0; 541 542 err: 543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 544 vfree(rx_ring->rx_buffer_info); 545 rx_ring->rx_buffer_info = NULL; 546 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 547 return -ENOMEM; 548 } 549 550 /** 551 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 552 * (Descriptors) for all queues 553 * @adapter: board private structure 554 * 555 * Return 0 on success, negative on failure 556 */ 557 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 558 { 559 struct net_device *dev = adapter->netdev; 560 int i, err = 0; 561 562 for (i = 0; i < adapter->num_rx_queues; i++) { 563 err = igc_setup_rx_resources(adapter->rx_ring[i]); 564 if (err) { 565 netdev_err(dev, "Error on Rx queue %u setup\n", i); 566 for (i--; i >= 0; i--) 567 igc_free_rx_resources(adapter->rx_ring[i]); 568 break; 569 } 570 } 571 572 return err; 573 } 574 575 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 576 struct igc_ring *ring) 577 { 578 if (!igc_xdp_is_enabled(adapter) || 579 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 580 return NULL; 581 582 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 583 } 584 585 /** 586 * igc_configure_rx_ring - Configure a receive ring after Reset 587 * @adapter: board private structure 588 * @ring: receive ring to be configured 589 * 590 * Configure the Rx unit of the MAC after a reset. 591 */ 592 static void igc_configure_rx_ring(struct igc_adapter *adapter, 593 struct igc_ring *ring) 594 { 595 struct igc_hw *hw = &adapter->hw; 596 union igc_adv_rx_desc *rx_desc; 597 int reg_idx = ring->reg_idx; 598 u32 srrctl = 0, rxdctl = 0; 599 u64 rdba = ring->dma; 600 u32 buf_size; 601 602 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 603 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 604 if (ring->xsk_pool) { 605 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 606 MEM_TYPE_XSK_BUFF_POOL, 607 NULL)); 608 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 609 } else { 610 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 611 MEM_TYPE_PAGE_SHARED, 612 NULL)); 613 } 614 615 if (igc_xdp_is_enabled(adapter)) 616 set_ring_uses_large_buffer(ring); 617 618 /* disable the queue */ 619 wr32(IGC_RXDCTL(reg_idx), 0); 620 621 /* Set DMA base address registers */ 622 wr32(IGC_RDBAL(reg_idx), 623 rdba & 0x00000000ffffffffULL); 624 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 625 wr32(IGC_RDLEN(reg_idx), 626 ring->count * sizeof(union igc_adv_rx_desc)); 627 628 /* initialize head and tail */ 629 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 630 wr32(IGC_RDH(reg_idx), 0); 631 writel(0, ring->tail); 632 633 /* reset next-to- use/clean to place SW in sync with hardware */ 634 ring->next_to_clean = 0; 635 ring->next_to_use = 0; 636 637 if (ring->xsk_pool) 638 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 639 else if (ring_uses_large_buffer(ring)) 640 buf_size = IGC_RXBUFFER_3072; 641 else 642 buf_size = IGC_RXBUFFER_2048; 643 644 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; 645 srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT; 646 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 647 648 wr32(IGC_SRRCTL(reg_idx), srrctl); 649 650 rxdctl |= IGC_RX_PTHRESH; 651 rxdctl |= IGC_RX_HTHRESH << 8; 652 rxdctl |= IGC_RX_WTHRESH << 16; 653 654 /* initialize rx_buffer_info */ 655 memset(ring->rx_buffer_info, 0, 656 sizeof(struct igc_rx_buffer) * ring->count); 657 658 /* initialize Rx descriptor 0 */ 659 rx_desc = IGC_RX_DESC(ring, 0); 660 rx_desc->wb.upper.length = 0; 661 662 /* enable receive descriptor fetching */ 663 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 664 665 wr32(IGC_RXDCTL(reg_idx), rxdctl); 666 } 667 668 /** 669 * igc_configure_rx - Configure receive Unit after Reset 670 * @adapter: board private structure 671 * 672 * Configure the Rx unit of the MAC after a reset. 673 */ 674 static void igc_configure_rx(struct igc_adapter *adapter) 675 { 676 int i; 677 678 /* Setup the HW Rx Head and Tail Descriptor Pointers and 679 * the Base and Length of the Rx Descriptor Ring 680 */ 681 for (i = 0; i < adapter->num_rx_queues; i++) 682 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 683 } 684 685 /** 686 * igc_configure_tx_ring - Configure transmit ring after Reset 687 * @adapter: board private structure 688 * @ring: tx ring to configure 689 * 690 * Configure a transmit ring after a reset. 691 */ 692 static void igc_configure_tx_ring(struct igc_adapter *adapter, 693 struct igc_ring *ring) 694 { 695 struct igc_hw *hw = &adapter->hw; 696 int reg_idx = ring->reg_idx; 697 u64 tdba = ring->dma; 698 u32 txdctl = 0; 699 700 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 701 702 /* disable the queue */ 703 wr32(IGC_TXDCTL(reg_idx), 0); 704 wrfl(); 705 mdelay(10); 706 707 wr32(IGC_TDLEN(reg_idx), 708 ring->count * sizeof(union igc_adv_tx_desc)); 709 wr32(IGC_TDBAL(reg_idx), 710 tdba & 0x00000000ffffffffULL); 711 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 712 713 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 714 wr32(IGC_TDH(reg_idx), 0); 715 writel(0, ring->tail); 716 717 txdctl |= IGC_TX_PTHRESH; 718 txdctl |= IGC_TX_HTHRESH << 8; 719 txdctl |= IGC_TX_WTHRESH << 16; 720 721 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 722 wr32(IGC_TXDCTL(reg_idx), txdctl); 723 } 724 725 /** 726 * igc_configure_tx - Configure transmit Unit after Reset 727 * @adapter: board private structure 728 * 729 * Configure the Tx unit of the MAC after a reset. 730 */ 731 static void igc_configure_tx(struct igc_adapter *adapter) 732 { 733 int i; 734 735 for (i = 0; i < adapter->num_tx_queues; i++) 736 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 737 } 738 739 /** 740 * igc_setup_mrqc - configure the multiple receive queue control registers 741 * @adapter: Board private structure 742 */ 743 static void igc_setup_mrqc(struct igc_adapter *adapter) 744 { 745 struct igc_hw *hw = &adapter->hw; 746 u32 j, num_rx_queues; 747 u32 mrqc, rxcsum; 748 u32 rss_key[10]; 749 750 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 751 for (j = 0; j < 10; j++) 752 wr32(IGC_RSSRK(j), rss_key[j]); 753 754 num_rx_queues = adapter->rss_queues; 755 756 if (adapter->rss_indir_tbl_init != num_rx_queues) { 757 for (j = 0; j < IGC_RETA_SIZE; j++) 758 adapter->rss_indir_tbl[j] = 759 (j * num_rx_queues) / IGC_RETA_SIZE; 760 adapter->rss_indir_tbl_init = num_rx_queues; 761 } 762 igc_write_rss_indir_tbl(adapter); 763 764 /* Disable raw packet checksumming so that RSS hash is placed in 765 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 766 * offloads as they are enabled by default 767 */ 768 rxcsum = rd32(IGC_RXCSUM); 769 rxcsum |= IGC_RXCSUM_PCSD; 770 771 /* Enable Receive Checksum Offload for SCTP */ 772 rxcsum |= IGC_RXCSUM_CRCOFL; 773 774 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 775 wr32(IGC_RXCSUM, rxcsum); 776 777 /* Generate RSS hash based on packet types, TCP/UDP 778 * port numbers and/or IPv4/v6 src and dst addresses 779 */ 780 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 781 IGC_MRQC_RSS_FIELD_IPV4_TCP | 782 IGC_MRQC_RSS_FIELD_IPV6 | 783 IGC_MRQC_RSS_FIELD_IPV6_TCP | 784 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 785 786 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 787 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 788 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 789 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 790 791 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 792 793 wr32(IGC_MRQC, mrqc); 794 } 795 796 /** 797 * igc_setup_rctl - configure the receive control registers 798 * @adapter: Board private structure 799 */ 800 static void igc_setup_rctl(struct igc_adapter *adapter) 801 { 802 struct igc_hw *hw = &adapter->hw; 803 u32 rctl; 804 805 rctl = rd32(IGC_RCTL); 806 807 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 808 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 809 810 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 811 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 812 813 /* enable stripping of CRC. Newer features require 814 * that the HW strips the CRC. 815 */ 816 rctl |= IGC_RCTL_SECRC; 817 818 /* disable store bad packets and clear size bits. */ 819 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 820 821 /* enable LPE to allow for reception of jumbo frames */ 822 rctl |= IGC_RCTL_LPE; 823 824 /* disable queue 0 to prevent tail write w/o re-config */ 825 wr32(IGC_RXDCTL(0), 0); 826 827 /* This is useful for sniffing bad packets. */ 828 if (adapter->netdev->features & NETIF_F_RXALL) { 829 /* UPE and MPE will be handled by normal PROMISC logic 830 * in set_rx_mode 831 */ 832 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 833 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 834 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 835 836 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 837 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 838 } 839 840 wr32(IGC_RCTL, rctl); 841 } 842 843 /** 844 * igc_setup_tctl - configure the transmit control registers 845 * @adapter: Board private structure 846 */ 847 static void igc_setup_tctl(struct igc_adapter *adapter) 848 { 849 struct igc_hw *hw = &adapter->hw; 850 u32 tctl; 851 852 /* disable queue 0 which icould be enabled by default */ 853 wr32(IGC_TXDCTL(0), 0); 854 855 /* Program the Transmit Control Register */ 856 tctl = rd32(IGC_TCTL); 857 tctl &= ~IGC_TCTL_CT; 858 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 859 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 860 861 /* Enable transmits */ 862 tctl |= IGC_TCTL_EN; 863 864 wr32(IGC_TCTL, tctl); 865 } 866 867 /** 868 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 869 * @adapter: Pointer to adapter where the filter should be set 870 * @index: Filter index 871 * @type: MAC address filter type (source or destination) 872 * @addr: MAC address 873 * @queue: If non-negative, queue assignment feature is enabled and frames 874 * matching the filter are enqueued onto 'queue'. Otherwise, queue 875 * assignment is disabled. 876 */ 877 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 878 enum igc_mac_filter_type type, 879 const u8 *addr, int queue) 880 { 881 struct net_device *dev = adapter->netdev; 882 struct igc_hw *hw = &adapter->hw; 883 u32 ral, rah; 884 885 if (WARN_ON(index >= hw->mac.rar_entry_count)) 886 return; 887 888 ral = le32_to_cpup((__le32 *)(addr)); 889 rah = le16_to_cpup((__le16 *)(addr + 4)); 890 891 if (type == IGC_MAC_FILTER_TYPE_SRC) { 892 rah &= ~IGC_RAH_ASEL_MASK; 893 rah |= IGC_RAH_ASEL_SRC_ADDR; 894 } 895 896 if (queue >= 0) { 897 rah &= ~IGC_RAH_QSEL_MASK; 898 rah |= (queue << IGC_RAH_QSEL_SHIFT); 899 rah |= IGC_RAH_QSEL_ENABLE; 900 } 901 902 rah |= IGC_RAH_AV; 903 904 wr32(IGC_RAL(index), ral); 905 wr32(IGC_RAH(index), rah); 906 907 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 908 } 909 910 /** 911 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 912 * @adapter: Pointer to adapter where the filter should be cleared 913 * @index: Filter index 914 */ 915 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 916 { 917 struct net_device *dev = adapter->netdev; 918 struct igc_hw *hw = &adapter->hw; 919 920 if (WARN_ON(index >= hw->mac.rar_entry_count)) 921 return; 922 923 wr32(IGC_RAL(index), 0); 924 wr32(IGC_RAH(index), 0); 925 926 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 927 } 928 929 /* Set default MAC address for the PF in the first RAR entry */ 930 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 931 { 932 struct net_device *dev = adapter->netdev; 933 u8 *addr = adapter->hw.mac.addr; 934 935 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 936 937 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 938 } 939 940 /** 941 * igc_set_mac - Change the Ethernet Address of the NIC 942 * @netdev: network interface device structure 943 * @p: pointer to an address structure 944 * 945 * Returns 0 on success, negative on failure 946 */ 947 static int igc_set_mac(struct net_device *netdev, void *p) 948 { 949 struct igc_adapter *adapter = netdev_priv(netdev); 950 struct igc_hw *hw = &adapter->hw; 951 struct sockaddr *addr = p; 952 953 if (!is_valid_ether_addr(addr->sa_data)) 954 return -EADDRNOTAVAIL; 955 956 eth_hw_addr_set(netdev, addr->sa_data); 957 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 958 959 /* set the correct pool for the new PF MAC address in entry 0 */ 960 igc_set_default_mac_filter(adapter); 961 962 return 0; 963 } 964 965 /** 966 * igc_write_mc_addr_list - write multicast addresses to MTA 967 * @netdev: network interface device structure 968 * 969 * Writes multicast address list to the MTA hash table. 970 * Returns: -ENOMEM on failure 971 * 0 on no addresses written 972 * X on writing X addresses to MTA 973 **/ 974 static int igc_write_mc_addr_list(struct net_device *netdev) 975 { 976 struct igc_adapter *adapter = netdev_priv(netdev); 977 struct igc_hw *hw = &adapter->hw; 978 struct netdev_hw_addr *ha; 979 u8 *mta_list; 980 int i; 981 982 if (netdev_mc_empty(netdev)) { 983 /* nothing to program, so clear mc list */ 984 igc_update_mc_addr_list(hw, NULL, 0); 985 return 0; 986 } 987 988 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 989 if (!mta_list) 990 return -ENOMEM; 991 992 /* The shared function expects a packed array of only addresses. */ 993 i = 0; 994 netdev_for_each_mc_addr(ha, netdev) 995 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 996 997 igc_update_mc_addr_list(hw, mta_list, i); 998 kfree(mta_list); 999 1000 return netdev_mc_count(netdev); 1001 } 1002 1003 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime, 1004 bool *first_flag, bool *insert_empty) 1005 { 1006 struct igc_adapter *adapter = netdev_priv(ring->netdev); 1007 ktime_t cycle_time = adapter->cycle_time; 1008 ktime_t base_time = adapter->base_time; 1009 ktime_t now = ktime_get_clocktai(); 1010 ktime_t baset_est, end_of_cycle; 1011 u32 launchtime; 1012 s64 n; 1013 1014 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time); 1015 1016 baset_est = ktime_add_ns(base_time, cycle_time * (n)); 1017 end_of_cycle = ktime_add_ns(baset_est, cycle_time); 1018 1019 if (ktime_compare(txtime, end_of_cycle) >= 0) { 1020 if (baset_est != ring->last_ff_cycle) { 1021 *first_flag = true; 1022 ring->last_ff_cycle = baset_est; 1023 1024 if (ktime_compare(txtime, ring->last_tx_cycle) > 0) 1025 *insert_empty = true; 1026 } 1027 } 1028 1029 /* Introducing a window at end of cycle on which packets 1030 * potentially not honor launchtime. Window of 5us chosen 1031 * considering software update the tail pointer and packets 1032 * are dma'ed to packet buffer. 1033 */ 1034 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC)) 1035 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n", 1036 txtime); 1037 1038 ring->last_tx_cycle = end_of_cycle; 1039 1040 launchtime = ktime_sub_ns(txtime, baset_est); 1041 if (launchtime > 0) 1042 div_s64_rem(launchtime, cycle_time, &launchtime); 1043 else 1044 launchtime = 0; 1045 1046 return cpu_to_le32(launchtime); 1047 } 1048 1049 static int igc_init_empty_frame(struct igc_ring *ring, 1050 struct igc_tx_buffer *buffer, 1051 struct sk_buff *skb) 1052 { 1053 unsigned int size; 1054 dma_addr_t dma; 1055 1056 size = skb_headlen(skb); 1057 1058 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE); 1059 if (dma_mapping_error(ring->dev, dma)) { 1060 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 1061 return -ENOMEM; 1062 } 1063 1064 buffer->skb = skb; 1065 buffer->protocol = 0; 1066 buffer->bytecount = skb->len; 1067 buffer->gso_segs = 1; 1068 buffer->time_stamp = jiffies; 1069 dma_unmap_len_set(buffer, len, skb->len); 1070 dma_unmap_addr_set(buffer, dma, dma); 1071 1072 return 0; 1073 } 1074 1075 static int igc_init_tx_empty_descriptor(struct igc_ring *ring, 1076 struct sk_buff *skb, 1077 struct igc_tx_buffer *first) 1078 { 1079 union igc_adv_tx_desc *desc; 1080 u32 cmd_type, olinfo_status; 1081 int err; 1082 1083 if (!igc_desc_unused(ring)) 1084 return -EBUSY; 1085 1086 err = igc_init_empty_frame(ring, first, skb); 1087 if (err) 1088 return err; 1089 1090 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 1091 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 1092 first->bytecount; 1093 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 1094 1095 desc = IGC_TX_DESC(ring, ring->next_to_use); 1096 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1097 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1098 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma)); 1099 1100 netdev_tx_sent_queue(txring_txq(ring), skb->len); 1101 1102 first->next_to_watch = desc; 1103 1104 ring->next_to_use++; 1105 if (ring->next_to_use == ring->count) 1106 ring->next_to_use = 0; 1107 1108 return 0; 1109 } 1110 1111 #define IGC_EMPTY_FRAME_SIZE 60 1112 1113 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1114 __le32 launch_time, bool first_flag, 1115 u32 vlan_macip_lens, u32 type_tucmd, 1116 u32 mss_l4len_idx) 1117 { 1118 struct igc_adv_tx_context_desc *context_desc; 1119 u16 i = tx_ring->next_to_use; 1120 1121 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1122 1123 i++; 1124 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1125 1126 /* set bits to identify this as an advanced context descriptor */ 1127 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1128 1129 /* For i225, context index must be unique per ring. */ 1130 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1131 mss_l4len_idx |= tx_ring->reg_idx << 4; 1132 1133 if (first_flag) 1134 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST; 1135 1136 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1137 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1138 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1139 context_desc->launch_time = launch_time; 1140 } 1141 1142 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first, 1143 __le32 launch_time, bool first_flag) 1144 { 1145 struct sk_buff *skb = first->skb; 1146 u32 vlan_macip_lens = 0; 1147 u32 type_tucmd = 0; 1148 1149 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1150 csum_failed: 1151 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1152 !tx_ring->launchtime_enable) 1153 return; 1154 goto no_csum; 1155 } 1156 1157 switch (skb->csum_offset) { 1158 case offsetof(struct tcphdr, check): 1159 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1160 fallthrough; 1161 case offsetof(struct udphdr, check): 1162 break; 1163 case offsetof(struct sctphdr, checksum): 1164 /* validate that this is actually an SCTP request */ 1165 if (skb_csum_is_sctp(skb)) { 1166 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1167 break; 1168 } 1169 fallthrough; 1170 default: 1171 skb_checksum_help(skb); 1172 goto csum_failed; 1173 } 1174 1175 /* update TX checksum flag */ 1176 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1177 vlan_macip_lens = skb_checksum_start_offset(skb) - 1178 skb_network_offset(skb); 1179 no_csum: 1180 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1181 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1182 1183 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1184 vlan_macip_lens, type_tucmd, 0); 1185 } 1186 1187 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1188 { 1189 struct net_device *netdev = tx_ring->netdev; 1190 1191 netif_stop_subqueue(netdev, tx_ring->queue_index); 1192 1193 /* memory barriier comment */ 1194 smp_mb(); 1195 1196 /* We need to check again in a case another CPU has just 1197 * made room available. 1198 */ 1199 if (igc_desc_unused(tx_ring) < size) 1200 return -EBUSY; 1201 1202 /* A reprieve! */ 1203 netif_wake_subqueue(netdev, tx_ring->queue_index); 1204 1205 u64_stats_update_begin(&tx_ring->tx_syncp2); 1206 tx_ring->tx_stats.restart_queue2++; 1207 u64_stats_update_end(&tx_ring->tx_syncp2); 1208 1209 return 0; 1210 } 1211 1212 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1213 { 1214 if (igc_desc_unused(tx_ring) >= size) 1215 return 0; 1216 return __igc_maybe_stop_tx(tx_ring, size); 1217 } 1218 1219 #define IGC_SET_FLAG(_input, _flag, _result) \ 1220 (((_flag) <= (_result)) ? \ 1221 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1222 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1223 1224 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1225 { 1226 /* set type for advanced descriptor with frame checksum insertion */ 1227 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1228 IGC_ADVTXD_DCMD_DEXT | 1229 IGC_ADVTXD_DCMD_IFCS; 1230 1231 /* set HW vlan bit if vlan is present */ 1232 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1233 IGC_ADVTXD_DCMD_VLE); 1234 1235 /* set segmentation bits for TSO */ 1236 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1237 (IGC_ADVTXD_DCMD_TSE)); 1238 1239 /* set timestamp bit if present */ 1240 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1241 (IGC_ADVTXD_MAC_TSTAMP)); 1242 1243 /* insert frame checksum */ 1244 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1245 1246 return cmd_type; 1247 } 1248 1249 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1250 union igc_adv_tx_desc *tx_desc, 1251 u32 tx_flags, unsigned int paylen) 1252 { 1253 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1254 1255 /* insert L4 checksum */ 1256 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 1257 ((IGC_TXD_POPTS_TXSM << 8) / 1258 IGC_TX_FLAGS_CSUM); 1259 1260 /* insert IPv4 checksum */ 1261 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 1262 (((IGC_TXD_POPTS_IXSM << 8)) / 1263 IGC_TX_FLAGS_IPV4); 1264 1265 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1266 } 1267 1268 static int igc_tx_map(struct igc_ring *tx_ring, 1269 struct igc_tx_buffer *first, 1270 const u8 hdr_len) 1271 { 1272 struct sk_buff *skb = first->skb; 1273 struct igc_tx_buffer *tx_buffer; 1274 union igc_adv_tx_desc *tx_desc; 1275 u32 tx_flags = first->tx_flags; 1276 skb_frag_t *frag; 1277 u16 i = tx_ring->next_to_use; 1278 unsigned int data_len, size; 1279 dma_addr_t dma; 1280 u32 cmd_type; 1281 1282 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1283 tx_desc = IGC_TX_DESC(tx_ring, i); 1284 1285 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1286 1287 size = skb_headlen(skb); 1288 data_len = skb->data_len; 1289 1290 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1291 1292 tx_buffer = first; 1293 1294 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1295 if (dma_mapping_error(tx_ring->dev, dma)) 1296 goto dma_error; 1297 1298 /* record length, and DMA address */ 1299 dma_unmap_len_set(tx_buffer, len, size); 1300 dma_unmap_addr_set(tx_buffer, dma, dma); 1301 1302 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1303 1304 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1305 tx_desc->read.cmd_type_len = 1306 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1307 1308 i++; 1309 tx_desc++; 1310 if (i == tx_ring->count) { 1311 tx_desc = IGC_TX_DESC(tx_ring, 0); 1312 i = 0; 1313 } 1314 tx_desc->read.olinfo_status = 0; 1315 1316 dma += IGC_MAX_DATA_PER_TXD; 1317 size -= IGC_MAX_DATA_PER_TXD; 1318 1319 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1320 } 1321 1322 if (likely(!data_len)) 1323 break; 1324 1325 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1326 1327 i++; 1328 tx_desc++; 1329 if (i == tx_ring->count) { 1330 tx_desc = IGC_TX_DESC(tx_ring, 0); 1331 i = 0; 1332 } 1333 tx_desc->read.olinfo_status = 0; 1334 1335 size = skb_frag_size(frag); 1336 data_len -= size; 1337 1338 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1339 size, DMA_TO_DEVICE); 1340 1341 tx_buffer = &tx_ring->tx_buffer_info[i]; 1342 } 1343 1344 /* write last descriptor with RS and EOP bits */ 1345 cmd_type |= size | IGC_TXD_DCMD; 1346 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1347 1348 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1349 1350 /* set the timestamp */ 1351 first->time_stamp = jiffies; 1352 1353 skb_tx_timestamp(skb); 1354 1355 /* Force memory writes to complete before letting h/w know there 1356 * are new descriptors to fetch. (Only applicable for weak-ordered 1357 * memory model archs, such as IA-64). 