1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/tcp.h> 8 #include <linux/udp.h> 9 #include <linux/ip.h> 10 #include <linux/pm_runtime.h> 11 #include <net/pkt_sched.h> 12 #include <linux/bpf_trace.h> 13 #include <net/xdp_sock_drv.h> 14 #include <linux/pci.h> 15 16 #include <net/ipv6.h> 17 18 #include "igc.h" 19 #include "igc_hw.h" 20 #include "igc_tsn.h" 21 #include "igc_xdp.h" 22 23 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 24 25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 26 27 #define IGC_XDP_PASS 0 28 #define IGC_XDP_CONSUMED BIT(0) 29 #define IGC_XDP_TX BIT(1) 30 #define IGC_XDP_REDIRECT BIT(2) 31 32 static int debug = -1; 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 module_param(debug, int, 0); 38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 39 40 char igc_driver_name[] = "igc"; 41 static const char igc_driver_string[] = DRV_SUMMARY; 42 static const char igc_copyright[] = 43 "Copyright(c) 2018 Intel Corporation."; 44 45 static const struct igc_info *igc_info_tbl[] = { 46 [board_base] = &igc_base_info, 47 }; 48 49 static const struct pci_device_id igc_pci_tbl[] = { 50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 66 /* required last entry */ 67 {0, } 68 }; 69 70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 71 72 enum latency_range { 73 lowest_latency = 0, 74 low_latency = 1, 75 bulk_latency = 2, 76 latency_invalid = 255 77 }; 78 79 void igc_reset(struct igc_adapter *adapter) 80 { 81 struct net_device *dev = adapter->netdev; 82 struct igc_hw *hw = &adapter->hw; 83 struct igc_fc_info *fc = &hw->fc; 84 u32 pba, hwm; 85 86 /* Repartition PBA for greater than 9k MTU if required */ 87 pba = IGC_PBA_34K; 88 89 /* flow control settings 90 * The high water mark must be low enough to fit one full frame 91 * after transmitting the pause frame. As such we must have enough 92 * space to allow for us to complete our current transmit and then 93 * receive the frame that is in progress from the link partner. 94 * Set it to: 95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 96 */ 97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 98 99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 100 fc->low_water = fc->high_water - 16; 101 fc->pause_time = 0xFFFF; 102 fc->send_xon = 1; 103 fc->current_mode = fc->requested_mode; 104 105 hw->mac.ops.reset_hw(hw); 106 107 if (hw->mac.ops.init_hw(hw)) 108 netdev_err(dev, "Error on hardware initialization\n"); 109 110 /* Re-establish EEE setting */ 111 igc_set_eee_i225(hw, true, true, true); 112 113 if (!netif_running(adapter->netdev)) 114 igc_power_down_phy_copper_base(&adapter->hw); 115 116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 117 wr32(IGC_VET, ETH_P_8021Q); 118 119 /* Re-enable PTP, where applicable. */ 120 igc_ptp_reset(adapter); 121 122 /* Re-enable TSN offloading, where applicable. */ 123 igc_tsn_reset(adapter); 124 125 igc_get_phy_info(hw); 126 } 127 128 /** 129 * igc_power_up_link - Power up the phy link 130 * @adapter: address of board private structure 131 */ 132 static void igc_power_up_link(struct igc_adapter *adapter) 133 { 134 igc_reset_phy(&adapter->hw); 135 136 igc_power_up_phy_copper(&adapter->hw); 137 138 igc_setup_link(&adapter->hw); 139 } 140 141 /** 142 * igc_release_hw_control - release control of the h/w to f/w 143 * @adapter: address of board private structure 144 * 145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 146 * For ASF and Pass Through versions of f/w this means that the 147 * driver is no longer loaded. 148 */ 149 static void igc_release_hw_control(struct igc_adapter *adapter) 150 { 151 struct igc_hw *hw = &adapter->hw; 152 u32 ctrl_ext; 153 154 if (!pci_device_is_present(adapter->pdev)) 155 return; 156 157 /* Let firmware take over control of h/w */ 158 ctrl_ext = rd32(IGC_CTRL_EXT); 159 wr32(IGC_CTRL_EXT, 160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 161 } 162 163 /** 164 * igc_get_hw_control - get control of the h/w from f/w 165 * @adapter: address of board private structure 166 * 167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 168 * For ASF and Pass Through versions of f/w this means that 169 * the driver is loaded. 170 */ 171 static void igc_get_hw_control(struct igc_adapter *adapter) 172 { 173 struct igc_hw *hw = &adapter->hw; 174 u32 ctrl_ext; 175 176 /* Let firmware know the driver has taken over */ 177 ctrl_ext = rd32(IGC_CTRL_EXT); 178 wr32(IGC_CTRL_EXT, 179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 180 } 181 182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 183 { 184 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 185 dma_unmap_len(buf, len), DMA_TO_DEVICE); 186 187 dma_unmap_len_set(buf, len, 0); 188 } 189 190 /** 191 * igc_clean_tx_ring - Free Tx Buffers 192 * @tx_ring: ring to be cleaned 193 */ 194 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 195 { 196 u16 i = tx_ring->next_to_clean; 197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 198 u32 xsk_frames = 0; 199 200 while (i != tx_ring->next_to_use) { 201 union igc_adv_tx_desc *eop_desc, *tx_desc; 202 203 switch (tx_buffer->type) { 204 case IGC_TX_BUFFER_TYPE_XSK: 205 xsk_frames++; 206 break; 207 case IGC_TX_BUFFER_TYPE_XDP: 208 xdp_return_frame(tx_buffer->xdpf); 209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 210 break; 211 case IGC_TX_BUFFER_TYPE_SKB: 212 dev_kfree_skb_any(tx_buffer->skb); 213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 214 break; 215 default: 216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 217 break; 218 } 219 220 /* check for eop_desc to determine the end of the packet */ 221 eop_desc = tx_buffer->next_to_watch; 222 tx_desc = IGC_TX_DESC(tx_ring, i); 223 224 /* unmap remaining buffers */ 225 while (tx_desc != eop_desc) { 226 tx_buffer++; 227 tx_desc++; 228 i++; 229 if (unlikely(i == tx_ring->count)) { 230 i = 0; 231 tx_buffer = tx_ring->tx_buffer_info; 232 tx_desc = IGC_TX_DESC(tx_ring, 0); 233 } 234 235 /* unmap any remaining paged data */ 236 if (dma_unmap_len(tx_buffer, len)) 237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 238 } 239 240 tx_buffer->next_to_watch = NULL; 241 242 /* move us one more past the eop_desc for start of next pkt */ 243 tx_buffer++; 244 i++; 245 if (unlikely(i == tx_ring->count)) { 246 i = 0; 247 tx_buffer = tx_ring->tx_buffer_info; 248 } 249 } 250 251 if (tx_ring->xsk_pool && xsk_frames) 252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 253 254 /* reset BQL for queue */ 255 netdev_tx_reset_queue(txring_txq(tx_ring)); 256 257 /* Zero out the buffer ring */ 258 memset(tx_ring->tx_buffer_info, 0, 259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count); 260 261 /* Zero out the descriptor ring */ 262 memset(tx_ring->desc, 0, tx_ring->size); 263 264 /* reset next_to_use and next_to_clean */ 265 tx_ring->next_to_use = 0; 266 tx_ring->next_to_clean = 0; 267 } 268 269 /** 270 * igc_free_tx_resources - Free Tx Resources per Queue 271 * @tx_ring: Tx descriptor ring for a specific queue 272 * 273 * Free all transmit software resources 274 */ 275 void igc_free_tx_resources(struct igc_ring *tx_ring) 276 { 277 igc_disable_tx_ring(tx_ring); 278 279 vfree(tx_ring->tx_buffer_info); 280 tx_ring->tx_buffer_info = NULL; 281 282 /* if not set, then don't free */ 283 if (!tx_ring->desc) 284 return; 285 286 dma_free_coherent(tx_ring->dev, tx_ring->size, 287 tx_ring->desc, tx_ring->dma); 288 289 tx_ring->desc = NULL; 290 } 291 292 /** 293 * igc_free_all_tx_resources - Free Tx Resources for All Queues 294 * @adapter: board private structure 295 * 296 * Free all transmit software resources 297 */ 298 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 299 { 300 int i; 301 302 for (i = 0; i < adapter->num_tx_queues; i++) 303 igc_free_tx_resources(adapter->tx_ring[i]); 304 } 305 306 /** 307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 308 * @adapter: board private structure 309 */ 310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 311 { 312 int i; 313 314 for (i = 0; i < adapter->num_tx_queues; i++) 315 if (adapter->tx_ring[i]) 316 igc_clean_tx_ring(adapter->tx_ring[i]); 317 } 318 319 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 320 { 321 struct igc_hw *hw = &ring->q_vector->adapter->hw; 322 u8 idx = ring->reg_idx; 323 u32 txdctl; 324 325 txdctl = rd32(IGC_TXDCTL(idx)); 326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 327 txdctl |= IGC_TXDCTL_SWFLUSH; 328 wr32(IGC_TXDCTL(idx), txdctl); 329 } 330 331 /** 332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation 333 * @adapter: board private structure 334 */ 335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter) 336 { 337 int i; 338 339 for (i = 0; i < adapter->num_tx_queues; i++) { 340 struct igc_ring *tx_ring = adapter->tx_ring[i]; 341 342 igc_disable_tx_ring_hw(tx_ring); 343 } 344 } 345 346 /** 347 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 348 * @tx_ring: tx descriptor ring (for a specific queue) to setup 349 * 350 * Return 0 on success, negative on failure 351 */ 352 int igc_setup_tx_resources(struct igc_ring *tx_ring) 353 { 354 struct net_device *ndev = tx_ring->netdev; 355 struct device *dev = tx_ring->dev; 356 int size = 0; 357 358 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 359 tx_ring->tx_buffer_info = vzalloc(size); 360 if (!tx_ring->tx_buffer_info) 361 goto err; 362 363 /* round up to nearest 4K */ 364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 365 tx_ring->size = ALIGN(tx_ring->size, 4096); 366 367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 368 &tx_ring->dma, GFP_KERNEL); 369 370 if (!tx_ring->desc) 371 goto err; 372 373 tx_ring->next_to_use = 0; 374 tx_ring->next_to_clean = 0; 375 376 return 0; 377 378 err: 379 vfree(tx_ring->tx_buffer_info); 380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 381 return -ENOMEM; 382 } 383 384 /** 385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 386 * @adapter: board private structure 387 * 388 * Return 0 on success, negative on failure 389 */ 390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 391 { 392 struct net_device *dev = adapter->netdev; 393 int i, err = 0; 394 395 for (i = 0; i < adapter->num_tx_queues; i++) { 396 err = igc_setup_tx_resources(adapter->tx_ring[i]); 397 if (err) { 398 netdev_err(dev, "Error on Tx queue %u setup\n", i); 399 for (i--; i >= 0; i--) 400 igc_free_tx_resources(adapter->tx_ring[i]); 401 break; 402 } 403 } 404 405 return err; 406 } 407 408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 409 { 410 u16 i = rx_ring->next_to_clean; 411 412 dev_kfree_skb(rx_ring->skb); 413 rx_ring->skb = NULL; 414 415 /* Free all the Rx ring sk_buffs */ 416 while (i != rx_ring->next_to_alloc) { 417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 418 419 /* Invalidate cache lines that may have been written to by 420 * device so that we avoid corrupting memory. 421 */ 422 dma_sync_single_range_for_cpu(rx_ring->dev, 423 buffer_info->dma, 424 buffer_info->page_offset, 425 igc_rx_bufsz(rx_ring), 426 DMA_FROM_DEVICE); 427 428 /* free resources associated with mapping */ 429 dma_unmap_page_attrs(rx_ring->dev, 430 buffer_info->dma, 431 igc_rx_pg_size(rx_ring), 432 DMA_FROM_DEVICE, 433 IGC_RX_DMA_ATTR); 434 __page_frag_cache_drain(buffer_info->page, 435 buffer_info->pagecnt_bias); 436 437 i++; 438 if (i == rx_ring->count) 439 i = 0; 440 } 441 } 442 443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 444 { 445 struct igc_rx_buffer *bi; 446 u16 i; 447 448 for (i = 0; i < ring->count; i++) { 449 bi = &ring->rx_buffer_info[i]; 450 if (!bi->xdp) 451 continue; 452 453 xsk_buff_free(bi->xdp); 454 bi->xdp = NULL; 455 } 456 } 457 458 /** 459 * igc_clean_rx_ring - Free Rx Buffers per Queue 460 * @ring: ring to free buffers from 461 */ 462 static void igc_clean_rx_ring(struct igc_ring *ring) 463 { 464 if (ring->xsk_pool) 465 igc_clean_rx_ring_xsk_pool(ring); 466 else 467 igc_clean_rx_ring_page_shared(ring); 468 469 clear_ring_uses_large_buffer(ring); 470 471 ring->next_to_alloc = 0; 472 ring->next_to_clean = 0; 473 ring->next_to_use = 0; 474 } 475 476 /** 477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 478 * @adapter: board private structure 479 */ 480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 481 { 482 int i; 483 484 for (i = 0; i < adapter->num_rx_queues; i++) 485 if (adapter->rx_ring[i]) 486 igc_clean_rx_ring(adapter->rx_ring[i]); 487 } 488 489 /** 490 * igc_free_rx_resources - Free Rx Resources 491 * @rx_ring: ring to clean the resources from 492 * 493 * Free all receive software resources 494 */ 495 void igc_free_rx_resources(struct igc_ring *rx_ring) 496 { 497 igc_clean_rx_ring(rx_ring); 498 499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 500 501 vfree(rx_ring->rx_buffer_info); 502 rx_ring->rx_buffer_info = NULL; 503 504 /* if not set, then don't free */ 505 if (!rx_ring->desc) 506 return; 507 508 dma_free_coherent(rx_ring->dev, rx_ring->size, 509 rx_ring->desc, rx_ring->dma); 510 511 rx_ring->desc = NULL; 512 } 513 514 /** 515 * igc_free_all_rx_resources - Free Rx Resources for All Queues 516 * @adapter: board private structure 517 * 518 * Free all receive software resources 519 */ 520 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 521 { 522 int i; 523 524 for (i = 0; i < adapter->num_rx_queues; i++) 525 igc_free_rx_resources(adapter->rx_ring[i]); 526 } 527 528 /** 529 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 530 * @rx_ring: rx descriptor ring (for a specific queue) to setup 531 * 532 * Returns 0 on success, negative on failure 533 */ 534 int igc_setup_rx_resources(struct igc_ring *rx_ring) 535 { 536 struct net_device *ndev = rx_ring->netdev; 537 struct device *dev = rx_ring->dev; 538 u8 index = rx_ring->queue_index; 539 int size, desc_len, res; 540 541 /* XDP RX-queue info */ 542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 545 rx_ring->q_vector->napi.napi_id); 546 if (res < 0) { 547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 548 index); 549 return res; 550 } 551 552 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 553 rx_ring->rx_buffer_info = vzalloc(size); 554 if (!rx_ring->rx_buffer_info) 555 goto err; 556 557 desc_len = sizeof(union igc_adv_rx_desc); 558 559 /* Round up to nearest 4K */ 560 rx_ring->size = rx_ring->count * desc_len; 561 rx_ring->size = ALIGN(rx_ring->size, 4096); 562 563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 564 &rx_ring->dma, GFP_KERNEL); 565 566 if (!rx_ring->desc) 567 goto err; 568 569 rx_ring->next_to_alloc = 0; 570 rx_ring->next_to_clean = 0; 571 rx_ring->next_to_use = 0; 572 573 return 0; 574 575 err: 576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 577 vfree(rx_ring->rx_buffer_info); 578 rx_ring->rx_buffer_info = NULL; 579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 580 return -ENOMEM; 581 } 582 583 /** 584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 585 * (Descriptors) for all queues 586 * @adapter: board private structure 587 * 588 * Return 0 on success, negative on failure 589 */ 590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 591 { 592 struct net_device *dev = adapter->netdev; 593 int i, err = 0; 594 595 for (i = 0; i < adapter->num_rx_queues; i++) { 596 err = igc_setup_rx_resources(adapter->rx_ring[i]); 597 if (err) { 598 netdev_err(dev, "Error on Rx queue %u setup\n", i); 599 for (i--; i >= 0; i--) 600 igc_free_rx_resources(adapter->rx_ring[i]); 601 break; 602 } 603 } 604 605 return err; 606 } 607 608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 609 struct igc_ring *ring) 610 { 611 if (!igc_xdp_is_enabled(adapter) || 612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 613 return NULL; 614 615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 616 } 617 618 /** 619 * igc_configure_rx_ring - Configure a receive ring after Reset 620 * @adapter: board private structure 621 * @ring: receive ring to be configured 622 * 623 * Configure the Rx unit of the MAC after a reset. 624 */ 625 static void igc_configure_rx_ring(struct igc_adapter *adapter, 626 struct igc_ring *ring) 627 { 628 struct igc_hw *hw = &adapter->hw; 629 union igc_adv_rx_desc *rx_desc; 630 int reg_idx = ring->reg_idx; 631 u32 srrctl = 0, rxdctl = 0; 632 u64 rdba = ring->dma; 633 u32 buf_size; 634 635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 637 if (ring->xsk_pool) { 638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 639 MEM_TYPE_XSK_BUFF_POOL, 640 NULL)); 641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 642 } else { 643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 644 MEM_TYPE_PAGE_SHARED, 645 NULL)); 646 } 647 648 if (igc_xdp_is_enabled(adapter)) 649 set_ring_uses_large_buffer(ring); 650 651 /* disable the queue */ 652 wr32(IGC_RXDCTL(reg_idx), 0); 653 654 /* Set DMA base address registers */ 655 wr32(IGC_RDBAL(reg_idx), 656 rdba & 0x00000000ffffffffULL); 657 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 658 wr32(IGC_RDLEN(reg_idx), 659 ring->count * sizeof(union igc_adv_rx_desc)); 660 661 /* initialize head and tail */ 662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 663 wr32(IGC_RDH(reg_idx), 0); 664 writel(0, ring->tail); 665 666 /* reset next-to- use/clean to place SW in sync with hardware */ 667 ring->next_to_clean = 0; 668 ring->next_to_use = 0; 669 670 if (ring->xsk_pool) 671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 672 else if (ring_uses_large_buffer(ring)) 673 buf_size = IGC_RXBUFFER_3072; 674 else 675 buf_size = IGC_RXBUFFER_2048; 676 677 srrctl = rd32(IGC_SRRCTL(reg_idx)); 678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK | 679 IGC_SRRCTL_DESCTYPE_MASK); 680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN); 681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size); 682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 683 684 wr32(IGC_SRRCTL(reg_idx), srrctl); 685 686 rxdctl |= IGC_RX_PTHRESH; 687 rxdctl |= IGC_RX_HTHRESH << 8; 688 rxdctl |= IGC_RX_WTHRESH << 16; 689 690 /* initialize rx_buffer_info */ 691 memset(ring->rx_buffer_info, 0, 692 sizeof(struct igc_rx_buffer) * ring->count); 693 694 /* initialize Rx descriptor 0 */ 695 rx_desc = IGC_RX_DESC(ring, 0); 696 rx_desc->wb.upper.length = 0; 697 698 /* enable receive descriptor fetching */ 699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 700 701 wr32(IGC_RXDCTL(reg_idx), rxdctl); 702 } 703 704 /** 705 * igc_configure_rx - Configure receive Unit after Reset 706 * @adapter: board private structure 707 * 708 * Configure the Rx unit of the MAC after a reset. 709 */ 710 static void igc_configure_rx(struct igc_adapter *adapter) 711 { 712 int i; 713 714 /* Setup the HW Rx Head and Tail Descriptor Pointers and 715 * the Base and Length of the Rx Descriptor Ring 716 */ 717 for (i = 0; i < adapter->num_rx_queues; i++) 718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 719 } 720 721 /** 722 * igc_configure_tx_ring - Configure transmit ring after Reset 723 * @adapter: board private structure 724 * @ring: tx ring to configure 725 * 726 * Configure a transmit ring after a reset. 727 */ 728 static void igc_configure_tx_ring(struct igc_adapter *adapter, 729 struct igc_ring *ring) 730 { 731 struct igc_hw *hw = &adapter->hw; 732 int reg_idx = ring->reg_idx; 733 u64 tdba = ring->dma; 734 u32 txdctl = 0; 735 736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 737 738 /* disable the queue */ 739 wr32(IGC_TXDCTL(reg_idx), 0); 740 wrfl(); 741 742 wr32(IGC_TDLEN(reg_idx), 743 ring->count * sizeof(union igc_adv_tx_desc)); 744 wr32(IGC_TDBAL(reg_idx), 745 tdba & 0x00000000ffffffffULL); 746 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 747 748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 749 wr32(IGC_TDH(reg_idx), 0); 750 writel(0, ring->tail); 751 752 txdctl |= IGC_TX_PTHRESH; 753 txdctl |= IGC_TX_HTHRESH << 8; 754 txdctl |= IGC_TX_WTHRESH << 16; 755 756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 757 wr32(IGC_TXDCTL(reg_idx), txdctl); 758 } 759 760 /** 761 * igc_configure_tx - Configure transmit Unit after Reset 762 * @adapter: board private structure 763 * 764 * Configure the Tx unit of the MAC after a reset. 765 */ 766 static void igc_configure_tx(struct igc_adapter *adapter) 767 { 768 int i; 769 770 for (i = 0; i < adapter->num_tx_queues; i++) 771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 772 } 773 774 /** 775 * igc_setup_mrqc - configure the multiple receive queue control registers 776 * @adapter: Board private structure 777 */ 778 static void igc_setup_mrqc(struct igc_adapter *adapter) 779 { 780 struct igc_hw *hw = &adapter->hw; 781 u32 j, num_rx_queues; 782 u32 mrqc, rxcsum; 783 u32 rss_key[10]; 784 785 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 786 for (j = 0; j < 10; j++) 787 wr32(IGC_RSSRK(j), rss_key[j]); 788 789 num_rx_queues = adapter->rss_queues; 790 791 if (adapter->rss_indir_tbl_init != num_rx_queues) { 792 for (j = 0; j < IGC_RETA_SIZE; j++) 793 adapter->rss_indir_tbl[j] = 794 (j * num_rx_queues) / IGC_RETA_SIZE; 795 adapter->rss_indir_tbl_init = num_rx_queues; 796 } 797 igc_write_rss_indir_tbl(adapter); 798 799 /* Disable raw packet checksumming so that RSS hash is placed in 800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 801 * offloads as they are enabled by default 802 */ 803 rxcsum = rd32(IGC_RXCSUM); 804 rxcsum |= IGC_RXCSUM_PCSD; 805 806 /* Enable Receive Checksum Offload for SCTP */ 807 rxcsum |= IGC_RXCSUM_CRCOFL; 808 809 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 810 wr32(IGC_RXCSUM, rxcsum); 811 812 /* Generate RSS hash based on packet types, TCP/UDP 813 * port numbers and/or IPv4/v6 src and dst addresses 814 */ 815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 816 IGC_MRQC_RSS_FIELD_IPV4_TCP | 817 IGC_MRQC_RSS_FIELD_IPV6 | 818 IGC_MRQC_RSS_FIELD_IPV6_TCP | 819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 820 821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 825 826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 827 828 wr32(IGC_MRQC, mrqc); 829 } 830 831 /** 832 * igc_setup_rctl - configure the receive control registers 833 * @adapter: Board private structure 834 */ 835 static void igc_setup_rctl(struct igc_adapter *adapter) 836 { 837 struct igc_hw *hw = &adapter->hw; 838 u32 rctl; 839 840 rctl = rd32(IGC_RCTL); 841 842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 844 845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 847 848 /* enable stripping of CRC. Newer features require 849 * that the HW strips the CRC. 850 */ 851 rctl |= IGC_RCTL_SECRC; 852 853 /* disable store bad packets and clear size bits. */ 854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 855 856 /* enable LPE to allow for reception of jumbo frames */ 857 rctl |= IGC_RCTL_LPE; 858 859 /* disable queue 0 to prevent tail write w/o re-config */ 860 wr32(IGC_RXDCTL(0), 0); 861 862 /* This is useful for sniffing bad packets. */ 863 if (adapter->netdev->features & NETIF_F_RXALL) { 864 /* UPE and MPE will be handled by normal PROMISC logic 865 * in set_rx_mode 866 */ 867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 868 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 870 871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 873 } 874 875 wr32(IGC_RCTL, rctl); 876 } 877 878 /** 879 * igc_setup_tctl - configure the transmit control registers 880 * @adapter: Board private structure 881 */ 882 static void igc_setup_tctl(struct igc_adapter *adapter) 883 { 884 struct igc_hw *hw = &adapter->hw; 885 u32 tctl; 886 887 /* disable queue 0 which icould be enabled by default */ 888 wr32(IGC_TXDCTL(0), 0); 889 890 /* Program the Transmit Control Register */ 891 tctl = rd32(IGC_TCTL); 892 tctl &= ~IGC_TCTL_CT; 893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 895 896 /* Enable transmits */ 897 tctl |= IGC_TCTL_EN; 898 899 wr32(IGC_TCTL, tctl); 900 } 901 902 /** 903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 904 * @adapter: Pointer to adapter where the filter should be set 905 * @index: Filter index 906 * @type: MAC address filter type (source or destination) 907 * @addr: MAC address 908 * @queue: If non-negative, queue assignment feature is enabled and frames 909 * matching the filter are enqueued onto 'queue'. Otherwise, queue 910 * assignment is disabled. 911 */ 912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 913 enum igc_mac_filter_type type, 914 const u8 *addr, int queue) 915 { 916 struct net_device *dev = adapter->netdev; 917 struct igc_hw *hw = &adapter->hw; 918 u32 ral, rah; 919 920 if (WARN_ON(index >= hw->mac.rar_entry_count)) 921 return; 922 923 ral = le32_to_cpup((__le32 *)(addr)); 924 rah = le16_to_cpup((__le16 *)(addr + 4)); 925 926 if (type == IGC_MAC_FILTER_TYPE_SRC) { 927 rah &= ~IGC_RAH_ASEL_MASK; 928 rah |= IGC_RAH_ASEL_SRC_ADDR; 929 } 930 931 if (queue >= 0) { 932 rah &= ~IGC_RAH_QSEL_MASK; 933 rah |= (queue << IGC_RAH_QSEL_SHIFT); 934 rah |= IGC_RAH_QSEL_ENABLE; 935 } 936 937 rah |= IGC_RAH_AV; 938 939 wr32(IGC_RAL(index), ral); 940 wr32(IGC_RAH(index), rah); 941 942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 943 } 944 945 /** 946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 947 * @adapter: Pointer to adapter where the filter should be cleared 948 * @index: Filter index 949 */ 950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 951 { 952 struct net_device *dev = adapter->netdev; 953 struct igc_hw *hw = &adapter->hw; 954 955 if (WARN_ON(index >= hw->mac.rar_entry_count)) 956 return; 957 958 wr32(IGC_RAL(index), 0); 959 wr32(IGC_RAH(index), 0); 960 961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 962 } 963 964 /* Set default MAC address for the PF in the first RAR entry */ 965 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 966 { 967 struct net_device *dev = adapter->netdev; 968 u8 *addr = adapter->hw.mac.addr; 969 970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 971 972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 973 } 974 975 /** 976 * igc_set_mac - Change the Ethernet Address of the NIC 977 * @netdev: network interface device structure 978 * @p: pointer to an address structure 979 * 980 * Returns 0 on success, negative on failure 981 */ 982 static int igc_set_mac(struct net_device *netdev, void *p) 983 { 984 struct igc_adapter *adapter = netdev_priv(netdev); 985 struct igc_hw *hw = &adapter->hw; 986 struct sockaddr *addr = p; 987 988 if (!is_valid_ether_addr(addr->sa_data)) 989 return -EADDRNOTAVAIL; 990 991 eth_hw_addr_set(netdev, addr->sa_data); 992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 993 994 /* set the correct pool for the new PF MAC address in entry 0 */ 995 igc_set_default_mac_filter(adapter); 996 997 return 0; 998 } 999 1000 /** 1001 * igc_write_mc_addr_list - write multicast addresses to MTA 1002 * @netdev: network interface device structure 1003 * 1004 * Writes multicast address list to the MTA hash table. 