1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <net/ipv6.h>
16 
17 #include "igc.h"
18 #include "igc_hw.h"
19 #include "igc_tsn.h"
20 #include "igc_xdp.h"
21 
22 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
23 
24 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
25 
26 #define IGC_XDP_PASS		0
27 #define IGC_XDP_CONSUMED	BIT(0)
28 #define IGC_XDP_TX		BIT(1)
29 #define IGC_XDP_REDIRECT	BIT(2)
30 
31 static int debug = -1;
32 
33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34 MODULE_DESCRIPTION(DRV_SUMMARY);
35 MODULE_LICENSE("GPL v2");
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38 
39 char igc_driver_name[] = "igc";
40 static const char igc_driver_string[] = DRV_SUMMARY;
41 static const char igc_copyright[] =
42 	"Copyright(c) 2018 Intel Corporation.";
43 
44 static const struct igc_info *igc_info_tbl[] = {
45 	[board_base] = &igc_base_info,
46 };
47 
48 static const struct pci_device_id igc_pci_tbl[] = {
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
64 	/* required last entry */
65 	{0, }
66 };
67 
68 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
69 
70 enum latency_range {
71 	lowest_latency = 0,
72 	low_latency = 1,
73 	bulk_latency = 2,
74 	latency_invalid = 255
75 };
76 
77 void igc_reset(struct igc_adapter *adapter)
78 {
79 	struct net_device *dev = adapter->netdev;
80 	struct igc_hw *hw = &adapter->hw;
81 	struct igc_fc_info *fc = &hw->fc;
82 	u32 pba, hwm;
83 
84 	/* Repartition PBA for greater than 9k MTU if required */
85 	pba = IGC_PBA_34K;
86 
87 	/* flow control settings
88 	 * The high water mark must be low enough to fit one full frame
89 	 * after transmitting the pause frame.  As such we must have enough
90 	 * space to allow for us to complete our current transmit and then
91 	 * receive the frame that is in progress from the link partner.
92 	 * Set it to:
93 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94 	 */
95 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96 
97 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
98 	fc->low_water = fc->high_water - 16;
99 	fc->pause_time = 0xFFFF;
100 	fc->send_xon = 1;
101 	fc->current_mode = fc->requested_mode;
102 
103 	hw->mac.ops.reset_hw(hw);
104 
105 	if (hw->mac.ops.init_hw(hw))
106 		netdev_err(dev, "Error on hardware initialization\n");
107 
108 	/* Re-establish EEE setting */
109 	igc_set_eee_i225(hw, true, true, true);
110 
111 	if (!netif_running(adapter->netdev))
112 		igc_power_down_phy_copper_base(&adapter->hw);
113 
114 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
115 	wr32(IGC_VET, ETH_P_8021Q);
116 
117 	/* Re-enable PTP, where applicable. */
118 	igc_ptp_reset(adapter);
119 
120 	/* Re-enable TSN offloading, where applicable. */
121 	igc_tsn_offload_apply(adapter);
122 
123 	igc_get_phy_info(hw);
124 }
125 
126 /**
127  * igc_power_up_link - Power up the phy link
128  * @adapter: address of board private structure
129  */
130 static void igc_power_up_link(struct igc_adapter *adapter)
131 {
132 	igc_reset_phy(&adapter->hw);
133 
134 	igc_power_up_phy_copper(&adapter->hw);
135 
136 	igc_setup_link(&adapter->hw);
137 }
138 
139 /**
140  * igc_release_hw_control - release control of the h/w to f/w
141  * @adapter: address of board private structure
142  *
143  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
144  * For ASF and Pass Through versions of f/w this means that the
145  * driver is no longer loaded.
146  */
147 static void igc_release_hw_control(struct igc_adapter *adapter)
148 {
149 	struct igc_hw *hw = &adapter->hw;
150 	u32 ctrl_ext;
151 
152 	/* Let firmware take over control of h/w */
153 	ctrl_ext = rd32(IGC_CTRL_EXT);
154 	wr32(IGC_CTRL_EXT,
155 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
156 }
157 
158 /**
159  * igc_get_hw_control - get control of the h/w from f/w
160  * @adapter: address of board private structure
161  *
162  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
163  * For ASF and Pass Through versions of f/w this means that
164  * the driver is loaded.
165  */
166 static void igc_get_hw_control(struct igc_adapter *adapter)
167 {
168 	struct igc_hw *hw = &adapter->hw;
169 	u32 ctrl_ext;
170 
171 	/* Let firmware know the driver has taken over */
172 	ctrl_ext = rd32(IGC_CTRL_EXT);
173 	wr32(IGC_CTRL_EXT,
174 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
175 }
176 
177 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
178 {
179 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
180 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
181 
182 	dma_unmap_len_set(buf, len, 0);
183 }
184 
185 /**
186  * igc_clean_tx_ring - Free Tx Buffers
187  * @tx_ring: ring to be cleaned
188  */
189 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
190 {
191 	u16 i = tx_ring->next_to_clean;
192 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
193 	u32 xsk_frames = 0;
194 
195 	while (i != tx_ring->next_to_use) {
196 		union igc_adv_tx_desc *eop_desc, *tx_desc;
197 
198 		switch (tx_buffer->type) {
199 		case IGC_TX_BUFFER_TYPE_XSK:
200 			xsk_frames++;
201 			break;
202 		case IGC_TX_BUFFER_TYPE_XDP:
203 			xdp_return_frame(tx_buffer->xdpf);
204 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
205 			break;
206 		case IGC_TX_BUFFER_TYPE_SKB:
207 			dev_kfree_skb_any(tx_buffer->skb);
208 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
209 			break;
210 		default:
211 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
212 			break;
213 		}
214 
215 		/* check for eop_desc to determine the end of the packet */
216 		eop_desc = tx_buffer->next_to_watch;
217 		tx_desc = IGC_TX_DESC(tx_ring, i);
218 
219 		/* unmap remaining buffers */
220 		while (tx_desc != eop_desc) {
221 			tx_buffer++;
222 			tx_desc++;
223 			i++;
224 			if (unlikely(i == tx_ring->count)) {
225 				i = 0;
226 				tx_buffer = tx_ring->tx_buffer_info;
227 				tx_desc = IGC_TX_DESC(tx_ring, 0);
228 			}
229 
230 			/* unmap any remaining paged data */
231 			if (dma_unmap_len(tx_buffer, len))
232 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
233 		}
234 
235 		/* move us one more past the eop_desc for start of next pkt */
236 		tx_buffer++;
237 		i++;
238 		if (unlikely(i == tx_ring->count)) {
239 			i = 0;
240 			tx_buffer = tx_ring->tx_buffer_info;
241 		}
242 	}
243 
244 	if (tx_ring->xsk_pool && xsk_frames)
245 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
246 
247 	/* reset BQL for queue */
248 	netdev_tx_reset_queue(txring_txq(tx_ring));
249 
250 	/* reset next_to_use and next_to_clean */
251 	tx_ring->next_to_use = 0;
252 	tx_ring->next_to_clean = 0;
253 }
254 
255 /**
256  * igc_free_tx_resources - Free Tx Resources per Queue
257  * @tx_ring: Tx descriptor ring for a specific queue
258  *
259  * Free all transmit software resources
260  */
261 void igc_free_tx_resources(struct igc_ring *tx_ring)
262 {
263 	igc_clean_tx_ring(tx_ring);
264 
265 	vfree(tx_ring->tx_buffer_info);
266 	tx_ring->tx_buffer_info = NULL;
267 
268 	/* if not set, then don't free */
269 	if (!tx_ring->desc)
270 		return;
271 
272 	dma_free_coherent(tx_ring->dev, tx_ring->size,
273 			  tx_ring->desc, tx_ring->dma);
274 
275 	tx_ring->desc = NULL;
276 }
277 
278 /**
279  * igc_free_all_tx_resources - Free Tx Resources for All Queues
280  * @adapter: board private structure
281  *
282  * Free all transmit software resources
283  */
284 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
285 {
286 	int i;
287 
288 	for (i = 0; i < adapter->num_tx_queues; i++)
289 		igc_free_tx_resources(adapter->tx_ring[i]);
290 }
291 
292 /**
293  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
294  * @adapter: board private structure
295  */
296 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
297 {
298 	int i;
299 
300 	for (i = 0; i < adapter->num_tx_queues; i++)
301 		if (adapter->tx_ring[i])
302 			igc_clean_tx_ring(adapter->tx_ring[i]);
303 }
304 
305 /**
306  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
307  * @tx_ring: tx descriptor ring (for a specific queue) to setup
308  *
309  * Return 0 on success, negative on failure
310  */
311 int igc_setup_tx_resources(struct igc_ring *tx_ring)
312 {
313 	struct net_device *ndev = tx_ring->netdev;
314 	struct device *dev = tx_ring->dev;
315 	int size = 0;
316 
317 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
318 	tx_ring->tx_buffer_info = vzalloc(size);
319 	if (!tx_ring->tx_buffer_info)
320 		goto err;
321 
322 	/* round up to nearest 4K */
323 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
324 	tx_ring->size = ALIGN(tx_ring->size, 4096);
325 
326 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
327 					   &tx_ring->dma, GFP_KERNEL);
328 
329 	if (!tx_ring->desc)
330 		goto err;
331 
332 	tx_ring->next_to_use = 0;
333 	tx_ring->next_to_clean = 0;
334 
335 	return 0;
336 
337 err:
338 	vfree(tx_ring->tx_buffer_info);
339 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
340 	return -ENOMEM;
341 }
342 
343 /**
344  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
345  * @adapter: board private structure
346  *
347  * Return 0 on success, negative on failure
348  */
349 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
350 {
351 	struct net_device *dev = adapter->netdev;
352 	int i, err = 0;
353 
354 	for (i = 0; i < adapter->num_tx_queues; i++) {
355 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
356 		if (err) {
357 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
358 			for (i--; i >= 0; i--)
359 				igc_free_tx_resources(adapter->tx_ring[i]);
360 			break;
361 		}
362 	}
363 
364 	return err;
365 }
366 
367 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
368 {
369 	u16 i = rx_ring->next_to_clean;
370 
371 	dev_kfree_skb(rx_ring->skb);
372 	rx_ring->skb = NULL;
373 
374 	/* Free all the Rx ring sk_buffs */
375 	while (i != rx_ring->next_to_alloc) {
376 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
377 
378 		/* Invalidate cache lines that may have been written to by
379 		 * device so that we avoid corrupting memory.
380 		 */
381 		dma_sync_single_range_for_cpu(rx_ring->dev,
382 					      buffer_info->dma,
383 					      buffer_info->page_offset,
384 					      igc_rx_bufsz(rx_ring),
385 					      DMA_FROM_DEVICE);
386 
387 		/* free resources associated with mapping */
388 		dma_unmap_page_attrs(rx_ring->dev,
389 				     buffer_info->dma,
390 				     igc_rx_pg_size(rx_ring),
391 				     DMA_FROM_DEVICE,
392 				     IGC_RX_DMA_ATTR);
393 		__page_frag_cache_drain(buffer_info->page,
394 					buffer_info->pagecnt_bias);
395 
396 		i++;
397 		if (i == rx_ring->count)
398 			i = 0;
399 	}
400 }
401 
402 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
403 {
404 	struct igc_rx_buffer *bi;
405 	u16 i;
406 
407 	for (i = 0; i < ring->count; i++) {
408 		bi = &ring->rx_buffer_info[i];
409 		if (!bi->xdp)
410 			continue;
411 
412 		xsk_buff_free(bi->xdp);
413 		bi->xdp = NULL;
414 	}
415 }
416 
417 /**
418  * igc_clean_rx_ring - Free Rx Buffers per Queue
419  * @ring: ring to free buffers from
420  */
421 static void igc_clean_rx_ring(struct igc_ring *ring)
422 {
423 	if (ring->xsk_pool)
424 		igc_clean_rx_ring_xsk_pool(ring);
425 	else
426 		igc_clean_rx_ring_page_shared(ring);
427 
428 	clear_ring_uses_large_buffer(ring);
429 
430 	ring->next_to_alloc = 0;
431 	ring->next_to_clean = 0;
432 	ring->next_to_use = 0;
433 }
434 
435 /**
436  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
437  * @adapter: board private structure
438  */
439 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
440 {
441 	int i;
442 
443 	for (i = 0; i < adapter->num_rx_queues; i++)
444 		if (adapter->rx_ring[i])
445 			igc_clean_rx_ring(adapter->rx_ring[i]);
446 }
447 
448 /**
449  * igc_free_rx_resources - Free Rx Resources
450  * @rx_ring: ring to clean the resources from
451  *
452  * Free all receive software resources
453  */
454 void igc_free_rx_resources(struct igc_ring *rx_ring)
455 {
456 	igc_clean_rx_ring(rx_ring);
457 
458 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
459 
460 	vfree(rx_ring->rx_buffer_info);
461 	rx_ring->rx_buffer_info = NULL;
462 
463 	/* if not set, then don't free */
464 	if (!rx_ring->desc)
465 		return;
466 
467 	dma_free_coherent(rx_ring->dev, rx_ring->size,
468 			  rx_ring->desc, rx_ring->dma);
469 
470 	rx_ring->desc = NULL;
471 }
472 
473 /**
474  * igc_free_all_rx_resources - Free Rx Resources for All Queues
475  * @adapter: board private structure
476  *
477  * Free all receive software resources
478  */
479 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
480 {
481 	int i;
482 
483 	for (i = 0; i < adapter->num_rx_queues; i++)
484 		igc_free_rx_resources(adapter->rx_ring[i]);
485 }
486 
487 /**
488  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
489  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
490  *
491  * Returns 0 on success, negative on failure
492  */
493 int igc_setup_rx_resources(struct igc_ring *rx_ring)
494 {
495 	struct net_device *ndev = rx_ring->netdev;
496 	struct device *dev = rx_ring->dev;
497 	u8 index = rx_ring->queue_index;
498 	int size, desc_len, res;
499 
500 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
501 			       rx_ring->q_vector->napi.napi_id);
502 	if (res < 0) {
503 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
504 			   index);
505 		return res;
506 	}
507 
508 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
509 	rx_ring->rx_buffer_info = vzalloc(size);
510 	if (!rx_ring->rx_buffer_info)
511 		goto err;
512 
513 	desc_len = sizeof(union igc_adv_rx_desc);
514 
515 	/* Round up to nearest 4K */
516 	rx_ring->size = rx_ring->count * desc_len;
517 	rx_ring->size = ALIGN(rx_ring->size, 4096);
518 
519 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
520 					   &rx_ring->dma, GFP_KERNEL);
521 
522 	if (!rx_ring->desc)
523 		goto err;
524 
525 	rx_ring->next_to_alloc = 0;
526 	rx_ring->next_to_clean = 0;
527 	rx_ring->next_to_use = 0;
528 
529 	return 0;
530 
531 err:
532 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
533 	vfree(rx_ring->rx_buffer_info);
534 	rx_ring->rx_buffer_info = NULL;
535 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
536 	return -ENOMEM;
537 }
538 
539 /**
540  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
541  *                                (Descriptors) for all queues
542  * @adapter: board private structure
543  *
544  * Return 0 on success, negative on failure
545  */
546 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
547 {
548 	struct net_device *dev = adapter->netdev;
549 	int i, err = 0;
550 
551 	for (i = 0; i < adapter->num_rx_queues; i++) {
552 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
553 		if (err) {
554 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
555 			for (i--; i >= 0; i--)
556 				igc_free_rx_resources(adapter->rx_ring[i]);
557 			break;
558 		}
559 	}
560 
561 	return err;
562 }
563 
564 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
565 					      struct igc_ring *ring)
566 {
567 	if (!igc_xdp_is_enabled(adapter) ||
568 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
569 		return NULL;
570 
571 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
572 }
573 
574 /**
575  * igc_configure_rx_ring - Configure a receive ring after Reset
576  * @adapter: board private structure
577  * @ring: receive ring to be configured
578  *
579  * Configure the Rx unit of the MAC after a reset.
580  */
581 static void igc_configure_rx_ring(struct igc_adapter *adapter,
582 				  struct igc_ring *ring)
583 {
584 	struct igc_hw *hw = &adapter->hw;
585 	union igc_adv_rx_desc *rx_desc;
586 	int reg_idx = ring->reg_idx;
587 	u32 srrctl = 0, rxdctl = 0;
588 	u64 rdba = ring->dma;
589 	u32 buf_size;
590 
591 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
592 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
593 	if (ring->xsk_pool) {
594 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
595 						   MEM_TYPE_XSK_BUFF_POOL,
596 						   NULL));
597 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
598 	} else {
599 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
600 						   MEM_TYPE_PAGE_SHARED,
601 						   NULL));
602 	}
603 
604 	if (igc_xdp_is_enabled(adapter))
605 		set_ring_uses_large_buffer(ring);
606 
607 	/* disable the queue */
608 	wr32(IGC_RXDCTL(reg_idx), 0);
609 
610 	/* Set DMA base address registers */
611 	wr32(IGC_RDBAL(reg_idx),
612 	     rdba & 0x00000000ffffffffULL);
613 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
614 	wr32(IGC_RDLEN(reg_idx),
615 	     ring->count * sizeof(union igc_adv_rx_desc));
616 
617 	/* initialize head and tail */
618 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
619 	wr32(IGC_RDH(reg_idx), 0);
620 	writel(0, ring->tail);
621 
622 	/* reset next-to- use/clean to place SW in sync with hardware */
623 	ring->next_to_clean = 0;
624 	ring->next_to_use = 0;
625 
626 	if (ring->xsk_pool)
627 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
628 	else if (ring_uses_large_buffer(ring))
629 		buf_size = IGC_RXBUFFER_3072;
630 	else
631 		buf_size = IGC_RXBUFFER_2048;
632 
633 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
634 	srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
635 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
636 
637 	wr32(IGC_SRRCTL(reg_idx), srrctl);
638 
639 	rxdctl |= IGC_RX_PTHRESH;
640 	rxdctl |= IGC_RX_HTHRESH << 8;
641 	rxdctl |= IGC_RX_WTHRESH << 16;
642 
643 	/* initialize rx_buffer_info */
644 	memset(ring->rx_buffer_info, 0,
645 	       sizeof(struct igc_rx_buffer) * ring->count);
646 
647 	/* initialize Rx descriptor 0 */
648 	rx_desc = IGC_RX_DESC(ring, 0);
649 	rx_desc->wb.upper.length = 0;
650 
651 	/* enable receive descriptor fetching */
652 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
653 
654 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
655 }
656 
657 /**
658  * igc_configure_rx - Configure receive Unit after Reset
659  * @adapter: board private structure
660  *
661  * Configure the Rx unit of the MAC after a reset.
662  */
663 static void igc_configure_rx(struct igc_adapter *adapter)
664 {
665 	int i;
666 
667 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
668 	 * the Base and Length of the Rx Descriptor Ring
669 	 */
670 	for (i = 0; i < adapter->num_rx_queues; i++)
671 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
672 }
673 
674 /**
675  * igc_configure_tx_ring - Configure transmit ring after Reset
676  * @adapter: board private structure
677  * @ring: tx ring to configure
678  *
679  * Configure a transmit ring after a reset.
680  */
681 static void igc_configure_tx_ring(struct igc_adapter *adapter,
682 				  struct igc_ring *ring)
683 {
684 	struct igc_hw *hw = &adapter->hw;
685 	int reg_idx = ring->reg_idx;
686 	u64 tdba = ring->dma;
687 	u32 txdctl = 0;
688 
689 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
690 
691 	/* disable the queue */
692 	wr32(IGC_TXDCTL(reg_idx), 0);
693 	wrfl();
694 	mdelay(10);
695 
696 	wr32(IGC_TDLEN(reg_idx),
697 	     ring->count * sizeof(union igc_adv_tx_desc));
698 	wr32(IGC_TDBAL(reg_idx),
699 	     tdba & 0x00000000ffffffffULL);
700 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
701 
702 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
703 	wr32(IGC_TDH(reg_idx), 0);
704 	writel(0, ring->tail);
705 
706 	txdctl |= IGC_TX_PTHRESH;
707 	txdctl |= IGC_TX_HTHRESH << 8;
708 	txdctl |= IGC_TX_WTHRESH << 16;
709 
710 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
711 	wr32(IGC_TXDCTL(reg_idx), txdctl);
712 }
713 
714 /**
715  * igc_configure_tx - Configure transmit Unit after Reset
716  * @adapter: board private structure
717  *
718  * Configure the Tx unit of the MAC after a reset.
719  */
720 static void igc_configure_tx(struct igc_adapter *adapter)
721 {
722 	int i;
723 
724 	for (i = 0; i < adapter->num_tx_queues; i++)
725 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
726 }
727 
728 /**
729  * igc_setup_mrqc - configure the multiple receive queue control registers
730  * @adapter: Board private structure
731  */
732 static void igc_setup_mrqc(struct igc_adapter *adapter)
733 {
734 	struct igc_hw *hw = &adapter->hw;
735 	u32 j, num_rx_queues;
736 	u32 mrqc, rxcsum;
737 	u32 rss_key[10];
738 
739 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
740 	for (j = 0; j < 10; j++)
741 		wr32(IGC_RSSRK(j), rss_key[j]);
742 
743 	num_rx_queues = adapter->rss_queues;
744 
745 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
746 		for (j = 0; j < IGC_RETA_SIZE; j++)
747 			adapter->rss_indir_tbl[j] =
748 			(j * num_rx_queues) / IGC_RETA_SIZE;
749 		adapter->rss_indir_tbl_init = num_rx_queues;
750 	}
751 	igc_write_rss_indir_tbl(adapter);
752 
753 	/* Disable raw packet checksumming so that RSS hash is placed in
754 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
755 	 * offloads as they are enabled by default
756 	 */
757 	rxcsum = rd32(IGC_RXCSUM);
758 	rxcsum |= IGC_RXCSUM_PCSD;
759 
760 	/* Enable Receive Checksum Offload for SCTP */
761 	rxcsum |= IGC_RXCSUM_CRCOFL;
762 
763 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
764 	wr32(IGC_RXCSUM, rxcsum);
765 
766 	/* Generate RSS hash based on packet types, TCP/UDP
767 	 * port numbers and/or IPv4/v6 src and dst addresses
768 	 */
769 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
770 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
771 	       IGC_MRQC_RSS_FIELD_IPV6 |
772 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
773 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
774 
775 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
776 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
777 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
778 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
779 
780 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
781 
782 	wr32(IGC_MRQC, mrqc);
783 }
784 
785 /**
786  * igc_setup_rctl - configure the receive control registers
787  * @adapter: Board private structure
788  */
789 static void igc_setup_rctl(struct igc_adapter *adapter)
790 {
791 	struct igc_hw *hw = &adapter->hw;
792 	u32 rctl;
793 
794 	rctl = rd32(IGC_RCTL);
795 
796 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
797 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
798 
799 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
800 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
801 
802 	/* enable stripping of CRC. Newer features require
803 	 * that the HW strips the CRC.
804 	 */
805 	rctl |= IGC_RCTL_SECRC;
806 
807 	/* disable store bad packets and clear size bits. */
808 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
809 
810 	/* enable LPE to allow for reception of jumbo frames */
811 	rctl |= IGC_RCTL_LPE;
812 
813 	/* disable queue 0 to prevent tail write w/o re-config */
814 	wr32(IGC_RXDCTL(0), 0);
815 
816 	/* This is useful for sniffing bad packets. */
817 	if (adapter->netdev->features & NETIF_F_RXALL) {
818 		/* UPE and MPE will be handled by normal PROMISC logic
819 		 * in set_rx_mode
820 		 */
821 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
822 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
823 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
824 
825 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
826 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
827 	}
828 
829 	wr32(IGC_RCTL, rctl);
830 }
831 
832 /**
833  * igc_setup_tctl - configure the transmit control registers
834  * @adapter: Board private structure
835  */
836 static void igc_setup_tctl(struct igc_adapter *adapter)
837 {
838 	struct igc_hw *hw = &adapter->hw;
839 	u32 tctl;
840 
841 	/* disable queue 0 which icould be enabled by default */
842 	wr32(IGC_TXDCTL(0), 0);
843 
844 	/* Program the Transmit Control Register */
845 	tctl = rd32(IGC_TCTL);
846 	tctl &= ~IGC_TCTL_CT;
847 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
848 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
849 
850 	/* Enable transmits */
851 	tctl |= IGC_TCTL_EN;
852 
853 	wr32(IGC_TCTL, tctl);
854 }
855 
856 /**
857  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
858  * @adapter: Pointer to adapter where the filter should be set
859  * @index: Filter index
860  * @type: MAC address filter type (source or destination)
861  * @addr: MAC address
862  * @queue: If non-negative, queue assignment feature is enabled and frames
863  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
864  *         assignment is disabled.
