1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/tcp.h> 8 #include <linux/udp.h> 9 #include <linux/ip.h> 10 #include <linux/pm_runtime.h> 11 #include <net/pkt_sched.h> 12 #include <linux/bpf_trace.h> 13 #include <net/xdp_sock_drv.h> 14 #include <linux/pci.h> 15 16 #include <net/ipv6.h> 17 18 #include "igc.h" 19 #include "igc_hw.h" 20 #include "igc_tsn.h" 21 #include "igc_xdp.h" 22 23 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 24 25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 26 27 #define IGC_XDP_PASS 0 28 #define IGC_XDP_CONSUMED BIT(0) 29 #define IGC_XDP_TX BIT(1) 30 #define IGC_XDP_REDIRECT BIT(2) 31 32 static int debug = -1; 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 module_param(debug, int, 0); 38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 39 40 char igc_driver_name[] = "igc"; 41 static const char igc_driver_string[] = DRV_SUMMARY; 42 static const char igc_copyright[] = 43 "Copyright(c) 2018 Intel Corporation."; 44 45 static const struct igc_info *igc_info_tbl[] = { 46 [board_base] = &igc_base_info, 47 }; 48 49 static const struct pci_device_id igc_pci_tbl[] = { 50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 66 /* required last entry */ 67 {0, } 68 }; 69 70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 71 72 enum latency_range { 73 lowest_latency = 0, 74 low_latency = 1, 75 bulk_latency = 2, 76 latency_invalid = 255 77 }; 78 79 void igc_reset(struct igc_adapter *adapter) 80 { 81 struct net_device *dev = adapter->netdev; 82 struct igc_hw *hw = &adapter->hw; 83 struct igc_fc_info *fc = &hw->fc; 84 u32 pba, hwm; 85 86 /* Repartition PBA for greater than 9k MTU if required */ 87 pba = IGC_PBA_34K; 88 89 /* flow control settings 90 * The high water mark must be low enough to fit one full frame 91 * after transmitting the pause frame. As such we must have enough 92 * space to allow for us to complete our current transmit and then 93 * receive the frame that is in progress from the link partner. 94 * Set it to: 95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 96 */ 97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 98 99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 100 fc->low_water = fc->high_water - 16; 101 fc->pause_time = 0xFFFF; 102 fc->send_xon = 1; 103 fc->current_mode = fc->requested_mode; 104 105 hw->mac.ops.reset_hw(hw); 106 107 if (hw->mac.ops.init_hw(hw)) 108 netdev_err(dev, "Error on hardware initialization\n"); 109 110 /* Re-establish EEE setting */ 111 igc_set_eee_i225(hw, true, true, true); 112 113 if (!netif_running(adapter->netdev)) 114 igc_power_down_phy_copper_base(&adapter->hw); 115 116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 117 wr32(IGC_VET, ETH_P_8021Q); 118 119 /* Re-enable PTP, where applicable. */ 120 igc_ptp_reset(adapter); 121 122 /* Re-enable TSN offloading, where applicable. */ 123 igc_tsn_reset(adapter); 124 125 igc_get_phy_info(hw); 126 } 127 128 /** 129 * igc_power_up_link - Power up the phy link 130 * @adapter: address of board private structure 131 */ 132 static void igc_power_up_link(struct igc_adapter *adapter) 133 { 134 igc_reset_phy(&adapter->hw); 135 136 igc_power_up_phy_copper(&adapter->hw); 137 138 igc_setup_link(&adapter->hw); 139 } 140 141 /** 142 * igc_release_hw_control - release control of the h/w to f/w 143 * @adapter: address of board private structure 144 * 145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 146 * For ASF and Pass Through versions of f/w this means that the 147 * driver is no longer loaded. 148 */ 149 static void igc_release_hw_control(struct igc_adapter *adapter) 150 { 151 struct igc_hw *hw = &adapter->hw; 152 u32 ctrl_ext; 153 154 if (!pci_device_is_present(adapter->pdev)) 155 return; 156 157 /* Let firmware take over control of h/w */ 158 ctrl_ext = rd32(IGC_CTRL_EXT); 159 wr32(IGC_CTRL_EXT, 160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 161 } 162 163 /** 164 * igc_get_hw_control - get control of the h/w from f/w 165 * @adapter: address of board private structure 166 * 167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 168 * For ASF and Pass Through versions of f/w this means that 169 * the driver is loaded. 170 */ 171 static void igc_get_hw_control(struct igc_adapter *adapter) 172 { 173 struct igc_hw *hw = &adapter->hw; 174 u32 ctrl_ext; 175 176 /* Let firmware know the driver has taken over */ 177 ctrl_ext = rd32(IGC_CTRL_EXT); 178 wr32(IGC_CTRL_EXT, 179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 180 } 181 182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 183 { 184 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 185 dma_unmap_len(buf, len), DMA_TO_DEVICE); 186 187 dma_unmap_len_set(buf, len, 0); 188 } 189 190 /** 191 * igc_clean_tx_ring - Free Tx Buffers 192 * @tx_ring: ring to be cleaned 193 */ 194 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 195 { 196 u16 i = tx_ring->next_to_clean; 197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 198 u32 xsk_frames = 0; 199 200 while (i != tx_ring->next_to_use) { 201 union igc_adv_tx_desc *eop_desc, *tx_desc; 202 203 switch (tx_buffer->type) { 204 case IGC_TX_BUFFER_TYPE_XSK: 205 xsk_frames++; 206 break; 207 case IGC_TX_BUFFER_TYPE_XDP: 208 xdp_return_frame(tx_buffer->xdpf); 209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 210 break; 211 case IGC_TX_BUFFER_TYPE_SKB: 212 dev_kfree_skb_any(tx_buffer->skb); 213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 214 break; 215 default: 216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 217 break; 218 } 219 220 /* check for eop_desc to determine the end of the packet */ 221 eop_desc = tx_buffer->next_to_watch; 222 tx_desc = IGC_TX_DESC(tx_ring, i); 223 224 /* unmap remaining buffers */ 225 while (tx_desc != eop_desc) { 226 tx_buffer++; 227 tx_desc++; 228 i++; 229 if (unlikely(i == tx_ring->count)) { 230 i = 0; 231 tx_buffer = tx_ring->tx_buffer_info; 232 tx_desc = IGC_TX_DESC(tx_ring, 0); 233 } 234 235 /* unmap any remaining paged data */ 236 if (dma_unmap_len(tx_buffer, len)) 237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 238 } 239 240 tx_buffer->next_to_watch = NULL; 241 242 /* move us one more past the eop_desc for start of next pkt */ 243 tx_buffer++; 244 i++; 245 if (unlikely(i == tx_ring->count)) { 246 i = 0; 247 tx_buffer = tx_ring->tx_buffer_info; 248 } 249 } 250 251 if (tx_ring->xsk_pool && xsk_frames) 252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 253 254 /* reset BQL for queue */ 255 netdev_tx_reset_queue(txring_txq(tx_ring)); 256 257 /* reset next_to_use and next_to_clean */ 258 tx_ring->next_to_use = 0; 259 tx_ring->next_to_clean = 0; 260 } 261 262 /** 263 * igc_free_tx_resources - Free Tx Resources per Queue 264 * @tx_ring: Tx descriptor ring for a specific queue 265 * 266 * Free all transmit software resources 267 */ 268 void igc_free_tx_resources(struct igc_ring *tx_ring) 269 { 270 igc_clean_tx_ring(tx_ring); 271 272 vfree(tx_ring->tx_buffer_info); 273 tx_ring->tx_buffer_info = NULL; 274 275 /* if not set, then don't free */ 276 if (!tx_ring->desc) 277 return; 278 279 dma_free_coherent(tx_ring->dev, tx_ring->size, 280 tx_ring->desc, tx_ring->dma); 281 282 tx_ring->desc = NULL; 283 } 284 285 /** 286 * igc_free_all_tx_resources - Free Tx Resources for All Queues 287 * @adapter: board private structure 288 * 289 * Free all transmit software resources 290 */ 291 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 292 { 293 int i; 294 295 for (i = 0; i < adapter->num_tx_queues; i++) 296 igc_free_tx_resources(adapter->tx_ring[i]); 297 } 298 299 /** 300 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 301 * @adapter: board private structure 302 */ 303 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 304 { 305 int i; 306 307 for (i = 0; i < adapter->num_tx_queues; i++) 308 if (adapter->tx_ring[i]) 309 igc_clean_tx_ring(adapter->tx_ring[i]); 310 } 311 312 /** 313 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 314 * @tx_ring: tx descriptor ring (for a specific queue) to setup 315 * 316 * Return 0 on success, negative on failure 317 */ 318 int igc_setup_tx_resources(struct igc_ring *tx_ring) 319 { 320 struct net_device *ndev = tx_ring->netdev; 321 struct device *dev = tx_ring->dev; 322 int size = 0; 323 324 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 325 tx_ring->tx_buffer_info = vzalloc(size); 326 if (!tx_ring->tx_buffer_info) 327 goto err; 328 329 /* round up to nearest 4K */ 330 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 331 tx_ring->size = ALIGN(tx_ring->size, 4096); 332 333 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 334 &tx_ring->dma, GFP_KERNEL); 335 336 if (!tx_ring->desc) 337 goto err; 338 339 tx_ring->next_to_use = 0; 340 tx_ring->next_to_clean = 0; 341 342 return 0; 343 344 err: 345 vfree(tx_ring->tx_buffer_info); 346 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 347 return -ENOMEM; 348 } 349 350 /** 351 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 352 * @adapter: board private structure 353 * 354 * Return 0 on success, negative on failure 355 */ 356 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 357 { 358 struct net_device *dev = adapter->netdev; 359 int i, err = 0; 360 361 for (i = 0; i < adapter->num_tx_queues; i++) { 362 err = igc_setup_tx_resources(adapter->tx_ring[i]); 363 if (err) { 364 netdev_err(dev, "Error on Tx queue %u setup\n", i); 365 for (i--; i >= 0; i--) 366 igc_free_tx_resources(adapter->tx_ring[i]); 367 break; 368 } 369 } 370 371 return err; 372 } 373 374 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 375 { 376 u16 i = rx_ring->next_to_clean; 377 378 dev_kfree_skb(rx_ring->skb); 379 rx_ring->skb = NULL; 380 381 /* Free all the Rx ring sk_buffs */ 382 while (i != rx_ring->next_to_alloc) { 383 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 384 385 /* Invalidate cache lines that may have been written to by 386 * device so that we avoid corrupting memory. 387 */ 388 dma_sync_single_range_for_cpu(rx_ring->dev, 389 buffer_info->dma, 390 buffer_info->page_offset, 391 igc_rx_bufsz(rx_ring), 392 DMA_FROM_DEVICE); 393 394 /* free resources associated with mapping */ 395 dma_unmap_page_attrs(rx_ring->dev, 396 buffer_info->dma, 397 igc_rx_pg_size(rx_ring), 398 DMA_FROM_DEVICE, 399 IGC_RX_DMA_ATTR); 400 __page_frag_cache_drain(buffer_info->page, 401 buffer_info->pagecnt_bias); 402 403 i++; 404 if (i == rx_ring->count) 405 i = 0; 406 } 407 } 408 409 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 410 { 411 struct igc_rx_buffer *bi; 412 u16 i; 413 414 for (i = 0; i < ring->count; i++) { 415 bi = &ring->rx_buffer_info[i]; 416 if (!bi->xdp) 417 continue; 418 419 xsk_buff_free(bi->xdp); 420 bi->xdp = NULL; 421 } 422 } 423 424 /** 425 * igc_clean_rx_ring - Free Rx Buffers per Queue 426 * @ring: ring to free buffers from 427 */ 428 static void igc_clean_rx_ring(struct igc_ring *ring) 429 { 430 if (ring->xsk_pool) 431 igc_clean_rx_ring_xsk_pool(ring); 432 else 433 igc_clean_rx_ring_page_shared(ring); 434 435 clear_ring_uses_large_buffer(ring); 436 437 ring->next_to_alloc = 0; 438 ring->next_to_clean = 0; 439 ring->next_to_use = 0; 440 } 441 442 /** 443 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 444 * @adapter: board private structure 445 */ 446 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 447 { 448 int i; 449 450 for (i = 0; i < adapter->num_rx_queues; i++) 451 if (adapter->rx_ring[i]) 452 igc_clean_rx_ring(adapter->rx_ring[i]); 453 } 454 455 /** 456 * igc_free_rx_resources - Free Rx Resources 457 * @rx_ring: ring to clean the resources from 458 * 459 * Free all receive software resources 460 */ 461 void igc_free_rx_resources(struct igc_ring *rx_ring) 462 { 463 igc_clean_rx_ring(rx_ring); 464 465 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 466 467 vfree(rx_ring->rx_buffer_info); 468 rx_ring->rx_buffer_info = NULL; 469 470 /* if not set, then don't free */ 471 if (!rx_ring->desc) 472 return; 473 474 dma_free_coherent(rx_ring->dev, rx_ring->size, 475 rx_ring->desc, rx_ring->dma); 476 477 rx_ring->desc = NULL; 478 } 479 480 /** 481 * igc_free_all_rx_resources - Free Rx Resources for All Queues 482 * @adapter: board private structure 483 * 484 * Free all receive software resources 485 */ 486 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 487 { 488 int i; 489 490 for (i = 0; i < adapter->num_rx_queues; i++) 491 igc_free_rx_resources(adapter->rx_ring[i]); 492 } 493 494 /** 495 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 496 * @rx_ring: rx descriptor ring (for a specific queue) to setup 497 * 498 * Returns 0 on success, negative on failure 499 */ 500 int igc_setup_rx_resources(struct igc_ring *rx_ring) 501 { 502 struct net_device *ndev = rx_ring->netdev; 503 struct device *dev = rx_ring->dev; 504 u8 index = rx_ring->queue_index; 505 int size, desc_len, res; 506 507 /* XDP RX-queue info */ 508 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 509 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 510 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 511 rx_ring->q_vector->napi.napi_id); 512 if (res < 0) { 513 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 514 index); 515 return res; 516 } 517 518 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 519 rx_ring->rx_buffer_info = vzalloc(size); 520 if (!rx_ring->rx_buffer_info) 521 goto err; 522 523 desc_len = sizeof(union igc_adv_rx_desc); 524 525 /* Round up to nearest 4K */ 526 rx_ring->size = rx_ring->count * desc_len; 527 rx_ring->size = ALIGN(rx_ring->size, 4096); 528 529 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 530 &rx_ring->dma, GFP_KERNEL); 531 532 if (!rx_ring->desc) 533 goto err; 534 535 rx_ring->next_to_alloc = 0; 536 rx_ring->next_to_clean = 0; 537 rx_ring->next_to_use = 0; 538 539 return 0; 540 541 err: 542 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 543 vfree(rx_ring->rx_buffer_info); 544 rx_ring->rx_buffer_info = NULL; 545 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 546 return -ENOMEM; 547 } 548 549 /** 550 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 551 * (Descriptors) for all queues 552 * @adapter: board private structure 553 * 554 * Return 0 on success, negative on failure 555 */ 556 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 557 { 558 struct net_device *dev = adapter->netdev; 559 int i, err = 0; 560 561 for (i = 0; i < adapter->num_rx_queues; i++) { 562 err = igc_setup_rx_resources(adapter->rx_ring[i]); 563 if (err) { 564 netdev_err(dev, "Error on Rx queue %u setup\n", i); 565 for (i--; i >= 0; i--) 566 igc_free_rx_resources(adapter->rx_ring[i]); 567 break; 568 } 569 } 570 571 return err; 572 } 573 574 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 575 struct igc_ring *ring) 576 { 577 if (!igc_xdp_is_enabled(adapter) || 578 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 579 return NULL; 580 581 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 582 } 583 584 /** 585 * igc_configure_rx_ring - Configure a receive ring after Reset 586 * @adapter: board private structure 587 * @ring: receive ring to be configured 588 * 589 * Configure the Rx unit of the MAC after a reset. 590 */ 591 static void igc_configure_rx_ring(struct igc_adapter *adapter, 592 struct igc_ring *ring) 593 { 594 struct igc_hw *hw = &adapter->hw; 595 union igc_adv_rx_desc *rx_desc; 596 int reg_idx = ring->reg_idx; 597 u32 srrctl = 0, rxdctl = 0; 598 u64 rdba = ring->dma; 599 u32 buf_size; 600 601 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 602 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 603 if (ring->xsk_pool) { 604 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 605 MEM_TYPE_XSK_BUFF_POOL, 606 NULL)); 607 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 608 } else { 609 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 610 MEM_TYPE_PAGE_SHARED, 611 NULL)); 612 } 613 614 if (igc_xdp_is_enabled(adapter)) 615 set_ring_uses_large_buffer(ring); 616 617 /* disable the queue */ 618 wr32(IGC_RXDCTL(reg_idx), 0); 619 620 /* Set DMA base address registers */ 621 wr32(IGC_RDBAL(reg_idx), 622 rdba & 0x00000000ffffffffULL); 623 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 624 wr32(IGC_RDLEN(reg_idx), 625 ring->count * sizeof(union igc_adv_rx_desc)); 626 627 /* initialize head and tail */ 628 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 629 wr32(IGC_RDH(reg_idx), 0); 630 writel(0, ring->tail); 631 632 /* reset next-to- use/clean to place SW in sync with hardware */ 633 ring->next_to_clean = 0; 634 ring->next_to_use = 0; 635 636 if (ring->xsk_pool) 637 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 638 else if (ring_uses_large_buffer(ring)) 639 buf_size = IGC_RXBUFFER_3072; 640 else 641 buf_size = IGC_RXBUFFER_2048; 642 643 srrctl = rd32(IGC_SRRCTL(reg_idx)); 644 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK | 645 IGC_SRRCTL_DESCTYPE_MASK); 646 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN); 647 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size); 648 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 649 650 wr32(IGC_SRRCTL(reg_idx), srrctl); 651 652 rxdctl |= IGC_RX_PTHRESH; 653 rxdctl |= IGC_RX_HTHRESH << 8; 654 rxdctl |= IGC_RX_WTHRESH << 16; 655 656 /* initialize rx_buffer_info */ 657 memset(ring->rx_buffer_info, 0, 658 sizeof(struct igc_rx_buffer) * ring->count); 659 660 /* initialize Rx descriptor 0 */ 661 rx_desc = IGC_RX_DESC(ring, 0); 662 rx_desc->wb.upper.length = 0; 663 664 /* enable receive descriptor fetching */ 665 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 666 667 wr32(IGC_RXDCTL(reg_idx), rxdctl); 668 } 669 670 /** 671 * igc_configure_rx - Configure receive Unit after Reset 672 * @adapter: board private structure 673 * 674 * Configure the Rx unit of the MAC after a reset. 