1005 * Returns: -ENOMEM on failure 1006 * 0 on no addresses written 1007 * X on writing X addresses to MTA 1008 **/ 1009 static int igc_write_mc_addr_list(struct net_device *netdev) 1010 { 1011 struct igc_adapter *adapter = netdev_priv(netdev); 1012 struct igc_hw *hw = &adapter->hw; 1013 struct netdev_hw_addr *ha; 1014 u8 *mta_list; 1015 int i; 1016 1017 if (netdev_mc_empty(netdev)) { 1018 /* nothing to program, so clear mc list */ 1019 igc_update_mc_addr_list(hw, NULL, 0); 1020 return 0; 1021 } 1022 1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 1024 if (!mta_list) 1025 return -ENOMEM; 1026 1027 /* The shared function expects a packed array of only addresses. */ 1028 i = 0; 1029 netdev_for_each_mc_addr(ha, netdev) 1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1031 1032 igc_update_mc_addr_list(hw, mta_list, i); 1033 kfree(mta_list); 1034 1035 return netdev_mc_count(netdev); 1036 } 1037 1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime, 1039 bool *first_flag, bool *insert_empty) 1040 { 1041 struct igc_adapter *adapter = netdev_priv(ring->netdev); 1042 ktime_t cycle_time = adapter->cycle_time; 1043 ktime_t base_time = adapter->base_time; 1044 ktime_t now = ktime_get_clocktai(); 1045 ktime_t baset_est, end_of_cycle; 1046 s32 launchtime; 1047 s64 n; 1048 1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time); 1050 1051 baset_est = ktime_add_ns(base_time, cycle_time * (n)); 1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time); 1053 1054 if (ktime_compare(txtime, end_of_cycle) >= 0) { 1055 if (baset_est != ring->last_ff_cycle) { 1056 *first_flag = true; 1057 ring->last_ff_cycle = baset_est; 1058 1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0) 1060 *insert_empty = true; 1061 } 1062 } 1063 1064 /* Introducing a window at end of cycle on which packets 1065 * potentially not honor launchtime. Window of 5us chosen 1066 * considering software update the tail pointer and packets 1067 * are dma'ed to packet buffer. 1068 */ 1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC)) 1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n", 1071 txtime); 1072 1073 ring->last_tx_cycle = end_of_cycle; 1074 1075 launchtime = ktime_sub_ns(txtime, baset_est); 1076 if (launchtime > 0) 1077 div_s64_rem(launchtime, cycle_time, &launchtime); 1078 else 1079 launchtime = 0; 1080 1081 return cpu_to_le32(launchtime); 1082 } 1083 1084 static int igc_init_empty_frame(struct igc_ring *ring, 1085 struct igc_tx_buffer *buffer, 1086 struct sk_buff *skb) 1087 { 1088 unsigned int size; 1089 dma_addr_t dma; 1090 1091 size = skb_headlen(skb); 1092 1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE); 1094 if (dma_mapping_error(ring->dev, dma)) { 1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 1096 return -ENOMEM; 1097 } 1098 1099 buffer->skb = skb; 1100 buffer->protocol = 0; 1101 buffer->bytecount = skb->len; 1102 buffer->gso_segs = 1; 1103 buffer->time_stamp = jiffies; 1104 dma_unmap_len_set(buffer, len, skb->len); 1105 dma_unmap_addr_set(buffer, dma, dma); 1106 1107 return 0; 1108 } 1109 1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring, 1111 struct sk_buff *skb, 1112 struct igc_tx_buffer *first) 1113 { 1114 union igc_adv_tx_desc *desc; 1115 u32 cmd_type, olinfo_status; 1116 int err; 1117 1118 if (!igc_desc_unused(ring)) 1119 return -EBUSY; 1120 1121 err = igc_init_empty_frame(ring, first, skb); 1122 if (err) 1123 return err; 1124 1125 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 1126 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 1127 first->bytecount; 1128 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 1129 1130 desc = IGC_TX_DESC(ring, ring->next_to_use); 1131 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1132 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1133 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma)); 1134 1135 netdev_tx_sent_queue(txring_txq(ring), skb->len); 1136 1137 first->next_to_watch = desc; 1138 1139 ring->next_to_use++; 1140 if (ring->next_to_use == ring->count) 1141 ring->next_to_use = 0; 1142 1143 return 0; 1144 } 1145 1146 #define IGC_EMPTY_FRAME_SIZE 60 1147 1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1149 __le32 launch_time, bool first_flag, 1150 u32 vlan_macip_lens, u32 type_tucmd, 1151 u32 mss_l4len_idx) 1152 { 1153 struct igc_adv_tx_context_desc *context_desc; 1154 u16 i = tx_ring->next_to_use; 1155 1156 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1157 1158 i++; 1159 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1160 1161 /* set bits to identify this as an advanced context descriptor */ 1162 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1163 1164 /* For i225, context index must be unique per ring. */ 1165 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1166 mss_l4len_idx |= tx_ring->reg_idx << 4; 1167 1168 if (first_flag) 1169 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST; 1170 1171 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1172 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1173 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1174 context_desc->launch_time = launch_time; 1175 } 1176 1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first, 1178 __le32 launch_time, bool first_flag) 1179 { 1180 struct sk_buff *skb = first->skb; 1181 u32 vlan_macip_lens = 0; 1182 u32 type_tucmd = 0; 1183 1184 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1185 csum_failed: 1186 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1187 !tx_ring->launchtime_enable) 1188 return; 1189 goto no_csum; 1190 } 1191 1192 switch (skb->csum_offset) { 1193 case offsetof(struct tcphdr, check): 1194 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1195 fallthrough; 1196 case offsetof(struct udphdr, check): 1197 break; 1198 case offsetof(struct sctphdr, checksum): 1199 /* validate that this is actually an SCTP request */ 1200 if (skb_csum_is_sctp(skb)) { 1201 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1202 break; 1203 } 1204 fallthrough; 1205 default: 1206 skb_checksum_help(skb); 1207 goto csum_failed; 1208 } 1209 1210 /* update TX checksum flag */ 1211 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1212 vlan_macip_lens = skb_checksum_start_offset(skb) - 1213 skb_network_offset(skb); 1214 no_csum: 1215 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1216 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1217 1218 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1219 vlan_macip_lens, type_tucmd, 0); 1220 } 1221 1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1223 { 1224 struct net_device *netdev = tx_ring->netdev; 1225 1226 netif_stop_subqueue(netdev, tx_ring->queue_index); 1227 1228 /* memory barriier comment */ 1229 smp_mb(); 1230 1231 /* We need to check again in a case another CPU has just 1232 * made room available. 1233 */ 1234 if (igc_desc_unused(tx_ring) < size) 1235 return -EBUSY; 1236 1237 /* A reprieve! */ 1238 netif_wake_subqueue(netdev, tx_ring->queue_index); 1239 1240 u64_stats_update_begin(&tx_ring->tx_syncp2); 1241 tx_ring->tx_stats.restart_queue2++; 1242 u64_stats_update_end(&tx_ring->tx_syncp2); 1243 1244 return 0; 1245 } 1246 1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1248 { 1249 if (igc_desc_unused(tx_ring) >= size) 1250 return 0; 1251 return __igc_maybe_stop_tx(tx_ring, size); 1252 } 1253 1254 #define IGC_SET_FLAG(_input, _flag, _result) \ 1255 (((_flag) <= (_result)) ? \ 1256 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1257 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1258 1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1260 { 1261 /* set type for advanced descriptor with frame checksum insertion */ 1262 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1263 IGC_ADVTXD_DCMD_DEXT | 1264 IGC_ADVTXD_DCMD_IFCS; 1265 1266 /* set HW vlan bit if vlan is present */ 1267 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1268 IGC_ADVTXD_DCMD_VLE); 1269 1270 /* set segmentation bits for TSO */ 1271 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1272 (IGC_ADVTXD_DCMD_TSE)); 1273 1274 /* set timestamp bit if present, will select the register set 1275 * based on the _TSTAMP(_X) bit. 1276 */ 1277 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1278 (IGC_ADVTXD_MAC_TSTAMP)); 1279 1280 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1, 1281 (IGC_ADVTXD_TSTAMP_REG_1)); 1282 1283 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2, 1284 (IGC_ADVTXD_TSTAMP_REG_2)); 1285 1286 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3, 1287 (IGC_ADVTXD_TSTAMP_REG_3)); 1288 1289 /* insert frame checksum */ 1290 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1291 1292 return cmd_type; 1293 } 1294 1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1296 union igc_adv_tx_desc *tx_desc, 1297 u32 tx_flags, unsigned int paylen) 1298 { 1299 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1300 1301 /* insert L4 checksum */ 1302 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 1303 ((IGC_TXD_POPTS_TXSM << 8) / 1304 IGC_TX_FLAGS_CSUM); 1305 1306 /* insert IPv4 checksum */ 1307 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 1308 (((IGC_TXD_POPTS_IXSM << 8)) / 1309 IGC_TX_FLAGS_IPV4); 1310 1311 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1312 } 1313 1314 static int igc_tx_map(struct igc_ring *tx_ring, 1315 struct igc_tx_buffer *first, 1316 const u8 hdr_len) 1317 { 1318 struct sk_buff *skb = first->skb; 1319 struct igc_tx_buffer *tx_buffer; 1320 union igc_adv_tx_desc *tx_desc; 1321 u32 tx_flags = first->tx_flags; 1322 skb_frag_t *frag; 1323 u16 i = tx_ring->next_to_use; 1324 unsigned int data_len, size; 1325 dma_addr_t dma; 1326 u32 cmd_type; 1327 1328 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1329 tx_desc = IGC_TX_DESC(tx_ring, i); 1330 1331 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1332 1333 size = skb_headlen(skb); 1334 data_len = skb->data_len; 1335 1336 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1337 1338 tx_buffer = first; 1339 1340 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1341 if (dma_mapping_error(tx_ring->dev, dma)) 1342 goto dma_error; 1343 1344 /* record length, and DMA address */ 1345 dma_unmap_len_set(tx_buffer, len, size); 1346 dma_unmap_addr_set(tx_buffer, dma, dma); 1347 1348 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1349 1350 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1351 tx_desc->read.cmd_type_len = 1352 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1353 1354 i++; 1355 tx_desc++; 1356 if (i == tx_ring->count) { 1357 tx_desc = IGC_TX_DESC(tx_ring, 0); 1358 i = 0; 1359 } 1360 tx_desc->read.olinfo_status = 0; 1361 1362 dma += IGC_MAX_DATA_PER_TXD; 1363 size -= IGC_MAX_DATA_PER_TXD; 1364 1365 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1366 } 1367 1368 if (likely(!data_len)) 1369 break; 1370 1371 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1372 1373 i++; 1374 tx_desc++; 1375 if (i == tx_ring->count) { 1376 tx_desc = IGC_TX_DESC(tx_ring, 0); 1377 i = 0; 1378 } 1379 tx_desc->read.olinfo_status = 0; 1380 1381 size = skb_frag_size(frag); 1382 data_len -= size; 1383 1384 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1385 size, DMA_TO_DEVICE); 1386 1387 tx_buffer = &tx_ring->tx_buffer_info[i]; 1388 } 1389 1390 /* write last descriptor with RS and EOP bits */ 1391 cmd_type |= size | IGC_TXD_DCMD; 1392 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1393 1394 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1395 1396 /* set the timestamp */ 1397 first->time_stamp = jiffies; 1398 1399 skb_tx_timestamp(skb); 1400 1401 /* Force memory writes to complete before letting h/w know there 1402 * are new descriptors to fetch. (Only applicable for weak-ordered 1403 * memory model archs, such as IA-64). 1404 * 1405 * We also need this memory barrier to make certain all of the 1406 * status bits have been updated before next_to_watch is written. 1407 */ 1408 wmb(); 1409 1410 /* set next_to_watch value indicating a packet is present */ 1411 first->next_to_watch = tx_desc; 1412 1413 i++; 1414 if (i == tx_ring->count) 1415 i = 0; 1416 1417 tx_ring->next_to_use = i; 1418 1419 /* Make sure there is space in the ring for the next send. */ 1420 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1421 1422 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1423 writel(i, tx_ring->tail); 1424 } 1425 1426 return 0; 1427 dma_error: 1428 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1429 tx_buffer = &tx_ring->tx_buffer_info[i]; 1430 1431 /* clear dma mappings for failed tx_buffer_info map */ 1432 while (tx_buffer != first) { 1433 if (dma_unmap_len(tx_buffer, len)) 1434 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1435 1436 if (i-- == 0) 1437 i += tx_ring->count; 1438 tx_buffer = &tx_ring->tx_buffer_info[i]; 1439 } 1440 1441 if (dma_unmap_len(tx_buffer, len)) 1442 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1443 1444 dev_kfree_skb_any(tx_buffer->skb); 1445 tx_buffer->skb = NULL; 1446 1447 tx_ring->next_to_use = i; 1448 1449 return -1; 1450 } 1451 1452 static int igc_tso(struct igc_ring *tx_ring, 1453 struct igc_tx_buffer *first, 1454 __le32 launch_time, bool first_flag, 1455 u8 *hdr_len) 1456 { 1457 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1458 struct sk_buff *skb = first->skb; 1459 union { 1460 struct iphdr *v4; 1461 struct ipv6hdr *v6; 1462 unsigned char *hdr; 1463 } ip; 1464 union { 1465 struct tcphdr *tcp; 1466 struct udphdr *udp; 1467 unsigned char *hdr; 1468 } l4; 1469 u32 paylen, l4_offset; 1470 int err; 1471 1472 if (skb->ip_summed != CHECKSUM_PARTIAL) 1473 return 0; 1474 1475 if (!skb_is_gso(skb)) 1476 return 0; 1477 1478 err = skb_cow_head(skb, 0); 1479 if (err < 0) 1480 return err; 1481 1482 ip.hdr = skb_network_header(skb); 1483 l4.hdr = skb_checksum_start(skb); 1484 1485 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1486 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1487 1488 /* initialize outer IP header fields */ 1489 if (ip.v4->version == 4) { 1490 unsigned char *csum_start = skb_checksum_start(skb); 1491 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1492 1493 /* IP header will have to cancel out any data that 1494 * is not a part of the outer IP header 1495 */ 1496 ip.v4->check = csum_fold(csum_partial(trans_start, 1497 csum_start - trans_start, 1498 0)); 1499 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1500 1501 ip.v4->tot_len = 0; 1502 first->tx_flags |= IGC_TX_FLAGS_TSO | 1503 IGC_TX_FLAGS_CSUM | 1504 IGC_TX_FLAGS_IPV4; 1505 } else { 1506 ip.v6->payload_len = 0; 1507 first->tx_flags |= IGC_TX_FLAGS_TSO | 1508 IGC_TX_FLAGS_CSUM; 1509 } 1510 1511 /* determine offset of inner transport header */ 1512 l4_offset = l4.hdr - skb->data; 1513 1514 /* remove payload length from inner checksum */ 1515 paylen = skb->len - l4_offset; 1516 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1517 /* compute length of segmentation header */ 1518 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1519 csum_replace_by_diff(&l4.tcp->check, 1520 (__force __wsum)htonl(paylen)); 1521 } else { 1522 /* compute length of segmentation header */ 1523 *hdr_len = sizeof(*l4.udp) + l4_offset; 1524 csum_replace_by_diff(&l4.udp->check, 1525 (__force __wsum)htonl(paylen)); 1526 } 1527 1528 /* update gso size and bytecount with header size */ 1529 first->gso_segs = skb_shinfo(skb)->gso_segs; 1530 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1531 1532 /* MSS L4LEN IDX */ 1533 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1534 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1535 1536 /* VLAN MACLEN IPLEN */ 1537 vlan_macip_lens = l4.hdr - ip.hdr; 1538 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1539 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1540 1541 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1542 vlan_macip_lens, type_tucmd, mss_l4len_idx); 1543 1544 return 1; 1545 } 1546 1547 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags) 1548 { 1549 int i; 1550 1551 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { 1552 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i]; 1553 1554 if (tstamp->skb) 1555 continue; 1556 1557 tstamp->skb = skb_get(skb); 1558 tstamp->start = jiffies; 1559 *flags = tstamp->flags; 1560 1561 return true; 1562 } 1563 1564 return false; 1565 } 1566 1567 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1568 struct igc_ring *tx_ring) 1569 { 1570 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1571 bool first_flag = false, insert_empty = false; 1572 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1573 __be16 protocol = vlan_get_protocol(skb); 1574 struct igc_tx_buffer *first; 1575 __le32 launch_time = 0; 1576 u32 tx_flags = 0; 1577 unsigned short f; 1578 ktime_t txtime; 1579 u8 hdr_len = 0; 1580 int tso = 0; 1581 1582 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1583 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1584 * + 2 desc gap to keep tail from touching head, 1585 * + 1 desc for context descriptor, 1586 * otherwise try next time 1587 */ 1588 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1589 count += TXD_USE_COUNT(skb_frag_size( 1590 &skb_shinfo(skb)->frags[f])); 1591 1592 if (igc_maybe_stop_tx(tx_ring, count + 5)) { 1593 /* this is a hard error */ 1594 return NETDEV_TX_BUSY; 1595 } 1596 1597 if (!tx_ring->launchtime_enable) 1598 goto done; 1599 1600 txtime = skb->tstamp; 1601 skb->tstamp = ktime_set(0, 0); 1602 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty); 1603 1604 if (insert_empty) { 1605 struct igc_tx_buffer *empty_info; 1606 struct sk_buff *empty; 1607 void *data; 1608 1609 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1610 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC); 1611 if (!empty) 1612 goto done; 1613 1614 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE); 1615 memset(data, 0, IGC_EMPTY_FRAME_SIZE); 1616 1617 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0); 1618 1619 if (igc_init_tx_empty_descriptor(tx_ring, 1620 empty, 1621 empty_info) < 0) 1622 dev_kfree_skb_any(empty); 1623 } 1624 1625 done: 1626 /* record the location of the first descriptor for this packet */ 1627 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1628 first->type = IGC_TX_BUFFER_TYPE_SKB; 1629 first->skb = skb; 1630 first->bytecount = skb->len; 1631 first->gso_segs = 1; 1632 1633 if (adapter->qbv_transition || tx_ring->oper_gate_closed) 1634 goto out_drop; 1635 1636 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) { 1637 adapter->stats.txdrop++; 1638 goto out_drop; 1639 } 1640 1641 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) && 1642 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1643 /* FIXME: add support for retrieving timestamps from 1644 * the other timer registers before skipping the 1645 * timestamping request. 1646 */ 1647 unsigned long flags; 1648 u32 tstamp_flags; 1649 1650 spin_lock_irqsave(&adapter->ptp_tx_lock, flags); 1651 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) { 1652 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1653 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags; 1654 } else { 1655 adapter->tx_hwtstamp_skipped++; 1656 } 1657 1658 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); 1659 } 1660 1661 if (skb_vlan_tag_present(skb)) { 1662 tx_flags |= IGC_TX_FLAGS_VLAN; 1663 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1664 } 1665 1666 /* record initial flags and protocol */ 1667 first->tx_flags = tx_flags; 1668 first->protocol = protocol; 1669 1670 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len); 1671 if (tso < 0) 1672 goto out_drop; 1673 else if (!tso) 1674 igc_tx_csum(tx_ring, first, launch_time, first_flag); 1675 1676 igc_tx_map(tx_ring, first, hdr_len); 1677 1678 return NETDEV_TX_OK; 1679 1680 out_drop: 1681 dev_kfree_skb_any(first->skb); 1682 first->skb = NULL; 1683 1684 return NETDEV_TX_OK; 1685 } 1686 1687 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1688 struct sk_buff *skb) 1689 { 1690 unsigned int r_idx = skb->queue_mapping; 1691 1692 if (r_idx >= adapter->num_tx_queues) 1693 r_idx = r_idx % adapter->num_tx_queues; 1694 1695 return adapter->tx_ring[r_idx]; 1696 } 1697 1698 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1699 struct net_device *netdev) 1700 { 1701 struct igc_adapter *adapter = netdev_priv(netdev); 1702 1703 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1704 * in order to meet this minimum size requirement. 1705 */ 1706 if (skb->len < 17) { 1707 if (skb_padto(skb, 17)) 1708 return NETDEV_TX_OK; 1709 skb->len = 17; 1710 } 1711 1712 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1713 } 1714 1715 static void igc_rx_checksum(struct igc_ring *ring, 1716 union igc_adv_rx_desc *rx_desc, 1717 struct sk_buff *skb) 1718 { 1719 skb_checksum_none_assert(skb); 1720 1721 /* Ignore Checksum bit is set */ 1722 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1723 return; 1724 1725 /* Rx checksum disabled via ethtool */ 1726 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1727 return; 1728 1729 /* TCP/UDP checksum error bit is set */ 1730 if (igc_test_staterr(rx_desc, 1731 IGC_RXDEXT_STATERR_L4E | 1732 IGC_RXDEXT_STATERR_IPE)) { 1733 /* work around errata with sctp packets where the TCPE aka 1734 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1735 * packets (aka let the stack check the crc32c) 1736 */ 1737 if (!(skb->len == 60 && 1738 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1739 u64_stats_update_begin(&ring->rx_syncp); 1740 ring->rx_stats.csum_err++; 1741 u64_stats_update_end(&ring->rx_syncp); 1742 } 1743 /* let the stack verify checksum errors */ 1744 return; 1745 } 1746 /* It must be a TCP or UDP packet with a valid checksum */ 1747 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1748 IGC_RXD_STAT_UDPCS)) 1749 skb->ip_summed = CHECKSUM_UNNECESSARY; 1750 1751 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1752 le32_to_cpu(rx_desc->wb.upper.status_error)); 1753 } 1754 1755 /* Mapping HW RSS Type to enum pkt_hash_types */ 1756 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = { 1757 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2, 1758 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4, 1759 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3, 1760 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4, 1761 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3, 1762 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3, 1763 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4, 1764 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4, 1765 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4, 1766 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4, 1767 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */ 1768 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */ 1769 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */ 1770 [13] = PKT_HASH_TYPE_NONE, 1771 [14] = PKT_HASH_TYPE_NONE, 1772 [15] = PKT_HASH_TYPE_NONE, 1773 }; 1774 1775 static inline void igc_rx_hash(struct igc_ring *ring, 1776 union igc_adv_rx_desc *rx_desc, 1777 struct sk_buff *skb) 1778 { 1779 if (ring->netdev->features & NETIF_F_RXHASH) { 1780 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); 1781 u32 rss_type = igc_rss_type(rx_desc); 1782 1783 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]); 1784 } 1785 } 1786 1787 static void igc_rx_vlan(struct igc_ring *rx_ring, 1788 union igc_adv_rx_desc *rx_desc, 1789 struct sk_buff *skb) 1790 { 1791 struct net_device *dev = rx_ring->netdev; 1792 u16 vid; 1793 1794 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1795 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1796 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1797 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1798 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1799 else 1800 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1801 1802 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1803 } 1804 } 1805 1806 /** 1807 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1808 * @rx_ring: rx descriptor ring packet is being transacted on 1809 * @rx_desc: pointer to the EOP Rx descriptor 1810 * @skb: pointer to current skb being populated 1811 * 1812 * This function checks the ring, descriptor, and packet information in order 1813 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1814 * skb. 1815 */ 1816 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1817 union igc_adv_rx_desc *rx_desc, 1818 struct sk_buff *skb) 1819 { 1820 igc_rx_hash(rx_ring, rx_desc, skb); 1821 1822 igc_rx_checksum(rx_ring, rx_desc, skb); 1823 1824 igc_rx_vlan(rx_ring, rx_desc, skb); 1825 1826 skb_record_rx_queue(skb, rx_ring->queue_index); 1827 1828 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1829 } 1830 1831 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1832 { 1833 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1834 struct igc_adapter *adapter = netdev_priv(netdev); 1835 struct igc_hw *hw = &adapter->hw; 1836 u32 ctrl; 1837 1838 ctrl = rd32(IGC_CTRL); 1839 1840 if (enable) { 1841 /* enable VLAN tag insert/strip */ 1842 ctrl |= IGC_CTRL_VME; 1843 } else { 1844 /* disable VLAN tag insert/strip */ 1845 ctrl &= ~IGC_CTRL_VME; 1846 } 1847 wr32(IGC_CTRL, ctrl); 1848 } 1849 1850 static void igc_restore_vlan(struct igc_adapter *adapter) 1851 { 1852 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1853 } 1854 1855 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1856 const unsigned int size, 1857 int *rx_buffer_pgcnt) 1858 { 1859 struct igc_rx_buffer *rx_buffer; 1860 1861 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1862 *rx_buffer_pgcnt = 1863 #if (PAGE_SIZE < 8192) 1864 page_count(rx_buffer->page); 1865 #else 1866 0; 1867 #endif 1868 prefetchw(rx_buffer->page); 1869 1870 /* we are reusing so sync this buffer for CPU use */ 1871 dma_sync_single_range_for_cpu(rx_ring->dev, 1872 rx_buffer->dma, 1873 rx_buffer->page_offset, 1874 size, 1875 DMA_FROM_DEVICE); 1876 1877 rx_buffer->pagecnt_bias--; 1878 1879 return rx_buffer; 1880 } 1881 1882 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1883 unsigned int truesize) 1884 { 1885 #if (PAGE_SIZE < 8192) 1886 buffer->page_offset ^= truesize; 1887 #else 1888 buffer->page_offset += truesize; 1889 #endif 1890 } 1891 1892 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1893 unsigned int size) 1894 { 1895 unsigned int truesize; 1896 1897 #if (PAGE_SIZE < 8192) 1898 truesize = igc_rx_pg_size(ring) / 2; 1899 #else 1900 truesize = ring_uses_build_skb(ring) ? 