865  */
866 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
867 				  enum igc_mac_filter_type type,
868 				  const u8 *addr, int queue)
869 {
870 	struct net_device *dev = adapter->netdev;
871 	struct igc_hw *hw = &adapter->hw;
872 	u32 ral, rah;
873 
874 	if (WARN_ON(index >= hw->mac.rar_entry_count))
875 		return;
876 
877 	ral = le32_to_cpup((__le32 *)(addr));
878 	rah = le16_to_cpup((__le16 *)(addr + 4));
879 
880 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
881 		rah &= ~IGC_RAH_ASEL_MASK;
882 		rah |= IGC_RAH_ASEL_SRC_ADDR;
883 	}
884 
885 	if (queue >= 0) {
886 		rah &= ~IGC_RAH_QSEL_MASK;
887 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
888 		rah |= IGC_RAH_QSEL_ENABLE;
889 	}
890 
891 	rah |= IGC_RAH_AV;
892 
893 	wr32(IGC_RAL(index), ral);
894 	wr32(IGC_RAH(index), rah);
895 
896 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
897 }
898 
899 /**
900  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
901  * @adapter: Pointer to adapter where the filter should be cleared
902  * @index: Filter index
903  */
904 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
905 {
906 	struct net_device *dev = adapter->netdev;
907 	struct igc_hw *hw = &adapter->hw;
908 
909 	if (WARN_ON(index >= hw->mac.rar_entry_count))
910 		return;
911 
912 	wr32(IGC_RAL(index), 0);
913 	wr32(IGC_RAH(index), 0);
914 
915 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
916 }
917 
918 /* Set default MAC address for the PF in the first RAR entry */
919 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
920 {
921 	struct net_device *dev = adapter->netdev;
922 	u8 *addr = adapter->hw.mac.addr;
923 
924 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
925 
926 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
927 }
928 
929 /**
930  * igc_set_mac - Change the Ethernet Address of the NIC
931  * @netdev: network interface device structure
932  * @p: pointer to an address structure
933  *
934  * Returns 0 on success, negative on failure
935  */
936 static int igc_set_mac(struct net_device *netdev, void *p)
937 {
938 	struct igc_adapter *adapter = netdev_priv(netdev);
939 	struct igc_hw *hw = &adapter->hw;
940 	struct sockaddr *addr = p;
941 
942 	if (!is_valid_ether_addr(addr->sa_data))
943 		return -EADDRNOTAVAIL;
944 
945 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
946 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
947 
948 	/* set the correct pool for the new PF MAC address in entry 0 */
949 	igc_set_default_mac_filter(adapter);
950 
951 	return 0;
952 }
953 
954 /**
955  *  igc_write_mc_addr_list - write multicast addresses to MTA
956  *  @netdev: network interface device structure
957  *
958  *  Writes multicast address list to the MTA hash table.
959  *  Returns: -ENOMEM on failure
960  *           0 on no addresses written
961  *           X on writing X addresses to MTA
962  **/
963 static int igc_write_mc_addr_list(struct net_device *netdev)
964 {
965 	struct igc_adapter *adapter = netdev_priv(netdev);
966 	struct igc_hw *hw = &adapter->hw;
967 	struct netdev_hw_addr *ha;
968 	u8  *mta_list;
969 	int i;
970 
971 	if (netdev_mc_empty(netdev)) {
972 		/* nothing to program, so clear mc list */
973 		igc_update_mc_addr_list(hw, NULL, 0);
974 		return 0;
975 	}
976 
977 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
978 	if (!mta_list)
979 		return -ENOMEM;
980 
981 	/* The shared function expects a packed array of only addresses. */
982 	i = 0;
983 	netdev_for_each_mc_addr(ha, netdev)
984 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
985 
986 	igc_update_mc_addr_list(hw, mta_list, i);
987 	kfree(mta_list);
988 
989 	return netdev_mc_count(netdev);
990 }
991 
992 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
993 {
994 	ktime_t cycle_time = adapter->cycle_time;
995 	ktime_t base_time = adapter->base_time;
996 	u32 launchtime;
997 
998 	/* FIXME: when using ETF together with taprio, we may have a
999 	 * case where 'delta' is larger than the cycle_time, this may
1000 	 * cause problems if we don't read the current value of
1001 	 * IGC_BASET, as the value writen into the launchtime
1002 	 * descriptor field may be misinterpreted.
1003 	 */
1004 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1005 
1006 	return cpu_to_le32(launchtime);
1007 }
1008 
1009 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1010 			    struct igc_tx_buffer *first,
1011 			    u32 vlan_macip_lens, u32 type_tucmd,
1012 			    u32 mss_l4len_idx)
1013 {
1014 	struct igc_adv_tx_context_desc *context_desc;
1015 	u16 i = tx_ring->next_to_use;
1016 
1017 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1018 
1019 	i++;
1020 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1021 
1022 	/* set bits to identify this as an advanced context descriptor */
1023 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1024 
1025 	/* For i225, context index must be unique per ring. */
1026 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1027 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1028 
1029 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1030 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1031 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1032 
1033 	/* We assume there is always a valid Tx time available. Invalid times
1034 	 * should have been handled by the upper layers.
1035 	 */
1036 	if (tx_ring->launchtime_enable) {
1037 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1038 		ktime_t txtime = first->skb->tstamp;
1039 
1040 		skb_txtime_consumed(first->skb);
1041 		context_desc->launch_time = igc_tx_launchtime(adapter,
1042 							      txtime);
1043 	} else {
1044 		context_desc->launch_time = 0;
1045 	}
1046 }
1047 
1048 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1049 {
1050 	struct sk_buff *skb = first->skb;
1051 	u32 vlan_macip_lens = 0;
1052 	u32 type_tucmd = 0;
1053 
1054 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1055 csum_failed:
1056 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1057 		    !tx_ring->launchtime_enable)
1058 			return;
1059 		goto no_csum;
1060 	}
1061 
1062 	switch (skb->csum_offset) {
1063 	case offsetof(struct tcphdr, check):
1064 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1065 		fallthrough;
1066 	case offsetof(struct udphdr, check):
1067 		break;
1068 	case offsetof(struct sctphdr, checksum):
1069 		/* validate that this is actually an SCTP request */
1070 		if (skb_csum_is_sctp(skb)) {
1071 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1072 			break;
1073 		}
1074 		fallthrough;
1075 	default:
1076 		skb_checksum_help(skb);
1077 		goto csum_failed;
1078 	}
1079 
1080 	/* update TX checksum flag */
1081 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1082 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1083 			  skb_network_offset(skb);
1084 no_csum:
1085 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1086 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1087 
1088 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1089 }
1090 
1091 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1092 {
1093 	struct net_device *netdev = tx_ring->netdev;
1094 
1095 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1096 
1097 	/* memory barriier comment */
1098 	smp_mb();
1099 
1100 	/* We need to check again in a case another CPU has just
1101 	 * made room available.
1102 	 */
1103 	if (igc_desc_unused(tx_ring) < size)
1104 		return -EBUSY;
1105 
1106 	/* A reprieve! */
1107 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1108 
1109 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1110 	tx_ring->tx_stats.restart_queue2++;
1111 	u64_stats_update_end(&tx_ring->tx_syncp2);
1112 
1113 	return 0;
1114 }
1115 
1116 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1117 {
1118 	if (igc_desc_unused(tx_ring) >= size)
1119 		return 0;
1120 	return __igc_maybe_stop_tx(tx_ring, size);
1121 }
1122 
1123 #define IGC_SET_FLAG(_input, _flag, _result) \
1124 	(((_flag) <= (_result)) ?				\
1125 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1126 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1127 
1128 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1129 {
1130 	/* set type for advanced descriptor with frame checksum insertion */
1131 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1132 		       IGC_ADVTXD_DCMD_DEXT |
1133 		       IGC_ADVTXD_DCMD_IFCS;
1134 
1135 	/* set HW vlan bit if vlan is present */
1136 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1137 				 IGC_ADVTXD_DCMD_VLE);
1138 
1139 	/* set segmentation bits for TSO */
1140 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1141 				 (IGC_ADVTXD_DCMD_TSE));
1142 
1143 	/* set timestamp bit if present */
1144 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1145 				 (IGC_ADVTXD_MAC_TSTAMP));
1146 
1147 	/* insert frame checksum */
1148 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1149 
1150 	return cmd_type;
1151 }
1152 
1153 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1154 				 union igc_adv_tx_desc *tx_desc,
1155 				 u32 tx_flags, unsigned int paylen)
1156 {
1157 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1158 
1159 	/* insert L4 checksum */
1160 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1161 			  ((IGC_TXD_POPTS_TXSM << 8) /
1162 			  IGC_TX_FLAGS_CSUM);
1163 
1164 	/* insert IPv4 checksum */
1165 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1166 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1167 			  IGC_TX_FLAGS_IPV4);
1168 
1169 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1170 }
1171 
1172 static int igc_tx_map(struct igc_ring *tx_ring,
1173 		      struct igc_tx_buffer *first,
1174 		      const u8 hdr_len)
1175 {
1176 	struct sk_buff *skb = first->skb;
1177 	struct igc_tx_buffer *tx_buffer;
1178 	union igc_adv_tx_desc *tx_desc;
1179 	u32 tx_flags = first->tx_flags;
1180 	skb_frag_t *frag;
1181 	u16 i = tx_ring->next_to_use;
1182 	unsigned int data_len, size;
1183 	dma_addr_t dma;
1184 	u32 cmd_type;
1185 
1186 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1187 	tx_desc = IGC_TX_DESC(tx_ring, i);
1188 
1189 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1190 
1191 	size = skb_headlen(skb);
1192 	data_len = skb->data_len;
1193 
1194 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1195 
1196 	tx_buffer = first;
1197 
1198 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1199 		if (dma_mapping_error(tx_ring->dev, dma))
1200 			goto dma_error;
1201 
1202 		/* record length, and DMA address */
1203 		dma_unmap_len_set(tx_buffer, len, size);
1204 		dma_unmap_addr_set(tx_buffer, dma, dma);
1205 
1206 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1207 
1208 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1209 			tx_desc->read.cmd_type_len =
1210 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1211 
1212 			i++;
1213 			tx_desc++;
1214 			if (i == tx_ring->count) {
1215 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1216 				i = 0;
1217 			}
1218 			tx_desc->read.olinfo_status = 0;
1219 
1220 			dma += IGC_MAX_DATA_PER_TXD;
1221 			size -= IGC_MAX_DATA_PER_TXD;
1222 
1223 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1224 		}
1225 
1226 		if (likely(!data_len))
1227 			break;
1228 
1229 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1230 
1231 		i++;
1232 		tx_desc++;
1233 		if (i == tx_ring->count) {
1234 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1235 			i = 0;
1236 		}
1237 		tx_desc->read.olinfo_status = 0;
1238 
1239 		size = skb_frag_size(frag);
1240 		data_len -= size;
1241 
1242 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1243 				       size, DMA_TO_DEVICE);
1244 
1245 		tx_buffer = &tx_ring->tx_buffer_info[i];
1246 	}
1247 
1248 	/* write last descriptor with RS and EOP bits */
1249 	cmd_type |= size | IGC_TXD_DCMD;
1250 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1251 
1252 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1253 
1254 	/* set the timestamp */
1255 	first->time_stamp = jiffies;
1256 
1257 	skb_tx_timestamp(skb);
1258 
1259 	/* Force memory writes to complete before letting h/w know there
1260 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1261 	 * memory model archs, such as IA-64).
1262 	 *
1263 	 * We also need this memory barrier to make certain all of the
1264 	 * status bits have been updated before next_to_watch is written.
1265 	 */
1266 	wmb();
1267 
1268 	/* set next_to_watch value indicating a packet is present */
1269 	first->next_to_watch = tx_desc;
1270 
1271 	i++;
1272 	if (i == tx_ring->count)
1273 		i = 0;
1274 
1275 	tx_ring->next_to_use = i;
1276 
1277 	/* Make sure there is space in the ring for the next send. */
1278 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1279 
1280 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1281 		writel(i, tx_ring->tail);
1282 	}
1283 
1284 	return 0;
1285 dma_error:
1286 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1287 	tx_buffer = &tx_ring->tx_buffer_info[i];
1288 
1289 	/* clear dma mappings for failed tx_buffer_info map */
1290 	while (tx_buffer != first) {
1291 		if (dma_unmap_len(tx_buffer, len))
1292 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1293 
1294 		if (i-- == 0)
1295 			i += tx_ring->count;
1296 		tx_buffer = &tx_ring->tx_buffer_info[i];
1297 	}
1298 
1299 	if (dma_unmap_len(tx_buffer, len))
1300 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1301 
1302 	dev_kfree_skb_any(tx_buffer->skb);
1303 	tx_buffer->skb = NULL;
1304 
1305 	tx_ring->next_to_use = i;
1306 
1307 	return -1;
1308 }
1309 
1310 static int igc_tso(struct igc_ring *tx_ring,
1311 		   struct igc_tx_buffer *first,
1312 		   u8 *hdr_len)
1313 {
1314 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1315 	struct sk_buff *skb = first->skb;
1316 	union {
1317 		struct iphdr *v4;
1318 		struct ipv6hdr *v6;
1319 		unsigned char *hdr;
1320 	} ip;
1321 	union {
1322 		struct tcphdr *tcp;
1323 		struct udphdr *udp;
1324 		unsigned char *hdr;
1325 	} l4;
1326 	u32 paylen, l4_offset;
1327 	int err;
1328 
1329 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1330 		return 0;
1331 
1332 	if (!skb_is_gso(skb))
1333 		return 0;
1334 
1335 	err = skb_cow_head(skb, 0);
1336 	if (err < 0)
1337 		return err;
1338 
1339 	ip.hdr = skb_network_header(skb);
1340 	l4.hdr = skb_checksum_start(skb);
1341 
1342 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1343 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1344 
1345 	/* initialize outer IP header fields */
1346 	if (ip.v4->version == 4) {
1347 		unsigned char *csum_start = skb_checksum_start(skb);
1348 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1349 
1350 		/* IP header will have to cancel out any data that
1351 		 * is not a part of the outer IP header
1352 		 */
1353 		ip.v4->check = csum_fold(csum_partial(trans_start,
1354 						      csum_start - trans_start,
1355 						      0));
1356 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1357 
1358 		ip.v4->tot_len = 0;
1359 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1360 				   IGC_TX_FLAGS_CSUM |
1361 				   IGC_TX_FLAGS_IPV4;
1362 	} else {
1363 		ip.v6->payload_len = 0;
1364 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1365 				   IGC_TX_FLAGS_CSUM;
1366 	}
1367 
1368 	/* determine offset of inner transport header */
1369 	l4_offset = l4.hdr - skb->data;
1370 
1371 	/* remove payload length from inner checksum */
1372 	paylen = skb->len - l4_offset;
1373 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1374 		/* compute length of segmentation header */
1375 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1376 		csum_replace_by_diff(&l4.tcp->check,
1377 				     (__force __wsum)htonl(paylen));
1378 	} else {
1379 		/* compute length of segmentation header */
1380 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1381 		csum_replace_by_diff(&l4.udp->check,
1382 				     (__force __wsum)htonl(paylen));
1383 	}
1384 
1385 	/* update gso size and bytecount with header size */
1386 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1387 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1388 
1389 	/* MSS L4LEN IDX */
1390 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1391 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1392 
1393 	/* VLAN MACLEN IPLEN */
1394 	vlan_macip_lens = l4.hdr - ip.hdr;
1395 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1396 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1397 
1398 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1399 			type_tucmd, mss_l4len_idx);
1400 
1401 	return 1;
1402 }
1403 
1404 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1405 				       struct igc_ring *tx_ring)
1406 {
1407 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1408 	__be16 protocol = vlan_get_protocol(skb);
1409 	struct igc_tx_buffer *first;
1410 	u32 tx_flags = 0;
1411 	unsigned short f;
1412 	u8 hdr_len = 0;
1413 	int tso = 0;
1414 
1415 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1416 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1417 	 *	+ 2 desc gap to keep tail from touching head,
1418 	 *	+ 1 desc for context descriptor,
1419 	 * otherwise try next time
1420 	 */
1421 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1422 		count += TXD_USE_COUNT(skb_frag_size(
1423 						&skb_shinfo(skb)->frags[f]));
1424 
1425 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1426 		/* this is a hard error */
1427 		return NETDEV_TX_BUSY;
1428 	}
1429 
1430 	/* record the location of the first descriptor for this packet */
1431 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1432 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1433 	first->skb = skb;
1434 	first->bytecount = skb->len;
1435 	first->gso_segs = 1;
1436 
1437 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1438 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1439 
1440 		/* FIXME: add support for retrieving timestamps from
1441 		 * the other timer registers before skipping the
1442 		 * timestamping request.
1443 		 */
1444 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1445 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1446 					   &adapter->state)) {
1447 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1448 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1449 
1450 			adapter->ptp_tx_skb = skb_get(skb);
1451 			adapter->ptp_tx_start = jiffies;
1452 		} else {
1453 			adapter->tx_hwtstamp_skipped++;
1454 		}
1455 	}
1456 
1457 	if (skb_vlan_tag_present(skb)) {
1458 		tx_flags |= IGC_TX_FLAGS_VLAN;
1459 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1460 	}
1461 
1462 	/* record initial flags and protocol */
1463 	first->tx_flags = tx_flags;
1464 	first->protocol = protocol;
1465 
1466 	tso = igc_tso(tx_ring, first, &hdr_len);
1467 	if (tso < 0)
1468 		goto out_drop;
1469 	else if (!tso)
1470 		igc_tx_csum(tx_ring, first);
1471 
1472 	igc_tx_map(tx_ring, first, hdr_len);
1473 
1474 	return NETDEV_TX_OK;
1475 
1476 out_drop:
1477 	dev_kfree_skb_any(first->skb);
1478 	first->skb = NULL;
1479 
1480 	return NETDEV_TX_OK;
1481 }
1482 
1483 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1484 						    struct sk_buff *skb)
1485 {
1486 	unsigned int r_idx = skb->queue_mapping;
1487 
1488 	if (r_idx >= adapter->num_tx_queues)
1489 		r_idx = r_idx % adapter->num_tx_queues;
1490 
1491 	return adapter->tx_ring[r_idx];
1492 }
1493 
1494 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1495 				  struct net_device *netdev)
1496 {
1497 	struct igc_adapter *adapter = netdev_priv(netdev);
1498 
1499 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1500 	 * in order to meet this minimum size requirement.
1501 	 */
1502 	if (skb->len < 17) {
1503 		if (skb_padto(skb, 17))
1504 			return NETDEV_TX_OK;
1505 		skb->len = 17;
1506 	}
1507 
1508 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1509 }
1510 
1511 static void igc_rx_checksum(struct igc_ring *ring,
1512 			    union igc_adv_rx_desc *rx_desc,
1513 			    struct sk_buff *skb)
1514 {
1515 	skb_checksum_none_assert(skb);
1516 
1517 	/* Ignore Checksum bit is set */
1518 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1519 		return;
1520 
1521 	/* Rx checksum disabled via ethtool */
1522 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1523 		return;
1524 
1525 	/* TCP/UDP checksum error bit is set */
1526 	if (igc_test_staterr(rx_desc,
1527 			     IGC_RXDEXT_STATERR_L4E |
1528 			     IGC_RXDEXT_STATERR_IPE)) {
1529 		/* work around errata with sctp packets where the TCPE aka
1530 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1531 		 * packets (aka let the stack check the crc32c)
1532 		 */
1533 		if (!(skb->len == 60 &&
1534 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1535 			u64_stats_update_begin(&ring->rx_syncp);
1536 			ring->rx_stats.csum_err++;
1537 			u64_stats_update_end(&ring->rx_syncp);
1538 		}
1539 		/* let the stack verify checksum errors */
1540 		return;
1541 	}
1542 	/* It must be a TCP or UDP packet with a valid checksum */
1543 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1544 				      IGC_RXD_STAT_UDPCS))
1545 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1546 
1547 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1548 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1549 }
1550 
1551 static inline void igc_rx_hash(struct igc_ring *ring,
1552 			       union igc_adv_rx_desc *rx_desc,
1553 			       struct sk_buff *skb)
1554 {
1555 	if (ring->netdev->features & NETIF_F_RXHASH)
1556 		skb_set_hash(skb,
1557 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1558 			     PKT_HASH_TYPE_L3);
1559 }
1560 
1561 static void igc_rx_vlan(struct igc_ring *rx_ring,
1562 			union igc_adv_rx_desc *rx_desc,
1563 			struct sk_buff *skb)
1564 {
1565 	struct net_device *dev = rx_ring->netdev;
1566 	u16 vid;
1567 
1568 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1569 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1570 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1571 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1572 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1573 		else
1574 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1575 
1576 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1577 	}
1578 }
1579 
1580 /**
1581  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1582  * @rx_ring: rx descriptor ring packet is being transacted on
1583  * @rx_desc: pointer to the EOP Rx descriptor
1584  * @skb: pointer to current skb being populated
1585  *
1586  * This function checks the ring, descriptor, and packet information in order
1587  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1588  * skb.
1589  */
1590 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1591 				   union igc_adv_rx_desc *rx_desc,
1592 				   struct sk_buff *skb)
1593 {
1594 	igc_rx_hash(rx_ring, rx_desc, skb);
1595 
1596 	igc_rx_checksum(rx_ring, rx_desc, skb);
1597 
1598 	igc_rx_vlan(rx_ring, rx_desc, skb);
1599 
1600 	skb_record_rx_queue(skb, rx_ring->queue_index);
1601 
1602 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1603 }
1604 
1605 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1606 {
1607 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1608 	struct igc_adapter *adapter = netdev_priv(netdev);
1609 	struct igc_hw *hw = &adapter->hw;
1610 	u32 ctrl;
1611 
1612 	ctrl = rd32(IGC_CTRL);
1613 
1614 	if (enable) {
1615 		/* enable VLAN tag insert/strip */
1616 		ctrl |= IGC_CTRL_VME;
1617 	} else {
1618 		/* disable VLAN tag insert/strip */
1619 		ctrl &= ~IGC_CTRL_VME;
1620 	}
1621 	wr32(IGC_CTRL, ctrl);
1622 }
1623 
1624 static void igc_restore_vlan(struct igc_adapter *adapter)
1625 {
1626 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1627 }
1628 
1629 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1630 					       const unsigned int size,
1631 					       int *rx_buffer_pgcnt)
1632 {
1633 	struct igc_rx_buffer *rx_buffer;
1634 
1635 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1636 	*rx_buffer_pgcnt =
1637 #if (PAGE_SIZE < 8192)
1638 		page_count(rx_buffer->page);
1639 #else
1640 		0;
1641 #endif
1642 	prefetchw(rx_buffer->page);
1643 
1644 	/* we are reusing so sync this buffer for CPU use */
1645 	dma_sync_single_range_for_cpu(rx_ring->dev,
1646 				      rx_buffer->dma,
1647 				      rx_buffer->page_offset,
1648 				      size,
1649 				      DMA_FROM_DEVICE);
1650 
1651 	rx_buffer->pagecnt_bias--;
1652 
1653 	return rx_buffer;
1654 }
1655 
1656 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1657 			       unsigned int truesize)
1658 {
1659 #if (PAGE_SIZE < 8192)
1660 	buffer->page_offset ^= truesize;
1661 #else
1662 	buffer->page_offset += truesize;
1663 #endif
1664 }
1665 
1666 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1667 					      unsigned int size)
1668 {
1669 	unsigned int truesize;
1670 
1671 #if (PAGE_SIZE < 8192)
1672 	truesize = igc_rx_pg_size(ring) / 2;
1673 #else
1674 	truesize = ring_uses_build_skb(ring) ?
1675 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1676 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1677 		   SKB_DATA_ALIGN(size);
1678 #endif
1679 	return truesize;
1680 }
1681 
1682 /**
1683  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1684  * @rx_ring: rx descriptor ring to transact packets on
1685  * @rx_buffer: buffer containing page to add
1686  * @skb: sk_buff to place the data into
1687  * @size: size of buffer to be added
1688  *
1689  * This function will add the data contained in rx_buffer->page to the skb.
1690  */
1691 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1692 			    struct igc_rx_buffer *rx_buffer,
1693 			    struct sk_buff *skb,
1694 			    unsigned int size)
1695 {
1696 	unsigned int truesize;
1697 
1698 #if (PAGE_SIZE < 8192)
1699 	truesize = igc_rx_pg_size(rx_ring) / 2;
1700 #else
1701 	truesize = ring_uses_build_skb(rx_ring) ?