675 */ 676 static void igc_configure_rx(struct igc_adapter *adapter) 677 { 678 int i; 679 680 /* Setup the HW Rx Head and Tail Descriptor Pointers and 681 * the Base and Length of the Rx Descriptor Ring 682 */ 683 for (i = 0; i < adapter->num_rx_queues; i++) 684 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 685 } 686 687 /** 688 * igc_configure_tx_ring - Configure transmit ring after Reset 689 * @adapter: board private structure 690 * @ring: tx ring to configure 691 * 692 * Configure a transmit ring after a reset. 693 */ 694 static void igc_configure_tx_ring(struct igc_adapter *adapter, 695 struct igc_ring *ring) 696 { 697 struct igc_hw *hw = &adapter->hw; 698 int reg_idx = ring->reg_idx; 699 u64 tdba = ring->dma; 700 u32 txdctl = 0; 701 702 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 703 704 /* disable the queue */ 705 wr32(IGC_TXDCTL(reg_idx), 0); 706 wrfl(); 707 mdelay(10); 708 709 wr32(IGC_TDLEN(reg_idx), 710 ring->count * sizeof(union igc_adv_tx_desc)); 711 wr32(IGC_TDBAL(reg_idx), 712 tdba & 0x00000000ffffffffULL); 713 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 714 715 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 716 wr32(IGC_TDH(reg_idx), 0); 717 writel(0, ring->tail); 718 719 txdctl |= IGC_TX_PTHRESH; 720 txdctl |= IGC_TX_HTHRESH << 8; 721 txdctl |= IGC_TX_WTHRESH << 16; 722 723 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 724 wr32(IGC_TXDCTL(reg_idx), txdctl); 725 } 726 727 /** 728 * igc_configure_tx - Configure transmit Unit after Reset 729 * @adapter: board private structure 730 * 731 * Configure the Tx unit of the MAC after a reset. 732 */ 733 static void igc_configure_tx(struct igc_adapter *adapter) 734 { 735 int i; 736 737 for (i = 0; i < adapter->num_tx_queues; i++) 738 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 739 } 740 741 /** 742 * igc_setup_mrqc - configure the multiple receive queue control registers 743 * @adapter: Board private structure 744 */ 745 static void igc_setup_mrqc(struct igc_adapter *adapter) 746 { 747 struct igc_hw *hw = &adapter->hw; 748 u32 j, num_rx_queues; 749 u32 mrqc, rxcsum; 750 u32 rss_key[10]; 751 752 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 753 for (j = 0; j < 10; j++) 754 wr32(IGC_RSSRK(j), rss_key[j]); 755 756 num_rx_queues = adapter->rss_queues; 757 758 if (adapter->rss_indir_tbl_init != num_rx_queues) { 759 for (j = 0; j < IGC_RETA_SIZE; j++) 760 adapter->rss_indir_tbl[j] = 761 (j * num_rx_queues) / IGC_RETA_SIZE; 762 adapter->rss_indir_tbl_init = num_rx_queues; 763 } 764 igc_write_rss_indir_tbl(adapter); 765 766 /* Disable raw packet checksumming so that RSS hash is placed in 767 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 768 * offloads as they are enabled by default 769 */ 770 rxcsum = rd32(IGC_RXCSUM); 771 rxcsum |= IGC_RXCSUM_PCSD; 772 773 /* Enable Receive Checksum Offload for SCTP */ 774 rxcsum |= IGC_RXCSUM_CRCOFL; 775 776 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 777 wr32(IGC_RXCSUM, rxcsum); 778 779 /* Generate RSS hash based on packet types, TCP/UDP 780 * port numbers and/or IPv4/v6 src and dst addresses 781 */ 782 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 783 IGC_MRQC_RSS_FIELD_IPV4_TCP | 784 IGC_MRQC_RSS_FIELD_IPV6 | 785 IGC_MRQC_RSS_FIELD_IPV6_TCP | 786 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 787 788 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 789 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 790 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 791 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 792 793 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 794 795 wr32(IGC_MRQC, mrqc); 796 } 797 798 /** 799 * igc_setup_rctl - configure the receive control registers 800 * @adapter: Board private structure 801 */ 802 static void igc_setup_rctl(struct igc_adapter *adapter) 803 { 804 struct igc_hw *hw = &adapter->hw; 805 u32 rctl; 806 807 rctl = rd32(IGC_RCTL); 808 809 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 810 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 811 812 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 813 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 814 815 /* enable stripping of CRC. Newer features require 816 * that the HW strips the CRC. 817 */ 818 rctl |= IGC_RCTL_SECRC; 819 820 /* disable store bad packets and clear size bits. */ 821 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 822 823 /* enable LPE to allow for reception of jumbo frames */ 824 rctl |= IGC_RCTL_LPE; 825 826 /* disable queue 0 to prevent tail write w/o re-config */ 827 wr32(IGC_RXDCTL(0), 0); 828 829 /* This is useful for sniffing bad packets. */ 830 if (adapter->netdev->features & NETIF_F_RXALL) { 831 /* UPE and MPE will be handled by normal PROMISC logic 832 * in set_rx_mode 833 */ 834 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 835 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 836 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 837 838 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 839 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 840 } 841 842 wr32(IGC_RCTL, rctl); 843 } 844 845 /** 846 * igc_setup_tctl - configure the transmit control registers 847 * @adapter: Board private structure 848 */ 849 static void igc_setup_tctl(struct igc_adapter *adapter) 850 { 851 struct igc_hw *hw = &adapter->hw; 852 u32 tctl; 853 854 /* disable queue 0 which icould be enabled by default */ 855 wr32(IGC_TXDCTL(0), 0); 856 857 /* Program the Transmit Control Register */ 858 tctl = rd32(IGC_TCTL); 859 tctl &= ~IGC_TCTL_CT; 860 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 861 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 862 863 /* Enable transmits */ 864 tctl |= IGC_TCTL_EN; 865 866 wr32(IGC_TCTL, tctl); 867 } 868 869 /** 870 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 871 * @adapter: Pointer to adapter where the filter should be set 872 * @index: Filter index 873 * @type: MAC address filter type (source or destination) 874 * @addr: MAC address 875 * @queue: If non-negative, queue assignment feature is enabled and frames 876 * matching the filter are enqueued onto 'queue'. Otherwise, queue 877 * assignment is disabled. 878 */ 879 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 880 enum igc_mac_filter_type type, 881 const u8 *addr, int queue) 882 { 883 struct net_device *dev = adapter->netdev; 884 struct igc_hw *hw = &adapter->hw; 885 u32 ral, rah; 886 887 if (WARN_ON(index >= hw->mac.rar_entry_count)) 888 return; 889 890 ral = le32_to_cpup((__le32 *)(addr)); 891 rah = le16_to_cpup((__le16 *)(addr + 4)); 892 893 if (type == IGC_MAC_FILTER_TYPE_SRC) { 894 rah &= ~IGC_RAH_ASEL_MASK; 895 rah |= IGC_RAH_ASEL_SRC_ADDR; 896 } 897 898 if (queue >= 0) { 899 rah &= ~IGC_RAH_QSEL_MASK; 900 rah |= (queue << IGC_RAH_QSEL_SHIFT); 901 rah |= IGC_RAH_QSEL_ENABLE; 902 } 903 904 rah |= IGC_RAH_AV; 905 906 wr32(IGC_RAL(index), ral); 907 wr32(IGC_RAH(index), rah); 908 909 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 910 } 911 912 /** 913 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 914 * @adapter: Pointer to adapter where the filter should be cleared 915 * @index: Filter index 916 */ 917 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 918 { 919 struct net_device *dev = adapter->netdev; 920 struct igc_hw *hw = &adapter->hw; 921 922 if (WARN_ON(index >= hw->mac.rar_entry_count)) 923 return; 924 925 wr32(IGC_RAL(index), 0); 926 wr32(IGC_RAH(index), 0); 927 928 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 929 } 930 931 /* Set default MAC address for the PF in the first RAR entry */ 932 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 933 { 934 struct net_device *dev = adapter->netdev; 935 u8 *addr = adapter->hw.mac.addr; 936 937 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 938 939 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 940 } 941 942 /** 943 * igc_set_mac - Change the Ethernet Address of the NIC 944 * @netdev: network interface device structure 945 * @p: pointer to an address structure 946 * 947 * Returns 0 on success, negative on failure 948 */ 949 static int igc_set_mac(struct net_device *netdev, void *p) 950 { 951 struct igc_adapter *adapter = netdev_priv(netdev); 952 struct igc_hw *hw = &adapter->hw; 953 struct sockaddr *addr = p; 954 955 if (!is_valid_ether_addr(addr->sa_data)) 956 return -EADDRNOTAVAIL; 957 958 eth_hw_addr_set(netdev, addr->sa_data); 959 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 960 961 /* set the correct pool for the new PF MAC address in entry 0 */ 962 igc_set_default_mac_filter(adapter); 963 964 return 0; 965 } 966 967 /** 968 * igc_write_mc_addr_list - write multicast addresses to MTA 969 * @netdev: network interface device structure 970 * 971 * Writes multicast address list to the MTA hash table. 972 * Returns: -ENOMEM on failure 973 * 0 on no addresses written 974 * X on writing X addresses to MTA 975 **/ 976 static int igc_write_mc_addr_list(struct net_device *netdev) 977 { 978 struct igc_adapter *adapter = netdev_priv(netdev); 979 struct igc_hw *hw = &adapter->hw; 980 struct netdev_hw_addr *ha; 981 u8 *mta_list; 982 int i; 983 984 if (netdev_mc_empty(netdev)) { 985 /* nothing to program, so clear mc list */ 986 igc_update_mc_addr_list(hw, NULL, 0); 987 return 0; 988 } 989 990 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 991 if (!mta_list) 992 return -ENOMEM; 993 994 /* The shared function expects a packed array of only addresses. */ 995 i = 0; 996 netdev_for_each_mc_addr(ha, netdev) 997 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 998 999 igc_update_mc_addr_list(hw, mta_list, i); 1000 kfree(mta_list); 1001 1002 return netdev_mc_count(netdev); 1003 } 1004 1005 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime, 1006 bool *first_flag, bool *insert_empty) 1007 { 1008 struct igc_adapter *adapter = netdev_priv(ring->netdev); 1009 ktime_t cycle_time = adapter->cycle_time; 1010 ktime_t base_time = adapter->base_time; 1011 ktime_t now = ktime_get_clocktai(); 1012 ktime_t baset_est, end_of_cycle; 1013 u32 launchtime; 1014 s64 n; 1015 1016 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time); 1017 1018 baset_est = ktime_add_ns(base_time, cycle_time * (n)); 1019 end_of_cycle = ktime_add_ns(baset_est, cycle_time); 1020 1021 if (ktime_compare(txtime, end_of_cycle) >= 0) { 1022 if (baset_est != ring->last_ff_cycle) { 1023 *first_flag = true; 1024 ring->last_ff_cycle = baset_est; 1025 1026 if (ktime_compare(txtime, ring->last_tx_cycle) > 0) 1027 *insert_empty = true; 1028 } 1029 } 1030 1031 /* Introducing a window at end of cycle on which packets 1032 * potentially not honor launchtime. Window of 5us chosen 1033 * considering software update the tail pointer and packets 1034 * are dma'ed to packet buffer. 1035 */ 1036 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC)) 1037 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n", 1038 txtime); 1039 1040 ring->last_tx_cycle = end_of_cycle; 1041 1042 launchtime = ktime_sub_ns(txtime, baset_est); 1043 if (launchtime > 0) 1044 div_s64_rem(launchtime, cycle_time, &launchtime); 1045 else 1046 launchtime = 0; 1047 1048 return cpu_to_le32(launchtime); 1049 } 1050 1051 static int igc_init_empty_frame(struct igc_ring *ring, 1052 struct igc_tx_buffer *buffer, 1053 struct sk_buff *skb) 1054 { 1055 unsigned int size; 1056 dma_addr_t dma; 1057 1058 size = skb_headlen(skb); 1059 1060 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE); 1061 if (dma_mapping_error(ring->dev, dma)) { 1062 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 1063 return -ENOMEM; 1064 } 1065 1066 buffer->skb = skb; 1067 buffer->protocol = 0; 1068 buffer->bytecount = skb->len; 1069 buffer->gso_segs = 1; 1070 buffer->time_stamp = jiffies; 1071 dma_unmap_len_set(buffer, len, skb->len); 1072 dma_unmap_addr_set(buffer, dma, dma); 1073 1074 return 0; 1075 } 1076 1077 static int igc_init_tx_empty_descriptor(struct igc_ring *ring, 1078 struct sk_buff *skb, 1079 struct igc_tx_buffer *first) 1080 { 1081 union igc_adv_tx_desc *desc; 1082 u32 cmd_type, olinfo_status; 1083 int err; 1084 1085 if (!igc_desc_unused(ring)) 1086 return -EBUSY; 1087 1088 err = igc_init_empty_frame(ring, first, skb); 1089 if (err) 1090 return err; 1091 1092 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 1093 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 1094 first->bytecount; 1095 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 1096 1097 desc = IGC_TX_DESC(ring, ring->next_to_use); 1098 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1099 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1100 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma)); 1101 1102 netdev_tx_sent_queue(txring_txq(ring), skb->len); 1103 1104 first->next_to_watch = desc; 1105 1106 ring->next_to_use++; 1107 if (ring->next_to_use == ring->count) 1108 ring->next_to_use = 0; 1109 1110 return 0; 1111 } 1112 1113 #define IGC_EMPTY_FRAME_SIZE 60 1114 1115 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1116 __le32 launch_time, bool first_flag, 1117 u32 vlan_macip_lens, u32 type_tucmd, 1118 u32 mss_l4len_idx) 1119 { 1120 struct igc_adv_tx_context_desc *context_desc; 1121 u16 i = tx_ring->next_to_use; 1122 1123 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1124 1125 i++; 1126 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1127 1128 /* set bits to identify this as an advanced context descriptor */ 1129 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1130 1131 /* For i225, context index must be unique per ring. */ 1132 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1133 mss_l4len_idx |= tx_ring->reg_idx << 4; 1134 1135 if (first_flag) 1136 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST; 1137 1138 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1139 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1140 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1141 context_desc->launch_time = launch_time; 1142 } 1143 1144 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first, 1145 __le32 launch_time, bool first_flag) 1146 { 1147 struct sk_buff *skb = first->skb; 1148 u32 vlan_macip_lens = 0; 1149 u32 type_tucmd = 0; 1150 1151 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1152 csum_failed: 1153 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1154 !tx_ring->launchtime_enable) 1155 return; 1156 goto no_csum; 1157 } 1158 1159 switch (skb->csum_offset) { 1160 case offsetof(struct tcphdr, check): 1161 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1162 fallthrough; 1163 case offsetof(struct udphdr, check): 1164 break; 1165 case offsetof(struct sctphdr, checksum): 1166 /* validate that this is actually an SCTP request */ 1167 if (skb_csum_is_sctp(skb)) { 1168 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1169 break; 1170 } 1171 fallthrough; 1172 default: 1173 skb_checksum_help(skb); 1174 goto csum_failed; 1175 } 1176 1177 /* update TX checksum flag */ 1178 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1179 vlan_macip_lens = skb_checksum_start_offset(skb) - 1180 skb_network_offset(skb); 1181 no_csum: 1182 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1183 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1184 1185 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1186 vlan_macip_lens, type_tucmd, 0); 1187 } 1188 1189 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1190 { 1191 struct net_device *netdev = tx_ring->netdev; 1192 1193 netif_stop_subqueue(netdev, tx_ring->queue_index); 1194 1195 /* memory barriier comment */ 1196 smp_mb(); 1197 1198 /* We need to check again in a case another CPU has just 1199 * made room available. 