1358 * 1359 * We also need this memory barrier to make certain all of the 1360 * status bits have been updated before next_to_watch is written. 1361 */ 1362 wmb(); 1363 1364 /* set next_to_watch value indicating a packet is present */ 1365 first->next_to_watch = tx_desc; 1366 1367 i++; 1368 if (i == tx_ring->count) 1369 i = 0; 1370 1371 tx_ring->next_to_use = i; 1372 1373 /* Make sure there is space in the ring for the next send. */ 1374 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1375 1376 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1377 writel(i, tx_ring->tail); 1378 } 1379 1380 return 0; 1381 dma_error: 1382 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1383 tx_buffer = &tx_ring->tx_buffer_info[i]; 1384 1385 /* clear dma mappings for failed tx_buffer_info map */ 1386 while (tx_buffer != first) { 1387 if (dma_unmap_len(tx_buffer, len)) 1388 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1389 1390 if (i-- == 0) 1391 i += tx_ring->count; 1392 tx_buffer = &tx_ring->tx_buffer_info[i]; 1393 } 1394 1395 if (dma_unmap_len(tx_buffer, len)) 1396 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1397 1398 dev_kfree_skb_any(tx_buffer->skb); 1399 tx_buffer->skb = NULL; 1400 1401 tx_ring->next_to_use = i; 1402 1403 return -1; 1404 } 1405 1406 static int igc_tso(struct igc_ring *tx_ring, 1407 struct igc_tx_buffer *first, 1408 __le32 launch_time, bool first_flag, 1409 u8 *hdr_len) 1410 { 1411 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1412 struct sk_buff *skb = first->skb; 1413 union { 1414 struct iphdr *v4; 1415 struct ipv6hdr *v6; 1416 unsigned char *hdr; 1417 } ip; 1418 union { 1419 struct tcphdr *tcp; 1420 struct udphdr *udp; 1421 unsigned char *hdr; 1422 } l4; 1423 u32 paylen, l4_offset; 1424 int err; 1425 1426 if (skb->ip_summed != CHECKSUM_PARTIAL) 1427 return 0; 1428 1429 if (!skb_is_gso(skb)) 1430 return 0; 1431 1432 err = skb_cow_head(skb, 0); 1433 if (err < 0) 1434 return err; 1435 1436 ip.hdr = skb_network_header(skb); 1437 l4.hdr = skb_checksum_start(skb); 1438 1439 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1440 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1441 1442 /* initialize outer IP header fields */ 1443 if (ip.v4->version == 4) { 1444 unsigned char *csum_start = skb_checksum_start(skb); 1445 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1446 1447 /* IP header will have to cancel out any data that 1448 * is not a part of the outer IP header 1449 */ 1450 ip.v4->check = csum_fold(csum_partial(trans_start, 1451 csum_start - trans_start, 1452 0)); 1453 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1454 1455 ip.v4->tot_len = 0; 1456 first->tx_flags |= IGC_TX_FLAGS_TSO | 1457 IGC_TX_FLAGS_CSUM | 1458 IGC_TX_FLAGS_IPV4; 1459 } else { 1460 ip.v6->payload_len = 0; 1461 first->tx_flags |= IGC_TX_FLAGS_TSO | 1462 IGC_TX_FLAGS_CSUM; 1463 } 1464 1465 /* determine offset of inner transport header */ 1466 l4_offset = l4.hdr - skb->data; 1467 1468 /* remove payload length from inner checksum */ 1469 paylen = skb->len - l4_offset; 1470 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1471 /* compute length of segmentation header */ 1472 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1473 csum_replace_by_diff(&l4.tcp->check, 1474 (__force __wsum)htonl(paylen)); 1475 } else { 1476 /* compute length of segmentation header */ 1477 *hdr_len = sizeof(*l4.udp) + l4_offset; 1478 csum_replace_by_diff(&l4.udp->check, 1479 (__force __wsum)htonl(paylen)); 1480 } 1481 1482 /* update gso size and bytecount with header size */ 1483 first->gso_segs = skb_shinfo(skb)->gso_segs; 1484 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1485 1486 /* MSS L4LEN IDX */ 1487 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1488 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1489 1490 /* VLAN MACLEN IPLEN */ 1491 vlan_macip_lens = l4.hdr - ip.hdr; 1492 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1493 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1494 1495 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1496 vlan_macip_lens, type_tucmd, mss_l4len_idx); 1497 1498 return 1; 1499 } 1500 1501 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1502 struct igc_ring *tx_ring) 1503 { 1504 bool first_flag = false, insert_empty = false; 1505 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1506 __be16 protocol = vlan_get_protocol(skb); 1507 struct igc_tx_buffer *first; 1508 __le32 launch_time = 0; 1509 u32 tx_flags = 0; 1510 unsigned short f; 1511 ktime_t txtime; 1512 u8 hdr_len = 0; 1513 int tso = 0; 1514 1515 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1516 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1517 * + 2 desc gap to keep tail from touching head, 1518 * + 1 desc for context descriptor, 1519 * otherwise try next time 1520 */ 1521 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1522 count += TXD_USE_COUNT(skb_frag_size( 1523 &skb_shinfo(skb)->frags[f])); 1524 1525 if (igc_maybe_stop_tx(tx_ring, count + 5)) { 1526 /* this is a hard error */ 1527 return NETDEV_TX_BUSY; 1528 } 1529 1530 if (!tx_ring->launchtime_enable) 1531 goto done; 1532 1533 txtime = skb->tstamp; 1534 skb->tstamp = ktime_set(0, 0); 1535 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty); 1536 1537 if (insert_empty) { 1538 struct igc_tx_buffer *empty_info; 1539 struct sk_buff *empty; 1540 void *data; 1541 1542 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1543 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC); 1544 if (!empty) 1545 goto done; 1546 1547 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE); 1548 memset(data, 0, IGC_EMPTY_FRAME_SIZE); 1549 1550 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0); 1551 1552 if (igc_init_tx_empty_descriptor(tx_ring, 1553 empty, 1554 empty_info) < 0) 1555 dev_kfree_skb_any(empty); 1556 } 1557 1558 done: 1559 /* record the location of the first descriptor for this packet */ 1560 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1561 first->type = IGC_TX_BUFFER_TYPE_SKB; 1562 first->skb = skb; 1563 first->bytecount = skb->len; 1564 first->gso_segs = 1; 1565 1566 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1567 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1568 1569 /* FIXME: add support for retrieving timestamps from 1570 * the other timer registers before skipping the 1571 * timestamping request. 1572 */ 1573 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 1574 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS, 1575 &adapter->state)) { 1576 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1577 tx_flags |= IGC_TX_FLAGS_TSTAMP; 1578 1579 adapter->ptp_tx_skb = skb_get(skb); 1580 adapter->ptp_tx_start = jiffies; 1581 } else { 1582 adapter->tx_hwtstamp_skipped++; 1583 } 1584 } 1585 1586 if (skb_vlan_tag_present(skb)) { 1587 tx_flags |= IGC_TX_FLAGS_VLAN; 1588 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1589 } 1590 1591 /* record initial flags and protocol */ 1592 first->tx_flags = tx_flags; 1593 first->protocol = protocol; 1594 1595 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len); 1596 if (tso < 0) 1597 goto out_drop; 1598 else if (!tso) 1599 igc_tx_csum(tx_ring, first, launch_time, first_flag); 1600 1601 igc_tx_map(tx_ring, first, hdr_len); 1602 1603 return NETDEV_TX_OK; 1604 1605 out_drop: 1606 dev_kfree_skb_any(first->skb); 1607 first->skb = NULL; 1608 1609 return NETDEV_TX_OK; 1610 } 1611 1612 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1613 struct sk_buff *skb) 1614 { 1615 unsigned int r_idx = skb->queue_mapping; 1616 1617 if (r_idx >= adapter->num_tx_queues) 1618 r_idx = r_idx % adapter->num_tx_queues; 1619 1620 return adapter->tx_ring[r_idx]; 1621 } 1622 1623 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1624 struct net_device *netdev) 1625 { 1626 struct igc_adapter *adapter = netdev_priv(netdev); 1627 1628 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1629 * in order to meet this minimum size requirement. 1630 */ 1631 if (skb->len < 17) { 1632 if (skb_padto(skb, 17)) 1633 return NETDEV_TX_OK; 1634 skb->len = 17; 1635 } 1636 1637 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1638 } 1639 1640 static void igc_rx_checksum(struct igc_ring *ring, 1641 union igc_adv_rx_desc *rx_desc, 1642 struct sk_buff *skb) 1643 { 1644 skb_checksum_none_assert(skb); 1645 1646 /* Ignore Checksum bit is set */ 1647 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1648 return; 1649 1650 /* Rx checksum disabled via ethtool */ 1651 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1652 return; 1653 1654 /* TCP/UDP checksum error bit is set */ 1655 if (igc_test_staterr(rx_desc, 1656 IGC_RXDEXT_STATERR_L4E | 1657 IGC_RXDEXT_STATERR_IPE)) { 1658 /* work around errata with sctp packets where the TCPE aka 1659 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1660 * packets (aka let the stack check the crc32c) 1661 */ 1662 if (!(skb->len == 60 && 1663 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1664 u64_stats_update_begin(&ring->rx_syncp); 1665 ring->rx_stats.csum_err++; 1666 u64_stats_update_end(&ring->rx_syncp); 1667 } 1668 /* let the stack verify checksum errors */ 1669 return; 1670 } 1671 /* It must be a TCP or UDP packet with a valid checksum */ 1672 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1673 IGC_RXD_STAT_UDPCS)) 1674 skb->ip_summed = CHECKSUM_UNNECESSARY; 1675 1676 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1677 le32_to_cpu(rx_desc->wb.upper.status_error)); 1678 } 1679 1680 static inline void igc_rx_hash(struct igc_ring *ring, 1681 union igc_adv_rx_desc *rx_desc, 1682 struct sk_buff *skb) 1683 { 1684 if (ring->netdev->features & NETIF_F_RXHASH) 1685 skb_set_hash(skb, 1686 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1687 PKT_HASH_TYPE_L3); 1688 } 1689 1690 static void igc_rx_vlan(struct igc_ring *rx_ring, 1691 union igc_adv_rx_desc *rx_desc, 1692 struct sk_buff *skb) 1693 { 1694 struct net_device *dev = rx_ring->netdev; 1695 u16 vid; 1696 1697 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1698 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1699 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1700 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1701 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1702 else 1703 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1704 1705 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1706 } 1707 } 1708 1709 /** 1710 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1711 * @rx_ring: rx descriptor ring packet is being transacted on 1712 * @rx_desc: pointer to the EOP Rx descriptor 1713 * @skb: pointer to current skb being populated 1714 * 1715 * This function checks the ring, descriptor, and packet information in order 1716 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1717 * skb. 1718 */ 1719 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1720 union igc_adv_rx_desc *rx_desc, 1721 struct sk_buff *skb) 1722 { 1723 igc_rx_hash(rx_ring, rx_desc, skb); 1724 1725 igc_rx_checksum(rx_ring, rx_desc, skb); 1726 1727 igc_rx_vlan(rx_ring, rx_desc, skb); 1728 1729 skb_record_rx_queue(skb, rx_ring->queue_index); 1730 1731 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1732 } 1733 1734 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1735 { 1736 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1737 struct igc_adapter *adapter = netdev_priv(netdev); 1738 struct igc_hw *hw = &adapter->hw; 1739 u32 ctrl; 1740 1741 ctrl = rd32(IGC_CTRL); 1742 1743 if (enable) { 1744 /* enable VLAN tag insert/strip */ 1745 ctrl |= IGC_CTRL_VME; 1746 } else { 1747 /* disable VLAN tag insert/strip */ 1748 ctrl &= ~IGC_CTRL_VME; 1749 } 1750 wr32(IGC_CTRL, ctrl); 1751 } 1752 1753 static void igc_restore_vlan(struct igc_adapter *adapter) 1754 { 1755 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1756 } 1757 1758 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1759 const unsigned int size, 1760 int *rx_buffer_pgcnt) 1761 { 1762 struct igc_rx_buffer *rx_buffer; 1763 1764 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1765 *rx_buffer_pgcnt = 1766 #if (PAGE_SIZE < 8192) 1767 page_count(rx_buffer->page); 1768 #else 1769 0; 1770 #endif 1771 prefetchw(rx_buffer->page); 1772 1773 /* we are reusing so sync this buffer for CPU use */ 1774 dma_sync_single_range_for_cpu(rx_ring->dev, 1775 rx_buffer->dma, 1776 rx_buffer->page_offset, 1777 size, 1778 DMA_FROM_DEVICE); 1779 1780 rx_buffer->pagecnt_bias--; 1781 1782 return rx_buffer; 1783 } 1784 1785 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1786 unsigned int truesize) 1787 { 1788 #if (PAGE_SIZE < 8192) 1789 buffer->page_offset ^= truesize; 1790 #else 1791 buffer->page_offset += truesize; 1792 #endif 1793 } 1794 1795 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1796 unsigned int size) 1797 { 1798 unsigned int truesize; 1799 1800 #if (PAGE_SIZE < 8192) 1801 truesize = igc_rx_pg_size(ring) / 2; 1802 #else 1803 truesize = ring_uses_build_skb(ring) ? 1804 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1805 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1806 SKB_DATA_ALIGN(size); 1807 #endif 1808 return truesize; 1809 } 1810 1811 /** 1812 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1813 * @rx_ring: rx descriptor ring to transact packets on 1814 * @rx_buffer: buffer containing page to add 1815 * @skb: sk_buff to place the data into 1816 * @size: size of buffer to be added 1817 * 1818 * This function will add the data contained in rx_buffer->page to the skb. 1819 */ 1820 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1821 struct igc_rx_buffer *rx_buffer, 1822 struct sk_buff *skb, 1823 unsigned int size) 1824 { 1825 unsigned int truesize; 1826 1827 #if (PAGE_SIZE < 8192) 1828 truesize = igc_rx_pg_size(rx_ring) / 2; 1829 #else 1830 truesize = ring_uses_build_skb(rx_ring) ? 1831 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1832 SKB_DATA_ALIGN(size); 1833 #endif 1834 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1835 rx_buffer->page_offset, size, truesize); 1836 1837 igc_rx_buffer_flip(rx_buffer, truesize); 1838 } 1839 1840 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1841 struct igc_rx_buffer *rx_buffer, 1842 struct xdp_buff *xdp) 1843 { 1844 unsigned int size = xdp->data_end - xdp->data; 1845 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1846 unsigned int metasize = xdp->data - xdp->data_meta; 1847 struct sk_buff *skb; 1848 1849 /* prefetch first cache line of first page */ 1850 net_prefetch(xdp->data_meta); 1851 1852 /* build an skb around the page buffer */ 1853 skb = napi_build_skb(xdp->data_hard_start, truesize); 1854 if (unlikely(!skb)) 1855 return NULL; 1856 1857 /* update pointers within the skb to store the data */ 1858 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1859 __skb_put(skb, size); 1860 if (metasize) 1861 skb_metadata_set(skb, metasize); 1862 1863 igc_rx_buffer_flip(rx_buffer, truesize); 1864 return skb; 1865 } 1866 1867 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1868 struct igc_rx_buffer *rx_buffer, 1869 struct xdp_buff *xdp, 1870 ktime_t timestamp) 1871 { 1872 unsigned int metasize = xdp->data - xdp->data_meta; 1873 unsigned int size = xdp->data_end - xdp->data; 1874 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1875 void *va = xdp->data; 1876 unsigned int headlen; 1877 struct sk_buff *skb; 1878 1879 /* prefetch first cache line of first page */ 1880 net_prefetch(xdp->data_meta); 1881 1882 /* allocate a skb to store the frags */ 1883 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1884 IGC_RX_HDR_LEN + metasize); 1885 if (unlikely(!skb)) 1886 return NULL; 1887 1888 if (timestamp) 1889 skb_hwtstamps(skb)->hwtstamp = timestamp; 1890 1891 /* Determine available headroom for copy */ 1892 headlen = size; 1893 if (headlen > IGC_RX_HDR_LEN) 1894 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1895 1896 /* align pull length to size of long to optimize memcpy performance */ 1897 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1898 ALIGN(headlen + metasize, sizeof(long))); 1899 1900 if (metasize) { 1901 skb_metadata_set(skb, metasize); 1902 __skb_pull(skb, metasize); 1903 } 1904 1905 /* update all of the pointers */ 1906 size -= headlen; 1907 if (size) { 1908 skb_add_rx_frag(skb, 0, rx_buffer->page, 1909 (va + headlen) - page_address(rx_buffer->page), 1910 size, truesize); 1911 igc_rx_buffer_flip(rx_buffer, truesize); 1912 } else { 1913 rx_buffer->pagecnt_bias++; 1914 } 1915 1916 return skb; 1917 } 1918 1919 /** 1920 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1921 * @rx_ring: rx descriptor ring to store buffers on 1922 * @old_buff: donor buffer to have page reused 1923 * 1924 * Synchronizes page for reuse by the adapter 1925 */ 1926 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1927 struct igc_rx_buffer *old_buff) 1928 { 1929 u16 nta = rx_ring->next_to_alloc; 1930 struct igc_rx_buffer *new_buff; 1931 1932 new_buff = &rx_ring->rx_buffer_info[nta]; 1933 1934 /* update, and store next to alloc */ 1935 nta++; 1936 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1937 1938 /* Transfer page from old buffer to new buffer. 1939 * Move each member individually to avoid possible store 1940 * forwarding stalls. 1941 */ 1942 new_buff->dma = old_buff->dma; 1943 new_buff->page = old_buff->page; 1944 new_buff->page_offset = old_buff->page_offset; 1945 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1946 } 1947 1948 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 1949 int rx_buffer_pgcnt) 1950 { 1951 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1952 struct page *page = rx_buffer->page; 1953 1954 /* avoid re-using remote and pfmemalloc pages */ 1955 if (!dev_page_is_reusable(page)) 1956 return false; 1957 1958 #if (PAGE_SIZE < 8192) 1959 /* if we are only owner of page we can reuse it */ 1960 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 1961 return false; 1962 #else 1963 #define IGC_LAST_OFFSET \ 1964 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1965 1966 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1967 return false; 1968 #endif 1969 1970 /* If we have drained the page fragment pool we need to update 1971 * the pagecnt_bias and page count so that we fully restock the 1972 * number of references the driver holds. 1973 */ 1974 if (unlikely(pagecnt_bias == 1)) { 1975 page_ref_add(page, USHRT_MAX - 1); 1976 rx_buffer->pagecnt_bias = USHRT_MAX; 1977 } 1978 1979 return true; 1980 } 1981 1982 /** 1983 * igc_is_non_eop - process handling of non-EOP buffers 1984 * @rx_ring: Rx ring being processed 1985 * @rx_desc: Rx descriptor for current buffer 1986 * 1987 * This function updates next to clean. If the buffer is an EOP buffer 1988 * this function exits returning false, otherwise it will place the 1989 * sk_buff in the next buffer to be chained and return true indicating 1990 * that this is in fact a non-EOP buffer. 1991 */ 1992 static bool igc_is_non_eop(struct igc_ring *rx_ring, 1993 union igc_adv_rx_desc *rx_desc) 1994 { 1995 u32 ntc = rx_ring->next_to_clean + 1; 1996 1997 /* fetch, update, and store next to clean */ 1998 ntc = (ntc < rx_ring->count) ? ntc : 0; 1999 rx_ring->next_to_clean = ntc; 2000 2001 prefetch(IGC_RX_DESC(rx_ring, ntc)); 2002 2003 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 2004 return false; 2005 2006 return true; 2007 } 2008 2009 /** 2010 * igc_cleanup_headers - Correct corrupted or empty headers 2011 * @rx_ring: rx descriptor ring packet is being transacted on 2012 * @rx_desc: pointer to the EOP Rx descriptor 2013 * @skb: pointer to current skb being fixed 2014 * 2015 * Address the case where we are pulling data in on pages only 2016 * and as such no data is present in the skb header. 2017 * 2018 * In addition if skb is not at least 60 bytes we need to pad it so that 2019 * it is large enough to qualify as a valid Ethernet frame. 2020 * 2021 * Returns true if an error was encountered and skb was freed. 2022 */ 2023 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 2024 union igc_adv_rx_desc *rx_desc, 2025 struct sk_buff *skb) 2026 { 2027 /* XDP packets use error pointer so abort at this point */ 2028 if (IS_ERR(skb)) 2029 return true; 2030 2031 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 2032 struct net_device *netdev = rx_ring->netdev; 2033 2034 if (!(netdev->features & NETIF_F_RXALL)) { 2035 dev_kfree_skb_any(skb); 2036 return true; 2037 } 2038 } 2039 2040 /* if eth_skb_pad returns an error the skb was freed */ 2041 if (eth_skb_pad(skb)) 2042 return true; 2043 2044 return false; 2045 } 2046 2047 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 2048 struct igc_rx_buffer *rx_buffer, 2049 int rx_buffer_pgcnt) 2050 { 2051 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2052 /* hand second half of page back to the ring */ 2053 igc_reuse_rx_page(rx_ring, rx_buffer); 2054 } else { 2055 /* We are not reusing the buffer so unmap it and free 2056 * any references we are holding to it 2057 */ 2058 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2059 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 2060 IGC_RX_DMA_ATTR); 2061 __page_frag_cache_drain(rx_buffer->page, 2062 rx_buffer->pagecnt_bias); 2063 } 2064 2065 /* clear contents of rx_buffer */ 2066 rx_buffer->page = NULL; 2067 } 2068 2069 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 2070 { 2071 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 2072 2073 if (ring_uses_build_skb(rx_ring)) 2074 return IGC_SKB_PAD; 2075 if (igc_xdp_is_enabled(adapter)) 2076 return XDP_PACKET_HEADROOM; 2077 2078 return 0; 2079 } 2080 2081 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 2082 struct igc_rx_buffer *bi) 2083 { 2084 struct page *page = bi->page; 2085 dma_addr_t dma; 2086 2087 /* since we are recycling buffers we should seldom need to alloc */ 2088 if (likely(page)) 2089 return true; 2090 2091 /* alloc new page for storage */ 2092 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 2093 if (unlikely(!page)) { 2094 rx_ring->rx_stats.alloc_failed++; 2095 return false; 2096 } 2097 2098 /* map page for use */ 2099 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 2100 igc_rx_pg_size(rx_ring), 2101 DMA_FROM_DEVICE, 2102 IGC_RX_DMA_ATTR); 2103 2104 /* if mapping failed free memory back to system since 2105 * there isn't much point in holding memory we can't use 2106 */ 2107 if (dma_mapping_error(rx_ring->dev, dma)) { 2108 __free_page(page); 2109 2110 rx_ring->rx_stats.alloc_failed++; 2111 return false; 2112 } 2113 2114 bi->dma = dma; 2115 bi->page = page; 2116 bi->page_offset = igc_rx_offset(rx_ring); 2117 page_ref_add(page, USHRT_MAX - 1); 2118 bi->pagecnt_bias = USHRT_MAX; 2119 2120 return true; 2121 } 2122 2123 /** 2124 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2125 * @rx_ring: rx descriptor ring 2126 * @cleaned_count: number of buffers to clean 2127 */ 2128 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2129 { 2130 union igc_adv_rx_desc *rx_desc; 2131 u16 i = rx_ring->next_to_use; 2132 struct igc_rx_buffer *bi; 2133 u16 bufsz; 2134 2135 /* nothing to do */ 2136 if (!cleaned_count) 2137 return; 2138 2139 rx_desc = IGC_RX_DESC(rx_ring, i); 2140 bi = &rx_ring->rx_buffer_info[i]; 2141 i -= rx_ring->count; 2142 2143 bufsz = igc_rx_bufsz(rx_ring); 2144 2145 do { 2146 if (!igc_alloc_mapped_page(rx_ring, bi)) 2147 break; 2148 2149 /* sync the buffer for use by the device */ 2150 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2151 bi->page_offset, bufsz, 2152 DMA_FROM_DEVICE); 2153 2154 /* Refresh the desc even if buffer_addrs didn't change 2155 * because each write-back erases this info. 2156 */ 2157 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2158 2159 rx_desc++; 2160 bi++; 2161 i++; 2162 if (unlikely(!i)) { 2163 rx_desc = IGC_RX_DESC(rx_ring, 0); 2164 bi = rx_ring->rx_buffer_info; 2165 i -= rx_ring->count; 2166 } 2167 2168 /* clear the length for the next_to_use descriptor */ 2169 rx_desc->wb.upper.length = 0; 2170 2171 cleaned_count--; 2172 } while (cleaned_count); 2173 2174 i += rx_ring->count; 2175 2176 if (rx_ring->next_to_use != i) { 2177 /* record the next descriptor to use */ 2178 rx_ring->next_to_use = i; 2179 2180 /* update next to alloc since we have filled the ring */ 2181 rx_ring->next_to_alloc = i; 2182 2183 /* Force memory writes to complete before letting h/w 2184 * know there are new descriptors to fetch. (Only 2185 * applicable for weak-ordered memory model archs, 2186 * such as IA-64). 