1702 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1703 		   SKB_DATA_ALIGN(size);
1704 #endif
1705 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1706 			rx_buffer->page_offset, size, truesize);
1707 
1708 	igc_rx_buffer_flip(rx_buffer, truesize);
1709 }
1710 
1711 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1712 				     struct igc_rx_buffer *rx_buffer,
1713 				     union igc_adv_rx_desc *rx_desc,
1714 				     unsigned int size)
1715 {
1716 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1717 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1718 	struct sk_buff *skb;
1719 
1720 	/* prefetch first cache line of first page */
1721 	net_prefetch(va);
1722 
1723 	/* build an skb around the page buffer */
1724 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1725 	if (unlikely(!skb))
1726 		return NULL;
1727 
1728 	/* update pointers within the skb to store the data */
1729 	skb_reserve(skb, IGC_SKB_PAD);
1730 	__skb_put(skb, size);
1731 
1732 	igc_rx_buffer_flip(rx_buffer, truesize);
1733 	return skb;
1734 }
1735 
1736 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1737 					 struct igc_rx_buffer *rx_buffer,
1738 					 struct xdp_buff *xdp,
1739 					 ktime_t timestamp)
1740 {
1741 	unsigned int size = xdp->data_end - xdp->data;
1742 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1743 	void *va = xdp->data;
1744 	unsigned int headlen;
1745 	struct sk_buff *skb;
1746 
1747 	/* prefetch first cache line of first page */
1748 	net_prefetch(va);
1749 
1750 	/* allocate a skb to store the frags */
1751 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1752 	if (unlikely(!skb))
1753 		return NULL;
1754 
1755 	if (timestamp)
1756 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1757 
1758 	/* Determine available headroom for copy */
1759 	headlen = size;
1760 	if (headlen > IGC_RX_HDR_LEN)
1761 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1762 
1763 	/* align pull length to size of long to optimize memcpy performance */
1764 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1765 
1766 	/* update all of the pointers */
1767 	size -= headlen;
1768 	if (size) {
1769 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1770 				(va + headlen) - page_address(rx_buffer->page),
1771 				size, truesize);
1772 		igc_rx_buffer_flip(rx_buffer, truesize);
1773 	} else {
1774 		rx_buffer->pagecnt_bias++;
1775 	}
1776 
1777 	return skb;
1778 }
1779 
1780 /**
1781  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1782  * @rx_ring: rx descriptor ring to store buffers on
1783  * @old_buff: donor buffer to have page reused
1784  *
1785  * Synchronizes page for reuse by the adapter
1786  */
1787 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1788 			      struct igc_rx_buffer *old_buff)
1789 {
1790 	u16 nta = rx_ring->next_to_alloc;
1791 	struct igc_rx_buffer *new_buff;
1792 
1793 	new_buff = &rx_ring->rx_buffer_info[nta];
1794 
1795 	/* update, and store next to alloc */
1796 	nta++;
1797 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1798 
1799 	/* Transfer page from old buffer to new buffer.
1800 	 * Move each member individually to avoid possible store
1801 	 * forwarding stalls.
1802 	 */
1803 	new_buff->dma		= old_buff->dma;
1804 	new_buff->page		= old_buff->page;
1805 	new_buff->page_offset	= old_buff->page_offset;
1806 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1807 }
1808 
1809 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1810 				  int rx_buffer_pgcnt)
1811 {
1812 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1813 	struct page *page = rx_buffer->page;
1814 
1815 	/* avoid re-using remote and pfmemalloc pages */
1816 	if (!dev_page_is_reusable(page))
1817 		return false;
1818 
1819 #if (PAGE_SIZE < 8192)
1820 	/* if we are only owner of page we can reuse it */
1821 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1822 		return false;
1823 #else
1824 #define IGC_LAST_OFFSET \
1825 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1826 
1827 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1828 		return false;
1829 #endif
1830 
1831 	/* If we have drained the page fragment pool we need to update
1832 	 * the pagecnt_bias and page count so that we fully restock the
1833 	 * number of references the driver holds.
1834 	 */
1835 	if (unlikely(pagecnt_bias == 1)) {
1836 		page_ref_add(page, USHRT_MAX - 1);
1837 		rx_buffer->pagecnt_bias = USHRT_MAX;
1838 	}
1839 
1840 	return true;
1841 }
1842 
1843 /**
1844  * igc_is_non_eop - process handling of non-EOP buffers
1845  * @rx_ring: Rx ring being processed
1846  * @rx_desc: Rx descriptor for current buffer
1847  *
1848  * This function updates next to clean.  If the buffer is an EOP buffer
1849  * this function exits returning false, otherwise it will place the
1850  * sk_buff in the next buffer to be chained and return true indicating
1851  * that this is in fact a non-EOP buffer.
1852  */
1853 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1854 			   union igc_adv_rx_desc *rx_desc)
1855 {
1856 	u32 ntc = rx_ring->next_to_clean + 1;
1857 
1858 	/* fetch, update, and store next to clean */
1859 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1860 	rx_ring->next_to_clean = ntc;
1861 
1862 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1863 
1864 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1865 		return false;
1866 
1867 	return true;
1868 }
1869 
1870 /**
1871  * igc_cleanup_headers - Correct corrupted or empty headers
1872  * @rx_ring: rx descriptor ring packet is being transacted on
1873  * @rx_desc: pointer to the EOP Rx descriptor
1874  * @skb: pointer to current skb being fixed
1875  *
1876  * Address the case where we are pulling data in on pages only
1877  * and as such no data is present in the skb header.
1878  *
1879  * In addition if skb is not at least 60 bytes we need to pad it so that
1880  * it is large enough to qualify as a valid Ethernet frame.
1881  *
1882  * Returns true if an error was encountered and skb was freed.
1883  */
1884 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1885 				union igc_adv_rx_desc *rx_desc,
1886 				struct sk_buff *skb)
1887 {
1888 	/* XDP packets use error pointer so abort at this point */
1889 	if (IS_ERR(skb))
1890 		return true;
1891 
1892 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1893 		struct net_device *netdev = rx_ring->netdev;
1894 
1895 		if (!(netdev->features & NETIF_F_RXALL)) {
1896 			dev_kfree_skb_any(skb);
1897 			return true;
1898 		}
1899 	}
1900 
1901 	/* if eth_skb_pad returns an error the skb was freed */
1902 	if (eth_skb_pad(skb))
1903 		return true;
1904 
1905 	return false;
1906 }
1907 
1908 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1909 			      struct igc_rx_buffer *rx_buffer,
1910 			      int rx_buffer_pgcnt)
1911 {
1912 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1913 		/* hand second half of page back to the ring */
1914 		igc_reuse_rx_page(rx_ring, rx_buffer);
1915 	} else {
1916 		/* We are not reusing the buffer so unmap it and free
1917 		 * any references we are holding to it
1918 		 */
1919 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1920 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1921 				     IGC_RX_DMA_ATTR);
1922 		__page_frag_cache_drain(rx_buffer->page,
1923 					rx_buffer->pagecnt_bias);
1924 	}
1925 
1926 	/* clear contents of rx_buffer */
1927 	rx_buffer->page = NULL;
1928 }
1929 
1930 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1931 {
1932 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1933 
1934 	if (ring_uses_build_skb(rx_ring))
1935 		return IGC_SKB_PAD;
1936 	if (igc_xdp_is_enabled(adapter))
1937 		return XDP_PACKET_HEADROOM;
1938 
1939 	return 0;
1940 }
1941 
1942 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1943 				  struct igc_rx_buffer *bi)
1944 {
1945 	struct page *page = bi->page;
1946 	dma_addr_t dma;
1947 
1948 	/* since we are recycling buffers we should seldom need to alloc */
1949 	if (likely(page))
1950 		return true;
1951 
1952 	/* alloc new page for storage */
1953 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1954 	if (unlikely(!page)) {
1955 		rx_ring->rx_stats.alloc_failed++;
1956 		return false;
1957 	}
1958 
1959 	/* map page for use */
1960 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1961 				 igc_rx_pg_size(rx_ring),
1962 				 DMA_FROM_DEVICE,
1963 				 IGC_RX_DMA_ATTR);
1964 
1965 	/* if mapping failed free memory back to system since
1966 	 * there isn't much point in holding memory we can't use
1967 	 */
1968 	if (dma_mapping_error(rx_ring->dev, dma)) {
1969 		__free_page(page);
1970 
1971 		rx_ring->rx_stats.alloc_failed++;
1972 		return false;
1973 	}
1974 
1975 	bi->dma = dma;
1976 	bi->page = page;
1977 	bi->page_offset = igc_rx_offset(rx_ring);
1978 	page_ref_add(page, USHRT_MAX - 1);
1979 	bi->pagecnt_bias = USHRT_MAX;
1980 
1981 	return true;
1982 }
1983 
1984 /**
1985  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1986  * @rx_ring: rx descriptor ring
1987  * @cleaned_count: number of buffers to clean
1988  */
1989 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1990 {
1991 	union igc_adv_rx_desc *rx_desc;
1992 	u16 i = rx_ring->next_to_use;
1993 	struct igc_rx_buffer *bi;
1994 	u16 bufsz;
1995 
1996 	/* nothing to do */
1997 	if (!cleaned_count)
1998 		return;
1999 
2000 	rx_desc = IGC_RX_DESC(rx_ring, i);
2001 	bi = &rx_ring->rx_buffer_info[i];
2002 	i -= rx_ring->count;
2003 
2004 	bufsz = igc_rx_bufsz(rx_ring);
2005 
2006 	do {
2007 		if (!igc_alloc_mapped_page(rx_ring, bi))
2008 			break;
2009 
2010 		/* sync the buffer for use by the device */
2011 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2012 						 bi->page_offset, bufsz,
2013 						 DMA_FROM_DEVICE);
2014 
2015 		/* Refresh the desc even if buffer_addrs didn't change
2016 		 * because each write-back erases this info.
2017 		 */
2018 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2019 
2020 		rx_desc++;
2021 		bi++;
2022 		i++;
2023 		if (unlikely(!i)) {
2024 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2025 			bi = rx_ring->rx_buffer_info;
2026 			i -= rx_ring->count;
2027 		}
2028 
2029 		/* clear the length for the next_to_use descriptor */
2030 		rx_desc->wb.upper.length = 0;
2031 
2032 		cleaned_count--;
2033 	} while (cleaned_count);
2034 
2035 	i += rx_ring->count;
2036 
2037 	if (rx_ring->next_to_use != i) {
2038 		/* record the next descriptor to use */
2039 		rx_ring->next_to_use = i;
2040 
2041 		/* update next to alloc since we have filled the ring */
2042 		rx_ring->next_to_alloc = i;
2043 
2044 		/* Force memory writes to complete before letting h/w
2045 		 * know there are new descriptors to fetch.  (Only
2046 		 * applicable for weak-ordered memory model archs,
2047 		 * such as IA-64).
2048 		 */
2049 		wmb();
2050 		writel(i, rx_ring->tail);
2051 	}
2052 }
2053 
2054 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2055 {
2056 	union igc_adv_rx_desc *desc;
2057 	u16 i = ring->next_to_use;
2058 	struct igc_rx_buffer *bi;
2059 	dma_addr_t dma;
2060 	bool ok = true;
2061 
2062 	if (!count)
2063 		return ok;
2064 
2065 	desc = IGC_RX_DESC(ring, i);
2066 	bi = &ring->rx_buffer_info[i];
2067 	i -= ring->count;
2068 
2069 	do {
2070 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2071 		if (!bi->xdp) {
2072 			ok = false;
2073 			break;
2074 		}
2075 
2076 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2077 		desc->read.pkt_addr = cpu_to_le64(dma);
2078 
2079 		desc++;
2080 		bi++;
2081 		i++;
2082 		if (unlikely(!i)) {
2083 			desc = IGC_RX_DESC(ring, 0);
2084 			bi = ring->rx_buffer_info;
2085 			i -= ring->count;
2086 		}
2087 
2088 		/* Clear the length for the next_to_use descriptor. */
2089 		desc->wb.upper.length = 0;
2090 
2091 		count--;
2092 	} while (count);
2093 
2094 	i += ring->count;
2095 
2096 	if (ring->next_to_use != i) {
2097 		ring->next_to_use = i;
2098 
2099 		/* Force memory writes to complete before letting h/w
2100 		 * know there are new descriptors to fetch.  (Only
2101 		 * applicable for weak-ordered memory model archs,
2102 		 * such as IA-64).
2103 		 */
2104 		wmb();
2105 		writel(i, ring->tail);
2106 	}
2107 
2108 	return ok;
2109 }
2110 
2111 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2112 				  struct xdp_frame *xdpf,
2113 				  struct igc_ring *ring)
2114 {
2115 	dma_addr_t dma;
2116 
2117 	dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2118 	if (dma_mapping_error(ring->dev, dma)) {
2119 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2120 		return -ENOMEM;
2121 	}
2122 
2123 	buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2124 	buffer->xdpf = xdpf;
2125 	buffer->protocol = 0;
2126 	buffer->bytecount = xdpf->len;
2127 	buffer->gso_segs = 1;
2128 	buffer->time_stamp = jiffies;
2129 	dma_unmap_len_set(buffer, len, xdpf->len);
2130 	dma_unmap_addr_set(buffer, dma, dma);
2131 	return 0;
2132 }
2133 
2134 /* This function requires __netif_tx_lock is held by the caller. */
2135 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2136 				      struct xdp_frame *xdpf)
2137 {
2138 	struct igc_tx_buffer *buffer;
2139 	union igc_adv_tx_desc *desc;
2140 	u32 cmd_type, olinfo_status;
2141 	int err;
2142 
2143 	if (!igc_desc_unused(ring))
2144 		return -EBUSY;
2145 
2146 	buffer = &ring->tx_buffer_info[ring->next_to_use];
2147 	err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2148 	if (err)
2149 		return err;
2150 
2151 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2152 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2153 		   buffer->bytecount;
2154 	olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2155 
2156 	desc = IGC_TX_DESC(ring, ring->next_to_use);
2157 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2158 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2159 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2160 
2161 	netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2162 
2163 	buffer->next_to_watch = desc;
2164 
2165 	ring->next_to_use++;
2166 	if (ring->next_to_use == ring->count)
2167 		ring->next_to_use = 0;
2168 
2169 	return 0;
2170 }
2171 
2172 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2173 					    int cpu)
2174 {
2175 	int index = cpu;
2176 
2177 	if (unlikely(index < 0))
2178 		index = 0;
2179 
2180 	while (index >= adapter->num_tx_queues)
2181 		index -= adapter->num_tx_queues;
2182 
2183 	return adapter->tx_ring[index];
2184 }
2185 
2186 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2187 {
2188 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2189 	int cpu = smp_processor_id();
2190 	struct netdev_queue *nq;
2191 	struct igc_ring *ring;
2192 	int res;
2193 
2194 	if (unlikely(!xdpf))
2195 		return -EFAULT;
2196 
2197 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2198 	nq = txring_txq(ring);
2199 
2200 	__netif_tx_lock(nq, cpu);
2201 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2202 	__netif_tx_unlock(nq);
2203 	return res;
2204 }
2205 
2206 /* This function assumes rcu_read_lock() is held by the caller. */
2207 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2208 			      struct bpf_prog *prog,
2209 			      struct xdp_buff *xdp)
2210 {
2211 	u32 act = bpf_prog_run_xdp(prog, xdp);
2212 
2213 	switch (act) {
2214 	case XDP_PASS:
2215 		return IGC_XDP_PASS;
2216 	case XDP_TX:
2217 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2218 			goto out_failure;
2219 		return IGC_XDP_TX;
2220 	case XDP_REDIRECT:
2221 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2222 			goto out_failure;
2223 		return IGC_XDP_REDIRECT;
2224 		break;
2225 	default:
2226 		bpf_warn_invalid_xdp_action(act);
2227 		fallthrough;
2228 	case XDP_ABORTED:
2229 out_failure:
2230 		trace_xdp_exception(adapter->netdev, prog, act);
2231 		fallthrough;
2232 	case XDP_DROP:
2233 		return IGC_XDP_CONSUMED;
2234 	}
2235 }
2236 
2237 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2238 					struct xdp_buff *xdp)
2239 {
2240 	struct bpf_prog *prog;
2241 	int res;
2242 
2243 	prog = READ_ONCE(adapter->xdp_prog);
2244 	if (!prog) {
2245 		res = IGC_XDP_PASS;
2246 		goto out;
2247 	}
2248 
2249 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2250 
2251 out:
2252 	return ERR_PTR(-res);
2253 }
2254 
2255 /* This function assumes __netif_tx_lock is held by the caller. */
2256 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2257 {
2258 	/* Once tail pointer is updated, hardware can fetch the descriptors
2259 	 * any time so we issue a write membar here to ensure all memory
2260 	 * writes are complete before the tail pointer is updated.
2261 	 */
2262 	wmb();
2263 	writel(ring->next_to_use, ring->tail);
2264 }
2265 
2266 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2267 {
2268 	int cpu = smp_processor_id();
2269 	struct netdev_queue *nq;
2270 	struct igc_ring *ring;
2271 
2272 	if (status & IGC_XDP_TX) {
2273 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2274 		nq = txring_txq(ring);
2275 
2276 		__netif_tx_lock(nq, cpu);
2277 		igc_flush_tx_descriptors(ring);
2278 		__netif_tx_unlock(nq);
2279 	}
2280 
2281 	if (status & IGC_XDP_REDIRECT)
2282 		xdp_do_flush();
2283 }
2284 
2285 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2286 				unsigned int packets, unsigned int bytes)
2287 {
2288 	struct igc_ring *ring = q_vector->rx.ring;
2289 
2290 	u64_stats_update_begin(&ring->rx_syncp);
2291 	ring->rx_stats.packets += packets;
2292 	ring->rx_stats.bytes += bytes;
2293 	u64_stats_update_end(&ring->rx_syncp);
2294 
2295 	q_vector->rx.total_packets += packets;
2296 	q_vector->rx.total_bytes += bytes;
2297 }
2298 
2299 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2300 {
2301 	unsigned int total_bytes = 0, total_packets = 0;
2302 	struct igc_adapter *adapter = q_vector->adapter;
2303 	struct igc_ring *rx_ring = q_vector->rx.ring;
2304 	struct sk_buff *skb = rx_ring->skb;
2305 	u16 cleaned_count = igc_desc_unused(rx_ring);
2306 	int xdp_status = 0, rx_buffer_pgcnt;
2307 
2308 	while (likely(total_packets < budget)) {
2309 		union igc_adv_rx_desc *rx_desc;
2310 		struct igc_rx_buffer *rx_buffer;
2311 		unsigned int size, truesize;
2312 		ktime_t timestamp = 0;
2313 		struct xdp_buff xdp;
2314 		int pkt_offset = 0;
2315 		void *pktbuf;
2316 
2317 		/* return some buffers to hardware, one at a time is too slow */
2318 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2319 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2320 			cleaned_count = 0;
2321 		}
2322 
2323 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2324 		size = le16_to_cpu(rx_desc->wb.upper.length);
2325 		if (!size)
2326 			break;
2327 
2328 		/* This memory barrier is needed to keep us from reading
2329 		 * any other fields out of the rx_desc until we know the
2330 		 * descriptor has been written back
2331 		 */
2332 		dma_rmb();
2333 
2334 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2335 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2336 
2337 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2338 
2339 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2340 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2341 							pktbuf);
2342 			pkt_offset = IGC_TS_HDR_LEN;
2343 			size -= IGC_TS_HDR_LEN;
2344 		}
2345 
2346 		if (!skb) {
2347 			xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2348 			xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2349 					 igc_rx_offset(rx_ring) + pkt_offset, size, false);
2350 
2351 			skb = igc_xdp_run_prog(adapter, &xdp);
2352 		}
2353 
2354 		if (IS_ERR(skb)) {
2355 			unsigned int xdp_res = -PTR_ERR(skb);
2356 
2357 			switch (xdp_res) {
2358 			case IGC_XDP_CONSUMED:
2359 				rx_buffer->pagecnt_bias++;
2360 				break;
2361 			case IGC_XDP_TX:
2362 			case IGC_XDP_REDIRECT:
2363 				igc_rx_buffer_flip(rx_buffer, truesize);
2364 				xdp_status |= xdp_res;
2365 				break;
2366 			}
2367 
2368 			total_packets++;
2369 			total_bytes += size;
2370 		} else if (skb)
2371 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2372 		else if (ring_uses_build_skb(rx_ring))
2373 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2374 		else
2375 			skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2376 						timestamp);
2377 
2378 		/* exit if we failed to retrieve a buffer */
2379 		if (!skb) {
2380 			rx_ring->rx_stats.alloc_failed++;
2381 			rx_buffer->pagecnt_bias++;
2382 			break;
2383 		}
2384 
2385 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2386 		cleaned_count++;
2387 
2388 		/* fetch next buffer in frame if non-eop */
2389 		if (igc_is_non_eop(rx_ring, rx_desc))
2390 			continue;
2391 
2392 		/* verify the packet layout is correct */
2393 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2394 			skb = NULL;
2395 			continue;
2396 		}
2397 
2398 		/* probably a little skewed due to removing CRC */
2399 		total_bytes += skb->len;
2400 
2401 		/* populate checksum, VLAN, and protocol */
2402 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2403 
2404 		napi_gro_receive(&q_vector->napi, skb);
2405 
2406 		/* reset skb pointer */
2407 		skb = NULL;
2408 
2409 		/* update budget accounting */
2410 		total_packets++;
2411 	}
2412 
2413 	if (xdp_status)
2414 		igc_finalize_xdp(adapter, xdp_status);
2415 
2416 	/* place incomplete frames back on ring for completion */
2417 	rx_ring->skb = skb;
2418 
2419 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2420 
2421 	if (cleaned_count)
2422 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2423 
2424 	return total_packets;
2425 }
2426 
2427 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2428 					    struct xdp_buff *xdp)
2429 {
2430 	unsigned int metasize = xdp->data - xdp->data_meta;
2431 	unsigned int datasize = xdp->data_end - xdp->data;
2432 	unsigned int totalsize = metasize + datasize;
2433 	struct sk_buff *skb;
2434 
2435 	skb = __napi_alloc_skb(&ring->q_vector->napi,
2436 			       xdp->data_end - xdp->data_hard_start,
2437 			       GFP_ATOMIC | __GFP_NOWARN);
2438 	if (unlikely(!skb))
2439 		return NULL;
2440 
2441 	skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
2442 	memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize);
2443 	if (metasize)
2444 		skb_metadata_set(skb, metasize);
2445 
2446 	return skb;
2447 }
2448 
2449 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2450 				union igc_adv_rx_desc *desc,
2451 				struct xdp_buff *xdp,
2452 				ktime_t timestamp)
2453 {
2454 	struct igc_ring *ring = q_vector->rx.ring;
2455 	struct sk_buff *skb;
2456 
2457 	skb = igc_construct_skb_zc(ring, xdp);
2458 	if (!skb) {
2459 		ring->rx_stats.alloc_failed++;
2460 		return;
2461 	}
2462 
2463 	if (timestamp)
2464 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2465 
2466 	if (igc_cleanup_headers(ring, desc, skb))
2467 		return;
2468 
2469 	igc_process_skb_fields(ring, desc, skb);
2470 	napi_gro_receive(&q_vector->napi, skb);
2471 }
2472 
2473 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2474 {
2475 	struct igc_adapter *adapter = q_vector->adapter;
2476 	struct igc_ring *ring = q_vector->rx.ring;
2477 	u16 cleaned_count = igc_desc_unused(ring);
2478 	int total_bytes = 0, total_packets = 0;
2479 	u16 ntc = ring->next_to_clean;
2480 	struct bpf_prog *prog;
2481 	bool failure = false;
2482 	int xdp_status = 0;
2483 
2484 	rcu_read_lock();
2485 
2486 	prog = READ_ONCE(adapter->xdp_prog);
2487 
2488 	while (likely(total_packets < budget)) {
2489 		union igc_adv_rx_desc *desc;
2490 		struct igc_rx_buffer *bi;
2491 		ktime_t timestamp = 0;
2492 		unsigned int size;
2493 		int res;
2494 
2495 		desc = IGC_RX_DESC(ring, ntc);
2496 		size = le16_to_cpu(desc->wb.upper.length);
2497 		if (!size)
2498 			break;
2499 
2500 		/* This memory barrier is needed to keep us from reading
2501 		 * any other fields out of the rx_desc until we know the
2502 		 * descriptor has been written back
2503 		 */
2504 		dma_rmb();
2505 
2506 		bi = &ring->rx_buffer_info[ntc];
2507 
2508 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2509 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2510 							bi->xdp->data);
2511 
2512 			bi->xdp->data += IGC_TS_HDR_LEN;
2513 
2514 			/* HW timestamp has been copied into local variable. Metadata
2515 			 * length when XDP program is called should be 0.