1901 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1902 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1903 SKB_DATA_ALIGN(size); 1904 #endif 1905 return truesize; 1906 } 1907 1908 /** 1909 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1910 * @rx_ring: rx descriptor ring to transact packets on 1911 * @rx_buffer: buffer containing page to add 1912 * @skb: sk_buff to place the data into 1913 * @size: size of buffer to be added 1914 * 1915 * This function will add the data contained in rx_buffer->page to the skb. 1916 */ 1917 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1918 struct igc_rx_buffer *rx_buffer, 1919 struct sk_buff *skb, 1920 unsigned int size) 1921 { 1922 unsigned int truesize; 1923 1924 #if (PAGE_SIZE < 8192) 1925 truesize = igc_rx_pg_size(rx_ring) / 2; 1926 #else 1927 truesize = ring_uses_build_skb(rx_ring) ? 1928 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1929 SKB_DATA_ALIGN(size); 1930 #endif 1931 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1932 rx_buffer->page_offset, size, truesize); 1933 1934 igc_rx_buffer_flip(rx_buffer, truesize); 1935 } 1936 1937 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1938 struct igc_rx_buffer *rx_buffer, 1939 struct xdp_buff *xdp) 1940 { 1941 unsigned int size = xdp->data_end - xdp->data; 1942 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1943 unsigned int metasize = xdp->data - xdp->data_meta; 1944 struct sk_buff *skb; 1945 1946 /* prefetch first cache line of first page */ 1947 net_prefetch(xdp->data_meta); 1948 1949 /* build an skb around the page buffer */ 1950 skb = napi_build_skb(xdp->data_hard_start, truesize); 1951 if (unlikely(!skb)) 1952 return NULL; 1953 1954 /* update pointers within the skb to store the data */ 1955 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1956 __skb_put(skb, size); 1957 if (metasize) 1958 skb_metadata_set(skb, metasize); 1959 1960 igc_rx_buffer_flip(rx_buffer, truesize); 1961 return skb; 1962 } 1963 1964 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1965 struct igc_rx_buffer *rx_buffer, 1966 struct xdp_buff *xdp, 1967 ktime_t timestamp) 1968 { 1969 unsigned int metasize = xdp->data - xdp->data_meta; 1970 unsigned int size = xdp->data_end - xdp->data; 1971 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1972 void *va = xdp->data; 1973 unsigned int headlen; 1974 struct sk_buff *skb; 1975 1976 /* prefetch first cache line of first page */ 1977 net_prefetch(xdp->data_meta); 1978 1979 /* allocate a skb to store the frags */ 1980 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1981 IGC_RX_HDR_LEN + metasize); 1982 if (unlikely(!skb)) 1983 return NULL; 1984 1985 if (timestamp) 1986 skb_hwtstamps(skb)->hwtstamp = timestamp; 1987 1988 /* Determine available headroom for copy */ 1989 headlen = size; 1990 if (headlen > IGC_RX_HDR_LEN) 1991 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1992 1993 /* align pull length to size of long to optimize memcpy performance */ 1994 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1995 ALIGN(headlen + metasize, sizeof(long))); 1996 1997 if (metasize) { 1998 skb_metadata_set(skb, metasize); 1999 __skb_pull(skb, metasize); 2000 } 2001 2002 /* update all of the pointers */ 2003 size -= headlen; 2004 if (size) { 2005 skb_add_rx_frag(skb, 0, rx_buffer->page, 2006 (va + headlen) - page_address(rx_buffer->page), 2007 size, truesize); 2008 igc_rx_buffer_flip(rx_buffer, truesize); 2009 } else { 2010 rx_buffer->pagecnt_bias++; 2011 } 2012 2013 return skb; 2014 } 2015 2016 /** 2017 * igc_reuse_rx_page - page flip buffer and store it back on the ring 2018 * @rx_ring: rx descriptor ring to store buffers on 2019 * @old_buff: donor buffer to have page reused 2020 * 2021 * Synchronizes page for reuse by the adapter 2022 */ 2023 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 2024 struct igc_rx_buffer *old_buff) 2025 { 2026 u16 nta = rx_ring->next_to_alloc; 2027 struct igc_rx_buffer *new_buff; 2028 2029 new_buff = &rx_ring->rx_buffer_info[nta]; 2030 2031 /* update, and store next to alloc */ 2032 nta++; 2033 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 2034 2035 /* Transfer page from old buffer to new buffer. 2036 * Move each member individually to avoid possible store 2037 * forwarding stalls. 2038 */ 2039 new_buff->dma = old_buff->dma; 2040 new_buff->page = old_buff->page; 2041 new_buff->page_offset = old_buff->page_offset; 2042 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 2043 } 2044 2045 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 2046 int rx_buffer_pgcnt) 2047 { 2048 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 2049 struct page *page = rx_buffer->page; 2050 2051 /* avoid re-using remote and pfmemalloc pages */ 2052 if (!dev_page_is_reusable(page)) 2053 return false; 2054 2055 #if (PAGE_SIZE < 8192) 2056 /* if we are only owner of page we can reuse it */ 2057 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 2058 return false; 2059 #else 2060 #define IGC_LAST_OFFSET \ 2061 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 2062 2063 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 2064 return false; 2065 #endif 2066 2067 /* If we have drained the page fragment pool we need to update 2068 * the pagecnt_bias and page count so that we fully restock the 2069 * number of references the driver holds. 2070 */ 2071 if (unlikely(pagecnt_bias == 1)) { 2072 page_ref_add(page, USHRT_MAX - 1); 2073 rx_buffer->pagecnt_bias = USHRT_MAX; 2074 } 2075 2076 return true; 2077 } 2078 2079 /** 2080 * igc_is_non_eop - process handling of non-EOP buffers 2081 * @rx_ring: Rx ring being processed 2082 * @rx_desc: Rx descriptor for current buffer 2083 * 2084 * This function updates next to clean. If the buffer is an EOP buffer 2085 * this function exits returning false, otherwise it will place the 2086 * sk_buff in the next buffer to be chained and return true indicating 2087 * that this is in fact a non-EOP buffer. 2088 */ 2089 static bool igc_is_non_eop(struct igc_ring *rx_ring, 2090 union igc_adv_rx_desc *rx_desc) 2091 { 2092 u32 ntc = rx_ring->next_to_clean + 1; 2093 2094 /* fetch, update, and store next to clean */ 2095 ntc = (ntc < rx_ring->count) ? ntc : 0; 2096 rx_ring->next_to_clean = ntc; 2097 2098 prefetch(IGC_RX_DESC(rx_ring, ntc)); 2099 2100 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 2101 return false; 2102 2103 return true; 2104 } 2105 2106 /** 2107 * igc_cleanup_headers - Correct corrupted or empty headers 2108 * @rx_ring: rx descriptor ring packet is being transacted on 2109 * @rx_desc: pointer to the EOP Rx descriptor 2110 * @skb: pointer to current skb being fixed 2111 * 2112 * Address the case where we are pulling data in on pages only 2113 * and as such no data is present in the skb header. 2114 * 2115 * In addition if skb is not at least 60 bytes we need to pad it so that 2116 * it is large enough to qualify as a valid Ethernet frame. 2117 * 2118 * Returns true if an error was encountered and skb was freed. 2119 */ 2120 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 2121 union igc_adv_rx_desc *rx_desc, 2122 struct sk_buff *skb) 2123 { 2124 /* XDP packets use error pointer so abort at this point */ 2125 if (IS_ERR(skb)) 2126 return true; 2127 2128 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 2129 struct net_device *netdev = rx_ring->netdev; 2130 2131 if (!(netdev->features & NETIF_F_RXALL)) { 2132 dev_kfree_skb_any(skb); 2133 return true; 2134 } 2135 } 2136 2137 /* if eth_skb_pad returns an error the skb was freed */ 2138 if (eth_skb_pad(skb)) 2139 return true; 2140 2141 return false; 2142 } 2143 2144 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 2145 struct igc_rx_buffer *rx_buffer, 2146 int rx_buffer_pgcnt) 2147 { 2148 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2149 /* hand second half of page back to the ring */ 2150 igc_reuse_rx_page(rx_ring, rx_buffer); 2151 } else { 2152 /* We are not reusing the buffer so unmap it and free 2153 * any references we are holding to it 2154 */ 2155 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2156 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 2157 IGC_RX_DMA_ATTR); 2158 __page_frag_cache_drain(rx_buffer->page, 2159 rx_buffer->pagecnt_bias); 2160 } 2161 2162 /* clear contents of rx_buffer */ 2163 rx_buffer->page = NULL; 2164 } 2165 2166 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 2167 { 2168 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 2169 2170 if (ring_uses_build_skb(rx_ring)) 2171 return IGC_SKB_PAD; 2172 if (igc_xdp_is_enabled(adapter)) 2173 return XDP_PACKET_HEADROOM; 2174 2175 return 0; 2176 } 2177 2178 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 2179 struct igc_rx_buffer *bi) 2180 { 2181 struct page *page = bi->page; 2182 dma_addr_t dma; 2183 2184 /* since we are recycling buffers we should seldom need to alloc */ 2185 if (likely(page)) 2186 return true; 2187 2188 /* alloc new page for storage */ 2189 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 2190 if (unlikely(!page)) { 2191 rx_ring->rx_stats.alloc_failed++; 2192 return false; 2193 } 2194 2195 /* map page for use */ 2196 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 2197 igc_rx_pg_size(rx_ring), 2198 DMA_FROM_DEVICE, 2199 IGC_RX_DMA_ATTR); 2200 2201 /* if mapping failed free memory back to system since 2202 * there isn't much point in holding memory we can't use 2203 */ 2204 if (dma_mapping_error(rx_ring->dev, dma)) { 2205 __free_page(page); 2206 2207 rx_ring->rx_stats.alloc_failed++; 2208 return false; 2209 } 2210 2211 bi->dma = dma; 2212 bi->page = page; 2213 bi->page_offset = igc_rx_offset(rx_ring); 2214 page_ref_add(page, USHRT_MAX - 1); 2215 bi->pagecnt_bias = USHRT_MAX; 2216 2217 return true; 2218 } 2219 2220 /** 2221 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2222 * @rx_ring: rx descriptor ring 2223 * @cleaned_count: number of buffers to clean 2224 */ 2225 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2226 { 2227 union igc_adv_rx_desc *rx_desc; 2228 u16 i = rx_ring->next_to_use; 2229 struct igc_rx_buffer *bi; 2230 u16 bufsz; 2231 2232 /* nothing to do */ 2233 if (!cleaned_count) 2234 return; 2235 2236 rx_desc = IGC_RX_DESC(rx_ring, i); 2237 bi = &rx_ring->rx_buffer_info[i]; 2238 i -= rx_ring->count; 2239 2240 bufsz = igc_rx_bufsz(rx_ring); 2241 2242 do { 2243 if (!igc_alloc_mapped_page(rx_ring, bi)) 2244 break; 2245 2246 /* sync the buffer for use by the device */ 2247 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2248 bi->page_offset, bufsz, 2249 DMA_FROM_DEVICE); 2250 2251 /* Refresh the desc even if buffer_addrs didn't change 2252 * because each write-back erases this info. 2253 */ 2254 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2255 2256 rx_desc++; 2257 bi++; 2258 i++; 2259 if (unlikely(!i)) { 2260 rx_desc = IGC_RX_DESC(rx_ring, 0); 2261 bi = rx_ring->rx_buffer_info; 2262 i -= rx_ring->count; 2263 } 2264 2265 /* clear the length for the next_to_use descriptor */ 2266 rx_desc->wb.upper.length = 0; 2267 2268 cleaned_count--; 2269 } while (cleaned_count); 2270 2271 i += rx_ring->count; 2272 2273 if (rx_ring->next_to_use != i) { 2274 /* record the next descriptor to use */ 2275 rx_ring->next_to_use = i; 2276 2277 /* update next to alloc since we have filled the ring */ 2278 rx_ring->next_to_alloc = i; 2279 2280 /* Force memory writes to complete before letting h/w 2281 * know there are new descriptors to fetch. (Only 2282 * applicable for weak-ordered memory model archs, 2283 * such as IA-64). 2284 */ 2285 wmb(); 2286 writel(i, rx_ring->tail); 2287 } 2288 } 2289 2290 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2291 { 2292 union igc_adv_rx_desc *desc; 2293 u16 i = ring->next_to_use; 2294 struct igc_rx_buffer *bi; 2295 dma_addr_t dma; 2296 bool ok = true; 2297 2298 if (!count) 2299 return ok; 2300 2301 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff); 2302 2303 desc = IGC_RX_DESC(ring, i); 2304 bi = &ring->rx_buffer_info[i]; 2305 i -= ring->count; 2306 2307 do { 2308 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2309 if (!bi->xdp) { 2310 ok = false; 2311 break; 2312 } 2313 2314 dma = xsk_buff_xdp_get_dma(bi->xdp); 2315 desc->read.pkt_addr = cpu_to_le64(dma); 2316 2317 desc++; 2318 bi++; 2319 i++; 2320 if (unlikely(!i)) { 2321 desc = IGC_RX_DESC(ring, 0); 2322 bi = ring->rx_buffer_info; 2323 i -= ring->count; 2324 } 2325 2326 /* Clear the length for the next_to_use descriptor. */ 2327 desc->wb.upper.length = 0; 2328 2329 count--; 2330 } while (count); 2331 2332 i += ring->count; 2333 2334 if (ring->next_to_use != i) { 2335 ring->next_to_use = i; 2336 2337 /* Force memory writes to complete before letting h/w 2338 * know there are new descriptors to fetch. (Only 2339 * applicable for weak-ordered memory model archs, 2340 * such as IA-64). 2341 */ 2342 wmb(); 2343 writel(i, ring->tail); 2344 } 2345 2346 return ok; 2347 } 2348 2349 /* This function requires __netif_tx_lock is held by the caller. */ 2350 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2351 struct xdp_frame *xdpf) 2352 { 2353 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2354 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 2355 u16 count, index = ring->next_to_use; 2356 struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; 2357 struct igc_tx_buffer *buffer = head; 2358 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); 2359 u32 olinfo_status, len = xdpf->len, cmd_type; 2360 void *data = xdpf->data; 2361 u16 i; 2362 2363 count = TXD_USE_COUNT(len); 2364 for (i = 0; i < nr_frags; i++) 2365 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 2366 2367 if (igc_maybe_stop_tx(ring, count + 3)) { 2368 /* this is a hard error */ 2369 return -EBUSY; 2370 } 2371 2372 i = 0; 2373 head->bytecount = xdp_get_frame_len(xdpf); 2374 head->type = IGC_TX_BUFFER_TYPE_XDP; 2375 head->gso_segs = 1; 2376 head->xdpf = xdpf; 2377 2378 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2379 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2380 2381 for (;;) { 2382 dma_addr_t dma; 2383 2384 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); 2385 if (dma_mapping_error(ring->dev, dma)) { 2386 netdev_err_once(ring->netdev, 2387 "Failed to map DMA for TX\n"); 2388 goto unmap; 2389 } 2390 2391 dma_unmap_len_set(buffer, len, len); 2392 dma_unmap_addr_set(buffer, dma, dma); 2393 2394 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2395 IGC_ADVTXD_DCMD_IFCS | len; 2396 2397 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2398 desc->read.buffer_addr = cpu_to_le64(dma); 2399 2400 buffer->protocol = 0; 2401 2402 if (++index == ring->count) 2403 index = 0; 2404 2405 if (i == nr_frags) 2406 break; 2407 2408 buffer = &ring->tx_buffer_info[index]; 2409 desc = IGC_TX_DESC(ring, index); 2410 desc->read.olinfo_status = 0; 2411 2412 data = skb_frag_address(&sinfo->frags[i]); 2413 len = skb_frag_size(&sinfo->frags[i]); 2414 i++; 2415 } 2416 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); 2417 2418 netdev_tx_sent_queue(txring_txq(ring), head->bytecount); 2419 /* set the timestamp */ 2420 head->time_stamp = jiffies; 2421 /* set next_to_watch value indicating a packet is present */ 2422 head->next_to_watch = desc; 2423 ring->next_to_use = index; 2424 2425 return 0; 2426 2427 unmap: 2428 for (;;) { 2429 buffer = &ring->tx_buffer_info[index]; 2430 if (dma_unmap_len(buffer, len)) 2431 dma_unmap_page(ring->dev, 2432 dma_unmap_addr(buffer, dma), 2433 dma_unmap_len(buffer, len), 2434 DMA_TO_DEVICE); 2435 dma_unmap_len_set(buffer, len, 0); 2436 if (buffer == head) 2437 break; 2438 2439 if (!index) 2440 index += ring->count; 2441 index--; 2442 } 2443 2444 return -ENOMEM; 2445 } 2446 2447 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2448 int cpu) 2449 { 2450 int index = cpu; 2451 2452 if (unlikely(index < 0)) 2453 index = 0; 2454 2455 while (index >= adapter->num_tx_queues) 2456 index -= adapter->num_tx_queues; 2457 2458 return adapter->tx_ring[index]; 2459 } 2460 2461 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2462 { 2463 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2464 int cpu = smp_processor_id(); 2465 struct netdev_queue *nq; 2466 struct igc_ring *ring; 2467 int res; 2468 2469 if (unlikely(!xdpf)) 2470 return -EFAULT; 2471 2472 ring = igc_xdp_get_tx_ring(adapter, cpu); 2473 nq = txring_txq(ring); 2474 2475 __netif_tx_lock(nq, cpu); 2476 /* Avoid transmit queue timeout since we share it with the slow path */ 2477 txq_trans_cond_update(nq); 2478 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2479 __netif_tx_unlock(nq); 2480 return res; 2481 } 2482 2483 /* This function assumes rcu_read_lock() is held by the caller. */ 2484 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2485 struct bpf_prog *prog, 2486 struct xdp_buff *xdp) 2487 { 2488 u32 act = bpf_prog_run_xdp(prog, xdp); 2489 2490 switch (act) { 2491 case XDP_PASS: 2492 return IGC_XDP_PASS; 2493 case XDP_TX: 2494 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2495 goto out_failure; 2496 return IGC_XDP_TX; 2497 case XDP_REDIRECT: 2498 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2499 goto out_failure; 2500 return IGC_XDP_REDIRECT; 2501 break; 2502 default: 2503 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2504 fallthrough; 2505 case XDP_ABORTED: 2506 out_failure: 2507 trace_xdp_exception(adapter->netdev, prog, act); 2508 fallthrough; 2509 case XDP_DROP: 2510 return IGC_XDP_CONSUMED; 2511 } 2512 } 2513 2514 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2515 struct xdp_buff *xdp) 2516 { 2517 struct bpf_prog *prog; 2518 int res; 2519 2520 prog = READ_ONCE(adapter->xdp_prog); 2521 if (!prog) { 2522 res = IGC_XDP_PASS; 2523 goto out; 2524 } 2525 2526 res = __igc_xdp_run_prog(adapter, prog, xdp); 2527 2528 out: 2529 return ERR_PTR(-res); 2530 } 2531 2532 /* This function assumes __netif_tx_lock is held by the caller. */ 2533 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2534 { 2535 /* Once tail pointer is updated, hardware can fetch the descriptors 2536 * any time so we issue a write membar here to ensure all memory 2537 * writes are complete before the tail pointer is updated. 2538 */ 2539 wmb(); 2540 writel(ring->next_to_use, ring->tail); 2541 } 2542 2543 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2544 { 2545 int cpu = smp_processor_id(); 2546 struct netdev_queue *nq; 2547 struct igc_ring *ring; 2548 2549 if (status & IGC_XDP_TX) { 2550 ring = igc_xdp_get_tx_ring(adapter, cpu); 2551 nq = txring_txq(ring); 2552 2553 __netif_tx_lock(nq, cpu); 2554 igc_flush_tx_descriptors(ring); 2555 __netif_tx_unlock(nq); 2556 } 2557 2558 if (status & IGC_XDP_REDIRECT) 2559 xdp_do_flush(); 2560 } 2561 2562 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2563 unsigned int packets, unsigned int bytes) 2564 { 2565 struct igc_ring *ring = q_vector->rx.ring; 2566 2567 u64_stats_update_begin(&ring->rx_syncp); 2568 ring->rx_stats.packets += packets; 2569 ring->rx_stats.bytes += bytes; 2570 u64_stats_update_end(&ring->rx_syncp); 2571 2572 q_vector->rx.total_packets += packets; 2573 q_vector->rx.total_bytes += bytes; 2574 } 2575 2576 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2577 { 2578 unsigned int total_bytes = 0, total_packets = 0; 2579 struct igc_adapter *adapter = q_vector->adapter; 2580 struct igc_ring *rx_ring = q_vector->rx.ring; 2581 struct sk_buff *skb = rx_ring->skb; 2582 u16 cleaned_count = igc_desc_unused(rx_ring); 2583 int xdp_status = 0, rx_buffer_pgcnt; 2584 2585 while (likely(total_packets < budget)) { 2586 union igc_adv_rx_desc *rx_desc; 2587 struct igc_rx_buffer *rx_buffer; 2588 unsigned int size, truesize; 2589 struct igc_xdp_buff ctx; 2590 ktime_t timestamp = 0; 2591 int pkt_offset = 0; 2592 void *pktbuf; 2593 2594 /* return some buffers to hardware, one at a time is too slow */ 2595 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2596 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2597 cleaned_count = 0; 2598 } 2599 2600 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2601 size = le16_to_cpu(rx_desc->wb.upper.length); 2602 if (!size) 2603 break; 2604 2605 /* This memory barrier is needed to keep us from reading 2606 * any other fields out of the rx_desc until we know the 2607 * descriptor has been written back 2608 */ 2609 dma_rmb(); 2610 2611 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2612 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2613 2614 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2615 2616 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2617 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2618 pktbuf); 2619 ctx.rx_ts = timestamp; 2620 pkt_offset = IGC_TS_HDR_LEN; 2621 size -= IGC_TS_HDR_LEN; 2622 } 2623 2624 if (!skb) { 2625 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq); 2626 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring), 2627 igc_rx_offset(rx_ring) + pkt_offset, 2628 size, true); 2629 xdp_buff_clear_frags_flag(&ctx.xdp); 2630 ctx.rx_desc = rx_desc; 2631 2632 skb = igc_xdp_run_prog(adapter, &ctx.xdp); 2633 } 2634 2635 if (IS_ERR(skb)) { 2636 unsigned int xdp_res = -PTR_ERR(skb); 2637 2638 switch (xdp_res) { 2639 case IGC_XDP_CONSUMED: 2640 rx_buffer->pagecnt_bias++; 2641 break; 2642 case IGC_XDP_TX: 2643 case IGC_XDP_REDIRECT: 2644 igc_rx_buffer_flip(rx_buffer, truesize); 2645 xdp_status |= xdp_res; 2646 break; 2647 } 2648 2649 total_packets++; 2650 total_bytes += size; 2651 } else if (skb) 2652 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2653 else if (ring_uses_build_skb(rx_ring)) 2654 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp); 2655 else 2656 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx.xdp, 2657 timestamp); 2658 2659 /* exit if we failed to retrieve a buffer */ 2660 if (!skb) { 2661 rx_ring->rx_stats.alloc_failed++; 2662 rx_buffer->pagecnt_bias++; 2663 break; 2664 } 2665 2666 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2667 cleaned_count++; 2668 2669 /* fetch next buffer in frame if non-eop */ 2670 if (igc_is_non_eop(rx_ring, rx_desc)) 2671 continue; 2672 2673 /* verify the packet layout is correct */ 2674 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2675 skb = NULL; 2676 continue; 2677 } 2678 2679 /* probably a little skewed due to removing CRC */ 2680 total_bytes += skb->len; 2681 2682 /* populate checksum, VLAN, and protocol */ 2683 igc_process_skb_fields(rx_ring, rx_desc, skb); 2684 2685 napi_gro_receive(&q_vector->napi, skb); 2686 2687 /* reset skb pointer */ 2688 skb = NULL; 2689 2690 /* update budget accounting */ 2691 total_packets++; 2692 } 2693 2694 if (xdp_status) 2695 igc_finalize_xdp(adapter, xdp_status); 2696 2697 /* place incomplete frames back on ring for completion */ 2698 rx_ring->skb = skb; 2699 2700 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2701 2702 if (cleaned_count) 2703 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2704 2705 return total_packets; 2706 } 2707 2708 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2709 struct xdp_buff *xdp) 2710 { 2711 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2712 unsigned int metasize = xdp->data - xdp->data_meta; 2713 struct sk_buff *skb; 2714 2715 net_prefetch(xdp->data_meta); 2716 2717 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize, 2718 GFP_ATOMIC | __GFP_NOWARN); 2719 if (unlikely(!skb)) 2720 return NULL; 2721 2722 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2723 ALIGN(totalsize, sizeof(long))); 2724 2725 if (metasize) { 2726 skb_metadata_set(skb, metasize); 2727 __skb_pull(skb, metasize); 2728 } 2729 2730 return skb; 2731 } 2732 2733 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2734 union igc_adv_rx_desc *desc, 2735 struct xdp_buff *xdp, 2736 ktime_t timestamp) 2737 { 2738 struct igc_ring *ring = q_vector->rx.ring; 2739 struct sk_buff *skb; 2740 2741 skb = igc_construct_skb_zc(ring, xdp); 2742 if (!skb) { 2743 ring->rx_stats.alloc_failed++; 2744 return; 2745 } 2746 2747 if (timestamp) 2748 skb_hwtstamps(skb)->hwtstamp = timestamp; 2749 2750 if (igc_cleanup_headers(ring, desc, skb)) 2751 return; 2752 2753 igc_process_skb_fields(ring, desc, skb); 2754 napi_gro_receive(&q_vector->napi, skb); 2755 } 2756 2757 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp) 2758 { 2759 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The 2760 * igc_xdp_buff shares its layout with xdp_buff_xsk and private 2761 * igc_xdp_buff fields fall into xdp_buff_xsk->cb 2762 */ 2763 return (struct igc_xdp_buff *)xdp; 2764 } 2765 2766 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2767 { 2768 struct igc_adapter *adapter = q_vector->adapter; 2769 struct igc_ring *ring = q_vector->rx.ring; 2770 u16 cleaned_count = igc_desc_unused(ring); 2771 int total_bytes = 0, total_packets = 0; 2772 u16 ntc = ring->next_to_clean; 2773 struct bpf_prog *prog; 2774 bool failure = false; 2775 int xdp_status = 0; 2776 2777 rcu_read_lock(); 2778 2779 prog = READ_ONCE(adapter->xdp_prog); 2780 2781 while (likely(total_packets < budget)) { 2782 union igc_adv_rx_desc *desc; 2783 struct igc_rx_buffer *bi; 2784 struct igc_xdp_buff *ctx; 2785 ktime_t timestamp = 0; 2786 unsigned int size; 2787 int res; 2788 2789 desc = IGC_RX_DESC(ring, ntc); 2790 size = le16_to_cpu(desc->wb.upper.length); 2791 if (!size) 2792 break; 2793 2794 /* This memory barrier is needed to keep us from reading 2795 * any other fields out of the rx_desc until we know the 2796 * descriptor has been written back 2797 */ 2798 dma_rmb(); 2799 2800 bi = &ring->rx_buffer_info[ntc]; 2801 2802 ctx = xsk_buff_to_igc_ctx(bi->xdp); 2803 ctx->rx_desc = desc; 2804 2805 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2806 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2807 bi->xdp->data); 2808 ctx->rx_ts = timestamp; 2809 2810 bi->xdp->data += IGC_TS_HDR_LEN; 2811 2812 /* HW timestamp has been copied into local variable. Metadata 2813 * length when XDP program is called should be 0. 