1200 */ 1201 if (igc_desc_unused(tx_ring) < size) 1202 return -EBUSY; 1203 1204 /* A reprieve! */ 1205 netif_wake_subqueue(netdev, tx_ring->queue_index); 1206 1207 u64_stats_update_begin(&tx_ring->tx_syncp2); 1208 tx_ring->tx_stats.restart_queue2++; 1209 u64_stats_update_end(&tx_ring->tx_syncp2); 1210 1211 return 0; 1212 } 1213 1214 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1215 { 1216 if (igc_desc_unused(tx_ring) >= size) 1217 return 0; 1218 return __igc_maybe_stop_tx(tx_ring, size); 1219 } 1220 1221 #define IGC_SET_FLAG(_input, _flag, _result) \ 1222 (((_flag) <= (_result)) ? \ 1223 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1224 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1225 1226 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1227 { 1228 /* set type for advanced descriptor with frame checksum insertion */ 1229 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1230 IGC_ADVTXD_DCMD_DEXT | 1231 IGC_ADVTXD_DCMD_IFCS; 1232 1233 /* set HW vlan bit if vlan is present */ 1234 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1235 IGC_ADVTXD_DCMD_VLE); 1236 1237 /* set segmentation bits for TSO */ 1238 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1239 (IGC_ADVTXD_DCMD_TSE)); 1240 1241 /* set timestamp bit if present */ 1242 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1243 (IGC_ADVTXD_MAC_TSTAMP)); 1244 1245 /* insert frame checksum */ 1246 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1247 1248 return cmd_type; 1249 } 1250 1251 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1252 union igc_adv_tx_desc *tx_desc, 1253 u32 tx_flags, unsigned int paylen) 1254 { 1255 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1256 1257 /* insert L4 checksum */ 1258 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 1259 ((IGC_TXD_POPTS_TXSM << 8) / 1260 IGC_TX_FLAGS_CSUM); 1261 1262 /* insert IPv4 checksum */ 1263 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 1264 (((IGC_TXD_POPTS_IXSM << 8)) / 1265 IGC_TX_FLAGS_IPV4); 1266 1267 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1268 } 1269 1270 static int igc_tx_map(struct igc_ring *tx_ring, 1271 struct igc_tx_buffer *first, 1272 const u8 hdr_len) 1273 { 1274 struct sk_buff *skb = first->skb; 1275 struct igc_tx_buffer *tx_buffer; 1276 union igc_adv_tx_desc *tx_desc; 1277 u32 tx_flags = first->tx_flags; 1278 skb_frag_t *frag; 1279 u16 i = tx_ring->next_to_use; 1280 unsigned int data_len, size; 1281 dma_addr_t dma; 1282 u32 cmd_type; 1283 1284 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1285 tx_desc = IGC_TX_DESC(tx_ring, i); 1286 1287 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1288 1289 size = skb_headlen(skb); 1290 data_len = skb->data_len; 1291 1292 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1293 1294 tx_buffer = first; 1295 1296 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1297 if (dma_mapping_error(tx_ring->dev, dma)) 1298 goto dma_error; 1299 1300 /* record length, and DMA address */ 1301 dma_unmap_len_set(tx_buffer, len, size); 1302 dma_unmap_addr_set(tx_buffer, dma, dma); 1303 1304 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1305 1306 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1307 tx_desc->read.cmd_type_len = 1308 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1309 1310 i++; 1311 tx_desc++; 1312 if (i == tx_ring->count) { 1313 tx_desc = IGC_TX_DESC(tx_ring, 0); 1314 i = 0; 1315 } 1316 tx_desc->read.olinfo_status = 0; 1317 1318 dma += IGC_MAX_DATA_PER_TXD; 1319 size -= IGC_MAX_DATA_PER_TXD; 1320 1321 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1322 } 1323 1324 if (likely(!data_len)) 1325 break; 1326 1327 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1328 1329 i++; 1330 tx_desc++; 1331 if (i == tx_ring->count) { 1332 tx_desc = IGC_TX_DESC(tx_ring, 0); 1333 i = 0; 1334 } 1335 tx_desc->read.olinfo_status = 0; 1336 1337 size = skb_frag_size(frag); 1338 data_len -= size; 1339 1340 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1341 size, DMA_TO_DEVICE); 1342 1343 tx_buffer = &tx_ring->tx_buffer_info[i]; 1344 } 1345 1346 /* write last descriptor with RS and EOP bits */ 1347 cmd_type |= size | IGC_TXD_DCMD; 1348 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1349 1350 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1351 1352 /* set the timestamp */ 1353 first->time_stamp = jiffies; 1354 1355 skb_tx_timestamp(skb); 1356 1357 /* Force memory writes to complete before letting h/w know there 1358 * are new descriptors to fetch. (Only applicable for weak-ordered 1359 * memory model archs, such as IA-64). 1360 * 1361 * We also need this memory barrier to make certain all of the 1362 * status bits have been updated before next_to_watch is written. 1363 */ 1364 wmb(); 1365 1366 /* set next_to_watch value indicating a packet is present */ 1367 first->next_to_watch = tx_desc; 1368 1369 i++; 1370 if (i == tx_ring->count) 1371 i = 0; 1372 1373 tx_ring->next_to_use = i; 1374 1375 /* Make sure there is space in the ring for the next send. */ 1376 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1377 1378 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1379 writel(i, tx_ring->tail); 1380 } 1381 1382 return 0; 1383 dma_error: 1384 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1385 tx_buffer = &tx_ring->tx_buffer_info[i]; 1386 1387 /* clear dma mappings for failed tx_buffer_info map */ 1388 while (tx_buffer != first) { 1389 if (dma_unmap_len(tx_buffer, len)) 1390 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1391 1392 if (i-- == 0) 1393 i += tx_ring->count; 1394 tx_buffer = &tx_ring->tx_buffer_info[i]; 1395 } 1396 1397 if (dma_unmap_len(tx_buffer, len)) 1398 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1399 1400 dev_kfree_skb_any(tx_buffer->skb); 1401 tx_buffer->skb = NULL; 1402 1403 tx_ring->next_to_use = i; 1404 1405 return -1; 1406 } 1407 1408 static int igc_tso(struct igc_ring *tx_ring, 1409 struct igc_tx_buffer *first, 1410 __le32 launch_time, bool first_flag, 1411 u8 *hdr_len) 1412 { 1413 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1414 struct sk_buff *skb = first->skb; 1415 union { 1416 struct iphdr *v4; 1417 struct ipv6hdr *v6; 1418 unsigned char *hdr; 1419 } ip; 1420 union { 1421 struct tcphdr *tcp; 1422 struct udphdr *udp; 1423 unsigned char *hdr; 1424 } l4; 1425 u32 paylen, l4_offset; 1426 int err; 1427 1428 if (skb->ip_summed != CHECKSUM_PARTIAL) 1429 return 0; 1430 1431 if (!skb_is_gso(skb)) 1432 return 0; 1433 1434 err = skb_cow_head(skb, 0); 1435 if (err < 0) 1436 return err; 1437 1438 ip.hdr = skb_network_header(skb); 1439 l4.hdr = skb_checksum_start(skb); 1440 1441 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1442 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1443 1444 /* initialize outer IP header fields */ 1445 if (ip.v4->version == 4) { 1446 unsigned char *csum_start = skb_checksum_start(skb); 1447 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1448 1449 /* IP header will have to cancel out any data that 1450 * is not a part of the outer IP header 1451 */ 1452 ip.v4->check = csum_fold(csum_partial(trans_start, 1453 csum_start - trans_start, 1454 0)); 1455 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1456 1457 ip.v4->tot_len = 0; 1458 first->tx_flags |= IGC_TX_FLAGS_TSO | 1459 IGC_TX_FLAGS_CSUM | 1460 IGC_TX_FLAGS_IPV4; 1461 } else { 1462 ip.v6->payload_len = 0; 1463 first->tx_flags |= IGC_TX_FLAGS_TSO | 1464 IGC_TX_FLAGS_CSUM; 1465 } 1466 1467 /* determine offset of inner transport header */ 1468 l4_offset = l4.hdr - skb->data; 1469 1470 /* remove payload length from inner checksum */ 1471 paylen = skb->len - l4_offset; 1472 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1473 /* compute length of segmentation header */ 1474 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1475 csum_replace_by_diff(&l4.tcp->check, 1476 (__force __wsum)htonl(paylen)); 1477 } else { 1478 /* compute length of segmentation header */ 1479 *hdr_len = sizeof(*l4.udp) + l4_offset; 1480 csum_replace_by_diff(&l4.udp->check, 1481 (__force __wsum)htonl(paylen)); 1482 } 1483 1484 /* update gso size and bytecount with header size */ 1485 first->gso_segs = skb_shinfo(skb)->gso_segs; 1486 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1487 1488 /* MSS L4LEN IDX */ 1489 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1490 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1491 1492 /* VLAN MACLEN IPLEN */ 1493 vlan_macip_lens = l4.hdr - ip.hdr; 1494 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1495 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1496 1497 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1498 vlan_macip_lens, type_tucmd, mss_l4len_idx); 1499 1500 return 1; 1501 } 1502 1503 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1504 struct igc_ring *tx_ring) 1505 { 1506 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1507 bool first_flag = false, insert_empty = false; 1508 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1509 __be16 protocol = vlan_get_protocol(skb); 1510 struct igc_tx_buffer *first; 1511 __le32 launch_time = 0; 1512 u32 tx_flags = 0; 1513 unsigned short f; 1514 ktime_t txtime; 1515 u8 hdr_len = 0; 1516 int tso = 0; 1517 1518 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1519 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1520 * + 2 desc gap to keep tail from touching head, 1521 * + 1 desc for context descriptor, 1522 * otherwise try next time 1523 */ 1524 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1525 count += TXD_USE_COUNT(skb_frag_size( 1526 &skb_shinfo(skb)->frags[f])); 1527 1528 if (igc_maybe_stop_tx(tx_ring, count + 5)) { 1529 /* this is a hard error */ 1530 return NETDEV_TX_BUSY; 1531 } 1532 1533 if (!tx_ring->launchtime_enable) 1534 goto done; 1535 1536 txtime = skb->tstamp; 1537 skb->tstamp = ktime_set(0, 0); 1538 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty); 1539 1540 if (insert_empty) { 1541 struct igc_tx_buffer *empty_info; 1542 struct sk_buff *empty; 1543 void *data; 1544 1545 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1546 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC); 1547 if (!empty) 1548 goto done; 1549 1550 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE); 1551 memset(data, 0, IGC_EMPTY_FRAME_SIZE); 1552 1553 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0); 1554 1555 if (igc_init_tx_empty_descriptor(tx_ring, 1556 empty, 1557 empty_info) < 0) 1558 dev_kfree_skb_any(empty); 1559 } 1560 1561 done: 1562 /* record the location of the first descriptor for this packet */ 1563 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1564 first->type = IGC_TX_BUFFER_TYPE_SKB; 1565 first->skb = skb; 1566 first->bytecount = skb->len; 1567 first->gso_segs = 1; 1568 1569 if (tx_ring->max_sdu > 0) { 1570 u32 max_sdu = 0; 1571 1572 max_sdu = tx_ring->max_sdu + 1573 (skb_vlan_tagged(first->skb) ? VLAN_HLEN : 0); 1574 1575 if (first->bytecount > max_sdu) { 1576 adapter->stats.txdrop++; 1577 goto out_drop; 1578 } 1579 } 1580 1581 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1582 /* FIXME: add support for retrieving timestamps from 1583 * the other timer registers before skipping the 1584 * timestamping request. 1585 */ 1586 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 1587 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS, 1588 &adapter->state)) { 1589 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1590 tx_flags |= IGC_TX_FLAGS_TSTAMP; 1591 1592 adapter->ptp_tx_skb = skb_get(skb); 1593 adapter->ptp_tx_start = jiffies; 1594 } else { 1595 adapter->tx_hwtstamp_skipped++; 1596 } 1597 } 1598 1599 if (skb_vlan_tag_present(skb)) { 1600 tx_flags |= IGC_TX_FLAGS_VLAN; 1601 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1602 } 1603 1604 /* record initial flags and protocol */ 1605 first->tx_flags = tx_flags; 1606 first->protocol = protocol; 1607 1608 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len); 1609 if (tso < 0) 1610 goto out_drop; 1611 else if (!tso) 1612 igc_tx_csum(tx_ring, first, launch_time, first_flag); 1613 1614 igc_tx_map(tx_ring, first, hdr_len); 1615 1616 return NETDEV_TX_OK; 1617 1618 out_drop: 1619 dev_kfree_skb_any(first->skb); 1620 first->skb = NULL; 1621 1622 return NETDEV_TX_OK; 1623 } 1624 1625 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1626 struct sk_buff *skb) 1627 { 1628 unsigned int r_idx = skb->queue_mapping; 1629 1630 if (r_idx >= adapter->num_tx_queues) 1631 r_idx = r_idx % adapter->num_tx_queues; 1632 1633 return adapter->tx_ring[r_idx]; 1634 } 1635 1636 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1637 struct net_device *netdev) 1638 { 1639 struct igc_adapter *adapter = netdev_priv(netdev); 1640 1641 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1642 * in order to meet this minimum size requirement. 1643 */ 1644 if (skb->len < 17) { 1645 if (skb_padto(skb, 17)) 1646 return NETDEV_TX_OK; 1647 skb->len = 17; 1648 } 1649 1650 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1651 } 1652 1653 static void igc_rx_checksum(struct igc_ring *ring, 1654 union igc_adv_rx_desc *rx_desc, 1655 struct sk_buff *skb) 1656 { 1657 skb_checksum_none_assert(skb); 1658 1659 /* Ignore Checksum bit is set */ 1660 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1661 return; 1662 1663 /* Rx checksum disabled via ethtool */ 1664 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1665 return; 1666 1667 /* TCP/UDP checksum error bit is set */ 1668 if (igc_test_staterr(rx_desc, 1669 IGC_RXDEXT_STATERR_L4E | 1670 IGC_RXDEXT_STATERR_IPE)) { 1671 /* work around errata with sctp packets where the TCPE aka 1672 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1673 * packets (aka let the stack check the crc32c) 1674 */ 1675 if (!(skb->len == 60 && 1676 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1677 u64_stats_update_begin(&ring->rx_syncp); 1678 ring->rx_stats.csum_err++; 1679 u64_stats_update_end(&ring->rx_syncp); 1680 } 1681 /* let the stack verify checksum errors */ 1682 return; 1683 } 1684 /* It must be a TCP or UDP packet with a valid checksum */ 1685 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1686 IGC_RXD_STAT_UDPCS)) 1687 skb->ip_summed = CHECKSUM_UNNECESSARY; 1688 1689 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1690 le32_to_cpu(rx_desc->wb.upper.status_error)); 1691 } 1692 1693 static inline void igc_rx_hash(struct igc_ring *ring, 1694 union igc_adv_rx_desc *rx_desc, 1695 struct sk_buff *skb) 1696 { 1697 if (ring->netdev->features & NETIF_F_RXHASH) 1698 skb_set_hash(skb, 1699 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1700 PKT_HASH_TYPE_L3); 1701 } 1702 1703 static void igc_rx_vlan(struct igc_ring *rx_ring, 1704 union igc_adv_rx_desc *rx_desc, 1705 struct sk_buff *skb) 1706 { 1707 struct net_device *dev = rx_ring->netdev; 1708 u16 vid; 1709 1710 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1711 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1712 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1713 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1714 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1715 else 1716 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1717 1718 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1719 } 1720 } 1721 1722 /** 1723 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1724 * @rx_ring: rx descriptor ring packet is being transacted on 1725 * @rx_desc: pointer to the EOP Rx descriptor 1726 * @skb: pointer to current skb being populated 1727 * 1728 * This function checks the ring, descriptor, and packet information in order 1729 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1730 * skb. 1731 */ 1732 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1733 union igc_adv_rx_desc *rx_desc, 1734 struct sk_buff *skb) 1735 { 1736 igc_rx_hash(rx_ring, rx_desc, skb); 1737 1738 igc_rx_checksum(rx_ring, rx_desc, skb); 1739 1740 igc_rx_vlan(rx_ring, rx_desc, skb); 1741 1742 skb_record_rx_queue(skb, rx_ring->queue_index); 1743 1744 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1745 } 1746 1747 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1748 { 1749 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1750 struct igc_adapter *adapter = netdev_priv(netdev); 1751 struct igc_hw *hw = &adapter->hw; 1752 u32 ctrl; 1753 1754 ctrl = rd32(IGC_CTRL); 1755 1756 if (enable) { 1757 /* enable VLAN tag insert/strip */ 1758 ctrl |= IGC_CTRL_VME; 1759 } else { 1760 /* disable VLAN tag insert/strip */ 1761 ctrl &= ~IGC_CTRL_VME; 1762 } 1763 wr32(IGC_CTRL, ctrl); 1764 } 1765 1766 static void igc_restore_vlan(struct igc_adapter *adapter) 1767 { 1768 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1769 } 1770 1771 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1772 const unsigned int size, 1773 int *rx_buffer_pgcnt) 1774 { 1775 struct igc_rx_buffer *rx_buffer; 1776 1777 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1778 *rx_buffer_pgcnt = 1779 #if (PAGE_SIZE < 8192) 1780 page_count(rx_buffer->page); 1781 #else 1782 0; 1783 #endif 1784 prefetchw(rx_buffer->page); 1785 1786 /* we are reusing so sync this buffer for CPU use */ 1787 dma_sync_single_range_for_cpu(rx_ring->dev, 1788 rx_buffer->dma, 1789 rx_buffer->page_offset, 1790 size, 1791 DMA_FROM_DEVICE); 1792 1793 rx_buffer->pagecnt_bias--; 1794 1795 return rx_buffer; 1796 } 1797 1798 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1799 unsigned int truesize) 1800 { 1801 #if (PAGE_SIZE < 8192) 1802 buffer->page_offset ^= truesize; 1803 #else 1804 buffer->page_offset += truesize; 1805 #endif 1806 } 1807 1808 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1809 unsigned int size) 1810 { 1811 unsigned int truesize; 1812 1813 #if (PAGE_SIZE < 8192) 1814 truesize = igc_rx_pg_size(ring) / 2; 1815 #else 1816 truesize = ring_uses_build_skb(ring) ? 1817 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1818 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1819 SKB_DATA_ALIGN(size); 1820 #endif 1821 return truesize; 1822 } 1823 1824 /** 1825 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1826 * @rx_ring: rx descriptor ring to transact packets on 1827 * @rx_buffer: buffer containing page to add 1828 * @skb: sk_buff to place the data into 1829 * @size: size of buffer to be added 1830 * 1831 * This function will add the data contained in rx_buffer->page to the skb. 1832 */ 1833 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1834 struct igc_rx_buffer *rx_buffer, 1835 struct sk_buff *skb, 1836 unsigned int size) 1837 { 1838 unsigned int truesize; 1839 1840 #if (PAGE_SIZE < 8192) 1841 truesize = igc_rx_pg_size(rx_ring) / 2; 1842 #else 1843 truesize = ring_uses_build_skb(rx_ring) ? 