2516 			 */
2517 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2518 			size -= IGC_TS_HDR_LEN;
2519 		}
2520 
2521 		bi->xdp->data_end = bi->xdp->data + size;
2522 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2523 
2524 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2525 		switch (res) {
2526 		case IGC_XDP_PASS:
2527 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2528 			fallthrough;
2529 		case IGC_XDP_CONSUMED:
2530 			xsk_buff_free(bi->xdp);
2531 			break;
2532 		case IGC_XDP_TX:
2533 		case IGC_XDP_REDIRECT:
2534 			xdp_status |= res;
2535 			break;
2536 		}
2537 
2538 		bi->xdp = NULL;
2539 		total_bytes += size;
2540 		total_packets++;
2541 		cleaned_count++;
2542 		ntc++;
2543 		if (ntc == ring->count)
2544 			ntc = 0;
2545 	}
2546 
2547 	ring->next_to_clean = ntc;
2548 	rcu_read_unlock();
2549 
2550 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2551 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2552 
2553 	if (xdp_status)
2554 		igc_finalize_xdp(adapter, xdp_status);
2555 
2556 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2557 
2558 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2559 		if (failure || ring->next_to_clean == ring->next_to_use)
2560 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2561 		else
2562 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2563 		return total_packets;
2564 	}
2565 
2566 	return failure ? budget : total_packets;
2567 }
2568 
2569 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2570 				unsigned int packets, unsigned int bytes)
2571 {
2572 	struct igc_ring *ring = q_vector->tx.ring;
2573 
2574 	u64_stats_update_begin(&ring->tx_syncp);
2575 	ring->tx_stats.bytes += bytes;
2576 	ring->tx_stats.packets += packets;
2577 	u64_stats_update_end(&ring->tx_syncp);
2578 
2579 	q_vector->tx.total_bytes += bytes;
2580 	q_vector->tx.total_packets += packets;
2581 }
2582 
2583 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2584 {
2585 	struct xsk_buff_pool *pool = ring->xsk_pool;
2586 	struct netdev_queue *nq = txring_txq(ring);
2587 	union igc_adv_tx_desc *tx_desc = NULL;
2588 	int cpu = smp_processor_id();
2589 	u16 ntu = ring->next_to_use;
2590 	struct xdp_desc xdp_desc;
2591 	u16 budget;
2592 
2593 	if (!netif_carrier_ok(ring->netdev))
2594 		return;
2595 
2596 	__netif_tx_lock(nq, cpu);
2597 
2598 	budget = igc_desc_unused(ring);
2599 
2600 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2601 		u32 cmd_type, olinfo_status;
2602 		struct igc_tx_buffer *bi;
2603 		dma_addr_t dma;
2604 
2605 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2606 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2607 			   xdp_desc.len;
2608 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2609 
2610 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2611 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2612 
2613 		tx_desc = IGC_TX_DESC(ring, ntu);
2614 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2615 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2616 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2617 
2618 		bi = &ring->tx_buffer_info[ntu];
2619 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2620 		bi->protocol = 0;
2621 		bi->bytecount = xdp_desc.len;
2622 		bi->gso_segs = 1;
2623 		bi->time_stamp = jiffies;
2624 		bi->next_to_watch = tx_desc;
2625 
2626 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2627 
2628 		ntu++;
2629 		if (ntu == ring->count)
2630 			ntu = 0;
2631 	}
2632 
2633 	ring->next_to_use = ntu;
2634 	if (tx_desc) {
2635 		igc_flush_tx_descriptors(ring);
2636 		xsk_tx_release(pool);
2637 	}
2638 
2639 	__netif_tx_unlock(nq);
2640 }
2641 
2642 /**
2643  * igc_clean_tx_irq - Reclaim resources after transmit completes
2644  * @q_vector: pointer to q_vector containing needed info
2645  * @napi_budget: Used to determine if we are in netpoll
2646  *
2647  * returns true if ring is completely cleaned
2648  */
2649 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2650 {
2651 	struct igc_adapter *adapter = q_vector->adapter;
2652 	unsigned int total_bytes = 0, total_packets = 0;
2653 	unsigned int budget = q_vector->tx.work_limit;
2654 	struct igc_ring *tx_ring = q_vector->tx.ring;
2655 	unsigned int i = tx_ring->next_to_clean;
2656 	struct igc_tx_buffer *tx_buffer;
2657 	union igc_adv_tx_desc *tx_desc;
2658 	u32 xsk_frames = 0;
2659 
2660 	if (test_bit(__IGC_DOWN, &adapter->state))
2661 		return true;
2662 
2663 	tx_buffer = &tx_ring->tx_buffer_info[i];
2664 	tx_desc = IGC_TX_DESC(tx_ring, i);
2665 	i -= tx_ring->count;
2666 
2667 	do {
2668 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2669 
2670 		/* if next_to_watch is not set then there is no work pending */
2671 		if (!eop_desc)
2672 			break;
2673 
2674 		/* prevent any other reads prior to eop_desc */
2675 		smp_rmb();
2676 
2677 		/* if DD is not set pending work has not been completed */
2678 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2679 			break;
2680 
2681 		/* clear next_to_watch to prevent false hangs */
2682 		tx_buffer->next_to_watch = NULL;
2683 
2684 		/* update the statistics for this packet */
2685 		total_bytes += tx_buffer->bytecount;
2686 		total_packets += tx_buffer->gso_segs;
2687 
2688 		switch (tx_buffer->type) {
2689 		case IGC_TX_BUFFER_TYPE_XSK:
2690 			xsk_frames++;
2691 			break;
2692 		case IGC_TX_BUFFER_TYPE_XDP:
2693 			xdp_return_frame(tx_buffer->xdpf);
2694 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2695 			break;
2696 		case IGC_TX_BUFFER_TYPE_SKB:
2697 			napi_consume_skb(tx_buffer->skb, napi_budget);
2698 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2699 			break;
2700 		default:
2701 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2702 			break;
2703 		}
2704 
2705 		/* clear last DMA location and unmap remaining buffers */
2706 		while (tx_desc != eop_desc) {
2707 			tx_buffer++;
2708 			tx_desc++;
2709 			i++;
2710 			if (unlikely(!i)) {
2711 				i -= tx_ring->count;
2712 				tx_buffer = tx_ring->tx_buffer_info;
2713 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2714 			}
2715 
2716 			/* unmap any remaining paged data */
2717 			if (dma_unmap_len(tx_buffer, len))
2718 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2719 		}
2720 
2721 		/* move us one more past the eop_desc for start of next pkt */
2722 		tx_buffer++;
2723 		tx_desc++;
2724 		i++;
2725 		if (unlikely(!i)) {
2726 			i -= tx_ring->count;
2727 			tx_buffer = tx_ring->tx_buffer_info;
2728 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2729 		}
2730 
2731 		/* issue prefetch for next Tx descriptor */
2732 		prefetch(tx_desc);
2733 
2734 		/* update budget accounting */
2735 		budget--;
2736 	} while (likely(budget));
2737 
2738 	netdev_tx_completed_queue(txring_txq(tx_ring),
2739 				  total_packets, total_bytes);
2740 
2741 	i += tx_ring->count;
2742 	tx_ring->next_to_clean = i;
2743 
2744 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2745 
2746 	if (tx_ring->xsk_pool) {
2747 		if (xsk_frames)
2748 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2749 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2750 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2751 		igc_xdp_xmit_zc(tx_ring);
2752 	}
2753 
2754 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2755 		struct igc_hw *hw = &adapter->hw;
2756 
2757 		/* Detect a transmit hang in hardware, this serializes the
2758 		 * check with the clearing of time_stamp and movement of i
2759 		 */
2760 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2761 		if (tx_buffer->next_to_watch &&
2762 		    time_after(jiffies, tx_buffer->time_stamp +
2763 		    (adapter->tx_timeout_factor * HZ)) &&
2764 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2765 			/* detected Tx unit hang */
2766 			netdev_err(tx_ring->netdev,
2767 				   "Detected Tx Unit Hang\n"
2768 				   "  Tx Queue             <%d>\n"
2769 				   "  TDH                  <%x>\n"
2770 				   "  TDT                  <%x>\n"
2771 				   "  next_to_use          <%x>\n"
2772 				   "  next_to_clean        <%x>\n"
2773 				   "buffer_info[next_to_clean]\n"
2774 				   "  time_stamp           <%lx>\n"
2775 				   "  next_to_watch        <%p>\n"
2776 				   "  jiffies              <%lx>\n"
2777 				   "  desc.status          <%x>\n",
2778 				   tx_ring->queue_index,
2779 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2780 				   readl(tx_ring->tail),
2781 				   tx_ring->next_to_use,
2782 				   tx_ring->next_to_clean,
2783 				   tx_buffer->time_stamp,
2784 				   tx_buffer->next_to_watch,
2785 				   jiffies,
2786 				   tx_buffer->next_to_watch->wb.status);
2787 			netif_stop_subqueue(tx_ring->netdev,
2788 					    tx_ring->queue_index);
2789 
2790 			/* we are about to reset, no point in enabling stuff */
2791 			return true;
2792 		}
2793 	}
2794 
2795 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2796 	if (unlikely(total_packets &&
2797 		     netif_carrier_ok(tx_ring->netdev) &&
2798 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2799 		/* Make sure that anybody stopping the queue after this
2800 		 * sees the new next_to_clean.
2801 		 */
2802 		smp_mb();
2803 		if (__netif_subqueue_stopped(tx_ring->netdev,
2804 					     tx_ring->queue_index) &&
2805 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2806 			netif_wake_subqueue(tx_ring->netdev,
2807 					    tx_ring->queue_index);
2808 
2809 			u64_stats_update_begin(&tx_ring->tx_syncp);
2810 			tx_ring->tx_stats.restart_queue++;
2811 			u64_stats_update_end(&tx_ring->tx_syncp);
2812 		}
2813 	}
2814 
2815 	return !!budget;
2816 }
2817 
2818 static int igc_find_mac_filter(struct igc_adapter *adapter,
2819 			       enum igc_mac_filter_type type, const u8 *addr)
2820 {
2821 	struct igc_hw *hw = &adapter->hw;
2822 	int max_entries = hw->mac.rar_entry_count;
2823 	u32 ral, rah;
2824 	int i;
2825 
2826 	for (i = 0; i < max_entries; i++) {
2827 		ral = rd32(IGC_RAL(i));
2828 		rah = rd32(IGC_RAH(i));
2829 
2830 		if (!(rah & IGC_RAH_AV))
2831 			continue;
2832 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2833 			continue;
2834 		if ((rah & IGC_RAH_RAH_MASK) !=
2835 		    le16_to_cpup((__le16 *)(addr + 4)))
2836 			continue;
2837 		if (ral != le32_to_cpup((__le32 *)(addr)))
2838 			continue;
2839 
2840 		return i;
2841 	}
2842 
2843 	return -1;
2844 }
2845 
2846 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2847 {
2848 	struct igc_hw *hw = &adapter->hw;
2849 	int max_entries = hw->mac.rar_entry_count;
2850 	u32 rah;
2851 	int i;
2852 
2853 	for (i = 0; i < max_entries; i++) {
2854 		rah = rd32(IGC_RAH(i));
2855 
2856 		if (!(rah & IGC_RAH_AV))
2857 			return i;
2858 	}
2859 
2860 	return -1;
2861 }
2862 
2863 /**
2864  * igc_add_mac_filter() - Add MAC address filter
2865  * @adapter: Pointer to adapter where the filter should be added
2866  * @type: MAC address filter type (source or destination)
2867  * @addr: MAC address
2868  * @queue: If non-negative, queue assignment feature is enabled and frames
2869  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2870  *         assignment is disabled.
2871  *
2872  * Return: 0 in case of success, negative errno code otherwise.
2873  */
2874 static int igc_add_mac_filter(struct igc_adapter *adapter,
2875 			      enum igc_mac_filter_type type, const u8 *addr,
2876 			      int queue)
2877 {
2878 	struct net_device *dev = adapter->netdev;
2879 	int index;
2880 
2881 	index = igc_find_mac_filter(adapter, type, addr);
2882 	if (index >= 0)
2883 		goto update_filter;
2884 
2885 	index = igc_get_avail_mac_filter_slot(adapter);
2886 	if (index < 0)
2887 		return -ENOSPC;
2888 
2889 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2890 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2891 		   addr, queue);
2892 
2893 update_filter:
2894 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2895 	return 0;
2896 }
2897 
2898 /**
2899  * igc_del_mac_filter() - Delete MAC address filter
2900  * @adapter: Pointer to adapter where the filter should be deleted from
2901  * @type: MAC address filter type (source or destination)
2902  * @addr: MAC address
2903  */
2904 static void igc_del_mac_filter(struct igc_adapter *adapter,
2905 			       enum igc_mac_filter_type type, const u8 *addr)
2906 {
2907 	struct net_device *dev = adapter->netdev;
2908 	int index;
2909 
2910 	index = igc_find_mac_filter(adapter, type, addr);
2911 	if (index < 0)
2912 		return;
2913 
2914 	if (index == 0) {
2915 		/* If this is the default filter, we don't actually delete it.
2916 		 * We just reset to its default value i.e. disable queue
2917 		 * assignment.
2918 		 */
2919 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2920 
2921 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2922 	} else {
2923 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2924 			   index,
2925 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2926 			   addr);
2927 
2928 		igc_clear_mac_filter_hw(adapter, index);
2929 	}
2930 }
2931 
2932 /**
2933  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2934  * @adapter: Pointer to adapter where the filter should be added
2935  * @prio: VLAN priority value
2936  * @queue: Queue number which matching frames are assigned to
2937  *
2938  * Return: 0 in case of success, negative errno code otherwise.
2939  */
2940 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2941 				    int queue)
2942 {
2943 	struct net_device *dev = adapter->netdev;
2944 	struct igc_hw *hw = &adapter->hw;
2945 	u32 vlanpqf;
2946 
2947 	vlanpqf = rd32(IGC_VLANPQF);
2948 
2949 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2950 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2951 		return -EEXIST;
2952 	}
2953 
2954 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2955 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2956 
2957 	wr32(IGC_VLANPQF, vlanpqf);
2958 
2959 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2960 		   prio, queue);
2961 	return 0;
2962 }
2963 
2964 /**
2965  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2966  * @adapter: Pointer to adapter where the filter should be deleted from
2967  * @prio: VLAN priority value
2968  */
2969 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2970 {
2971 	struct igc_hw *hw = &adapter->hw;
2972 	u32 vlanpqf;
2973 
2974 	vlanpqf = rd32(IGC_VLANPQF);
2975 
2976 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2977 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2978 
2979 	wr32(IGC_VLANPQF, vlanpqf);
2980 
2981 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2982 		   prio);
2983 }
2984 
2985 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2986 {
2987 	struct igc_hw *hw = &adapter->hw;
2988 	int i;
2989 
2990 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2991 		u32 etqf = rd32(IGC_ETQF(i));
2992 
2993 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2994 			return i;
2995 	}
2996 
2997 	return -1;
2998 }
2999 
3000 /**
3001  * igc_add_etype_filter() - Add ethertype filter
3002  * @adapter: Pointer to adapter where the filter should be added
3003  * @etype: Ethertype value
3004  * @queue: If non-negative, queue assignment feature is enabled and frames
3005  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3006  *         assignment is disabled.
3007  *
3008  * Return: 0 in case of success, negative errno code otherwise.
3009  */
3010 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3011 				int queue)
3012 {
3013 	struct igc_hw *hw = &adapter->hw;
3014 	int index;
3015 	u32 etqf;
3016 
3017 	index = igc_get_avail_etype_filter_slot(adapter);
3018 	if (index < 0)
3019 		return -ENOSPC;
3020 
3021 	etqf = rd32(IGC_ETQF(index));
3022 
3023 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3024 	etqf |= etype;
3025 
3026 	if (queue >= 0) {
3027 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3028 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3029 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3030 	}
3031 
3032 	etqf |= IGC_ETQF_FILTER_ENABLE;
3033 
3034 	wr32(IGC_ETQF(index), etqf);
3035 
3036 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3037 		   etype, queue);
3038 	return 0;
3039 }
3040 
3041 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3042 {
3043 	struct igc_hw *hw = &adapter->hw;
3044 	int i;
3045 
3046 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3047 		u32 etqf = rd32(IGC_ETQF(i));
3048 
3049 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3050 			return i;
3051 	}
3052 
3053 	return -1;
3054 }
3055 
3056 /**
3057  * igc_del_etype_filter() - Delete ethertype filter
3058  * @adapter: Pointer to adapter where the filter should be deleted from
3059  * @etype: Ethertype value
3060  */
3061 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3062 {
3063 	struct igc_hw *hw = &adapter->hw;
3064 	int index;
3065 
3066 	index = igc_find_etype_filter(adapter, etype);
3067 	if (index < 0)
3068 		return;
3069 
3070 	wr32(IGC_ETQF(index), 0);
3071 
3072 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3073 		   etype);
3074 }
3075 
3076 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3077 			       const struct igc_nfc_rule *rule)
3078 {
3079 	int err;
3080 
3081 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3082 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3083 					   rule->action);
3084 		if (err)
3085 			return err;
3086 	}
3087 
3088 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3089 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3090 					 rule->filter.src_addr, rule->action);
3091 		if (err)
3092 			return err;
3093 	}
3094 
3095 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3096 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3097 					 rule->filter.dst_addr, rule->action);
3098 		if (err)
3099 			return err;
3100 	}
3101 
3102 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3103 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3104 			   VLAN_PRIO_SHIFT;
3105 
3106 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3107 		if (err)
3108 			return err;
3109 	}
3110 
3111 	return 0;
3112 }
3113 
3114 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3115 				 const struct igc_nfc_rule *rule)
3116 {
3117 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3118 		igc_del_etype_filter(adapter, rule->filter.etype);
3119 
3120 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3121 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3122 			   VLAN_PRIO_SHIFT;
3123 
3124 		igc_del_vlan_prio_filter(adapter, prio);
3125 	}
3126 
3127 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3128 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3129 				   rule->filter.src_addr);
3130 
3131 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3132 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3133 				   rule->filter.dst_addr);
3134 }
3135 
3136 /**
3137  * igc_get_nfc_rule() - Get NFC rule
3138  * @adapter: Pointer to adapter
3139  * @location: Rule location
3140  *
3141  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3142  *
3143  * Return: Pointer to NFC rule at @location. If not found, NULL.
3144  */
3145 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3146 				      u32 location)
3147 {
3148 	struct igc_nfc_rule *rule;
3149 
3150 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3151 		if (rule->location == location)
3152 			return rule;
3153 		if (rule->location > location)
3154 			break;
3155 	}
3156 
3157 	return NULL;
3158 }
3159 
3160 /**
3161  * igc_del_nfc_rule() - Delete NFC rule
3162  * @adapter: Pointer to adapter
3163  * @rule: Pointer to rule to be deleted
3164  *
3165  * Disable NFC rule in hardware and delete it from adapter.
3166  *
3167  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3168  */
3169 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3170 {
3171 	igc_disable_nfc_rule(adapter, rule);
3172 
3173 	list_del(&rule->list);
3174 	adapter->nfc_rule_count--;
3175 
3176 	kfree(rule);
3177 }
3178 
3179 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3180 {
3181 	struct igc_nfc_rule *rule, *tmp;
3182 
3183 	mutex_lock(&adapter->nfc_rule_lock);
3184 
3185 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3186 		igc_del_nfc_rule(adapter, rule);
3187 
3188 	mutex_unlock(&adapter->nfc_rule_lock);
3189 }
3190 
3191 /**
3192  * igc_add_nfc_rule() - Add NFC rule
3193  * @adapter: Pointer to adapter
3194  * @rule: Pointer to rule to be added
3195  *
3196  * Enable NFC rule in hardware and add it to adapter.
3197  *
3198  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3199  *
3200  * Return: 0 on success, negative errno on failure.
3201  */
3202 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3203 {
3204 	struct igc_nfc_rule *pred, *cur;
3205 	int err;
3206 
3207 	err = igc_enable_nfc_rule(adapter, rule);
3208 	if (err)
3209 		return err;
3210 
3211 	pred = NULL;
3212 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3213 		if (cur->location >= rule->location)
3214 			break;
3215 		pred = cur;
3216 	}
3217 
3218 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3219 	adapter->nfc_rule_count++;
3220 	return 0;
3221 }
3222 
3223 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3224 {
3225 	struct igc_nfc_rule *rule;
3226 
3227 	mutex_lock(&adapter->nfc_rule_lock);
3228 
3229 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3230 		igc_enable_nfc_rule(adapter, rule);
3231 
3232 	mutex_unlock(&adapter->nfc_rule_lock);
3233 }
3234 
3235 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3236 {
3237 	struct igc_adapter *adapter = netdev_priv(netdev);
3238 
3239 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3240 }
3241 
3242 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3243 {
3244 	struct igc_adapter *adapter = netdev_priv(netdev);
3245 
3246 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3247 	return 0;
3248 }
3249 
3250 /**
3251  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3252  * @netdev: network interface device structure
3253  *
3254  * The set_rx_mode entry point is called whenever the unicast or multicast
3255  * address lists or the network interface flags are updated.  This routine is
3256  * responsible for configuring the hardware for proper unicast, multicast,
3257  * promiscuous mode, and all-multi behavior.
3258  */
3259 static void igc_set_rx_mode(struct net_device *netdev)
3260 {
3261 	struct igc_adapter *adapter = netdev_priv(netdev);
3262 	struct igc_hw *hw = &adapter->hw;
3263 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3264 	int count;
3265 
3266 	/* Check for Promiscuous and All Multicast modes */
3267 	if (netdev->flags & IFF_PROMISC) {
3268 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3269 	} else {
3270 		if (netdev->flags & IFF_ALLMULTI) {
3271 			rctl |= IGC_RCTL_MPE;
3272 		} else {
3273 			/* Write addresses to the MTA, if the attempt fails
3274 			 * then we should just turn on promiscuous mode so
3275 			 * that we can at least receive multicast traffic
3276 			 */
3277 			count = igc_write_mc_addr_list(netdev);
3278 			if (count < 0)
3279 				rctl |= IGC_RCTL_MPE;
3280 		}
3281 	}
3282 
3283 	/* Write addresses to available RAR registers, if there is not
3284 	 * sufficient space to store all the addresses then enable
3285 	 * unicast promiscuous mode
3286 	 */
3287 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3288 		rctl |= IGC_RCTL_UPE;
3289 
3290 	/* update state of unicast and multicast */
3291 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3292 	wr32(IGC_RCTL, rctl);
3293 
3294 #if (PAGE_SIZE < 8192)
3295 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3296 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3297 #endif
3298 	wr32(IGC_RLPML, rlpml);
3299 }
3300 
3301 /**
3302  * igc_configure - configure the hardware for RX and TX
3303  * @adapter: private board structure
3304  */
3305 static void igc_configure(struct igc_adapter *adapter)
3306 {
3307 	struct net_device *netdev = adapter->netdev;
3308 	int i = 0;
3309 
3310 	igc_get_hw_control(adapter);
3311 	igc_set_rx_mode(netdev);
3312 
3313 	igc_restore_vlan(adapter);
3314 
3315 	igc_setup_tctl(adapter);
3316 	igc_setup_mrqc(adapter);
3317 	igc_setup_rctl(adapter);
3318 
3319 	igc_set_default_mac_filter(adapter);
3320 	igc_restore_nfc_rules(adapter);
3321 
3322 	igc_configure_tx(adapter);
3323 	igc_configure_rx(adapter);
3324 
3325 	igc_rx_fifo_flush_base(&adapter->hw);
3326 
3327 	/* call igc_desc_unused which always leaves
3328 	 * at least 1 descriptor unused to make sure
3329 	 * next_to_use != next_to_clean
3330 	 */
3331 	for (i = 0; i < adapter->num_rx_queues; i++) {
3332 		struct igc_ring *ring = adapter->rx_ring[i];
3333 
3334 		if (ring->xsk_pool)
3335 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3336 		else
3337 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3338 	}
3339 }
3340 
3341 /**
3342  * igc_write_ivar - configure ivar for given MSI-X vector
3343  * @hw: pointer to the HW structure
3344  * @msix_vector: vector number we are allocating to a given ring
3345  * @index: row index of IVAR register to write within IVAR table
3346  * @offset: column offset of in IVAR, should be multiple of 8
3347  *
3348  * The IVAR table consists of 2 columns,
3349  * each containing an cause allocation for an Rx and Tx ring, and a
3350  * variable number of rows depending on the number of queues supported.
3351  */
3352 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3353 			   int index, int offset)
3354 {
3355 	u32 ivar = array_rd32(IGC_IVAR0, index);
3356 
3357 	/* clear any bits that are currently set */
3358 	ivar &= ~((u32)0xFF << offset);
3359 
3360 	/* write vector and valid bit */
3361 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3362 
3363 	array_wr32(IGC_IVAR0, index, ivar);
3364 }
3365 
3366 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3367 {
3368 	struct igc_adapter *adapter = q_vector->adapter;
3369 	struct igc_hw *hw = &adapter->hw;
3370 	int rx_queue = IGC_N0_QUEUE;
3371 	int tx_queue = IGC_N0_QUEUE;
3372 
3373 	if (q_vector->rx.ring)
3374 		rx_queue = q_vector->rx.ring->reg_idx;
3375 	if (q_vector->tx.ring)
3376 		tx_queue = q_vector->tx.ring->reg_idx;
3377 
3378 	switch (hw->mac.type) {
3379 	case igc_i225:
3380 		if (rx_queue > IGC_N0_QUEUE)
3381 			igc_write_ivar(hw, msix_vector,
3382 				       rx_queue >> 1,
3383 				       (rx_queue & 0x1) << 4);
3384 		if (tx_queue > IGC_N0_QUEUE)
3385 			igc_write_ivar(hw, msix_vector,
3386 				       tx_queue >> 1,
3387 				       ((tx_queue & 0x1) << 4) + 8);
3388 		q_vector->eims_value = BIT(msix_vector);
3389 		break;
3390 	default:
3391 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3392 		break;
3393 	}
3394 
3395 	/* add q_vector eims value to global eims_enable_mask */
3396 	adapter->eims_enable_mask |= q_vector->eims_value;
3397 
3398 	/* configure q_vector to set itr on first interrupt */
3399 	q_vector->set_itr = 1;
3400 }
3401 
3402 /**
3403  * igc_configure_msix - Configure MSI-X hardware
3404  * @adapter: Pointer to adapter structure
3405  *
3406  * igc_configure_msix sets up the hardware to properly
3407  * generate MSI-X interrupts.
3408  */
3409 static void igc_configure_msix(struct igc_adapter *adapter)
3410 {
3411 	struct igc_hw *hw = &adapter->hw;
3412 	int i, vector = 0;
3413 	u32 tmp;
3414 
3415 	adapter->eims_enable_mask = 0;
3416 
3417 	/* set vector for other causes, i.e. link changes */
3418 	switch (hw->mac.type) {
3419 	case igc_i225:
3420 		/* Turn on MSI-X capability first, or our settings
3421 		 * won't stick.  And it will take days to debug.