2187 */ 2188 wmb(); 2189 writel(i, rx_ring->tail); 2190 } 2191 } 2192 2193 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2194 { 2195 union igc_adv_rx_desc *desc; 2196 u16 i = ring->next_to_use; 2197 struct igc_rx_buffer *bi; 2198 dma_addr_t dma; 2199 bool ok = true; 2200 2201 if (!count) 2202 return ok; 2203 2204 desc = IGC_RX_DESC(ring, i); 2205 bi = &ring->rx_buffer_info[i]; 2206 i -= ring->count; 2207 2208 do { 2209 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2210 if (!bi->xdp) { 2211 ok = false; 2212 break; 2213 } 2214 2215 dma = xsk_buff_xdp_get_dma(bi->xdp); 2216 desc->read.pkt_addr = cpu_to_le64(dma); 2217 2218 desc++; 2219 bi++; 2220 i++; 2221 if (unlikely(!i)) { 2222 desc = IGC_RX_DESC(ring, 0); 2223 bi = ring->rx_buffer_info; 2224 i -= ring->count; 2225 } 2226 2227 /* Clear the length for the next_to_use descriptor. */ 2228 desc->wb.upper.length = 0; 2229 2230 count--; 2231 } while (count); 2232 2233 i += ring->count; 2234 2235 if (ring->next_to_use != i) { 2236 ring->next_to_use = i; 2237 2238 /* Force memory writes to complete before letting h/w 2239 * know there are new descriptors to fetch. (Only 2240 * applicable for weak-ordered memory model archs, 2241 * such as IA-64). 2242 */ 2243 wmb(); 2244 writel(i, ring->tail); 2245 } 2246 2247 return ok; 2248 } 2249 2250 /* This function requires __netif_tx_lock is held by the caller. */ 2251 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2252 struct xdp_frame *xdpf) 2253 { 2254 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2255 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 2256 u16 count, index = ring->next_to_use; 2257 struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; 2258 struct igc_tx_buffer *buffer = head; 2259 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); 2260 u32 olinfo_status, len = xdpf->len, cmd_type; 2261 void *data = xdpf->data; 2262 u16 i; 2263 2264 count = TXD_USE_COUNT(len); 2265 for (i = 0; i < nr_frags; i++) 2266 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 2267 2268 if (igc_maybe_stop_tx(ring, count + 3)) { 2269 /* this is a hard error */ 2270 return -EBUSY; 2271 } 2272 2273 i = 0; 2274 head->bytecount = xdp_get_frame_len(xdpf); 2275 head->type = IGC_TX_BUFFER_TYPE_XDP; 2276 head->gso_segs = 1; 2277 head->xdpf = xdpf; 2278 2279 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2280 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2281 2282 for (;;) { 2283 dma_addr_t dma; 2284 2285 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); 2286 if (dma_mapping_error(ring->dev, dma)) { 2287 netdev_err_once(ring->netdev, 2288 "Failed to map DMA for TX\n"); 2289 goto unmap; 2290 } 2291 2292 dma_unmap_len_set(buffer, len, len); 2293 dma_unmap_addr_set(buffer, dma, dma); 2294 2295 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2296 IGC_ADVTXD_DCMD_IFCS | len; 2297 2298 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2299 desc->read.buffer_addr = cpu_to_le64(dma); 2300 2301 buffer->protocol = 0; 2302 2303 if (++index == ring->count) 2304 index = 0; 2305 2306 if (i == nr_frags) 2307 break; 2308 2309 buffer = &ring->tx_buffer_info[index]; 2310 desc = IGC_TX_DESC(ring, index); 2311 desc->read.olinfo_status = 0; 2312 2313 data = skb_frag_address(&sinfo->frags[i]); 2314 len = skb_frag_size(&sinfo->frags[i]); 2315 i++; 2316 } 2317 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); 2318 2319 netdev_tx_sent_queue(txring_txq(ring), head->bytecount); 2320 /* set the timestamp */ 2321 head->time_stamp = jiffies; 2322 /* set next_to_watch value indicating a packet is present */ 2323 head->next_to_watch = desc; 2324 ring->next_to_use = index; 2325 2326 return 0; 2327 2328 unmap: 2329 for (;;) { 2330 buffer = &ring->tx_buffer_info[index]; 2331 if (dma_unmap_len(buffer, len)) 2332 dma_unmap_page(ring->dev, 2333 dma_unmap_addr(buffer, dma), 2334 dma_unmap_len(buffer, len), 2335 DMA_TO_DEVICE); 2336 dma_unmap_len_set(buffer, len, 0); 2337 if (buffer == head) 2338 break; 2339 2340 if (!index) 2341 index += ring->count; 2342 index--; 2343 } 2344 2345 return -ENOMEM; 2346 } 2347 2348 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2349 int cpu) 2350 { 2351 int index = cpu; 2352 2353 if (unlikely(index < 0)) 2354 index = 0; 2355 2356 while (index >= adapter->num_tx_queues) 2357 index -= adapter->num_tx_queues; 2358 2359 return adapter->tx_ring[index]; 2360 } 2361 2362 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2363 { 2364 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2365 int cpu = smp_processor_id(); 2366 struct netdev_queue *nq; 2367 struct igc_ring *ring; 2368 int res; 2369 2370 if (unlikely(!xdpf)) 2371 return -EFAULT; 2372 2373 ring = igc_xdp_get_tx_ring(adapter, cpu); 2374 nq = txring_txq(ring); 2375 2376 __netif_tx_lock(nq, cpu); 2377 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2378 __netif_tx_unlock(nq); 2379 return res; 2380 } 2381 2382 /* This function assumes rcu_read_lock() is held by the caller. */ 2383 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2384 struct bpf_prog *prog, 2385 struct xdp_buff *xdp) 2386 { 2387 u32 act = bpf_prog_run_xdp(prog, xdp); 2388 2389 switch (act) { 2390 case XDP_PASS: 2391 return IGC_XDP_PASS; 2392 case XDP_TX: 2393 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2394 goto out_failure; 2395 return IGC_XDP_TX; 2396 case XDP_REDIRECT: 2397 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2398 goto out_failure; 2399 return IGC_XDP_REDIRECT; 2400 break; 2401 default: 2402 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2403 fallthrough; 2404 case XDP_ABORTED: 2405 out_failure: 2406 trace_xdp_exception(adapter->netdev, prog, act); 2407 fallthrough; 2408 case XDP_DROP: 2409 return IGC_XDP_CONSUMED; 2410 } 2411 } 2412 2413 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2414 struct xdp_buff *xdp) 2415 { 2416 struct bpf_prog *prog; 2417 int res; 2418 2419 prog = READ_ONCE(adapter->xdp_prog); 2420 if (!prog) { 2421 res = IGC_XDP_PASS; 2422 goto out; 2423 } 2424 2425 res = __igc_xdp_run_prog(adapter, prog, xdp); 2426 2427 out: 2428 return ERR_PTR(-res); 2429 } 2430 2431 /* This function assumes __netif_tx_lock is held by the caller. */ 2432 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2433 { 2434 /* Once tail pointer is updated, hardware can fetch the descriptors 2435 * any time so we issue a write membar here to ensure all memory 2436 * writes are complete before the tail pointer is updated. 2437 */ 2438 wmb(); 2439 writel(ring->next_to_use, ring->tail); 2440 } 2441 2442 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2443 { 2444 int cpu = smp_processor_id(); 2445 struct netdev_queue *nq; 2446 struct igc_ring *ring; 2447 2448 if (status & IGC_XDP_TX) { 2449 ring = igc_xdp_get_tx_ring(adapter, cpu); 2450 nq = txring_txq(ring); 2451 2452 __netif_tx_lock(nq, cpu); 2453 igc_flush_tx_descriptors(ring); 2454 __netif_tx_unlock(nq); 2455 } 2456 2457 if (status & IGC_XDP_REDIRECT) 2458 xdp_do_flush(); 2459 } 2460 2461 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2462 unsigned int packets, unsigned int bytes) 2463 { 2464 struct igc_ring *ring = q_vector->rx.ring; 2465 2466 u64_stats_update_begin(&ring->rx_syncp); 2467 ring->rx_stats.packets += packets; 2468 ring->rx_stats.bytes += bytes; 2469 u64_stats_update_end(&ring->rx_syncp); 2470 2471 q_vector->rx.total_packets += packets; 2472 q_vector->rx.total_bytes += bytes; 2473 } 2474 2475 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2476 { 2477 unsigned int total_bytes = 0, total_packets = 0; 2478 struct igc_adapter *adapter = q_vector->adapter; 2479 struct igc_ring *rx_ring = q_vector->rx.ring; 2480 struct sk_buff *skb = rx_ring->skb; 2481 u16 cleaned_count = igc_desc_unused(rx_ring); 2482 int xdp_status = 0, rx_buffer_pgcnt; 2483 2484 while (likely(total_packets < budget)) { 2485 union igc_adv_rx_desc *rx_desc; 2486 struct igc_rx_buffer *rx_buffer; 2487 unsigned int size, truesize; 2488 ktime_t timestamp = 0; 2489 struct xdp_buff xdp; 2490 int pkt_offset = 0; 2491 void *pktbuf; 2492 2493 /* return some buffers to hardware, one at a time is too slow */ 2494 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2495 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2496 cleaned_count = 0; 2497 } 2498 2499 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2500 size = le16_to_cpu(rx_desc->wb.upper.length); 2501 if (!size) 2502 break; 2503 2504 /* This memory barrier is needed to keep us from reading 2505 * any other fields out of the rx_desc until we know the 2506 * descriptor has been written back 2507 */ 2508 dma_rmb(); 2509 2510 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2511 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2512 2513 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2514 2515 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2516 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2517 pktbuf); 2518 pkt_offset = IGC_TS_HDR_LEN; 2519 size -= IGC_TS_HDR_LEN; 2520 } 2521 2522 if (!skb) { 2523 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq); 2524 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring), 2525 igc_rx_offset(rx_ring) + pkt_offset, 2526 size, true); 2527 xdp_buff_clear_frags_flag(&xdp); 2528 2529 skb = igc_xdp_run_prog(adapter, &xdp); 2530 } 2531 2532 if (IS_ERR(skb)) { 2533 unsigned int xdp_res = -PTR_ERR(skb); 2534 2535 switch (xdp_res) { 2536 case IGC_XDP_CONSUMED: 2537 rx_buffer->pagecnt_bias++; 2538 break; 2539 case IGC_XDP_TX: 2540 case IGC_XDP_REDIRECT: 2541 igc_rx_buffer_flip(rx_buffer, truesize); 2542 xdp_status |= xdp_res; 2543 break; 2544 } 2545 2546 total_packets++; 2547 total_bytes += size; 2548 } else if (skb) 2549 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2550 else if (ring_uses_build_skb(rx_ring)) 2551 skb = igc_build_skb(rx_ring, rx_buffer, &xdp); 2552 else 2553 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp, 2554 timestamp); 2555 2556 /* exit if we failed to retrieve a buffer */ 2557 if (!skb) { 2558 rx_ring->rx_stats.alloc_failed++; 2559 rx_buffer->pagecnt_bias++; 2560 break; 2561 } 2562 2563 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2564 cleaned_count++; 2565 2566 /* fetch next buffer in frame if non-eop */ 2567 if (igc_is_non_eop(rx_ring, rx_desc)) 2568 continue; 2569 2570 /* verify the packet layout is correct */ 2571 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2572 skb = NULL; 2573 continue; 2574 } 2575 2576 /* probably a little skewed due to removing CRC */ 2577 total_bytes += skb->len; 2578 2579 /* populate checksum, VLAN, and protocol */ 2580 igc_process_skb_fields(rx_ring, rx_desc, skb); 2581 2582 napi_gro_receive(&q_vector->napi, skb); 2583 2584 /* reset skb pointer */ 2585 skb = NULL; 2586 2587 /* update budget accounting */ 2588 total_packets++; 2589 } 2590 2591 if (xdp_status) 2592 igc_finalize_xdp(adapter, xdp_status); 2593 2594 /* place incomplete frames back on ring for completion */ 2595 rx_ring->skb = skb; 2596 2597 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2598 2599 if (cleaned_count) 2600 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2601 2602 return total_packets; 2603 } 2604 2605 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2606 struct xdp_buff *xdp) 2607 { 2608 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2609 unsigned int metasize = xdp->data - xdp->data_meta; 2610 struct sk_buff *skb; 2611 2612 net_prefetch(xdp->data_meta); 2613 2614 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize, 2615 GFP_ATOMIC | __GFP_NOWARN); 2616 if (unlikely(!skb)) 2617 return NULL; 2618 2619 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2620 ALIGN(totalsize, sizeof(long))); 2621 2622 if (metasize) { 2623 skb_metadata_set(skb, metasize); 2624 __skb_pull(skb, metasize); 2625 } 2626 2627 return skb; 2628 } 2629 2630 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2631 union igc_adv_rx_desc *desc, 2632 struct xdp_buff *xdp, 2633 ktime_t timestamp) 2634 { 2635 struct igc_ring *ring = q_vector->rx.ring; 2636 struct sk_buff *skb; 2637 2638 skb = igc_construct_skb_zc(ring, xdp); 2639 if (!skb) { 2640 ring->rx_stats.alloc_failed++; 2641 return; 2642 } 2643 2644 if (timestamp) 2645 skb_hwtstamps(skb)->hwtstamp = timestamp; 2646 2647 if (igc_cleanup_headers(ring, desc, skb)) 2648 return; 2649 2650 igc_process_skb_fields(ring, desc, skb); 2651 napi_gro_receive(&q_vector->napi, skb); 2652 } 2653 2654 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2655 { 2656 struct igc_adapter *adapter = q_vector->adapter; 2657 struct igc_ring *ring = q_vector->rx.ring; 2658 u16 cleaned_count = igc_desc_unused(ring); 2659 int total_bytes = 0, total_packets = 0; 2660 u16 ntc = ring->next_to_clean; 2661 struct bpf_prog *prog; 2662 bool failure = false; 2663 int xdp_status = 0; 2664 2665 rcu_read_lock(); 2666 2667 prog = READ_ONCE(adapter->xdp_prog); 2668 2669 while (likely(total_packets < budget)) { 2670 union igc_adv_rx_desc *desc; 2671 struct igc_rx_buffer *bi; 2672 ktime_t timestamp = 0; 2673 unsigned int size; 2674 int res; 2675 2676 desc = IGC_RX_DESC(ring, ntc); 2677 size = le16_to_cpu(desc->wb.upper.length); 2678 if (!size) 2679 break; 2680 2681 /* This memory barrier is needed to keep us from reading 2682 * any other fields out of the rx_desc until we know the 2683 * descriptor has been written back 2684 */ 2685 dma_rmb(); 2686 2687 bi = &ring->rx_buffer_info[ntc]; 2688 2689 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2690 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2691 bi->xdp->data); 2692 2693 bi->xdp->data += IGC_TS_HDR_LEN; 2694 2695 /* HW timestamp has been copied into local variable. Metadata 2696 * length when XDP program is called should be 0. 2697 */ 2698 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2699 size -= IGC_TS_HDR_LEN; 2700 } 2701 2702 bi->xdp->data_end = bi->xdp->data + size; 2703 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); 2704 2705 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2706 switch (res) { 2707 case IGC_XDP_PASS: 2708 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2709 fallthrough; 2710 case IGC_XDP_CONSUMED: 2711 xsk_buff_free(bi->xdp); 2712 break; 2713 case IGC_XDP_TX: 2714 case IGC_XDP_REDIRECT: 2715 xdp_status |= res; 2716 break; 2717 } 2718 2719 bi->xdp = NULL; 2720 total_bytes += size; 2721 total_packets++; 2722 cleaned_count++; 2723 ntc++; 2724 if (ntc == ring->count) 2725 ntc = 0; 2726 } 2727 2728 ring->next_to_clean = ntc; 2729 rcu_read_unlock(); 2730 2731 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2732 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2733 2734 if (xdp_status) 2735 igc_finalize_xdp(adapter, xdp_status); 2736 2737 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2738 2739 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2740 if (failure || ring->next_to_clean == ring->next_to_use) 2741 xsk_set_rx_need_wakeup(ring->xsk_pool); 2742 else 2743 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2744 return total_packets; 2745 } 2746 2747 return failure ? budget : total_packets; 2748 } 2749 2750 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2751 unsigned int packets, unsigned int bytes) 2752 { 2753 struct igc_ring *ring = q_vector->tx.ring; 2754 2755 u64_stats_update_begin(&ring->tx_syncp); 2756 ring->tx_stats.bytes += bytes; 2757 ring->tx_stats.packets += packets; 2758 u64_stats_update_end(&ring->tx_syncp); 2759 2760 q_vector->tx.total_bytes += bytes; 2761 q_vector->tx.total_packets += packets; 2762 } 2763 2764 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2765 { 2766 struct xsk_buff_pool *pool = ring->xsk_pool; 2767 struct netdev_queue *nq = txring_txq(ring); 2768 union igc_adv_tx_desc *tx_desc = NULL; 2769 int cpu = smp_processor_id(); 2770 u16 ntu = ring->next_to_use; 2771 struct xdp_desc xdp_desc; 2772 u16 budget; 2773 2774 if (!netif_carrier_ok(ring->netdev)) 2775 return; 2776 2777 __netif_tx_lock(nq, cpu); 2778 2779 budget = igc_desc_unused(ring); 2780 2781 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2782 u32 cmd_type, olinfo_status; 2783 struct igc_tx_buffer *bi; 2784 dma_addr_t dma; 2785 2786 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2787 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2788 xdp_desc.len; 2789 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2790 2791 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2792 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2793 2794 tx_desc = IGC_TX_DESC(ring, ntu); 2795 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2796 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2797 tx_desc->read.buffer_addr = cpu_to_le64(dma); 2798 2799 bi = &ring->tx_buffer_info[ntu]; 2800 bi->type = IGC_TX_BUFFER_TYPE_XSK; 2801 bi->protocol = 0; 2802 bi->bytecount = xdp_desc.len; 2803 bi->gso_segs = 1; 2804 bi->time_stamp = jiffies; 2805 bi->next_to_watch = tx_desc; 2806 2807 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 2808 2809 ntu++; 2810 if (ntu == ring->count) 2811 ntu = 0; 2812 } 2813 2814 ring->next_to_use = ntu; 2815 if (tx_desc) { 2816 igc_flush_tx_descriptors(ring); 2817 xsk_tx_release(pool); 2818 } 2819 2820 __netif_tx_unlock(nq); 2821 } 2822 2823 /** 2824 * igc_clean_tx_irq - Reclaim resources after transmit completes 2825 * @q_vector: pointer to q_vector containing needed info 2826 * @napi_budget: Used to determine if we are in netpoll 2827 * 2828 * returns true if ring is completely cleaned 2829 */ 2830 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 2831 { 2832 struct igc_adapter *adapter = q_vector->adapter; 2833 unsigned int total_bytes = 0, total_packets = 0; 2834 unsigned int budget = q_vector->tx.work_limit; 2835 struct igc_ring *tx_ring = q_vector->tx.ring; 2836 unsigned int i = tx_ring->next_to_clean; 2837 struct igc_tx_buffer *tx_buffer; 2838 union igc_adv_tx_desc *tx_desc; 2839 u32 xsk_frames = 0; 2840 2841 if (test_bit(__IGC_DOWN, &adapter->state)) 2842 return true; 2843 2844 tx_buffer = &tx_ring->tx_buffer_info[i]; 2845 tx_desc = IGC_TX_DESC(tx_ring, i); 2846 i -= tx_ring->count; 2847 2848 do { 2849 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2850 2851 /* if next_to_watch is not set then there is no work pending */ 2852 if (!eop_desc) 2853 break; 2854 2855 /* prevent any other reads prior to eop_desc */ 2856 smp_rmb(); 2857 2858 /* if DD is not set pending work has not been completed */ 2859 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2860 break; 2861 2862 /* clear next_to_watch to prevent false hangs */ 2863 tx_buffer->next_to_watch = NULL; 2864 2865 /* update the statistics for this packet */ 2866 total_bytes += tx_buffer->bytecount; 2867 total_packets += tx_buffer->gso_segs; 2868 2869 switch (tx_buffer->type) { 2870 case IGC_TX_BUFFER_TYPE_XSK: 2871 xsk_frames++; 2872 break; 2873 case IGC_TX_BUFFER_TYPE_XDP: 2874 xdp_return_frame(tx_buffer->xdpf); 2875 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2876 break; 2877 case IGC_TX_BUFFER_TYPE_SKB: 2878 napi_consume_skb(tx_buffer->skb, napi_budget); 2879 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2880 break; 2881 default: 2882 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 2883 break; 2884 } 2885 2886 /* clear last DMA location and unmap remaining buffers */ 2887 while (tx_desc != eop_desc) { 2888 tx_buffer++; 2889 tx_desc++; 2890 i++; 2891 if (unlikely(!i)) { 2892 i -= tx_ring->count; 2893 tx_buffer = tx_ring->tx_buffer_info; 2894 tx_desc = IGC_TX_DESC(tx_ring, 0); 2895 } 2896 2897 /* unmap any remaining paged data */ 2898 if (dma_unmap_len(tx_buffer, len)) 2899 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2900 } 2901 2902 /* move us one more past the eop_desc for start of next pkt */ 2903 tx_buffer++; 2904 tx_desc++; 2905 i++; 2906 if (unlikely(!i)) { 2907 i -= tx_ring->count; 2908 tx_buffer = tx_ring->tx_buffer_info; 2909 tx_desc = IGC_TX_DESC(tx_ring, 0); 2910 } 2911 2912 /* issue prefetch for next Tx descriptor */ 2913 prefetch(tx_desc); 2914 2915 /* update budget accounting */ 2916 budget--; 2917 } while (likely(budget)); 2918 2919 netdev_tx_completed_queue(txring_txq(tx_ring), 2920 total_packets, total_bytes); 2921 2922 i += tx_ring->count; 2923 tx_ring->next_to_clean = i; 2924 2925 igc_update_tx_stats(q_vector, total_packets, total_bytes); 2926 2927 if (tx_ring->xsk_pool) { 2928 if (xsk_frames) 2929 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 2930 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 2931 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 2932 igc_xdp_xmit_zc(tx_ring); 2933 } 2934 2935 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 2936 struct igc_hw *hw = &adapter->hw; 2937 2938 /* Detect a transmit hang in hardware, this serializes the 2939 * check with the clearing of time_stamp and movement of i 2940 */ 2941 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2942 if (tx_buffer->next_to_watch && 2943 time_after(jiffies, tx_buffer->time_stamp + 2944 (adapter->tx_timeout_factor * HZ)) && 2945 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) { 2946 /* detected Tx unit hang */ 2947 netdev_err(tx_ring->netdev, 2948 "Detected Tx Unit Hang\n" 2949 " Tx Queue <%d>\n" 2950 " TDH <%x>\n" 2951 " TDT <%x>\n" 2952 " next_to_use <%x>\n" 2953 " next_to_clean <%x>\n" 2954 "buffer_info[next_to_clean]\n" 2955 " time_stamp <%lx>\n" 2956 " next_to_watch <%p>\n" 2957 " jiffies <%lx>\n" 2958 " desc.status <%x>\n", 2959 tx_ring->queue_index, 2960 rd32(IGC_TDH(tx_ring->reg_idx)), 2961 readl(tx_ring->tail), 2962 tx_ring->next_to_use, 2963 tx_ring->next_to_clean, 2964 tx_buffer->time_stamp, 2965 tx_buffer->next_to_watch, 2966 jiffies, 2967 tx_buffer->next_to_watch->wb.status); 2968 netif_stop_subqueue(tx_ring->netdev, 2969 tx_ring->queue_index); 2970 2971 /* we are about to reset, no point in enabling stuff */ 2972 return true; 2973 } 2974 } 2975 2976 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 2977 if (unlikely(total_packets && 2978 netif_carrier_ok(tx_ring->netdev) && 2979 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 2980 /* Make sure that anybody stopping the queue after this 2981 * sees the new next_to_clean. 2982 */ 2983 smp_mb(); 2984 if (__netif_subqueue_stopped(tx_ring->netdev, 2985 tx_ring->queue_index) && 2986 !(test_bit(__IGC_DOWN, &adapter->state))) { 2987 netif_wake_subqueue(tx_ring->netdev, 2988 tx_ring->queue_index); 2989 2990 u64_stats_update_begin(&tx_ring->tx_syncp); 2991 tx_ring->tx_stats.restart_queue++; 2992 u64_stats_update_end(&tx_ring->tx_syncp); 2993 } 2994 } 2995 2996 return !!budget; 2997 } 2998 2999 static int igc_find_mac_filter(struct igc_adapter *adapter, 3000 enum igc_mac_filter_type type, const u8 *addr) 3001 { 3002 struct igc_hw *hw = &adapter->hw; 3003 int max_entries = hw->mac.rar_entry_count; 3004 u32 ral, rah; 3005 int i; 3006 3007 for (i = 0; i < max_entries; i++) { 3008 ral = rd32(IGC_RAL(i)); 3009 rah = rd32(IGC_RAH(i)); 3010 3011 if (!