2814 */ 2815 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2816 size -= IGC_TS_HDR_LEN; 2817 } 2818 2819 bi->xdp->data_end = bi->xdp->data + size; 2820 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); 2821 2822 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2823 switch (res) { 2824 case IGC_XDP_PASS: 2825 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2826 fallthrough; 2827 case IGC_XDP_CONSUMED: 2828 xsk_buff_free(bi->xdp); 2829 break; 2830 case IGC_XDP_TX: 2831 case IGC_XDP_REDIRECT: 2832 xdp_status |= res; 2833 break; 2834 } 2835 2836 bi->xdp = NULL; 2837 total_bytes += size; 2838 total_packets++; 2839 cleaned_count++; 2840 ntc++; 2841 if (ntc == ring->count) 2842 ntc = 0; 2843 } 2844 2845 ring->next_to_clean = ntc; 2846 rcu_read_unlock(); 2847 2848 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2849 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2850 2851 if (xdp_status) 2852 igc_finalize_xdp(adapter, xdp_status); 2853 2854 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2855 2856 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2857 if (failure || ring->next_to_clean == ring->next_to_use) 2858 xsk_set_rx_need_wakeup(ring->xsk_pool); 2859 else 2860 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2861 return total_packets; 2862 } 2863 2864 return failure ? budget : total_packets; 2865 } 2866 2867 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2868 unsigned int packets, unsigned int bytes) 2869 { 2870 struct igc_ring *ring = q_vector->tx.ring; 2871 2872 u64_stats_update_begin(&ring->tx_syncp); 2873 ring->tx_stats.bytes += bytes; 2874 ring->tx_stats.packets += packets; 2875 u64_stats_update_end(&ring->tx_syncp); 2876 2877 q_vector->tx.total_bytes += bytes; 2878 q_vector->tx.total_packets += packets; 2879 } 2880 2881 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2882 { 2883 struct xsk_buff_pool *pool = ring->xsk_pool; 2884 struct netdev_queue *nq = txring_txq(ring); 2885 union igc_adv_tx_desc *tx_desc = NULL; 2886 int cpu = smp_processor_id(); 2887 struct xdp_desc xdp_desc; 2888 u16 budget, ntu; 2889 2890 if (!netif_carrier_ok(ring->netdev)) 2891 return; 2892 2893 __netif_tx_lock(nq, cpu); 2894 2895 /* Avoid transmit queue timeout since we share it with the slow path */ 2896 txq_trans_cond_update(nq); 2897 2898 ntu = ring->next_to_use; 2899 budget = igc_desc_unused(ring); 2900 2901 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2902 u32 cmd_type, olinfo_status; 2903 struct igc_tx_buffer *bi; 2904 dma_addr_t dma; 2905 2906 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2907 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2908 xdp_desc.len; 2909 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2910 2911 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2912 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2913 2914 tx_desc = IGC_TX_DESC(ring, ntu); 2915 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2916 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2917 tx_desc->read.buffer_addr = cpu_to_le64(dma); 2918 2919 bi = &ring->tx_buffer_info[ntu]; 2920 bi->type = IGC_TX_BUFFER_TYPE_XSK; 2921 bi->protocol = 0; 2922 bi->bytecount = xdp_desc.len; 2923 bi->gso_segs = 1; 2924 bi->time_stamp = jiffies; 2925 bi->next_to_watch = tx_desc; 2926 2927 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 2928 2929 ntu++; 2930 if (ntu == ring->count) 2931 ntu = 0; 2932 } 2933 2934 ring->next_to_use = ntu; 2935 if (tx_desc) { 2936 igc_flush_tx_descriptors(ring); 2937 xsk_tx_release(pool); 2938 } 2939 2940 __netif_tx_unlock(nq); 2941 } 2942 2943 /** 2944 * igc_clean_tx_irq - Reclaim resources after transmit completes 2945 * @q_vector: pointer to q_vector containing needed info 2946 * @napi_budget: Used to determine if we are in netpoll 2947 * 2948 * returns true if ring is completely cleaned 2949 */ 2950 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 2951 { 2952 struct igc_adapter *adapter = q_vector->adapter; 2953 unsigned int total_bytes = 0, total_packets = 0; 2954 unsigned int budget = q_vector->tx.work_limit; 2955 struct igc_ring *tx_ring = q_vector->tx.ring; 2956 unsigned int i = tx_ring->next_to_clean; 2957 struct igc_tx_buffer *tx_buffer; 2958 union igc_adv_tx_desc *tx_desc; 2959 u32 xsk_frames = 0; 2960 2961 if (test_bit(__IGC_DOWN, &adapter->state)) 2962 return true; 2963 2964 tx_buffer = &tx_ring->tx_buffer_info[i]; 2965 tx_desc = IGC_TX_DESC(tx_ring, i); 2966 i -= tx_ring->count; 2967 2968 do { 2969 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2970 2971 /* if next_to_watch is not set then there is no work pending */ 2972 if (!eop_desc) 2973 break; 2974 2975 /* prevent any other reads prior to eop_desc */ 2976 smp_rmb(); 2977 2978 /* if DD is not set pending work has not been completed */ 2979 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2980 break; 2981 2982 /* clear next_to_watch to prevent false hangs */ 2983 tx_buffer->next_to_watch = NULL; 2984 2985 /* update the statistics for this packet */ 2986 total_bytes += tx_buffer->bytecount; 2987 total_packets += tx_buffer->gso_segs; 2988 2989 switch (tx_buffer->type) { 2990 case IGC_TX_BUFFER_TYPE_XSK: 2991 xsk_frames++; 2992 break; 2993 case IGC_TX_BUFFER_TYPE_XDP: 2994 xdp_return_frame(tx_buffer->xdpf); 2995 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2996 break; 2997 case IGC_TX_BUFFER_TYPE_SKB: 2998 napi_consume_skb(tx_buffer->skb, napi_budget); 2999 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 3000 break; 3001 default: 3002 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 3003 break; 3004 } 3005 3006 /* clear last DMA location and unmap remaining buffers */ 3007 while (tx_desc != eop_desc) { 3008 tx_buffer++; 3009 tx_desc++; 3010 i++; 3011 if (unlikely(!i)) { 3012 i -= tx_ring->count; 3013 tx_buffer = tx_ring->tx_buffer_info; 3014 tx_desc = IGC_TX_DESC(tx_ring, 0); 3015 } 3016 3017 /* unmap any remaining paged data */ 3018 if (dma_unmap_len(tx_buffer, len)) 3019 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 3020 } 3021 3022 /* move us one more past the eop_desc for start of next pkt */ 3023 tx_buffer++; 3024 tx_desc++; 3025 i++; 3026 if (unlikely(!i)) { 3027 i -= tx_ring->count; 3028 tx_buffer = tx_ring->tx_buffer_info; 3029 tx_desc = IGC_TX_DESC(tx_ring, 0); 3030 } 3031 3032 /* issue prefetch for next Tx descriptor */ 3033 prefetch(tx_desc); 3034 3035 /* update budget accounting */ 3036 budget--; 3037 } while (likely(budget)); 3038 3039 netdev_tx_completed_queue(txring_txq(tx_ring), 3040 total_packets, total_bytes); 3041 3042 i += tx_ring->count; 3043 tx_ring->next_to_clean = i; 3044 3045 igc_update_tx_stats(q_vector, total_packets, total_bytes); 3046 3047 if (tx_ring->xsk_pool) { 3048 if (xsk_frames) 3049 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 3050 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 3051 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 3052 igc_xdp_xmit_zc(tx_ring); 3053 } 3054 3055 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 3056 struct igc_hw *hw = &adapter->hw; 3057 3058 /* Detect a transmit hang in hardware, this serializes the 3059 * check with the clearing of time_stamp and movement of i 3060 */ 3061 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 3062 if (tx_buffer->next_to_watch && 3063 time_after(jiffies, tx_buffer->time_stamp + 3064 (adapter->tx_timeout_factor * HZ)) && 3065 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) && 3066 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) && 3067 !tx_ring->oper_gate_closed) { 3068 /* detected Tx unit hang */ 3069 netdev_err(tx_ring->netdev, 3070 "Detected Tx Unit Hang\n" 3071 " Tx Queue <%d>\n" 3072 " TDH <%x>\n" 3073 " TDT <%x>\n" 3074 " next_to_use <%x>\n" 3075 " next_to_clean <%x>\n" 3076 "buffer_info[next_to_clean]\n" 3077 " time_stamp <%lx>\n" 3078 " next_to_watch <%p>\n" 3079 " jiffies <%lx>\n" 3080 " desc.status <%x>\n", 3081 tx_ring->queue_index, 3082 rd32(IGC_TDH(tx_ring->reg_idx)), 3083 readl(tx_ring->tail), 3084 tx_ring->next_to_use, 3085 tx_ring->next_to_clean, 3086 tx_buffer->time_stamp, 3087 tx_buffer->next_to_watch, 3088 jiffies, 3089 tx_buffer->next_to_watch->wb.status); 3090 netif_stop_subqueue(tx_ring->netdev, 3091 tx_ring->queue_index); 3092 3093 /* we are about to reset, no point in enabling stuff */ 3094 return true; 3095 } 3096 } 3097 3098 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 3099 if (unlikely(total_packets && 3100 netif_carrier_ok(tx_ring->netdev) && 3101 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 3102 /* Make sure that anybody stopping the queue after this 3103 * sees the new next_to_clean. 3104 */ 3105 smp_mb(); 3106 if (__netif_subqueue_stopped(tx_ring->netdev, 3107 tx_ring->queue_index) && 3108 !(test_bit(__IGC_DOWN, &adapter->state))) { 3109 netif_wake_subqueue(tx_ring->netdev, 3110 tx_ring->queue_index); 3111 3112 u64_stats_update_begin(&tx_ring->tx_syncp); 3113 tx_ring->tx_stats.restart_queue++; 3114 u64_stats_update_end(&tx_ring->tx_syncp); 3115 } 3116 } 3117 3118 return !!budget; 3119 } 3120 3121 static int igc_find_mac_filter(struct igc_adapter *adapter, 3122 enum igc_mac_filter_type type, const u8 *addr) 3123 { 3124 struct igc_hw *hw = &adapter->hw; 3125 int max_entries = hw->mac.rar_entry_count; 3126 u32 ral, rah; 3127 int i; 3128 3129 for (i = 0; i < max_entries; i++) { 3130 ral = rd32(IGC_RAL(i)); 3131 rah = rd32(IGC_RAH(i)); 3132 3133 if (!(rah & IGC_RAH_AV)) 3134 continue; 3135 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 3136 continue; 3137 if ((rah & IGC_RAH_RAH_MASK) != 3138 le16_to_cpup((__le16 *)(addr + 4))) 3139 continue; 3140 if (ral != le32_to_cpup((__le32 *)(addr))) 3141 continue; 3142 3143 return i; 3144 } 3145 3146 return -1; 3147 } 3148 3149 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 3150 { 3151 struct igc_hw *hw = &adapter->hw; 3152 int max_entries = hw->mac.rar_entry_count; 3153 u32 rah; 3154 int i; 3155 3156 for (i = 0; i < max_entries; i++) { 3157 rah = rd32(IGC_RAH(i)); 3158 3159 if (!(rah & IGC_RAH_AV)) 3160 return i; 3161 } 3162 3163 return -1; 3164 } 3165 3166 /** 3167 * igc_add_mac_filter() - Add MAC address filter 3168 * @adapter: Pointer to adapter where the filter should be added 3169 * @type: MAC address filter type (source or destination) 3170 * @addr: MAC address 3171 * @queue: If non-negative, queue assignment feature is enabled and frames 3172 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3173 * assignment is disabled. 3174 * 3175 * Return: 0 in case of success, negative errno code otherwise. 3176 */ 3177 static int igc_add_mac_filter(struct igc_adapter *adapter, 3178 enum igc_mac_filter_type type, const u8 *addr, 3179 int queue) 3180 { 3181 struct net_device *dev = adapter->netdev; 3182 int index; 3183 3184 index = igc_find_mac_filter(adapter, type, addr); 3185 if (index >= 0) 3186 goto update_filter; 3187 3188 index = igc_get_avail_mac_filter_slot(adapter); 3189 if (index < 0) 3190 return -ENOSPC; 3191 3192 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 3193 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3194 addr, queue); 3195 3196 update_filter: 3197 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 3198 return 0; 3199 } 3200 3201 /** 3202 * igc_del_mac_filter() - Delete MAC address filter 3203 * @adapter: Pointer to adapter where the filter should be deleted from 3204 * @type: MAC address filter type (source or destination) 3205 * @addr: MAC address 3206 */ 3207 static void igc_del_mac_filter(struct igc_adapter *adapter, 3208 enum igc_mac_filter_type type, const u8 *addr) 3209 { 3210 struct net_device *dev = adapter->netdev; 3211 int index; 3212 3213 index = igc_find_mac_filter(adapter, type, addr); 3214 if (index < 0) 3215 return; 3216 3217 if (index == 0) { 3218 /* If this is the default filter, we don't actually delete it. 3219 * We just reset to its default value i.e. disable queue 3220 * assignment. 3221 */ 3222 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 3223 3224 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 3225 } else { 3226 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 3227 index, 3228 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3229 addr); 3230 3231 igc_clear_mac_filter_hw(adapter, index); 3232 } 3233 } 3234 3235 /** 3236 * igc_add_vlan_prio_filter() - Add VLAN priority filter 3237 * @adapter: Pointer to adapter where the filter should be added 3238 * @prio: VLAN priority value 3239 * @queue: Queue number which matching frames are assigned to 3240 * 3241 * Return: 0 in case of success, negative errno code otherwise. 3242 */ 3243 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 3244 int queue) 3245 { 3246 struct net_device *dev = adapter->netdev; 3247 struct igc_hw *hw = &adapter->hw; 3248 u32 vlanpqf; 3249 3250 vlanpqf = rd32(IGC_VLANPQF); 3251 3252 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 3253 netdev_dbg(dev, "VLAN priority filter already in use\n"); 3254 return -EEXIST; 3255 } 3256 3257 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 3258 vlanpqf |= IGC_VLANPQF_VALID(prio); 3259 3260 wr32(IGC_VLANPQF, vlanpqf); 3261 3262 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 3263 prio, queue); 3264 return 0; 3265 } 3266 3267 /** 3268 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 3269 * @adapter: Pointer to adapter where the filter should be deleted from 3270 * @prio: VLAN priority value 3271 */ 3272 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 3273 { 3274 struct igc_hw *hw = &adapter->hw; 3275 u32 vlanpqf; 3276 3277 vlanpqf = rd32(IGC_VLANPQF); 3278 3279 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3280 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3281 3282 wr32(IGC_VLANPQF, vlanpqf); 3283 3284 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3285 prio); 3286 } 3287 3288 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3289 { 3290 struct igc_hw *hw = &adapter->hw; 3291 int i; 3292 3293 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3294 u32 etqf = rd32(IGC_ETQF(i)); 3295 3296 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3297 return i; 3298 } 3299 3300 return -1; 3301 } 3302 3303 /** 3304 * igc_add_etype_filter() - Add ethertype filter 3305 * @adapter: Pointer to adapter where the filter should be added 3306 * @etype: Ethertype value 3307 * @queue: If non-negative, queue assignment feature is enabled and frames 3308 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3309 * assignment is disabled. 3310 * 3311 * Return: 0 in case of success, negative errno code otherwise. 3312 */ 3313 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3314 int queue) 3315 { 3316 struct igc_hw *hw = &adapter->hw; 3317 int index; 3318 u32 etqf; 3319 3320 index = igc_get_avail_etype_filter_slot(adapter); 3321 if (index < 0) 3322 return -ENOSPC; 3323 3324 etqf = rd32(IGC_ETQF(index)); 3325 3326 etqf &= ~IGC_ETQF_ETYPE_MASK; 3327 etqf |= etype; 3328 3329 if (queue >= 0) { 3330 etqf &= ~IGC_ETQF_QUEUE_MASK; 3331 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3332 etqf |= IGC_ETQF_QUEUE_ENABLE; 3333 } 3334 3335 etqf |= IGC_ETQF_FILTER_ENABLE; 3336 3337 wr32(IGC_ETQF(index), etqf); 3338 3339 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3340 etype, queue); 3341 return 0; 3342 } 3343 3344 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3345 { 3346 struct igc_hw *hw = &adapter->hw; 3347 int i; 3348 3349 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3350 u32 etqf = rd32(IGC_ETQF(i)); 3351 3352 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3353 return i; 3354 } 3355 3356 return -1; 3357 } 3358 3359 /** 3360 * igc_del_etype_filter() - Delete ethertype filter 3361 * @adapter: Pointer to adapter where the filter should be deleted from 3362 * @etype: Ethertype value 3363 */ 3364 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3365 { 3366 struct igc_hw *hw = &adapter->hw; 3367 int index; 3368 3369 index = igc_find_etype_filter(adapter, etype); 3370 if (index < 0) 3371 return; 3372 3373 wr32(IGC_ETQF(index), 0); 3374 3375 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3376 etype); 3377 } 3378 3379 static int igc_flex_filter_select(struct igc_adapter *adapter, 3380 struct igc_flex_filter *input, 3381 u32 *fhft) 3382 { 3383 struct igc_hw *hw = &adapter->hw; 3384 u8 fhft_index; 3385 u32 fhftsl; 3386 3387 if (input->index >= MAX_FLEX_FILTER) { 3388 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n"); 3389 return -EINVAL; 3390 } 3391 3392 /* Indirect table select register */ 3393 fhftsl = rd32(IGC_FHFTSL); 3394 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3395 switch (input->index) { 3396 case 0 ... 7: 3397 fhftsl |= 0x00; 3398 break; 3399 case 8 ... 15: 3400 fhftsl |= 0x01; 3401 break; 3402 case 16 ... 23: 3403 fhftsl |= 0x02; 3404 break; 3405 case 24 ... 31: 3406 fhftsl |= 0x03; 3407 break; 3408 } 3409 wr32(IGC_FHFTSL, fhftsl); 3410 3411 /* Normalize index down to host table register */ 3412 fhft_index = input->index % 8; 3413 3414 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3415 IGC_FHFT_EXT(fhft_index - 4); 3416 3417 return 0; 3418 } 3419 3420 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3421 struct igc_flex_filter *input) 3422 { 3423 struct device *dev = &adapter->pdev->dev; 3424 struct igc_hw *hw = &adapter->hw; 3425 u8 *data = input->data; 3426 u8 *mask = input->mask; 3427 u32 queuing; 3428 u32 fhft; 3429 u32 wufc; 3430 int ret; 3431 int i; 3432 3433 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3434 * out early to avoid surprises later. 3435 */ 3436 if (input->length % 8 != 0) { 3437 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n"); 3438 return -EINVAL; 3439 } 3440 3441 /* Select corresponding flex filter register and get base for host table. */ 3442 ret = igc_flex_filter_select(adapter, input, &fhft); 3443 if (ret) 3444 return ret; 3445 3446 /* When adding a filter globally disable flex filter feature. That is 3447 * recommended within the datasheet. 3448 */ 3449 wufc = rd32(IGC_WUFC); 3450 wufc &= ~IGC_WUFC_FLEX_HQ; 3451 wr32(IGC_WUFC, wufc); 3452 3453 /* Configure filter */ 3454 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3455 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK; 3456 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK; 3457 3458 if (input->immediate_irq) 3459 queuing |= IGC_FHFT_IMM_INT; 3460 3461 if (input->drop) 3462 queuing |= IGC_FHFT_DROP; 3463 3464 wr32(fhft + 0xFC, queuing); 3465 3466 /* Write data (128 byte) and mask (128 bit) */ 3467 for (i = 0; i < 16; ++i) { 3468 const size_t data_idx = i * 8; 3469 const size_t row_idx = i * 16; 3470 u32 dw0 = 3471 (data[data_idx + 0] << 0) | 3472 (data[data_idx + 1] << 8) | 3473 (data[data_idx + 2] << 16) | 3474 (data[data_idx + 3] << 24); 3475 u32 dw1 = 3476 (data[data_idx + 4] << 0) | 3477 (data[data_idx + 5] << 8) | 3478 (data[data_idx + 6] << 16) | 3479 (data[data_idx + 7] << 24); 3480 u32 tmp; 3481 3482 /* Write row: dw0, dw1 and mask */ 3483 wr32(fhft + row_idx, dw0); 3484 wr32(fhft + row_idx + 4, dw1); 3485 3486 /* mask is only valid for MASK(7, 0) */ 3487 tmp = rd32(fhft + row_idx + 8); 3488 tmp &= ~GENMASK(7, 0); 3489 tmp |= mask[i]; 3490 wr32(fhft + row_idx + 8, tmp); 3491 } 3492 3493 /* Enable filter. */ 3494 wufc |= IGC_WUFC_FLEX_HQ; 3495 if (input->index > 8) { 3496 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3497 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3498 3499 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3500 3501 wr32(IGC_WUFC_EXT, wufc_ext); 3502 } else { 3503 wufc |= (IGC_WUFC_FLX0 << input->index); 3504 } 3505 wr32(IGC_WUFC, wufc); 3506 3507 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n", 3508 input->index); 3509 3510 return 0; 3511 } 3512 3513 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3514 const void *src, unsigned int offset, 3515 size_t len, const void *mask) 3516 { 3517 int i; 3518 3519 /* data */ 3520 memcpy(&flex->data[offset], src, len); 3521 3522 /* mask */ 3523 for (i = 0; i < len; ++i) { 3524 const unsigned int idx = i + offset; 3525 const u8 *ptr = mask; 3526 3527 if (mask) { 3528 if (ptr[i] & 0xff) 3529 flex->mask[idx / 8] |= BIT(idx % 8); 3530 3531 continue; 3532 } 3533 3534 flex->mask[idx / 8] |= BIT(idx % 8); 3535 } 3536 } 3537 3538 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3539 { 3540 struct igc_hw *hw = &adapter->hw; 3541 u32 wufc, wufc_ext; 3542 int i; 3543 3544 wufc = rd32(IGC_WUFC); 3545 wufc_ext = rd32(IGC_WUFC_EXT); 3546 3547 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3548 if (i < 8) { 3549 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3550 return i; 3551 } else { 3552 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3553 return i; 3554 } 3555 } 3556 3557 return -ENOSPC; 3558 } 3559 3560 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3561 { 3562 struct igc_hw *hw = &adapter->hw; 3563 u32 wufc, wufc_ext; 3564 3565 wufc = rd32(IGC_WUFC); 3566 wufc_ext = rd32(IGC_WUFC_EXT); 3567 3568 if (wufc & IGC_WUFC_FILTER_MASK) 3569 return true; 3570 3571 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3572 return true; 3573 3574 return false; 3575 } 3576 3577 static int igc_add_flex_filter(struct igc_adapter *adapter, 3578 struct igc_nfc_rule *rule) 3579 { 3580 struct igc_flex_filter flex = { }; 3581 struct igc_nfc_filter *filter = &rule->filter; 3582 unsigned int eth_offset, user_offset; 3583 int ret, index; 3584 bool vlan; 3585 3586 index = igc_find_avail_flex_filter_slot(adapter); 3587 if (index < 0) 3588 return -ENOSPC; 3589 3590 /* Construct the flex filter: 3591 * -> dest_mac [6] 3592 * -> src_mac [6] 3593 * -> tpid [2] 3594 * -> vlan tci [2] 3595 * -> ether type [2] 3596 * -> user data [8] 3597 * -> = 26 bytes => 32 length 3598 */ 3599 flex.index = index; 3600 flex.length = 32; 3601 flex.rx_queue = rule->action; 3602 3603 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3604 eth_offset = vlan ? 16 : 12; 3605 user_offset = vlan ? 18 : 14; 3606 3607 /* Add destination MAC */ 3608 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3609 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3610 ETH_ALEN, NULL); 3611 3612 /* Add source MAC */ 3613 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3614 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3615 ETH_ALEN, NULL); 3616 3617 /* Add VLAN etype */ 3618 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) 3619 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12, 3620 sizeof(filter->vlan_etype), 3621 NULL); 3622 3623 /* Add VLAN TCI */ 3624 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3625 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3626 sizeof(filter->vlan_tci), NULL); 3627 3628 /* Add Ether type */ 3629 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3630 __be16 etype = cpu_to_be16(filter->etype); 3631 3632 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3633 sizeof(etype), NULL); 3634 } 3635 3636 /* Add user data */ 3637 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3638 igc_flex_filter_add_field(&flex, &filter->user_data, 3639 user_offset, 3640 sizeof(filter->user_data), 3641 filter->user_mask); 3642 3643 /* Add it down to the hardware and enable it. */ 3644 ret = igc_write_flex_filter_ll(adapter, &flex); 3645 if (ret) 3646 return ret; 3647 3648 filter->flex_index = index; 3649 3650 return 0; 3651 } 3652 3653 static void igc_del_flex_filter(struct igc_adapter *adapter, 3654 u16 reg_index) 3655 { 3656 struct igc_hw *hw = &adapter->hw; 3657 u32 wufc; 3658 3659 /* Just disable the filter. The filter table itself is kept 3660 * intact. Another flex_filter_add() should override the "old" data 3661 * then. 3662 */ 3663 if (reg_index > 8) { 3664 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3665 3666 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3667 wr32(IGC_WUFC_EXT, wufc_ext); 3668 } else { 3669 wufc = rd32(IGC_WUFC); 3670 3671 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3672 wr32(IGC_WUFC, wufc); 3673 } 3674 3675 if (igc_flex_filter_in_use(adapter)) 3676 return; 3677 3678 /* No filters are in use, we may disable flex filters */ 3679 wufc = rd32(IGC_WUFC); 3680 wufc &= ~IGC_WUFC_FLEX_HQ; 3681 wr32(IGC_WUFC, wufc); 3682 } 3683 3684 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3685 struct igc_nfc_rule *rule) 3686 { 3687 int err; 3688 3689 if (rule->flex) { 3690 return igc_add_flex_filter(adapter, rule); 3691 } 3692 3693 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3694 err = igc_add_etype_filter(adapter, rule->filter.etype, 3695 rule->action); 3696 if (err) 3697 return err; 3698 } 3699 3700 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3701 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3702 rule->filter.src_addr, rule->action); 3703 if (err) 3704 return err; 3705 } 3706 3707 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3708 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3709 rule->filter.dst_addr, rule->action); 3710 if (err) 3711 return err; 3712 } 3713 3714 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3715 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3716 VLAN_PRIO_SHIFT; 3717 3718 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3719 if (err) 3720 return err; 3721 } 3722 3723 return 0; 3724 } 3725 3726 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3727 const struct igc_nfc_rule *rule) 3728 { 3729 if (rule->flex) { 3730 igc_del_flex_filter(adapter, rule->filter.flex_index); 3731 return; 3732 } 3733 3734 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3735 igc_del_etype_filter(adapter, rule->filter.etype); 3736 3737 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3738 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3739 VLAN_PRIO_SHIFT; 3740 3741 igc_del_vlan_prio_filter(adapter, prio); 3742 } 3743 3744 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3745 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3746 rule->filter.src_addr); 3747 3748 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3749 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3750 rule->filter.dst_addr); 3751 } 3752 3753 /** 3754 * igc_get_nfc_rule() - Get NFC rule 3755 * @adapter: Pointer to adapter 3756 * @location: Rule location 3757 * 3758 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3759 * 3760 * Return: Pointer to NFC rule at @location. If not found, NULL. 3761 */ 3762 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3763 u32 location) 3764 { 3765 struct igc_nfc_rule *rule; 3766 3767 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3768 if (rule->location == location) 3769 return rule; 3770 if (rule->location > location) 3771 break; 3772 } 3773 3774 return NULL; 3775 } 3776 3777 /** 3778 * igc_del_nfc_rule() - Delete NFC rule 3779 * @adapter: Pointer to adapter 3780 * @rule: Pointer to rule to be deleted 3781 * 3782 * Disable NFC rule in hardware and delete it from adapter. 3783 * 3784 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3785 */ 3786 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3787 { 3788 igc_disable_nfc_rule(adapter, rule); 3789 3790 list_del(&rule->list); 3791 adapter->nfc_rule_count--; 3792 3793 kfree(rule); 3794 } 3795 3796 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3797 { 3798 struct igc_nfc_rule *rule, *tmp; 3799 3800 mutex_lock(&adapter->nfc_rule_lock); 3801 3802 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3803 igc_del_nfc_rule(adapter, rule); 3804 3805 mutex_unlock(&adapter->nfc_rule_lock); 3806 } 3807 3808 /** 3809 * igc_add_nfc_rule() - Add NFC rule 3810 * @adapter: Pointer to adapter 3811 * @rule: Pointer to rule to be added 3812 * 3813 * Enable NFC rule in hardware and add it to adapter. 