1844 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1845 SKB_DATA_ALIGN(size); 1846 #endif 1847 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1848 rx_buffer->page_offset, size, truesize); 1849 1850 igc_rx_buffer_flip(rx_buffer, truesize); 1851 } 1852 1853 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1854 struct igc_rx_buffer *rx_buffer, 1855 struct xdp_buff *xdp) 1856 { 1857 unsigned int size = xdp->data_end - xdp->data; 1858 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1859 unsigned int metasize = xdp->data - xdp->data_meta; 1860 struct sk_buff *skb; 1861 1862 /* prefetch first cache line of first page */ 1863 net_prefetch(xdp->data_meta); 1864 1865 /* build an skb around the page buffer */ 1866 skb = napi_build_skb(xdp->data_hard_start, truesize); 1867 if (unlikely(!skb)) 1868 return NULL; 1869 1870 /* update pointers within the skb to store the data */ 1871 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1872 __skb_put(skb, size); 1873 if (metasize) 1874 skb_metadata_set(skb, metasize); 1875 1876 igc_rx_buffer_flip(rx_buffer, truesize); 1877 return skb; 1878 } 1879 1880 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1881 struct igc_rx_buffer *rx_buffer, 1882 struct xdp_buff *xdp, 1883 ktime_t timestamp) 1884 { 1885 unsigned int metasize = xdp->data - xdp->data_meta; 1886 unsigned int size = xdp->data_end - xdp->data; 1887 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1888 void *va = xdp->data; 1889 unsigned int headlen; 1890 struct sk_buff *skb; 1891 1892 /* prefetch first cache line of first page */ 1893 net_prefetch(xdp->data_meta); 1894 1895 /* allocate a skb to store the frags */ 1896 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1897 IGC_RX_HDR_LEN + metasize); 1898 if (unlikely(!skb)) 1899 return NULL; 1900 1901 if (timestamp) 1902 skb_hwtstamps(skb)->hwtstamp = timestamp; 1903 1904 /* Determine available headroom for copy */ 1905 headlen = size; 1906 if (headlen > IGC_RX_HDR_LEN) 1907 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1908 1909 /* align pull length to size of long to optimize memcpy performance */ 1910 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1911 ALIGN(headlen + metasize, sizeof(long))); 1912 1913 if (metasize) { 1914 skb_metadata_set(skb, metasize); 1915 __skb_pull(skb, metasize); 1916 } 1917 1918 /* update all of the pointers */ 1919 size -= headlen; 1920 if (size) { 1921 skb_add_rx_frag(skb, 0, rx_buffer->page, 1922 (va + headlen) - page_address(rx_buffer->page), 1923 size, truesize); 1924 igc_rx_buffer_flip(rx_buffer, truesize); 1925 } else { 1926 rx_buffer->pagecnt_bias++; 1927 } 1928 1929 return skb; 1930 } 1931 1932 /** 1933 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1934 * @rx_ring: rx descriptor ring to store buffers on 1935 * @old_buff: donor buffer to have page reused 1936 * 1937 * Synchronizes page for reuse by the adapter 1938 */ 1939 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1940 struct igc_rx_buffer *old_buff) 1941 { 1942 u16 nta = rx_ring->next_to_alloc; 1943 struct igc_rx_buffer *new_buff; 1944 1945 new_buff = &rx_ring->rx_buffer_info[nta]; 1946 1947 /* update, and store next to alloc */ 1948 nta++; 1949 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1950 1951 /* Transfer page from old buffer to new buffer. 1952 * Move each member individually to avoid possible store 1953 * forwarding stalls. 1954 */ 1955 new_buff->dma = old_buff->dma; 1956 new_buff->page = old_buff->page; 1957 new_buff->page_offset = old_buff->page_offset; 1958 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1959 } 1960 1961 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 1962 int rx_buffer_pgcnt) 1963 { 1964 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1965 struct page *page = rx_buffer->page; 1966 1967 /* avoid re-using remote and pfmemalloc pages */ 1968 if (!dev_page_is_reusable(page)) 1969 return false; 1970 1971 #if (PAGE_SIZE < 8192) 1972 /* if we are only owner of page we can reuse it */ 1973 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 1974 return false; 1975 #else 1976 #define IGC_LAST_OFFSET \ 1977 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1978 1979 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1980 return false; 1981 #endif 1982 1983 /* If we have drained the page fragment pool we need to update 1984 * the pagecnt_bias and page count so that we fully restock the 1985 * number of references the driver holds. 1986 */ 1987 if (unlikely(pagecnt_bias == 1)) { 1988 page_ref_add(page, USHRT_MAX - 1); 1989 rx_buffer->pagecnt_bias = USHRT_MAX; 1990 } 1991 1992 return true; 1993 } 1994 1995 /** 1996 * igc_is_non_eop - process handling of non-EOP buffers 1997 * @rx_ring: Rx ring being processed 1998 * @rx_desc: Rx descriptor for current buffer 1999 * 2000 * This function updates next to clean. If the buffer is an EOP buffer 2001 * this function exits returning false, otherwise it will place the 2002 * sk_buff in the next buffer to be chained and return true indicating 2003 * that this is in fact a non-EOP buffer. 2004 */ 2005 static bool igc_is_non_eop(struct igc_ring *rx_ring, 2006 union igc_adv_rx_desc *rx_desc) 2007 { 2008 u32 ntc = rx_ring->next_to_clean + 1; 2009 2010 /* fetch, update, and store next to clean */ 2011 ntc = (ntc < rx_ring->count) ? ntc : 0; 2012 rx_ring->next_to_clean = ntc; 2013 2014 prefetch(IGC_RX_DESC(rx_ring, ntc)); 2015 2016 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 2017 return false; 2018 2019 return true; 2020 } 2021 2022 /** 2023 * igc_cleanup_headers - Correct corrupted or empty headers 2024 * @rx_ring: rx descriptor ring packet is being transacted on 2025 * @rx_desc: pointer to the EOP Rx descriptor 2026 * @skb: pointer to current skb being fixed 2027 * 2028 * Address the case where we are pulling data in on pages only 2029 * and as such no data is present in the skb header. 2030 * 2031 * In addition if skb is not at least 60 bytes we need to pad it so that 2032 * it is large enough to qualify as a valid Ethernet frame. 2033 * 2034 * Returns true if an error was encountered and skb was freed. 2035 */ 2036 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 2037 union igc_adv_rx_desc *rx_desc, 2038 struct sk_buff *skb) 2039 { 2040 /* XDP packets use error pointer so abort at this point */ 2041 if (IS_ERR(skb)) 2042 return true; 2043 2044 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 2045 struct net_device *netdev = rx_ring->netdev; 2046 2047 if (!(netdev->features & NETIF_F_RXALL)) { 2048 dev_kfree_skb_any(skb); 2049 return true; 2050 } 2051 } 2052 2053 /* if eth_skb_pad returns an error the skb was freed */ 2054 if (eth_skb_pad(skb)) 2055 return true; 2056 2057 return false; 2058 } 2059 2060 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 2061 struct igc_rx_buffer *rx_buffer, 2062 int rx_buffer_pgcnt) 2063 { 2064 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2065 /* hand second half of page back to the ring */ 2066 igc_reuse_rx_page(rx_ring, rx_buffer); 2067 } else { 2068 /* We are not reusing the buffer so unmap it and free 2069 * any references we are holding to it 2070 */ 2071 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2072 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 2073 IGC_RX_DMA_ATTR); 2074 __page_frag_cache_drain(rx_buffer->page, 2075 rx_buffer->pagecnt_bias); 2076 } 2077 2078 /* clear contents of rx_buffer */ 2079 rx_buffer->page = NULL; 2080 } 2081 2082 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 2083 { 2084 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 2085 2086 if (ring_uses_build_skb(rx_ring)) 2087 return IGC_SKB_PAD; 2088 if (igc_xdp_is_enabled(adapter)) 2089 return XDP_PACKET_HEADROOM; 2090 2091 return 0; 2092 } 2093 2094 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 2095 struct igc_rx_buffer *bi) 2096 { 2097 struct page *page = bi->page; 2098 dma_addr_t dma; 2099 2100 /* since we are recycling buffers we should seldom need to alloc */ 2101 if (likely(page)) 2102 return true; 2103 2104 /* alloc new page for storage */ 2105 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 2106 if (unlikely(!page)) { 2107 rx_ring->rx_stats.alloc_failed++; 2108 return false; 2109 } 2110 2111 /* map page for use */ 2112 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 2113 igc_rx_pg_size(rx_ring), 2114 DMA_FROM_DEVICE, 2115 IGC_RX_DMA_ATTR); 2116 2117 /* if mapping failed free memory back to system since 2118 * there isn't much point in holding memory we can't use 2119 */ 2120 if (dma_mapping_error(rx_ring->dev, dma)) { 2121 __free_page(page); 2122 2123 rx_ring->rx_stats.alloc_failed++; 2124 return false; 2125 } 2126 2127 bi->dma = dma; 2128 bi->page = page; 2129 bi->page_offset = igc_rx_offset(rx_ring); 2130 page_ref_add(page, USHRT_MAX - 1); 2131 bi->pagecnt_bias = USHRT_MAX; 2132 2133 return true; 2134 } 2135 2136 /** 2137 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2138 * @rx_ring: rx descriptor ring 2139 * @cleaned_count: number of buffers to clean 2140 */ 2141 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2142 { 2143 union igc_adv_rx_desc *rx_desc; 2144 u16 i = rx_ring->next_to_use; 2145 struct igc_rx_buffer *bi; 2146 u16 bufsz; 2147 2148 /* nothing to do */ 2149 if (!cleaned_count) 2150 return; 2151 2152 rx_desc = IGC_RX_DESC(rx_ring, i); 2153 bi = &rx_ring->rx_buffer_info[i]; 2154 i -= rx_ring->count; 2155 2156 bufsz = igc_rx_bufsz(rx_ring); 2157 2158 do { 2159 if (!igc_alloc_mapped_page(rx_ring, bi)) 2160 break; 2161 2162 /* sync the buffer for use by the device */ 2163 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2164 bi->page_offset, bufsz, 2165 DMA_FROM_DEVICE); 2166 2167 /* Refresh the desc even if buffer_addrs didn't change 2168 * because each write-back erases this info. 2169 */ 2170 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2171 2172 rx_desc++; 2173 bi++; 2174 i++; 2175 if (unlikely(!i)) { 2176 rx_desc = IGC_RX_DESC(rx_ring, 0); 2177 bi = rx_ring->rx_buffer_info; 2178 i -= rx_ring->count; 2179 } 2180 2181 /* clear the length for the next_to_use descriptor */ 2182 rx_desc->wb.upper.length = 0; 2183 2184 cleaned_count--; 2185 } while (cleaned_count); 2186 2187 i += rx_ring->count; 2188 2189 if (rx_ring->next_to_use != i) { 2190 /* record the next descriptor to use */ 2191 rx_ring->next_to_use = i; 2192 2193 /* update next to alloc since we have filled the ring */ 2194 rx_ring->next_to_alloc = i; 2195 2196 /* Force memory writes to complete before letting h/w 2197 * know there are new descriptors to fetch. (Only 2198 * applicable for weak-ordered memory model archs, 2199 * such as IA-64). 2200 */ 2201 wmb(); 2202 writel(i, rx_ring->tail); 2203 } 2204 } 2205 2206 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2207 { 2208 union igc_adv_rx_desc *desc; 2209 u16 i = ring->next_to_use; 2210 struct igc_rx_buffer *bi; 2211 dma_addr_t dma; 2212 bool ok = true; 2213 2214 if (!count) 2215 return ok; 2216 2217 desc = IGC_RX_DESC(ring, i); 2218 bi = &ring->rx_buffer_info[i]; 2219 i -= ring->count; 2220 2221 do { 2222 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2223 if (!bi->xdp) { 2224 ok = false; 2225 break; 2226 } 2227 2228 dma = xsk_buff_xdp_get_dma(bi->xdp); 2229 desc->read.pkt_addr = cpu_to_le64(dma); 2230 2231 desc++; 2232 bi++; 2233 i++; 2234 if (unlikely(!i)) { 2235 desc = IGC_RX_DESC(ring, 0); 2236 bi = ring->rx_buffer_info; 2237 i -= ring->count; 2238 } 2239 2240 /* Clear the length for the next_to_use descriptor. */ 2241 desc->wb.upper.length = 0; 2242 2243 count--; 2244 } while (count); 2245 2246 i += ring->count; 2247 2248 if (ring->next_to_use != i) { 2249 ring->next_to_use = i; 2250 2251 /* Force memory writes to complete before letting h/w 2252 * know there are new descriptors to fetch. (Only 2253 * applicable for weak-ordered memory model archs, 2254 * such as IA-64). 2255 */ 2256 wmb(); 2257 writel(i, ring->tail); 2258 } 2259 2260 return ok; 2261 } 2262 2263 /* This function requires __netif_tx_lock is held by the caller. */ 2264 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2265 struct xdp_frame *xdpf) 2266 { 2267 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2268 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 2269 u16 count, index = ring->next_to_use; 2270 struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; 2271 struct igc_tx_buffer *buffer = head; 2272 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); 2273 u32 olinfo_status, len = xdpf->len, cmd_type; 2274 void *data = xdpf->data; 2275 u16 i; 2276 2277 count = TXD_USE_COUNT(len); 2278 for (i = 0; i < nr_frags; i++) 2279 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 2280 2281 if (igc_maybe_stop_tx(ring, count + 3)) { 2282 /* this is a hard error */ 2283 return -EBUSY; 2284 } 2285 2286 i = 0; 2287 head->bytecount = xdp_get_frame_len(xdpf); 2288 head->type = IGC_TX_BUFFER_TYPE_XDP; 2289 head->gso_segs = 1; 2290 head->xdpf = xdpf; 2291 2292 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2293 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2294 2295 for (;;) { 2296 dma_addr_t dma; 2297 2298 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); 2299 if (dma_mapping_error(ring->dev, dma)) { 2300 netdev_err_once(ring->netdev, 2301 "Failed to map DMA for TX\n"); 2302 goto unmap; 2303 } 2304 2305 dma_unmap_len_set(buffer, len, len); 2306 dma_unmap_addr_set(buffer, dma, dma); 2307 2308 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2309 IGC_ADVTXD_DCMD_IFCS | len; 2310 2311 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2312 desc->read.buffer_addr = cpu_to_le64(dma); 2313 2314 buffer->protocol = 0; 2315 2316 if (++index == ring->count) 2317 index = 0; 2318 2319 if (i == nr_frags) 2320 break; 2321 2322 buffer = &ring->tx_buffer_info[index]; 2323 desc = IGC_TX_DESC(ring, index); 2324 desc->read.olinfo_status = 0; 2325 2326 data = skb_frag_address(&sinfo->frags[i]); 2327 len = skb_frag_size(&sinfo->frags[i]); 2328 i++; 2329 } 2330 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); 2331 2332 netdev_tx_sent_queue(txring_txq(ring), head->bytecount); 2333 /* set the timestamp */ 2334 head->time_stamp = jiffies; 2335 /* set next_to_watch value indicating a packet is present */ 2336 head->next_to_watch = desc; 2337 ring->next_to_use = index; 2338 2339 return 0; 2340 2341 unmap: 2342 for (;;) { 2343 buffer = &ring->tx_buffer_info[index]; 2344 if (dma_unmap_len(buffer, len)) 2345 dma_unmap_page(ring->dev, 2346 dma_unmap_addr(buffer, dma), 2347 dma_unmap_len(buffer, len), 2348 DMA_TO_DEVICE); 2349 dma_unmap_len_set(buffer, len, 0); 2350 if (buffer == head) 2351 break; 2352 2353 if (!index) 2354 index += ring->count; 2355 index--; 2356 } 2357 2358 return -ENOMEM; 2359 } 2360 2361 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2362 int cpu) 2363 { 2364 int index = cpu; 2365 2366 if (unlikely(index < 0)) 2367 index = 0; 2368 2369 while (index >= adapter->num_tx_queues) 2370 index -= adapter->num_tx_queues; 2371 2372 return adapter->tx_ring[index]; 2373 } 2374 2375 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2376 { 2377 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2378 int cpu = smp_processor_id(); 2379 struct netdev_queue *nq; 2380 struct igc_ring *ring; 2381 int res; 2382 2383 if (unlikely(!xdpf)) 2384 return -EFAULT; 2385 2386 ring = igc_xdp_get_tx_ring(adapter, cpu); 2387 nq = txring_txq(ring); 2388 2389 __netif_tx_lock(nq, cpu); 2390 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2391 __netif_tx_unlock(nq); 2392 return res; 2393 } 2394 2395 /* This function assumes rcu_read_lock() is held by the caller. */ 2396 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2397 struct bpf_prog *prog, 2398 struct xdp_buff *xdp) 2399 { 2400 u32 act = bpf_prog_run_xdp(prog, xdp); 2401 2402 switch (act) { 2403 case XDP_PASS: 2404 return IGC_XDP_PASS; 2405 case XDP_TX: 2406 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2407 goto out_failure; 2408 return IGC_XDP_TX; 2409 case XDP_REDIRECT: 2410 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2411 goto out_failure; 2412 return IGC_XDP_REDIRECT; 2413 break; 2414 default: 2415 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2416 fallthrough; 2417 case XDP_ABORTED: 2418 out_failure: 2419 trace_xdp_exception(adapter->netdev, prog, act); 2420 fallthrough; 2421 case XDP_DROP: 2422 return IGC_XDP_CONSUMED; 2423 } 2424 } 2425 2426 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2427 struct xdp_buff *xdp) 2428 { 2429 struct bpf_prog *prog; 2430 int res; 2431 2432 prog = READ_ONCE(adapter->xdp_prog); 2433 if (!prog) { 2434 res = IGC_XDP_PASS; 2435 goto out; 2436 } 2437 2438 res = __igc_xdp_run_prog(adapter, prog, xdp); 2439 2440 out: 2441 return ERR_PTR(-res); 2442 } 2443 2444 /* This function assumes __netif_tx_lock is held by the caller. */ 2445 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2446 { 2447 /* Once tail pointer is updated, hardware can fetch the descriptors 2448 * any time so we issue a write membar here to ensure all memory 2449 * writes are complete before the tail pointer is updated. 