(rah & IGC_RAH_AV)) 3012 continue; 3013 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 3014 continue; 3015 if ((rah & IGC_RAH_RAH_MASK) != 3016 le16_to_cpup((__le16 *)(addr + 4))) 3017 continue; 3018 if (ral != le32_to_cpup((__le32 *)(addr))) 3019 continue; 3020 3021 return i; 3022 } 3023 3024 return -1; 3025 } 3026 3027 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 3028 { 3029 struct igc_hw *hw = &adapter->hw; 3030 int max_entries = hw->mac.rar_entry_count; 3031 u32 rah; 3032 int i; 3033 3034 for (i = 0; i < max_entries; i++) { 3035 rah = rd32(IGC_RAH(i)); 3036 3037 if (!(rah & IGC_RAH_AV)) 3038 return i; 3039 } 3040 3041 return -1; 3042 } 3043 3044 /** 3045 * igc_add_mac_filter() - Add MAC address filter 3046 * @adapter: Pointer to adapter where the filter should be added 3047 * @type: MAC address filter type (source or destination) 3048 * @addr: MAC address 3049 * @queue: If non-negative, queue assignment feature is enabled and frames 3050 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3051 * assignment is disabled. 3052 * 3053 * Return: 0 in case of success, negative errno code otherwise. 3054 */ 3055 static int igc_add_mac_filter(struct igc_adapter *adapter, 3056 enum igc_mac_filter_type type, const u8 *addr, 3057 int queue) 3058 { 3059 struct net_device *dev = adapter->netdev; 3060 int index; 3061 3062 index = igc_find_mac_filter(adapter, type, addr); 3063 if (index >= 0) 3064 goto update_filter; 3065 3066 index = igc_get_avail_mac_filter_slot(adapter); 3067 if (index < 0) 3068 return -ENOSPC; 3069 3070 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 3071 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3072 addr, queue); 3073 3074 update_filter: 3075 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 3076 return 0; 3077 } 3078 3079 /** 3080 * igc_del_mac_filter() - Delete MAC address filter 3081 * @adapter: Pointer to adapter where the filter should be deleted from 3082 * @type: MAC address filter type (source or destination) 3083 * @addr: MAC address 3084 */ 3085 static void igc_del_mac_filter(struct igc_adapter *adapter, 3086 enum igc_mac_filter_type type, const u8 *addr) 3087 { 3088 struct net_device *dev = adapter->netdev; 3089 int index; 3090 3091 index = igc_find_mac_filter(adapter, type, addr); 3092 if (index < 0) 3093 return; 3094 3095 if (index == 0) { 3096 /* If this is the default filter, we don't actually delete it. 3097 * We just reset to its default value i.e. disable queue 3098 * assignment. 3099 */ 3100 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 3101 3102 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 3103 } else { 3104 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 3105 index, 3106 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3107 addr); 3108 3109 igc_clear_mac_filter_hw(adapter, index); 3110 } 3111 } 3112 3113 /** 3114 * igc_add_vlan_prio_filter() - Add VLAN priority filter 3115 * @adapter: Pointer to adapter where the filter should be added 3116 * @prio: VLAN priority value 3117 * @queue: Queue number which matching frames are assigned to 3118 * 3119 * Return: 0 in case of success, negative errno code otherwise. 3120 */ 3121 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 3122 int queue) 3123 { 3124 struct net_device *dev = adapter->netdev; 3125 struct igc_hw *hw = &adapter->hw; 3126 u32 vlanpqf; 3127 3128 vlanpqf = rd32(IGC_VLANPQF); 3129 3130 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 3131 netdev_dbg(dev, "VLAN priority filter already in use\n"); 3132 return -EEXIST; 3133 } 3134 3135 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 3136 vlanpqf |= IGC_VLANPQF_VALID(prio); 3137 3138 wr32(IGC_VLANPQF, vlanpqf); 3139 3140 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 3141 prio, queue); 3142 return 0; 3143 } 3144 3145 /** 3146 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 3147 * @adapter: Pointer to adapter where the filter should be deleted from 3148 * @prio: VLAN priority value 3149 */ 3150 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 3151 { 3152 struct igc_hw *hw = &adapter->hw; 3153 u32 vlanpqf; 3154 3155 vlanpqf = rd32(IGC_VLANPQF); 3156 3157 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3158 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3159 3160 wr32(IGC_VLANPQF, vlanpqf); 3161 3162 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3163 prio); 3164 } 3165 3166 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3167 { 3168 struct igc_hw *hw = &adapter->hw; 3169 int i; 3170 3171 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3172 u32 etqf = rd32(IGC_ETQF(i)); 3173 3174 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3175 return i; 3176 } 3177 3178 return -1; 3179 } 3180 3181 /** 3182 * igc_add_etype_filter() - Add ethertype filter 3183 * @adapter: Pointer to adapter where the filter should be added 3184 * @etype: Ethertype value 3185 * @queue: If non-negative, queue assignment feature is enabled and frames 3186 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3187 * assignment is disabled. 3188 * 3189 * Return: 0 in case of success, negative errno code otherwise. 3190 */ 3191 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3192 int queue) 3193 { 3194 struct igc_hw *hw = &adapter->hw; 3195 int index; 3196 u32 etqf; 3197 3198 index = igc_get_avail_etype_filter_slot(adapter); 3199 if (index < 0) 3200 return -ENOSPC; 3201 3202 etqf = rd32(IGC_ETQF(index)); 3203 3204 etqf &= ~IGC_ETQF_ETYPE_MASK; 3205 etqf |= etype; 3206 3207 if (queue >= 0) { 3208 etqf &= ~IGC_ETQF_QUEUE_MASK; 3209 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3210 etqf |= IGC_ETQF_QUEUE_ENABLE; 3211 } 3212 3213 etqf |= IGC_ETQF_FILTER_ENABLE; 3214 3215 wr32(IGC_ETQF(index), etqf); 3216 3217 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3218 etype, queue); 3219 return 0; 3220 } 3221 3222 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3223 { 3224 struct igc_hw *hw = &adapter->hw; 3225 int i; 3226 3227 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3228 u32 etqf = rd32(IGC_ETQF(i)); 3229 3230 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3231 return i; 3232 } 3233 3234 return -1; 3235 } 3236 3237 /** 3238 * igc_del_etype_filter() - Delete ethertype filter 3239 * @adapter: Pointer to adapter where the filter should be deleted from 3240 * @etype: Ethertype value 3241 */ 3242 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3243 { 3244 struct igc_hw *hw = &adapter->hw; 3245 int index; 3246 3247 index = igc_find_etype_filter(adapter, etype); 3248 if (index < 0) 3249 return; 3250 3251 wr32(IGC_ETQF(index), 0); 3252 3253 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3254 etype); 3255 } 3256 3257 static int igc_flex_filter_select(struct igc_adapter *adapter, 3258 struct igc_flex_filter *input, 3259 u32 *fhft) 3260 { 3261 struct igc_hw *hw = &adapter->hw; 3262 u8 fhft_index; 3263 u32 fhftsl; 3264 3265 if (input->index >= MAX_FLEX_FILTER) { 3266 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n"); 3267 return -EINVAL; 3268 } 3269 3270 /* Indirect table select register */ 3271 fhftsl = rd32(IGC_FHFTSL); 3272 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3273 switch (input->index) { 3274 case 0 ... 7: 3275 fhftsl |= 0x00; 3276 break; 3277 case 8 ... 15: 3278 fhftsl |= 0x01; 3279 break; 3280 case 16 ... 23: 3281 fhftsl |= 0x02; 3282 break; 3283 case 24 ... 31: 3284 fhftsl |= 0x03; 3285 break; 3286 } 3287 wr32(IGC_FHFTSL, fhftsl); 3288 3289 /* Normalize index down to host table register */ 3290 fhft_index = input->index % 8; 3291 3292 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3293 IGC_FHFT_EXT(fhft_index - 4); 3294 3295 return 0; 3296 } 3297 3298 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3299 struct igc_flex_filter *input) 3300 { 3301 struct device *dev = &adapter->pdev->dev; 3302 struct igc_hw *hw = &adapter->hw; 3303 u8 *data = input->data; 3304 u8 *mask = input->mask; 3305 u32 queuing; 3306 u32 fhft; 3307 u32 wufc; 3308 int ret; 3309 int i; 3310 3311 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3312 * out early to avoid surprises later. 3313 */ 3314 if (input->length % 8 != 0) { 3315 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n"); 3316 return -EINVAL; 3317 } 3318 3319 /* Select corresponding flex filter register and get base for host table. */ 3320 ret = igc_flex_filter_select(adapter, input, &fhft); 3321 if (ret) 3322 return ret; 3323 3324 /* When adding a filter globally disable flex filter feature. That is 3325 * recommended within the datasheet. 3326 */ 3327 wufc = rd32(IGC_WUFC); 3328 wufc &= ~IGC_WUFC_FLEX_HQ; 3329 wr32(IGC_WUFC, wufc); 3330 3331 /* Configure filter */ 3332 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3333 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK; 3334 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK; 3335 3336 if (input->immediate_irq) 3337 queuing |= IGC_FHFT_IMM_INT; 3338 3339 if (input->drop) 3340 queuing |= IGC_FHFT_DROP; 3341 3342 wr32(fhft + 0xFC, queuing); 3343 3344 /* Write data (128 byte) and mask (128 bit) */ 3345 for (i = 0; i < 16; ++i) { 3346 const size_t data_idx = i * 8; 3347 const size_t row_idx = i * 16; 3348 u32 dw0 = 3349 (data[data_idx + 0] << 0) | 3350 (data[data_idx + 1] << 8) | 3351 (data[data_idx + 2] << 16) | 3352 (data[data_idx + 3] << 24); 3353 u32 dw1 = 3354 (data[data_idx + 4] << 0) | 3355 (data[data_idx + 5] << 8) | 3356 (data[data_idx + 6] << 16) | 3357 (data[data_idx + 7] << 24); 3358 u32 tmp; 3359 3360 /* Write row: dw0, dw1 and mask */ 3361 wr32(fhft + row_idx, dw0); 3362 wr32(fhft + row_idx + 4, dw1); 3363 3364 /* mask is only valid for MASK(7, 0) */ 3365 tmp = rd32(fhft + row_idx + 8); 3366 tmp &= ~GENMASK(7, 0); 3367 tmp |= mask[i]; 3368 wr32(fhft + row_idx + 8, tmp); 3369 } 3370 3371 /* Enable filter. */ 3372 wufc |= IGC_WUFC_FLEX_HQ; 3373 if (input->index > 8) { 3374 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3375 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3376 3377 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3378 3379 wr32(IGC_WUFC_EXT, wufc_ext); 3380 } else { 3381 wufc |= (IGC_WUFC_FLX0 << input->index); 3382 } 3383 wr32(IGC_WUFC, wufc); 3384 3385 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n", 3386 input->index); 3387 3388 return 0; 3389 } 3390 3391 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3392 const void *src, unsigned int offset, 3393 size_t len, const void *mask) 3394 { 3395 int i; 3396 3397 /* data */ 3398 memcpy(&flex->data[offset], src, len); 3399 3400 /* mask */ 3401 for (i = 0; i < len; ++i) { 3402 const unsigned int idx = i + offset; 3403 const u8 *ptr = mask; 3404 3405 if (mask) { 3406 if (ptr[i] & 0xff) 3407 flex->mask[idx / 8] |= BIT(idx % 8); 3408 3409 continue; 3410 } 3411 3412 flex->mask[idx / 8] |= BIT(idx % 8); 3413 } 3414 } 3415 3416 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3417 { 3418 struct igc_hw *hw = &adapter->hw; 3419 u32 wufc, wufc_ext; 3420 int i; 3421 3422 wufc = rd32(IGC_WUFC); 3423 wufc_ext = rd32(IGC_WUFC_EXT); 3424 3425 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3426 if (i < 8) { 3427 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3428 return i; 3429 } else { 3430 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3431 return i; 3432 } 3433 } 3434 3435 return -ENOSPC; 3436 } 3437 3438 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3439 { 3440 struct igc_hw *hw = &adapter->hw; 3441 u32 wufc, wufc_ext; 3442 3443 wufc = rd32(IGC_WUFC); 3444 wufc_ext = rd32(IGC_WUFC_EXT); 3445 3446 if (wufc & IGC_WUFC_FILTER_MASK) 3447 return true; 3448 3449 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3450 return true; 3451 3452 return false; 3453 } 3454 3455 static int igc_add_flex_filter(struct igc_adapter *adapter, 3456 struct igc_nfc_rule *rule) 3457 { 3458 struct igc_flex_filter flex = { }; 3459 struct igc_nfc_filter *filter = &rule->filter; 3460 unsigned int eth_offset, user_offset; 3461 int ret, index; 3462 bool vlan; 3463 3464 index = igc_find_avail_flex_filter_slot(adapter); 3465 if (index < 0) 3466 return -ENOSPC; 3467 3468 /* Construct the flex filter: 3469 * -> dest_mac [6] 3470 * -> src_mac [6] 3471 * -> tpid [2] 3472 * -> vlan tci [2] 3473 * -> ether type [2] 3474 * -> user data [8] 3475 * -> = 26 bytes => 32 length 3476 */ 3477 flex.index = index; 3478 flex.length = 32; 3479 flex.rx_queue = rule->action; 3480 3481 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3482 eth_offset = vlan ? 16 : 12; 3483 user_offset = vlan ? 18 : 14; 3484 3485 /* Add destination MAC */ 3486 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3487 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3488 ETH_ALEN, NULL); 3489 3490 /* Add source MAC */ 3491 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3492 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3493 ETH_ALEN, NULL); 3494 3495 /* Add VLAN etype */ 3496 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) 3497 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12, 3498 sizeof(filter->vlan_etype), 3499 NULL); 3500 3501 /* Add VLAN TCI */ 3502 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3503 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3504 sizeof(filter->vlan_tci), NULL); 3505 3506 /* Add Ether type */ 3507 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3508 __be16 etype = cpu_to_be16(filter->etype); 3509 3510 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3511 sizeof(etype), NULL); 3512 } 3513 3514 /* Add user data */ 3515 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3516 igc_flex_filter_add_field(&flex, &filter->user_data, 3517 user_offset, 3518 sizeof(filter->user_data), 3519 filter->user_mask); 3520 3521 /* Add it down to the hardware and enable it. */ 3522 ret = igc_write_flex_filter_ll(adapter, &flex); 3523 if (ret) 3524 return ret; 3525 3526 filter->flex_index = index; 3527 3528 return 0; 3529 } 3530 3531 static void igc_del_flex_filter(struct igc_adapter *adapter, 3532 u16 reg_index) 3533 { 3534 struct igc_hw *hw = &adapter->hw; 3535 u32 wufc; 3536 3537 /* Just disable the filter. The filter table itself is kept 3538 * intact. Another flex_filter_add() should override the "old" data 3539 * then. 3540 */ 3541 if (reg_index > 8) { 3542 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3543 3544 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3545 wr32(IGC_WUFC_EXT, wufc_ext); 3546 } else { 3547 wufc = rd32(IGC_WUFC); 3548 3549 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3550 wr32(IGC_WUFC, wufc); 3551 } 3552 3553 if (igc_flex_filter_in_use(adapter)) 3554 return; 3555 3556 /* No filters are in use, we may disable flex filters */ 3557 wufc = rd32(IGC_WUFC); 3558 wufc &= ~IGC_WUFC_FLEX_HQ; 3559 wr32(IGC_WUFC, wufc); 3560 } 3561 3562 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3563 struct igc_nfc_rule *rule) 3564 { 3565 int err; 3566 3567 if (rule->flex) { 3568 return igc_add_flex_filter(adapter, rule); 3569 } 3570 3571 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3572 err = igc_add_etype_filter(adapter, rule->filter.etype, 3573 rule->action); 3574 if (err) 3575 return err; 3576 } 3577 3578 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3579 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3580 rule->filter.src_addr, rule->action); 3581 if (err) 3582 return err; 3583 } 3584 3585 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3586 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3587 rule->filter.dst_addr, rule->action); 3588 if (err) 3589 return err; 3590 } 3591 3592 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3593 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3594 VLAN_PRIO_SHIFT; 3595 3596 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3597 if (err) 3598 return err; 3599 } 3600 3601 return 0; 3602 } 3603 3604 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3605 const struct igc_nfc_rule *rule) 3606 { 3607 if (rule->flex) { 3608 igc_del_flex_filter(adapter, rule->filter.flex_index); 3609 return; 3610 } 3611 3612 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3613 igc_del_etype_filter(adapter, rule->filter.etype); 3614 3615 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3616 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3617 VLAN_PRIO_SHIFT; 3618 3619 igc_del_vlan_prio_filter(adapter, prio); 3620 } 3621 3622 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3623 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3624 rule->filter.src_addr); 3625 3626 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3627 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3628 rule->filter.dst_addr); 3629 } 3630 3631 /** 3632 * igc_get_nfc_rule() - Get NFC rule 3633 * @adapter: Pointer to adapter 3634 * @location: Rule location 3635 * 3636 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3637 * 3638 * Return: Pointer to NFC rule at @location. If not found, NULL. 3639 */ 3640 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3641 u32 location) 3642 { 3643 struct igc_nfc_rule *rule; 3644 3645 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3646 if (rule->location == location) 3647 return rule; 3648 if (rule->location > location) 3649 break; 3650 } 3651 3652 return NULL; 3653 } 3654 3655 /** 3656 * igc_del_nfc_rule() - Delete NFC rule 3657 * @adapter: Pointer to adapter 3658 * @rule: Pointer to rule to be deleted 3659 * 3660 * Disable NFC rule in hardware and delete it from adapter. 3661 * 3662 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3663 */ 3664 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3665 { 3666 igc_disable_nfc_rule(adapter, rule); 3667 3668 list_del(&rule->list); 3669 adapter->nfc_rule_count--; 3670 3671 kfree(rule); 3672 } 3673 3674 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3675 { 3676 struct igc_nfc_rule *rule, *tmp; 3677 3678 mutex_lock(&adapter->nfc_rule_lock); 3679 3680 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3681 igc_del_nfc_rule(adapter, rule); 3682 3683 mutex_unlock(&adapter->nfc_rule_lock); 3684 } 3685 3686 /** 3687 * igc_add_nfc_rule() - Add NFC rule 3688 * @adapter: Pointer to adapter 3689 * @rule: Pointer to rule to be added 3690 * 3691 * Enable NFC rule in hardware and add it to adapter. 3692 * 3693 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3694 * 3695 * Return: 0 on success, negative errno on failure. 3696 */ 3697 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3698 { 3699 struct igc_nfc_rule *pred, *cur; 3700 int err; 3701 3702 err = igc_enable_nfc_rule(adapter, rule); 3703 if (err) 3704 return err; 3705 3706 pred = NULL; 3707 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3708 if (cur->location >= rule->location) 3709 break; 3710 pred = cur; 3711 } 3712 3713 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3714 adapter->nfc_rule_count++; 3715 return 0; 3716 } 3717 3718 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3719 { 3720 struct igc_nfc_rule *rule; 3721 3722 mutex_lock(&adapter->nfc_rule_lock); 3723 3724 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3725 igc_enable_nfc_rule(adapter, rule); 3726 3727 mutex_unlock(&adapter->nfc_rule_lock); 3728 } 3729 3730 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3731 { 3732 struct igc_adapter *adapter = netdev_priv(netdev); 3733 3734 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3735 } 3736 3737 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3738 { 3739 struct igc_adapter *adapter = netdev_priv(netdev); 3740 3741 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3742 return 0; 3743 } 3744 3745 /** 3746 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3747 * @netdev: network interface device structure 3748 * 3749 * The set_rx_mode entry point is called whenever the unicast or multicast 3750 * address lists or the network interface flags are updated. This routine is 3751 * responsible for configuring the hardware for proper unicast, multicast, 3752 * promiscuous mode, and all-multi behavior. 3753 */ 3754 static void igc_set_rx_mode(struct net_device *netdev) 3755 { 3756 struct igc_adapter *adapter = netdev_priv(netdev); 3757 struct igc_hw *hw = &adapter->hw; 3758 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3759 int count; 3760 3761 /* Check for Promiscuous and All Multicast modes */ 3762 if (netdev->flags & IFF_PROMISC) { 3763 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3764 } else { 3765 if (netdev->flags & IFF_ALLMULTI) { 3766 rctl |= IGC_RCTL_MPE; 3767 } else { 3768 /* Write addresses to the MTA, if the attempt fails 3769 * then we should just turn on promiscuous mode so 3770 * that we can at least receive multicast traffic 3771 */ 3772 count = igc_write_mc_addr_list(netdev); 3773 if (count < 0) 3774 rctl |= IGC_RCTL_MPE; 3775 } 3776 } 3777 3778 /* Write addresses to available RAR registers, if there is not 3779 * sufficient space to store all the addresses then enable 3780 * unicast promiscuous mode 3781 */ 3782 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3783 rctl |= IGC_RCTL_UPE; 3784 3785 /* update state of unicast and multicast */ 3786 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 3787 wr32(IGC_RCTL, rctl); 3788 3789 #if (PAGE_SIZE < 8192) 3790 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 3791 rlpml = IGC_MAX_FRAME_BUILD_SKB; 3792 #endif 3793 wr32(IGC_RLPML, rlpml); 3794 } 3795 3796 /** 3797 * igc_configure - configure the hardware for RX and TX 3798 * @adapter: private board structure 3799 */ 3800 static void igc_configure(struct igc_adapter *adapter) 3801 { 3802 struct net_device *netdev = adapter->netdev; 3803 int i = 0; 3804 3805 igc_get_hw_control(adapter); 3806 igc_set_rx_mode(netdev); 3807 3808 igc_restore_vlan(adapter); 3809 3810 igc_setup_tctl(adapter); 3811 igc_setup_mrqc(adapter); 3812 igc_setup_rctl(adapter); 3813 3814 igc_set_default_mac_filter(adapter); 3815 igc_restore_nfc_rules(adapter); 3816 3817 igc_configure_tx(adapter); 3818 igc_configure_rx(adapter); 3819 3820 igc_rx_fifo_flush_base(&adapter->hw); 3821 3822 /* call igc_desc_unused which always leaves 3823 * at least 1 descriptor unused to make sure 3824 * next_to_use != next_to_clean 3825 */ 3826 for (i = 0; i < adapter->num_rx_queues; i++) { 3827 struct igc_ring *ring = adapter->rx_ring[i]; 3828 3829 if (ring->xsk_pool) 3830 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 3831 else 3832 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 3833 } 3834 } 3835 3836 /** 3837 * igc_write_ivar - configure ivar for given MSI-X vector 3838 * @hw: pointer to the HW structure 3839 * @msix_vector: vector number we are allocating to a given ring 3840 * @index: row index of IVAR register to write within IVAR table 3841 * @offset: column offset of in IVAR, should be multiple of 8 3842 * 3843 * The IVAR table consists of 2 columns, 3844 * each containing an cause allocation for an Rx and Tx ring, and a 3845 * variable number of rows depending on the number of queues supported. 