3814 * 3815 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3816 * 3817 * Return: 0 on success, negative errno on failure. 3818 */ 3819 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3820 { 3821 struct igc_nfc_rule *pred, *cur; 3822 int err; 3823 3824 err = igc_enable_nfc_rule(adapter, rule); 3825 if (err) 3826 return err; 3827 3828 pred = NULL; 3829 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3830 if (cur->location >= rule->location) 3831 break; 3832 pred = cur; 3833 } 3834 3835 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3836 adapter->nfc_rule_count++; 3837 return 0; 3838 } 3839 3840 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3841 { 3842 struct igc_nfc_rule *rule; 3843 3844 mutex_lock(&adapter->nfc_rule_lock); 3845 3846 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3847 igc_enable_nfc_rule(adapter, rule); 3848 3849 mutex_unlock(&adapter->nfc_rule_lock); 3850 } 3851 3852 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3853 { 3854 struct igc_adapter *adapter = netdev_priv(netdev); 3855 3856 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3857 } 3858 3859 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3860 { 3861 struct igc_adapter *adapter = netdev_priv(netdev); 3862 3863 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3864 return 0; 3865 } 3866 3867 /** 3868 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3869 * @netdev: network interface device structure 3870 * 3871 * The set_rx_mode entry point is called whenever the unicast or multicast 3872 * address lists or the network interface flags are updated. This routine is 3873 * responsible for configuring the hardware for proper unicast, multicast, 3874 * promiscuous mode, and all-multi behavior. 3875 */ 3876 static void igc_set_rx_mode(struct net_device *netdev) 3877 { 3878 struct igc_adapter *adapter = netdev_priv(netdev); 3879 struct igc_hw *hw = &adapter->hw; 3880 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3881 int count; 3882 3883 /* Check for Promiscuous and All Multicast modes */ 3884 if (netdev->flags & IFF_PROMISC) { 3885 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3886 } else { 3887 if (netdev->flags & IFF_ALLMULTI) { 3888 rctl |= IGC_RCTL_MPE; 3889 } else { 3890 /* Write addresses to the MTA, if the attempt fails 3891 * then we should just turn on promiscuous mode so 3892 * that we can at least receive multicast traffic 3893 */ 3894 count = igc_write_mc_addr_list(netdev); 3895 if (count < 0) 3896 rctl |= IGC_RCTL_MPE; 3897 } 3898 } 3899 3900 /* Write addresses to available RAR registers, if there is not 3901 * sufficient space to store all the addresses then enable 3902 * unicast promiscuous mode 3903 */ 3904 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3905 rctl |= IGC_RCTL_UPE; 3906 3907 /* update state of unicast and multicast */ 3908 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 3909 wr32(IGC_RCTL, rctl); 3910 3911 #if (PAGE_SIZE < 8192) 3912 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 3913 rlpml = IGC_MAX_FRAME_BUILD_SKB; 3914 #endif 3915 wr32(IGC_RLPML, rlpml); 3916 } 3917 3918 /** 3919 * igc_configure - configure the hardware for RX and TX 3920 * @adapter: private board structure 3921 */ 3922 static void igc_configure(struct igc_adapter *adapter) 3923 { 3924 struct net_device *netdev = adapter->netdev; 3925 int i = 0; 3926 3927 igc_get_hw_control(adapter); 3928 igc_set_rx_mode(netdev); 3929 3930 igc_restore_vlan(adapter); 3931 3932 igc_setup_tctl(adapter); 3933 igc_setup_mrqc(adapter); 3934 igc_setup_rctl(adapter); 3935 3936 igc_set_default_mac_filter(adapter); 3937 igc_restore_nfc_rules(adapter); 3938 3939 igc_configure_tx(adapter); 3940 igc_configure_rx(adapter); 3941 3942 igc_rx_fifo_flush_base(&adapter->hw); 3943 3944 /* call igc_desc_unused which always leaves 3945 * at least 1 descriptor unused to make sure 3946 * next_to_use != next_to_clean 3947 */ 3948 for (i = 0; i < adapter->num_rx_queues; i++) { 3949 struct igc_ring *ring = adapter->rx_ring[i]; 3950 3951 if (ring->xsk_pool) 3952 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 3953 else 3954 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 3955 } 3956 } 3957 3958 /** 3959 * igc_write_ivar - configure ivar for given MSI-X vector 3960 * @hw: pointer to the HW structure 3961 * @msix_vector: vector number we are allocating to a given ring 3962 * @index: row index of IVAR register to write within IVAR table 3963 * @offset: column offset of in IVAR, should be multiple of 8 3964 * 3965 * The IVAR table consists of 2 columns, 3966 * each containing an cause allocation for an Rx and Tx ring, and a 3967 * variable number of rows depending on the number of queues supported. 3968 */ 3969 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 3970 int index, int offset) 3971 { 3972 u32 ivar = array_rd32(IGC_IVAR0, index); 3973 3974 /* clear any bits that are currently set */ 3975 ivar &= ~((u32)0xFF << offset); 3976 3977 /* write vector and valid bit */ 3978 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 3979 3980 array_wr32(IGC_IVAR0, index, ivar); 3981 } 3982 3983 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 3984 { 3985 struct igc_adapter *adapter = q_vector->adapter; 3986 struct igc_hw *hw = &adapter->hw; 3987 int rx_queue = IGC_N0_QUEUE; 3988 int tx_queue = IGC_N0_QUEUE; 3989 3990 if (q_vector->rx.ring) 3991 rx_queue = q_vector->rx.ring->reg_idx; 3992 if (q_vector->tx.ring) 3993 tx_queue = q_vector->tx.ring->reg_idx; 3994 3995 switch (hw->mac.type) { 3996 case igc_i225: 3997 if (rx_queue > IGC_N0_QUEUE) 3998 igc_write_ivar(hw, msix_vector, 3999 rx_queue >> 1, 4000 (rx_queue & 0x1) << 4); 4001 if (tx_queue > IGC_N0_QUEUE) 4002 igc_write_ivar(hw, msix_vector, 4003 tx_queue >> 1, 4004 ((tx_queue & 0x1) << 4) + 8); 4005 q_vector->eims_value = BIT(msix_vector); 4006 break; 4007 default: 4008 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 4009 break; 4010 } 4011 4012 /* add q_vector eims value to global eims_enable_mask */ 4013 adapter->eims_enable_mask |= q_vector->eims_value; 4014 4015 /* configure q_vector to set itr on first interrupt */ 4016 q_vector->set_itr = 1; 4017 } 4018 4019 /** 4020 * igc_configure_msix - Configure MSI-X hardware 4021 * @adapter: Pointer to adapter structure 4022 * 4023 * igc_configure_msix sets up the hardware to properly 4024 * generate MSI-X interrupts. 4025 */ 4026 static void igc_configure_msix(struct igc_adapter *adapter) 4027 { 4028 struct igc_hw *hw = &adapter->hw; 4029 int i, vector = 0; 4030 u32 tmp; 4031 4032 adapter->eims_enable_mask = 0; 4033 4034 /* set vector for other causes, i.e. link changes */ 4035 switch (hw->mac.type) { 4036 case igc_i225: 4037 /* Turn on MSI-X capability first, or our settings 4038 * won't stick. And it will take days to debug. 4039 */ 4040 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 4041 IGC_GPIE_PBA | IGC_GPIE_EIAME | 4042 IGC_GPIE_NSICR); 4043 4044 /* enable msix_other interrupt */ 4045 adapter->eims_other = BIT(vector); 4046 tmp = (vector++ | IGC_IVAR_VALID) << 8; 4047 4048 wr32(IGC_IVAR_MISC, tmp); 4049 break; 4050 default: 4051 /* do nothing, since nothing else supports MSI-X */ 4052 break; 4053 } /* switch (hw->mac.type) */ 4054 4055 adapter->eims_enable_mask |= adapter->eims_other; 4056 4057 for (i = 0; i < adapter->num_q_vectors; i++) 4058 igc_assign_vector(adapter->q_vector[i], vector++); 4059 4060 wrfl(); 4061 } 4062 4063 /** 4064 * igc_irq_enable - Enable default interrupt generation settings 4065 * @adapter: board private structure 4066 */ 4067 static void igc_irq_enable(struct igc_adapter *adapter) 4068 { 4069 struct igc_hw *hw = &adapter->hw; 4070 4071 if (adapter->msix_entries) { 4072 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 4073 u32 regval = rd32(IGC_EIAC); 4074 4075 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 4076 regval = rd32(IGC_EIAM); 4077 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 4078 wr32(IGC_EIMS, adapter->eims_enable_mask); 4079 wr32(IGC_IMS, ims); 4080 } else { 4081 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 4082 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 4083 } 4084 } 4085 4086 /** 4087 * igc_irq_disable - Mask off interrupt generation on the NIC 4088 * @adapter: board private structure 4089 */ 4090 static void igc_irq_disable(struct igc_adapter *adapter) 4091 { 4092 struct igc_hw *hw = &adapter->hw; 4093 4094 if (adapter->msix_entries) { 4095 u32 regval = rd32(IGC_EIAM); 4096 4097 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 4098 wr32(IGC_EIMC, adapter->eims_enable_mask); 4099 regval = rd32(IGC_EIAC); 4100 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 4101 } 4102 4103 wr32(IGC_IAM, 0); 4104 wr32(IGC_IMC, ~0); 4105 wrfl(); 4106 4107 if (adapter->msix_entries) { 4108 int vector = 0, i; 4109 4110 synchronize_irq(adapter->msix_entries[vector++].vector); 4111 4112 for (i = 0; i < adapter->num_q_vectors; i++) 4113 synchronize_irq(adapter->msix_entries[vector++].vector); 4114 } else { 4115 synchronize_irq(adapter->pdev->irq); 4116 } 4117 } 4118 4119 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 4120 const u32 max_rss_queues) 4121 { 4122 /* Determine if we need to pair queues. */ 4123 /* If rss_queues > half of max_rss_queues, pair the queues in 4124 * order to conserve interrupts due to limited supply. 4125 */ 4126 if (adapter->rss_queues > (max_rss_queues / 2)) 4127 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4128 else 4129 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4130 } 4131 4132 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4133 { 4134 return IGC_MAX_RX_QUEUES; 4135 } 4136 4137 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4138 { 4139 u32 max_rss_queues; 4140 4141 max_rss_queues = igc_get_max_rss_queues(adapter); 4142 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4143 4144 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4145 } 4146 4147 /** 4148 * igc_reset_q_vector - Reset config for interrupt vector 4149 * @adapter: board private structure to initialize 4150 * @v_idx: Index of vector to be reset 4151 * 4152 * If NAPI is enabled it will delete any references to the 4153 * NAPI struct. This is preparation for igc_free_q_vector. 4154 */ 4155 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 4156 { 4157 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4158 4159 /* if we're coming from igc_set_interrupt_capability, the vectors are 4160 * not yet allocated 4161 */ 4162 if (!q_vector) 4163 return; 4164 4165 if (q_vector->tx.ring) 4166 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 4167 4168 if (q_vector->rx.ring) 4169 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 4170 4171 netif_napi_del(&q_vector->napi); 4172 } 4173 4174 /** 4175 * igc_free_q_vector - Free memory allocated for specific interrupt vector 4176 * @adapter: board private structure to initialize 4177 * @v_idx: Index of vector to be freed 4178 * 4179 * This function frees the memory allocated to the q_vector. 4180 */ 4181 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 4182 { 4183 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4184 4185 adapter->q_vector[v_idx] = NULL; 4186 4187 /* igc_get_stats64() might access the rings on this vector, 4188 * we must wait a grace period before freeing it. 4189 */ 4190 if (q_vector) 4191 kfree_rcu(q_vector, rcu); 4192 } 4193 4194 /** 4195 * igc_free_q_vectors - Free memory allocated for interrupt vectors 4196 * @adapter: board private structure to initialize 4197 * 4198 * This function frees the memory allocated to the q_vectors. In addition if 4199 * NAPI is enabled it will delete any references to the NAPI struct prior 4200 * to freeing the q_vector. 4201 */ 4202 static void igc_free_q_vectors(struct igc_adapter *adapter) 4203 { 4204 int v_idx = adapter->num_q_vectors; 4205 4206 adapter->num_tx_queues = 0; 4207 adapter->num_rx_queues = 0; 4208 adapter->num_q_vectors = 0; 4209 4210 while (v_idx--) { 4211 igc_reset_q_vector(adapter, v_idx); 4212 igc_free_q_vector(adapter, v_idx); 4213 } 4214 } 4215 4216 /** 4217 * igc_update_itr - update the dynamic ITR value based on statistics 4218 * @q_vector: pointer to q_vector 4219 * @ring_container: ring info to update the itr for 4220 * 4221 * Stores a new ITR value based on packets and byte 4222 * counts during the last interrupt. The advantage of per interrupt 4223 * computation is faster updates and more accurate ITR for the current 4224 * traffic pattern. Constants in this function were computed 4225 * based on theoretical maximum wire speed and thresholds were set based 4226 * on testing data as well as attempting to minimize response time 4227 * while increasing bulk throughput. 4228 * NOTE: These calculations are only valid when operating in a single- 4229 * queue environment. 4230 */ 4231 static void igc_update_itr(struct igc_q_vector *q_vector, 4232 struct igc_ring_container *ring_container) 4233 { 4234 unsigned int packets = ring_container->total_packets; 4235 unsigned int bytes = ring_container->total_bytes; 4236 u8 itrval = ring_container->itr; 4237 4238 /* no packets, exit with status unchanged */ 4239 if (packets == 0) 4240 return; 4241 4242 switch (itrval) { 4243 case lowest_latency: 4244 /* handle TSO and jumbo frames */ 4245 if (bytes / packets > 8000) 4246 itrval = bulk_latency; 4247 else if ((packets < 5) && (bytes > 512)) 4248 itrval = low_latency; 4249 break; 4250 case low_latency: /* 50 usec aka 20000 ints/s */ 4251 if (bytes > 10000) { 4252 /* this if handles the TSO accounting */ 4253 if (bytes / packets > 8000) 4254 itrval = bulk_latency; 4255 else if ((packets < 10) || ((bytes / packets) > 1200)) 4256 itrval = bulk_latency; 4257 else if ((packets > 35)) 4258 itrval = lowest_latency; 4259 } else if (bytes / packets > 2000) { 4260 itrval = bulk_latency; 4261 } else if (packets <= 2 && bytes < 512) { 4262 itrval = lowest_latency; 4263 } 4264 break; 4265 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4266 if (bytes > 25000) { 4267 if (packets > 35) 4268 itrval = low_latency; 4269 } else if (bytes < 1500) { 4270 itrval = low_latency; 4271 } 4272 break; 4273 } 4274 4275 /* clear work counters since we have the values we need */ 4276 ring_container->total_bytes = 0; 4277 ring_container->total_packets = 0; 4278 4279 /* write updated itr to ring container */ 4280 ring_container->itr = itrval; 4281 } 4282 4283 static void igc_set_itr(struct igc_q_vector *q_vector) 4284 { 4285 struct igc_adapter *adapter = q_vector->adapter; 4286 u32 new_itr = q_vector->itr_val; 4287 u8 current_itr = 0; 4288 4289 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4290 switch (adapter->link_speed) { 4291 case SPEED_10: 4292 case SPEED_100: 4293 current_itr = 0; 4294 new_itr = IGC_4K_ITR; 4295 goto set_itr_now; 4296 default: 4297 break; 4298 } 4299 4300 igc_update_itr(q_vector, &q_vector->tx); 4301 igc_update_itr(q_vector, &q_vector->rx); 4302 4303 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4304 4305 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4306 if (current_itr == lowest_latency && 4307 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4308 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4309 current_itr = low_latency; 4310 4311 switch (current_itr) { 4312 /* counts and packets in update_itr are dependent on these numbers */ 4313 case lowest_latency: 4314 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4315 break; 4316 case low_latency: 4317 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4318 break; 4319 case bulk_latency: 4320 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4321 break; 4322 default: 4323 break; 4324 } 4325 4326 set_itr_now: 4327 if (new_itr != q_vector->itr_val) { 4328 /* this attempts to bias the interrupt rate towards Bulk 4329 * by adding intermediate steps when interrupt rate is 4330 * increasing 4331 */ 4332 new_itr = new_itr > q_vector->itr_val ? 4333 max((new_itr * q_vector->itr_val) / 4334 (new_itr + (q_vector->itr_val >> 2)), 4335 new_itr) : new_itr; 4336 /* Don't write the value here; it resets the adapter's 4337 * internal timer, and causes us to delay far longer than 4338 * we should between interrupts. Instead, we write the ITR 4339 * value at the beginning of the next interrupt so the timing 4340 * ends up being correct. 4341 */ 4342 q_vector->itr_val = new_itr; 4343 q_vector->set_itr = 1; 4344 } 4345 } 4346 4347 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4348 { 4349 int v_idx = adapter->num_q_vectors; 4350 4351 if (adapter->msix_entries) { 4352 pci_disable_msix(adapter->pdev); 4353 kfree(adapter->msix_entries); 4354 adapter->msix_entries = NULL; 4355 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4356 pci_disable_msi(adapter->pdev); 4357 } 4358 4359 while (v_idx--) 4360 igc_reset_q_vector(adapter, v_idx); 4361 } 4362 4363 /** 4364 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4365 * @adapter: Pointer to adapter structure 4366 * @msix: boolean value for MSI-X capability 4367 * 4368 * Attempt to configure interrupts using the best available 4369 * capabilities of the hardware and kernel. 4370 */ 4371 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4372 bool msix) 4373 { 4374 int numvecs, i; 4375 int err; 4376 4377 if (!msix) 4378 goto msi_only; 4379 adapter->flags |= IGC_FLAG_HAS_MSIX; 4380 4381 /* Number of supported queues. */ 4382 adapter->num_rx_queues = adapter->rss_queues; 4383 4384 adapter->num_tx_queues = adapter->rss_queues; 4385 4386 /* start with one vector for every Rx queue */ 4387 numvecs = adapter->num_rx_queues; 4388 4389 /* if Tx handler is separate add 1 for every Tx queue */ 4390 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4391 numvecs += adapter->num_tx_queues; 4392 4393 /* store the number of vectors reserved for queues */ 4394 adapter->num_q_vectors = numvecs; 4395 4396 /* add 1 vector for link status interrupts */ 4397 numvecs++; 4398 4399 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4400 GFP_KERNEL); 4401 4402 if (!adapter->msix_entries) 4403 return; 4404 4405 /* populate entry values */ 4406 for (i = 0; i < numvecs; i++) 4407 adapter->msix_entries[i].entry = i; 4408 4409 err = pci_enable_msix_range(adapter->pdev, 4410 adapter->msix_entries, 4411 numvecs, 4412 numvecs); 4413 if (err > 0) 4414 return; 4415 4416 kfree(adapter->msix_entries); 4417 adapter->msix_entries = NULL; 4418 4419 igc_reset_interrupt_capability(adapter); 4420 4421 msi_only: 4422 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4423 4424 adapter->rss_queues = 1; 4425 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4426 adapter->num_rx_queues = 1; 4427 adapter->num_tx_queues = 1; 4428 adapter->num_q_vectors = 1; 4429 if (!pci_enable_msi(adapter->pdev)) 4430 adapter->flags |= IGC_FLAG_HAS_MSI; 4431 } 4432 4433 /** 4434 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4435 * @q_vector: pointer to q_vector 4436 * 4437 * Stores a new ITR value based on strictly on packet size. This 4438 * algorithm is less sophisticated than that used in igc_update_itr, 4439 * due to the difficulty of synchronizing statistics across multiple 4440 * receive rings. The divisors and thresholds used by this function 4441 * were determined based on theoretical maximum wire speed and testing 4442 * data, in order to minimize response time while increasing bulk 4443 * throughput. 4444 * NOTE: This function is called only when operating in a multiqueue 4445 * receive environment. 4446 */ 4447 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4448 { 4449 struct igc_adapter *adapter = q_vector->adapter; 4450 int new_val = q_vector->itr_val; 4451 int avg_wire_size = 0; 4452 unsigned int packets; 4453 4454 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4455 * ints/sec - ITR timer value of 120 ticks. 4456 */ 4457 switch (adapter->link_speed) { 4458 case SPEED_10: 4459 case SPEED_100: 4460 new_val = IGC_4K_ITR; 4461 goto set_itr_val; 4462 default: 4463 break; 4464 } 4465 4466 packets = q_vector->rx.total_packets; 4467 if (packets) 4468 avg_wire_size = q_vector->rx.total_bytes / packets; 4469 4470 packets = q_vector->tx.total_packets; 4471 if (packets) 4472 avg_wire_size = max_t(u32, avg_wire_size, 4473 q_vector->tx.total_bytes / packets); 4474 4475 /* if avg_wire_size isn't set no work was done */ 4476 if (!avg_wire_size) 4477 goto clear_counts; 4478 4479 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4480 avg_wire_size += 24; 4481 4482 /* Don't starve jumbo frames */ 4483 avg_wire_size = min(avg_wire_size, 3000); 4484 4485 /* Give a little boost to mid-size frames */ 4486 if (avg_wire_size > 300 && avg_wire_size < 1200) 4487 new_val = avg_wire_size / 3; 4488 else 4489 new_val = avg_wire_size / 2; 4490 4491 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4492 if (new_val < IGC_20K_ITR && 4493 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4494 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4495 new_val = IGC_20K_ITR; 4496 4497 set_itr_val: 4498 if (new_val != q_vector->itr_val) { 4499 q_vector->itr_val = new_val; 4500 q_vector->set_itr = 1; 4501 } 4502 clear_counts: 4503 q_vector->rx.total_bytes = 0; 4504 q_vector->rx.total_packets = 0; 4505 q_vector->tx.total_bytes = 0; 4506 q_vector->tx.total_packets = 0; 4507 } 4508 4509 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4510 { 4511 struct igc_adapter *adapter = q_vector->adapter; 4512 struct igc_hw *hw = &adapter->hw; 4513 4514 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4515 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4516 if (adapter->num_q_vectors == 1) 4517 igc_set_itr(q_vector); 4518 else 4519 igc_update_ring_itr(q_vector); 4520 } 4521 4522 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4523 if (adapter->msix_entries) 4524 wr32(IGC_EIMS, q_vector->eims_value); 4525 else 4526 igc_irq_enable(adapter); 4527 } 4528 } 4529 4530 static void igc_add_ring(struct igc_ring *ring, 4531 struct igc_ring_container *head) 4532 { 4533 head->ring = ring; 4534 head->count++; 4535 } 4536 4537 /** 4538 * igc_cache_ring_register - Descriptor ring to register mapping 4539 * @adapter: board private structure to initialize 4540 * 4541 * Once we know the feature-set enabled for the device, we'll cache 4542 * the register offset the descriptor ring is assigned to. 4543 */ 4544 static void igc_cache_ring_register(struct igc_adapter *adapter) 4545 { 4546 int i = 0, j = 0; 4547 4548 switch (adapter->hw.mac.type) { 4549 case igc_i225: 4550 default: 4551 for (; i < adapter->num_rx_queues; i++) 4552 adapter->rx_ring[i]->reg_idx = i; 4553 for (; j < adapter->num_tx_queues; j++) 4554 adapter->tx_ring[j]->reg_idx = j; 4555 break; 4556 } 4557 } 4558 4559 /** 4560 * igc_poll - NAPI Rx polling callback 4561 * @napi: napi polling structure 4562 * @budget: count of how many packets we should handle 4563 */ 4564 static int igc_poll(struct napi_struct *napi, int budget) 4565 { 4566 struct igc_q_vector *q_vector = container_of(napi, 4567 struct igc_q_vector, 4568 napi); 4569 struct igc_ring *rx_ring = q_vector->rx.ring; 4570 bool clean_complete = true; 4571 int work_done = 0; 4572 4573 if (q_vector->tx.ring) 4574 clean_complete = igc_clean_tx_irq(q_vector, budget); 4575 4576 if (rx_ring) { 4577 int cleaned = rx_ring->xsk_pool ? 4578 igc_clean_rx_irq_zc(q_vector, budget) : 4579 igc_clean_rx_irq(q_vector, budget); 4580 4581 work_done += cleaned; 4582 if (cleaned >= budget) 4583 clean_complete = false; 4584 } 4585 4586 /* If all work not completed, return budget and keep polling */ 4587 if (!clean_complete) 4588 return budget; 4589 4590 /* Exit the polling mode, but don't re-enable interrupts if stack might 4591 * poll us due to busy-polling 4592 */ 4593 if (likely(napi_complete_done(napi, work_done))) 4594 igc_ring_irq_enable(q_vector); 4595 4596 return min(work_done, budget - 1); 4597 } 4598 4599 /** 4600 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4601 * @adapter: board private structure to initialize 4602 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4603 * @v_idx: index of vector in adapter struct 4604 * @txr_count: total number of Tx rings to allocate 4605 * @txr_idx: index of first Tx ring to allocate 4606 * @rxr_count: total number of Rx rings to allocate 4607 * @rxr_idx: index of first Rx ring to allocate 4608 * 4609 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4610 */ 4611 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4612 unsigned int v_count, unsigned int v_idx, 4613 unsigned int txr_count, unsigned int txr_idx, 4614 unsigned int rxr_count, unsigned int rxr_idx) 4615 { 4616 struct igc_q_vector *q_vector; 4617 struct igc_ring *ring; 4618 int ring_count; 4619 4620 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4621 if (txr_count > 1 || rxr_count > 1) 4622 return -ENOMEM; 4623 4624 ring_count = txr_count + rxr_count; 4625 4626 /* allocate q_vector and rings */ 4627 q_vector = adapter->q_vector[v_idx]; 4628 if (!q_vector) 4629 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4630 GFP_KERNEL); 4631 else 4632 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4633 if (!q_vector) 4634 return -ENOMEM; 4635 4636 /* initialize NAPI */ 4637 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); 4638 4639 /* tie q_vector and adapter together */ 4640 adapter->q_vector[v_idx] = q_vector; 4641 q_vector->adapter = adapter; 4642 4643 /* initialize work limits */ 4644 q_vector->tx.work_limit = adapter->tx_work_limit; 4645 4646 /* initialize ITR configuration */ 4647 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4648 q_vector->itr_val = IGC_START_ITR; 4649 4650 /* initialize pointer to rings */ 4651 ring = q_vector->ring; 4652 4653 /* initialize ITR */ 4654 if (rxr_count) { 4655 /* rx or rx/tx vector */ 4656 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4657 q_vector->itr_val = adapter->rx_itr_setting; 4658 } else { 4659 /* tx only vector */ 4660 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4661 q_vector->itr_val = adapter->tx_itr_setting; 4662 } 4663 4664 if (txr_count) { 4665 /* assign generic ring traits */ 4666 ring->dev = &adapter->pdev->dev; 4667 ring->netdev = adapter->netdev; 4668 4669 /* configure backlink on ring */ 4670 ring->q_vector = q_vector; 4671 4672 /* update q_vector Tx values */ 4673 igc_add_ring(ring, &q_vector->tx); 4674 4675 /* apply Tx specific ring traits */ 4676 ring->count = adapter->tx_ring_count; 4677 ring->queue_index = txr_idx; 4678 4679 /* assign ring to adapter */ 4680 adapter->tx_ring[txr_idx] = ring; 4681 4682 /* push pointer to next ring */ 4683 ring++; 4684 } 4685 4686 if (rxr_count) { 4687 /* assign generic ring traits */ 4688 ring->dev = &adapter->pdev->dev; 4689 ring->netdev = adapter->netdev; 4690 4691 /* configure backlink on ring */ 4692 ring->q_vector = q_vector; 4693 4694 /* update q_vector Rx values */ 4695 igc_add_ring(ring, &q_vector->rx); 4696 4697 /* apply Rx specific ring traits */ 4698 ring->count = adapter->rx_ring_count; 4699 ring->queue_index = rxr_idx; 4700 4701 /* assign ring to adapter */ 4702 adapter->rx_ring[rxr_idx] = ring; 4703 } 4704 4705 return 0; 4706 } 4707 4708 /** 4709 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4710 * @adapter: board private structure to initialize 4711 * 4712 * We allocate one q_vector per queue interrupt. If allocation fails we 4713 * return -ENOMEM. 