2450 */ 2451 wmb(); 2452 writel(ring->next_to_use, ring->tail); 2453 } 2454 2455 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2456 { 2457 int cpu = smp_processor_id(); 2458 struct netdev_queue *nq; 2459 struct igc_ring *ring; 2460 2461 if (status & IGC_XDP_TX) { 2462 ring = igc_xdp_get_tx_ring(adapter, cpu); 2463 nq = txring_txq(ring); 2464 2465 __netif_tx_lock(nq, cpu); 2466 igc_flush_tx_descriptors(ring); 2467 __netif_tx_unlock(nq); 2468 } 2469 2470 if (status & IGC_XDP_REDIRECT) 2471 xdp_do_flush(); 2472 } 2473 2474 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2475 unsigned int packets, unsigned int bytes) 2476 { 2477 struct igc_ring *ring = q_vector->rx.ring; 2478 2479 u64_stats_update_begin(&ring->rx_syncp); 2480 ring->rx_stats.packets += packets; 2481 ring->rx_stats.bytes += bytes; 2482 u64_stats_update_end(&ring->rx_syncp); 2483 2484 q_vector->rx.total_packets += packets; 2485 q_vector->rx.total_bytes += bytes; 2486 } 2487 2488 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2489 { 2490 unsigned int total_bytes = 0, total_packets = 0; 2491 struct igc_adapter *adapter = q_vector->adapter; 2492 struct igc_ring *rx_ring = q_vector->rx.ring; 2493 struct sk_buff *skb = rx_ring->skb; 2494 u16 cleaned_count = igc_desc_unused(rx_ring); 2495 int xdp_status = 0, rx_buffer_pgcnt; 2496 2497 while (likely(total_packets < budget)) { 2498 union igc_adv_rx_desc *rx_desc; 2499 struct igc_rx_buffer *rx_buffer; 2500 unsigned int size, truesize; 2501 ktime_t timestamp = 0; 2502 struct xdp_buff xdp; 2503 int pkt_offset = 0; 2504 void *pktbuf; 2505 2506 /* return some buffers to hardware, one at a time is too slow */ 2507 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2508 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2509 cleaned_count = 0; 2510 } 2511 2512 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2513 size = le16_to_cpu(rx_desc->wb.upper.length); 2514 if (!size) 2515 break; 2516 2517 /* This memory barrier is needed to keep us from reading 2518 * any other fields out of the rx_desc until we know the 2519 * descriptor has been written back 2520 */ 2521 dma_rmb(); 2522 2523 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2524 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2525 2526 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2527 2528 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2529 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2530 pktbuf); 2531 pkt_offset = IGC_TS_HDR_LEN; 2532 size -= IGC_TS_HDR_LEN; 2533 } 2534 2535 if (!skb) { 2536 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq); 2537 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring), 2538 igc_rx_offset(rx_ring) + pkt_offset, 2539 size, true); 2540 xdp_buff_clear_frags_flag(&xdp); 2541 2542 skb = igc_xdp_run_prog(adapter, &xdp); 2543 } 2544 2545 if (IS_ERR(skb)) { 2546 unsigned int xdp_res = -PTR_ERR(skb); 2547 2548 switch (xdp_res) { 2549 case IGC_XDP_CONSUMED: 2550 rx_buffer->pagecnt_bias++; 2551 break; 2552 case IGC_XDP_TX: 2553 case IGC_XDP_REDIRECT: 2554 igc_rx_buffer_flip(rx_buffer, truesize); 2555 xdp_status |= xdp_res; 2556 break; 2557 } 2558 2559 total_packets++; 2560 total_bytes += size; 2561 } else if (skb) 2562 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2563 else if (ring_uses_build_skb(rx_ring)) 2564 skb = igc_build_skb(rx_ring, rx_buffer, &xdp); 2565 else 2566 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp, 2567 timestamp); 2568 2569 /* exit if we failed to retrieve a buffer */ 2570 if (!skb) { 2571 rx_ring->rx_stats.alloc_failed++; 2572 rx_buffer->pagecnt_bias++; 2573 break; 2574 } 2575 2576 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2577 cleaned_count++; 2578 2579 /* fetch next buffer in frame if non-eop */ 2580 if (igc_is_non_eop(rx_ring, rx_desc)) 2581 continue; 2582 2583 /* verify the packet layout is correct */ 2584 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2585 skb = NULL; 2586 continue; 2587 } 2588 2589 /* probably a little skewed due to removing CRC */ 2590 total_bytes += skb->len; 2591 2592 /* populate checksum, VLAN, and protocol */ 2593 igc_process_skb_fields(rx_ring, rx_desc, skb); 2594 2595 napi_gro_receive(&q_vector->napi, skb); 2596 2597 /* reset skb pointer */ 2598 skb = NULL; 2599 2600 /* update budget accounting */ 2601 total_packets++; 2602 } 2603 2604 if (xdp_status) 2605 igc_finalize_xdp(adapter, xdp_status); 2606 2607 /* place incomplete frames back on ring for completion */ 2608 rx_ring->skb = skb; 2609 2610 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2611 2612 if (cleaned_count) 2613 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2614 2615 return total_packets; 2616 } 2617 2618 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2619 struct xdp_buff *xdp) 2620 { 2621 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2622 unsigned int metasize = xdp->data - xdp->data_meta; 2623 struct sk_buff *skb; 2624 2625 net_prefetch(xdp->data_meta); 2626 2627 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize, 2628 GFP_ATOMIC | __GFP_NOWARN); 2629 if (unlikely(!skb)) 2630 return NULL; 2631 2632 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2633 ALIGN(totalsize, sizeof(long))); 2634 2635 if (metasize) { 2636 skb_metadata_set(skb, metasize); 2637 __skb_pull(skb, metasize); 2638 } 2639 2640 return skb; 2641 } 2642 2643 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2644 union igc_adv_rx_desc *desc, 2645 struct xdp_buff *xdp, 2646 ktime_t timestamp) 2647 { 2648 struct igc_ring *ring = q_vector->rx.ring; 2649 struct sk_buff *skb; 2650 2651 skb = igc_construct_skb_zc(ring, xdp); 2652 if (!skb) { 2653 ring->rx_stats.alloc_failed++; 2654 return; 2655 } 2656 2657 if (timestamp) 2658 skb_hwtstamps(skb)->hwtstamp = timestamp; 2659 2660 if (igc_cleanup_headers(ring, desc, skb)) 2661 return; 2662 2663 igc_process_skb_fields(ring, desc, skb); 2664 napi_gro_receive(&q_vector->napi, skb); 2665 } 2666 2667 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2668 { 2669 struct igc_adapter *adapter = q_vector->adapter; 2670 struct igc_ring *ring = q_vector->rx.ring; 2671 u16 cleaned_count = igc_desc_unused(ring); 2672 int total_bytes = 0, total_packets = 0; 2673 u16 ntc = ring->next_to_clean; 2674 struct bpf_prog *prog; 2675 bool failure = false; 2676 int xdp_status = 0; 2677 2678 rcu_read_lock(); 2679 2680 prog = READ_ONCE(adapter->xdp_prog); 2681 2682 while (likely(total_packets < budget)) { 2683 union igc_adv_rx_desc *desc; 2684 struct igc_rx_buffer *bi; 2685 ktime_t timestamp = 0; 2686 unsigned int size; 2687 int res; 2688 2689 desc = IGC_RX_DESC(ring, ntc); 2690 size = le16_to_cpu(desc->wb.upper.length); 2691 if (!size) 2692 break; 2693 2694 /* This memory barrier is needed to keep us from reading 2695 * any other fields out of the rx_desc until we know the 2696 * descriptor has been written back 2697 */ 2698 dma_rmb(); 2699 2700 bi = &ring->rx_buffer_info[ntc]; 2701 2702 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2703 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2704 bi->xdp->data); 2705 2706 bi->xdp->data += IGC_TS_HDR_LEN; 2707 2708 /* HW timestamp has been copied into local variable. Metadata 2709 * length when XDP program is called should be 0. 2710 */ 2711 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2712 size -= IGC_TS_HDR_LEN; 2713 } 2714 2715 bi->xdp->data_end = bi->xdp->data + size; 2716 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); 2717 2718 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2719 switch (res) { 2720 case IGC_XDP_PASS: 2721 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2722 fallthrough; 2723 case IGC_XDP_CONSUMED: 2724 xsk_buff_free(bi->xdp); 2725 break; 2726 case IGC_XDP_TX: 2727 case IGC_XDP_REDIRECT: 2728 xdp_status |= res; 2729 break; 2730 } 2731 2732 bi->xdp = NULL; 2733 total_bytes += size; 2734 total_packets++; 2735 cleaned_count++; 2736 ntc++; 2737 if (ntc == ring->count) 2738 ntc = 0; 2739 } 2740 2741 ring->next_to_clean = ntc; 2742 rcu_read_unlock(); 2743 2744 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2745 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2746 2747 if (xdp_status) 2748 igc_finalize_xdp(adapter, xdp_status); 2749 2750 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2751 2752 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2753 if (failure || ring->next_to_clean == ring->next_to_use) 2754 xsk_set_rx_need_wakeup(ring->xsk_pool); 2755 else 2756 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2757 return total_packets; 2758 } 2759 2760 return failure ? budget : total_packets; 2761 } 2762 2763 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2764 unsigned int packets, unsigned int bytes) 2765 { 2766 struct igc_ring *ring = q_vector->tx.ring; 2767 2768 u64_stats_update_begin(&ring->tx_syncp); 2769 ring->tx_stats.bytes += bytes; 2770 ring->tx_stats.packets += packets; 2771 u64_stats_update_end(&ring->tx_syncp); 2772 2773 q_vector->tx.total_bytes += bytes; 2774 q_vector->tx.total_packets += packets; 2775 } 2776 2777 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2778 { 2779 struct xsk_buff_pool *pool = ring->xsk_pool; 2780 struct netdev_queue *nq = txring_txq(ring); 2781 union igc_adv_tx_desc *tx_desc = NULL; 2782 int cpu = smp_processor_id(); 2783 u16 ntu = ring->next_to_use; 2784 struct xdp_desc xdp_desc; 2785 u16 budget; 2786 2787 if (!netif_carrier_ok(ring->netdev)) 2788 return; 2789 2790 __netif_tx_lock(nq, cpu); 2791 2792 budget = igc_desc_unused(ring); 2793 2794 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2795 u32 cmd_type, olinfo_status; 2796 struct igc_tx_buffer *bi; 2797 dma_addr_t dma; 2798 2799 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2800 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2801 xdp_desc.len; 2802 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2803 2804 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2805 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2806 2807 tx_desc = IGC_TX_DESC(ring, ntu); 2808 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2809 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2810 tx_desc->read.buffer_addr = cpu_to_le64(dma); 2811 2812 bi = &ring->tx_buffer_info[ntu]; 2813 bi->type = IGC_TX_BUFFER_TYPE_XSK; 2814 bi->protocol = 0; 2815 bi->bytecount = xdp_desc.len; 2816 bi->gso_segs = 1; 2817 bi->time_stamp = jiffies; 2818 bi->next_to_watch = tx_desc; 2819 2820 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 2821 2822 ntu++; 2823 if (ntu == ring->count) 2824 ntu = 0; 2825 } 2826 2827 ring->next_to_use = ntu; 2828 if (tx_desc) { 2829 igc_flush_tx_descriptors(ring); 2830 xsk_tx_release(pool); 2831 } 2832 2833 __netif_tx_unlock(nq); 2834 } 2835 2836 /** 2837 * igc_clean_tx_irq - Reclaim resources after transmit completes 2838 * @q_vector: pointer to q_vector containing needed info 2839 * @napi_budget: Used to determine if we are in netpoll 2840 * 2841 * returns true if ring is completely cleaned 2842 */ 2843 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 2844 { 2845 struct igc_adapter *adapter = q_vector->adapter; 2846 unsigned int total_bytes = 0, total_packets = 0; 2847 unsigned int budget = q_vector->tx.work_limit; 2848 struct igc_ring *tx_ring = q_vector->tx.ring; 2849 unsigned int i = tx_ring->next_to_clean; 2850 struct igc_tx_buffer *tx_buffer; 2851 union igc_adv_tx_desc *tx_desc; 2852 u32 xsk_frames = 0; 2853 2854 if (test_bit(__IGC_DOWN, &adapter->state)) 2855 return true; 2856 2857 tx_buffer = &tx_ring->tx_buffer_info[i]; 2858 tx_desc = IGC_TX_DESC(tx_ring, i); 2859 i -= tx_ring->count; 2860 2861 do { 2862 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2863 2864 /* if next_to_watch is not set then there is no work pending */ 2865 if (!eop_desc) 2866 break; 2867 2868 /* prevent any other reads prior to eop_desc */ 2869 smp_rmb(); 2870 2871 /* if DD is not set pending work has not been completed */ 2872 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2873 break; 2874 2875 /* clear next_to_watch to prevent false hangs */ 2876 tx_buffer->next_to_watch = NULL; 2877 2878 /* update the statistics for this packet */ 2879 total_bytes += tx_buffer->bytecount; 2880 total_packets += tx_buffer->gso_segs; 2881 2882 switch (tx_buffer->type) { 2883 case IGC_TX_BUFFER_TYPE_XSK: 2884 xsk_frames++; 2885 break; 2886 case IGC_TX_BUFFER_TYPE_XDP: 2887 xdp_return_frame(tx_buffer->xdpf); 2888 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2889 break; 2890 case IGC_TX_BUFFER_TYPE_SKB: 2891 napi_consume_skb(tx_buffer->skb, napi_budget); 2892 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2893 break; 2894 default: 2895 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 2896 break; 2897 } 2898 2899 /* clear last DMA location and unmap remaining buffers */ 2900 while (tx_desc != eop_desc) { 2901 tx_buffer++; 2902 tx_desc++; 2903 i++; 2904 if (unlikely(!i)) { 2905 i -= tx_ring->count; 2906 tx_buffer = tx_ring->tx_buffer_info; 2907 tx_desc = IGC_TX_DESC(tx_ring, 0); 2908 } 2909 2910 /* unmap any remaining paged data */ 2911 if (dma_unmap_len(tx_buffer, len)) 2912 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2913 } 2914 2915 /* move us one more past the eop_desc for start of next pkt */ 2916 tx_buffer++; 2917 tx_desc++; 2918 i++; 2919 if (unlikely(!i)) { 2920 i -= tx_ring->count; 2921 tx_buffer = tx_ring->tx_buffer_info; 2922 tx_desc = IGC_TX_DESC(tx_ring, 0); 2923 } 2924 2925 /* issue prefetch for next Tx descriptor */ 2926 prefetch(tx_desc); 2927 2928 /* update budget accounting */ 2929 budget--; 2930 } while (likely(budget)); 2931 2932 netdev_tx_completed_queue(txring_txq(tx_ring), 2933 total_packets, total_bytes); 2934 2935 i += tx_ring->count; 2936 tx_ring->next_to_clean = i; 2937 2938 igc_update_tx_stats(q_vector, total_packets, total_bytes); 2939 2940 if (tx_ring->xsk_pool) { 2941 if (xsk_frames) 2942 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 2943 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 2944 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 2945 igc_xdp_xmit_zc(tx_ring); 2946 } 2947 2948 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 2949 struct igc_hw *hw = &adapter->hw; 2950 2951 /* Detect a transmit hang in hardware, this serializes the 2952 * check with the clearing of time_stamp and movement of i 2953 */ 2954 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2955 if (tx_buffer->next_to_watch && 2956 time_after(jiffies, tx_buffer->time_stamp + 2957 (adapter->tx_timeout_factor * HZ)) && 2958 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) && 2959 (rd32(IGC_TDH(tx_ring->reg_idx)) != 2960 readl(tx_ring->tail))) { 2961 /* detected Tx unit hang */ 2962 netdev_err(tx_ring->netdev, 2963 "Detected Tx Unit Hang\n" 2964 " Tx Queue <%d>\n" 2965 " TDH <%x>\n" 2966 " TDT <%x>\n" 2967 " next_to_use <%x>\n" 2968 " next_to_clean <%x>\n" 2969 "buffer_info[next_to_clean]\n" 2970 " time_stamp <%lx>\n" 2971 " next_to_watch <%p>\n" 2972 " jiffies <%lx>\n" 2973 " desc.status <%x>\n", 2974 tx_ring->queue_index, 2975 rd32(IGC_TDH(tx_ring->reg_idx)), 2976 readl(tx_ring->tail), 2977 tx_ring->next_to_use, 2978 tx_ring->next_to_clean, 2979 tx_buffer->time_stamp, 2980 tx_buffer->next_to_watch, 2981 jiffies, 2982 tx_buffer->next_to_watch->wb.status); 2983 netif_stop_subqueue(tx_ring->netdev, 2984 tx_ring->queue_index); 2985 2986 /* we are about to reset, no point in enabling stuff */ 2987 return true; 2988 } 2989 } 2990 2991 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 2992 if (unlikely(total_packets && 2993 netif_carrier_ok(tx_ring->netdev) && 2994 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 2995 /* Make sure that anybody stopping the queue after this 2996 * sees the new next_to_clean. 2997 */ 2998 smp_mb(); 2999 if (__netif_subqueue_stopped(tx_ring->netdev, 3000 tx_ring->queue_index) && 3001 !(test_bit(__IGC_DOWN, &adapter->state))) { 3002 netif_wake_subqueue(tx_ring->netdev, 3003 tx_ring->queue_index); 3004 3005 u64_stats_update_begin(&tx_ring->tx_syncp); 3006 tx_ring->tx_stats.restart_queue++; 3007 u64_stats_update_end(&tx_ring->tx_syncp); 3008 } 3009 } 3010 3011 return !!budget; 3012 } 3013 3014 static int igc_find_mac_filter(struct igc_adapter *adapter, 3015 enum igc_mac_filter_type type, const u8 *addr) 3016 { 3017 struct igc_hw *hw = &adapter->hw; 3018 int max_entries = hw->mac.rar_entry_count; 3019 u32 ral, rah; 3020 int i; 3021 3022 for (i = 0; i < max_entries; i++) { 3023 ral = rd32(IGC_RAL(i)); 3024 rah = rd32(IGC_RAH(i)); 3025 3026 if (!(rah & IGC_RAH_AV)) 3027 continue; 3028 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 3029 continue; 3030 if ((rah & IGC_RAH_RAH_MASK) != 3031 le16_to_cpup((__le16 *)(addr + 4))) 3032 continue; 3033 if (ral != le32_to_cpup((__le32 *)(addr))) 3034 continue; 3035 3036 return i; 3037 } 3038 3039 return -1; 3040 } 3041 3042 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 3043 { 3044 struct igc_hw *hw = &adapter->hw; 3045 int max_entries = hw->mac.rar_entry_count; 3046 u32 rah; 3047 int i; 3048 3049 for (i = 0; i < max_entries; i++) { 3050 rah = rd32(IGC_RAH(i)); 3051 3052 if (!(rah & IGC_RAH_AV)) 3053 return i; 3054 } 3055 3056 return -1; 3057 } 3058 3059 /** 3060 * igc_add_mac_filter() - Add MAC address filter 3061 * @adapter: Pointer to adapter where the filter should be added 3062 * @type: MAC address filter type (source or destination) 3063 * @addr: MAC address 3064 * @queue: If non-negative, queue assignment feature is enabled and frames 3065 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3066 * assignment is disabled. 