3846 */ 3847 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 3848 int index, int offset) 3849 { 3850 u32 ivar = array_rd32(IGC_IVAR0, index); 3851 3852 /* clear any bits that are currently set */ 3853 ivar &= ~((u32)0xFF << offset); 3854 3855 /* write vector and valid bit */ 3856 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 3857 3858 array_wr32(IGC_IVAR0, index, ivar); 3859 } 3860 3861 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 3862 { 3863 struct igc_adapter *adapter = q_vector->adapter; 3864 struct igc_hw *hw = &adapter->hw; 3865 int rx_queue = IGC_N0_QUEUE; 3866 int tx_queue = IGC_N0_QUEUE; 3867 3868 if (q_vector->rx.ring) 3869 rx_queue = q_vector->rx.ring->reg_idx; 3870 if (q_vector->tx.ring) 3871 tx_queue = q_vector->tx.ring->reg_idx; 3872 3873 switch (hw->mac.type) { 3874 case igc_i225: 3875 if (rx_queue > IGC_N0_QUEUE) 3876 igc_write_ivar(hw, msix_vector, 3877 rx_queue >> 1, 3878 (rx_queue & 0x1) << 4); 3879 if (tx_queue > IGC_N0_QUEUE) 3880 igc_write_ivar(hw, msix_vector, 3881 tx_queue >> 1, 3882 ((tx_queue & 0x1) << 4) + 8); 3883 q_vector->eims_value = BIT(msix_vector); 3884 break; 3885 default: 3886 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 3887 break; 3888 } 3889 3890 /* add q_vector eims value to global eims_enable_mask */ 3891 adapter->eims_enable_mask |= q_vector->eims_value; 3892 3893 /* configure q_vector to set itr on first interrupt */ 3894 q_vector->set_itr = 1; 3895 } 3896 3897 /** 3898 * igc_configure_msix - Configure MSI-X hardware 3899 * @adapter: Pointer to adapter structure 3900 * 3901 * igc_configure_msix sets up the hardware to properly 3902 * generate MSI-X interrupts. 3903 */ 3904 static void igc_configure_msix(struct igc_adapter *adapter) 3905 { 3906 struct igc_hw *hw = &adapter->hw; 3907 int i, vector = 0; 3908 u32 tmp; 3909 3910 adapter->eims_enable_mask = 0; 3911 3912 /* set vector for other causes, i.e. link changes */ 3913 switch (hw->mac.type) { 3914 case igc_i225: 3915 /* Turn on MSI-X capability first, or our settings 3916 * won't stick. And it will take days to debug. 3917 */ 3918 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 3919 IGC_GPIE_PBA | IGC_GPIE_EIAME | 3920 IGC_GPIE_NSICR); 3921 3922 /* enable msix_other interrupt */ 3923 adapter->eims_other = BIT(vector); 3924 tmp = (vector++ | IGC_IVAR_VALID) << 8; 3925 3926 wr32(IGC_IVAR_MISC, tmp); 3927 break; 3928 default: 3929 /* do nothing, since nothing else supports MSI-X */ 3930 break; 3931 } /* switch (hw->mac.type) */ 3932 3933 adapter->eims_enable_mask |= adapter->eims_other; 3934 3935 for (i = 0; i < adapter->num_q_vectors; i++) 3936 igc_assign_vector(adapter->q_vector[i], vector++); 3937 3938 wrfl(); 3939 } 3940 3941 /** 3942 * igc_irq_enable - Enable default interrupt generation settings 3943 * @adapter: board private structure 3944 */ 3945 static void igc_irq_enable(struct igc_adapter *adapter) 3946 { 3947 struct igc_hw *hw = &adapter->hw; 3948 3949 if (adapter->msix_entries) { 3950 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3951 u32 regval = rd32(IGC_EIAC); 3952 3953 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3954 regval = rd32(IGC_EIAM); 3955 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3956 wr32(IGC_EIMS, adapter->eims_enable_mask); 3957 wr32(IGC_IMS, ims); 3958 } else { 3959 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3960 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3961 } 3962 } 3963 3964 /** 3965 * igc_irq_disable - Mask off interrupt generation on the NIC 3966 * @adapter: board private structure 3967 */ 3968 static void igc_irq_disable(struct igc_adapter *adapter) 3969 { 3970 struct igc_hw *hw = &adapter->hw; 3971 3972 if (adapter->msix_entries) { 3973 u32 regval = rd32(IGC_EIAM); 3974 3975 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3976 wr32(IGC_EIMC, adapter->eims_enable_mask); 3977 regval = rd32(IGC_EIAC); 3978 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 3979 } 3980 3981 wr32(IGC_IAM, 0); 3982 wr32(IGC_IMC, ~0); 3983 wrfl(); 3984 3985 if (adapter->msix_entries) { 3986 int vector = 0, i; 3987 3988 synchronize_irq(adapter->msix_entries[vector++].vector); 3989 3990 for (i = 0; i < adapter->num_q_vectors; i++) 3991 synchronize_irq(adapter->msix_entries[vector++].vector); 3992 } else { 3993 synchronize_irq(adapter->pdev->irq); 3994 } 3995 } 3996 3997 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 3998 const u32 max_rss_queues) 3999 { 4000 /* Determine if we need to pair queues. */ 4001 /* If rss_queues > half of max_rss_queues, pair the queues in 4002 * order to conserve interrupts due to limited supply. 4003 */ 4004 if (adapter->rss_queues > (max_rss_queues / 2)) 4005 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4006 else 4007 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4008 } 4009 4010 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4011 { 4012 return IGC_MAX_RX_QUEUES; 4013 } 4014 4015 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4016 { 4017 u32 max_rss_queues; 4018 4019 max_rss_queues = igc_get_max_rss_queues(adapter); 4020 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4021 4022 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4023 } 4024 4025 /** 4026 * igc_reset_q_vector - Reset config for interrupt vector 4027 * @adapter: board private structure to initialize 4028 * @v_idx: Index of vector to be reset 4029 * 4030 * If NAPI is enabled it will delete any references to the 4031 * NAPI struct. This is preparation for igc_free_q_vector. 4032 */ 4033 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 4034 { 4035 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4036 4037 /* if we're coming from igc_set_interrupt_capability, the vectors are 4038 * not yet allocated 4039 */ 4040 if (!q_vector) 4041 return; 4042 4043 if (q_vector->tx.ring) 4044 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 4045 4046 if (q_vector->rx.ring) 4047 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 4048 4049 netif_napi_del(&q_vector->napi); 4050 } 4051 4052 /** 4053 * igc_free_q_vector - Free memory allocated for specific interrupt vector 4054 * @adapter: board private structure to initialize 4055 * @v_idx: Index of vector to be freed 4056 * 4057 * This function frees the memory allocated to the q_vector. 4058 */ 4059 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 4060 { 4061 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4062 4063 adapter->q_vector[v_idx] = NULL; 4064 4065 /* igc_get_stats64() might access the rings on this vector, 4066 * we must wait a grace period before freeing it. 4067 */ 4068 if (q_vector) 4069 kfree_rcu(q_vector, rcu); 4070 } 4071 4072 /** 4073 * igc_free_q_vectors - Free memory allocated for interrupt vectors 4074 * @adapter: board private structure to initialize 4075 * 4076 * This function frees the memory allocated to the q_vectors. In addition if 4077 * NAPI is enabled it will delete any references to the NAPI struct prior 4078 * to freeing the q_vector. 4079 */ 4080 static void igc_free_q_vectors(struct igc_adapter *adapter) 4081 { 4082 int v_idx = adapter->num_q_vectors; 4083 4084 adapter->num_tx_queues = 0; 4085 adapter->num_rx_queues = 0; 4086 adapter->num_q_vectors = 0; 4087 4088 while (v_idx--) { 4089 igc_reset_q_vector(adapter, v_idx); 4090 igc_free_q_vector(adapter, v_idx); 4091 } 4092 } 4093 4094 /** 4095 * igc_update_itr - update the dynamic ITR value based on statistics 4096 * @q_vector: pointer to q_vector 4097 * @ring_container: ring info to update the itr for 4098 * 4099 * Stores a new ITR value based on packets and byte 4100 * counts during the last interrupt. The advantage of per interrupt 4101 * computation is faster updates and more accurate ITR for the current 4102 * traffic pattern. Constants in this function were computed 4103 * based on theoretical maximum wire speed and thresholds were set based 4104 * on testing data as well as attempting to minimize response time 4105 * while increasing bulk throughput. 4106 * NOTE: These calculations are only valid when operating in a single- 4107 * queue environment. 4108 */ 4109 static void igc_update_itr(struct igc_q_vector *q_vector, 4110 struct igc_ring_container *ring_container) 4111 { 4112 unsigned int packets = ring_container->total_packets; 4113 unsigned int bytes = ring_container->total_bytes; 4114 u8 itrval = ring_container->itr; 4115 4116 /* no packets, exit with status unchanged */ 4117 if (packets == 0) 4118 return; 4119 4120 switch (itrval) { 4121 case lowest_latency: 4122 /* handle TSO and jumbo frames */ 4123 if (bytes / packets > 8000) 4124 itrval = bulk_latency; 4125 else if ((packets < 5) && (bytes > 512)) 4126 itrval = low_latency; 4127 break; 4128 case low_latency: /* 50 usec aka 20000 ints/s */ 4129 if (bytes > 10000) { 4130 /* this if handles the TSO accounting */ 4131 if (bytes / packets > 8000) 4132 itrval = bulk_latency; 4133 else if ((packets < 10) || ((bytes / packets) > 1200)) 4134 itrval = bulk_latency; 4135 else if ((packets > 35)) 4136 itrval = lowest_latency; 4137 } else if (bytes / packets > 2000) { 4138 itrval = bulk_latency; 4139 } else if (packets <= 2 && bytes < 512) { 4140 itrval = lowest_latency; 4141 } 4142 break; 4143 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4144 if (bytes > 25000) { 4145 if (packets > 35) 4146 itrval = low_latency; 4147 } else if (bytes < 1500) { 4148 itrval = low_latency; 4149 } 4150 break; 4151 } 4152 4153 /* clear work counters since we have the values we need */ 4154 ring_container->total_bytes = 0; 4155 ring_container->total_packets = 0; 4156 4157 /* write updated itr to ring container */ 4158 ring_container->itr = itrval; 4159 } 4160 4161 static void igc_set_itr(struct igc_q_vector *q_vector) 4162 { 4163 struct igc_adapter *adapter = q_vector->adapter; 4164 u32 new_itr = q_vector->itr_val; 4165 u8 current_itr = 0; 4166 4167 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4168 switch (adapter->link_speed) { 4169 case SPEED_10: 4170 case SPEED_100: 4171 current_itr = 0; 4172 new_itr = IGC_4K_ITR; 4173 goto set_itr_now; 4174 default: 4175 break; 4176 } 4177 4178 igc_update_itr(q_vector, &q_vector->tx); 4179 igc_update_itr(q_vector, &q_vector->rx); 4180 4181 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4182 4183 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4184 if (current_itr == lowest_latency && 4185 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4186 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4187 current_itr = low_latency; 4188 4189 switch (current_itr) { 4190 /* counts and packets in update_itr are dependent on these numbers */ 4191 case lowest_latency: 4192 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4193 break; 4194 case low_latency: 4195 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4196 break; 4197 case bulk_latency: 4198 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4199 break; 4200 default: 4201 break; 4202 } 4203 4204 set_itr_now: 4205 if (new_itr != q_vector->itr_val) { 4206 /* this attempts to bias the interrupt rate towards Bulk 4207 * by adding intermediate steps when interrupt rate is 4208 * increasing 4209 */ 4210 new_itr = new_itr > q_vector->itr_val ? 4211 max((new_itr * q_vector->itr_val) / 4212 (new_itr + (q_vector->itr_val >> 2)), 4213 new_itr) : new_itr; 4214 /* Don't write the value here; it resets the adapter's 4215 * internal timer, and causes us to delay far longer than 4216 * we should between interrupts. Instead, we write the ITR 4217 * value at the beginning of the next interrupt so the timing 4218 * ends up being correct. 4219 */ 4220 q_vector->itr_val = new_itr; 4221 q_vector->set_itr = 1; 4222 } 4223 } 4224 4225 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4226 { 4227 int v_idx = adapter->num_q_vectors; 4228 4229 if (adapter->msix_entries) { 4230 pci_disable_msix(adapter->pdev); 4231 kfree(adapter->msix_entries); 4232 adapter->msix_entries = NULL; 4233 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4234 pci_disable_msi(adapter->pdev); 4235 } 4236 4237 while (v_idx--) 4238 igc_reset_q_vector(adapter, v_idx); 4239 } 4240 4241 /** 4242 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4243 * @adapter: Pointer to adapter structure 4244 * @msix: boolean value for MSI-X capability 4245 * 4246 * Attempt to configure interrupts using the best available 4247 * capabilities of the hardware and kernel. 4248 */ 4249 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4250 bool msix) 4251 { 4252 int numvecs, i; 4253 int err; 4254 4255 if (!msix) 4256 goto msi_only; 4257 adapter->flags |= IGC_FLAG_HAS_MSIX; 4258 4259 /* Number of supported queues. */ 4260 adapter->num_rx_queues = adapter->rss_queues; 4261 4262 adapter->num_tx_queues = adapter->rss_queues; 4263 4264 /* start with one vector for every Rx queue */ 4265 numvecs = adapter->num_rx_queues; 4266 4267 /* if Tx handler is separate add 1 for every Tx queue */ 4268 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4269 numvecs += adapter->num_tx_queues; 4270 4271 /* store the number of vectors reserved for queues */ 4272 adapter->num_q_vectors = numvecs; 4273 4274 /* add 1 vector for link status interrupts */ 4275 numvecs++; 4276 4277 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4278 GFP_KERNEL); 4279 4280 if (!adapter->msix_entries) 4281 return; 4282 4283 /* populate entry values */ 4284 for (i = 0; i < numvecs; i++) 4285 adapter->msix_entries[i].entry = i; 4286 4287 err = pci_enable_msix_range(adapter->pdev, 4288 adapter->msix_entries, 4289 numvecs, 4290 numvecs); 4291 if (err > 0) 4292 return; 4293 4294 kfree(adapter->msix_entries); 4295 adapter->msix_entries = NULL; 4296 4297 igc_reset_interrupt_capability(adapter); 4298 4299 msi_only: 4300 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4301 4302 adapter->rss_queues = 1; 4303 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4304 adapter->num_rx_queues = 1; 4305 adapter->num_tx_queues = 1; 4306 adapter->num_q_vectors = 1; 4307 if (!pci_enable_msi(adapter->pdev)) 4308 adapter->flags |= IGC_FLAG_HAS_MSI; 4309 } 4310 4311 /** 4312 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4313 * @q_vector: pointer to q_vector 4314 * 4315 * Stores a new ITR value based on strictly on packet size. This 4316 * algorithm is less sophisticated than that used in igc_update_itr, 4317 * due to the difficulty of synchronizing statistics across multiple 4318 * receive rings. The divisors and thresholds used by this function 4319 * were determined based on theoretical maximum wire speed and testing 4320 * data, in order to minimize response time while increasing bulk 4321 * throughput. 4322 * NOTE: This function is called only when operating in a multiqueue 4323 * receive environment. 4324 */ 4325 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4326 { 4327 struct igc_adapter *adapter = q_vector->adapter; 4328 int new_val = q_vector->itr_val; 4329 int avg_wire_size = 0; 4330 unsigned int packets; 4331 4332 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4333 * ints/sec - ITR timer value of 120 ticks. 4334 */ 4335 switch (adapter->link_speed) { 4336 case SPEED_10: 4337 case SPEED_100: 4338 new_val = IGC_4K_ITR; 4339 goto set_itr_val; 4340 default: 4341 break; 4342 } 4343 4344 packets = q_vector->rx.total_packets; 4345 if (packets) 4346 avg_wire_size = q_vector->rx.total_bytes / packets; 4347 4348 packets = q_vector->tx.total_packets; 4349 if (packets) 4350 avg_wire_size = max_t(u32, avg_wire_size, 4351 q_vector->tx.total_bytes / packets); 4352 4353 /* if avg_wire_size isn't set no work was done */ 4354 if (!avg_wire_size) 4355 goto clear_counts; 4356 4357 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4358 avg_wire_size += 24; 4359 4360 /* Don't starve jumbo frames */ 4361 avg_wire_size = min(avg_wire_size, 3000); 4362 4363 /* Give a little boost to mid-size frames */ 4364 if (avg_wire_size > 300 && avg_wire_size < 1200) 4365 new_val = avg_wire_size / 3; 4366 else 4367 new_val = avg_wire_size / 2; 4368 4369 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4370 if (new_val < IGC_20K_ITR && 4371 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4372 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4373 new_val = IGC_20K_ITR; 4374 4375 set_itr_val: 4376 if (new_val != q_vector->itr_val) { 4377 q_vector->itr_val = new_val; 4378 q_vector->set_itr = 1; 4379 } 4380 clear_counts: 4381 q_vector->rx.total_bytes = 0; 4382 q_vector->rx.total_packets = 0; 4383 q_vector->tx.total_bytes = 0; 4384 q_vector->tx.total_packets = 0; 4385 } 4386 4387 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4388 { 4389 struct igc_adapter *adapter = q_vector->adapter; 4390 struct igc_hw *hw = &adapter->hw; 4391 4392 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4393 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4394 if (adapter->num_q_vectors == 1) 4395 igc_set_itr(q_vector); 4396 else 4397 igc_update_ring_itr(q_vector); 4398 } 4399 4400 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4401 if (adapter->msix_entries) 4402 wr32(IGC_EIMS, q_vector->eims_value); 4403 else 4404 igc_irq_enable(adapter); 4405 } 4406 } 4407 4408 static void igc_add_ring(struct igc_ring *ring, 4409 struct igc_ring_container *head) 4410 { 4411 head->ring = ring; 4412 head->count++; 4413 } 4414 4415 /** 4416 * igc_cache_ring_register - Descriptor ring to register mapping 4417 * @adapter: board private structure to initialize 4418 * 4419 * Once we know the feature-set enabled for the device, we'll cache 4420 * the register offset the descriptor ring is assigned to. 4421 */ 4422 static void igc_cache_ring_register(struct igc_adapter *adapter) 4423 { 4424 int i = 0, j = 0; 4425 4426 switch (adapter->hw.mac.type) { 4427 case igc_i225: 4428 default: 4429 for (; i < adapter->num_rx_queues; i++) 4430 adapter->rx_ring[i]->reg_idx = i; 4431 for (; j < adapter->num_tx_queues; j++) 4432 adapter->tx_ring[j]->reg_idx = j; 4433 break; 4434 } 4435 } 4436 4437 /** 4438 * igc_poll - NAPI Rx polling callback 4439 * @napi: napi polling structure 4440 * @budget: count of how many packets we should handle 4441 */ 4442 static int igc_poll(struct napi_struct *napi, int budget) 4443 { 4444 struct igc_q_vector *q_vector = container_of(napi, 4445 struct igc_q_vector, 4446 napi); 4447 struct igc_ring *rx_ring = q_vector->rx.ring; 4448 bool clean_complete = true; 4449 int work_done = 0; 4450 4451 if (q_vector->tx.ring) 4452 clean_complete = igc_clean_tx_irq(q_vector, budget); 4453 4454 if (rx_ring) { 4455 int cleaned = rx_ring->xsk_pool ? 4456 igc_clean_rx_irq_zc(q_vector, budget) : 4457 igc_clean_rx_irq(q_vector, budget); 4458 4459 work_done += cleaned; 4460 if (cleaned >= budget) 4461 clean_complete = false; 4462 } 4463 4464 /* If all work not completed, return budget and keep polling */ 4465 if (!clean_complete) 4466 return budget; 4467 4468 /* Exit the polling mode, but don't re-enable interrupts if stack might 4469 * poll us due to busy-polling 4470 */ 4471 if (likely(napi_complete_done(napi, work_done))) 4472 igc_ring_irq_enable(q_vector); 4473 4474 return min(work_done, budget - 1); 4475 } 4476 4477 /** 4478 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4479 * @adapter: board private structure to initialize 4480 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4481 * @v_idx: index of vector in adapter struct 4482 * @txr_count: total number of Tx rings to allocate 4483 * @txr_idx: index of first Tx ring to allocate 4484 * @rxr_count: total number of Rx rings to allocate 4485 * @rxr_idx: index of first Rx ring to allocate 4486 * 4487 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4488 */ 4489 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4490 unsigned int v_count, unsigned int v_idx, 4491 unsigned int txr_count, unsigned int txr_idx, 4492 unsigned int rxr_count, unsigned int rxr_idx) 4493 { 4494 struct igc_q_vector *q_vector; 4495 struct igc_ring *ring; 4496 int ring_count; 4497 4498 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4499 if (txr_count > 1 || rxr_count > 1) 4500 return -ENOMEM; 4501 4502 ring_count = txr_count + rxr_count; 4503 4504 /* allocate q_vector and rings */ 4505 q_vector = adapter->q_vector[v_idx]; 4506 if (!q_vector) 4507 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4508 GFP_KERNEL); 4509 else 4510 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4511 if (!q_vector) 4512 return -ENOMEM; 4513 4514 /* initialize NAPI */ 4515 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); 4516 4517 /* tie q_vector and adapter together */ 4518 adapter->q_vector[v_idx] = q_vector; 4519 q_vector->adapter = adapter; 4520 4521 /* initialize work limits */ 4522 q_vector->tx.work_limit = adapter->tx_work_limit; 4523 4524 /* initialize ITR configuration */ 4525 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4526 q_vector->itr_val = IGC_START_ITR; 4527 4528 /* initialize pointer to rings */ 4529 ring = q_vector->ring; 4530 4531 /* initialize ITR */ 4532 if (rxr_count) { 4533 /* rx or rx/tx vector */ 4534 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4535 q_vector->itr_val = adapter->rx_itr_setting; 4536 } else { 4537 /* tx only vector */ 4538 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4539 q_vector->itr_val = adapter->tx_itr_setting; 4540 } 4541 4542 if (txr_count) { 4543 /* assign generic ring traits */ 4544 ring->dev = &adapter->pdev->dev; 4545 ring->netdev = adapter->netdev; 4546 4547 /* configure backlink on ring */ 4548 ring->q_vector = q_vector; 4549 4550 /* update q_vector Tx values */ 4551 igc_add_ring(ring, &q_vector->tx); 4552 4553 /* apply Tx specific ring traits */ 4554 ring->count = adapter->tx_ring_count; 4555 ring->queue_index = txr_idx; 4556 4557 /* assign ring to adapter */ 4558 adapter->tx_ring[txr_idx] = ring; 4559 4560 /* push pointer to next ring */ 4561 ring++; 4562 } 4563 4564 if (rxr_count) { 4565 /* assign generic ring traits */ 4566 ring->dev = &adapter->pdev->dev; 4567 ring->netdev = adapter->netdev; 4568 4569 /* configure backlink on ring */ 4570 ring->q_vector = q_vector; 4571 4572 /* update q_vector Rx values */ 4573 igc_add_ring(ring, &q_vector->rx); 4574 4575 /* apply Rx specific ring traits */ 4576 ring->count = adapter->rx_ring_count; 4577 ring->queue_index = rxr_idx; 4578 4579 /* assign ring to adapter */ 4580 adapter->rx_ring[rxr_idx] = ring; 4581 } 4582 4583 return 0; 4584 } 4585 4586 /** 4587 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4588 * @adapter: board private structure to initialize 4589 * 4590 * We allocate one q_vector per queue interrupt. If allocation fails we 4591 * return -ENOMEM. 4592 */ 4593 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4594 { 4595 int rxr_remaining = adapter->num_rx_queues; 4596 int txr_remaining = adapter->num_tx_queues; 4597 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4598 int q_vectors = adapter->num_q_vectors; 4599 int err; 4600 4601 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4602 for (; rxr_remaining; v_idx++) { 4603 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4604 0, 0, 1, rxr_idx); 4605 4606 if (err) 4607 goto err_out; 4608 4609 /* update counts and index */ 4610 rxr_remaining--; 4611 rxr_idx++; 4612 } 4613 } 4614 4615 for (; v_idx < q_vectors; v_idx++) { 4616 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4617 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4618 4619 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4620 tqpv, txr_idx, rqpv, rxr_idx); 4621 4622 if (err) 4623 goto err_out; 4624 4625 /* update counts and index */ 4626 rxr_remaining -= rqpv; 4627 txr_remaining -= tqpv; 4628 rxr_idx++; 4629 txr_idx++; 4630 } 4631 4632 return 0; 4633 4634 err_out: 4635 adapter->num_tx_queues = 0; 4636 adapter->num_rx_queues = 0; 4637 adapter->num_q_vectors = 0; 4638 4639 while (v_idx--) 4640 igc_free_q_vector(adapter, v_idx); 4641 4642 return -ENOMEM; 4643 } 4644 4645 /** 4646 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4647 * @adapter: Pointer to adapter structure 4648 * @msix: boolean for MSI-X capability 4649 * 4650 * This function initializes the interrupts and allocates all of the queues. 