4714 */ 4715 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4716 { 4717 int rxr_remaining = adapter->num_rx_queues; 4718 int txr_remaining = adapter->num_tx_queues; 4719 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4720 int q_vectors = adapter->num_q_vectors; 4721 int err; 4722 4723 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4724 for (; rxr_remaining; v_idx++) { 4725 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4726 0, 0, 1, rxr_idx); 4727 4728 if (err) 4729 goto err_out; 4730 4731 /* update counts and index */ 4732 rxr_remaining--; 4733 rxr_idx++; 4734 } 4735 } 4736 4737 for (; v_idx < q_vectors; v_idx++) { 4738 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4739 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4740 4741 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4742 tqpv, txr_idx, rqpv, rxr_idx); 4743 4744 if (err) 4745 goto err_out; 4746 4747 /* update counts and index */ 4748 rxr_remaining -= rqpv; 4749 txr_remaining -= tqpv; 4750 rxr_idx++; 4751 txr_idx++; 4752 } 4753 4754 return 0; 4755 4756 err_out: 4757 adapter->num_tx_queues = 0; 4758 adapter->num_rx_queues = 0; 4759 adapter->num_q_vectors = 0; 4760 4761 while (v_idx--) 4762 igc_free_q_vector(adapter, v_idx); 4763 4764 return -ENOMEM; 4765 } 4766 4767 /** 4768 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4769 * @adapter: Pointer to adapter structure 4770 * @msix: boolean for MSI-X capability 4771 * 4772 * This function initializes the interrupts and allocates all of the queues. 4773 */ 4774 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4775 { 4776 struct net_device *dev = adapter->netdev; 4777 int err = 0; 4778 4779 igc_set_interrupt_capability(adapter, msix); 4780 4781 err = igc_alloc_q_vectors(adapter); 4782 if (err) { 4783 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4784 goto err_alloc_q_vectors; 4785 } 4786 4787 igc_cache_ring_register(adapter); 4788 4789 return 0; 4790 4791 err_alloc_q_vectors: 4792 igc_reset_interrupt_capability(adapter); 4793 return err; 4794 } 4795 4796 /** 4797 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4798 * @adapter: board private structure to initialize 4799 * 4800 * igc_sw_init initializes the Adapter private data structure. 4801 * Fields are initialized based on PCI device information and 4802 * OS network device settings (MTU size). 4803 */ 4804 static int igc_sw_init(struct igc_adapter *adapter) 4805 { 4806 struct net_device *netdev = adapter->netdev; 4807 struct pci_dev *pdev = adapter->pdev; 4808 struct igc_hw *hw = &adapter->hw; 4809 4810 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4811 4812 /* set default ring sizes */ 4813 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4814 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4815 4816 /* set default ITR values */ 4817 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4818 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4819 4820 /* set default work limits */ 4821 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4822 4823 /* adjust max frame to be at least the size of a standard frame */ 4824 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4825 VLAN_HLEN; 4826 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4827 4828 mutex_init(&adapter->nfc_rule_lock); 4829 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4830 adapter->nfc_rule_count = 0; 4831 4832 spin_lock_init(&adapter->stats64_lock); 4833 spin_lock_init(&adapter->qbv_tx_lock); 4834 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4835 adapter->flags |= IGC_FLAG_HAS_MSIX; 4836 4837 igc_init_queue_configuration(adapter); 4838 4839 /* This call may decrease the number of queues */ 4840 if (igc_init_interrupt_scheme(adapter, true)) { 4841 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4842 return -ENOMEM; 4843 } 4844 4845 /* Explicitly disable IRQ since the NIC can be in any state. */ 4846 igc_irq_disable(adapter); 4847 4848 set_bit(__IGC_DOWN, &adapter->state); 4849 4850 return 0; 4851 } 4852 4853 /** 4854 * igc_up - Open the interface and prepare it to handle traffic 4855 * @adapter: board private structure 4856 */ 4857 void igc_up(struct igc_adapter *adapter) 4858 { 4859 struct igc_hw *hw = &adapter->hw; 4860 int i = 0; 4861 4862 /* hardware has been reset, we need to reload some things */ 4863 igc_configure(adapter); 4864 4865 clear_bit(__IGC_DOWN, &adapter->state); 4866 4867 for (i = 0; i < adapter->num_q_vectors; i++) 4868 napi_enable(&adapter->q_vector[i]->napi); 4869 4870 if (adapter->msix_entries) 4871 igc_configure_msix(adapter); 4872 else 4873 igc_assign_vector(adapter->q_vector[0], 0); 4874 4875 /* Clear any pending interrupts. */ 4876 rd32(IGC_ICR); 4877 igc_irq_enable(adapter); 4878 4879 netif_tx_start_all_queues(adapter->netdev); 4880 4881 /* start the watchdog. */ 4882 hw->mac.get_link_status = true; 4883 schedule_work(&adapter->watchdog_task); 4884 } 4885 4886 /** 4887 * igc_update_stats - Update the board statistics counters 4888 * @adapter: board private structure 4889 */ 4890 void igc_update_stats(struct igc_adapter *adapter) 4891 { 4892 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4893 struct pci_dev *pdev = adapter->pdev; 4894 struct igc_hw *hw = &adapter->hw; 4895 u64 _bytes, _packets; 4896 u64 bytes, packets; 4897 unsigned int start; 4898 u32 mpc; 4899 int i; 4900 4901 /* Prevent stats update while adapter is being reset, or if the pci 4902 * connection is down. 4903 */ 4904 if (adapter->link_speed == 0) 4905 return; 4906 if (pci_channel_offline(pdev)) 4907 return; 4908 4909 packets = 0; 4910 bytes = 0; 4911 4912 rcu_read_lock(); 4913 for (i = 0; i < adapter->num_rx_queues; i++) { 4914 struct igc_ring *ring = adapter->rx_ring[i]; 4915 u32 rqdpc = rd32(IGC_RQDPC(i)); 4916 4917 if (hw->mac.type >= igc_i225) 4918 wr32(IGC_RQDPC(i), 0); 4919 4920 if (rqdpc) { 4921 ring->rx_stats.drops += rqdpc; 4922 net_stats->rx_fifo_errors += rqdpc; 4923 } 4924 4925 do { 4926 start = u64_stats_fetch_begin(&ring->rx_syncp); 4927 _bytes = ring->rx_stats.bytes; 4928 _packets = ring->rx_stats.packets; 4929 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 4930 bytes += _bytes; 4931 packets += _packets; 4932 } 4933 4934 net_stats->rx_bytes = bytes; 4935 net_stats->rx_packets = packets; 4936 4937 packets = 0; 4938 bytes = 0; 4939 for (i = 0; i < adapter->num_tx_queues; i++) { 4940 struct igc_ring *ring = adapter->tx_ring[i]; 4941 4942 do { 4943 start = u64_stats_fetch_begin(&ring->tx_syncp); 4944 _bytes = ring->tx_stats.bytes; 4945 _packets = ring->tx_stats.packets; 4946 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 4947 bytes += _bytes; 4948 packets += _packets; 4949 } 4950 net_stats->tx_bytes = bytes; 4951 net_stats->tx_packets = packets; 4952 rcu_read_unlock(); 4953 4954 /* read stats registers */ 4955 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 4956 adapter->stats.gprc += rd32(IGC_GPRC); 4957 adapter->stats.gorc += rd32(IGC_GORCL); 4958 rd32(IGC_GORCH); /* clear GORCL */ 4959 adapter->stats.bprc += rd32(IGC_BPRC); 4960 adapter->stats.mprc += rd32(IGC_MPRC); 4961 adapter->stats.roc += rd32(IGC_ROC); 4962 4963 adapter->stats.prc64 += rd32(IGC_PRC64); 4964 adapter->stats.prc127 += rd32(IGC_PRC127); 4965 adapter->stats.prc255 += rd32(IGC_PRC255); 4966 adapter->stats.prc511 += rd32(IGC_PRC511); 4967 adapter->stats.prc1023 += rd32(IGC_PRC1023); 4968 adapter->stats.prc1522 += rd32(IGC_PRC1522); 4969 adapter->stats.tlpic += rd32(IGC_TLPIC); 4970 adapter->stats.rlpic += rd32(IGC_RLPIC); 4971 adapter->stats.hgptc += rd32(IGC_HGPTC); 4972 4973 mpc = rd32(IGC_MPC); 4974 adapter->stats.mpc += mpc; 4975 net_stats->rx_fifo_errors += mpc; 4976 adapter->stats.scc += rd32(IGC_SCC); 4977 adapter->stats.ecol += rd32(IGC_ECOL); 4978 adapter->stats.mcc += rd32(IGC_MCC); 4979 adapter->stats.latecol += rd32(IGC_LATECOL); 4980 adapter->stats.dc += rd32(IGC_DC); 4981 adapter->stats.rlec += rd32(IGC_RLEC); 4982 adapter->stats.xonrxc += rd32(IGC_XONRXC); 4983 adapter->stats.xontxc += rd32(IGC_XONTXC); 4984 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 4985 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 4986 adapter->stats.fcruc += rd32(IGC_FCRUC); 4987 adapter->stats.gptc += rd32(IGC_GPTC); 4988 adapter->stats.gotc += rd32(IGC_GOTCL); 4989 rd32(IGC_GOTCH); /* clear GOTCL */ 4990 adapter->stats.rnbc += rd32(IGC_RNBC); 4991 adapter->stats.ruc += rd32(IGC_RUC); 4992 adapter->stats.rfc += rd32(IGC_RFC); 4993 adapter->stats.rjc += rd32(IGC_RJC); 4994 adapter->stats.tor += rd32(IGC_TORH); 4995 adapter->stats.tot += rd32(IGC_TOTH); 4996 adapter->stats.tpr += rd32(IGC_TPR); 4997 4998 adapter->stats.ptc64 += rd32(IGC_PTC64); 4999 adapter->stats.ptc127 += rd32(IGC_PTC127); 5000 adapter->stats.ptc255 += rd32(IGC_PTC255); 5001 adapter->stats.ptc511 += rd32(IGC_PTC511); 5002 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 5003 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 5004 5005 adapter->stats.mptc += rd32(IGC_MPTC); 5006 adapter->stats.bptc += rd32(IGC_BPTC); 5007 5008 adapter->stats.tpt += rd32(IGC_TPT); 5009 adapter->stats.colc += rd32(IGC_COLC); 5010 adapter->stats.colc += rd32(IGC_RERC); 5011 5012 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 5013 5014 adapter->stats.tsctc += rd32(IGC_TSCTC); 5015 5016 adapter->stats.iac += rd32(IGC_IAC); 5017 5018 /* Fill out the OS statistics structure */ 5019 net_stats->multicast = adapter->stats.mprc; 5020 net_stats->collisions = adapter->stats.colc; 5021 5022 /* Rx Errors */ 5023 5024 /* RLEC on some newer hardware can be incorrect so build 5025 * our own version based on RUC and ROC 5026 */ 5027 net_stats->rx_errors = adapter->stats.rxerrc + 5028 adapter->stats.crcerrs + adapter->stats.algnerrc + 5029 adapter->stats.ruc + adapter->stats.roc + 5030 adapter->stats.cexterr; 5031 net_stats->rx_length_errors = adapter->stats.ruc + 5032 adapter->stats.roc; 5033 net_stats->rx_crc_errors = adapter->stats.crcerrs; 5034 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5035 net_stats->rx_missed_errors = adapter->stats.mpc; 5036 5037 /* Tx Errors */ 5038 net_stats->tx_errors = adapter->stats.ecol + 5039 adapter->stats.latecol; 5040 net_stats->tx_aborted_errors = adapter->stats.ecol; 5041 net_stats->tx_window_errors = adapter->stats.latecol; 5042 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5043 5044 /* Tx Dropped */ 5045 net_stats->tx_dropped = adapter->stats.txdrop; 5046 5047 /* Management Stats */ 5048 adapter->stats.mgptc += rd32(IGC_MGTPTC); 5049 adapter->stats.mgprc += rd32(IGC_MGTPRC); 5050 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 5051 } 5052 5053 /** 5054 * igc_down - Close the interface 5055 * @adapter: board private structure 5056 */ 5057 void igc_down(struct igc_adapter *adapter) 5058 { 5059 struct net_device *netdev = adapter->netdev; 5060 struct igc_hw *hw = &adapter->hw; 5061 u32 tctl, rctl; 5062 int i = 0; 5063 5064 set_bit(__IGC_DOWN, &adapter->state); 5065 5066 igc_ptp_suspend(adapter); 5067 5068 if (pci_device_is_present(adapter->pdev)) { 5069 /* disable receives in the hardware */ 5070 rctl = rd32(IGC_RCTL); 5071 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 5072 /* flush and sleep below */ 5073 } 5074 /* set trans_start so we don't get spurious watchdogs during reset */ 5075 netif_trans_update(netdev); 5076 5077 netif_carrier_off(netdev); 5078 netif_tx_stop_all_queues(netdev); 5079 5080 if (pci_device_is_present(adapter->pdev)) { 5081 /* disable transmits in the hardware */ 5082 tctl = rd32(IGC_TCTL); 5083 tctl &= ~IGC_TCTL_EN; 5084 wr32(IGC_TCTL, tctl); 5085 /* flush both disables and wait for them to finish */ 5086 wrfl(); 5087 usleep_range(10000, 20000); 5088 5089 igc_irq_disable(adapter); 5090 } 5091 5092 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5093 5094 for (i = 0; i < adapter->num_q_vectors; i++) { 5095 if (adapter->q_vector[i]) { 5096 napi_synchronize(&adapter->q_vector[i]->napi); 5097 napi_disable(&adapter->q_vector[i]->napi); 5098 } 5099 } 5100 5101 del_timer_sync(&adapter->watchdog_timer); 5102 del_timer_sync(&adapter->phy_info_timer); 5103 5104 /* record the stats before reset*/ 5105 spin_lock(&adapter->stats64_lock); 5106 igc_update_stats(adapter); 5107 spin_unlock(&adapter->stats64_lock); 5108 5109 adapter->link_speed = 0; 5110 adapter->link_duplex = 0; 5111 5112 if (!pci_channel_offline(adapter->pdev)) 5113 igc_reset(adapter); 5114 5115 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 5116 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 5117 5118 igc_disable_all_tx_rings_hw(adapter); 5119 igc_clean_all_tx_rings(adapter); 5120 igc_clean_all_rx_rings(adapter); 5121 } 5122 5123 void igc_reinit_locked(struct igc_adapter *adapter) 5124 { 5125 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5126 usleep_range(1000, 2000); 5127 igc_down(adapter); 5128 igc_up(adapter); 5129 clear_bit(__IGC_RESETTING, &adapter->state); 5130 } 5131 5132 static void igc_reset_task(struct work_struct *work) 5133 { 5134 struct igc_adapter *adapter; 5135 5136 adapter = container_of(work, struct igc_adapter, reset_task); 5137 5138 rtnl_lock(); 5139 /* If we're already down or resetting, just bail */ 5140 if (test_bit(__IGC_DOWN, &adapter->state) || 5141 test_bit(__IGC_RESETTING, &adapter->state)) { 5142 rtnl_unlock(); 5143 return; 5144 } 5145 5146 igc_rings_dump(adapter); 5147 igc_regs_dump(adapter); 5148 netdev_err(adapter->netdev, "Reset adapter\n"); 5149 igc_reinit_locked(adapter); 5150 rtnl_unlock(); 5151 } 5152 5153 /** 5154 * igc_change_mtu - Change the Maximum Transfer Unit 5155 * @netdev: network interface device structure 5156 * @new_mtu: new value for maximum frame size 5157 * 5158 * Returns 0 on success, negative on failure 5159 */ 5160 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 5161 { 5162 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5163 struct igc_adapter *adapter = netdev_priv(netdev); 5164 5165 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 5166 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 5167 return -EINVAL; 5168 } 5169 5170 /* adjust max frame to be at least the size of a standard frame */ 5171 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5172 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5173 5174 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5175 usleep_range(1000, 2000); 5176 5177 /* igc_down has a dependency on max_frame_size */ 5178 adapter->max_frame_size = max_frame; 5179 5180 if (netif_running(netdev)) 5181 igc_down(adapter); 5182 5183 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5184 netdev->mtu = new_mtu; 5185 5186 if (netif_running(netdev)) 5187 igc_up(adapter); 5188 else 5189 igc_reset(adapter); 5190 5191 clear_bit(__IGC_RESETTING, &adapter->state); 5192 5193 return 0; 5194 } 5195 5196 /** 5197 * igc_tx_timeout - Respond to a Tx Hang 5198 * @netdev: network interface device structure 5199 * @txqueue: queue number that timed out 5200 **/ 5201 static void igc_tx_timeout(struct net_device *netdev, 5202 unsigned int __always_unused txqueue) 5203 { 5204 struct igc_adapter *adapter = netdev_priv(netdev); 5205 struct igc_hw *hw = &adapter->hw; 5206 5207 /* Do the reset outside of interrupt context */ 5208 adapter->tx_timeout_count++; 5209 schedule_work(&adapter->reset_task); 5210 wr32(IGC_EICS, 5211 (adapter->eims_enable_mask & ~adapter->eims_other)); 5212 } 5213 5214 /** 5215 * igc_get_stats64 - Get System Network Statistics 5216 * @netdev: network interface device structure 5217 * @stats: rtnl_link_stats64 pointer 5218 * 5219 * Returns the address of the device statistics structure. 5220 * The statistics are updated here and also from the timer callback. 5221 */ 5222 static void igc_get_stats64(struct net_device *netdev, 5223 struct rtnl_link_stats64 *stats) 5224 { 5225 struct igc_adapter *adapter = netdev_priv(netdev); 5226 5227 spin_lock(&adapter->stats64_lock); 5228 if (!test_bit(__IGC_RESETTING, &adapter->state)) 5229 igc_update_stats(adapter); 5230 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5231 spin_unlock(&adapter->stats64_lock); 5232 } 5233 5234 static netdev_features_t igc_fix_features(struct net_device *netdev, 5235 netdev_features_t features) 5236 { 5237 /* Since there is no support for separate Rx/Tx vlan accel 5238 * enable/disable make sure Tx flag is always in same state as Rx. 5239 */ 5240 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5241 features |= NETIF_F_HW_VLAN_CTAG_TX; 5242 else 5243 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5244 5245 return features; 5246 } 5247 5248 static int igc_set_features(struct net_device *netdev, 5249 netdev_features_t features) 5250 { 5251 netdev_features_t changed = netdev->features ^ features; 5252 struct igc_adapter *adapter = netdev_priv(netdev); 5253 5254 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 5255 igc_vlan_mode(netdev, features); 5256 5257 /* Add VLAN support */ 5258 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 5259 return 0; 5260 5261 if (!(features & NETIF_F_NTUPLE)) 5262 igc_flush_nfc_rules(adapter); 5263 5264 netdev->features = features; 5265 5266 if (netif_running(netdev)) 5267 igc_reinit_locked(adapter); 5268 else 5269 igc_reset(adapter); 5270 5271 return 1; 5272 } 5273 5274 static netdev_features_t 5275 igc_features_check(struct sk_buff *skb, struct net_device *dev, 5276 netdev_features_t features) 5277 { 5278 unsigned int network_hdr_len, mac_hdr_len; 5279 5280 /* Make certain the headers can be described by a context descriptor */ 5281 mac_hdr_len = skb_network_header(skb) - skb->data; 5282 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 5283 return features & ~(NETIF_F_HW_CSUM | 5284 NETIF_F_SCTP_CRC | 5285 NETIF_F_HW_VLAN_CTAG_TX | 5286 NETIF_F_TSO | 5287 NETIF_F_TSO6); 5288 5289 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 5290 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 5291 return features & ~(NETIF_F_HW_CSUM | 5292 NETIF_F_SCTP_CRC | 5293 NETIF_F_TSO | 5294 NETIF_F_TSO6); 5295 5296 /* We can only support IPv4 TSO in tunnels if we can mangle the 5297 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5298 */ 5299 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5300 features &= ~NETIF_F_TSO; 5301 5302 return features; 5303 } 5304 5305 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5306 { 5307 u32 ack, tsauxc, sec, nsec, tsicr; 5308 struct igc_hw *hw = &adapter->hw; 5309 struct ptp_clock_event event; 5310 struct timespec64 ts; 5311 5312 tsicr = rd32(IGC_TSICR); 5313 ack = 0; 5314 5315 if (tsicr & IGC_TSICR_SYS_WRAP) { 5316 event.type = PTP_CLOCK_PPS; 5317 if (adapter->ptp_caps.pps) 5318 ptp_clock_event(adapter->ptp_clock, &event); 5319 ack |= IGC_TSICR_SYS_WRAP; 5320 } 5321 5322 if (tsicr & IGC_TSICR_TXTS) { 5323 /* retrieve hardware timestamp */ 5324 igc_ptp_tx_tstamp_event(adapter); 5325 ack |= IGC_TSICR_TXTS; 5326 } 5327 5328 if (tsicr & IGC_TSICR_TT0) { 5329 spin_lock(&adapter->tmreg_lock); 5330 ts = timespec64_add(adapter->perout[0].start, 5331 adapter->perout[0].period); 5332 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5333 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5334 tsauxc = rd32(IGC_TSAUXC); 5335 tsauxc |= IGC_TSAUXC_EN_TT0; 5336 wr32(IGC_TSAUXC, tsauxc); 5337 adapter->perout[0].start = ts; 5338 spin_unlock(&adapter->tmreg_lock); 5339 ack |= IGC_TSICR_TT0; 5340 } 5341 5342 if (tsicr & IGC_TSICR_TT1) { 5343 spin_lock(&adapter->tmreg_lock); 5344 ts = timespec64_add(adapter->perout[1].start, 5345 adapter->perout[1].period); 5346 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5347 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5348 tsauxc = rd32(IGC_TSAUXC); 5349 tsauxc |= IGC_TSAUXC_EN_TT1; 5350 wr32(IGC_TSAUXC, tsauxc); 5351 adapter->perout[1].start = ts; 5352 spin_unlock(&adapter->tmreg_lock); 5353 ack |= IGC_TSICR_TT1; 5354 } 5355 5356 if (tsicr & IGC_TSICR_AUTT0) { 5357 nsec = rd32(IGC_AUXSTMPL0); 5358 sec = rd32(IGC_AUXSTMPH0); 5359 event.type = PTP_CLOCK_EXTTS; 5360 event.index = 0; 5361 event.timestamp = sec * NSEC_PER_SEC + nsec; 5362 ptp_clock_event(adapter->ptp_clock, &event); 5363 ack |= IGC_TSICR_AUTT0; 5364 } 5365 5366 if (tsicr & IGC_TSICR_AUTT1) { 5367 nsec = rd32(IGC_AUXSTMPL1); 5368 sec = rd32(IGC_AUXSTMPH1); 5369 event.type = PTP_CLOCK_EXTTS; 5370 event.index = 1; 5371 event.timestamp = sec * NSEC_PER_SEC + nsec; 5372 ptp_clock_event(adapter->ptp_clock, &event); 5373 ack |= IGC_TSICR_AUTT1; 5374 } 5375 5376 /* acknowledge the interrupts */ 5377 wr32(IGC_TSICR, ack); 5378 } 5379 5380 /** 5381 * igc_msix_other - msix other interrupt handler 5382 * @irq: interrupt number 5383 * @data: pointer to a q_vector 5384 */ 5385 static irqreturn_t igc_msix_other(int irq, void *data) 5386 { 5387 struct igc_adapter *adapter = data; 5388 struct igc_hw *hw = &adapter->hw; 5389 u32 icr = rd32(IGC_ICR); 5390 5391 /* reading ICR causes bit 31 of EICR to be cleared */ 5392 if (icr & IGC_ICR_DRSTA) 5393 schedule_work(&adapter->reset_task); 5394 5395 if (icr & IGC_ICR_DOUTSYNC) { 5396 /* HW is reporting DMA is out of sync */ 5397 adapter->stats.doosync++; 5398 } 5399 5400 if (icr & IGC_ICR_LSC) { 5401 hw->mac.get_link_status = true; 5402 /* guard against interrupt when we're going down */ 5403 if (!test_bit(__IGC_DOWN, &adapter->state)) 5404 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5405 } 5406 5407 if (icr & IGC_ICR_TS) 5408 igc_tsync_interrupt(adapter); 5409 5410 wr32(IGC_EIMS, adapter->eims_other); 5411 5412 return IRQ_HANDLED; 5413 } 5414 5415 static void igc_write_itr(struct igc_q_vector *q_vector) 5416 { 5417 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5418 5419 if (!q_vector->set_itr) 5420 return; 5421 5422 if (!itr_val) 5423 itr_val = IGC_ITR_VAL_MASK; 5424 5425 itr_val |= IGC_EITR_CNT_IGNR; 5426 5427 writel(itr_val, q_vector->itr_register); 5428 q_vector->set_itr = 0; 5429 } 5430 5431 static irqreturn_t igc_msix_ring(int irq, void *data) 5432 { 5433 struct igc_q_vector *q_vector = data; 5434 5435 /* Write the ITR value calculated from the previous interrupt. */ 5436 igc_write_itr(q_vector); 5437 5438 napi_schedule(&q_vector->napi); 5439 5440 return IRQ_HANDLED; 5441 } 5442 5443 /** 5444 * igc_request_msix - Initialize MSI-X interrupts 5445 * @adapter: Pointer to adapter structure 5446 * 5447 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5448 * kernel. 5449 */ 5450 static int igc_request_msix(struct igc_adapter *adapter) 5451 { 5452 unsigned int num_q_vectors = adapter->num_q_vectors; 5453 int i = 0, err = 0, vector = 0, free_vector = 0; 5454 struct net_device *netdev = adapter->netdev; 5455 5456 err = request_irq(adapter->msix_entries[vector].vector, 5457 &igc_msix_other, 0, netdev->name, adapter); 5458 if (err) 5459 goto err_out; 5460 5461 if (num_q_vectors > MAX_Q_VECTORS) { 5462 num_q_vectors = MAX_Q_VECTORS; 5463 dev_warn(&adapter->pdev->dev, 5464 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5465 adapter->num_q_vectors, MAX_Q_VECTORS); 5466 } 5467 for (i = 0; i < num_q_vectors; i++) { 5468 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5469 5470 vector++; 5471 5472 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5473 5474 if (q_vector->rx.ring && q_vector->tx.ring) 5475 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5476 q_vector->rx.ring->queue_index); 5477 else if (q_vector->tx.ring) 5478 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5479 q_vector->tx.ring->queue_index); 5480 else if (q_vector->rx.ring) 5481 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5482 q_vector->rx.ring->queue_index); 5483 else 5484 sprintf(q_vector->name, "%s-unused", netdev->name); 5485 5486 err = request_irq(adapter->msix_entries[vector].vector, 5487 igc_msix_ring, 0, q_vector->name, 5488 q_vector); 5489 if (err) 5490 goto err_free; 5491 } 5492 5493 igc_configure_msix(adapter); 5494 return 0; 5495 5496 err_free: 5497 /* free already assigned IRQs */ 5498 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5499 5500 vector--; 5501 for (i = 0; i < vector; i++) { 5502 free_irq(adapter->msix_entries[free_vector++].vector, 5503 adapter->q_vector[i]); 5504 } 5505 err_out: 5506 return err; 5507 } 5508 5509 /** 5510 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5511 * @adapter: Pointer to adapter structure 5512 * 5513 * This function resets the device so that it has 0 rx queues, tx queues, and 5514 * MSI-X interrupts allocated. 5515 */ 5516 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5517 { 5518 igc_free_q_vectors(adapter); 5519 igc_reset_interrupt_capability(adapter); 5520 } 5521 5522 /* Need to wait a few seconds after link up to get diagnostic information from 5523 * the phy 5524 */ 5525 static void igc_update_phy_info(struct timer_list *t) 5526 { 5527 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5528 5529 igc_get_phy_info(&adapter->hw); 5530 } 5531 5532 /** 5533 * igc_has_link - check shared code for link and determine up/down 5534 * @adapter: pointer to driver private info 5535 */ 5536 bool igc_has_link(struct igc_adapter *adapter) 5537 { 5538 struct igc_hw *hw = &adapter->hw; 5539 bool link_active = false; 5540 5541 /* get_link_status is set on LSC (link status) interrupt or 5542 * rx sequence error interrupt. get_link_status will stay 5543 * false until the igc_check_for_link establishes link 5544 * for copper adapters ONLY 5545 */ 5546 if (!hw->mac.get_link_status) 5547 return true; 5548 hw->mac.ops.check_for_link(hw); 5549 link_active = !hw->mac.get_link_status; 5550 5551 if (hw->mac.type == igc_i225) { 5552 if (!netif_carrier_ok(adapter->netdev)) { 5553 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5554 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5555 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5556 adapter->link_check_timeout = jiffies; 5557 } 5558 } 5559 5560 return link_active; 5561 } 5562 5563 /** 5564 * igc_watchdog - Timer Call-back 5565 * @t: timer for the watchdog 5566 */ 5567 static void igc_watchdog(struct timer_list *t) 5568 { 5569 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5570 /* Do the rest outside of interrupt context */ 5571 schedule_work(&adapter->watchdog_task); 5572 } 5573 5574 static void igc_watchdog_task(struct work_struct *work) 5575 { 5576 struct igc_adapter *adapter = container_of(work, 5577 struct igc_adapter, 5578 watchdog_task); 5579 struct net_device *netdev = adapter->netdev; 5580 struct igc_hw *hw = &adapter->hw; 5581 struct igc_phy_info *phy = &hw->phy; 5582 u16 phy_data, retry_count = 20; 5583 u32 link; 5584 int i; 5585 5586 link = igc_has_link(adapter); 5587 5588 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5589 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5590 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5591 else 5592 link = false; 5593 } 5594 5595 if (link) { 5596 /* Cancel scheduled suspend requests. */ 5597 pm_runtime_resume(netdev->dev.parent); 5598 5599 if (!netif_carrier_ok(netdev)) { 5600 u32 ctrl; 5601 5602 hw->mac.ops.get_speed_and_duplex(hw, 5603 &adapter->link_speed, 5604 &adapter->link_duplex); 5605 5606 ctrl = rd32(IGC_CTRL); 5607 /* Link status message must follow this format */ 5608 netdev_info(netdev, 5609 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5610 adapter->link_speed, 5611 adapter->link_duplex == FULL_DUPLEX ? 