3422 		 */
3423 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3424 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3425 		     IGC_GPIE_NSICR);
3426 
3427 		/* enable msix_other interrupt */
3428 		adapter->eims_other = BIT(vector);
3429 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3430 
3431 		wr32(IGC_IVAR_MISC, tmp);
3432 		break;
3433 	default:
3434 		/* do nothing, since nothing else supports MSI-X */
3435 		break;
3436 	} /* switch (hw->mac.type) */
3437 
3438 	adapter->eims_enable_mask |= adapter->eims_other;
3439 
3440 	for (i = 0; i < adapter->num_q_vectors; i++)
3441 		igc_assign_vector(adapter->q_vector[i], vector++);
3442 
3443 	wrfl();
3444 }
3445 
3446 /**
3447  * igc_irq_enable - Enable default interrupt generation settings
3448  * @adapter: board private structure
3449  */
3450 static void igc_irq_enable(struct igc_adapter *adapter)
3451 {
3452 	struct igc_hw *hw = &adapter->hw;
3453 
3454 	if (adapter->msix_entries) {
3455 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3456 		u32 regval = rd32(IGC_EIAC);
3457 
3458 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3459 		regval = rd32(IGC_EIAM);
3460 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3461 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3462 		wr32(IGC_IMS, ims);
3463 	} else {
3464 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3465 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3466 	}
3467 }
3468 
3469 /**
3470  * igc_irq_disable - Mask off interrupt generation on the NIC
3471  * @adapter: board private structure
3472  */
3473 static void igc_irq_disable(struct igc_adapter *adapter)
3474 {
3475 	struct igc_hw *hw = &adapter->hw;
3476 
3477 	if (adapter->msix_entries) {
3478 		u32 regval = rd32(IGC_EIAM);
3479 
3480 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3481 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3482 		regval = rd32(IGC_EIAC);
3483 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3484 	}
3485 
3486 	wr32(IGC_IAM, 0);
3487 	wr32(IGC_IMC, ~0);
3488 	wrfl();
3489 
3490 	if (adapter->msix_entries) {
3491 		int vector = 0, i;
3492 
3493 		synchronize_irq(adapter->msix_entries[vector++].vector);
3494 
3495 		for (i = 0; i < adapter->num_q_vectors; i++)
3496 			synchronize_irq(adapter->msix_entries[vector++].vector);
3497 	} else {
3498 		synchronize_irq(adapter->pdev->irq);
3499 	}
3500 }
3501 
3502 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3503 			      const u32 max_rss_queues)
3504 {
3505 	/* Determine if we need to pair queues. */
3506 	/* If rss_queues > half of max_rss_queues, pair the queues in
3507 	 * order to conserve interrupts due to limited supply.
3508 	 */
3509 	if (adapter->rss_queues > (max_rss_queues / 2))
3510 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3511 	else
3512 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3513 }
3514 
3515 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3516 {
3517 	return IGC_MAX_RX_QUEUES;
3518 }
3519 
3520 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3521 {
3522 	u32 max_rss_queues;
3523 
3524 	max_rss_queues = igc_get_max_rss_queues(adapter);
3525 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3526 
3527 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3528 }
3529 
3530 /**
3531  * igc_reset_q_vector - Reset config for interrupt vector
3532  * @adapter: board private structure to initialize
3533  * @v_idx: Index of vector to be reset
3534  *
3535  * If NAPI is enabled it will delete any references to the
3536  * NAPI struct. This is preparation for igc_free_q_vector.
3537  */
3538 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3539 {
3540 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3541 
3542 	/* if we're coming from igc_set_interrupt_capability, the vectors are
3543 	 * not yet allocated
3544 	 */
3545 	if (!q_vector)
3546 		return;
3547 
3548 	if (q_vector->tx.ring)
3549 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3550 
3551 	if (q_vector->rx.ring)
3552 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3553 
3554 	netif_napi_del(&q_vector->napi);
3555 }
3556 
3557 /**
3558  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3559  * @adapter: board private structure to initialize
3560  * @v_idx: Index of vector to be freed
3561  *
3562  * This function frees the memory allocated to the q_vector.
3563  */
3564 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3565 {
3566 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3567 
3568 	adapter->q_vector[v_idx] = NULL;
3569 
3570 	/* igc_get_stats64() might access the rings on this vector,
3571 	 * we must wait a grace period before freeing it.
3572 	 */
3573 	if (q_vector)
3574 		kfree_rcu(q_vector, rcu);
3575 }
3576 
3577 /**
3578  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3579  * @adapter: board private structure to initialize
3580  *
3581  * This function frees the memory allocated to the q_vectors.  In addition if
3582  * NAPI is enabled it will delete any references to the NAPI struct prior
3583  * to freeing the q_vector.
3584  */
3585 static void igc_free_q_vectors(struct igc_adapter *adapter)
3586 {
3587 	int v_idx = adapter->num_q_vectors;
3588 
3589 	adapter->num_tx_queues = 0;
3590 	adapter->num_rx_queues = 0;
3591 	adapter->num_q_vectors = 0;
3592 
3593 	while (v_idx--) {
3594 		igc_reset_q_vector(adapter, v_idx);
3595 		igc_free_q_vector(adapter, v_idx);
3596 	}
3597 }
3598 
3599 /**
3600  * igc_update_itr - update the dynamic ITR value based on statistics
3601  * @q_vector: pointer to q_vector
3602  * @ring_container: ring info to update the itr for
3603  *
3604  * Stores a new ITR value based on packets and byte
3605  * counts during the last interrupt.  The advantage of per interrupt
3606  * computation is faster updates and more accurate ITR for the current
3607  * traffic pattern.  Constants in this function were computed
3608  * based on theoretical maximum wire speed and thresholds were set based
3609  * on testing data as well as attempting to minimize response time
3610  * while increasing bulk throughput.
3611  * NOTE: These calculations are only valid when operating in a single-
3612  * queue environment.
3613  */
3614 static void igc_update_itr(struct igc_q_vector *q_vector,
3615 			   struct igc_ring_container *ring_container)
3616 {
3617 	unsigned int packets = ring_container->total_packets;
3618 	unsigned int bytes = ring_container->total_bytes;
3619 	u8 itrval = ring_container->itr;
3620 
3621 	/* no packets, exit with status unchanged */
3622 	if (packets == 0)
3623 		return;
3624 
3625 	switch (itrval) {
3626 	case lowest_latency:
3627 		/* handle TSO and jumbo frames */
3628 		if (bytes / packets > 8000)
3629 			itrval = bulk_latency;
3630 		else if ((packets < 5) && (bytes > 512))
3631 			itrval = low_latency;
3632 		break;
3633 	case low_latency:  /* 50 usec aka 20000 ints/s */
3634 		if (bytes > 10000) {
3635 			/* this if handles the TSO accounting */
3636 			if (bytes / packets > 8000)
3637 				itrval = bulk_latency;
3638 			else if ((packets < 10) || ((bytes / packets) > 1200))
3639 				itrval = bulk_latency;
3640 			else if ((packets > 35))
3641 				itrval = lowest_latency;
3642 		} else if (bytes / packets > 2000) {
3643 			itrval = bulk_latency;
3644 		} else if (packets <= 2 && bytes < 512) {
3645 			itrval = lowest_latency;
3646 		}
3647 		break;
3648 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3649 		if (bytes > 25000) {
3650 			if (packets > 35)
3651 				itrval = low_latency;
3652 		} else if (bytes < 1500) {
3653 			itrval = low_latency;
3654 		}
3655 		break;
3656 	}
3657 
3658 	/* clear work counters since we have the values we need */
3659 	ring_container->total_bytes = 0;
3660 	ring_container->total_packets = 0;
3661 
3662 	/* write updated itr to ring container */
3663 	ring_container->itr = itrval;
3664 }
3665 
3666 static void igc_set_itr(struct igc_q_vector *q_vector)
3667 {
3668 	struct igc_adapter *adapter = q_vector->adapter;
3669 	u32 new_itr = q_vector->itr_val;
3670 	u8 current_itr = 0;
3671 
3672 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3673 	switch (adapter->link_speed) {
3674 	case SPEED_10:
3675 	case SPEED_100:
3676 		current_itr = 0;
3677 		new_itr = IGC_4K_ITR;
3678 		goto set_itr_now;
3679 	default:
3680 		break;
3681 	}
3682 
3683 	igc_update_itr(q_vector, &q_vector->tx);
3684 	igc_update_itr(q_vector, &q_vector->rx);
3685 
3686 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3687 
3688 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3689 	if (current_itr == lowest_latency &&
3690 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3691 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3692 		current_itr = low_latency;
3693 
3694 	switch (current_itr) {
3695 	/* counts and packets in update_itr are dependent on these numbers */
3696 	case lowest_latency:
3697 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3698 		break;
3699 	case low_latency:
3700 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3701 		break;
3702 	case bulk_latency:
3703 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3704 		break;
3705 	default:
3706 		break;
3707 	}
3708 
3709 set_itr_now:
3710 	if (new_itr != q_vector->itr_val) {
3711 		/* this attempts to bias the interrupt rate towards Bulk
3712 		 * by adding intermediate steps when interrupt rate is
3713 		 * increasing
3714 		 */
3715 		new_itr = new_itr > q_vector->itr_val ?
3716 			  max((new_itr * q_vector->itr_val) /
3717 			  (new_itr + (q_vector->itr_val >> 2)),
3718 			  new_itr) : new_itr;
3719 		/* Don't write the value here; it resets the adapter's
3720 		 * internal timer, and causes us to delay far longer than
3721 		 * we should between interrupts.  Instead, we write the ITR
3722 		 * value at the beginning of the next interrupt so the timing
3723 		 * ends up being correct.
3724 		 */
3725 		q_vector->itr_val = new_itr;
3726 		q_vector->set_itr = 1;
3727 	}
3728 }
3729 
3730 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3731 {
3732 	int v_idx = adapter->num_q_vectors;
3733 
3734 	if (adapter->msix_entries) {
3735 		pci_disable_msix(adapter->pdev);
3736 		kfree(adapter->msix_entries);
3737 		adapter->msix_entries = NULL;
3738 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3739 		pci_disable_msi(adapter->pdev);
3740 	}
3741 
3742 	while (v_idx--)
3743 		igc_reset_q_vector(adapter, v_idx);
3744 }
3745 
3746 /**
3747  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3748  * @adapter: Pointer to adapter structure
3749  * @msix: boolean value for MSI-X capability
3750  *
3751  * Attempt to configure interrupts using the best available
3752  * capabilities of the hardware and kernel.
3753  */
3754 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3755 					 bool msix)
3756 {
3757 	int numvecs, i;
3758 	int err;
3759 
3760 	if (!msix)
3761 		goto msi_only;
3762 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3763 
3764 	/* Number of supported queues. */
3765 	adapter->num_rx_queues = adapter->rss_queues;
3766 
3767 	adapter->num_tx_queues = adapter->rss_queues;
3768 
3769 	/* start with one vector for every Rx queue */
3770 	numvecs = adapter->num_rx_queues;
3771 
3772 	/* if Tx handler is separate add 1 for every Tx queue */
3773 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3774 		numvecs += adapter->num_tx_queues;
3775 
3776 	/* store the number of vectors reserved for queues */
3777 	adapter->num_q_vectors = numvecs;
3778 
3779 	/* add 1 vector for link status interrupts */
3780 	numvecs++;
3781 
3782 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3783 					GFP_KERNEL);
3784 
3785 	if (!adapter->msix_entries)
3786 		return;
3787 
3788 	/* populate entry values */
3789 	for (i = 0; i < numvecs; i++)
3790 		adapter->msix_entries[i].entry = i;
3791 
3792 	err = pci_enable_msix_range(adapter->pdev,
3793 				    adapter->msix_entries,
3794 				    numvecs,
3795 				    numvecs);
3796 	if (err > 0)
3797 		return;
3798 
3799 	kfree(adapter->msix_entries);
3800 	adapter->msix_entries = NULL;
3801 
3802 	igc_reset_interrupt_capability(adapter);
3803 
3804 msi_only:
3805 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3806 
3807 	adapter->rss_queues = 1;
3808 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3809 	adapter->num_rx_queues = 1;
3810 	adapter->num_tx_queues = 1;
3811 	adapter->num_q_vectors = 1;
3812 	if (!pci_enable_msi(adapter->pdev))
3813 		adapter->flags |= IGC_FLAG_HAS_MSI;
3814 }
3815 
3816 /**
3817  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3818  * @q_vector: pointer to q_vector
3819  *
3820  * Stores a new ITR value based on strictly on packet size.  This
3821  * algorithm is less sophisticated than that used in igc_update_itr,
3822  * due to the difficulty of synchronizing statistics across multiple
3823  * receive rings.  The divisors and thresholds used by this function
3824  * were determined based on theoretical maximum wire speed and testing
3825  * data, in order to minimize response time while increasing bulk
3826  * throughput.
3827  * NOTE: This function is called only when operating in a multiqueue
3828  * receive environment.
3829  */
3830 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3831 {
3832 	struct igc_adapter *adapter = q_vector->adapter;
3833 	int new_val = q_vector->itr_val;
3834 	int avg_wire_size = 0;
3835 	unsigned int packets;
3836 
3837 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3838 	 * ints/sec - ITR timer value of 120 ticks.
3839 	 */
3840 	switch (adapter->link_speed) {
3841 	case SPEED_10:
3842 	case SPEED_100:
3843 		new_val = IGC_4K_ITR;
3844 		goto set_itr_val;
3845 	default:
3846 		break;
3847 	}
3848 
3849 	packets = q_vector->rx.total_packets;
3850 	if (packets)
3851 		avg_wire_size = q_vector->rx.total_bytes / packets;
3852 
3853 	packets = q_vector->tx.total_packets;
3854 	if (packets)
3855 		avg_wire_size = max_t(u32, avg_wire_size,
3856 				      q_vector->tx.total_bytes / packets);
3857 
3858 	/* if avg_wire_size isn't set no work was done */
3859 	if (!avg_wire_size)
3860 		goto clear_counts;
3861 
3862 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3863 	avg_wire_size += 24;
3864 
3865 	/* Don't starve jumbo frames */
3866 	avg_wire_size = min(avg_wire_size, 3000);
3867 
3868 	/* Give a little boost to mid-size frames */
3869 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3870 		new_val = avg_wire_size / 3;
3871 	else
3872 		new_val = avg_wire_size / 2;
3873 
3874 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3875 	if (new_val < IGC_20K_ITR &&
3876 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3877 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3878 		new_val = IGC_20K_ITR;
3879 
3880 set_itr_val:
3881 	if (new_val != q_vector->itr_val) {
3882 		q_vector->itr_val = new_val;
3883 		q_vector->set_itr = 1;
3884 	}
3885 clear_counts:
3886 	q_vector->rx.total_bytes = 0;
3887 	q_vector->rx.total_packets = 0;
3888 	q_vector->tx.total_bytes = 0;
3889 	q_vector->tx.total_packets = 0;
3890 }
3891 
3892 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3893 {
3894 	struct igc_adapter *adapter = q_vector->adapter;
3895 	struct igc_hw *hw = &adapter->hw;
3896 
3897 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3898 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3899 		if (adapter->num_q_vectors == 1)
3900 			igc_set_itr(q_vector);
3901 		else
3902 			igc_update_ring_itr(q_vector);
3903 	}
3904 
3905 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3906 		if (adapter->msix_entries)
3907 			wr32(IGC_EIMS, q_vector->eims_value);
3908 		else
3909 			igc_irq_enable(adapter);
3910 	}
3911 }
3912 
3913 static void igc_add_ring(struct igc_ring *ring,
3914 			 struct igc_ring_container *head)
3915 {
3916 	head->ring = ring;
3917 	head->count++;
3918 }
3919 
3920 /**
3921  * igc_cache_ring_register - Descriptor ring to register mapping
3922  * @adapter: board private structure to initialize
3923  *
3924  * Once we know the feature-set enabled for the device, we'll cache
3925  * the register offset the descriptor ring is assigned to.
3926  */
3927 static void igc_cache_ring_register(struct igc_adapter *adapter)
3928 {
3929 	int i = 0, j = 0;
3930 
3931 	switch (adapter->hw.mac.type) {
3932 	case igc_i225:
3933 	default:
3934 		for (; i < adapter->num_rx_queues; i++)
3935 			adapter->rx_ring[i]->reg_idx = i;
3936 		for (; j < adapter->num_tx_queues; j++)
3937 			adapter->tx_ring[j]->reg_idx = j;
3938 		break;
3939 	}
3940 }
3941 
3942 /**
3943  * igc_poll - NAPI Rx polling callback
3944  * @napi: napi polling structure
3945  * @budget: count of how many packets we should handle
3946  */
3947 static int igc_poll(struct napi_struct *napi, int budget)
3948 {
3949 	struct igc_q_vector *q_vector = container_of(napi,
3950 						     struct igc_q_vector,
3951 						     napi);
3952 	struct igc_ring *rx_ring = q_vector->rx.ring;
3953 	bool clean_complete = true;
3954 	int work_done = 0;
3955 
3956 	if (q_vector->tx.ring)
3957 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3958 
3959 	if (rx_ring) {
3960 		int cleaned = rx_ring->xsk_pool ?
3961 			      igc_clean_rx_irq_zc(q_vector, budget) :
3962 			      igc_clean_rx_irq(q_vector, budget);
3963 
3964 		work_done += cleaned;
3965 		if (cleaned >= budget)
3966 			clean_complete = false;
3967 	}
3968 
3969 	/* If all work not completed, return budget and keep polling */
3970 	if (!clean_complete)
3971 		return budget;
3972 
3973 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3974 	 * poll us due to busy-polling
3975 	 */
3976 	if (likely(napi_complete_done(napi, work_done)))
3977 		igc_ring_irq_enable(q_vector);
3978 
3979 	return min(work_done, budget - 1);
3980 }
3981 
3982 /**
3983  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3984  * @adapter: board private structure to initialize
3985  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3986  * @v_idx: index of vector in adapter struct
3987  * @txr_count: total number of Tx rings to allocate
3988  * @txr_idx: index of first Tx ring to allocate
3989  * @rxr_count: total number of Rx rings to allocate
3990  * @rxr_idx: index of first Rx ring to allocate
3991  *
3992  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3993  */
3994 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3995 			      unsigned int v_count, unsigned int v_idx,
3996 			      unsigned int txr_count, unsigned int txr_idx,
3997 			      unsigned int rxr_count, unsigned int rxr_idx)
3998 {
3999 	struct igc_q_vector *q_vector;
4000 	struct igc_ring *ring;
4001 	int ring_count;
4002 
4003 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4004 	if (txr_count > 1 || rxr_count > 1)
4005 		return -ENOMEM;
4006 
4007 	ring_count = txr_count + rxr_count;
4008 
4009 	/* allocate q_vector and rings */
4010 	q_vector = adapter->q_vector[v_idx];
4011 	if (!q_vector)
4012 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4013 				   GFP_KERNEL);
4014 	else
4015 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4016 	if (!q_vector)
4017 		return -ENOMEM;
4018 
4019 	/* initialize NAPI */
4020 	netif_napi_add(adapter->netdev, &q_vector->napi,
4021 		       igc_poll, 64);
4022 
4023 	/* tie q_vector and adapter together */
4024 	adapter->q_vector[v_idx] = q_vector;
4025 	q_vector->adapter = adapter;
4026 
4027 	/* initialize work limits */
4028 	q_vector->tx.work_limit = adapter->tx_work_limit;
4029 
4030 	/* initialize ITR configuration */
4031 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4032 	q_vector->itr_val = IGC_START_ITR;
4033 
4034 	/* initialize pointer to rings */
4035 	ring = q_vector->ring;
4036 
4037 	/* initialize ITR */
4038 	if (rxr_count) {
4039 		/* rx or rx/tx vector */
4040 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4041 			q_vector->itr_val = adapter->rx_itr_setting;
4042 	} else {
4043 		/* tx only vector */
4044 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4045 			q_vector->itr_val = adapter->tx_itr_setting;
4046 	}
4047 
4048 	if (txr_count) {
4049 		/* assign generic ring traits */
4050 		ring->dev = &adapter->pdev->dev;
4051 		ring->netdev = adapter->netdev;
4052 
4053 		/* configure backlink on ring */
4054 		ring->q_vector = q_vector;
4055 
4056 		/* update q_vector Tx values */
4057 		igc_add_ring(ring, &q_vector->tx);
4058 
4059 		/* apply Tx specific ring traits */
4060 		ring->count = adapter->tx_ring_count;
4061 		ring->queue_index = txr_idx;
4062 
4063 		/* assign ring to adapter */
4064 		adapter->tx_ring[txr_idx] = ring;
4065 
4066 		/* push pointer to next ring */
4067 		ring++;
4068 	}
4069 
4070 	if (rxr_count) {
4071 		/* assign generic ring traits */
4072 		ring->dev = &adapter->pdev->dev;
4073 		ring->netdev = adapter->netdev;
4074 
4075 		/* configure backlink on ring */
4076 		ring->q_vector = q_vector;
4077 
4078 		/* update q_vector Rx values */
4079 		igc_add_ring(ring, &q_vector->rx);
4080 
4081 		/* apply Rx specific ring traits */
4082 		ring->count = adapter->rx_ring_count;
4083 		ring->queue_index = rxr_idx;
4084 
4085 		/* assign ring to adapter */
4086 		adapter->rx_ring[rxr_idx] = ring;
4087 	}
4088 
4089 	return 0;
4090 }
4091 
4092 /**
4093  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4094  * @adapter: board private structure to initialize
4095  *
4096  * We allocate one q_vector per queue interrupt.  If allocation fails we
4097  * return -ENOMEM.
4098  */
4099 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4100 {
4101 	int rxr_remaining = adapter->num_rx_queues;
4102 	int txr_remaining = adapter->num_tx_queues;
4103 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4104 	int q_vectors = adapter->num_q_vectors;
4105 	int err;
4106 
4107 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4108 		for (; rxr_remaining; v_idx++) {
4109 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4110 						 0, 0, 1, rxr_idx);
4111 
4112 			if (err)
4113 				goto err_out;
4114 
4115 			/* update counts and index */
4116 			rxr_remaining--;
4117 			rxr_idx++;
4118 		}
4119 	}
4120 
4121 	for (; v_idx < q_vectors; v_idx++) {
4122 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4123 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4124 
4125 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4126 					 tqpv, txr_idx, rqpv, rxr_idx);
4127 
4128 		if (err)
4129 			goto err_out;
4130 
4131 		/* update counts and index */
4132 		rxr_remaining -= rqpv;
4133 		txr_remaining -= tqpv;
4134 		rxr_idx++;
4135 		txr_idx++;
4136 	}
4137 
4138 	return 0;
4139 
4140 err_out:
4141 	adapter->num_tx_queues = 0;
4142 	adapter->num_rx_queues = 0;
4143 	adapter->num_q_vectors = 0;
4144 
4145 	while (v_idx--)
4146 		igc_free_q_vector(adapter, v_idx);
4147 
4148 	return -ENOMEM;
4149 }
4150 
4151 /**
4152  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4153  * @adapter: Pointer to adapter structure
4154  * @msix: boolean for MSI-X capability
4155  *
4156  * This function initializes the interrupts and allocates all of the queues.
4157  */
4158 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4159 {
4160 	struct net_device *dev = adapter->netdev;
4161 	int err = 0;
4162 
4163 	igc_set_interrupt_capability(adapter, msix);
4164 
4165 	err = igc_alloc_q_vectors(adapter);
4166 	if (err) {
4167 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4168 		goto err_alloc_q_vectors;
4169 	}
4170 
4171 	igc_cache_ring_register(adapter);
4172 
4173 	return 0;
4174 
4175 err_alloc_q_vectors:
4176 	igc_reset_interrupt_capability(adapter);
4177 	return err;
4178 }
4179 
4180 /**
4181  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4182  * @adapter: board private structure to initialize
4183  *
4184  * igc_sw_init initializes the Adapter private data structure.
4185  * Fields are initialized based on PCI device information and
4186  * OS network device settings (MTU size).