3067 * 3068 * Return: 0 in case of success, negative errno code otherwise. 3069 */ 3070 static int igc_add_mac_filter(struct igc_adapter *adapter, 3071 enum igc_mac_filter_type type, const u8 *addr, 3072 int queue) 3073 { 3074 struct net_device *dev = adapter->netdev; 3075 int index; 3076 3077 index = igc_find_mac_filter(adapter, type, addr); 3078 if (index >= 0) 3079 goto update_filter; 3080 3081 index = igc_get_avail_mac_filter_slot(adapter); 3082 if (index < 0) 3083 return -ENOSPC; 3084 3085 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 3086 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3087 addr, queue); 3088 3089 update_filter: 3090 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 3091 return 0; 3092 } 3093 3094 /** 3095 * igc_del_mac_filter() - Delete MAC address filter 3096 * @adapter: Pointer to adapter where the filter should be deleted from 3097 * @type: MAC address filter type (source or destination) 3098 * @addr: MAC address 3099 */ 3100 static void igc_del_mac_filter(struct igc_adapter *adapter, 3101 enum igc_mac_filter_type type, const u8 *addr) 3102 { 3103 struct net_device *dev = adapter->netdev; 3104 int index; 3105 3106 index = igc_find_mac_filter(adapter, type, addr); 3107 if (index < 0) 3108 return; 3109 3110 if (index == 0) { 3111 /* If this is the default filter, we don't actually delete it. 3112 * We just reset to its default value i.e. disable queue 3113 * assignment. 3114 */ 3115 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 3116 3117 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 3118 } else { 3119 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 3120 index, 3121 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3122 addr); 3123 3124 igc_clear_mac_filter_hw(adapter, index); 3125 } 3126 } 3127 3128 /** 3129 * igc_add_vlan_prio_filter() - Add VLAN priority filter 3130 * @adapter: Pointer to adapter where the filter should be added 3131 * @prio: VLAN priority value 3132 * @queue: Queue number which matching frames are assigned to 3133 * 3134 * Return: 0 in case of success, negative errno code otherwise. 3135 */ 3136 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 3137 int queue) 3138 { 3139 struct net_device *dev = adapter->netdev; 3140 struct igc_hw *hw = &adapter->hw; 3141 u32 vlanpqf; 3142 3143 vlanpqf = rd32(IGC_VLANPQF); 3144 3145 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 3146 netdev_dbg(dev, "VLAN priority filter already in use\n"); 3147 return -EEXIST; 3148 } 3149 3150 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 3151 vlanpqf |= IGC_VLANPQF_VALID(prio); 3152 3153 wr32(IGC_VLANPQF, vlanpqf); 3154 3155 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 3156 prio, queue); 3157 return 0; 3158 } 3159 3160 /** 3161 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 3162 * @adapter: Pointer to adapter where the filter should be deleted from 3163 * @prio: VLAN priority value 3164 */ 3165 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 3166 { 3167 struct igc_hw *hw = &adapter->hw; 3168 u32 vlanpqf; 3169 3170 vlanpqf = rd32(IGC_VLANPQF); 3171 3172 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3173 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3174 3175 wr32(IGC_VLANPQF, vlanpqf); 3176 3177 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3178 prio); 3179 } 3180 3181 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3182 { 3183 struct igc_hw *hw = &adapter->hw; 3184 int i; 3185 3186 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3187 u32 etqf = rd32(IGC_ETQF(i)); 3188 3189 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3190 return i; 3191 } 3192 3193 return -1; 3194 } 3195 3196 /** 3197 * igc_add_etype_filter() - Add ethertype filter 3198 * @adapter: Pointer to adapter where the filter should be added 3199 * @etype: Ethertype value 3200 * @queue: If non-negative, queue assignment feature is enabled and frames 3201 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3202 * assignment is disabled. 3203 * 3204 * Return: 0 in case of success, negative errno code otherwise. 3205 */ 3206 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3207 int queue) 3208 { 3209 struct igc_hw *hw = &adapter->hw; 3210 int index; 3211 u32 etqf; 3212 3213 index = igc_get_avail_etype_filter_slot(adapter); 3214 if (index < 0) 3215 return -ENOSPC; 3216 3217 etqf = rd32(IGC_ETQF(index)); 3218 3219 etqf &= ~IGC_ETQF_ETYPE_MASK; 3220 etqf |= etype; 3221 3222 if (queue >= 0) { 3223 etqf &= ~IGC_ETQF_QUEUE_MASK; 3224 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3225 etqf |= IGC_ETQF_QUEUE_ENABLE; 3226 } 3227 3228 etqf |= IGC_ETQF_FILTER_ENABLE; 3229 3230 wr32(IGC_ETQF(index), etqf); 3231 3232 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3233 etype, queue); 3234 return 0; 3235 } 3236 3237 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3238 { 3239 struct igc_hw *hw = &adapter->hw; 3240 int i; 3241 3242 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3243 u32 etqf = rd32(IGC_ETQF(i)); 3244 3245 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3246 return i; 3247 } 3248 3249 return -1; 3250 } 3251 3252 /** 3253 * igc_del_etype_filter() - Delete ethertype filter 3254 * @adapter: Pointer to adapter where the filter should be deleted from 3255 * @etype: Ethertype value 3256 */ 3257 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3258 { 3259 struct igc_hw *hw = &adapter->hw; 3260 int index; 3261 3262 index = igc_find_etype_filter(adapter, etype); 3263 if (index < 0) 3264 return; 3265 3266 wr32(IGC_ETQF(index), 0); 3267 3268 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3269 etype); 3270 } 3271 3272 static int igc_flex_filter_select(struct igc_adapter *adapter, 3273 struct igc_flex_filter *input, 3274 u32 *fhft) 3275 { 3276 struct igc_hw *hw = &adapter->hw; 3277 u8 fhft_index; 3278 u32 fhftsl; 3279 3280 if (input->index >= MAX_FLEX_FILTER) { 3281 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n"); 3282 return -EINVAL; 3283 } 3284 3285 /* Indirect table select register */ 3286 fhftsl = rd32(IGC_FHFTSL); 3287 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3288 switch (input->index) { 3289 case 0 ... 7: 3290 fhftsl |= 0x00; 3291 break; 3292 case 8 ... 15: 3293 fhftsl |= 0x01; 3294 break; 3295 case 16 ... 23: 3296 fhftsl |= 0x02; 3297 break; 3298 case 24 ... 31: 3299 fhftsl |= 0x03; 3300 break; 3301 } 3302 wr32(IGC_FHFTSL, fhftsl); 3303 3304 /* Normalize index down to host table register */ 3305 fhft_index = input->index % 8; 3306 3307 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3308 IGC_FHFT_EXT(fhft_index - 4); 3309 3310 return 0; 3311 } 3312 3313 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3314 struct igc_flex_filter *input) 3315 { 3316 struct device *dev = &adapter->pdev->dev; 3317 struct igc_hw *hw = &adapter->hw; 3318 u8 *data = input->data; 3319 u8 *mask = input->mask; 3320 u32 queuing; 3321 u32 fhft; 3322 u32 wufc; 3323 int ret; 3324 int i; 3325 3326 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3327 * out early to avoid surprises later. 3328 */ 3329 if (input->length % 8 != 0) { 3330 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n"); 3331 return -EINVAL; 3332 } 3333 3334 /* Select corresponding flex filter register and get base for host table. */ 3335 ret = igc_flex_filter_select(adapter, input, &fhft); 3336 if (ret) 3337 return ret; 3338 3339 /* When adding a filter globally disable flex filter feature. That is 3340 * recommended within the datasheet. 3341 */ 3342 wufc = rd32(IGC_WUFC); 3343 wufc &= ~IGC_WUFC_FLEX_HQ; 3344 wr32(IGC_WUFC, wufc); 3345 3346 /* Configure filter */ 3347 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3348 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK; 3349 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK; 3350 3351 if (input->immediate_irq) 3352 queuing |= IGC_FHFT_IMM_INT; 3353 3354 if (input->drop) 3355 queuing |= IGC_FHFT_DROP; 3356 3357 wr32(fhft + 0xFC, queuing); 3358 3359 /* Write data (128 byte) and mask (128 bit) */ 3360 for (i = 0; i < 16; ++i) { 3361 const size_t data_idx = i * 8; 3362 const size_t row_idx = i * 16; 3363 u32 dw0 = 3364 (data[data_idx + 0] << 0) | 3365 (data[data_idx + 1] << 8) | 3366 (data[data_idx + 2] << 16) | 3367 (data[data_idx + 3] << 24); 3368 u32 dw1 = 3369 (data[data_idx + 4] << 0) | 3370 (data[data_idx + 5] << 8) | 3371 (data[data_idx + 6] << 16) | 3372 (data[data_idx + 7] << 24); 3373 u32 tmp; 3374 3375 /* Write row: dw0, dw1 and mask */ 3376 wr32(fhft + row_idx, dw0); 3377 wr32(fhft + row_idx + 4, dw1); 3378 3379 /* mask is only valid for MASK(7, 0) */ 3380 tmp = rd32(fhft + row_idx + 8); 3381 tmp &= ~GENMASK(7, 0); 3382 tmp |= mask[i]; 3383 wr32(fhft + row_idx + 8, tmp); 3384 } 3385 3386 /* Enable filter. */ 3387 wufc |= IGC_WUFC_FLEX_HQ; 3388 if (input->index > 8) { 3389 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3390 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3391 3392 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3393 3394 wr32(IGC_WUFC_EXT, wufc_ext); 3395 } else { 3396 wufc |= (IGC_WUFC_FLX0 << input->index); 3397 } 3398 wr32(IGC_WUFC, wufc); 3399 3400 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n", 3401 input->index); 3402 3403 return 0; 3404 } 3405 3406 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3407 const void *src, unsigned int offset, 3408 size_t len, const void *mask) 3409 { 3410 int i; 3411 3412 /* data */ 3413 memcpy(&flex->data[offset], src, len); 3414 3415 /* mask */ 3416 for (i = 0; i < len; ++i) { 3417 const unsigned int idx = i + offset; 3418 const u8 *ptr = mask; 3419 3420 if (mask) { 3421 if (ptr[i] & 0xff) 3422 flex->mask[idx / 8] |= BIT(idx % 8); 3423 3424 continue; 3425 } 3426 3427 flex->mask[idx / 8] |= BIT(idx % 8); 3428 } 3429 } 3430 3431 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3432 { 3433 struct igc_hw *hw = &adapter->hw; 3434 u32 wufc, wufc_ext; 3435 int i; 3436 3437 wufc = rd32(IGC_WUFC); 3438 wufc_ext = rd32(IGC_WUFC_EXT); 3439 3440 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3441 if (i < 8) { 3442 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3443 return i; 3444 } else { 3445 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3446 return i; 3447 } 3448 } 3449 3450 return -ENOSPC; 3451 } 3452 3453 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3454 { 3455 struct igc_hw *hw = &adapter->hw; 3456 u32 wufc, wufc_ext; 3457 3458 wufc = rd32(IGC_WUFC); 3459 wufc_ext = rd32(IGC_WUFC_EXT); 3460 3461 if (wufc & IGC_WUFC_FILTER_MASK) 3462 return true; 3463 3464 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3465 return true; 3466 3467 return false; 3468 } 3469 3470 static int igc_add_flex_filter(struct igc_adapter *adapter, 3471 struct igc_nfc_rule *rule) 3472 { 3473 struct igc_flex_filter flex = { }; 3474 struct igc_nfc_filter *filter = &rule->filter; 3475 unsigned int eth_offset, user_offset; 3476 int ret, index; 3477 bool vlan; 3478 3479 index = igc_find_avail_flex_filter_slot(adapter); 3480 if (index < 0) 3481 return -ENOSPC; 3482 3483 /* Construct the flex filter: 3484 * -> dest_mac [6] 3485 * -> src_mac [6] 3486 * -> tpid [2] 3487 * -> vlan tci [2] 3488 * -> ether type [2] 3489 * -> user data [8] 3490 * -> = 26 bytes => 32 length 3491 */ 3492 flex.index = index; 3493 flex.length = 32; 3494 flex.rx_queue = rule->action; 3495 3496 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3497 eth_offset = vlan ? 16 : 12; 3498 user_offset = vlan ? 18 : 14; 3499 3500 /* Add destination MAC */ 3501 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3502 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3503 ETH_ALEN, NULL); 3504 3505 /* Add source MAC */ 3506 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3507 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3508 ETH_ALEN, NULL); 3509 3510 /* Add VLAN etype */ 3511 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) 3512 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12, 3513 sizeof(filter->vlan_etype), 3514 NULL); 3515 3516 /* Add VLAN TCI */ 3517 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3518 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3519 sizeof(filter->vlan_tci), NULL); 3520 3521 /* Add Ether type */ 3522 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3523 __be16 etype = cpu_to_be16(filter->etype); 3524 3525 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3526 sizeof(etype), NULL); 3527 } 3528 3529 /* Add user data */ 3530 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3531 igc_flex_filter_add_field(&flex, &filter->user_data, 3532 user_offset, 3533 sizeof(filter->user_data), 3534 filter->user_mask); 3535 3536 /* Add it down to the hardware and enable it. */ 3537 ret = igc_write_flex_filter_ll(adapter, &flex); 3538 if (ret) 3539 return ret; 3540 3541 filter->flex_index = index; 3542 3543 return 0; 3544 } 3545 3546 static void igc_del_flex_filter(struct igc_adapter *adapter, 3547 u16 reg_index) 3548 { 3549 struct igc_hw *hw = &adapter->hw; 3550 u32 wufc; 3551 3552 /* Just disable the filter. The filter table itself is kept 3553 * intact. Another flex_filter_add() should override the "old" data 3554 * then. 3555 */ 3556 if (reg_index > 8) { 3557 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3558 3559 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3560 wr32(IGC_WUFC_EXT, wufc_ext); 3561 } else { 3562 wufc = rd32(IGC_WUFC); 3563 3564 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3565 wr32(IGC_WUFC, wufc); 3566 } 3567 3568 if (igc_flex_filter_in_use(adapter)) 3569 return; 3570 3571 /* No filters are in use, we may disable flex filters */ 3572 wufc = rd32(IGC_WUFC); 3573 wufc &= ~IGC_WUFC_FLEX_HQ; 3574 wr32(IGC_WUFC, wufc); 3575 } 3576 3577 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3578 struct igc_nfc_rule *rule) 3579 { 3580 int err; 3581 3582 if (rule->flex) { 3583 return igc_add_flex_filter(adapter, rule); 3584 } 3585 3586 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3587 err = igc_add_etype_filter(adapter, rule->filter.etype, 3588 rule->action); 3589 if (err) 3590 return err; 3591 } 3592 3593 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3594 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3595 rule->filter.src_addr, rule->action); 3596 if (err) 3597 return err; 3598 } 3599 3600 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3601 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3602 rule->filter.dst_addr, rule->action); 3603 if (err) 3604 return err; 3605 } 3606 3607 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3608 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3609 VLAN_PRIO_SHIFT; 3610 3611 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3612 if (err) 3613 return err; 3614 } 3615 3616 return 0; 3617 } 3618 3619 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3620 const struct igc_nfc_rule *rule) 3621 { 3622 if (rule->flex) { 3623 igc_del_flex_filter(adapter, rule->filter.flex_index); 3624 return; 3625 } 3626 3627 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3628 igc_del_etype_filter(adapter, rule->filter.etype); 3629 3630 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3631 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3632 VLAN_PRIO_SHIFT; 3633 3634 igc_del_vlan_prio_filter(adapter, prio); 3635 } 3636 3637 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3638 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3639 rule->filter.src_addr); 3640 3641 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3642 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3643 rule->filter.dst_addr); 3644 } 3645 3646 /** 3647 * igc_get_nfc_rule() - Get NFC rule 3648 * @adapter: Pointer to adapter 3649 * @location: Rule location 3650 * 3651 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3652 * 3653 * Return: Pointer to NFC rule at @location. If not found, NULL. 3654 */ 3655 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3656 u32 location) 3657 { 3658 struct igc_nfc_rule *rule; 3659 3660 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3661 if (rule->location == location) 3662 return rule; 3663 if (rule->location > location) 3664 break; 3665 } 3666 3667 return NULL; 3668 } 3669 3670 /** 3671 * igc_del_nfc_rule() - Delete NFC rule 3672 * @adapter: Pointer to adapter 3673 * @rule: Pointer to rule to be deleted 3674 * 3675 * Disable NFC rule in hardware and delete it from adapter. 3676 * 3677 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3678 */ 3679 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3680 { 3681 igc_disable_nfc_rule(adapter, rule); 3682 3683 list_del(&rule->list); 3684 adapter->nfc_rule_count--; 3685 3686 kfree(rule); 3687 } 3688 3689 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3690 { 3691 struct igc_nfc_rule *rule, *tmp; 3692 3693 mutex_lock(&adapter->nfc_rule_lock); 3694 3695 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3696 igc_del_nfc_rule(adapter, rule); 3697 3698 mutex_unlock(&adapter->nfc_rule_lock); 3699 } 3700 3701 /** 3702 * igc_add_nfc_rule() - Add NFC rule 3703 * @adapter: Pointer to adapter 3704 * @rule: Pointer to rule to be added 3705 * 3706 * Enable NFC rule in hardware and add it to adapter. 