5612 "Full" : "Half", 5613 (ctrl & IGC_CTRL_TFCE) && 5614 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5615 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5616 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5617 5618 /* disable EEE if enabled */ 5619 if ((adapter->flags & IGC_FLAG_EEE) && 5620 adapter->link_duplex == HALF_DUPLEX) { 5621 netdev_info(netdev, 5622 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5623 adapter->hw.dev_spec._base.eee_enable = false; 5624 adapter->flags &= ~IGC_FLAG_EEE; 5625 } 5626 5627 /* check if SmartSpeed worked */ 5628 igc_check_downshift(hw); 5629 if (phy->speed_downgraded) 5630 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5631 5632 /* adjust timeout factor according to speed/duplex */ 5633 adapter->tx_timeout_factor = 1; 5634 switch (adapter->link_speed) { 5635 case SPEED_10: 5636 adapter->tx_timeout_factor = 14; 5637 break; 5638 case SPEED_100: 5639 case SPEED_1000: 5640 case SPEED_2500: 5641 adapter->tx_timeout_factor = 1; 5642 break; 5643 } 5644 5645 /* Once the launch time has been set on the wire, there 5646 * is a delay before the link speed can be determined 5647 * based on link-up activity. Write into the register 5648 * as soon as we know the correct link speed. 5649 */ 5650 igc_tsn_adjust_txtime_offset(adapter); 5651 5652 if (adapter->link_speed != SPEED_1000) 5653 goto no_wait; 5654 5655 /* wait for Remote receiver status OK */ 5656 retry_read_status: 5657 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5658 &phy_data)) { 5659 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5660 retry_count) { 5661 msleep(100); 5662 retry_count--; 5663 goto retry_read_status; 5664 } else if (!retry_count) { 5665 netdev_err(netdev, "exceed max 2 second\n"); 5666 } 5667 } else { 5668 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5669 } 5670 no_wait: 5671 netif_carrier_on(netdev); 5672 5673 /* link state has changed, schedule phy info update */ 5674 if (!test_bit(__IGC_DOWN, &adapter->state)) 5675 mod_timer(&adapter->phy_info_timer, 5676 round_jiffies(jiffies + 2 * HZ)); 5677 } 5678 } else { 5679 if (netif_carrier_ok(netdev)) { 5680 adapter->link_speed = 0; 5681 adapter->link_duplex = 0; 5682 5683 /* Links status message must follow this format */ 5684 netdev_info(netdev, "NIC Link is Down\n"); 5685 netif_carrier_off(netdev); 5686 5687 /* link state has changed, schedule phy info update */ 5688 if (!test_bit(__IGC_DOWN, &adapter->state)) 5689 mod_timer(&adapter->phy_info_timer, 5690 round_jiffies(jiffies + 2 * HZ)); 5691 5692 pm_schedule_suspend(netdev->dev.parent, 5693 MSEC_PER_SEC * 5); 5694 } 5695 } 5696 5697 spin_lock(&adapter->stats64_lock); 5698 igc_update_stats(adapter); 5699 spin_unlock(&adapter->stats64_lock); 5700 5701 for (i = 0; i < adapter->num_tx_queues; i++) { 5702 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5703 5704 if (!netif_carrier_ok(netdev)) { 5705 /* We've lost link, so the controller stops DMA, 5706 * but we've got queued Tx work that's never going 5707 * to get done, so reset controller to flush Tx. 5708 * (Do the reset outside of interrupt context). 5709 */ 5710 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5711 adapter->tx_timeout_count++; 5712 schedule_work(&adapter->reset_task); 5713 /* return immediately since reset is imminent */ 5714 return; 5715 } 5716 } 5717 5718 /* Force detection of hung controller every watchdog period */ 5719 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5720 } 5721 5722 /* Cause software interrupt to ensure Rx ring is cleaned */ 5723 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5724 u32 eics = 0; 5725 5726 for (i = 0; i < adapter->num_q_vectors; i++) 5727 eics |= adapter->q_vector[i]->eims_value; 5728 wr32(IGC_EICS, eics); 5729 } else { 5730 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5731 } 5732 5733 igc_ptp_tx_hang(adapter); 5734 5735 /* Reset the timer */ 5736 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5737 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5738 mod_timer(&adapter->watchdog_timer, 5739 round_jiffies(jiffies + HZ)); 5740 else 5741 mod_timer(&adapter->watchdog_timer, 5742 round_jiffies(jiffies + 2 * HZ)); 5743 } 5744 } 5745 5746 /** 5747 * igc_intr_msi - Interrupt Handler 5748 * @irq: interrupt number 5749 * @data: pointer to a network interface device structure 5750 */ 5751 static irqreturn_t igc_intr_msi(int irq, void *data) 5752 { 5753 struct igc_adapter *adapter = data; 5754 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5755 struct igc_hw *hw = &adapter->hw; 5756 /* read ICR disables interrupts using IAM */ 5757 u32 icr = rd32(IGC_ICR); 5758 5759 igc_write_itr(q_vector); 5760 5761 if (icr & IGC_ICR_DRSTA) 5762 schedule_work(&adapter->reset_task); 5763 5764 if (icr & IGC_ICR_DOUTSYNC) { 5765 /* HW is reporting DMA is out of sync */ 5766 adapter->stats.doosync++; 5767 } 5768 5769 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5770 hw->mac.get_link_status = true; 5771 if (!test_bit(__IGC_DOWN, &adapter->state)) 5772 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5773 } 5774 5775 if (icr & IGC_ICR_TS) 5776 igc_tsync_interrupt(adapter); 5777 5778 napi_schedule(&q_vector->napi); 5779 5780 return IRQ_HANDLED; 5781 } 5782 5783 /** 5784 * igc_intr - Legacy Interrupt Handler 5785 * @irq: interrupt number 5786 * @data: pointer to a network interface device structure 5787 */ 5788 static irqreturn_t igc_intr(int irq, void *data) 5789 { 5790 struct igc_adapter *adapter = data; 5791 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5792 struct igc_hw *hw = &adapter->hw; 5793 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5794 * need for the IMC write 5795 */ 5796 u32 icr = rd32(IGC_ICR); 5797 5798 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5799 * not set, then the adapter didn't send an interrupt 5800 */ 5801 if (!(icr & IGC_ICR_INT_ASSERTED)) 5802 return IRQ_NONE; 5803 5804 igc_write_itr(q_vector); 5805 5806 if (icr & IGC_ICR_DRSTA) 5807 schedule_work(&adapter->reset_task); 5808 5809 if (icr & IGC_ICR_DOUTSYNC) { 5810 /* HW is reporting DMA is out of sync */ 5811 adapter->stats.doosync++; 5812 } 5813 5814 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5815 hw->mac.get_link_status = true; 5816 /* guard against interrupt when we're going down */ 5817 if (!test_bit(__IGC_DOWN, &adapter->state)) 5818 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5819 } 5820 5821 if (icr & IGC_ICR_TS) 5822 igc_tsync_interrupt(adapter); 5823 5824 napi_schedule(&q_vector->napi); 5825 5826 return IRQ_HANDLED; 5827 } 5828 5829 static void igc_free_irq(struct igc_adapter *adapter) 5830 { 5831 if (adapter->msix_entries) { 5832 int vector = 0, i; 5833 5834 free_irq(adapter->msix_entries[vector++].vector, adapter); 5835 5836 for (i = 0; i < adapter->num_q_vectors; i++) 5837 free_irq(adapter->msix_entries[vector++].vector, 5838 adapter->q_vector[i]); 5839 } else { 5840 free_irq(adapter->pdev->irq, adapter); 5841 } 5842 } 5843 5844 /** 5845 * igc_request_irq - initialize interrupts 5846 * @adapter: Pointer to adapter structure 5847 * 5848 * Attempts to configure interrupts using the best available 5849 * capabilities of the hardware and kernel. 5850 */ 5851 static int igc_request_irq(struct igc_adapter *adapter) 5852 { 5853 struct net_device *netdev = adapter->netdev; 5854 struct pci_dev *pdev = adapter->pdev; 5855 int err = 0; 5856 5857 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5858 err = igc_request_msix(adapter); 5859 if (!err) 5860 goto request_done; 5861 /* fall back to MSI */ 5862 igc_free_all_tx_resources(adapter); 5863 igc_free_all_rx_resources(adapter); 5864 5865 igc_clear_interrupt_scheme(adapter); 5866 err = igc_init_interrupt_scheme(adapter, false); 5867 if (err) 5868 goto request_done; 5869 igc_setup_all_tx_resources(adapter); 5870 igc_setup_all_rx_resources(adapter); 5871 igc_configure(adapter); 5872 } 5873 5874 igc_assign_vector(adapter->q_vector[0], 0); 5875 5876 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5877 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5878 netdev->name, adapter); 5879 if (!err) 5880 goto request_done; 5881 5882 /* fall back to legacy interrupts */ 5883 igc_reset_interrupt_capability(adapter); 5884 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5885 } 5886 5887 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5888 netdev->name, adapter); 5889 5890 if (err) 5891 netdev_err(netdev, "Error %d getting interrupt\n", err); 5892 5893 request_done: 5894 return err; 5895 } 5896 5897 /** 5898 * __igc_open - Called when a network interface is made active 5899 * @netdev: network interface device structure 5900 * @resuming: boolean indicating if the device is resuming 5901 * 5902 * Returns 0 on success, negative value on failure 5903 * 5904 * The open entry point is called when a network interface is made 5905 * active by the system (IFF_UP). At this point all resources needed 5906 * for transmit and receive operations are allocated, the interrupt 5907 * handler is registered with the OS, the watchdog timer is started, 5908 * and the stack is notified that the interface is ready. 5909 */ 5910 static int __igc_open(struct net_device *netdev, bool resuming) 5911 { 5912 struct igc_adapter *adapter = netdev_priv(netdev); 5913 struct pci_dev *pdev = adapter->pdev; 5914 struct igc_hw *hw = &adapter->hw; 5915 int err = 0; 5916 int i = 0; 5917 5918 /* disallow open during test */ 5919 5920 if (test_bit(__IGC_TESTING, &adapter->state)) { 5921 WARN_ON(resuming); 5922 return -EBUSY; 5923 } 5924 5925 if (!resuming) 5926 pm_runtime_get_sync(&pdev->dev); 5927 5928 netif_carrier_off(netdev); 5929 5930 /* allocate transmit descriptors */ 5931 err = igc_setup_all_tx_resources(adapter); 5932 if (err) 5933 goto err_setup_tx; 5934 5935 /* allocate receive descriptors */ 5936 err = igc_setup_all_rx_resources(adapter); 5937 if (err) 5938 goto err_setup_rx; 5939 5940 igc_power_up_link(adapter); 5941 5942 igc_configure(adapter); 5943 5944 err = igc_request_irq(adapter); 5945 if (err) 5946 goto err_req_irq; 5947 5948 /* Notify the stack of the actual queue counts. */ 5949 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 5950 if (err) 5951 goto err_set_queues; 5952 5953 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 5954 if (err) 5955 goto err_set_queues; 5956 5957 clear_bit(__IGC_DOWN, &adapter->state); 5958 5959 for (i = 0; i < adapter->num_q_vectors; i++) 5960 napi_enable(&adapter->q_vector[i]->napi); 5961 5962 /* Clear any pending interrupts. */ 5963 rd32(IGC_ICR); 5964 igc_irq_enable(adapter); 5965 5966 if (!resuming) 5967 pm_runtime_put(&pdev->dev); 5968 5969 netif_tx_start_all_queues(netdev); 5970 5971 /* start the watchdog. */ 5972 hw->mac.get_link_status = true; 5973 schedule_work(&adapter->watchdog_task); 5974 5975 return IGC_SUCCESS; 5976 5977 err_set_queues: 5978 igc_free_irq(adapter); 5979 err_req_irq: 5980 igc_release_hw_control(adapter); 5981 igc_power_down_phy_copper_base(&adapter->hw); 5982 igc_free_all_rx_resources(adapter); 5983 err_setup_rx: 5984 igc_free_all_tx_resources(adapter); 5985 err_setup_tx: 5986 igc_reset(adapter); 5987 if (!resuming) 5988 pm_runtime_put(&pdev->dev); 5989 5990 return err; 5991 } 5992 5993 int igc_open(struct net_device *netdev) 5994 { 5995 return __igc_open(netdev, false); 5996 } 5997 5998 /** 5999 * __igc_close - Disables a network interface 6000 * @netdev: network interface device structure 6001 * @suspending: boolean indicating the device is suspending 6002 * 6003 * Returns 0, this is not allowed to fail 6004 * 6005 * The close entry point is called when an interface is de-activated 6006 * by the OS. The hardware is still under the driver's control, but 6007 * needs to be disabled. A global MAC reset is issued to stop the 6008 * hardware, and all transmit and receive resources are freed. 6009 */ 6010 static int __igc_close(struct net_device *netdev, bool suspending) 6011 { 6012 struct igc_adapter *adapter = netdev_priv(netdev); 6013 struct pci_dev *pdev = adapter->pdev; 6014 6015 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 6016 6017 if (!suspending) 6018 pm_runtime_get_sync(&pdev->dev); 6019 6020 igc_down(adapter); 6021 6022 igc_release_hw_control(adapter); 6023 6024 igc_free_irq(adapter); 6025 6026 igc_free_all_tx_resources(adapter); 6027 igc_free_all_rx_resources(adapter); 6028 6029 if (!suspending) 6030 pm_runtime_put_sync(&pdev->dev); 6031 6032 return 0; 6033 } 6034 6035 int igc_close(struct net_device *netdev) 6036 { 6037 if (netif_device_present(netdev) || netdev->dismantle) 6038 return __igc_close(netdev, false); 6039 return 0; 6040 } 6041 6042 /** 6043 * igc_ioctl - Access the hwtstamp interface 6044 * @netdev: network interface device structure 6045 * @ifr: interface request data 6046 * @cmd: ioctl command 6047 **/ 6048 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6049 { 6050 switch (cmd) { 6051 case SIOCGHWTSTAMP: 6052 return igc_ptp_get_ts_config(netdev, ifr); 6053 case SIOCSHWTSTAMP: 6054 return igc_ptp_set_ts_config(netdev, ifr); 6055 default: 6056 return -EOPNOTSUPP; 6057 } 6058 } 6059 6060 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 6061 bool enable) 6062 { 6063 struct igc_ring *ring; 6064 6065 if (queue < 0 || queue >= adapter->num_tx_queues) 6066 return -EINVAL; 6067 6068 ring = adapter->tx_ring[queue]; 6069 ring->launchtime_enable = enable; 6070 6071 return 0; 6072 } 6073 6074 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 6075 { 6076 struct timespec64 b; 6077 6078 b = ktime_to_timespec64(base_time); 6079 6080 return timespec64_compare(now, &b) > 0; 6081 } 6082 6083 static bool validate_schedule(struct igc_adapter *adapter, 6084 const struct tc_taprio_qopt_offload *qopt) 6085 { 6086 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 6087 struct igc_hw *hw = &adapter->hw; 6088 struct timespec64 now; 6089 size_t n; 6090 6091 if (qopt->cycle_time_extension) 6092 return false; 6093 6094 igc_ptp_read(adapter, &now); 6095 6096 /* If we program the controller's BASET registers with a time 6097 * in the future, it will hold all the packets until that 6098 * time, causing a lot of TX Hangs, so to avoid that, we 6099 * reject schedules that would start in the future. 6100 * Note: Limitation above is no longer in i226. 6101 */ 6102 if (!is_base_time_past(qopt->base_time, &now) && 6103 igc_is_device_id_i225(hw)) 6104 return false; 6105 6106 for (n = 0; n < qopt->num_entries; n++) { 6107 const struct tc_taprio_sched_entry *e, *prev; 6108 int i; 6109 6110 prev = n ? &qopt->entries[n - 1] : NULL; 6111 e = &qopt->entries[n]; 6112 6113 /* i225 only supports "global" frame preemption 6114 * settings. 6115 */ 6116 if (e->command != TC_TAPRIO_CMD_SET_GATES) 6117 return false; 6118 6119 for (i = 0; i < adapter->num_tx_queues; i++) 6120 if (e->gate_mask & BIT(i)) { 6121 queue_uses[i]++; 6122 6123 /* There are limitations: A single queue cannot 6124 * be opened and closed multiple times per cycle 6125 * unless the gate stays open. Check for it. 6126 */ 6127 if (queue_uses[i] > 1 && 6128 !(prev->gate_mask & BIT(i))) 6129 return false; 6130 } 6131 } 6132 6133 return true; 6134 } 6135 6136 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 6137 struct tc_etf_qopt_offload *qopt) 6138 { 6139 struct igc_hw *hw = &adapter->hw; 6140 int err; 6141 6142 if (hw->mac.type != igc_i225) 6143 return -EOPNOTSUPP; 6144 6145 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 6146 if (err) 6147 return err; 6148 6149 return igc_tsn_offload_apply(adapter); 6150 } 6151 6152 static int igc_qbv_clear_schedule(struct igc_adapter *adapter) 6153 { 6154 unsigned long flags; 6155 int i; 6156 6157 adapter->base_time = 0; 6158 adapter->cycle_time = NSEC_PER_SEC; 6159 adapter->taprio_offload_enable = false; 6160 adapter->qbv_config_change_errors = 0; 6161 adapter->qbv_count = 0; 6162 6163 for (i = 0; i < adapter->num_tx_queues; i++) { 6164 struct igc_ring *ring = adapter->tx_ring[i]; 6165 6166 ring->start_time = 0; 6167 ring->end_time = NSEC_PER_SEC; 6168 ring->max_sdu = 0; 6169 } 6170 6171 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6172 6173 adapter->qbv_transition = false; 6174 6175 for (i = 0; i < adapter->num_tx_queues; i++) { 6176 struct igc_ring *ring = adapter->tx_ring[i]; 6177 6178 ring->oper_gate_closed = false; 6179 ring->admin_gate_closed = false; 6180 } 6181 6182 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6183 6184 return 0; 6185 } 6186 6187 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 6188 { 6189 igc_qbv_clear_schedule(adapter); 6190 6191 return 0; 6192 } 6193 6194 static void igc_taprio_stats(struct net_device *dev, 6195 struct tc_taprio_qopt_stats *stats) 6196 { 6197 /* When Strict_End is enabled, the tx_overruns counter 6198 * will always be zero. 6199 */ 6200 stats->tx_overruns = 0; 6201 } 6202 6203 static void igc_taprio_queue_stats(struct net_device *dev, 6204 struct tc_taprio_qopt_queue_stats *queue_stats) 6205 { 6206 struct tc_taprio_qopt_stats *stats = &queue_stats->stats; 6207 6208 /* When Strict_End is enabled, the tx_overruns counter 6209 * will always be zero. 6210 */ 6211 stats->tx_overruns = 0; 6212 } 6213 6214 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 6215 struct tc_taprio_qopt_offload *qopt) 6216 { 6217 bool queue_configured[IGC_MAX_TX_QUEUES] = { }; 6218 struct igc_hw *hw = &adapter->hw; 6219 u32 start_time = 0, end_time = 0; 6220 struct timespec64 now; 6221 unsigned long flags; 6222 size_t n; 6223 int i; 6224 6225 switch (qopt->cmd) { 6226 case TAPRIO_CMD_REPLACE: 6227 break; 6228 case TAPRIO_CMD_DESTROY: 6229 return igc_tsn_clear_schedule(adapter); 6230 case TAPRIO_CMD_STATS: 6231 igc_taprio_stats(adapter->netdev, &qopt->stats); 6232 return 0; 6233 case TAPRIO_CMD_QUEUE_STATS: 6234 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats); 6235 return 0; 6236 default: 6237 return -EOPNOTSUPP; 6238 } 6239 6240 if (qopt->base_time < 0) 6241 return -ERANGE; 6242 6243 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable) 6244 return -EALREADY; 6245 6246 if (!validate_schedule(adapter, qopt)) 6247 return -EINVAL; 6248 6249 adapter->cycle_time = qopt->cycle_time; 6250 adapter->base_time = qopt->base_time; 6251 adapter->taprio_offload_enable = true; 6252 6253 igc_ptp_read(adapter, &now); 6254 6255 for (n = 0; n < qopt->num_entries; n++) { 6256 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 6257 6258 end_time += e->interval; 6259 6260 /* If any of the conditions below are true, we need to manually 6261 * control the end time of the cycle. 6262 * 1. Qbv users can specify a cycle time that is not equal 6263 * to the total GCL intervals. Hence, recalculation is 6264 * necessary here to exclude the time interval that 6265 * exceeds the cycle time. 6266 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2, 6267 * once the end of the list is reached, it will switch 6268 * to the END_OF_CYCLE state and leave the gates in the 6269 * same state until the next cycle is started. 6270 */ 6271 if (end_time > adapter->cycle_time || 6272 n + 1 == qopt->num_entries) 6273 end_time = adapter->cycle_time; 6274 6275 for (i = 0; i < adapter->num_tx_queues; i++) { 6276 struct igc_ring *ring = adapter->tx_ring[i]; 6277 6278 if (!(e->gate_mask & BIT(i))) 6279 continue; 6280 6281 /* Check whether a queue stays open for more than one 6282 * entry. If so, keep the start and advance the end 6283 * time. 6284 */ 6285 if (!queue_configured[i]) 6286 ring->start_time = start_time; 6287 ring->end_time = end_time; 6288 6289 if (ring->start_time >= adapter->cycle_time) 6290 queue_configured[i] = false; 6291 else 6292 queue_configured[i] = true; 6293 } 6294 6295 start_time += e->interval; 6296 } 6297 6298 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6299 6300 /* Check whether a queue gets configured. 6301 * If not, set the start and end time to be end time. 6302 */ 6303 for (i = 0; i < adapter->num_tx_queues; i++) { 6304 struct igc_ring *ring = adapter->tx_ring[i]; 6305 6306 if (!is_base_time_past(qopt->base_time, &now)) { 6307 ring->admin_gate_closed = false; 6308 } else { 6309 ring->oper_gate_closed = false; 6310 ring->admin_gate_closed = false; 6311 } 6312 6313 if (!queue_configured[i]) { 6314 if (!is_base_time_past(qopt->base_time, &now)) 6315 ring->admin_gate_closed = true; 6316 else 6317 ring->oper_gate_closed = true; 6318 6319 ring->start_time = end_time; 6320 ring->end_time = end_time; 6321 } 6322 } 6323 6324 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6325 6326 for (i = 0; i < adapter->num_tx_queues; i++) { 6327 struct igc_ring *ring = adapter->tx_ring[i]; 6328 struct net_device *dev = adapter->netdev; 6329 6330 if (qopt->max_sdu[i]) 6331 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN; 6332 else 6333 ring->max_sdu = 0; 6334 } 6335 6336 return 0; 6337 } 6338 6339 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 6340 struct tc_taprio_qopt_offload *qopt) 6341 { 6342 struct igc_hw *hw = &adapter->hw; 6343 int err; 6344 6345 if (hw->mac.type != igc_i225) 6346 return -EOPNOTSUPP; 6347 6348 err = igc_save_qbv_schedule(adapter, qopt); 6349 if (err) 6350 return err; 6351 6352 return igc_tsn_offload_apply(adapter); 6353 } 6354 6355 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 6356 bool enable, int idleslope, int sendslope, 6357 int hicredit, int locredit) 6358 { 6359 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 6360 struct net_device *netdev = adapter->netdev; 6361 struct igc_ring *ring; 6362 int i; 6363 6364 /* i225 has two sets of credit-based shaper logic. 6365 * Supporting it only on the top two priority queues 6366 */ 6367 if (queue < 0 || queue > 1) 6368 return -EINVAL; 6369 6370 ring = adapter->tx_ring[queue]; 6371 6372 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 6373 if (adapter->tx_ring[i]) 6374 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 6375 6376 /* CBS should be enabled on the highest priority queue first in order 6377 * for the CBS algorithm to operate as intended. 6378 */ 6379 if (enable) { 6380 if (queue == 1 && !cbs_status[0]) { 6381 netdev_err(netdev, 6382 "Enabling CBS on queue1 before queue0\n"); 6383 return -EINVAL; 6384 } 6385 } else { 6386 if (queue == 0 && cbs_status[1]) { 6387 netdev_err(netdev, 6388 "Disabling CBS on queue0 before queue1\n"); 6389 return -EINVAL; 6390 } 6391 } 6392 6393 ring->cbs_enable = enable; 6394 ring->idleslope = idleslope; 6395 ring->sendslope = sendslope; 6396 ring->hicredit = hicredit; 6397 ring->locredit = locredit; 6398 6399 return 0; 6400 } 6401 6402 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 6403 struct tc_cbs_qopt_offload *qopt) 6404 { 6405 struct igc_hw *hw = &adapter->hw; 6406 int err; 6407 6408 if (hw->mac.type != igc_i225) 6409 return -EOPNOTSUPP; 6410 6411 if (qopt->queue < 0 || qopt->queue > 1) 6412 return -EINVAL; 6413 6414 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 6415 qopt->idleslope, qopt->sendslope, 6416 qopt->hicredit, qopt->locredit); 6417 if (err) 6418 return err; 6419 6420 return igc_tsn_offload_apply(adapter); 6421 } 6422 6423 static int igc_tc_query_caps(struct igc_adapter *adapter, 6424 struct tc_query_caps_base *base) 6425 { 6426 struct igc_hw *hw = &adapter->hw; 6427 6428 switch (base->type) { 6429 case TC_SETUP_QDISC_TAPRIO: { 6430 struct tc_taprio_caps *caps = base->caps; 6431 6432 caps->broken_mqprio = true; 6433 6434 if (hw->mac.type == igc_i225) { 6435 caps->supports_queue_max_sdu = true; 6436 caps->gate_mask_per_txq = true; 6437 } 6438 6439 return 0; 6440 } 6441 default: 6442 return -EOPNOTSUPP; 6443 } 6444 } 6445 6446 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6447 void *type_data) 6448 { 6449 struct igc_adapter *adapter = netdev_priv(dev); 6450 6451 adapter->tc_setup_type = type; 6452 6453 switch (type) { 6454 case TC_QUERY_CAPS: 6455 return igc_tc_query_caps(adapter, type_data); 6456 case TC_SETUP_QDISC_TAPRIO: 6457 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6458 6459 case TC_SETUP_QDISC_ETF: 6460 return igc_tsn_enable_launchtime(adapter, type_data); 6461 6462 case TC_SETUP_QDISC_CBS: 6463 return igc_tsn_enable_cbs(adapter, type_data); 6464 6465 default: 6466 return -EOPNOTSUPP; 6467 } 6468 } 6469 6470 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6471 { 6472 struct igc_adapter *adapter = netdev_priv(dev); 6473 6474 switch (bpf->command) { 6475 case XDP_SETUP_PROG: 6476 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6477 case XDP_SETUP_XSK_POOL: 6478 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6479 bpf->xsk.queue_id); 6480 default: 6481 return -EOPNOTSUPP; 6482 } 6483 } 6484 6485 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6486 struct xdp_frame **frames, u32 flags) 6487 { 6488 struct igc_adapter *adapter = netdev_priv(dev); 6489 int cpu = smp_processor_id(); 6490 struct netdev_queue *nq; 6491 struct igc_ring *ring; 6492 int i, nxmit; 6493 6494 if (unlikely(!netif_carrier_ok(dev))) 6495 return -ENETDOWN; 6496 6497 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6498 return -EINVAL; 6499 6500 ring = igc_xdp_get_tx_ring(adapter, cpu); 6501 nq = txring_txq(ring); 6502 6503 __netif_tx_lock(nq, cpu); 6504 6505 /* Avoid transmit queue timeout since we share it with the slow path */ 6506 txq_trans_cond_update(nq); 6507 6508 nxmit = 0; 6509 for (i = 0; i < num_frames; i++) { 6510 int err; 6511 struct xdp_frame *xdpf = frames[i]; 6512 6513 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6514 if (err) 6515 break; 6516 nxmit++; 6517 } 6518 6519 if (flags & XDP_XMIT_FLUSH) 6520 igc_flush_tx_descriptors(ring); 6521 6522 __netif_tx_unlock(nq); 6523 6524 return nxmit; 6525 } 6526 6527 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6528 struct igc_q_vector *q_vector) 6529 { 6530 struct igc_hw *hw = &adapter->hw; 6531 u32 eics = 0; 6532 6533 eics |= q_vector->eims_value; 6534 wr32(IGC_EICS, eics); 6535 } 6536 6537 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6538 { 6539 struct igc_adapter *adapter = netdev_priv(dev); 6540 struct igc_q_vector *q_vector; 6541 struct igc_ring *ring; 6542 6543 if (test_bit(__IGC_DOWN, &adapter->state)) 6544 return -ENETDOWN; 6545 6546 if (!igc_xdp_is_enabled(adapter)) 6547 return -ENXIO; 6548 6549 if (queue_id >= adapter->num_rx_queues) 6550 return -EINVAL; 6551 6552 ring = adapter->rx_ring[queue_id]; 6553 6554 if (!ring->xsk_pool) 6555 return -ENXIO; 6556 6557 q_vector = adapter->q_vector[queue_id]; 6558 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6559 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6560 6561 return 0; 6562 } 6563 6564 static const struct net_device_ops igc_netdev_ops = { 6565 .ndo_open = igc_open, 6566 .ndo_stop = igc_close, 6567 .ndo_start_xmit = igc_xmit_frame, 6568 .ndo_set_rx_mode = igc_set_rx_mode, 6569 .ndo_set_mac_address = igc_set_mac, 6570 .ndo_change_mtu = igc_change_mtu, 6571 .ndo_tx_timeout = igc_tx_timeout, 6572 .ndo_get_stats64 = igc_get_stats64, 6573 .ndo_fix_features = igc_fix_features, 6574 .ndo_set_features = igc_set_features, 6575 .ndo_features_check = igc_features_check, 6576 .ndo_eth_ioctl = igc_ioctl, 6577 .ndo_setup_tc = igc_setup_tc, 6578 .ndo_bpf = igc_bpf, 6579 .ndo_xdp_xmit = igc_xdp_xmit, 6580 .ndo_xsk_wakeup = igc_xsk_wakeup, 6581 }; 6582 6583 /* PCIe configuration access */ 6584 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6585 { 6586 struct igc_adapter *adapter = hw->back; 6587 6588 pci_read_config_word(adapter->pdev, reg, value); 6589 } 6590 6591 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6592 { 6593 struct igc_adapter *adapter = hw->back; 6594 6595 pci_write_config_word(adapter->pdev, reg, *value); 6596 } 6597 6598 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6599 { 6600 struct igc_adapter *adapter = hw->back; 6601 6602 if (!pci_is_pcie(adapter->pdev)) 6603 return -IGC_ERR_CONFIG; 6604 6605 pcie_capability_read_word(adapter->pdev, reg, value); 6606 6607 return IGC_SUCCESS; 6608 } 6609 6610 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6611 { 6612 struct igc_adapter *adapter = hw->back; 6613 6614 if (!pci_is_pcie(adapter->pdev)) 6615 return -IGC_ERR_CONFIG; 6616 6617 pcie_capability_write_word(adapter->pdev, reg, *value); 6618 6619 return IGC_SUCCESS; 6620 } 6621 6622 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6623 { 6624 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6625 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6626 u32 value = 0; 6627 6628 if (IGC_REMOVED(hw_addr)) 6629 return ~value; 6630 6631 value = readl(&hw_addr[reg]); 6632 6633 /* reads should not return all F's */ 6634 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6635 struct net_device *netdev = igc->netdev; 6636 6637 hw->hw_addr = NULL; 6638 netif_device_detach(netdev); 6639 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6640 WARN(pci_device_is_present(igc->pdev), 6641 "igc: Failed to read reg 0x%x!