4187  */
4188 static int igc_sw_init(struct igc_adapter *adapter)
4189 {
4190 	struct net_device *netdev = adapter->netdev;
4191 	struct pci_dev *pdev = adapter->pdev;
4192 	struct igc_hw *hw = &adapter->hw;
4193 
4194 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4195 
4196 	/* set default ring sizes */
4197 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4198 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4199 
4200 	/* set default ITR values */
4201 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4202 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4203 
4204 	/* set default work limits */
4205 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4206 
4207 	/* adjust max frame to be at least the size of a standard frame */
4208 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4209 				VLAN_HLEN;
4210 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4211 
4212 	mutex_init(&adapter->nfc_rule_lock);
4213 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4214 	adapter->nfc_rule_count = 0;
4215 
4216 	spin_lock_init(&adapter->stats64_lock);
4217 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4218 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4219 
4220 	igc_init_queue_configuration(adapter);
4221 
4222 	/* This call may decrease the number of queues */
4223 	if (igc_init_interrupt_scheme(adapter, true)) {
4224 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4225 		return -ENOMEM;
4226 	}
4227 
4228 	/* Explicitly disable IRQ since the NIC can be in any state. */
4229 	igc_irq_disable(adapter);
4230 
4231 	set_bit(__IGC_DOWN, &adapter->state);
4232 
4233 	return 0;
4234 }
4235 
4236 /**
4237  * igc_up - Open the interface and prepare it to handle traffic
4238  * @adapter: board private structure
4239  */
4240 void igc_up(struct igc_adapter *adapter)
4241 {
4242 	struct igc_hw *hw = &adapter->hw;
4243 	int i = 0;
4244 
4245 	/* hardware has been reset, we need to reload some things */
4246 	igc_configure(adapter);
4247 
4248 	clear_bit(__IGC_DOWN, &adapter->state);
4249 
4250 	for (i = 0; i < adapter->num_q_vectors; i++)
4251 		napi_enable(&adapter->q_vector[i]->napi);
4252 
4253 	if (adapter->msix_entries)
4254 		igc_configure_msix(adapter);
4255 	else
4256 		igc_assign_vector(adapter->q_vector[0], 0);
4257 
4258 	/* Clear any pending interrupts. */
4259 	rd32(IGC_ICR);
4260 	igc_irq_enable(adapter);
4261 
4262 	netif_tx_start_all_queues(adapter->netdev);
4263 
4264 	/* start the watchdog. */
4265 	hw->mac.get_link_status = true;
4266 	schedule_work(&adapter->watchdog_task);
4267 }
4268 
4269 /**
4270  * igc_update_stats - Update the board statistics counters
4271  * @adapter: board private structure
4272  */
4273 void igc_update_stats(struct igc_adapter *adapter)
4274 {
4275 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4276 	struct pci_dev *pdev = adapter->pdev;
4277 	struct igc_hw *hw = &adapter->hw;
4278 	u64 _bytes, _packets;
4279 	u64 bytes, packets;
4280 	unsigned int start;
4281 	u32 mpc;
4282 	int i;
4283 
4284 	/* Prevent stats update while adapter is being reset, or if the pci
4285 	 * connection is down.
4286 	 */
4287 	if (adapter->link_speed == 0)
4288 		return;
4289 	if (pci_channel_offline(pdev))
4290 		return;
4291 
4292 	packets = 0;
4293 	bytes = 0;
4294 
4295 	rcu_read_lock();
4296 	for (i = 0; i < adapter->num_rx_queues; i++) {
4297 		struct igc_ring *ring = adapter->rx_ring[i];
4298 		u32 rqdpc = rd32(IGC_RQDPC(i));
4299 
4300 		if (hw->mac.type >= igc_i225)
4301 			wr32(IGC_RQDPC(i), 0);
4302 
4303 		if (rqdpc) {
4304 			ring->rx_stats.drops += rqdpc;
4305 			net_stats->rx_fifo_errors += rqdpc;
4306 		}
4307 
4308 		do {
4309 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4310 			_bytes = ring->rx_stats.bytes;
4311 			_packets = ring->rx_stats.packets;
4312 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4313 		bytes += _bytes;
4314 		packets += _packets;
4315 	}
4316 
4317 	net_stats->rx_bytes = bytes;
4318 	net_stats->rx_packets = packets;
4319 
4320 	packets = 0;
4321 	bytes = 0;
4322 	for (i = 0; i < adapter->num_tx_queues; i++) {
4323 		struct igc_ring *ring = adapter->tx_ring[i];
4324 
4325 		do {
4326 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4327 			_bytes = ring->tx_stats.bytes;
4328 			_packets = ring->tx_stats.packets;
4329 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4330 		bytes += _bytes;
4331 		packets += _packets;
4332 	}
4333 	net_stats->tx_bytes = bytes;
4334 	net_stats->tx_packets = packets;
4335 	rcu_read_unlock();
4336 
4337 	/* read stats registers */
4338 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4339 	adapter->stats.gprc += rd32(IGC_GPRC);
4340 	adapter->stats.gorc += rd32(IGC_GORCL);
4341 	rd32(IGC_GORCH); /* clear GORCL */
4342 	adapter->stats.bprc += rd32(IGC_BPRC);
4343 	adapter->stats.mprc += rd32(IGC_MPRC);
4344 	adapter->stats.roc += rd32(IGC_ROC);
4345 
4346 	adapter->stats.prc64 += rd32(IGC_PRC64);
4347 	adapter->stats.prc127 += rd32(IGC_PRC127);
4348 	adapter->stats.prc255 += rd32(IGC_PRC255);
4349 	adapter->stats.prc511 += rd32(IGC_PRC511);
4350 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4351 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4352 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4353 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4354 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4355 
4356 	mpc = rd32(IGC_MPC);
4357 	adapter->stats.mpc += mpc;
4358 	net_stats->rx_fifo_errors += mpc;
4359 	adapter->stats.scc += rd32(IGC_SCC);
4360 	adapter->stats.ecol += rd32(IGC_ECOL);
4361 	adapter->stats.mcc += rd32(IGC_MCC);
4362 	adapter->stats.latecol += rd32(IGC_LATECOL);
4363 	adapter->stats.dc += rd32(IGC_DC);
4364 	adapter->stats.rlec += rd32(IGC_RLEC);
4365 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4366 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4367 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4368 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4369 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4370 	adapter->stats.gptc += rd32(IGC_GPTC);
4371 	adapter->stats.gotc += rd32(IGC_GOTCL);
4372 	rd32(IGC_GOTCH); /* clear GOTCL */
4373 	adapter->stats.rnbc += rd32(IGC_RNBC);
4374 	adapter->stats.ruc += rd32(IGC_RUC);
4375 	adapter->stats.rfc += rd32(IGC_RFC);
4376 	adapter->stats.rjc += rd32(IGC_RJC);
4377 	adapter->stats.tor += rd32(IGC_TORH);
4378 	adapter->stats.tot += rd32(IGC_TOTH);
4379 	adapter->stats.tpr += rd32(IGC_TPR);
4380 
4381 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4382 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4383 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4384 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4385 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4386 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4387 
4388 	adapter->stats.mptc += rd32(IGC_MPTC);
4389 	adapter->stats.bptc += rd32(IGC_BPTC);
4390 
4391 	adapter->stats.tpt += rd32(IGC_TPT);
4392 	adapter->stats.colc += rd32(IGC_COLC);
4393 	adapter->stats.colc += rd32(IGC_RERC);
4394 
4395 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4396 
4397 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4398 
4399 	adapter->stats.iac += rd32(IGC_IAC);
4400 
4401 	/* Fill out the OS statistics structure */
4402 	net_stats->multicast = adapter->stats.mprc;
4403 	net_stats->collisions = adapter->stats.colc;
4404 
4405 	/* Rx Errors */
4406 
4407 	/* RLEC on some newer hardware can be incorrect so build
4408 	 * our own version based on RUC and ROC
4409 	 */
4410 	net_stats->rx_errors = adapter->stats.rxerrc +
4411 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4412 		adapter->stats.ruc + adapter->stats.roc +
4413 		adapter->stats.cexterr;
4414 	net_stats->rx_length_errors = adapter->stats.ruc +
4415 				      adapter->stats.roc;
4416 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4417 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4418 	net_stats->rx_missed_errors = adapter->stats.mpc;
4419 
4420 	/* Tx Errors */
4421 	net_stats->tx_errors = adapter->stats.ecol +
4422 			       adapter->stats.latecol;
4423 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4424 	net_stats->tx_window_errors = adapter->stats.latecol;
4425 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4426 
4427 	/* Tx Dropped needs to be maintained elsewhere */
4428 
4429 	/* Management Stats */
4430 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4431 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4432 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4433 }
4434 
4435 /**
4436  * igc_down - Close the interface
4437  * @adapter: board private structure
4438  */
4439 void igc_down(struct igc_adapter *adapter)
4440 {
4441 	struct net_device *netdev = adapter->netdev;
4442 	struct igc_hw *hw = &adapter->hw;
4443 	u32 tctl, rctl;
4444 	int i = 0;
4445 
4446 	set_bit(__IGC_DOWN, &adapter->state);
4447 
4448 	igc_ptp_suspend(adapter);
4449 
4450 	/* disable receives in the hardware */
4451 	rctl = rd32(IGC_RCTL);
4452 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4453 	/* flush and sleep below */
4454 
4455 	/* set trans_start so we don't get spurious watchdogs during reset */
4456 	netif_trans_update(netdev);
4457 
4458 	netif_carrier_off(netdev);
4459 	netif_tx_stop_all_queues(netdev);
4460 
4461 	/* disable transmits in the hardware */
4462 	tctl = rd32(IGC_TCTL);
4463 	tctl &= ~IGC_TCTL_EN;
4464 	wr32(IGC_TCTL, tctl);
4465 	/* flush both disables and wait for them to finish */
4466 	wrfl();
4467 	usleep_range(10000, 20000);
4468 
4469 	igc_irq_disable(adapter);
4470 
4471 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4472 
4473 	for (i = 0; i < adapter->num_q_vectors; i++) {
4474 		if (adapter->q_vector[i]) {
4475 			napi_synchronize(&adapter->q_vector[i]->napi);
4476 			napi_disable(&adapter->q_vector[i]->napi);
4477 		}
4478 	}
4479 
4480 	del_timer_sync(&adapter->watchdog_timer);
4481 	del_timer_sync(&adapter->phy_info_timer);
4482 
4483 	/* record the stats before reset*/
4484 	spin_lock(&adapter->stats64_lock);
4485 	igc_update_stats(adapter);
4486 	spin_unlock(&adapter->stats64_lock);
4487 
4488 	adapter->link_speed = 0;
4489 	adapter->link_duplex = 0;
4490 
4491 	if (!pci_channel_offline(adapter->pdev))
4492 		igc_reset(adapter);
4493 
4494 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
4495 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4496 
4497 	igc_clean_all_tx_rings(adapter);
4498 	igc_clean_all_rx_rings(adapter);
4499 }
4500 
4501 void igc_reinit_locked(struct igc_adapter *adapter)
4502 {
4503 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4504 		usleep_range(1000, 2000);
4505 	igc_down(adapter);
4506 	igc_up(adapter);
4507 	clear_bit(__IGC_RESETTING, &adapter->state);
4508 }
4509 
4510 static void igc_reset_task(struct work_struct *work)
4511 {
4512 	struct igc_adapter *adapter;
4513 
4514 	adapter = container_of(work, struct igc_adapter, reset_task);
4515 
4516 	rtnl_lock();
4517 	/* If we're already down or resetting, just bail */
4518 	if (test_bit(__IGC_DOWN, &adapter->state) ||
4519 	    test_bit(__IGC_RESETTING, &adapter->state)) {
4520 		rtnl_unlock();
4521 		return;
4522 	}
4523 
4524 	igc_rings_dump(adapter);
4525 	igc_regs_dump(adapter);
4526 	netdev_err(adapter->netdev, "Reset adapter\n");
4527 	igc_reinit_locked(adapter);
4528 	rtnl_unlock();
4529 }
4530 
4531 /**
4532  * igc_change_mtu - Change the Maximum Transfer Unit
4533  * @netdev: network interface device structure
4534  * @new_mtu: new value for maximum frame size
4535  *
4536  * Returns 0 on success, negative on failure
4537  */
4538 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4539 {
4540 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4541 	struct igc_adapter *adapter = netdev_priv(netdev);
4542 
4543 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4544 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4545 		return -EINVAL;
4546 	}
4547 
4548 	/* adjust max frame to be at least the size of a standard frame */
4549 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4550 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4551 
4552 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4553 		usleep_range(1000, 2000);
4554 
4555 	/* igc_down has a dependency on max_frame_size */
4556 	adapter->max_frame_size = max_frame;
4557 
4558 	if (netif_running(netdev))
4559 		igc_down(adapter);
4560 
4561 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4562 	netdev->mtu = new_mtu;
4563 
4564 	if (netif_running(netdev))
4565 		igc_up(adapter);
4566 	else
4567 		igc_reset(adapter);
4568 
4569 	clear_bit(__IGC_RESETTING, &adapter->state);
4570 
4571 	return 0;
4572 }
4573 
4574 /**
4575  * igc_get_stats64 - Get System Network Statistics
4576  * @netdev: network interface device structure
4577  * @stats: rtnl_link_stats64 pointer
4578  *
4579  * Returns the address of the device statistics structure.
4580  * The statistics are updated here and also from the timer callback.
4581  */
4582 static void igc_get_stats64(struct net_device *netdev,
4583 			    struct rtnl_link_stats64 *stats)
4584 {
4585 	struct igc_adapter *adapter = netdev_priv(netdev);
4586 
4587 	spin_lock(&adapter->stats64_lock);
4588 	if (!test_bit(__IGC_RESETTING, &adapter->state))
4589 		igc_update_stats(adapter);
4590 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4591 	spin_unlock(&adapter->stats64_lock);
4592 }
4593 
4594 static netdev_features_t igc_fix_features(struct net_device *netdev,
4595 					  netdev_features_t features)
4596 {
4597 	/* Since there is no support for separate Rx/Tx vlan accel
4598 	 * enable/disable make sure Tx flag is always in same state as Rx.
4599 	 */
4600 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4601 		features |= NETIF_F_HW_VLAN_CTAG_TX;
4602 	else
4603 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4604 
4605 	return features;
4606 }
4607 
4608 static int igc_set_features(struct net_device *netdev,
4609 			    netdev_features_t features)
4610 {
4611 	netdev_features_t changed = netdev->features ^ features;
4612 	struct igc_adapter *adapter = netdev_priv(netdev);
4613 
4614 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4615 		igc_vlan_mode(netdev, features);
4616 
4617 	/* Add VLAN support */
4618 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4619 		return 0;
4620 
4621 	if (!(features & NETIF_F_NTUPLE))
4622 		igc_flush_nfc_rules(adapter);
4623 
4624 	netdev->features = features;
4625 
4626 	if (netif_running(netdev))
4627 		igc_reinit_locked(adapter);
4628 	else
4629 		igc_reset(adapter);
4630 
4631 	return 1;
4632 }
4633 
4634 static netdev_features_t
4635 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4636 		   netdev_features_t features)
4637 {
4638 	unsigned int network_hdr_len, mac_hdr_len;
4639 
4640 	/* Make certain the headers can be described by a context descriptor */
4641 	mac_hdr_len = skb_network_header(skb) - skb->data;
4642 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4643 		return features & ~(NETIF_F_HW_CSUM |
4644 				    NETIF_F_SCTP_CRC |
4645 				    NETIF_F_HW_VLAN_CTAG_TX |
4646 				    NETIF_F_TSO |
4647 				    NETIF_F_TSO6);
4648 
4649 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4650 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4651 		return features & ~(NETIF_F_HW_CSUM |
4652 				    NETIF_F_SCTP_CRC |
4653 				    NETIF_F_TSO |
4654 				    NETIF_F_TSO6);
4655 
4656 	/* We can only support IPv4 TSO in tunnels if we can mangle the
4657 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4658 	 */
4659 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4660 		features &= ~NETIF_F_TSO;
4661 
4662 	return features;
4663 }
4664 
4665 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4666 {
4667 	u32 ack, tsauxc, sec, nsec, tsicr;
4668 	struct igc_hw *hw = &adapter->hw;
4669 	struct ptp_clock_event event;
4670 	struct timespec64 ts;
4671 
4672 	tsicr = rd32(IGC_TSICR);
4673 	ack = 0;
4674 
4675 	if (tsicr & IGC_TSICR_SYS_WRAP) {
4676 		event.type = PTP_CLOCK_PPS;
4677 		if (adapter->ptp_caps.pps)
4678 			ptp_clock_event(adapter->ptp_clock, &event);
4679 		ack |= IGC_TSICR_SYS_WRAP;
4680 	}
4681 
4682 	if (tsicr & IGC_TSICR_TXTS) {
4683 		/* retrieve hardware timestamp */
4684 		schedule_work(&adapter->ptp_tx_work);
4685 		ack |= IGC_TSICR_TXTS;
4686 	}
4687 
4688 	if (tsicr & IGC_TSICR_TT0) {
4689 		spin_lock(&adapter->tmreg_lock);
4690 		ts = timespec64_add(adapter->perout[0].start,
4691 				    adapter->perout[0].period);
4692 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4693 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
4694 		tsauxc = rd32(IGC_TSAUXC);
4695 		tsauxc |= IGC_TSAUXC_EN_TT0;
4696 		wr32(IGC_TSAUXC, tsauxc);
4697 		adapter->perout[0].start = ts;
4698 		spin_unlock(&adapter->tmreg_lock);
4699 		ack |= IGC_TSICR_TT0;
4700 	}
4701 
4702 	if (tsicr & IGC_TSICR_TT1) {
4703 		spin_lock(&adapter->tmreg_lock);
4704 		ts = timespec64_add(adapter->perout[1].start,
4705 				    adapter->perout[1].period);
4706 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4707 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
4708 		tsauxc = rd32(IGC_TSAUXC);
4709 		tsauxc |= IGC_TSAUXC_EN_TT1;
4710 		wr32(IGC_TSAUXC, tsauxc);
4711 		adapter->perout[1].start = ts;
4712 		spin_unlock(&adapter->tmreg_lock);
4713 		ack |= IGC_TSICR_TT1;
4714 	}
4715 
4716 	if (tsicr & IGC_TSICR_AUTT0) {
4717 		nsec = rd32(IGC_AUXSTMPL0);
4718 		sec  = rd32(IGC_AUXSTMPH0);
4719 		event.type = PTP_CLOCK_EXTTS;
4720 		event.index = 0;
4721 		event.timestamp = sec * NSEC_PER_SEC + nsec;
4722 		ptp_clock_event(adapter->ptp_clock, &event);
4723 		ack |= IGC_TSICR_AUTT0;
4724 	}
4725 
4726 	if (tsicr & IGC_TSICR_AUTT1) {
4727 		nsec = rd32(IGC_AUXSTMPL1);
4728 		sec  = rd32(IGC_AUXSTMPH1);
4729 		event.type = PTP_CLOCK_EXTTS;
4730 		event.index = 1;
4731 		event.timestamp = sec * NSEC_PER_SEC + nsec;
4732 		ptp_clock_event(adapter->ptp_clock, &event);
4733 		ack |= IGC_TSICR_AUTT1;
4734 	}
4735 
4736 	/* acknowledge the interrupts */
4737 	wr32(IGC_TSICR, ack);
4738 }
4739 
4740 /**
4741  * igc_msix_other - msix other interrupt handler
4742  * @irq: interrupt number
4743  * @data: pointer to a q_vector
4744  */
4745 static irqreturn_t igc_msix_other(int irq, void *data)
4746 {
4747 	struct igc_adapter *adapter = data;
4748 	struct igc_hw *hw = &adapter->hw;
4749 	u32 icr = rd32(IGC_ICR);
4750 
4751 	/* reading ICR causes bit 31 of EICR to be cleared */
4752 	if (icr & IGC_ICR_DRSTA)
4753 		schedule_work(&adapter->reset_task);
4754 
4755 	if (icr & IGC_ICR_DOUTSYNC) {
4756 		/* HW is reporting DMA is out of sync */
4757 		adapter->stats.doosync++;
4758 	}
4759 
4760 	if (icr & IGC_ICR_LSC) {
4761 		hw->mac.get_link_status = true;
4762 		/* guard against interrupt when we're going down */
4763 		if (!test_bit(__IGC_DOWN, &adapter->state))
4764 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4765 	}
4766 
4767 	if (icr & IGC_ICR_TS)
4768 		igc_tsync_interrupt(adapter);
4769 
4770 	wr32(IGC_EIMS, adapter->eims_other);
4771 
4772 	return IRQ_HANDLED;
4773 }
4774 
4775 static void igc_write_itr(struct igc_q_vector *q_vector)
4776 {
4777 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4778 
4779 	if (!q_vector->set_itr)
4780 		return;
4781 
4782 	if (!itr_val)
4783 		itr_val = IGC_ITR_VAL_MASK;
4784 
4785 	itr_val |= IGC_EITR_CNT_IGNR;
4786 
4787 	writel(itr_val, q_vector->itr_register);
4788 	q_vector->set_itr = 0;
4789 }
4790 
4791 static irqreturn_t igc_msix_ring(int irq, void *data)
4792 {
4793 	struct igc_q_vector *q_vector = data;
4794 
4795 	/* Write the ITR value calculated from the previous interrupt. */
4796 	igc_write_itr(q_vector);
4797 
4798 	napi_schedule(&q_vector->napi);
4799 
4800 	return IRQ_HANDLED;
4801 }
4802 
4803 /**
4804  * igc_request_msix - Initialize MSI-X interrupts
4805  * @adapter: Pointer to adapter structure
4806  *
4807  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4808  * kernel.
4809  */
4810 static int igc_request_msix(struct igc_adapter *adapter)
4811 {
4812 	int i = 0, err = 0, vector = 0, free_vector = 0;
4813 	struct net_device *netdev = adapter->netdev;
4814 
4815 	err = request_irq(adapter->msix_entries[vector].vector,
4816 			  &igc_msix_other, 0, netdev->name, adapter);
4817 	if (err)
4818 		goto err_out;
4819 
4820 	for (i = 0; i < adapter->num_q_vectors; i++) {
4821 		struct igc_q_vector *q_vector = adapter->q_vector[i];
4822 
4823 		vector++;
4824 
4825 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4826 
4827 		if (q_vector->rx.ring && q_vector->tx.ring)
4828 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4829 				q_vector->rx.ring->queue_index);
4830 		else if (q_vector->tx.ring)
4831 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4832 				q_vector->tx.ring->queue_index);
4833 		else if (q_vector->rx.ring)
4834 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4835 				q_vector->rx.ring->queue_index);
4836 		else
4837 			sprintf(q_vector->name, "%s-unused", netdev->name);
4838 
4839 		err = request_irq(adapter->msix_entries[vector].vector,
4840 				  igc_msix_ring, 0, q_vector->name,
4841 				  q_vector);
4842 		if (err)
4843 			goto err_free;
4844 	}
4845 
4846 	igc_configure_msix(adapter);
4847 	return 0;
4848 
4849 err_free:
4850 	/* free already assigned IRQs */
4851 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4852 
4853 	vector--;
4854 	for (i = 0; i < vector; i++) {
4855 		free_irq(adapter->msix_entries[free_vector++].vector,
4856 			 adapter->q_vector[i]);
4857 	}
4858 err_out:
4859 	return err;
4860 }
4861 
4862 /**
4863  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4864  * @adapter: Pointer to adapter structure
4865  *
4866  * This function resets the device so that it has 0 rx queues, tx queues, and
4867  * MSI-X interrupts allocated.
4868  */
4869 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4870 {
4871 	igc_free_q_vectors(adapter);
4872 	igc_reset_interrupt_capability(adapter);
4873 }
4874 
4875 /* Need to wait a few seconds after link up to get diagnostic information from
4876  * the phy
4877  */
4878 static void igc_update_phy_info(struct timer_list *t)
4879 {
4880 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4881 
4882 	igc_get_phy_info(&adapter->hw);
4883 }
4884 
4885 /**
4886  * igc_has_link - check shared code for link and determine up/down
4887  * @adapter: pointer to driver private info
4888  */
4889 bool igc_has_link(struct igc_adapter *adapter)
4890 {
4891 	struct igc_hw *hw = &adapter->hw;
4892 	bool link_active = false;
4893 
4894 	/* get_link_status is set on LSC (link status) interrupt or
4895 	 * rx sequence error interrupt.  get_link_status will stay
4896 	 * false until the igc_check_for_link establishes link
4897 	 * for copper adapters ONLY
4898 	 */
4899 	switch (hw->phy.media_type) {
4900 	case igc_media_type_copper:
4901 		if (!hw->mac.get_link_status)
4902 			return true;
4903 		hw->mac.ops.check_for_link(hw);
4904 		link_active = !hw->mac.get_link_status;
4905 		break;
4906 	default:
4907 	case igc_media_type_unknown:
4908 		break;
4909 	}
4910 
4911 	if (hw->mac.type == igc_i225 &&
4912 	    hw->phy.id == I225_I_PHY_ID) {
4913 		if (!netif_carrier_ok(adapter->netdev)) {
4914 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4915 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4916 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4917 			adapter->link_check_timeout = jiffies;
4918 		}
4919 	}
4920 
4921 	return link_active;
4922 }
4923 
4924 /**
4925  * igc_watchdog - Timer Call-back
4926  * @t: timer for the watchdog
4927  */
4928 static void igc_watchdog(struct timer_list *t)
4929 {
4930 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4931 	/* Do the rest outside of interrupt context */
4932 	schedule_work(&adapter->watchdog_task);
4933 }
4934 
4935 static void igc_watchdog_task(struct work_struct *work)
4936 {
4937 	struct igc_adapter *adapter = container_of(work,
4938 						   struct igc_adapter,
4939 						   watchdog_task);
4940 	struct net_device *netdev = adapter->netdev;
4941 	struct igc_hw *hw = &adapter->hw;
4942 	struct igc_phy_info *phy = &hw->phy;
4943 	u16 phy_data, retry_count = 20;
4944 	u32 link;
4945 	int i;
4946 
4947 	link = igc_has_link(adapter);
4948 
4949 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4950 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4951 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4952 		else
4953 			link = false;
4954 	}
4955 
4956 	if (link) {
4957 		/* Cancel scheduled suspend requests. */
4958 		pm_runtime_resume(netdev->dev.parent);
4959 
4960 		if (!netif_carrier_ok(netdev)) {
4961 			u32 ctrl;
4962 
4963 			hw->mac.ops.get_speed_and_duplex(hw,
4964 							 &adapter->link_speed,
4965 							 &adapter->link_duplex);
4966 
4967 			ctrl = rd32(IGC_CTRL);
4968 			/* Link status message must follow this format */
4969 			netdev_info(netdev,
4970 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4971 				    adapter->link_speed,
4972 				    adapter->link_duplex == FULL_DUPLEX ?