4651 */ 4652 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4653 { 4654 struct net_device *dev = adapter->netdev; 4655 int err = 0; 4656 4657 igc_set_interrupt_capability(adapter, msix); 4658 4659 err = igc_alloc_q_vectors(adapter); 4660 if (err) { 4661 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4662 goto err_alloc_q_vectors; 4663 } 4664 4665 igc_cache_ring_register(adapter); 4666 4667 return 0; 4668 4669 err_alloc_q_vectors: 4670 igc_reset_interrupt_capability(adapter); 4671 return err; 4672 } 4673 4674 /** 4675 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4676 * @adapter: board private structure to initialize 4677 * 4678 * igc_sw_init initializes the Adapter private data structure. 4679 * Fields are initialized based on PCI device information and 4680 * OS network device settings (MTU size). 4681 */ 4682 static int igc_sw_init(struct igc_adapter *adapter) 4683 { 4684 struct net_device *netdev = adapter->netdev; 4685 struct pci_dev *pdev = adapter->pdev; 4686 struct igc_hw *hw = &adapter->hw; 4687 4688 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4689 4690 /* set default ring sizes */ 4691 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4692 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4693 4694 /* set default ITR values */ 4695 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4696 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4697 4698 /* set default work limits */ 4699 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4700 4701 /* adjust max frame to be at least the size of a standard frame */ 4702 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4703 VLAN_HLEN; 4704 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4705 4706 mutex_init(&adapter->nfc_rule_lock); 4707 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4708 adapter->nfc_rule_count = 0; 4709 4710 spin_lock_init(&adapter->stats64_lock); 4711 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4712 adapter->flags |= IGC_FLAG_HAS_MSIX; 4713 4714 igc_init_queue_configuration(adapter); 4715 4716 /* This call may decrease the number of queues */ 4717 if (igc_init_interrupt_scheme(adapter, true)) { 4718 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4719 return -ENOMEM; 4720 } 4721 4722 /* Explicitly disable IRQ since the NIC can be in any state. */ 4723 igc_irq_disable(adapter); 4724 4725 set_bit(__IGC_DOWN, &adapter->state); 4726 4727 return 0; 4728 } 4729 4730 /** 4731 * igc_up - Open the interface and prepare it to handle traffic 4732 * @adapter: board private structure 4733 */ 4734 void igc_up(struct igc_adapter *adapter) 4735 { 4736 struct igc_hw *hw = &adapter->hw; 4737 int i = 0; 4738 4739 /* hardware has been reset, we need to reload some things */ 4740 igc_configure(adapter); 4741 4742 clear_bit(__IGC_DOWN, &adapter->state); 4743 4744 for (i = 0; i < adapter->num_q_vectors; i++) 4745 napi_enable(&adapter->q_vector[i]->napi); 4746 4747 if (adapter->msix_entries) 4748 igc_configure_msix(adapter); 4749 else 4750 igc_assign_vector(adapter->q_vector[0], 0); 4751 4752 /* Clear any pending interrupts. */ 4753 rd32(IGC_ICR); 4754 igc_irq_enable(adapter); 4755 4756 netif_tx_start_all_queues(adapter->netdev); 4757 4758 /* start the watchdog. */ 4759 hw->mac.get_link_status = true; 4760 schedule_work(&adapter->watchdog_task); 4761 } 4762 4763 /** 4764 * igc_update_stats - Update the board statistics counters 4765 * @adapter: board private structure 4766 */ 4767 void igc_update_stats(struct igc_adapter *adapter) 4768 { 4769 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4770 struct pci_dev *pdev = adapter->pdev; 4771 struct igc_hw *hw = &adapter->hw; 4772 u64 _bytes, _packets; 4773 u64 bytes, packets; 4774 unsigned int start; 4775 u32 mpc; 4776 int i; 4777 4778 /* Prevent stats update while adapter is being reset, or if the pci 4779 * connection is down. 4780 */ 4781 if (adapter->link_speed == 0) 4782 return; 4783 if (pci_channel_offline(pdev)) 4784 return; 4785 4786 packets = 0; 4787 bytes = 0; 4788 4789 rcu_read_lock(); 4790 for (i = 0; i < adapter->num_rx_queues; i++) { 4791 struct igc_ring *ring = adapter->rx_ring[i]; 4792 u32 rqdpc = rd32(IGC_RQDPC(i)); 4793 4794 if (hw->mac.type >= igc_i225) 4795 wr32(IGC_RQDPC(i), 0); 4796 4797 if (rqdpc) { 4798 ring->rx_stats.drops += rqdpc; 4799 net_stats->rx_fifo_errors += rqdpc; 4800 } 4801 4802 do { 4803 start = u64_stats_fetch_begin(&ring->rx_syncp); 4804 _bytes = ring->rx_stats.bytes; 4805 _packets = ring->rx_stats.packets; 4806 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 4807 bytes += _bytes; 4808 packets += _packets; 4809 } 4810 4811 net_stats->rx_bytes = bytes; 4812 net_stats->rx_packets = packets; 4813 4814 packets = 0; 4815 bytes = 0; 4816 for (i = 0; i < adapter->num_tx_queues; i++) { 4817 struct igc_ring *ring = adapter->tx_ring[i]; 4818 4819 do { 4820 start = u64_stats_fetch_begin(&ring->tx_syncp); 4821 _bytes = ring->tx_stats.bytes; 4822 _packets = ring->tx_stats.packets; 4823 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 4824 bytes += _bytes; 4825 packets += _packets; 4826 } 4827 net_stats->tx_bytes = bytes; 4828 net_stats->tx_packets = packets; 4829 rcu_read_unlock(); 4830 4831 /* read stats registers */ 4832 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 4833 adapter->stats.gprc += rd32(IGC_GPRC); 4834 adapter->stats.gorc += rd32(IGC_GORCL); 4835 rd32(IGC_GORCH); /* clear GORCL */ 4836 adapter->stats.bprc += rd32(IGC_BPRC); 4837 adapter->stats.mprc += rd32(IGC_MPRC); 4838 adapter->stats.roc += rd32(IGC_ROC); 4839 4840 adapter->stats.prc64 += rd32(IGC_PRC64); 4841 adapter->stats.prc127 += rd32(IGC_PRC127); 4842 adapter->stats.prc255 += rd32(IGC_PRC255); 4843 adapter->stats.prc511 += rd32(IGC_PRC511); 4844 adapter->stats.prc1023 += rd32(IGC_PRC1023); 4845 adapter->stats.prc1522 += rd32(IGC_PRC1522); 4846 adapter->stats.tlpic += rd32(IGC_TLPIC); 4847 adapter->stats.rlpic += rd32(IGC_RLPIC); 4848 adapter->stats.hgptc += rd32(IGC_HGPTC); 4849 4850 mpc = rd32(IGC_MPC); 4851 adapter->stats.mpc += mpc; 4852 net_stats->rx_fifo_errors += mpc; 4853 adapter->stats.scc += rd32(IGC_SCC); 4854 adapter->stats.ecol += rd32(IGC_ECOL); 4855 adapter->stats.mcc += rd32(IGC_MCC); 4856 adapter->stats.latecol += rd32(IGC_LATECOL); 4857 adapter->stats.dc += rd32(IGC_DC); 4858 adapter->stats.rlec += rd32(IGC_RLEC); 4859 adapter->stats.xonrxc += rd32(IGC_XONRXC); 4860 adapter->stats.xontxc += rd32(IGC_XONTXC); 4861 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 4862 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 4863 adapter->stats.fcruc += rd32(IGC_FCRUC); 4864 adapter->stats.gptc += rd32(IGC_GPTC); 4865 adapter->stats.gotc += rd32(IGC_GOTCL); 4866 rd32(IGC_GOTCH); /* clear GOTCL */ 4867 adapter->stats.rnbc += rd32(IGC_RNBC); 4868 adapter->stats.ruc += rd32(IGC_RUC); 4869 adapter->stats.rfc += rd32(IGC_RFC); 4870 adapter->stats.rjc += rd32(IGC_RJC); 4871 adapter->stats.tor += rd32(IGC_TORH); 4872 adapter->stats.tot += rd32(IGC_TOTH); 4873 adapter->stats.tpr += rd32(IGC_TPR); 4874 4875 adapter->stats.ptc64 += rd32(IGC_PTC64); 4876 adapter->stats.ptc127 += rd32(IGC_PTC127); 4877 adapter->stats.ptc255 += rd32(IGC_PTC255); 4878 adapter->stats.ptc511 += rd32(IGC_PTC511); 4879 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 4880 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 4881 4882 adapter->stats.mptc += rd32(IGC_MPTC); 4883 adapter->stats.bptc += rd32(IGC_BPTC); 4884 4885 adapter->stats.tpt += rd32(IGC_TPT); 4886 adapter->stats.colc += rd32(IGC_COLC); 4887 adapter->stats.colc += rd32(IGC_RERC); 4888 4889 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 4890 4891 adapter->stats.tsctc += rd32(IGC_TSCTC); 4892 4893 adapter->stats.iac += rd32(IGC_IAC); 4894 4895 /* Fill out the OS statistics structure */ 4896 net_stats->multicast = adapter->stats.mprc; 4897 net_stats->collisions = adapter->stats.colc; 4898 4899 /* Rx Errors */ 4900 4901 /* RLEC on some newer hardware can be incorrect so build 4902 * our own version based on RUC and ROC 4903 */ 4904 net_stats->rx_errors = adapter->stats.rxerrc + 4905 adapter->stats.crcerrs + adapter->stats.algnerrc + 4906 adapter->stats.ruc + adapter->stats.roc + 4907 adapter->stats.cexterr; 4908 net_stats->rx_length_errors = adapter->stats.ruc + 4909 adapter->stats.roc; 4910 net_stats->rx_crc_errors = adapter->stats.crcerrs; 4911 net_stats->rx_frame_errors = adapter->stats.algnerrc; 4912 net_stats->rx_missed_errors = adapter->stats.mpc; 4913 4914 /* Tx Errors */ 4915 net_stats->tx_errors = adapter->stats.ecol + 4916 adapter->stats.latecol; 4917 net_stats->tx_aborted_errors = adapter->stats.ecol; 4918 net_stats->tx_window_errors = adapter->stats.latecol; 4919 net_stats->tx_carrier_errors = adapter->stats.tncrs; 4920 4921 /* Tx Dropped needs to be maintained elsewhere */ 4922 4923 /* Management Stats */ 4924 adapter->stats.mgptc += rd32(IGC_MGTPTC); 4925 adapter->stats.mgprc += rd32(IGC_MGTPRC); 4926 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 4927 } 4928 4929 /** 4930 * igc_down - Close the interface 4931 * @adapter: board private structure 4932 */ 4933 void igc_down(struct igc_adapter *adapter) 4934 { 4935 struct net_device *netdev = adapter->netdev; 4936 struct igc_hw *hw = &adapter->hw; 4937 u32 tctl, rctl; 4938 int i = 0; 4939 4940 set_bit(__IGC_DOWN, &adapter->state); 4941 4942 igc_ptp_suspend(adapter); 4943 4944 if (pci_device_is_present(adapter->pdev)) { 4945 /* disable receives in the hardware */ 4946 rctl = rd32(IGC_RCTL); 4947 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 4948 /* flush and sleep below */ 4949 } 4950 /* set trans_start so we don't get spurious watchdogs during reset */ 4951 netif_trans_update(netdev); 4952 4953 netif_carrier_off(netdev); 4954 netif_tx_stop_all_queues(netdev); 4955 4956 if (pci_device_is_present(adapter->pdev)) { 4957 /* disable transmits in the hardware */ 4958 tctl = rd32(IGC_TCTL); 4959 tctl &= ~IGC_TCTL_EN; 4960 wr32(IGC_TCTL, tctl); 4961 /* flush both disables and wait for them to finish */ 4962 wrfl(); 4963 usleep_range(10000, 20000); 4964 4965 igc_irq_disable(adapter); 4966 } 4967 4968 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 4969 4970 for (i = 0; i < adapter->num_q_vectors; i++) { 4971 if (adapter->q_vector[i]) { 4972 napi_synchronize(&adapter->q_vector[i]->napi); 4973 napi_disable(&adapter->q_vector[i]->napi); 4974 } 4975 } 4976 4977 del_timer_sync(&adapter->watchdog_timer); 4978 del_timer_sync(&adapter->phy_info_timer); 4979 4980 /* record the stats before reset*/ 4981 spin_lock(&adapter->stats64_lock); 4982 igc_update_stats(adapter); 4983 spin_unlock(&adapter->stats64_lock); 4984 4985 adapter->link_speed = 0; 4986 adapter->link_duplex = 0; 4987 4988 if (!pci_channel_offline(adapter->pdev)) 4989 igc_reset(adapter); 4990 4991 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 4992 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 4993 4994 igc_clean_all_tx_rings(adapter); 4995 igc_clean_all_rx_rings(adapter); 4996 } 4997 4998 void igc_reinit_locked(struct igc_adapter *adapter) 4999 { 5000 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5001 usleep_range(1000, 2000); 5002 igc_down(adapter); 5003 igc_up(adapter); 5004 clear_bit(__IGC_RESETTING, &adapter->state); 5005 } 5006 5007 static void igc_reset_task(struct work_struct *work) 5008 { 5009 struct igc_adapter *adapter; 5010 5011 adapter = container_of(work, struct igc_adapter, reset_task); 5012 5013 rtnl_lock(); 5014 /* If we're already down or resetting, just bail */ 5015 if (test_bit(__IGC_DOWN, &adapter->state) || 5016 test_bit(__IGC_RESETTING, &adapter->state)) { 5017 rtnl_unlock(); 5018 return; 5019 } 5020 5021 igc_rings_dump(adapter); 5022 igc_regs_dump(adapter); 5023 netdev_err(adapter->netdev, "Reset adapter\n"); 5024 igc_reinit_locked(adapter); 5025 rtnl_unlock(); 5026 } 5027 5028 /** 5029 * igc_change_mtu - Change the Maximum Transfer Unit 5030 * @netdev: network interface device structure 5031 * @new_mtu: new value for maximum frame size 5032 * 5033 * Returns 0 on success, negative on failure 5034 */ 5035 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 5036 { 5037 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5038 struct igc_adapter *adapter = netdev_priv(netdev); 5039 5040 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 5041 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 5042 return -EINVAL; 5043 } 5044 5045 /* adjust max frame to be at least the size of a standard frame */ 5046 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5047 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5048 5049 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5050 usleep_range(1000, 2000); 5051 5052 /* igc_down has a dependency on max_frame_size */ 5053 adapter->max_frame_size = max_frame; 5054 5055 if (netif_running(netdev)) 5056 igc_down(adapter); 5057 5058 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5059 netdev->mtu = new_mtu; 5060 5061 if (netif_running(netdev)) 5062 igc_up(adapter); 5063 else 5064 igc_reset(adapter); 5065 5066 clear_bit(__IGC_RESETTING, &adapter->state); 5067 5068 return 0; 5069 } 5070 5071 /** 5072 * igc_get_stats64 - Get System Network Statistics 5073 * @netdev: network interface device structure 5074 * @stats: rtnl_link_stats64 pointer 5075 * 5076 * Returns the address of the device statistics structure. 5077 * The statistics are updated here and also from the timer callback. 5078 */ 5079 static void igc_get_stats64(struct net_device *netdev, 5080 struct rtnl_link_stats64 *stats) 5081 { 5082 struct igc_adapter *adapter = netdev_priv(netdev); 5083 5084 spin_lock(&adapter->stats64_lock); 5085 if (!test_bit(__IGC_RESETTING, &adapter->state)) 5086 igc_update_stats(adapter); 5087 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5088 spin_unlock(&adapter->stats64_lock); 5089 } 5090 5091 static netdev_features_t igc_fix_features(struct net_device *netdev, 5092 netdev_features_t features) 5093 { 5094 /* Since there is no support for separate Rx/Tx vlan accel 5095 * enable/disable make sure Tx flag is always in same state as Rx. 5096 */ 5097 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5098 features |= NETIF_F_HW_VLAN_CTAG_TX; 5099 else 5100 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5101 5102 return features; 5103 } 5104 5105 static int igc_set_features(struct net_device *netdev, 5106 netdev_features_t features) 5107 { 5108 netdev_features_t changed = netdev->features ^ features; 5109 struct igc_adapter *adapter = netdev_priv(netdev); 5110 5111 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 5112 igc_vlan_mode(netdev, features); 5113 5114 /* Add VLAN support */ 5115 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 5116 return 0; 5117 5118 if (!(features & NETIF_F_NTUPLE)) 5119 igc_flush_nfc_rules(adapter); 5120 5121 netdev->features = features; 5122 5123 if (netif_running(netdev)) 5124 igc_reinit_locked(adapter); 5125 else 5126 igc_reset(adapter); 5127 5128 return 1; 5129 } 5130 5131 static netdev_features_t 5132 igc_features_check(struct sk_buff *skb, struct net_device *dev, 5133 netdev_features_t features) 5134 { 5135 unsigned int network_hdr_len, mac_hdr_len; 5136 5137 /* Make certain the headers can be described by a context descriptor */ 5138 mac_hdr_len = skb_network_header(skb) - skb->data; 5139 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 5140 return features & ~(NETIF_F_HW_CSUM | 5141 NETIF_F_SCTP_CRC | 5142 NETIF_F_HW_VLAN_CTAG_TX | 5143 NETIF_F_TSO | 5144 NETIF_F_TSO6); 5145 5146 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 5147 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 5148 return features & ~(NETIF_F_HW_CSUM | 5149 NETIF_F_SCTP_CRC | 5150 NETIF_F_TSO | 5151 NETIF_F_TSO6); 5152 5153 /* We can only support IPv4 TSO in tunnels if we can mangle the 5154 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5155 */ 5156 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5157 features &= ~NETIF_F_TSO; 5158 5159 return features; 5160 } 5161 5162 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5163 { 5164 u32 ack, tsauxc, sec, nsec, tsicr; 5165 struct igc_hw *hw = &adapter->hw; 5166 struct ptp_clock_event event; 5167 struct timespec64 ts; 5168 5169 tsicr = rd32(IGC_TSICR); 5170 ack = 0; 5171 5172 if (tsicr & IGC_TSICR_SYS_WRAP) { 5173 event.type = PTP_CLOCK_PPS; 5174 if (adapter->ptp_caps.pps) 5175 ptp_clock_event(adapter->ptp_clock, &event); 5176 ack |= IGC_TSICR_SYS_WRAP; 5177 } 5178 5179 if (tsicr & IGC_TSICR_TXTS) { 5180 /* retrieve hardware timestamp */ 5181 schedule_work(&adapter->ptp_tx_work); 5182 ack |= IGC_TSICR_TXTS; 5183 } 5184 5185 if (tsicr & IGC_TSICR_TT0) { 5186 spin_lock(&adapter->tmreg_lock); 5187 ts = timespec64_add(adapter->perout[0].start, 5188 adapter->perout[0].period); 5189 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5190 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5191 tsauxc = rd32(IGC_TSAUXC); 5192 tsauxc |= IGC_TSAUXC_EN_TT0; 5193 wr32(IGC_TSAUXC, tsauxc); 5194 adapter->perout[0].start = ts; 5195 spin_unlock(&adapter->tmreg_lock); 5196 ack |= IGC_TSICR_TT0; 5197 } 5198 5199 if (tsicr & IGC_TSICR_TT1) { 5200 spin_lock(&adapter->tmreg_lock); 5201 ts = timespec64_add(adapter->perout[1].start, 5202 adapter->perout[1].period); 5203 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5204 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5205 tsauxc = rd32(IGC_TSAUXC); 5206 tsauxc |= IGC_TSAUXC_EN_TT1; 5207 wr32(IGC_TSAUXC, tsauxc); 5208 adapter->perout[1].start = ts; 5209 spin_unlock(&adapter->tmreg_lock); 5210 ack |= IGC_TSICR_TT1; 5211 } 5212 5213 if (tsicr & IGC_TSICR_AUTT0) { 5214 nsec = rd32(IGC_AUXSTMPL0); 5215 sec = rd32(IGC_AUXSTMPH0); 5216 event.type = PTP_CLOCK_EXTTS; 5217 event.index = 0; 5218 event.timestamp = sec * NSEC_PER_SEC + nsec; 5219 ptp_clock_event(adapter->ptp_clock, &event); 5220 ack |= IGC_TSICR_AUTT0; 5221 } 5222 5223 if (tsicr & IGC_TSICR_AUTT1) { 5224 nsec = rd32(IGC_AUXSTMPL1); 5225 sec = rd32(IGC_AUXSTMPH1); 5226 event.type = PTP_CLOCK_EXTTS; 5227 event.index = 1; 5228 event.timestamp = sec * NSEC_PER_SEC + nsec; 5229 ptp_clock_event(adapter->ptp_clock, &event); 5230 ack |= IGC_TSICR_AUTT1; 5231 } 5232 5233 /* acknowledge the interrupts */ 5234 wr32(IGC_TSICR, ack); 5235 } 5236 5237 /** 5238 * igc_msix_other - msix other interrupt handler 5239 * @irq: interrupt number 5240 * @data: pointer to a q_vector 5241 */ 5242 static irqreturn_t igc_msix_other(int irq, void *data) 5243 { 5244 struct igc_adapter *adapter = data; 5245 struct igc_hw *hw = &adapter->hw; 5246 u32 icr = rd32(IGC_ICR); 5247 5248 /* reading ICR causes bit 31 of EICR to be cleared */ 5249 if (icr & IGC_ICR_DRSTA) 5250 schedule_work(&adapter->reset_task); 5251 5252 if (icr & IGC_ICR_DOUTSYNC) { 5253 /* HW is reporting DMA is out of sync */ 5254 adapter->stats.doosync++; 5255 } 5256 5257 if (icr & IGC_ICR_LSC) { 5258 hw->mac.get_link_status = true; 5259 /* guard against interrupt when we're going down */ 5260 if (!test_bit(__IGC_DOWN, &adapter->state)) 5261 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5262 } 5263 5264 if (icr & IGC_ICR_TS) 5265 igc_tsync_interrupt(adapter); 5266 5267 wr32(IGC_EIMS, adapter->eims_other); 5268 5269 return IRQ_HANDLED; 5270 } 5271 5272 static void igc_write_itr(struct igc_q_vector *q_vector) 5273 { 5274 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5275 5276 if (!q_vector->set_itr) 5277 return; 5278 5279 if (!itr_val) 5280 itr_val = IGC_ITR_VAL_MASK; 5281 5282 itr_val |= IGC_EITR_CNT_IGNR; 5283 5284 writel(itr_val, q_vector->itr_register); 5285 q_vector->set_itr = 0; 5286 } 5287 5288 static irqreturn_t igc_msix_ring(int irq, void *data) 5289 { 5290 struct igc_q_vector *q_vector = data; 5291 5292 /* Write the ITR value calculated from the previous interrupt. */ 5293 igc_write_itr(q_vector); 5294 5295 napi_schedule(&q_vector->napi); 5296 5297 return IRQ_HANDLED; 5298 } 5299 5300 /** 5301 * igc_request_msix - Initialize MSI-X interrupts 5302 * @adapter: Pointer to adapter structure 5303 * 5304 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5305 * kernel. 5306 */ 5307 static int igc_request_msix(struct igc_adapter *adapter) 5308 { 5309 unsigned int num_q_vectors = adapter->num_q_vectors; 5310 int i = 0, err = 0, vector = 0, free_vector = 0; 5311 struct net_device *netdev = adapter->netdev; 5312 5313 err = request_irq(adapter->msix_entries[vector].vector, 5314 &igc_msix_other, 0, netdev->name, adapter); 5315 if (err) 5316 goto err_out; 5317 5318 if (num_q_vectors > MAX_Q_VECTORS) { 5319 num_q_vectors = MAX_Q_VECTORS; 5320 dev_warn(&adapter->pdev->dev, 5321 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5322 adapter->num_q_vectors, MAX_Q_VECTORS); 5323 } 5324 for (i = 0; i < num_q_vectors; i++) { 5325 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5326 5327 vector++; 5328 5329 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5330 5331 if (q_vector->rx.ring && q_vector->tx.ring) 5332 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5333 q_vector->rx.ring->queue_index); 5334 else if (q_vector->tx.ring) 5335 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5336 q_vector->tx.ring->queue_index); 5337 else if (q_vector->rx.ring) 5338 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5339 q_vector->rx.ring->queue_index); 5340 else 5341 sprintf(q_vector->name, "%s-unused", netdev->name); 5342 5343 err = request_irq(adapter->msix_entries[vector].vector, 5344 igc_msix_ring, 0, q_vector->name, 5345 q_vector); 5346 if (err) 5347 goto err_free; 5348 } 5349 5350 igc_configure_msix(adapter); 5351 return 0; 5352 5353 err_free: 5354 /* free already assigned IRQs */ 5355 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5356 5357 vector--; 5358 for (i = 0; i < vector; i++) { 5359 free_irq(adapter->msix_entries[free_vector++].vector, 5360 adapter->q_vector[i]); 5361 } 5362 err_out: 5363 return err; 5364 } 5365 5366 /** 5367 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5368 * @adapter: Pointer to adapter structure 5369 * 5370 * This function resets the device so that it has 0 rx queues, tx queues, and 5371 * MSI-X interrupts allocated. 5372 */ 5373 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5374 { 5375 igc_free_q_vectors(adapter); 5376 igc_reset_interrupt_capability(adapter); 5377 } 5378 5379 /* Need to wait a few seconds after link up to get diagnostic information from 5380 * the phy 5381 */ 5382 static void igc_update_phy_info(struct timer_list *t) 5383 { 5384 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5385 5386 igc_get_phy_info(&adapter->hw); 5387 } 5388 5389 /** 5390 * igc_has_link - check shared code for link and determine up/down 5391 * @adapter: pointer to driver private info 5392 */ 5393 bool igc_has_link(struct igc_adapter *adapter) 5394 { 5395 struct igc_hw *hw = &adapter->hw; 5396 bool link_active = false; 5397 5398 /* get_link_status is set on LSC (link status) interrupt or 5399 * rx sequence error interrupt. get_link_status will stay 5400 * false until the igc_check_for_link establishes link 5401 * for copper adapters ONLY 5402 */ 5403 if (!hw->mac.get_link_status) 5404 return true; 5405 hw->mac.ops.check_for_link(hw); 5406 link_active = !hw->mac.get_link_status; 5407 5408 if (hw->mac.type == igc_i225) { 5409 if (!netif_carrier_ok(adapter->netdev)) { 5410 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5411 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5412 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5413 adapter->link_check_timeout = jiffies; 5414 } 5415 } 5416 5417 return link_active; 5418 } 5419 5420 /** 5421 * igc_watchdog - Timer Call-back 5422 * @t: timer for the watchdog 5423 */ 5424 static void igc_watchdog(struct timer_list *t) 5425 { 5426 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5427 /* Do the rest outside of interrupt context */ 5428 schedule_work(&adapter->watchdog_task); 5429 } 5430 5431 static void igc_watchdog_task(struct work_struct *work) 5432 { 5433 struct igc_adapter *adapter = container_of(work, 5434 struct igc_adapter, 5435 watchdog_task); 5436 struct net_device *netdev = adapter->netdev; 5437 struct igc_hw *hw = &adapter->hw; 5438 struct igc_phy_info *phy = &hw->phy; 5439 u16 phy_data, retry_count = 20; 5440 u32 link; 5441 int i; 5442 5443 link = igc_has_link(adapter); 5444 5445 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5446 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5447 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5448 else 5449 link = false; 5450 } 5451 5452 if (link) { 5453 /* Cancel scheduled suspend requests. */ 5454 pm_runtime_resume(netdev->dev.parent); 5455 5456 if (!netif_carrier_ok(netdev)) { 5457 u32 ctrl; 5458 5459 hw->mac.ops.get_speed_and_duplex(hw, 5460 &adapter->link_speed, 5461 &adapter->link_duplex); 5462 5463 ctrl = rd32(IGC_CTRL); 5464 /* Link status message must follow this format */ 5465 netdev_info(netdev, 5466 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5467 adapter->link_speed, 5468 adapter->link_duplex == FULL_DUPLEX ? 