\n", reg); 6642 } 6643 6644 return value; 6645 } 6646 6647 /* Mapping HW RSS Type to enum xdp_rss_hash_type */ 6648 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = { 6649 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2, 6650 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP, 6651 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4, 6652 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP, 6653 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX, 6654 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6, 6655 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX, 6656 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP, 6657 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP, 6658 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX, 6659 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */ 6660 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */ 6661 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */ 6662 [13] = XDP_RSS_TYPE_NONE, 6663 [14] = XDP_RSS_TYPE_NONE, 6664 [15] = XDP_RSS_TYPE_NONE, 6665 }; 6666 6667 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash, 6668 enum xdp_rss_hash_type *rss_type) 6669 { 6670 const struct igc_xdp_buff *ctx = (void *)_ctx; 6671 6672 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH)) 6673 return -ENODATA; 6674 6675 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss); 6676 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)]; 6677 6678 return 0; 6679 } 6680 6681 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp) 6682 { 6683 const struct igc_xdp_buff *ctx = (void *)_ctx; 6684 6685 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) { 6686 *timestamp = ctx->rx_ts; 6687 6688 return 0; 6689 } 6690 6691 return -ENODATA; 6692 } 6693 6694 static const struct xdp_metadata_ops igc_xdp_metadata_ops = { 6695 .xmo_rx_hash = igc_xdp_rx_hash, 6696 .xmo_rx_timestamp = igc_xdp_rx_timestamp, 6697 }; 6698 6699 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer) 6700 { 6701 struct igc_adapter *adapter = container_of(timer, struct igc_adapter, 6702 hrtimer); 6703 unsigned long flags; 6704 unsigned int i; 6705 6706 spin_lock_irqsave(&adapter->qbv_tx_lock, flags); 6707 6708 adapter->qbv_transition = true; 6709 for (i = 0; i < adapter->num_tx_queues; i++) { 6710 struct igc_ring *tx_ring = adapter->tx_ring[i]; 6711 6712 if (tx_ring->admin_gate_closed) { 6713 tx_ring->admin_gate_closed = false; 6714 tx_ring->oper_gate_closed = true; 6715 } else { 6716 tx_ring->oper_gate_closed = false; 6717 } 6718 } 6719 adapter->qbv_transition = false; 6720 6721 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags); 6722 6723 return HRTIMER_NORESTART; 6724 } 6725 6726 /** 6727 * igc_probe - Device Initialization Routine 6728 * @pdev: PCI device information struct 6729 * @ent: entry in igc_pci_tbl 6730 * 6731 * Returns 0 on success, negative on failure 6732 * 6733 * igc_probe initializes an adapter identified by a pci_dev structure. 6734 * The OS initialization, configuring the adapter private structure, 6735 * and a hardware reset occur. 6736 */ 6737 static int igc_probe(struct pci_dev *pdev, 6738 const struct pci_device_id *ent) 6739 { 6740 struct igc_adapter *adapter; 6741 struct net_device *netdev; 6742 struct igc_hw *hw; 6743 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6744 int err; 6745 6746 err = pci_enable_device_mem(pdev); 6747 if (err) 6748 return err; 6749 6750 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6751 if (err) { 6752 dev_err(&pdev->dev, 6753 "No usable DMA configuration, aborting\n"); 6754 goto err_dma; 6755 } 6756 6757 err = pci_request_mem_regions(pdev, igc_driver_name); 6758 if (err) 6759 goto err_pci_reg; 6760 6761 err = pci_enable_ptm(pdev, NULL); 6762 if (err < 0) 6763 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6764 6765 pci_set_master(pdev); 6766 6767 err = -ENOMEM; 6768 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6769 IGC_MAX_TX_QUEUES); 6770 6771 if (!netdev) 6772 goto err_alloc_etherdev; 6773 6774 SET_NETDEV_DEV(netdev, &pdev->dev); 6775 6776 pci_set_drvdata(pdev, netdev); 6777 adapter = netdev_priv(netdev); 6778 adapter->netdev = netdev; 6779 adapter->pdev = pdev; 6780 hw = &adapter->hw; 6781 hw->back = adapter; 6782 adapter->port_num = hw->bus.func; 6783 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6784 6785 err = pci_save_state(pdev); 6786 if (err) 6787 goto err_ioremap; 6788 6789 err = -EIO; 6790 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6791 pci_resource_len(pdev, 0)); 6792 if (!adapter->io_addr) 6793 goto err_ioremap; 6794 6795 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6796 hw->hw_addr = adapter->io_addr; 6797 6798 netdev->netdev_ops = &igc_netdev_ops; 6799 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops; 6800 igc_ethtool_set_ops(netdev); 6801 netdev->watchdog_timeo = 5 * HZ; 6802 6803 netdev->mem_start = pci_resource_start(pdev, 0); 6804 netdev->mem_end = pci_resource_end(pdev, 0); 6805 6806 /* PCI config space info */ 6807 hw->vendor_id = pdev->vendor; 6808 hw->device_id = pdev->device; 6809 hw->revision_id = pdev->revision; 6810 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6811 hw->subsystem_device_id = pdev->subsystem_device; 6812 6813 /* Copy the default MAC and PHY function pointers */ 6814 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6815 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6816 6817 /* Initialize skew-specific constants */ 6818 err = ei->get_invariants(hw); 6819 if (err) 6820 goto err_sw_init; 6821 6822 /* Add supported features to the features list*/ 6823 netdev->features |= NETIF_F_SG; 6824 netdev->features |= NETIF_F_TSO; 6825 netdev->features |= NETIF_F_TSO6; 6826 netdev->features |= NETIF_F_TSO_ECN; 6827 netdev->features |= NETIF_F_RXHASH; 6828 netdev->features |= NETIF_F_RXCSUM; 6829 netdev->features |= NETIF_F_HW_CSUM; 6830 netdev->features |= NETIF_F_SCTP_CRC; 6831 netdev->features |= NETIF_F_HW_TC; 6832 6833 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6834 NETIF_F_GSO_GRE_CSUM | \ 6835 NETIF_F_GSO_IPXIP4 | \ 6836 NETIF_F_GSO_IPXIP6 | \ 6837 NETIF_F_GSO_UDP_TUNNEL | \ 6838 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6839 6840 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6841 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6842 6843 /* setup the private structure */ 6844 err = igc_sw_init(adapter); 6845 if (err) 6846 goto err_sw_init; 6847 6848 /* copy netdev features into list of user selectable features */ 6849 netdev->hw_features |= NETIF_F_NTUPLE; 6850 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6851 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6852 netdev->hw_features |= netdev->features; 6853 6854 netdev->features |= NETIF_F_HIGHDMA; 6855 6856 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6857 netdev->mpls_features |= NETIF_F_HW_CSUM; 6858 netdev->hw_enc_features |= netdev->vlan_features; 6859 6860 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 6861 NETDEV_XDP_ACT_XSK_ZEROCOPY; 6862 6863 /* MTU range: 68 - 9216 */ 6864 netdev->min_mtu = ETH_MIN_MTU; 6865 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6866 6867 /* before reading the NVM, reset the controller to put the device in a 6868 * known good starting state 6869 */ 6870 hw->mac.ops.reset_hw(hw); 6871 6872 if (igc_get_flash_presence_i225(hw)) { 6873 if (hw->nvm.ops.validate(hw) < 0) { 6874 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6875 err = -EIO; 6876 goto err_eeprom; 6877 } 6878 } 6879 6880 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6881 /* copy the MAC address out of the NVM */ 6882 if (hw->mac.ops.read_mac_addr(hw)) 6883 dev_err(&pdev->dev, "NVM Read Error\n"); 6884 } 6885 6886 eth_hw_addr_set(netdev, hw->mac.addr); 6887 6888 if (!is_valid_ether_addr(netdev->dev_addr)) { 6889 dev_err(&pdev->dev, "Invalid MAC Address\n"); 6890 err = -EIO; 6891 goto err_eeprom; 6892 } 6893 6894 /* configure RXPBSIZE and TXPBSIZE */ 6895 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 6896 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 6897 6898 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 6899 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 6900 6901 INIT_WORK(&adapter->reset_task, igc_reset_task); 6902 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 6903 6904 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6905 adapter->hrtimer.function = &igc_qbv_scheduling_timer; 6906 6907 /* Initialize link properties that are user-changeable */ 6908 adapter->fc_autoneg = true; 6909 hw->mac.autoneg = true; 6910 hw->phy.autoneg_advertised = 0xaf; 6911 6912 hw->fc.requested_mode = igc_fc_default; 6913 hw->fc.current_mode = igc_fc_default; 6914 6915 /* By default, support wake on port A */ 6916 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 6917 6918 /* initialize the wol settings based on the eeprom settings */ 6919 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 6920 adapter->wol |= IGC_WUFC_MAG; 6921 6922 device_set_wakeup_enable(&adapter->pdev->dev, 6923 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 6924 6925 igc_ptp_init(adapter); 6926 6927 igc_tsn_clear_schedule(adapter); 6928 6929 /* reset the hardware with the new settings */ 6930 igc_reset(adapter); 6931 6932 /* let the f/w know that the h/w is now under the control of the 6933 * driver. 6934 */ 6935 igc_get_hw_control(adapter); 6936 6937 strncpy(netdev->name, "eth%d", IFNAMSIZ); 6938 err = register_netdev(netdev); 6939 if (err) 6940 goto err_register; 6941 6942 /* carrier off reporting is important to ethtool even BEFORE open */ 6943 netif_carrier_off(netdev); 6944 6945 /* Check if Media Autosense is enabled */ 6946 adapter->ei = *ei; 6947 6948 /* print pcie link status and MAC address */ 6949 pcie_print_link_status(pdev); 6950 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 6951 6952 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 6953 /* Disable EEE for internal PHY devices */ 6954 hw->dev_spec._base.eee_enable = false; 6955 adapter->flags &= ~IGC_FLAG_EEE; 6956 igc_set_eee_i225(hw, false, false, false); 6957 6958 pm_runtime_put_noidle(&pdev->dev); 6959 6960 return 0; 6961 6962 err_register: 6963 igc_release_hw_control(adapter); 6964 err_eeprom: 6965 if (!igc_check_reset_block(hw)) 6966 igc_reset_phy(hw); 6967 err_sw_init: 6968 igc_clear_interrupt_scheme(adapter); 6969 iounmap(adapter->io_addr); 6970 err_ioremap: 6971 free_netdev(netdev); 6972 err_alloc_etherdev: 6973 pci_release_mem_regions(pdev); 6974 err_pci_reg: 6975 err_dma: 6976 pci_disable_device(pdev); 6977 return err; 6978 } 6979 6980 /** 6981 * igc_remove - Device Removal Routine 6982 * @pdev: PCI device information struct 6983 * 6984 * igc_remove is called by the PCI subsystem to alert the driver 6985 * that it should release a PCI device. This could be caused by a 6986 * Hot-Plug event, or because the driver is going to be removed from 6987 * memory. 6988 */ 6989 static void igc_remove(struct pci_dev *pdev) 6990 { 6991 struct net_device *netdev = pci_get_drvdata(pdev); 6992 struct igc_adapter *adapter = netdev_priv(netdev); 6993 6994 pm_runtime_get_noresume(&pdev->dev); 6995 6996 igc_flush_nfc_rules(adapter); 6997 6998 igc_ptp_stop(adapter); 6999 7000 pci_disable_ptm(pdev); 7001 pci_clear_master(pdev); 7002 7003 set_bit(__IGC_DOWN, &adapter->state); 7004 7005 del_timer_sync(&adapter->watchdog_timer); 7006 del_timer_sync(&adapter->phy_info_timer); 7007 7008 cancel_work_sync(&adapter->reset_task); 7009 cancel_work_sync(&adapter->watchdog_task); 7010 hrtimer_cancel(&adapter->hrtimer); 7011 7012 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7013 * would have already happened in close and is redundant. 7014 */ 7015 igc_release_hw_control(adapter); 7016 unregister_netdev(netdev); 7017 7018 igc_clear_interrupt_scheme(adapter); 7019 pci_iounmap(pdev, adapter->io_addr); 7020 pci_release_mem_regions(pdev); 7021 7022 free_netdev(netdev); 7023 7024 pci_disable_device(pdev); 7025 } 7026 7027 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 7028 bool runtime) 7029 { 7030 struct net_device *netdev = pci_get_drvdata(pdev); 7031 struct igc_adapter *adapter = netdev_priv(netdev); 7032 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 7033 struct igc_hw *hw = &adapter->hw; 7034 u32 ctrl, rctl, status; 7035 bool wake; 7036 7037 rtnl_lock(); 7038 netif_device_detach(netdev); 7039 7040 if (netif_running(netdev)) 7041 __igc_close(netdev, true); 7042 7043 igc_ptp_suspend(adapter); 7044 7045 igc_clear_interrupt_scheme(adapter); 7046 rtnl_unlock(); 7047 7048 status = rd32(IGC_STATUS); 7049 if (status & IGC_STATUS_LU) 7050 wufc &= ~IGC_WUFC_LNKC; 7051 7052 if (wufc) { 7053 igc_setup_rctl(adapter); 7054 igc_set_rx_mode(netdev); 7055 7056 /* turn on all-multi mode if wake on multicast is enabled */ 7057 if (wufc & IGC_WUFC_MC) { 7058 rctl = rd32(IGC_RCTL); 7059 rctl |= IGC_RCTL_MPE; 7060 wr32(IGC_RCTL, rctl); 7061 } 7062 7063 ctrl = rd32(IGC_CTRL); 7064 ctrl |= IGC_CTRL_ADVD3WUC; 7065 wr32(IGC_CTRL, ctrl); 7066 7067 /* Allow time for pending master requests to run */ 7068 igc_disable_pcie_master(hw); 7069 7070 wr32(IGC_WUC, IGC_WUC_PME_EN); 7071 wr32(IGC_WUFC, wufc); 7072 } else { 7073 wr32(IGC_WUC, 0); 7074 wr32(IGC_WUFC, 0); 7075 } 7076 7077 wake = wufc || adapter->en_mng_pt; 7078 if (!wake) 7079 igc_power_down_phy_copper_base(&adapter->hw); 7080 else 7081 igc_power_up_link(adapter); 7082 7083 if (enable_wake) 7084 *enable_wake = wake; 7085 7086 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7087 * would have already happened in close and is redundant. 7088 */ 7089 igc_release_hw_control(adapter); 7090 7091 pci_disable_device(pdev); 7092 7093 return 0; 7094 } 7095 7096 #ifdef CONFIG_PM 7097 static int __maybe_unused igc_runtime_suspend(struct device *dev) 7098 { 7099 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 7100 } 7101 7102 static void igc_deliver_wake_packet(struct net_device *netdev) 7103 { 7104 struct igc_adapter *adapter = netdev_priv(netdev); 7105 struct igc_hw *hw = &adapter->hw; 7106 struct sk_buff *skb; 7107 u32 wupl; 7108 7109 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 7110 7111 /* WUPM stores only the first 128 bytes of the wake packet. 7112 * Read the packet only if we have the whole thing. 7113 */ 7114 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 7115 return; 7116 7117 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 7118 if (!skb) 7119 return; 7120 7121 skb_put(skb, wupl); 7122 7123 /* Ensure reads are 32-bit aligned */ 7124 wupl = roundup(wupl, 4); 7125 7126 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 7127 7128 skb->protocol = eth_type_trans(skb, netdev); 7129 netif_rx(skb); 7130 } 7131 7132 static int __maybe_unused igc_resume(struct device *dev) 7133 { 7134 struct pci_dev *pdev = to_pci_dev(dev); 7135 struct net_device *netdev = pci_get_drvdata(pdev); 7136 struct igc_adapter *adapter = netdev_priv(netdev); 7137 struct igc_hw *hw = &adapter->hw; 7138 u32 err, val; 7139 7140 pci_set_power_state(pdev, PCI_D0); 7141 pci_restore_state(pdev); 7142 pci_save_state(pdev); 7143 7144 if (!pci_device_is_present(pdev)) 7145 return -ENODEV; 7146 err = pci_enable_device_mem(pdev); 7147 if (err) { 7148 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 7149 return err; 7150 } 7151 pci_set_master(pdev); 7152 7153 pci_enable_wake(pdev, PCI_D3hot, 0); 7154 pci_enable_wake(pdev, PCI_D3cold, 0); 7155 7156 if (igc_init_interrupt_scheme(adapter, true)) { 7157 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7158 return -ENOMEM; 7159 } 7160 7161 igc_reset(adapter); 7162 7163 /* let the f/w know that the h/w is now under the control of the 7164 * driver. 7165 */ 7166 igc_get_hw_control(adapter); 7167 7168 val = rd32(IGC_WUS); 7169 if (val & WAKE_PKT_WUS) 7170 igc_deliver_wake_packet(netdev); 7171 7172 wr32(IGC_WUS, ~0); 7173 7174 rtnl_lock(); 7175 if (!err && netif_running(netdev)) 7176 err = __igc_open(netdev, true); 7177 7178 if (!err) 7179 netif_device_attach(netdev); 7180 rtnl_unlock(); 7181 7182 return err; 7183 } 7184 7185 static int __maybe_unused igc_runtime_resume(struct device *dev) 7186 { 7187 return igc_resume(dev); 7188 } 7189 7190 static int __maybe_unused igc_suspend(struct device *dev) 7191 { 7192 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 7193 } 7194 7195 static int __maybe_unused igc_runtime_idle(struct device *dev) 7196 { 7197 struct net_device *netdev = dev_get_drvdata(dev); 7198 struct igc_adapter *adapter = netdev_priv(netdev); 7199 7200 if (!igc_has_link(adapter)) 7201 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7202 7203 return -EBUSY; 7204 } 7205 #endif /* CONFIG_PM */ 7206 7207 static void igc_shutdown(struct pci_dev *pdev) 7208 { 7209 bool wake; 7210 7211 __igc_shutdown(pdev, &wake, 0); 7212 7213 if (system_state == SYSTEM_POWER_OFF) { 7214 pci_wake_from_d3(pdev, wake); 7215 pci_set_power_state(pdev, PCI_D3hot); 7216 } 7217 } 7218 7219 /** 7220 * igc_io_error_detected - called when PCI error is detected 7221 * @pdev: Pointer to PCI device 7222 * @state: The current PCI connection state 7223 * 7224 * This function is called after a PCI bus error affecting 7225 * this device has been detected. 7226 **/ 7227 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 7228 pci_channel_state_t state) 7229 { 7230 struct net_device *netdev = pci_get_drvdata(pdev); 7231 struct igc_adapter *adapter = netdev_priv(netdev); 7232 7233 netif_device_detach(netdev); 7234 7235 if (state == pci_channel_io_perm_failure) 7236 return PCI_ERS_RESULT_DISCONNECT; 7237 7238 if (netif_running(netdev)) 7239 igc_down(adapter); 7240 pci_disable_device(pdev); 7241 7242 /* Request a slot reset. */ 7243 return PCI_ERS_RESULT_NEED_RESET; 7244 } 7245 7246 /** 7247 * igc_io_slot_reset - called after the PCI bus has been reset. 7248 * @pdev: Pointer to PCI device 7249 * 7250 * Restart the card from scratch, as if from a cold-boot. Implementation 7251 * resembles the first-half of the igc_resume routine. 7252 **/ 7253 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 7254 { 7255 struct net_device *netdev = pci_get_drvdata(pdev); 7256 struct igc_adapter *adapter = netdev_priv(netdev); 7257 struct igc_hw *hw = &adapter->hw; 7258 pci_ers_result_t result; 7259 7260 if (pci_enable_device_mem(pdev)) { 7261 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 7262 result = PCI_ERS_RESULT_DISCONNECT; 7263 } else { 7264 pci_set_master(pdev); 7265 pci_restore_state(pdev); 7266 pci_save_state(pdev); 7267 7268 pci_enable_wake(pdev, PCI_D3hot, 0); 7269 pci_enable_wake(pdev, PCI_D3cold, 0); 7270 7271 /* In case of PCI error, adapter loses its HW address 7272 * so we should re-assign it here. 7273 */ 7274 hw->hw_addr = adapter->io_addr; 7275 7276 igc_reset(adapter); 7277 wr32(IGC_WUS, ~0); 7278 result = PCI_ERS_RESULT_RECOVERED; 7279 } 7280 7281 return result; 7282 } 7283 7284 /** 7285 * igc_io_resume - called when traffic can start to flow again. 7286 * @pdev: Pointer to PCI device 7287 * 7288 * This callback is called when the error recovery driver tells us that 7289 * its OK to resume normal operation. Implementation resembles the 7290 * second-half of the igc_resume routine. 7291 */ 7292 static void igc_io_resume(struct pci_dev *pdev) 7293 { 7294 struct net_device *netdev = pci_get_drvdata(pdev); 7295 struct igc_adapter *adapter = netdev_priv(netdev); 7296 7297 rtnl_lock(); 7298 if (netif_running(netdev)) { 7299 if (igc_open(netdev)) { 7300 netdev_err(netdev, "igc_open failed after reset\n"); 7301 return; 7302 } 7303 } 7304 7305 netif_device_attach(netdev); 7306 7307 /* let the f/w know that the h/w is now under the control of the 7308 * driver. 7309 */ 7310 igc_get_hw_control(adapter); 7311 rtnl_unlock(); 7312 } 7313 7314 static const struct pci_error_handlers igc_err_handler = { 7315 .error_detected = igc_io_error_detected, 7316 .slot_reset = igc_io_slot_reset, 7317 .resume = igc_io_resume, 7318 }; 7319 7320 #ifdef CONFIG_PM 7321 static const struct dev_pm_ops igc_pm_ops = { 7322 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 7323 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 7324 igc_runtime_idle) 7325 }; 7326 #endif 7327 7328 static struct pci_driver igc_driver = { 7329 .name = igc_driver_name, 7330 .id_table = igc_pci_tbl, 7331 .probe = igc_probe, 7332 .remove = igc_remove, 7333 #ifdef CONFIG_PM 7334 .driver.pm = &igc_pm_ops, 7335 #endif 7336 .shutdown = igc_shutdown, 7337 .err_handler = &igc_err_handler, 7338 }; 7339 7340 /** 7341 * igc_reinit_queues - return error 7342 * @adapter: pointer to adapter structure 7343 */ 7344 int igc_reinit_queues(struct igc_adapter *adapter) 7345 { 7346 struct net_device *netdev = adapter->netdev; 7347 int err = 0; 7348 7349 if (netif_running(netdev)) 7350 igc_close(netdev); 7351 7352 igc_reset_interrupt_capability(adapter); 7353 7354 if (igc_init_interrupt_scheme(adapter, true)) { 7355 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7356 return -ENOMEM; 7357 } 7358 7359 if (netif_running(netdev)) 7360 err = igc_open(netdev); 7361 7362 return err; 7363 } 7364 7365 /** 7366 * igc_get_hw_dev - return device 7367 * @hw: pointer to hardware structure 7368 * 7369 * used by hardware layer to print debugging information 7370 */ 7371 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 7372 { 7373 struct igc_adapter *adapter = hw->back; 7374 7375 return adapter->netdev; 7376 } 7377 7378 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 7379 { 7380 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7381 u8 idx = ring->reg_idx; 7382 u32 rxdctl; 7383 7384 rxdctl = rd32(IGC_RXDCTL(idx)); 7385 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 7386 rxdctl |= IGC_RXDCTL_SWFLUSH; 7387 wr32(IGC_RXDCTL(idx), rxdctl); 7388 } 7389 7390 void igc_disable_rx_ring(struct igc_ring *ring) 7391 { 7392 igc_disable_rx_ring_hw(ring); 7393 igc_clean_rx_ring(ring); 7394 } 7395 7396 void igc_enable_rx_ring(struct igc_ring *ring) 7397 { 7398 struct igc_adapter *adapter = ring->q_vector->adapter; 7399 7400 igc_configure_rx_ring(adapter, ring); 7401 7402 if (ring->xsk_pool) 7403 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 7404 else 7405 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 7406 } 7407 7408 void igc_disable_tx_ring(struct igc_ring *ring) 7409 { 7410 igc_disable_tx_ring_hw(ring); 7411 igc_clean_tx_ring(ring); 7412 } 7413 7414 void igc_enable_tx_ring(struct igc_ring *ring) 7415 { 7416 struct igc_adapter *adapter = ring->q_vector->adapter; 7417 7418 igc_configure_tx_ring(adapter, ring); 7419 } 7420 7421 /** 7422 * igc_init_module - Driver Registration Routine 7423 * 7424 * igc_init_module is the first routine called when the driver is 7425 * loaded. All it does is register with the PCI subsystem. 7426 */ 7427 static int __init igc_init_module(void) 7428 { 7429 int ret; 7430 7431 pr_info("%s\n", igc_driver_string); 7432 pr_info("%s\n", igc_copyright); 7433 7434 ret = pci_register_driver(&igc_driver); 7435 return ret; 7436 } 7437 7438 module_init(igc_init_module); 7439 7440 /** 7441 * igc_exit_module - Driver Exit Cleanup Routine 7442 * 7443 * igc_exit_module is called just before the driver is removed 7444 * from memory. 7445 */ 7446 static void __exit igc_exit_module(void) 7447 { 7448 pci_unregister_driver(&igc_driver); 7449 } 7450 7451 module_exit(igc_exit_module); 7452 /* igc_main.c */ 7453