4973 				    "Full" : "Half",
4974 				    (ctrl & IGC_CTRL_TFCE) &&
4975 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4976 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4977 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4978 
4979 			/* disable EEE if enabled */
4980 			if ((adapter->flags & IGC_FLAG_EEE) &&
4981 			    adapter->link_duplex == HALF_DUPLEX) {
4982 				netdev_info(netdev,
4983 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4984 				adapter->hw.dev_spec._base.eee_enable = false;
4985 				adapter->flags &= ~IGC_FLAG_EEE;
4986 			}
4987 
4988 			/* check if SmartSpeed worked */
4989 			igc_check_downshift(hw);
4990 			if (phy->speed_downgraded)
4991 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4992 
4993 			/* adjust timeout factor according to speed/duplex */
4994 			adapter->tx_timeout_factor = 1;
4995 			switch (adapter->link_speed) {
4996 			case SPEED_10:
4997 				adapter->tx_timeout_factor = 14;
4998 				break;
4999 			case SPEED_100:
5000 				/* maybe add some timeout factor ? */
5001 				break;
5002 			}
5003 
5004 			if (adapter->link_speed != SPEED_1000)
5005 				goto no_wait;
5006 
5007 			/* wait for Remote receiver status OK */
5008 retry_read_status:
5009 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5010 					      &phy_data)) {
5011 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5012 				    retry_count) {
5013 					msleep(100);
5014 					retry_count--;
5015 					goto retry_read_status;
5016 				} else if (!retry_count) {
5017 					netdev_err(netdev, "exceed max 2 second\n");
5018 				}
5019 			} else {
5020 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5021 			}
5022 no_wait:
5023 			netif_carrier_on(netdev);
5024 
5025 			/* link state has changed, schedule phy info update */
5026 			if (!test_bit(__IGC_DOWN, &adapter->state))
5027 				mod_timer(&adapter->phy_info_timer,
5028 					  round_jiffies(jiffies + 2 * HZ));
5029 		}
5030 	} else {
5031 		if (netif_carrier_ok(netdev)) {
5032 			adapter->link_speed = 0;
5033 			adapter->link_duplex = 0;
5034 
5035 			/* Links status message must follow this format */
5036 			netdev_info(netdev, "NIC Link is Down\n");
5037 			netif_carrier_off(netdev);
5038 
5039 			/* link state has changed, schedule phy info update */
5040 			if (!test_bit(__IGC_DOWN, &adapter->state))
5041 				mod_timer(&adapter->phy_info_timer,
5042 					  round_jiffies(jiffies + 2 * HZ));
5043 
5044 			/* link is down, time to check for alternate media */
5045 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5046 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5047 					schedule_work(&adapter->reset_task);
5048 					/* return immediately */
5049 					return;
5050 				}
5051 			}
5052 			pm_schedule_suspend(netdev->dev.parent,
5053 					    MSEC_PER_SEC * 5);
5054 
5055 		/* also check for alternate media here */
5056 		} else if (!netif_carrier_ok(netdev) &&
5057 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5058 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5059 				schedule_work(&adapter->reset_task);
5060 				/* return immediately */
5061 				return;
5062 			}
5063 		}
5064 	}
5065 
5066 	spin_lock(&adapter->stats64_lock);
5067 	igc_update_stats(adapter);
5068 	spin_unlock(&adapter->stats64_lock);
5069 
5070 	for (i = 0; i < adapter->num_tx_queues; i++) {
5071 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5072 
5073 		if (!netif_carrier_ok(netdev)) {
5074 			/* We've lost link, so the controller stops DMA,
5075 			 * but we've got queued Tx work that's never going
5076 			 * to get done, so reset controller to flush Tx.
5077 			 * (Do the reset outside of interrupt context).
5078 			 */
5079 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5080 				adapter->tx_timeout_count++;
5081 				schedule_work(&adapter->reset_task);
5082 				/* return immediately since reset is imminent */
5083 				return;
5084 			}
5085 		}
5086 
5087 		/* Force detection of hung controller every watchdog period */
5088 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5089 	}
5090 
5091 	/* Cause software interrupt to ensure Rx ring is cleaned */
5092 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5093 		u32 eics = 0;
5094 
5095 		for (i = 0; i < adapter->num_q_vectors; i++)
5096 			eics |= adapter->q_vector[i]->eims_value;
5097 		wr32(IGC_EICS, eics);
5098 	} else {
5099 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5100 	}
5101 
5102 	igc_ptp_tx_hang(adapter);
5103 
5104 	/* Reset the timer */
5105 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5106 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5107 			mod_timer(&adapter->watchdog_timer,
5108 				  round_jiffies(jiffies +  HZ));
5109 		else
5110 			mod_timer(&adapter->watchdog_timer,
5111 				  round_jiffies(jiffies + 2 * HZ));
5112 	}
5113 }
5114 
5115 /**
5116  * igc_intr_msi - Interrupt Handler
5117  * @irq: interrupt number
5118  * @data: pointer to a network interface device structure
5119  */
5120 static irqreturn_t igc_intr_msi(int irq, void *data)
5121 {
5122 	struct igc_adapter *adapter = data;
5123 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5124 	struct igc_hw *hw = &adapter->hw;
5125 	/* read ICR disables interrupts using IAM */
5126 	u32 icr = rd32(IGC_ICR);
5127 
5128 	igc_write_itr(q_vector);
5129 
5130 	if (icr & IGC_ICR_DRSTA)
5131 		schedule_work(&adapter->reset_task);
5132 
5133 	if (icr & IGC_ICR_DOUTSYNC) {
5134 		/* HW is reporting DMA is out of sync */
5135 		adapter->stats.doosync++;
5136 	}
5137 
5138 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5139 		hw->mac.get_link_status = true;
5140 		if (!test_bit(__IGC_DOWN, &adapter->state))
5141 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5142 	}
5143 
5144 	napi_schedule(&q_vector->napi);
5145 
5146 	return IRQ_HANDLED;
5147 }
5148 
5149 /**
5150  * igc_intr - Legacy Interrupt Handler
5151  * @irq: interrupt number
5152  * @data: pointer to a network interface device structure
5153  */
5154 static irqreturn_t igc_intr(int irq, void *data)
5155 {
5156 	struct igc_adapter *adapter = data;
5157 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5158 	struct igc_hw *hw = &adapter->hw;
5159 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5160 	 * need for the IMC write
5161 	 */
5162 	u32 icr = rd32(IGC_ICR);
5163 
5164 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5165 	 * not set, then the adapter didn't send an interrupt
5166 	 */
5167 	if (!(icr & IGC_ICR_INT_ASSERTED))
5168 		return IRQ_NONE;
5169 
5170 	igc_write_itr(q_vector);
5171 
5172 	if (icr & IGC_ICR_DRSTA)
5173 		schedule_work(&adapter->reset_task);
5174 
5175 	if (icr & IGC_ICR_DOUTSYNC) {
5176 		/* HW is reporting DMA is out of sync */
5177 		adapter->stats.doosync++;
5178 	}
5179 
5180 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5181 		hw->mac.get_link_status = true;
5182 		/* guard against interrupt when we're going down */
5183 		if (!test_bit(__IGC_DOWN, &adapter->state))
5184 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5185 	}
5186 
5187 	napi_schedule(&q_vector->napi);
5188 
5189 	return IRQ_HANDLED;
5190 }
5191 
5192 static void igc_free_irq(struct igc_adapter *adapter)
5193 {
5194 	if (adapter->msix_entries) {
5195 		int vector = 0, i;
5196 
5197 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5198 
5199 		for (i = 0; i < adapter->num_q_vectors; i++)
5200 			free_irq(adapter->msix_entries[vector++].vector,
5201 				 adapter->q_vector[i]);
5202 	} else {
5203 		free_irq(adapter->pdev->irq, adapter);
5204 	}
5205 }
5206 
5207 /**
5208  * igc_request_irq - initialize interrupts
5209  * @adapter: Pointer to adapter structure
5210  *
5211  * Attempts to configure interrupts using the best available
5212  * capabilities of the hardware and kernel.
5213  */
5214 static int igc_request_irq(struct igc_adapter *adapter)
5215 {
5216 	struct net_device *netdev = adapter->netdev;
5217 	struct pci_dev *pdev = adapter->pdev;
5218 	int err = 0;
5219 
5220 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5221 		err = igc_request_msix(adapter);
5222 		if (!err)
5223 			goto request_done;
5224 		/* fall back to MSI */
5225 		igc_free_all_tx_resources(adapter);
5226 		igc_free_all_rx_resources(adapter);
5227 
5228 		igc_clear_interrupt_scheme(adapter);
5229 		err = igc_init_interrupt_scheme(adapter, false);
5230 		if (err)
5231 			goto request_done;
5232 		igc_setup_all_tx_resources(adapter);
5233 		igc_setup_all_rx_resources(adapter);
5234 		igc_configure(adapter);
5235 	}
5236 
5237 	igc_assign_vector(adapter->q_vector[0], 0);
5238 
5239 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5240 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5241 				  netdev->name, adapter);
5242 		if (!err)
5243 			goto request_done;
5244 
5245 		/* fall back to legacy interrupts */
5246 		igc_reset_interrupt_capability(adapter);
5247 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5248 	}
5249 
5250 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5251 			  netdev->name, adapter);
5252 
5253 	if (err)
5254 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5255 
5256 request_done:
5257 	return err;
5258 }
5259 
5260 /**
5261  * __igc_open - Called when a network interface is made active
5262  * @netdev: network interface device structure
5263  * @resuming: boolean indicating if the device is resuming
5264  *
5265  * Returns 0 on success, negative value on failure
5266  *
5267  * The open entry point is called when a network interface is made
5268  * active by the system (IFF_UP).  At this point all resources needed
5269  * for transmit and receive operations are allocated, the interrupt
5270  * handler is registered with the OS, the watchdog timer is started,
5271  * and the stack is notified that the interface is ready.
5272  */
5273 static int __igc_open(struct net_device *netdev, bool resuming)
5274 {
5275 	struct igc_adapter *adapter = netdev_priv(netdev);
5276 	struct pci_dev *pdev = adapter->pdev;
5277 	struct igc_hw *hw = &adapter->hw;
5278 	int err = 0;
5279 	int i = 0;
5280 
5281 	/* disallow open during test */
5282 
5283 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5284 		WARN_ON(resuming);
5285 		return -EBUSY;
5286 	}
5287 
5288 	if (!resuming)
5289 		pm_runtime_get_sync(&pdev->dev);
5290 
5291 	netif_carrier_off(netdev);
5292 
5293 	/* allocate transmit descriptors */
5294 	err = igc_setup_all_tx_resources(adapter);
5295 	if (err)
5296 		goto err_setup_tx;
5297 
5298 	/* allocate receive descriptors */
5299 	err = igc_setup_all_rx_resources(adapter);
5300 	if (err)
5301 		goto err_setup_rx;
5302 
5303 	igc_power_up_link(adapter);
5304 
5305 	igc_configure(adapter);
5306 
5307 	err = igc_request_irq(adapter);
5308 	if (err)
5309 		goto err_req_irq;
5310 
5311 	/* Notify the stack of the actual queue counts. */
5312 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5313 	if (err)
5314 		goto err_set_queues;
5315 
5316 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5317 	if (err)
5318 		goto err_set_queues;
5319 
5320 	clear_bit(__IGC_DOWN, &adapter->state);
5321 
5322 	for (i = 0; i < adapter->num_q_vectors; i++)
5323 		napi_enable(&adapter->q_vector[i]->napi);
5324 
5325 	/* Clear any pending interrupts. */
5326 	rd32(IGC_ICR);
5327 	igc_irq_enable(adapter);
5328 
5329 	if (!resuming)
5330 		pm_runtime_put(&pdev->dev);
5331 
5332 	netif_tx_start_all_queues(netdev);
5333 
5334 	/* start the watchdog. */
5335 	hw->mac.get_link_status = true;
5336 	schedule_work(&adapter->watchdog_task);
5337 
5338 	return IGC_SUCCESS;
5339 
5340 err_set_queues:
5341 	igc_free_irq(adapter);
5342 err_req_irq:
5343 	igc_release_hw_control(adapter);
5344 	igc_power_down_phy_copper_base(&adapter->hw);
5345 	igc_free_all_rx_resources(adapter);
5346 err_setup_rx:
5347 	igc_free_all_tx_resources(adapter);
5348 err_setup_tx:
5349 	igc_reset(adapter);
5350 	if (!resuming)
5351 		pm_runtime_put(&pdev->dev);
5352 
5353 	return err;
5354 }
5355 
5356 int igc_open(struct net_device *netdev)
5357 {
5358 	return __igc_open(netdev, false);
5359 }
5360 
5361 /**
5362  * __igc_close - Disables a network interface
5363  * @netdev: network interface device structure
5364  * @suspending: boolean indicating the device is suspending
5365  *
5366  * Returns 0, this is not allowed to fail
5367  *
5368  * The close entry point is called when an interface is de-activated
5369  * by the OS.  The hardware is still under the driver's control, but
5370  * needs to be disabled.  A global MAC reset is issued to stop the
5371  * hardware, and all transmit and receive resources are freed.
5372  */
5373 static int __igc_close(struct net_device *netdev, bool suspending)
5374 {
5375 	struct igc_adapter *adapter = netdev_priv(netdev);
5376 	struct pci_dev *pdev = adapter->pdev;
5377 
5378 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5379 
5380 	if (!suspending)
5381 		pm_runtime_get_sync(&pdev->dev);
5382 
5383 	igc_down(adapter);
5384 
5385 	igc_release_hw_control(adapter);
5386 
5387 	igc_free_irq(adapter);
5388 
5389 	igc_free_all_tx_resources(adapter);
5390 	igc_free_all_rx_resources(adapter);
5391 
5392 	if (!suspending)
5393 		pm_runtime_put_sync(&pdev->dev);
5394 
5395 	return 0;
5396 }
5397 
5398 int igc_close(struct net_device *netdev)
5399 {
5400 	if (netif_device_present(netdev) || netdev->dismantle)
5401 		return __igc_close(netdev, false);
5402 	return 0;
5403 }
5404 
5405 /**
5406  * igc_ioctl - Access the hwtstamp interface
5407  * @netdev: network interface device structure
5408  * @ifr: interface request data
5409  * @cmd: ioctl command
5410  **/
5411 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5412 {
5413 	switch (cmd) {
5414 	case SIOCGHWTSTAMP:
5415 		return igc_ptp_get_ts_config(netdev, ifr);
5416 	case SIOCSHWTSTAMP:
5417 		return igc_ptp_set_ts_config(netdev, ifr);
5418 	default:
5419 		return -EOPNOTSUPP;
5420 	}
5421 }
5422 
5423 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5424 				      bool enable)
5425 {
5426 	struct igc_ring *ring;
5427 	int i;
5428 
5429 	if (queue < 0 || queue >= adapter->num_tx_queues)
5430 		return -EINVAL;
5431 
5432 	ring = adapter->tx_ring[queue];
5433 	ring->launchtime_enable = enable;
5434 
5435 	if (adapter->base_time)
5436 		return 0;
5437 
5438 	adapter->cycle_time = NSEC_PER_SEC;
5439 
5440 	for (i = 0; i < adapter->num_tx_queues; i++) {
5441 		ring = adapter->tx_ring[i];
5442 		ring->start_time = 0;
5443 		ring->end_time = NSEC_PER_SEC;
5444 	}
5445 
5446 	return 0;
5447 }
5448 
5449 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5450 {
5451 	struct timespec64 b;
5452 
5453 	b = ktime_to_timespec64(base_time);
5454 
5455 	return timespec64_compare(now, &b) > 0;
5456 }
5457 
5458 static bool validate_schedule(struct igc_adapter *adapter,
5459 			      const struct tc_taprio_qopt_offload *qopt)
5460 {
5461 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
5462 	struct timespec64 now;
5463 	size_t n;
5464 
5465 	if (qopt->cycle_time_extension)
5466 		return false;
5467 
5468 	igc_ptp_read(adapter, &now);
5469 
5470 	/* If we program the controller's BASET registers with a time
5471 	 * in the future, it will hold all the packets until that
5472 	 * time, causing a lot of TX Hangs, so to avoid that, we
5473 	 * reject schedules that would start in the future.
5474 	 */
5475 	if (!is_base_time_past(qopt->base_time, &now))
5476 		return false;
5477 
5478 	for (n = 0; n < qopt->num_entries; n++) {
5479 		const struct tc_taprio_sched_entry *e;
5480 		int i;
5481 
5482 		e = &qopt->entries[n];
5483 
5484 		/* i225 only supports "global" frame preemption
5485 		 * settings.
5486 		 */
5487 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
5488 			return false;
5489 
5490 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5491 			if (e->gate_mask & BIT(i))
5492 				queue_uses[i]++;
5493 
5494 			if (queue_uses[i] > 1)
5495 				return false;
5496 		}
5497 	}
5498 
5499 	return true;
5500 }
5501 
5502 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5503 				     struct tc_etf_qopt_offload *qopt)
5504 {
5505 	struct igc_hw *hw = &adapter->hw;
5506 	int err;
5507 
5508 	if (hw->mac.type != igc_i225)
5509 		return -EOPNOTSUPP;
5510 
5511 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5512 	if (err)
5513 		return err;
5514 
5515 	return igc_tsn_offload_apply(adapter);
5516 }
5517 
5518 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5519 				 struct tc_taprio_qopt_offload *qopt)
5520 {
5521 	u32 start_time = 0, end_time = 0;
5522 	size_t n;
5523 
5524 	if (!qopt->enable) {
5525 		adapter->base_time = 0;
5526 		return 0;
5527 	}
5528 
5529 	if (adapter->base_time)
5530 		return -EALREADY;
5531 
5532 	if (!validate_schedule(adapter, qopt))
5533 		return -EINVAL;
5534 
5535 	adapter->cycle_time = qopt->cycle_time;
5536 	adapter->base_time = qopt->base_time;
5537 
5538 	/* FIXME: be a little smarter about cases when the gate for a
5539 	 * queue stays open for more than one entry.
5540 	 */
5541 	for (n = 0; n < qopt->num_entries; n++) {
5542 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
5543 		int i;
5544 
5545 		end_time += e->interval;
5546 
5547 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5548 			struct igc_ring *ring = adapter->tx_ring[i];
5549 
5550 			if (!(e->gate_mask & BIT(i)))
5551 				continue;
5552 
5553 			ring->start_time = start_time;
5554 			ring->end_time = end_time;
5555 		}
5556 
5557 		start_time += e->interval;
5558 	}
5559 
5560 	return 0;
5561 }
5562 
5563 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5564 					 struct tc_taprio_qopt_offload *qopt)
5565 {
5566 	struct igc_hw *hw = &adapter->hw;
5567 	int err;
5568 
5569 	if (hw->mac.type != igc_i225)
5570 		return -EOPNOTSUPP;
5571 
5572 	err = igc_save_qbv_schedule(adapter, qopt);
5573 	if (err)
5574 		return err;
5575 
5576 	return igc_tsn_offload_apply(adapter);
5577 }
5578 
5579 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5580 			void *type_data)
5581 {
5582 	struct igc_adapter *adapter = netdev_priv(dev);
5583 
5584 	switch (type) {
5585 	case TC_SETUP_QDISC_TAPRIO:
5586 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5587 
5588 	case TC_SETUP_QDISC_ETF:
5589 		return igc_tsn_enable_launchtime(adapter, type_data);
5590 
5591 	default:
5592 		return -EOPNOTSUPP;
5593 	}
5594 }
5595 
5596 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5597 {
5598 	struct igc_adapter *adapter = netdev_priv(dev);
5599 
5600 	switch (bpf->command) {
5601 	case XDP_SETUP_PROG:
5602 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5603 	case XDP_SETUP_XSK_POOL:
5604 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
5605 					  bpf->xsk.queue_id);
5606 	default:
5607 		return -EOPNOTSUPP;
5608 	}
5609 }
5610 
5611 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5612 			struct xdp_frame **frames, u32 flags)
5613 {
5614 	struct igc_adapter *adapter = netdev_priv(dev);
5615 	int cpu = smp_processor_id();
5616 	struct netdev_queue *nq;
5617 	struct igc_ring *ring;
5618 	int i, drops;
5619 
5620 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5621 		return -ENETDOWN;
5622 
5623 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5624 		return -EINVAL;
5625 
5626 	ring = igc_xdp_get_tx_ring(adapter, cpu);
5627 	nq = txring_txq(ring);
5628 
5629 	__netif_tx_lock(nq, cpu);
5630 
5631 	drops = 0;
5632 	for (i = 0; i < num_frames; i++) {
5633 		int err;
5634 		struct xdp_frame *xdpf = frames[i];
5635 
5636 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
5637 		if (err) {
5638 			xdp_return_frame_rx_napi(xdpf);
5639 			drops++;
5640 		}
5641 	}
5642 
5643 	if (flags & XDP_XMIT_FLUSH)
5644 		igc_flush_tx_descriptors(ring);
5645 
5646 	__netif_tx_unlock(nq);
5647 
5648 	return num_frames - drops;
5649 }
5650 
5651 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
5652 					struct igc_q_vector *q_vector)
5653 {
5654 	struct igc_hw *hw = &adapter->hw;
5655 	u32 eics = 0;
5656 
5657 	eics |= q_vector->eims_value;
5658 	wr32(IGC_EICS, eics);
5659 }
5660 
5661 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
5662 {
5663 	struct igc_adapter *adapter = netdev_priv(dev);
5664 	struct igc_q_vector *q_vector;
5665 	struct igc_ring *ring;
5666 
5667 	if (test_bit(__IGC_DOWN, &adapter->state))
5668 		return -ENETDOWN;
5669 
5670 	if (!igc_xdp_is_enabled(adapter))
5671 		return -ENXIO;
5672 
5673 	if (queue_id >= adapter->num_rx_queues)
5674 		return -EINVAL;
5675 
5676 	ring = adapter->rx_ring[queue_id];
5677 
5678 	if (!ring->xsk_pool)
5679 		return -ENXIO;
5680 
5681 	q_vector = adapter->q_vector[queue_id];
5682 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
5683 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
5684 
5685 	return 0;
5686 }
5687 
5688 static const struct net_device_ops igc_netdev_ops = {
5689 	.ndo_open		= igc_open,
5690 	.ndo_stop		= igc_close,
5691 	.ndo_start_xmit		= igc_xmit_frame,
5692 	.ndo_set_rx_mode	= igc_set_rx_mode,
5693 	.ndo_set_mac_address	= igc_set_mac,
5694 	.ndo_change_mtu		= igc_change_mtu,
5695 	.ndo_get_stats64	= igc_get_stats64,
5696 	.ndo_fix_features	= igc_fix_features,
5697 	.ndo_set_features	= igc_set_features,
5698 	.ndo_features_check	= igc_features_check,
5699 	.ndo_do_ioctl		= igc_ioctl,
5700 	.ndo_setup_tc		= igc_setup_tc,
5701 	.ndo_bpf		= igc_bpf,
5702 	.ndo_xdp_xmit		= igc_xdp_xmit,
5703 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
5704 };
5705 
5706 /* PCIe configuration access */
5707 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5708 {
5709 	struct igc_adapter *adapter = hw->back;
5710 
5711 	pci_read_config_word(adapter->pdev, reg, value);
5712 }
5713 
5714 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5715 {
5716 	struct igc_adapter *adapter = hw->back;
5717 
5718 	pci_write_config_word(adapter->pdev, reg, *value);
5719 }
5720 
5721 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5722 {
5723 	struct igc_adapter *adapter = hw->back;
5724 
5725 	if (!pci_is_pcie(adapter->pdev))
5726 		return -IGC_ERR_CONFIG;
5727 
5728 	pcie_capability_read_word(adapter->pdev, reg, value);
5729 
5730 	return IGC_SUCCESS;
5731 }
5732 
5733 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5734 {
5735 	struct igc_adapter *adapter = hw->back;
5736 
5737 	if (!pci_is_pcie(adapter->pdev))
5738 		return -IGC_ERR_CONFIG;
5739 
5740 	pcie_capability_write_word(adapter->pdev, reg, *value);
5741 
5742 	return IGC_SUCCESS;
5743 }
5744 
5745 u32 igc_rd32(struct igc_hw *hw, u32 reg)
5746 {
5747 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5748 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5749 	u32 value = 0;
5750 
5751 	value = readl(&hw_addr[reg]);
5752 
5753 	/* reads should not return all F's */
5754 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5755 		struct net_device *netdev = igc->netdev;
5756 
5757 		hw->hw_addr = NULL;
5758 		netif_device_detach(netdev);
5759 		netdev_err(netdev, "PCIe link lost, device now detached\n");
5760 		WARN(pci_device_is_present(igc->pdev),
5761 		     "igc: Failed to read reg 0x%x!\n", reg);
5762 	}
5763 
5764 	return value;
5765 }
5766 
5767 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5768 {
5769 	struct igc_mac_info *mac = &adapter->hw.mac;
5770 
5771 	mac->autoneg = false;
5772 
5773 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5774 	 * for the switch() below to work
5775 	 */
5776 	if ((spd & 1) || (dplx & ~1))
5777 		goto err_inval;
5778 
5779 	switch (spd + dplx) {
5780 	case SPEED_10 + DUPLEX_HALF:
5781 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
5782 		break;
5783 	case SPEED_10 + DUPLEX_FULL:
5784 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
5785 		break;
5786 	case SPEED_100 + DUPLEX_HALF:
5787 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
5788 		break;
5789 	case SPEED_100 + DUPLEX_FULL:
5790 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
5791 		break;
5792 	case SPEED_1000 + DUPLEX_FULL:
5793 		mac->autoneg = true;
5794 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5795 		break;
5796 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5797 		goto err_inval;
5798 	case SPEED_2500 + DUPLEX_FULL:
5799 		mac->autoneg = true;
5800 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5801 		break;
5802 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
5803 	default:
5804 		goto err_inval;
5805 	}
5806 
5807 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5808 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
5809 
5810 	return 0;
5811 
5812 err_inval:
5813 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5814 	return -EINVAL;
5815 }
5816 
5817 /**
5818  * igc_probe - Device Initialization Routine
5819  * @pdev: PCI device information struct
5820  * @ent: entry in igc_pci_tbl
5821  *
5822  * Returns 0 on success, negative on failure
5823  *
5824  * igc_probe initializes an adapter identified by a pci_dev structure.