5469 "Full" : "Half", 5470 (ctrl & IGC_CTRL_TFCE) && 5471 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5472 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5473 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5474 5475 /* disable EEE if enabled */ 5476 if ((adapter->flags & IGC_FLAG_EEE) && 5477 adapter->link_duplex == HALF_DUPLEX) { 5478 netdev_info(netdev, 5479 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5480 adapter->hw.dev_spec._base.eee_enable = false; 5481 adapter->flags &= ~IGC_FLAG_EEE; 5482 } 5483 5484 /* check if SmartSpeed worked */ 5485 igc_check_downshift(hw); 5486 if (phy->speed_downgraded) 5487 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5488 5489 /* adjust timeout factor according to speed/duplex */ 5490 adapter->tx_timeout_factor = 1; 5491 switch (adapter->link_speed) { 5492 case SPEED_10: 5493 adapter->tx_timeout_factor = 14; 5494 break; 5495 case SPEED_100: 5496 case SPEED_1000: 5497 case SPEED_2500: 5498 adapter->tx_timeout_factor = 7; 5499 break; 5500 } 5501 5502 /* Once the launch time has been set on the wire, there 5503 * is a delay before the link speed can be determined 5504 * based on link-up activity. Write into the register 5505 * as soon as we know the correct link speed. 5506 */ 5507 igc_tsn_adjust_txtime_offset(adapter); 5508 5509 if (adapter->link_speed != SPEED_1000) 5510 goto no_wait; 5511 5512 /* wait for Remote receiver status OK */ 5513 retry_read_status: 5514 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5515 &phy_data)) { 5516 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5517 retry_count) { 5518 msleep(100); 5519 retry_count--; 5520 goto retry_read_status; 5521 } else if (!retry_count) { 5522 netdev_err(netdev, "exceed max 2 second\n"); 5523 } 5524 } else { 5525 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5526 } 5527 no_wait: 5528 netif_carrier_on(netdev); 5529 5530 /* link state has changed, schedule phy info update */ 5531 if (!test_bit(__IGC_DOWN, &adapter->state)) 5532 mod_timer(&adapter->phy_info_timer, 5533 round_jiffies(jiffies + 2 * HZ)); 5534 } 5535 } else { 5536 if (netif_carrier_ok(netdev)) { 5537 adapter->link_speed = 0; 5538 adapter->link_duplex = 0; 5539 5540 /* Links status message must follow this format */ 5541 netdev_info(netdev, "NIC Link is Down\n"); 5542 netif_carrier_off(netdev); 5543 5544 /* link state has changed, schedule phy info update */ 5545 if (!test_bit(__IGC_DOWN, &adapter->state)) 5546 mod_timer(&adapter->phy_info_timer, 5547 round_jiffies(jiffies + 2 * HZ)); 5548 5549 /* link is down, time to check for alternate media */ 5550 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 5551 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 5552 schedule_work(&adapter->reset_task); 5553 /* return immediately */ 5554 return; 5555 } 5556 } 5557 pm_schedule_suspend(netdev->dev.parent, 5558 MSEC_PER_SEC * 5); 5559 5560 /* also check for alternate media here */ 5561 } else if (!netif_carrier_ok(netdev) && 5562 (adapter->flags & IGC_FLAG_MAS_ENABLE)) { 5563 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 5564 schedule_work(&adapter->reset_task); 5565 /* return immediately */ 5566 return; 5567 } 5568 } 5569 } 5570 5571 spin_lock(&adapter->stats64_lock); 5572 igc_update_stats(adapter); 5573 spin_unlock(&adapter->stats64_lock); 5574 5575 for (i = 0; i < adapter->num_tx_queues; i++) { 5576 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5577 5578 if (!netif_carrier_ok(netdev)) { 5579 /* We've lost link, so the controller stops DMA, 5580 * but we've got queued Tx work that's never going 5581 * to get done, so reset controller to flush Tx. 5582 * (Do the reset outside of interrupt context). 5583 */ 5584 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5585 adapter->tx_timeout_count++; 5586 schedule_work(&adapter->reset_task); 5587 /* return immediately since reset is imminent */ 5588 return; 5589 } 5590 } 5591 5592 /* Force detection of hung controller every watchdog period */ 5593 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5594 } 5595 5596 /* Cause software interrupt to ensure Rx ring is cleaned */ 5597 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5598 u32 eics = 0; 5599 5600 for (i = 0; i < adapter->num_q_vectors; i++) 5601 eics |= adapter->q_vector[i]->eims_value; 5602 wr32(IGC_EICS, eics); 5603 } else { 5604 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5605 } 5606 5607 igc_ptp_tx_hang(adapter); 5608 5609 /* Reset the timer */ 5610 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5611 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5612 mod_timer(&adapter->watchdog_timer, 5613 round_jiffies(jiffies + HZ)); 5614 else 5615 mod_timer(&adapter->watchdog_timer, 5616 round_jiffies(jiffies + 2 * HZ)); 5617 } 5618 } 5619 5620 /** 5621 * igc_intr_msi - Interrupt Handler 5622 * @irq: interrupt number 5623 * @data: pointer to a network interface device structure 5624 */ 5625 static irqreturn_t igc_intr_msi(int irq, void *data) 5626 { 5627 struct igc_adapter *adapter = data; 5628 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5629 struct igc_hw *hw = &adapter->hw; 5630 /* read ICR disables interrupts using IAM */ 5631 u32 icr = rd32(IGC_ICR); 5632 5633 igc_write_itr(q_vector); 5634 5635 if (icr & IGC_ICR_DRSTA) 5636 schedule_work(&adapter->reset_task); 5637 5638 if (icr & IGC_ICR_DOUTSYNC) { 5639 /* HW is reporting DMA is out of sync */ 5640 adapter->stats.doosync++; 5641 } 5642 5643 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5644 hw->mac.get_link_status = true; 5645 if (!test_bit(__IGC_DOWN, &adapter->state)) 5646 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5647 } 5648 5649 if (icr & IGC_ICR_TS) 5650 igc_tsync_interrupt(adapter); 5651 5652 napi_schedule(&q_vector->napi); 5653 5654 return IRQ_HANDLED; 5655 } 5656 5657 /** 5658 * igc_intr - Legacy Interrupt Handler 5659 * @irq: interrupt number 5660 * @data: pointer to a network interface device structure 5661 */ 5662 static irqreturn_t igc_intr(int irq, void *data) 5663 { 5664 struct igc_adapter *adapter = data; 5665 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5666 struct igc_hw *hw = &adapter->hw; 5667 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5668 * need for the IMC write 5669 */ 5670 u32 icr = rd32(IGC_ICR); 5671 5672 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5673 * not set, then the adapter didn't send an interrupt 5674 */ 5675 if (!(icr & IGC_ICR_INT_ASSERTED)) 5676 return IRQ_NONE; 5677 5678 igc_write_itr(q_vector); 5679 5680 if (icr & IGC_ICR_DRSTA) 5681 schedule_work(&adapter->reset_task); 5682 5683 if (icr & IGC_ICR_DOUTSYNC) { 5684 /* HW is reporting DMA is out of sync */ 5685 adapter->stats.doosync++; 5686 } 5687 5688 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5689 hw->mac.get_link_status = true; 5690 /* guard against interrupt when we're going down */ 5691 if (!test_bit(__IGC_DOWN, &adapter->state)) 5692 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5693 } 5694 5695 if (icr & IGC_ICR_TS) 5696 igc_tsync_interrupt(adapter); 5697 5698 napi_schedule(&q_vector->napi); 5699 5700 return IRQ_HANDLED; 5701 } 5702 5703 static void igc_free_irq(struct igc_adapter *adapter) 5704 { 5705 if (adapter->msix_entries) { 5706 int vector = 0, i; 5707 5708 free_irq(adapter->msix_entries[vector++].vector, adapter); 5709 5710 for (i = 0; i < adapter->num_q_vectors; i++) 5711 free_irq(adapter->msix_entries[vector++].vector, 5712 adapter->q_vector[i]); 5713 } else { 5714 free_irq(adapter->pdev->irq, adapter); 5715 } 5716 } 5717 5718 /** 5719 * igc_request_irq - initialize interrupts 5720 * @adapter: Pointer to adapter structure 5721 * 5722 * Attempts to configure interrupts using the best available 5723 * capabilities of the hardware and kernel. 5724 */ 5725 static int igc_request_irq(struct igc_adapter *adapter) 5726 { 5727 struct net_device *netdev = adapter->netdev; 5728 struct pci_dev *pdev = adapter->pdev; 5729 int err = 0; 5730 5731 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5732 err = igc_request_msix(adapter); 5733 if (!err) 5734 goto request_done; 5735 /* fall back to MSI */ 5736 igc_free_all_tx_resources(adapter); 5737 igc_free_all_rx_resources(adapter); 5738 5739 igc_clear_interrupt_scheme(adapter); 5740 err = igc_init_interrupt_scheme(adapter, false); 5741 if (err) 5742 goto request_done; 5743 igc_setup_all_tx_resources(adapter); 5744 igc_setup_all_rx_resources(adapter); 5745 igc_configure(adapter); 5746 } 5747 5748 igc_assign_vector(adapter->q_vector[0], 0); 5749 5750 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5751 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5752 netdev->name, adapter); 5753 if (!err) 5754 goto request_done; 5755 5756 /* fall back to legacy interrupts */ 5757 igc_reset_interrupt_capability(adapter); 5758 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5759 } 5760 5761 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5762 netdev->name, adapter); 5763 5764 if (err) 5765 netdev_err(netdev, "Error %d getting interrupt\n", err); 5766 5767 request_done: 5768 return err; 5769 } 5770 5771 /** 5772 * __igc_open - Called when a network interface is made active 5773 * @netdev: network interface device structure 5774 * @resuming: boolean indicating if the device is resuming 5775 * 5776 * Returns 0 on success, negative value on failure 5777 * 5778 * The open entry point is called when a network interface is made 5779 * active by the system (IFF_UP). At this point all resources needed 5780 * for transmit and receive operations are allocated, the interrupt 5781 * handler is registered with the OS, the watchdog timer is started, 5782 * and the stack is notified that the interface is ready. 5783 */ 5784 static int __igc_open(struct net_device *netdev, bool resuming) 5785 { 5786 struct igc_adapter *adapter = netdev_priv(netdev); 5787 struct pci_dev *pdev = adapter->pdev; 5788 struct igc_hw *hw = &adapter->hw; 5789 int err = 0; 5790 int i = 0; 5791 5792 /* disallow open during test */ 5793 5794 if (test_bit(__IGC_TESTING, &adapter->state)) { 5795 WARN_ON(resuming); 5796 return -EBUSY; 5797 } 5798 5799 if (!resuming) 5800 pm_runtime_get_sync(&pdev->dev); 5801 5802 netif_carrier_off(netdev); 5803 5804 /* allocate transmit descriptors */ 5805 err = igc_setup_all_tx_resources(adapter); 5806 if (err) 5807 goto err_setup_tx; 5808 5809 /* allocate receive descriptors */ 5810 err = igc_setup_all_rx_resources(adapter); 5811 if (err) 5812 goto err_setup_rx; 5813 5814 igc_power_up_link(adapter); 5815 5816 igc_configure(adapter); 5817 5818 err = igc_request_irq(adapter); 5819 if (err) 5820 goto err_req_irq; 5821 5822 /* Notify the stack of the actual queue counts. */ 5823 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 5824 if (err) 5825 goto err_set_queues; 5826 5827 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 5828 if (err) 5829 goto err_set_queues; 5830 5831 clear_bit(__IGC_DOWN, &adapter->state); 5832 5833 for (i = 0; i < adapter->num_q_vectors; i++) 5834 napi_enable(&adapter->q_vector[i]->napi); 5835 5836 /* Clear any pending interrupts. */ 5837 rd32(IGC_ICR); 5838 igc_irq_enable(adapter); 5839 5840 if (!resuming) 5841 pm_runtime_put(&pdev->dev); 5842 5843 netif_tx_start_all_queues(netdev); 5844 5845 /* start the watchdog. */ 5846 hw->mac.get_link_status = true; 5847 schedule_work(&adapter->watchdog_task); 5848 5849 return IGC_SUCCESS; 5850 5851 err_set_queues: 5852 igc_free_irq(adapter); 5853 err_req_irq: 5854 igc_release_hw_control(adapter); 5855 igc_power_down_phy_copper_base(&adapter->hw); 5856 igc_free_all_rx_resources(adapter); 5857 err_setup_rx: 5858 igc_free_all_tx_resources(adapter); 5859 err_setup_tx: 5860 igc_reset(adapter); 5861 if (!resuming) 5862 pm_runtime_put(&pdev->dev); 5863 5864 return err; 5865 } 5866 5867 int igc_open(struct net_device *netdev) 5868 { 5869 return __igc_open(netdev, false); 5870 } 5871 5872 /** 5873 * __igc_close - Disables a network interface 5874 * @netdev: network interface device structure 5875 * @suspending: boolean indicating the device is suspending 5876 * 5877 * Returns 0, this is not allowed to fail 5878 * 5879 * The close entry point is called when an interface is de-activated 5880 * by the OS. The hardware is still under the driver's control, but 5881 * needs to be disabled. A global MAC reset is issued to stop the 5882 * hardware, and all transmit and receive resources are freed. 5883 */ 5884 static int __igc_close(struct net_device *netdev, bool suspending) 5885 { 5886 struct igc_adapter *adapter = netdev_priv(netdev); 5887 struct pci_dev *pdev = adapter->pdev; 5888 5889 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 5890 5891 if (!suspending) 5892 pm_runtime_get_sync(&pdev->dev); 5893 5894 igc_down(adapter); 5895 5896 igc_release_hw_control(adapter); 5897 5898 igc_free_irq(adapter); 5899 5900 igc_free_all_tx_resources(adapter); 5901 igc_free_all_rx_resources(adapter); 5902 5903 if (!suspending) 5904 pm_runtime_put_sync(&pdev->dev); 5905 5906 return 0; 5907 } 5908 5909 int igc_close(struct net_device *netdev) 5910 { 5911 if (netif_device_present(netdev) || netdev->dismantle) 5912 return __igc_close(netdev, false); 5913 return 0; 5914 } 5915 5916 /** 5917 * igc_ioctl - Access the hwtstamp interface 5918 * @netdev: network interface device structure 5919 * @ifr: interface request data 5920 * @cmd: ioctl command 5921 **/ 5922 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5923 { 5924 switch (cmd) { 5925 case SIOCGHWTSTAMP: 5926 return igc_ptp_get_ts_config(netdev, ifr); 5927 case SIOCSHWTSTAMP: 5928 return igc_ptp_set_ts_config(netdev, ifr); 5929 default: 5930 return -EOPNOTSUPP; 5931 } 5932 } 5933 5934 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 5935 bool enable) 5936 { 5937 struct igc_ring *ring; 5938 5939 if (queue < 0 || queue >= adapter->num_tx_queues) 5940 return -EINVAL; 5941 5942 ring = adapter->tx_ring[queue]; 5943 ring->launchtime_enable = enable; 5944 5945 return 0; 5946 } 5947 5948 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 5949 { 5950 struct timespec64 b; 5951 5952 b = ktime_to_timespec64(base_time); 5953 5954 return timespec64_compare(now, &b) > 0; 5955 } 5956 5957 static bool validate_schedule(struct igc_adapter *adapter, 5958 const struct tc_taprio_qopt_offload *qopt) 5959 { 5960 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 5961 struct timespec64 now; 5962 size_t n; 5963 5964 if (qopt->cycle_time_extension) 5965 return false; 5966 5967 igc_ptp_read(adapter, &now); 5968 5969 /* If we program the controller's BASET registers with a time 5970 * in the future, it will hold all the packets until that 5971 * time, causing a lot of TX Hangs, so to avoid that, we 5972 * reject schedules that would start in the future. 5973 */ 5974 if (!is_base_time_past(qopt->base_time, &now)) 5975 return false; 5976 5977 for (n = 0; n < qopt->num_entries; n++) { 5978 const struct tc_taprio_sched_entry *e, *prev; 5979 int i; 5980 5981 prev = n ? &qopt->entries[n - 1] : NULL; 5982 e = &qopt->entries[n]; 5983 5984 /* i225 only supports "global" frame preemption 5985 * settings. 5986 */ 5987 if (e->command != TC_TAPRIO_CMD_SET_GATES) 5988 return false; 5989 5990 for (i = 0; i < adapter->num_tx_queues; i++) { 5991 if (e->gate_mask & BIT(i)) 5992 queue_uses[i]++; 5993 5994 /* There are limitations: A single queue cannot be 5995 * opened and closed multiple times per cycle unless the 5996 * gate stays open. Check for it. 5997 */ 5998 if (queue_uses[i] > 1 && 5999 !(prev->gate_mask & BIT(i))) 6000 return false; 6001 } 6002 } 6003 6004 return true; 6005 } 6006 6007 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 6008 struct tc_etf_qopt_offload *qopt) 6009 { 6010 struct igc_hw *hw = &adapter->hw; 6011 int err; 6012 6013 if (hw->mac.type != igc_i225) 6014 return -EOPNOTSUPP; 6015 6016 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 6017 if (err) 6018 return err; 6019 6020 return igc_tsn_offload_apply(adapter); 6021 } 6022 6023 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 6024 { 6025 int i; 6026 6027 adapter->base_time = 0; 6028 adapter->cycle_time = NSEC_PER_SEC; 6029 6030 for (i = 0; i < adapter->num_tx_queues; i++) { 6031 struct igc_ring *ring = adapter->tx_ring[i]; 6032 6033 ring->start_time = 0; 6034 ring->end_time = NSEC_PER_SEC; 6035 } 6036 6037 return 0; 6038 } 6039 6040 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 6041 struct tc_taprio_qopt_offload *qopt) 6042 { 6043 bool queue_configured[IGC_MAX_TX_QUEUES] = { }; 6044 u32 start_time = 0, end_time = 0; 6045 size_t n; 6046 int i; 6047 6048 adapter->qbv_enable = qopt->enable; 6049 6050 if (!qopt->enable) 6051 return igc_tsn_clear_schedule(adapter); 6052 6053 if (qopt->base_time < 0) 6054 return -ERANGE; 6055 6056 if (adapter->base_time) 6057 return -EALREADY; 6058 6059 if (!validate_schedule(adapter, qopt)) 6060 return -EINVAL; 6061 6062 adapter->cycle_time = qopt->cycle_time; 6063 adapter->base_time = qopt->base_time; 6064 6065 for (n = 0; n < qopt->num_entries; n++) { 6066 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 6067 6068 end_time += e->interval; 6069 6070 /* If any of the conditions below are true, we need to manually 6071 * control the end time of the cycle. 6072 * 1. Qbv users can specify a cycle time that is not equal 6073 * to the total GCL intervals. Hence, recalculation is 6074 * necessary here to exclude the time interval that 6075 * exceeds the cycle time. 6076 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2, 6077 * once the end of the list is reached, it will switch 6078 * to the END_OF_CYCLE state and leave the gates in the 6079 * same state until the next cycle is started. 6080 */ 6081 if (end_time > adapter->cycle_time || 6082 n + 1 == qopt->num_entries) 6083 end_time = adapter->cycle_time; 6084 6085 for (i = 0; i < adapter->num_tx_queues; i++) { 6086 struct igc_ring *ring = adapter->tx_ring[i]; 6087 6088 if (!(e->gate_mask & BIT(i))) 6089 continue; 6090 6091 /* Check whether a queue stays open for more than one 6092 * entry. If so, keep the start and advance the end 6093 * time. 6094 */ 6095 if (!queue_configured[i]) 6096 ring->start_time = start_time; 6097 ring->end_time = end_time; 6098 6099 queue_configured[i] = true; 6100 } 6101 6102 start_time += e->interval; 6103 } 6104 6105 /* Check whether a queue gets configured. 6106 * If not, set the start and end time to be end time. 6107 */ 6108 for (i = 0; i < adapter->num_tx_queues; i++) { 6109 if (!queue_configured[i]) { 6110 struct igc_ring *ring = adapter->tx_ring[i]; 6111 6112 ring->start_time = end_time; 6113 ring->end_time = end_time; 6114 } 6115 } 6116 6117 return 0; 6118 } 6119 6120 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 6121 struct tc_taprio_qopt_offload *qopt) 6122 { 6123 struct igc_hw *hw = &adapter->hw; 6124 int err; 6125 6126 if (hw->mac.type != igc_i225) 6127 return -EOPNOTSUPP; 6128 6129 err = igc_save_qbv_schedule(adapter, qopt); 6130 if (err) 6131 return err; 6132 6133 return igc_tsn_offload_apply(adapter); 6134 } 6135 6136 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 6137 bool enable, int idleslope, int sendslope, 6138 int hicredit, int locredit) 6139 { 6140 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 6141 struct net_device *netdev = adapter->netdev; 6142 struct igc_ring *ring; 6143 int i; 6144 6145 /* i225 has two sets of credit-based shaper logic. 6146 * Supporting it only on the top two priority queues 6147 */ 6148 if (queue < 0 || queue > 1) 6149 return -EINVAL; 6150 6151 ring = adapter->tx_ring[queue]; 6152 6153 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 6154 if (adapter->tx_ring[i]) 6155 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 6156 6157 /* CBS should be enabled on the highest priority queue first in order 6158 * for the CBS algorithm to operate as intended. 6159 */ 6160 if (enable) { 6161 if (queue == 1 && !cbs_status[0]) { 6162 netdev_err(netdev, 6163 "Enabling CBS on queue1 before queue0\n"); 6164 return -EINVAL; 6165 } 6166 } else { 6167 if (queue == 0 && cbs_status[1]) { 6168 netdev_err(netdev, 6169 "Disabling CBS on queue0 before queue1\n"); 6170 return -EINVAL; 6171 } 6172 } 6173 6174 ring->cbs_enable = enable; 6175 ring->idleslope = idleslope; 6176 ring->sendslope = sendslope; 6177 ring->hicredit = hicredit; 6178 ring->locredit = locredit; 6179 6180 return 0; 6181 } 6182 6183 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 6184 struct tc_cbs_qopt_offload *qopt) 6185 { 6186 struct igc_hw *hw = &adapter->hw; 6187 int err; 6188 6189 if (hw->mac.type != igc_i225) 6190 return -EOPNOTSUPP; 6191 6192 if (qopt->queue < 0 || qopt->queue > 1) 6193 return -EINVAL; 6194 6195 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 6196 qopt->idleslope, qopt->sendslope, 6197 qopt->hicredit, qopt->locredit); 6198 if (err) 6199 return err; 6200 6201 return igc_tsn_offload_apply(adapter); 6202 } 6203 6204 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6205 void *type_data) 6206 { 6207 struct igc_adapter *adapter = netdev_priv(dev); 6208 6209 switch (type) { 6210 case TC_SETUP_QDISC_TAPRIO: 6211 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6212 6213 case TC_SETUP_QDISC_ETF: 6214 return igc_tsn_enable_launchtime(adapter, type_data); 6215 6216 case TC_SETUP_QDISC_CBS: 6217 return igc_tsn_enable_cbs(adapter, type_data); 6218 6219 default: 6220 return -EOPNOTSUPP; 6221 } 6222 } 6223 6224 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6225 { 6226 struct igc_adapter *adapter = netdev_priv(dev); 6227 6228 switch (bpf->command) { 6229 case XDP_SETUP_PROG: 6230 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6231 case XDP_SETUP_XSK_POOL: 6232 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6233 bpf->xsk.queue_id); 6234 default: 6235 return -EOPNOTSUPP; 6236 } 6237 } 6238 6239 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6240 struct xdp_frame **frames, u32 flags) 6241 { 6242 struct igc_adapter *adapter = netdev_priv(dev); 6243 int cpu = smp_processor_id(); 6244 struct netdev_queue *nq; 6245 struct igc_ring *ring; 6246 int i, drops; 6247 6248 if (unlikely(test_bit(__IGC_DOWN, &adapter->state))) 6249 return -ENETDOWN; 6250 6251 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6252 return -EINVAL; 6253 6254 ring = igc_xdp_get_tx_ring(adapter, cpu); 6255 nq = txring_txq(ring); 6256 6257 __netif_tx_lock(nq, cpu); 6258 6259 drops = 0; 6260 for (i = 0; i < num_frames; i++) { 6261 int err; 6262 struct xdp_frame *xdpf = frames[i]; 6263 6264 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6265 if (err) { 6266 xdp_return_frame_rx_napi(xdpf); 6267 drops++; 6268 } 6269 } 6270 6271 if (flags & XDP_XMIT_FLUSH) 6272 igc_flush_tx_descriptors(ring); 6273 6274 __netif_tx_unlock(nq); 6275 6276 return num_frames - drops; 6277 } 6278 6279 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6280 struct igc_q_vector *q_vector) 6281 { 6282 struct igc_hw *hw = &adapter->hw; 6283 u32 eics = 0; 6284 6285 eics |= q_vector->eims_value; 6286 wr32(IGC_EICS, eics); 6287 } 6288 6289 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6290 { 6291 struct igc_adapter *adapter = netdev_priv(dev); 6292 struct igc_q_vector *q_vector; 6293 struct igc_ring *ring; 6294 6295 if (test_bit(__IGC_DOWN, &adapter->state)) 6296 return -ENETDOWN; 6297 6298 if (!igc_xdp_is_enabled(adapter)) 6299 return -ENXIO; 6300 6301 if (queue_id >= adapter->num_rx_queues) 6302 return -EINVAL; 6303 6304 ring = adapter->rx_ring[queue_id]; 6305 6306 if (!ring->xsk_pool) 6307 return -ENXIO; 6308 6309 q_vector = adapter->q_vector[queue_id]; 6310 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6311 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6312 6313 return 0; 6314 } 6315 6316 static const struct net_device_ops igc_netdev_ops = { 6317 .ndo_open = igc_open, 6318 .ndo_stop = igc_close, 6319 .ndo_start_xmit = igc_xmit_frame, 6320 .ndo_set_rx_mode = igc_set_rx_mode, 6321 .ndo_set_mac_address = igc_set_mac, 6322 .ndo_change_mtu = igc_change_mtu, 6323 .ndo_get_stats64 = igc_get_stats64, 6324 .ndo_fix_features = igc_fix_features, 6325 .ndo_set_features = igc_set_features, 6326 .ndo_features_check = igc_features_check, 6327 .ndo_eth_ioctl = igc_ioctl, 6328 .ndo_setup_tc = igc_setup_tc, 6329 .ndo_bpf = igc_bpf, 6330 .ndo_xdp_xmit = igc_xdp_xmit, 6331 .ndo_xsk_wakeup = igc_xsk_wakeup, 6332 }; 6333 6334 /* PCIe configuration access */ 6335 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6336 { 6337 struct igc_adapter *adapter = hw->back; 6338 6339 pci_read_config_word(adapter->pdev, reg, value); 6340 } 6341 6342 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6343 { 6344 struct igc_adapter *adapter = hw->back; 6345 6346 pci_write_config_word(adapter->pdev, reg, *value); 6347 } 6348 6349 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6350 { 6351 struct igc_adapter *adapter = hw->back; 6352 6353 if (!pci_is_pcie(adapter->pdev)) 6354 return -IGC_ERR_CONFIG; 6355 6356 pcie_capability_read_word(adapter->pdev, reg, value); 6357 6358 return IGC_SUCCESS; 6359 } 6360 6361 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6362 { 6363 struct igc_adapter *adapter = hw->back; 6364 6365 if (!pci_is_pcie(adapter->pdev)) 6366 return -IGC_ERR_CONFIG; 6367 6368 pcie_capability_write_word(adapter->pdev, reg, *value); 6369 6370 return IGC_SUCCESS; 6371 } 6372 6373 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6374 { 6375 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6376 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6377 u32 value = 0; 6378 6379 if (IGC_REMOVED(hw_addr)) 6380 return ~value; 6381 6382 value = readl(&hw_addr[reg]); 6383 6384 /* reads should not return all F's */ 6385 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6386 struct net_device *netdev = igc->netdev; 6387 6388 hw->hw_addr = NULL; 6389 netif_device_detach(netdev); 6390 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6391 WARN(pci_device_is_present(igc->pdev), 6392 "igc: Failed to read reg 0x%x!