3707 * 3708 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3709 * 3710 * Return: 0 on success, negative errno on failure. 3711 */ 3712 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3713 { 3714 struct igc_nfc_rule *pred, *cur; 3715 int err; 3716 3717 err = igc_enable_nfc_rule(adapter, rule); 3718 if (err) 3719 return err; 3720 3721 pred = NULL; 3722 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3723 if (cur->location >= rule->location) 3724 break; 3725 pred = cur; 3726 } 3727 3728 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3729 adapter->nfc_rule_count++; 3730 return 0; 3731 } 3732 3733 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3734 { 3735 struct igc_nfc_rule *rule; 3736 3737 mutex_lock(&adapter->nfc_rule_lock); 3738 3739 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3740 igc_enable_nfc_rule(adapter, rule); 3741 3742 mutex_unlock(&adapter->nfc_rule_lock); 3743 } 3744 3745 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3746 { 3747 struct igc_adapter *adapter = netdev_priv(netdev); 3748 3749 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3750 } 3751 3752 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3753 { 3754 struct igc_adapter *adapter = netdev_priv(netdev); 3755 3756 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3757 return 0; 3758 } 3759 3760 /** 3761 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3762 * @netdev: network interface device structure 3763 * 3764 * The set_rx_mode entry point is called whenever the unicast or multicast 3765 * address lists or the network interface flags are updated. This routine is 3766 * responsible for configuring the hardware for proper unicast, multicast, 3767 * promiscuous mode, and all-multi behavior. 3768 */ 3769 static void igc_set_rx_mode(struct net_device *netdev) 3770 { 3771 struct igc_adapter *adapter = netdev_priv(netdev); 3772 struct igc_hw *hw = &adapter->hw; 3773 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3774 int count; 3775 3776 /* Check for Promiscuous and All Multicast modes */ 3777 if (netdev->flags & IFF_PROMISC) { 3778 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3779 } else { 3780 if (netdev->flags & IFF_ALLMULTI) { 3781 rctl |= IGC_RCTL_MPE; 3782 } else { 3783 /* Write addresses to the MTA, if the attempt fails 3784 * then we should just turn on promiscuous mode so 3785 * that we can at least receive multicast traffic 3786 */ 3787 count = igc_write_mc_addr_list(netdev); 3788 if (count < 0) 3789 rctl |= IGC_RCTL_MPE; 3790 } 3791 } 3792 3793 /* Write addresses to available RAR registers, if there is not 3794 * sufficient space to store all the addresses then enable 3795 * unicast promiscuous mode 3796 */ 3797 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3798 rctl |= IGC_RCTL_UPE; 3799 3800 /* update state of unicast and multicast */ 3801 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 3802 wr32(IGC_RCTL, rctl); 3803 3804 #if (PAGE_SIZE < 8192) 3805 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 3806 rlpml = IGC_MAX_FRAME_BUILD_SKB; 3807 #endif 3808 wr32(IGC_RLPML, rlpml); 3809 } 3810 3811 /** 3812 * igc_configure - configure the hardware for RX and TX 3813 * @adapter: private board structure 3814 */ 3815 static void igc_configure(struct igc_adapter *adapter) 3816 { 3817 struct net_device *netdev = adapter->netdev; 3818 int i = 0; 3819 3820 igc_get_hw_control(adapter); 3821 igc_set_rx_mode(netdev); 3822 3823 igc_restore_vlan(adapter); 3824 3825 igc_setup_tctl(adapter); 3826 igc_setup_mrqc(adapter); 3827 igc_setup_rctl(adapter); 3828 3829 igc_set_default_mac_filter(adapter); 3830 igc_restore_nfc_rules(adapter); 3831 3832 igc_configure_tx(adapter); 3833 igc_configure_rx(adapter); 3834 3835 igc_rx_fifo_flush_base(&adapter->hw); 3836 3837 /* call igc_desc_unused which always leaves 3838 * at least 1 descriptor unused to make sure 3839 * next_to_use != next_to_clean 3840 */ 3841 for (i = 0; i < adapter->num_rx_queues; i++) { 3842 struct igc_ring *ring = adapter->rx_ring[i]; 3843 3844 if (ring->xsk_pool) 3845 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 3846 else 3847 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 3848 } 3849 } 3850 3851 /** 3852 * igc_write_ivar - configure ivar for given MSI-X vector 3853 * @hw: pointer to the HW structure 3854 * @msix_vector: vector number we are allocating to a given ring 3855 * @index: row index of IVAR register to write within IVAR table 3856 * @offset: column offset of in IVAR, should be multiple of 8 3857 * 3858 * The IVAR table consists of 2 columns, 3859 * each containing an cause allocation for an Rx and Tx ring, and a 3860 * variable number of rows depending on the number of queues supported. 3861 */ 3862 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 3863 int index, int offset) 3864 { 3865 u32 ivar = array_rd32(IGC_IVAR0, index); 3866 3867 /* clear any bits that are currently set */ 3868 ivar &= ~((u32)0xFF << offset); 3869 3870 /* write vector and valid bit */ 3871 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 3872 3873 array_wr32(IGC_IVAR0, index, ivar); 3874 } 3875 3876 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 3877 { 3878 struct igc_adapter *adapter = q_vector->adapter; 3879 struct igc_hw *hw = &adapter->hw; 3880 int rx_queue = IGC_N0_QUEUE; 3881 int tx_queue = IGC_N0_QUEUE; 3882 3883 if (q_vector->rx.ring) 3884 rx_queue = q_vector->rx.ring->reg_idx; 3885 if (q_vector->tx.ring) 3886 tx_queue = q_vector->tx.ring->reg_idx; 3887 3888 switch (hw->mac.type) { 3889 case igc_i225: 3890 if (rx_queue > IGC_N0_QUEUE) 3891 igc_write_ivar(hw, msix_vector, 3892 rx_queue >> 1, 3893 (rx_queue & 0x1) << 4); 3894 if (tx_queue > IGC_N0_QUEUE) 3895 igc_write_ivar(hw, msix_vector, 3896 tx_queue >> 1, 3897 ((tx_queue & 0x1) << 4) + 8); 3898 q_vector->eims_value = BIT(msix_vector); 3899 break; 3900 default: 3901 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 3902 break; 3903 } 3904 3905 /* add q_vector eims value to global eims_enable_mask */ 3906 adapter->eims_enable_mask |= q_vector->eims_value; 3907 3908 /* configure q_vector to set itr on first interrupt */ 3909 q_vector->set_itr = 1; 3910 } 3911 3912 /** 3913 * igc_configure_msix - Configure MSI-X hardware 3914 * @adapter: Pointer to adapter structure 3915 * 3916 * igc_configure_msix sets up the hardware to properly 3917 * generate MSI-X interrupts. 3918 */ 3919 static void igc_configure_msix(struct igc_adapter *adapter) 3920 { 3921 struct igc_hw *hw = &adapter->hw; 3922 int i, vector = 0; 3923 u32 tmp; 3924 3925 adapter->eims_enable_mask = 0; 3926 3927 /* set vector for other causes, i.e. link changes */ 3928 switch (hw->mac.type) { 3929 case igc_i225: 3930 /* Turn on MSI-X capability first, or our settings 3931 * won't stick. And it will take days to debug. 3932 */ 3933 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 3934 IGC_GPIE_PBA | IGC_GPIE_EIAME | 3935 IGC_GPIE_NSICR); 3936 3937 /* enable msix_other interrupt */ 3938 adapter->eims_other = BIT(vector); 3939 tmp = (vector++ | IGC_IVAR_VALID) << 8; 3940 3941 wr32(IGC_IVAR_MISC, tmp); 3942 break; 3943 default: 3944 /* do nothing, since nothing else supports MSI-X */ 3945 break; 3946 } /* switch (hw->mac.type) */ 3947 3948 adapter->eims_enable_mask |= adapter->eims_other; 3949 3950 for (i = 0; i < adapter->num_q_vectors; i++) 3951 igc_assign_vector(adapter->q_vector[i], vector++); 3952 3953 wrfl(); 3954 } 3955 3956 /** 3957 * igc_irq_enable - Enable default interrupt generation settings 3958 * @adapter: board private structure 3959 */ 3960 static void igc_irq_enable(struct igc_adapter *adapter) 3961 { 3962 struct igc_hw *hw = &adapter->hw; 3963 3964 if (adapter->msix_entries) { 3965 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3966 u32 regval = rd32(IGC_EIAC); 3967 3968 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3969 regval = rd32(IGC_EIAM); 3970 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3971 wr32(IGC_EIMS, adapter->eims_enable_mask); 3972 wr32(IGC_IMS, ims); 3973 } else { 3974 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3975 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3976 } 3977 } 3978 3979 /** 3980 * igc_irq_disable - Mask off interrupt generation on the NIC 3981 * @adapter: board private structure 3982 */ 3983 static void igc_irq_disable(struct igc_adapter *adapter) 3984 { 3985 struct igc_hw *hw = &adapter->hw; 3986 3987 if (adapter->msix_entries) { 3988 u32 regval = rd32(IGC_EIAM); 3989 3990 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3991 wr32(IGC_EIMC, adapter->eims_enable_mask); 3992 regval = rd32(IGC_EIAC); 3993 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 3994 } 3995 3996 wr32(IGC_IAM, 0); 3997 wr32(IGC_IMC, ~0); 3998 wrfl(); 3999 4000 if (adapter->msix_entries) { 4001 int vector = 0, i; 4002 4003 synchronize_irq(adapter->msix_entries[vector++].vector); 4004 4005 for (i = 0; i < adapter->num_q_vectors; i++) 4006 synchronize_irq(adapter->msix_entries[vector++].vector); 4007 } else { 4008 synchronize_irq(adapter->pdev->irq); 4009 } 4010 } 4011 4012 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 4013 const u32 max_rss_queues) 4014 { 4015 /* Determine if we need to pair queues. */ 4016 /* If rss_queues > half of max_rss_queues, pair the queues in 4017 * order to conserve interrupts due to limited supply. 4018 */ 4019 if (adapter->rss_queues > (max_rss_queues / 2)) 4020 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4021 else 4022 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4023 } 4024 4025 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4026 { 4027 return IGC_MAX_RX_QUEUES; 4028 } 4029 4030 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4031 { 4032 u32 max_rss_queues; 4033 4034 max_rss_queues = igc_get_max_rss_queues(adapter); 4035 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4036 4037 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4038 } 4039 4040 /** 4041 * igc_reset_q_vector - Reset config for interrupt vector 4042 * @adapter: board private structure to initialize 4043 * @v_idx: Index of vector to be reset 4044 * 4045 * If NAPI is enabled it will delete any references to the 4046 * NAPI struct. This is preparation for igc_free_q_vector. 4047 */ 4048 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 4049 { 4050 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4051 4052 /* if we're coming from igc_set_interrupt_capability, the vectors are 4053 * not yet allocated 4054 */ 4055 if (!q_vector) 4056 return; 4057 4058 if (q_vector->tx.ring) 4059 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 4060 4061 if (q_vector->rx.ring) 4062 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 4063 4064 netif_napi_del(&q_vector->napi); 4065 } 4066 4067 /** 4068 * igc_free_q_vector - Free memory allocated for specific interrupt vector 4069 * @adapter: board private structure to initialize 4070 * @v_idx: Index of vector to be freed 4071 * 4072 * This function frees the memory allocated to the q_vector. 4073 */ 4074 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 4075 { 4076 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4077 4078 adapter->q_vector[v_idx] = NULL; 4079 4080 /* igc_get_stats64() might access the rings on this vector, 4081 * we must wait a grace period before freeing it. 4082 */ 4083 if (q_vector) 4084 kfree_rcu(q_vector, rcu); 4085 } 4086 4087 /** 4088 * igc_free_q_vectors - Free memory allocated for interrupt vectors 4089 * @adapter: board private structure to initialize 4090 * 4091 * This function frees the memory allocated to the q_vectors. In addition if 4092 * NAPI is enabled it will delete any references to the NAPI struct prior 4093 * to freeing the q_vector. 4094 */ 4095 static void igc_free_q_vectors(struct igc_adapter *adapter) 4096 { 4097 int v_idx = adapter->num_q_vectors; 4098 4099 adapter->num_tx_queues = 0; 4100 adapter->num_rx_queues = 0; 4101 adapter->num_q_vectors = 0; 4102 4103 while (v_idx--) { 4104 igc_reset_q_vector(adapter, v_idx); 4105 igc_free_q_vector(adapter, v_idx); 4106 } 4107 } 4108 4109 /** 4110 * igc_update_itr - update the dynamic ITR value based on statistics 4111 * @q_vector: pointer to q_vector 4112 * @ring_container: ring info to update the itr for 4113 * 4114 * Stores a new ITR value based on packets and byte 4115 * counts during the last interrupt. The advantage of per interrupt 4116 * computation is faster updates and more accurate ITR for the current 4117 * traffic pattern. Constants in this function were computed 4118 * based on theoretical maximum wire speed and thresholds were set based 4119 * on testing data as well as attempting to minimize response time 4120 * while increasing bulk throughput. 4121 * NOTE: These calculations are only valid when operating in a single- 4122 * queue environment. 4123 */ 4124 static void igc_update_itr(struct igc_q_vector *q_vector, 4125 struct igc_ring_container *ring_container) 4126 { 4127 unsigned int packets = ring_container->total_packets; 4128 unsigned int bytes = ring_container->total_bytes; 4129 u8 itrval = ring_container->itr; 4130 4131 /* no packets, exit with status unchanged */ 4132 if (packets == 0) 4133 return; 4134 4135 switch (itrval) { 4136 case lowest_latency: 4137 /* handle TSO and jumbo frames */ 4138 if (bytes / packets > 8000) 4139 itrval = bulk_latency; 4140 else if ((packets < 5) && (bytes > 512)) 4141 itrval = low_latency; 4142 break; 4143 case low_latency: /* 50 usec aka 20000 ints/s */ 4144 if (bytes > 10000) { 4145 /* this if handles the TSO accounting */ 4146 if (bytes / packets > 8000) 4147 itrval = bulk_latency; 4148 else if ((packets < 10) || ((bytes / packets) > 1200)) 4149 itrval = bulk_latency; 4150 else if ((packets > 35)) 4151 itrval = lowest_latency; 4152 } else if (bytes / packets > 2000) { 4153 itrval = bulk_latency; 4154 } else if (packets <= 2 && bytes < 512) { 4155 itrval = lowest_latency; 4156 } 4157 break; 4158 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4159 if (bytes > 25000) { 4160 if (packets > 35) 4161 itrval = low_latency; 4162 } else if (bytes < 1500) { 4163 itrval = low_latency; 4164 } 4165 break; 4166 } 4167 4168 /* clear work counters since we have the values we need */ 4169 ring_container->total_bytes = 0; 4170 ring_container->total_packets = 0; 4171 4172 /* write updated itr to ring container */ 4173 ring_container->itr = itrval; 4174 } 4175 4176 static void igc_set_itr(struct igc_q_vector *q_vector) 4177 { 4178 struct igc_adapter *adapter = q_vector->adapter; 4179 u32 new_itr = q_vector->itr_val; 4180 u8 current_itr = 0; 4181 4182 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4183 switch (adapter->link_speed) { 4184 case SPEED_10: 4185 case SPEED_100: 4186 current_itr = 0; 4187 new_itr = IGC_4K_ITR; 4188 goto set_itr_now; 4189 default: 4190 break; 4191 } 4192 4193 igc_update_itr(q_vector, &q_vector->tx); 4194 igc_update_itr(q_vector, &q_vector->rx); 4195 4196 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4197 4198 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4199 if (current_itr == lowest_latency && 4200 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4201 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4202 current_itr = low_latency; 4203 4204 switch (current_itr) { 4205 /* counts and packets in update_itr are dependent on these numbers */ 4206 case lowest_latency: 4207 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4208 break; 4209 case low_latency: 4210 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4211 break; 4212 case bulk_latency: 4213 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4214 break; 4215 default: 4216 break; 4217 } 4218 4219 set_itr_now: 4220 if (new_itr != q_vector->itr_val) { 4221 /* this attempts to bias the interrupt rate towards Bulk 4222 * by adding intermediate steps when interrupt rate is 4223 * increasing 4224 */ 4225 new_itr = new_itr > q_vector->itr_val ? 4226 max((new_itr * q_vector->itr_val) / 4227 (new_itr + (q_vector->itr_val >> 2)), 4228 new_itr) : new_itr; 4229 /* Don't write the value here; it resets the adapter's 4230 * internal timer, and causes us to delay far longer than 4231 * we should between interrupts. Instead, we write the ITR 4232 * value at the beginning of the next interrupt so the timing 4233 * ends up being correct. 4234 */ 4235 q_vector->itr_val = new_itr; 4236 q_vector->set_itr = 1; 4237 } 4238 } 4239 4240 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4241 { 4242 int v_idx = adapter->num_q_vectors; 4243 4244 if (adapter->msix_entries) { 4245 pci_disable_msix(adapter->pdev); 4246 kfree(adapter->msix_entries); 4247 adapter->msix_entries = NULL; 4248 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4249 pci_disable_msi(adapter->pdev); 4250 } 4251 4252 while (v_idx--) 4253 igc_reset_q_vector(adapter, v_idx); 4254 } 4255 4256 /** 4257 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4258 * @adapter: Pointer to adapter structure 4259 * @msix: boolean value for MSI-X capability 4260 * 4261 * Attempt to configure interrupts using the best available 4262 * capabilities of the hardware and kernel. 