5825  * The OS initialization, configuring the adapter private structure,
5826  * and a hardware reset occur.
5827  */
5828 static int igc_probe(struct pci_dev *pdev,
5829 		     const struct pci_device_id *ent)
5830 {
5831 	struct igc_adapter *adapter;
5832 	struct net_device *netdev;
5833 	struct igc_hw *hw;
5834 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5835 	int err, pci_using_dac;
5836 
5837 	err = pci_enable_device_mem(pdev);
5838 	if (err)
5839 		return err;
5840 
5841 	pci_using_dac = 0;
5842 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5843 	if (!err) {
5844 		pci_using_dac = 1;
5845 	} else {
5846 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5847 		if (err) {
5848 			dev_err(&pdev->dev,
5849 				"No usable DMA configuration, aborting\n");
5850 			goto err_dma;
5851 		}
5852 	}
5853 
5854 	err = pci_request_mem_regions(pdev, igc_driver_name);
5855 	if (err)
5856 		goto err_pci_reg;
5857 
5858 	pci_enable_pcie_error_reporting(pdev);
5859 
5860 	pci_set_master(pdev);
5861 
5862 	err = -ENOMEM;
5863 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5864 				   IGC_MAX_TX_QUEUES);
5865 
5866 	if (!netdev)
5867 		goto err_alloc_etherdev;
5868 
5869 	SET_NETDEV_DEV(netdev, &pdev->dev);
5870 
5871 	pci_set_drvdata(pdev, netdev);
5872 	adapter = netdev_priv(netdev);
5873 	adapter->netdev = netdev;
5874 	adapter->pdev = pdev;
5875 	hw = &adapter->hw;
5876 	hw->back = adapter;
5877 	adapter->port_num = hw->bus.func;
5878 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5879 
5880 	err = pci_save_state(pdev);
5881 	if (err)
5882 		goto err_ioremap;
5883 
5884 	err = -EIO;
5885 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5886 				   pci_resource_len(pdev, 0));
5887 	if (!adapter->io_addr)
5888 		goto err_ioremap;
5889 
5890 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5891 	hw->hw_addr = adapter->io_addr;
5892 
5893 	netdev->netdev_ops = &igc_netdev_ops;
5894 	igc_ethtool_set_ops(netdev);
5895 	netdev->watchdog_timeo = 5 * HZ;
5896 
5897 	netdev->mem_start = pci_resource_start(pdev, 0);
5898 	netdev->mem_end = pci_resource_end(pdev, 0);
5899 
5900 	/* PCI config space info */
5901 	hw->vendor_id = pdev->vendor;
5902 	hw->device_id = pdev->device;
5903 	hw->revision_id = pdev->revision;
5904 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5905 	hw->subsystem_device_id = pdev->subsystem_device;
5906 
5907 	/* Copy the default MAC and PHY function pointers */
5908 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5909 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5910 
5911 	/* Initialize skew-specific constants */
5912 	err = ei->get_invariants(hw);
5913 	if (err)
5914 		goto err_sw_init;
5915 
5916 	/* Add supported features to the features list*/
5917 	netdev->features |= NETIF_F_SG;
5918 	netdev->features |= NETIF_F_TSO;
5919 	netdev->features |= NETIF_F_TSO6;
5920 	netdev->features |= NETIF_F_TSO_ECN;
5921 	netdev->features |= NETIF_F_RXCSUM;
5922 	netdev->features |= NETIF_F_HW_CSUM;
5923 	netdev->features |= NETIF_F_SCTP_CRC;
5924 	netdev->features |= NETIF_F_HW_TC;
5925 
5926 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5927 				  NETIF_F_GSO_GRE_CSUM | \
5928 				  NETIF_F_GSO_IPXIP4 | \
5929 				  NETIF_F_GSO_IPXIP6 | \
5930 				  NETIF_F_GSO_UDP_TUNNEL | \
5931 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5932 
5933 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5934 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5935 
5936 	/* setup the private structure */
5937 	err = igc_sw_init(adapter);
5938 	if (err)
5939 		goto err_sw_init;
5940 
5941 	/* copy netdev features into list of user selectable features */
5942 	netdev->hw_features |= NETIF_F_NTUPLE;
5943 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
5944 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
5945 	netdev->hw_features |= netdev->features;
5946 
5947 	if (pci_using_dac)
5948 		netdev->features |= NETIF_F_HIGHDMA;
5949 
5950 	netdev->vlan_features |= netdev->features;
5951 
5952 	/* MTU range: 68 - 9216 */
5953 	netdev->min_mtu = ETH_MIN_MTU;
5954 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5955 
5956 	/* before reading the NVM, reset the controller to put the device in a
5957 	 * known good starting state
5958 	 */
5959 	hw->mac.ops.reset_hw(hw);
5960 
5961 	if (igc_get_flash_presence_i225(hw)) {
5962 		if (hw->nvm.ops.validate(hw) < 0) {
5963 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5964 			err = -EIO;
5965 			goto err_eeprom;
5966 		}
5967 	}
5968 
5969 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5970 		/* copy the MAC address out of the NVM */
5971 		if (hw->mac.ops.read_mac_addr(hw))
5972 			dev_err(&pdev->dev, "NVM Read Error\n");
5973 	}
5974 
5975 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5976 
5977 	if (!is_valid_ether_addr(netdev->dev_addr)) {
5978 		dev_err(&pdev->dev, "Invalid MAC Address\n");
5979 		err = -EIO;
5980 		goto err_eeprom;
5981 	}
5982 
5983 	/* configure RXPBSIZE and TXPBSIZE */
5984 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5985 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5986 
5987 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5988 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5989 
5990 	INIT_WORK(&adapter->reset_task, igc_reset_task);
5991 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5992 
5993 	/* Initialize link properties that are user-changeable */
5994 	adapter->fc_autoneg = true;
5995 	hw->mac.autoneg = true;
5996 	hw->phy.autoneg_advertised = 0xaf;
5997 
5998 	hw->fc.requested_mode = igc_fc_default;
5999 	hw->fc.current_mode = igc_fc_default;
6000 
6001 	/* By default, support wake on port A */
6002 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6003 
6004 	/* initialize the wol settings based on the eeprom settings */
6005 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6006 		adapter->wol |= IGC_WUFC_MAG;
6007 
6008 	device_set_wakeup_enable(&adapter->pdev->dev,
6009 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6010 
6011 	igc_ptp_init(adapter);
6012 
6013 	/* reset the hardware with the new settings */
6014 	igc_reset(adapter);
6015 
6016 	/* let the f/w know that the h/w is now under the control of the
6017 	 * driver.
6018 	 */
6019 	igc_get_hw_control(adapter);
6020 
6021 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6022 	err = register_netdev(netdev);
6023 	if (err)
6024 		goto err_register;
6025 
6026 	 /* carrier off reporting is important to ethtool even BEFORE open */
6027 	netif_carrier_off(netdev);
6028 
6029 	/* Check if Media Autosense is enabled */
6030 	adapter->ei = *ei;
6031 
6032 	/* print pcie link status and MAC address */
6033 	pcie_print_link_status(pdev);
6034 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6035 
6036 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6037 	/* Disable EEE for internal PHY devices */
6038 	hw->dev_spec._base.eee_enable = false;
6039 	adapter->flags &= ~IGC_FLAG_EEE;
6040 	igc_set_eee_i225(hw, false, false, false);
6041 
6042 	pm_runtime_put_noidle(&pdev->dev);
6043 
6044 	return 0;
6045 
6046 err_register:
6047 	igc_release_hw_control(adapter);
6048 err_eeprom:
6049 	if (!igc_check_reset_block(hw))
6050 		igc_reset_phy(hw);
6051 err_sw_init:
6052 	igc_clear_interrupt_scheme(adapter);
6053 	iounmap(adapter->io_addr);
6054 err_ioremap:
6055 	free_netdev(netdev);
6056 err_alloc_etherdev:
6057 	pci_release_mem_regions(pdev);
6058 err_pci_reg:
6059 err_dma:
6060 	pci_disable_device(pdev);
6061 	return err;
6062 }
6063 
6064 /**
6065  * igc_remove - Device Removal Routine
6066  * @pdev: PCI device information struct
6067  *
6068  * igc_remove is called by the PCI subsystem to alert the driver
6069  * that it should release a PCI device.  This could be caused by a
6070  * Hot-Plug event, or because the driver is going to be removed from
6071  * memory.
6072  */
6073 static void igc_remove(struct pci_dev *pdev)
6074 {
6075 	struct net_device *netdev = pci_get_drvdata(pdev);
6076 	struct igc_adapter *adapter = netdev_priv(netdev);
6077 
6078 	pm_runtime_get_noresume(&pdev->dev);
6079 
6080 	igc_flush_nfc_rules(adapter);
6081 
6082 	igc_ptp_stop(adapter);
6083 
6084 	set_bit(__IGC_DOWN, &adapter->state);
6085 
6086 	del_timer_sync(&adapter->watchdog_timer);
6087 	del_timer_sync(&adapter->phy_info_timer);
6088 
6089 	cancel_work_sync(&adapter->reset_task);
6090 	cancel_work_sync(&adapter->watchdog_task);
6091 
6092 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6093 	 * would have already happened in close and is redundant.
6094 	 */
6095 	igc_release_hw_control(adapter);
6096 	unregister_netdev(netdev);
6097 
6098 	igc_clear_interrupt_scheme(adapter);
6099 	pci_iounmap(pdev, adapter->io_addr);
6100 	pci_release_mem_regions(pdev);
6101 
6102 	free_netdev(netdev);
6103 
6104 	pci_disable_pcie_error_reporting(pdev);
6105 
6106 	pci_disable_device(pdev);
6107 }
6108 
6109 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6110 			  bool runtime)
6111 {
6112 	struct net_device *netdev = pci_get_drvdata(pdev);
6113 	struct igc_adapter *adapter = netdev_priv(netdev);
6114 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6115 	struct igc_hw *hw = &adapter->hw;
6116 	u32 ctrl, rctl, status;
6117 	bool wake;
6118 
6119 	rtnl_lock();
6120 	netif_device_detach(netdev);
6121 
6122 	if (netif_running(netdev))
6123 		__igc_close(netdev, true);
6124 
6125 	igc_ptp_suspend(adapter);
6126 
6127 	igc_clear_interrupt_scheme(adapter);
6128 	rtnl_unlock();
6129 
6130 	status = rd32(IGC_STATUS);
6131 	if (status & IGC_STATUS_LU)
6132 		wufc &= ~IGC_WUFC_LNKC;
6133 
6134 	if (wufc) {
6135 		igc_setup_rctl(adapter);
6136 		igc_set_rx_mode(netdev);
6137 
6138 		/* turn on all-multi mode if wake on multicast is enabled */
6139 		if (wufc & IGC_WUFC_MC) {
6140 			rctl = rd32(IGC_RCTL);
6141 			rctl |= IGC_RCTL_MPE;
6142 			wr32(IGC_RCTL, rctl);
6143 		}
6144 
6145 		ctrl = rd32(IGC_CTRL);
6146 		ctrl |= IGC_CTRL_ADVD3WUC;
6147 		wr32(IGC_CTRL, ctrl);
6148 
6149 		/* Allow time for pending master requests to run */
6150 		igc_disable_pcie_master(hw);
6151 
6152 		wr32(IGC_WUC, IGC_WUC_PME_EN);
6153 		wr32(IGC_WUFC, wufc);
6154 	} else {
6155 		wr32(IGC_WUC, 0);
6156 		wr32(IGC_WUFC, 0);
6157 	}
6158 
6159 	wake = wufc || adapter->en_mng_pt;
6160 	if (!wake)
6161 		igc_power_down_phy_copper_base(&adapter->hw);
6162 	else
6163 		igc_power_up_link(adapter);
6164 
6165 	if (enable_wake)
6166 		*enable_wake = wake;
6167 
6168 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6169 	 * would have already happened in close and is redundant.
6170 	 */
6171 	igc_release_hw_control(adapter);
6172 
6173 	pci_disable_device(pdev);
6174 
6175 	return 0;
6176 }
6177 
6178 #ifdef CONFIG_PM
6179 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6180 {
6181 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6182 }
6183 
6184 static void igc_deliver_wake_packet(struct net_device *netdev)
6185 {
6186 	struct igc_adapter *adapter = netdev_priv(netdev);
6187 	struct igc_hw *hw = &adapter->hw;
6188 	struct sk_buff *skb;
6189 	u32 wupl;
6190 
6191 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6192 
6193 	/* WUPM stores only the first 128 bytes of the wake packet.
6194 	 * Read the packet only if we have the whole thing.
6195 	 */
6196 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6197 		return;
6198 
6199 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6200 	if (!skb)
6201 		return;
6202 
6203 	skb_put(skb, wupl);
6204 
6205 	/* Ensure reads are 32-bit aligned */
6206 	wupl = roundup(wupl, 4);
6207 
6208 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6209 
6210 	skb->protocol = eth_type_trans(skb, netdev);
6211 	netif_rx(skb);
6212 }
6213 
6214 static int __maybe_unused igc_resume(struct device *dev)
6215 {
6216 	struct pci_dev *pdev = to_pci_dev(dev);
6217 	struct net_device *netdev = pci_get_drvdata(pdev);
6218 	struct igc_adapter *adapter = netdev_priv(netdev);
6219 	struct igc_hw *hw = &adapter->hw;
6220 	u32 err, val;
6221 
6222 	pci_set_power_state(pdev, PCI_D0);
6223 	pci_restore_state(pdev);
6224 	pci_save_state(pdev);
6225 
6226 	if (!pci_device_is_present(pdev))
6227 		return -ENODEV;
6228 	err = pci_enable_device_mem(pdev);
6229 	if (err) {
6230 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6231 		return err;
6232 	}
6233 	pci_set_master(pdev);
6234 
6235 	pci_enable_wake(pdev, PCI_D3hot, 0);
6236 	pci_enable_wake(pdev, PCI_D3cold, 0);
6237 
6238 	if (igc_init_interrupt_scheme(adapter, true)) {
6239 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6240 		return -ENOMEM;
6241 	}
6242 
6243 	igc_reset(adapter);
6244 
6245 	/* let the f/w know that the h/w is now under the control of the
6246 	 * driver.
6247 	 */
6248 	igc_get_hw_control(adapter);
6249 
6250 	val = rd32(IGC_WUS);
6251 	if (val & WAKE_PKT_WUS)
6252 		igc_deliver_wake_packet(netdev);
6253 
6254 	wr32(IGC_WUS, ~0);
6255 
6256 	rtnl_lock();
6257 	if (!err && netif_running(netdev))
6258 		err = __igc_open(netdev, true);
6259 
6260 	if (!err)
6261 		netif_device_attach(netdev);
6262 	rtnl_unlock();
6263 
6264 	return err;
6265 }
6266 
6267 static int __maybe_unused igc_runtime_resume(struct device *dev)
6268 {
6269 	return igc_resume(dev);
6270 }
6271 
6272 static int __maybe_unused igc_suspend(struct device *dev)
6273 {
6274 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6275 }
6276 
6277 static int __maybe_unused igc_runtime_idle(struct device *dev)
6278 {
6279 	struct net_device *netdev = dev_get_drvdata(dev);
6280 	struct igc_adapter *adapter = netdev_priv(netdev);
6281 
6282 	if (!igc_has_link(adapter))
6283 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6284 
6285 	return -EBUSY;
6286 }
6287 #endif /* CONFIG_PM */
6288 
6289 static void igc_shutdown(struct pci_dev *pdev)
6290 {
6291 	bool wake;
6292 
6293 	__igc_shutdown(pdev, &wake, 0);
6294 
6295 	if (system_state == SYSTEM_POWER_OFF) {
6296 		pci_wake_from_d3(pdev, wake);
6297 		pci_set_power_state(pdev, PCI_D3hot);
6298 	}
6299 }
6300 
6301 /**
6302  *  igc_io_error_detected - called when PCI error is detected
6303  *  @pdev: Pointer to PCI device
6304  *  @state: The current PCI connection state
6305  *
6306  *  This function is called after a PCI bus error affecting
6307  *  this device has been detected.
6308  **/
6309 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6310 					      pci_channel_state_t state)
6311 {
6312 	struct net_device *netdev = pci_get_drvdata(pdev);
6313 	struct igc_adapter *adapter = netdev_priv(netdev);
6314 
6315 	netif_device_detach(netdev);
6316 
6317 	if (state == pci_channel_io_perm_failure)
6318 		return PCI_ERS_RESULT_DISCONNECT;
6319 
6320 	if (netif_running(netdev))
6321 		igc_down(adapter);
6322 	pci_disable_device(pdev);
6323 
6324 	/* Request a slot reset. */
6325 	return PCI_ERS_RESULT_NEED_RESET;
6326 }
6327 
6328 /**
6329  *  igc_io_slot_reset - called after the PCI bus has been reset.
6330  *  @pdev: Pointer to PCI device
6331  *
6332  *  Restart the card from scratch, as if from a cold-boot. Implementation
6333  *  resembles the first-half of the igc_resume routine.
6334  **/
6335 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6336 {
6337 	struct net_device *netdev = pci_get_drvdata(pdev);
6338 	struct igc_adapter *adapter = netdev_priv(netdev);
6339 	struct igc_hw *hw = &adapter->hw;
6340 	pci_ers_result_t result;
6341 
6342 	if (pci_enable_device_mem(pdev)) {
6343 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6344 		result = PCI_ERS_RESULT_DISCONNECT;
6345 	} else {
6346 		pci_set_master(pdev);
6347 		pci_restore_state(pdev);
6348 		pci_save_state(pdev);
6349 
6350 		pci_enable_wake(pdev, PCI_D3hot, 0);
6351 		pci_enable_wake(pdev, PCI_D3cold, 0);
6352 
6353 		/* In case of PCI error, adapter loses its HW address
6354 		 * so we should re-assign it here.
6355 		 */
6356 		hw->hw_addr = adapter->io_addr;
6357 
6358 		igc_reset(adapter);
6359 		wr32(IGC_WUS, ~0);
6360 		result = PCI_ERS_RESULT_RECOVERED;
6361 	}
6362 
6363 	return result;
6364 }
6365 
6366 /**
6367  *  igc_io_resume - called when traffic can start to flow again.
6368  *  @pdev: Pointer to PCI device
6369  *
6370  *  This callback is called when the error recovery driver tells us that
6371  *  its OK to resume normal operation. Implementation resembles the
6372  *  second-half of the igc_resume routine.
6373  */
6374 static void igc_io_resume(struct pci_dev *pdev)
6375 {
6376 	struct net_device *netdev = pci_get_drvdata(pdev);
6377 	struct igc_adapter *adapter = netdev_priv(netdev);
6378 
6379 	rtnl_lock();
6380 	if (netif_running(netdev)) {
6381 		if (igc_open(netdev)) {
6382 			netdev_err(netdev, "igc_open failed after reset\n");
6383 			return;
6384 		}
6385 	}
6386 
6387 	netif_device_attach(netdev);
6388 
6389 	/* let the f/w know that the h/w is now under the control of the
6390 	 * driver.
6391 	 */
6392 	igc_get_hw_control(adapter);
6393 	rtnl_unlock();
6394 }
6395 
6396 static const struct pci_error_handlers igc_err_handler = {
6397 	.error_detected = igc_io_error_detected,
6398 	.slot_reset = igc_io_slot_reset,
6399 	.resume = igc_io_resume,
6400 };
6401 
6402 #ifdef CONFIG_PM
6403 static const struct dev_pm_ops igc_pm_ops = {
6404 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6405 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6406 			   igc_runtime_idle)
6407 };
6408 #endif
6409 
6410 static struct pci_driver igc_driver = {
6411 	.name     = igc_driver_name,
6412 	.id_table = igc_pci_tbl,
6413 	.probe    = igc_probe,
6414 	.remove   = igc_remove,
6415 #ifdef CONFIG_PM
6416 	.driver.pm = &igc_pm_ops,
6417 #endif
6418 	.shutdown = igc_shutdown,
6419 	.err_handler = &igc_err_handler,
6420 };
6421 
6422 /**
6423  * igc_reinit_queues - return error
6424  * @adapter: pointer to adapter structure
6425  */
6426 int igc_reinit_queues(struct igc_adapter *adapter)
6427 {
6428 	struct net_device *netdev = adapter->netdev;
6429 	int err = 0;
6430 
6431 	if (netif_running(netdev))
6432 		igc_close(netdev);
6433 
6434 	igc_reset_interrupt_capability(adapter);
6435 
6436 	if (igc_init_interrupt_scheme(adapter, true)) {
6437 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6438 		return -ENOMEM;
6439 	}
6440 
6441 	if (netif_running(netdev))
6442 		err = igc_open(netdev);
6443 
6444 	return err;
6445 }
6446 
6447 /**
6448  * igc_get_hw_dev - return device
6449  * @hw: pointer to hardware structure
6450  *
6451  * used by hardware layer to print debugging information
6452  */
6453 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6454 {
6455 	struct igc_adapter *adapter = hw->back;
6456 
6457 	return adapter->netdev;
6458 }
6459 
6460 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6461 {
6462 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6463 	u8 idx = ring->reg_idx;
6464 	u32 rxdctl;
6465 
6466 	rxdctl = rd32(IGC_RXDCTL(idx));
6467 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6468 	rxdctl |= IGC_RXDCTL_SWFLUSH;
6469 	wr32(IGC_RXDCTL(idx), rxdctl);
6470 }
6471 
6472 void igc_disable_rx_ring(struct igc_ring *ring)
6473 {
6474 	igc_disable_rx_ring_hw(ring);
6475 	igc_clean_rx_ring(ring);
6476 }
6477 
6478 void igc_enable_rx_ring(struct igc_ring *ring)
6479 {
6480 	struct igc_adapter *adapter = ring->q_vector->adapter;
6481 
6482 	igc_configure_rx_ring(adapter, ring);
6483 
6484 	if (ring->xsk_pool)
6485 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6486 	else
6487 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6488 }
6489 
6490 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6491 {
6492 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6493 	u8 idx = ring->reg_idx;
6494 	u32 txdctl;
6495 
6496 	txdctl = rd32(IGC_TXDCTL(idx));
6497 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6498 	txdctl |= IGC_TXDCTL_SWFLUSH;
6499 	wr32(IGC_TXDCTL(idx), txdctl);
6500 }
6501 
6502 void igc_disable_tx_ring(struct igc_ring *ring)
6503 {
6504 	igc_disable_tx_ring_hw(ring);
6505 	igc_clean_tx_ring(ring);
6506 }
6507 
6508 void igc_enable_tx_ring(struct igc_ring *ring)
6509 {
6510 	struct igc_adapter *adapter = ring->q_vector->adapter;
6511 
6512 	igc_configure_tx_ring(adapter, ring);
6513 }
6514 
6515 /**
6516  * igc_init_module - Driver Registration Routine
6517  *
6518  * igc_init_module is the first routine called when the driver is
6519  * loaded. All it does is register with the PCI subsystem.
6520  */
6521 static int __init igc_init_module(void)
6522 {
6523 	int ret;
6524 
6525 	pr_info("%s\n", igc_driver_string);
6526 	pr_info("%s\n", igc_copyright);
6527 
6528 	ret = pci_register_driver(&igc_driver);
6529 	return ret;
6530 }
6531 
6532 module_init(igc_init_module);
6533 
6534 /**
6535  * igc_exit_module - Driver Exit Cleanup Routine
6536  *
6537  * igc_exit_module is called just before the driver is removed
6538  * from memory.
6539  */
6540 static void __exit igc_exit_module(void)
6541 {
6542 	pci_unregister_driver(&igc_driver);
6543 }
6544 
6545 module_exit(igc_exit_module);
6546 /* igc_main.c */
6547