\n", reg); 6393 } 6394 6395 return value; 6396 } 6397 6398 /** 6399 * igc_probe - Device Initialization Routine 6400 * @pdev: PCI device information struct 6401 * @ent: entry in igc_pci_tbl 6402 * 6403 * Returns 0 on success, negative on failure 6404 * 6405 * igc_probe initializes an adapter identified by a pci_dev structure. 6406 * The OS initialization, configuring the adapter private structure, 6407 * and a hardware reset occur. 6408 */ 6409 static int igc_probe(struct pci_dev *pdev, 6410 const struct pci_device_id *ent) 6411 { 6412 struct igc_adapter *adapter; 6413 struct net_device *netdev; 6414 struct igc_hw *hw; 6415 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6416 int err; 6417 6418 err = pci_enable_device_mem(pdev); 6419 if (err) 6420 return err; 6421 6422 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6423 if (err) { 6424 dev_err(&pdev->dev, 6425 "No usable DMA configuration, aborting\n"); 6426 goto err_dma; 6427 } 6428 6429 err = pci_request_mem_regions(pdev, igc_driver_name); 6430 if (err) 6431 goto err_pci_reg; 6432 6433 pci_enable_pcie_error_reporting(pdev); 6434 6435 err = pci_enable_ptm(pdev, NULL); 6436 if (err < 0) 6437 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6438 6439 pci_set_master(pdev); 6440 6441 err = -ENOMEM; 6442 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6443 IGC_MAX_TX_QUEUES); 6444 6445 if (!netdev) 6446 goto err_alloc_etherdev; 6447 6448 SET_NETDEV_DEV(netdev, &pdev->dev); 6449 6450 pci_set_drvdata(pdev, netdev); 6451 adapter = netdev_priv(netdev); 6452 adapter->netdev = netdev; 6453 adapter->pdev = pdev; 6454 hw = &adapter->hw; 6455 hw->back = adapter; 6456 adapter->port_num = hw->bus.func; 6457 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6458 6459 err = pci_save_state(pdev); 6460 if (err) 6461 goto err_ioremap; 6462 6463 err = -EIO; 6464 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6465 pci_resource_len(pdev, 0)); 6466 if (!adapter->io_addr) 6467 goto err_ioremap; 6468 6469 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6470 hw->hw_addr = adapter->io_addr; 6471 6472 netdev->netdev_ops = &igc_netdev_ops; 6473 igc_ethtool_set_ops(netdev); 6474 netdev->watchdog_timeo = 5 * HZ; 6475 6476 netdev->mem_start = pci_resource_start(pdev, 0); 6477 netdev->mem_end = pci_resource_end(pdev, 0); 6478 6479 /* PCI config space info */ 6480 hw->vendor_id = pdev->vendor; 6481 hw->device_id = pdev->device; 6482 hw->revision_id = pdev->revision; 6483 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6484 hw->subsystem_device_id = pdev->subsystem_device; 6485 6486 /* Copy the default MAC and PHY function pointers */ 6487 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6488 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6489 6490 /* Initialize skew-specific constants */ 6491 err = ei->get_invariants(hw); 6492 if (err) 6493 goto err_sw_init; 6494 6495 /* Add supported features to the features list*/ 6496 netdev->features |= NETIF_F_SG; 6497 netdev->features |= NETIF_F_TSO; 6498 netdev->features |= NETIF_F_TSO6; 6499 netdev->features |= NETIF_F_TSO_ECN; 6500 netdev->features |= NETIF_F_RXCSUM; 6501 netdev->features |= NETIF_F_HW_CSUM; 6502 netdev->features |= NETIF_F_SCTP_CRC; 6503 netdev->features |= NETIF_F_HW_TC; 6504 6505 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6506 NETIF_F_GSO_GRE_CSUM | \ 6507 NETIF_F_GSO_IPXIP4 | \ 6508 NETIF_F_GSO_IPXIP6 | \ 6509 NETIF_F_GSO_UDP_TUNNEL | \ 6510 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6511 6512 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6513 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6514 6515 /* setup the private structure */ 6516 err = igc_sw_init(adapter); 6517 if (err) 6518 goto err_sw_init; 6519 6520 /* copy netdev features into list of user selectable features */ 6521 netdev->hw_features |= NETIF_F_NTUPLE; 6522 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6523 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6524 netdev->hw_features |= netdev->features; 6525 6526 netdev->features |= NETIF_F_HIGHDMA; 6527 6528 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6529 netdev->mpls_features |= NETIF_F_HW_CSUM; 6530 netdev->hw_enc_features |= netdev->vlan_features; 6531 6532 /* MTU range: 68 - 9216 */ 6533 netdev->min_mtu = ETH_MIN_MTU; 6534 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6535 6536 /* before reading the NVM, reset the controller to put the device in a 6537 * known good starting state 6538 */ 6539 hw->mac.ops.reset_hw(hw); 6540 6541 if (igc_get_flash_presence_i225(hw)) { 6542 if (hw->nvm.ops.validate(hw) < 0) { 6543 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6544 err = -EIO; 6545 goto err_eeprom; 6546 } 6547 } 6548 6549 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6550 /* copy the MAC address out of the NVM */ 6551 if (hw->mac.ops.read_mac_addr(hw)) 6552 dev_err(&pdev->dev, "NVM Read Error\n"); 6553 } 6554 6555 eth_hw_addr_set(netdev, hw->mac.addr); 6556 6557 if (!is_valid_ether_addr(netdev->dev_addr)) { 6558 dev_err(&pdev->dev, "Invalid MAC Address\n"); 6559 err = -EIO; 6560 goto err_eeprom; 6561 } 6562 6563 /* configure RXPBSIZE and TXPBSIZE */ 6564 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 6565 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 6566 6567 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 6568 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 6569 6570 INIT_WORK(&adapter->reset_task, igc_reset_task); 6571 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 6572 6573 /* Initialize link properties that are user-changeable */ 6574 adapter->fc_autoneg = true; 6575 hw->mac.autoneg = true; 6576 hw->phy.autoneg_advertised = 0xaf; 6577 6578 hw->fc.requested_mode = igc_fc_default; 6579 hw->fc.current_mode = igc_fc_default; 6580 6581 /* By default, support wake on port A */ 6582 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 6583 6584 /* initialize the wol settings based on the eeprom settings */ 6585 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 6586 adapter->wol |= IGC_WUFC_MAG; 6587 6588 device_set_wakeup_enable(&adapter->pdev->dev, 6589 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 6590 6591 igc_ptp_init(adapter); 6592 6593 igc_tsn_clear_schedule(adapter); 6594 6595 /* reset the hardware with the new settings */ 6596 igc_reset(adapter); 6597 6598 /* let the f/w know that the h/w is now under the control of the 6599 * driver. 6600 */ 6601 igc_get_hw_control(adapter); 6602 6603 strncpy(netdev->name, "eth%d", IFNAMSIZ); 6604 err = register_netdev(netdev); 6605 if (err) 6606 goto err_register; 6607 6608 /* carrier off reporting is important to ethtool even BEFORE open */ 6609 netif_carrier_off(netdev); 6610 6611 /* Check if Media Autosense is enabled */ 6612 adapter->ei = *ei; 6613 6614 /* print pcie link status and MAC address */ 6615 pcie_print_link_status(pdev); 6616 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 6617 6618 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 6619 /* Disable EEE for internal PHY devices */ 6620 hw->dev_spec._base.eee_enable = false; 6621 adapter->flags &= ~IGC_FLAG_EEE; 6622 igc_set_eee_i225(hw, false, false, false); 6623 6624 pm_runtime_put_noidle(&pdev->dev); 6625 6626 return 0; 6627 6628 err_register: 6629 igc_release_hw_control(adapter); 6630 err_eeprom: 6631 if (!igc_check_reset_block(hw)) 6632 igc_reset_phy(hw); 6633 err_sw_init: 6634 igc_clear_interrupt_scheme(adapter); 6635 iounmap(adapter->io_addr); 6636 err_ioremap: 6637 free_netdev(netdev); 6638 err_alloc_etherdev: 6639 pci_disable_pcie_error_reporting(pdev); 6640 pci_release_mem_regions(pdev); 6641 err_pci_reg: 6642 err_dma: 6643 pci_disable_device(pdev); 6644 return err; 6645 } 6646 6647 /** 6648 * igc_remove - Device Removal Routine 6649 * @pdev: PCI device information struct 6650 * 6651 * igc_remove is called by the PCI subsystem to alert the driver 6652 * that it should release a PCI device. This could be caused by a 6653 * Hot-Plug event, or because the driver is going to be removed from 6654 * memory. 6655 */ 6656 static void igc_remove(struct pci_dev *pdev) 6657 { 6658 struct net_device *netdev = pci_get_drvdata(pdev); 6659 struct igc_adapter *adapter = netdev_priv(netdev); 6660 6661 pm_runtime_get_noresume(&pdev->dev); 6662 6663 igc_flush_nfc_rules(adapter); 6664 6665 igc_ptp_stop(adapter); 6666 6667 set_bit(__IGC_DOWN, &adapter->state); 6668 6669 del_timer_sync(&adapter->watchdog_timer); 6670 del_timer_sync(&adapter->phy_info_timer); 6671 6672 cancel_work_sync(&adapter->reset_task); 6673 cancel_work_sync(&adapter->watchdog_task); 6674 6675 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6676 * would have already happened in close and is redundant. 6677 */ 6678 igc_release_hw_control(adapter); 6679 unregister_netdev(netdev); 6680 6681 igc_clear_interrupt_scheme(adapter); 6682 pci_iounmap(pdev, adapter->io_addr); 6683 pci_release_mem_regions(pdev); 6684 6685 free_netdev(netdev); 6686 6687 pci_disable_pcie_error_reporting(pdev); 6688 6689 pci_disable_device(pdev); 6690 } 6691 6692 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 6693 bool runtime) 6694 { 6695 struct net_device *netdev = pci_get_drvdata(pdev); 6696 struct igc_adapter *adapter = netdev_priv(netdev); 6697 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 6698 struct igc_hw *hw = &adapter->hw; 6699 u32 ctrl, rctl, status; 6700 bool wake; 6701 6702 rtnl_lock(); 6703 netif_device_detach(netdev); 6704 6705 if (netif_running(netdev)) 6706 __igc_close(netdev, true); 6707 6708 igc_ptp_suspend(adapter); 6709 6710 igc_clear_interrupt_scheme(adapter); 6711 rtnl_unlock(); 6712 6713 status = rd32(IGC_STATUS); 6714 if (status & IGC_STATUS_LU) 6715 wufc &= ~IGC_WUFC_LNKC; 6716 6717 if (wufc) { 6718 igc_setup_rctl(adapter); 6719 igc_set_rx_mode(netdev); 6720 6721 /* turn on all-multi mode if wake on multicast is enabled */ 6722 if (wufc & IGC_WUFC_MC) { 6723 rctl = rd32(IGC_RCTL); 6724 rctl |= IGC_RCTL_MPE; 6725 wr32(IGC_RCTL, rctl); 6726 } 6727 6728 ctrl = rd32(IGC_CTRL); 6729 ctrl |= IGC_CTRL_ADVD3WUC; 6730 wr32(IGC_CTRL, ctrl); 6731 6732 /* Allow time for pending master requests to run */ 6733 igc_disable_pcie_master(hw); 6734 6735 wr32(IGC_WUC, IGC_WUC_PME_EN); 6736 wr32(IGC_WUFC, wufc); 6737 } else { 6738 wr32(IGC_WUC, 0); 6739 wr32(IGC_WUFC, 0); 6740 } 6741 6742 wake = wufc || adapter->en_mng_pt; 6743 if (!wake) 6744 igc_power_down_phy_copper_base(&adapter->hw); 6745 else 6746 igc_power_up_link(adapter); 6747 6748 if (enable_wake) 6749 *enable_wake = wake; 6750 6751 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6752 * would have already happened in close and is redundant. 6753 */ 6754 igc_release_hw_control(adapter); 6755 6756 pci_disable_device(pdev); 6757 6758 return 0; 6759 } 6760 6761 #ifdef CONFIG_PM 6762 static int __maybe_unused igc_runtime_suspend(struct device *dev) 6763 { 6764 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 6765 } 6766 6767 static void igc_deliver_wake_packet(struct net_device *netdev) 6768 { 6769 struct igc_adapter *adapter = netdev_priv(netdev); 6770 struct igc_hw *hw = &adapter->hw; 6771 struct sk_buff *skb; 6772 u32 wupl; 6773 6774 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 6775 6776 /* WUPM stores only the first 128 bytes of the wake packet. 6777 * Read the packet only if we have the whole thing. 6778 */ 6779 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 6780 return; 6781 6782 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 6783 if (!skb) 6784 return; 6785 6786 skb_put(skb, wupl); 6787 6788 /* Ensure reads are 32-bit aligned */ 6789 wupl = roundup(wupl, 4); 6790 6791 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 6792 6793 skb->protocol = eth_type_trans(skb, netdev); 6794 netif_rx(skb); 6795 } 6796 6797 static int __maybe_unused igc_resume(struct device *dev) 6798 { 6799 struct pci_dev *pdev = to_pci_dev(dev); 6800 struct net_device *netdev = pci_get_drvdata(pdev); 6801 struct igc_adapter *adapter = netdev_priv(netdev); 6802 struct igc_hw *hw = &adapter->hw; 6803 u32 err, val; 6804 6805 pci_set_power_state(pdev, PCI_D0); 6806 pci_restore_state(pdev); 6807 pci_save_state(pdev); 6808 6809 if (!pci_device_is_present(pdev)) 6810 return -ENODEV; 6811 err = pci_enable_device_mem(pdev); 6812 if (err) { 6813 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 6814 return err; 6815 } 6816 pci_set_master(pdev); 6817 6818 pci_enable_wake(pdev, PCI_D3hot, 0); 6819 pci_enable_wake(pdev, PCI_D3cold, 0); 6820 6821 if (igc_init_interrupt_scheme(adapter, true)) { 6822 netdev_err(netdev, "Unable to allocate memory for queues\n"); 6823 return -ENOMEM; 6824 } 6825 6826 igc_reset(adapter); 6827 6828 /* let the f/w know that the h/w is now under the control of the 6829 * driver. 6830 */ 6831 igc_get_hw_control(adapter); 6832 6833 val = rd32(IGC_WUS); 6834 if (val & WAKE_PKT_WUS) 6835 igc_deliver_wake_packet(netdev); 6836 6837 wr32(IGC_WUS, ~0); 6838 6839 rtnl_lock(); 6840 if (!err && netif_running(netdev)) 6841 err = __igc_open(netdev, true); 6842 6843 if (!err) 6844 netif_device_attach(netdev); 6845 rtnl_unlock(); 6846 6847 return err; 6848 } 6849 6850 static int __maybe_unused igc_runtime_resume(struct device *dev) 6851 { 6852 return igc_resume(dev); 6853 } 6854 6855 static int __maybe_unused igc_suspend(struct device *dev) 6856 { 6857 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 6858 } 6859 6860 static int __maybe_unused igc_runtime_idle(struct device *dev) 6861 { 6862 struct net_device *netdev = dev_get_drvdata(dev); 6863 struct igc_adapter *adapter = netdev_priv(netdev); 6864 6865 if (!igc_has_link(adapter)) 6866 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 6867 6868 return -EBUSY; 6869 } 6870 #endif /* CONFIG_PM */ 6871 6872 static void igc_shutdown(struct pci_dev *pdev) 6873 { 6874 bool wake; 6875 6876 __igc_shutdown(pdev, &wake, 0); 6877 6878 if (system_state == SYSTEM_POWER_OFF) { 6879 pci_wake_from_d3(pdev, wake); 6880 pci_set_power_state(pdev, PCI_D3hot); 6881 } 6882 } 6883 6884 /** 6885 * igc_io_error_detected - called when PCI error is detected 6886 * @pdev: Pointer to PCI device 6887 * @state: The current PCI connection state 6888 * 6889 * This function is called after a PCI bus error affecting 6890 * this device has been detected. 6891 **/ 6892 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 6893 pci_channel_state_t state) 6894 { 6895 struct net_device *netdev = pci_get_drvdata(pdev); 6896 struct igc_adapter *adapter = netdev_priv(netdev); 6897 6898 netif_device_detach(netdev); 6899 6900 if (state == pci_channel_io_perm_failure) 6901 return PCI_ERS_RESULT_DISCONNECT; 6902 6903 if (netif_running(netdev)) 6904 igc_down(adapter); 6905 pci_disable_device(pdev); 6906 6907 /* Request a slot reset. */ 6908 return PCI_ERS_RESULT_NEED_RESET; 6909 } 6910 6911 /** 6912 * igc_io_slot_reset - called after the PCI bus has been reset. 6913 * @pdev: Pointer to PCI device 6914 * 6915 * Restart the card from scratch, as if from a cold-boot. Implementation 6916 * resembles the first-half of the igc_resume routine. 6917 **/ 6918 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 6919 { 6920 struct net_device *netdev = pci_get_drvdata(pdev); 6921 struct igc_adapter *adapter = netdev_priv(netdev); 6922 struct igc_hw *hw = &adapter->hw; 6923 pci_ers_result_t result; 6924 6925 if (pci_enable_device_mem(pdev)) { 6926 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 6927 result = PCI_ERS_RESULT_DISCONNECT; 6928 } else { 6929 pci_set_master(pdev); 6930 pci_restore_state(pdev); 6931 pci_save_state(pdev); 6932 6933 pci_enable_wake(pdev, PCI_D3hot, 0); 6934 pci_enable_wake(pdev, PCI_D3cold, 0); 6935 6936 /* In case of PCI error, adapter loses its HW address 6937 * so we should re-assign it here. 6938 */ 6939 hw->hw_addr = adapter->io_addr; 6940 6941 igc_reset(adapter); 6942 wr32(IGC_WUS, ~0); 6943 result = PCI_ERS_RESULT_RECOVERED; 6944 } 6945 6946 return result; 6947 } 6948 6949 /** 6950 * igc_io_resume - called when traffic can start to flow again. 6951 * @pdev: Pointer to PCI device 6952 * 6953 * This callback is called when the error recovery driver tells us that 6954 * its OK to resume normal operation. Implementation resembles the 6955 * second-half of the igc_resume routine. 6956 */ 6957 static void igc_io_resume(struct pci_dev *pdev) 6958 { 6959 struct net_device *netdev = pci_get_drvdata(pdev); 6960 struct igc_adapter *adapter = netdev_priv(netdev); 6961 6962 rtnl_lock(); 6963 if (netif_running(netdev)) { 6964 if (igc_open(netdev)) { 6965 netdev_err(netdev, "igc_open failed after reset\n"); 6966 return; 6967 } 6968 } 6969 6970 netif_device_attach(netdev); 6971 6972 /* let the f/w know that the h/w is now under the control of the 6973 * driver. 6974 */ 6975 igc_get_hw_control(adapter); 6976 rtnl_unlock(); 6977 } 6978 6979 static const struct pci_error_handlers igc_err_handler = { 6980 .error_detected = igc_io_error_detected, 6981 .slot_reset = igc_io_slot_reset, 6982 .resume = igc_io_resume, 6983 }; 6984 6985 #ifdef CONFIG_PM 6986 static const struct dev_pm_ops igc_pm_ops = { 6987 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 6988 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 6989 igc_runtime_idle) 6990 }; 6991 #endif 6992 6993 static struct pci_driver igc_driver = { 6994 .name = igc_driver_name, 6995 .id_table = igc_pci_tbl, 6996 .probe = igc_probe, 6997 .remove = igc_remove, 6998 #ifdef CONFIG_PM 6999 .driver.pm = &igc_pm_ops, 7000 #endif 7001 .shutdown = igc_shutdown, 7002 .err_handler = &igc_err_handler, 7003 }; 7004 7005 /** 7006 * igc_reinit_queues - return error 7007 * @adapter: pointer to adapter structure 7008 */ 7009 int igc_reinit_queues(struct igc_adapter *adapter) 7010 { 7011 struct net_device *netdev = adapter->netdev; 7012 int err = 0; 7013 7014 if (netif_running(netdev)) 7015 igc_close(netdev); 7016 7017 igc_reset_interrupt_capability(adapter); 7018 7019 if (igc_init_interrupt_scheme(adapter, true)) { 7020 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7021 return -ENOMEM; 7022 } 7023 7024 if (netif_running(netdev)) 7025 err = igc_open(netdev); 7026 7027 return err; 7028 } 7029 7030 /** 7031 * igc_get_hw_dev - return device 7032 * @hw: pointer to hardware structure 7033 * 7034 * used by hardware layer to print debugging information 7035 */ 7036 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 7037 { 7038 struct igc_adapter *adapter = hw->back; 7039 7040 return adapter->netdev; 7041 } 7042 7043 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 7044 { 7045 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7046 u8 idx = ring->reg_idx; 7047 u32 rxdctl; 7048 7049 rxdctl = rd32(IGC_RXDCTL(idx)); 7050 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 7051 rxdctl |= IGC_RXDCTL_SWFLUSH; 7052 wr32(IGC_RXDCTL(idx), rxdctl); 7053 } 7054 7055 void igc_disable_rx_ring(struct igc_ring *ring) 7056 { 7057 igc_disable_rx_ring_hw(ring); 7058 igc_clean_rx_ring(ring); 7059 } 7060 7061 void igc_enable_rx_ring(struct igc_ring *ring) 7062 { 7063 struct igc_adapter *adapter = ring->q_vector->adapter; 7064 7065 igc_configure_rx_ring(adapter, ring); 7066 7067 if (ring->xsk_pool) 7068 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 7069 else 7070 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 7071 } 7072 7073 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 7074 { 7075 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7076 u8 idx = ring->reg_idx; 7077 u32 txdctl; 7078 7079 txdctl = rd32(IGC_TXDCTL(idx)); 7080 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 7081 txdctl |= IGC_TXDCTL_SWFLUSH; 7082 wr32(IGC_TXDCTL(idx), txdctl); 7083 } 7084 7085 void igc_disable_tx_ring(struct igc_ring *ring) 7086 { 7087 igc_disable_tx_ring_hw(ring); 7088 igc_clean_tx_ring(ring); 7089 } 7090 7091 void igc_enable_tx_ring(struct igc_ring *ring) 7092 { 7093 struct igc_adapter *adapter = ring->q_vector->adapter; 7094 7095 igc_configure_tx_ring(adapter, ring); 7096 } 7097 7098 /** 7099 * igc_init_module - Driver Registration Routine 7100 * 7101 * igc_init_module is the first routine called when the driver is 7102 * loaded. All it does is register with the PCI subsystem. 7103 */ 7104 static int __init igc_init_module(void) 7105 { 7106 int ret; 7107 7108 pr_info("%s\n", igc_driver_string); 7109 pr_info("%s\n", igc_copyright); 7110 7111 ret = pci_register_driver(&igc_driver); 7112 return ret; 7113 } 7114 7115 module_init(igc_init_module); 7116 7117 /** 7118 * igc_exit_module - Driver Exit Cleanup Routine 7119 * 7120 * igc_exit_module is called just before the driver is removed 7121 * from memory. 7122 */ 7123 static void __exit igc_exit_module(void) 7124 { 7125 pci_unregister_driver(&igc_driver); 7126 } 7127 7128 module_exit(igc_exit_module); 7129 /* igc_main.c */ 7130