4263 */ 4264 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4265 bool msix) 4266 { 4267 int numvecs, i; 4268 int err; 4269 4270 if (!msix) 4271 goto msi_only; 4272 adapter->flags |= IGC_FLAG_HAS_MSIX; 4273 4274 /* Number of supported queues. */ 4275 adapter->num_rx_queues = adapter->rss_queues; 4276 4277 adapter->num_tx_queues = adapter->rss_queues; 4278 4279 /* start with one vector for every Rx queue */ 4280 numvecs = adapter->num_rx_queues; 4281 4282 /* if Tx handler is separate add 1 for every Tx queue */ 4283 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4284 numvecs += adapter->num_tx_queues; 4285 4286 /* store the number of vectors reserved for queues */ 4287 adapter->num_q_vectors = numvecs; 4288 4289 /* add 1 vector for link status interrupts */ 4290 numvecs++; 4291 4292 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4293 GFP_KERNEL); 4294 4295 if (!adapter->msix_entries) 4296 return; 4297 4298 /* populate entry values */ 4299 for (i = 0; i < numvecs; i++) 4300 adapter->msix_entries[i].entry = i; 4301 4302 err = pci_enable_msix_range(adapter->pdev, 4303 adapter->msix_entries, 4304 numvecs, 4305 numvecs); 4306 if (err > 0) 4307 return; 4308 4309 kfree(adapter->msix_entries); 4310 adapter->msix_entries = NULL; 4311 4312 igc_reset_interrupt_capability(adapter); 4313 4314 msi_only: 4315 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4316 4317 adapter->rss_queues = 1; 4318 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4319 adapter->num_rx_queues = 1; 4320 adapter->num_tx_queues = 1; 4321 adapter->num_q_vectors = 1; 4322 if (!pci_enable_msi(adapter->pdev)) 4323 adapter->flags |= IGC_FLAG_HAS_MSI; 4324 } 4325 4326 /** 4327 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4328 * @q_vector: pointer to q_vector 4329 * 4330 * Stores a new ITR value based on strictly on packet size. This 4331 * algorithm is less sophisticated than that used in igc_update_itr, 4332 * due to the difficulty of synchronizing statistics across multiple 4333 * receive rings. The divisors and thresholds used by this function 4334 * were determined based on theoretical maximum wire speed and testing 4335 * data, in order to minimize response time while increasing bulk 4336 * throughput. 4337 * NOTE: This function is called only when operating in a multiqueue 4338 * receive environment. 4339 */ 4340 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4341 { 4342 struct igc_adapter *adapter = q_vector->adapter; 4343 int new_val = q_vector->itr_val; 4344 int avg_wire_size = 0; 4345 unsigned int packets; 4346 4347 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4348 * ints/sec - ITR timer value of 120 ticks. 4349 */ 4350 switch (adapter->link_speed) { 4351 case SPEED_10: 4352 case SPEED_100: 4353 new_val = IGC_4K_ITR; 4354 goto set_itr_val; 4355 default: 4356 break; 4357 } 4358 4359 packets = q_vector->rx.total_packets; 4360 if (packets) 4361 avg_wire_size = q_vector->rx.total_bytes / packets; 4362 4363 packets = q_vector->tx.total_packets; 4364 if (packets) 4365 avg_wire_size = max_t(u32, avg_wire_size, 4366 q_vector->tx.total_bytes / packets); 4367 4368 /* if avg_wire_size isn't set no work was done */ 4369 if (!avg_wire_size) 4370 goto clear_counts; 4371 4372 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4373 avg_wire_size += 24; 4374 4375 /* Don't starve jumbo frames */ 4376 avg_wire_size = min(avg_wire_size, 3000); 4377 4378 /* Give a little boost to mid-size frames */ 4379 if (avg_wire_size > 300 && avg_wire_size < 1200) 4380 new_val = avg_wire_size / 3; 4381 else 4382 new_val = avg_wire_size / 2; 4383 4384 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4385 if (new_val < IGC_20K_ITR && 4386 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4387 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4388 new_val = IGC_20K_ITR; 4389 4390 set_itr_val: 4391 if (new_val != q_vector->itr_val) { 4392 q_vector->itr_val = new_val; 4393 q_vector->set_itr = 1; 4394 } 4395 clear_counts: 4396 q_vector->rx.total_bytes = 0; 4397 q_vector->rx.total_packets = 0; 4398 q_vector->tx.total_bytes = 0; 4399 q_vector->tx.total_packets = 0; 4400 } 4401 4402 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4403 { 4404 struct igc_adapter *adapter = q_vector->adapter; 4405 struct igc_hw *hw = &adapter->hw; 4406 4407 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4408 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4409 if (adapter->num_q_vectors == 1) 4410 igc_set_itr(q_vector); 4411 else 4412 igc_update_ring_itr(q_vector); 4413 } 4414 4415 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4416 if (adapter->msix_entries) 4417 wr32(IGC_EIMS, q_vector->eims_value); 4418 else 4419 igc_irq_enable(adapter); 4420 } 4421 } 4422 4423 static void igc_add_ring(struct igc_ring *ring, 4424 struct igc_ring_container *head) 4425 { 4426 head->ring = ring; 4427 head->count++; 4428 } 4429 4430 /** 4431 * igc_cache_ring_register - Descriptor ring to register mapping 4432 * @adapter: board private structure to initialize 4433 * 4434 * Once we know the feature-set enabled for the device, we'll cache 4435 * the register offset the descriptor ring is assigned to. 4436 */ 4437 static void igc_cache_ring_register(struct igc_adapter *adapter) 4438 { 4439 int i = 0, j = 0; 4440 4441 switch (adapter->hw.mac.type) { 4442 case igc_i225: 4443 default: 4444 for (; i < adapter->num_rx_queues; i++) 4445 adapter->rx_ring[i]->reg_idx = i; 4446 for (; j < adapter->num_tx_queues; j++) 4447 adapter->tx_ring[j]->reg_idx = j; 4448 break; 4449 } 4450 } 4451 4452 /** 4453 * igc_poll - NAPI Rx polling callback 4454 * @napi: napi polling structure 4455 * @budget: count of how many packets we should handle 4456 */ 4457 static int igc_poll(struct napi_struct *napi, int budget) 4458 { 4459 struct igc_q_vector *q_vector = container_of(napi, 4460 struct igc_q_vector, 4461 napi); 4462 struct igc_ring *rx_ring = q_vector->rx.ring; 4463 bool clean_complete = true; 4464 int work_done = 0; 4465 4466 if (q_vector->tx.ring) 4467 clean_complete = igc_clean_tx_irq(q_vector, budget); 4468 4469 if (rx_ring) { 4470 int cleaned = rx_ring->xsk_pool ? 4471 igc_clean_rx_irq_zc(q_vector, budget) : 4472 igc_clean_rx_irq(q_vector, budget); 4473 4474 work_done += cleaned; 4475 if (cleaned >= budget) 4476 clean_complete = false; 4477 } 4478 4479 /* If all work not completed, return budget and keep polling */ 4480 if (!clean_complete) 4481 return budget; 4482 4483 /* Exit the polling mode, but don't re-enable interrupts if stack might 4484 * poll us due to busy-polling 4485 */ 4486 if (likely(napi_complete_done(napi, work_done))) 4487 igc_ring_irq_enable(q_vector); 4488 4489 return min(work_done, budget - 1); 4490 } 4491 4492 /** 4493 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4494 * @adapter: board private structure to initialize 4495 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4496 * @v_idx: index of vector in adapter struct 4497 * @txr_count: total number of Tx rings to allocate 4498 * @txr_idx: index of first Tx ring to allocate 4499 * @rxr_count: total number of Rx rings to allocate 4500 * @rxr_idx: index of first Rx ring to allocate 4501 * 4502 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4503 */ 4504 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4505 unsigned int v_count, unsigned int v_idx, 4506 unsigned int txr_count, unsigned int txr_idx, 4507 unsigned int rxr_count, unsigned int rxr_idx) 4508 { 4509 struct igc_q_vector *q_vector; 4510 struct igc_ring *ring; 4511 int ring_count; 4512 4513 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4514 if (txr_count > 1 || rxr_count > 1) 4515 return -ENOMEM; 4516 4517 ring_count = txr_count + rxr_count; 4518 4519 /* allocate q_vector and rings */ 4520 q_vector = adapter->q_vector[v_idx]; 4521 if (!q_vector) 4522 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4523 GFP_KERNEL); 4524 else 4525 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4526 if (!q_vector) 4527 return -ENOMEM; 4528 4529 /* initialize NAPI */ 4530 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); 4531 4532 /* tie q_vector and adapter together */ 4533 adapter->q_vector[v_idx] = q_vector; 4534 q_vector->adapter = adapter; 4535 4536 /* initialize work limits */ 4537 q_vector->tx.work_limit = adapter->tx_work_limit; 4538 4539 /* initialize ITR configuration */ 4540 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4541 q_vector->itr_val = IGC_START_ITR; 4542 4543 /* initialize pointer to rings */ 4544 ring = q_vector->ring; 4545 4546 /* initialize ITR */ 4547 if (rxr_count) { 4548 /* rx or rx/tx vector */ 4549 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4550 q_vector->itr_val = adapter->rx_itr_setting; 4551 } else { 4552 /* tx only vector */ 4553 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4554 q_vector->itr_val = adapter->tx_itr_setting; 4555 } 4556 4557 if (txr_count) { 4558 /* assign generic ring traits */ 4559 ring->dev = &adapter->pdev->dev; 4560 ring->netdev = adapter->netdev; 4561 4562 /* configure backlink on ring */ 4563 ring->q_vector = q_vector; 4564 4565 /* update q_vector Tx values */ 4566 igc_add_ring(ring, &q_vector->tx); 4567 4568 /* apply Tx specific ring traits */ 4569 ring->count = adapter->tx_ring_count; 4570 ring->queue_index = txr_idx; 4571 4572 /* assign ring to adapter */ 4573 adapter->tx_ring[txr_idx] = ring; 4574 4575 /* push pointer to next ring */ 4576 ring++; 4577 } 4578 4579 if (rxr_count) { 4580 /* assign generic ring traits */ 4581 ring->dev = &adapter->pdev->dev; 4582 ring->netdev = adapter->netdev; 4583 4584 /* configure backlink on ring */ 4585 ring->q_vector = q_vector; 4586 4587 /* update q_vector Rx values */ 4588 igc_add_ring(ring, &q_vector->rx); 4589 4590 /* apply Rx specific ring traits */ 4591 ring->count = adapter->rx_ring_count; 4592 ring->queue_index = rxr_idx; 4593 4594 /* assign ring to adapter */ 4595 adapter->rx_ring[rxr_idx] = ring; 4596 } 4597 4598 return 0; 4599 } 4600 4601 /** 4602 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4603 * @adapter: board private structure to initialize 4604 * 4605 * We allocate one q_vector per queue interrupt. If allocation fails we 4606 * return -ENOMEM. 4607 */ 4608 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4609 { 4610 int rxr_remaining = adapter->num_rx_queues; 4611 int txr_remaining = adapter->num_tx_queues; 4612 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4613 int q_vectors = adapter->num_q_vectors; 4614 int err; 4615 4616 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4617 for (; rxr_remaining; v_idx++) { 4618 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4619 0, 0, 1, rxr_idx); 4620 4621 if (err) 4622 goto err_out; 4623 4624 /* update counts and index */ 4625 rxr_remaining--; 4626 rxr_idx++; 4627 } 4628 } 4629 4630 for (; v_idx < q_vectors; v_idx++) { 4631 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4632 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4633 4634 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4635 tqpv, txr_idx, rqpv, rxr_idx); 4636 4637 if (err) 4638 goto err_out; 4639 4640 /* update counts and index */ 4641 rxr_remaining -= rqpv; 4642 txr_remaining -= tqpv; 4643 rxr_idx++; 4644 txr_idx++; 4645 } 4646 4647 return 0; 4648 4649 err_out: 4650 adapter->num_tx_queues = 0; 4651 adapter->num_rx_queues = 0; 4652 adapter->num_q_vectors = 0; 4653 4654 while (v_idx--) 4655 igc_free_q_vector(adapter, v_idx); 4656 4657 return -ENOMEM; 4658 } 4659 4660 /** 4661 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4662 * @adapter: Pointer to adapter structure 4663 * @msix: boolean for MSI-X capability 4664 * 4665 * This function initializes the interrupts and allocates all of the queues. 4666 */ 4667 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4668 { 4669 struct net_device *dev = adapter->netdev; 4670 int err = 0; 4671 4672 igc_set_interrupt_capability(adapter, msix); 4673 4674 err = igc_alloc_q_vectors(adapter); 4675 if (err) { 4676 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4677 goto err_alloc_q_vectors; 4678 } 4679 4680 igc_cache_ring_register(adapter); 4681 4682 return 0; 4683 4684 err_alloc_q_vectors: 4685 igc_reset_interrupt_capability(adapter); 4686 return err; 4687 } 4688 4689 /** 4690 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4691 * @adapter: board private structure to initialize 4692 * 4693 * igc_sw_init initializes the Adapter private data structure. 4694 * Fields are initialized based on PCI device information and 4695 * OS network device settings (MTU size). 4696 */ 4697 static int igc_sw_init(struct igc_adapter *adapter) 4698 { 4699 struct net_device *netdev = adapter->netdev; 4700 struct pci_dev *pdev = adapter->pdev; 4701 struct igc_hw *hw = &adapter->hw; 4702 4703 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4704 4705 /* set default ring sizes */ 4706 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4707 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4708 4709 /* set default ITR values */ 4710 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4711 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4712 4713 /* set default work limits */ 4714 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4715 4716 /* adjust max frame to be at least the size of a standard frame */ 4717 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4718 VLAN_HLEN; 4719 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4720 4721 mutex_init(&adapter->nfc_rule_lock); 4722 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4723 adapter->nfc_rule_count = 0; 4724 4725 spin_lock_init(&adapter->stats64_lock); 4726 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4727 adapter->flags |= IGC_FLAG_HAS_MSIX; 4728 4729 igc_init_queue_configuration(adapter); 4730 4731 /* This call may decrease the number of queues */ 4732 if (igc_init_interrupt_scheme(adapter, true)) { 4733 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4734 return -ENOMEM; 4735 } 4736 4737 /* Explicitly disable IRQ since the NIC can be in any state. */ 4738 igc_irq_disable(adapter); 4739 4740 set_bit(__IGC_DOWN, &adapter->state); 4741 4742 return 0; 4743 } 4744 4745 /** 4746 * igc_up - Open the interface and prepare it to handle traffic 4747 * @adapter: board private structure 4748 */ 4749 void igc_up(struct igc_adapter *adapter) 4750 { 4751 struct igc_hw *hw = &adapter->hw; 4752 int i = 0; 4753 4754 /* hardware has been reset, we need to reload some things */ 4755 igc_configure(adapter); 4756 4757 clear_bit(__IGC_DOWN, &adapter->state); 4758 4759 for (i = 0; i < adapter->num_q_vectors; i++) 4760 napi_enable(&adapter->q_vector[i]->napi); 4761 4762 if (adapter->msix_entries) 4763 igc_configure_msix(adapter); 4764 else 4765 igc_assign_vector(adapter->q_vector[0], 0); 4766 4767 /* Clear any pending interrupts. */ 4768 rd32(IGC_ICR); 4769 igc_irq_enable(adapter); 4770 4771 netif_tx_start_all_queues(adapter->netdev); 4772 4773 /* start the watchdog. */ 4774 hw->mac.get_link_status = true; 4775 schedule_work(&adapter->watchdog_task); 4776 } 4777 4778 /** 4779 * igc_update_stats - Update the board statistics counters 4780 * @adapter: board private structure 4781 */ 4782 void igc_update_stats(struct igc_adapter *adapter) 4783 { 4784 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4785 struct pci_dev *pdev = adapter->pdev; 4786 struct igc_hw *hw = &adapter->hw; 4787 u64 _bytes, _packets; 4788 u64 bytes, packets; 4789 unsigned int start; 4790 u32 mpc; 4791 int i; 4792 4793 /* Prevent stats update while adapter is being reset, or if the pci 4794 * connection is down. 4795 */ 4796 if (adapter->link_speed == 0) 4797 return; 4798 if (pci_channel_offline(pdev)) 4799 return; 4800 4801 packets = 0; 4802 bytes = 0; 4803 4804 rcu_read_lock(); 4805 for (i = 0; i < adapter->num_rx_queues; i++) { 4806 struct igc_ring *ring = adapter->rx_ring[i]; 4807 u32 rqdpc = rd32(IGC_RQDPC(i)); 4808 4809 if (hw->mac.type >= igc_i225) 4810 wr32(IGC_RQDPC(i), 0); 4811 4812 if (rqdpc) { 4813 ring->rx_stats.drops += rqdpc; 4814 net_stats->rx_fifo_errors += rqdpc; 4815 } 4816 4817 do { 4818 start = u64_stats_fetch_begin(&ring->rx_syncp); 4819 _bytes = ring->rx_stats.bytes; 4820 _packets = ring->rx_stats.packets; 4821 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 4822 bytes += _bytes; 4823 packets += _packets; 4824 } 4825 4826 net_stats->rx_bytes = bytes; 4827 net_stats->rx_packets = packets; 4828 4829 packets = 0; 4830 bytes = 0; 4831 for (i = 0; i < adapter->num_tx_queues; i++) { 4832 struct igc_ring *ring = adapter->tx_ring[i]; 4833 4834 do { 4835 start = u64_stats_fetch_begin(&ring->tx_syncp); 4836 _bytes = ring->tx_stats.bytes; 4837 _packets = ring->tx_stats.packets; 4838 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 4839 bytes += _bytes; 4840 packets += _packets; 4841 } 4842 net_stats->tx_bytes = bytes; 4843 net_stats->tx_packets = packets; 4844 rcu_read_unlock(); 4845 4846 /* read stats registers */ 4847 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 4848 adapter->stats.gprc += rd32(IGC_GPRC); 4849 adapter->stats.gorc += rd32(IGC_GORCL); 4850 rd32(IGC_GORCH); /* clear GORCL */ 4851 adapter->stats.bprc += rd32(IGC_BPRC); 4852 adapter->stats.mprc += rd32(IGC_MPRC); 4853 adapter->stats.roc += rd32(IGC_ROC); 4854 4855 adapter->stats.prc64 += rd32(IGC_PRC64); 4856 adapter->stats.prc127 += rd32(IGC_PRC127); 4857 adapter->stats.prc255 += rd32(IGC_PRC255); 4858 adapter->stats.prc511 += rd32(IGC_PRC511); 4859 adapter->stats.prc1023 += rd32(IGC_PRC1023); 4860 adapter->stats.prc1522 += rd32(IGC_PRC1522); 4861 adapter->stats.tlpic += rd32(IGC_TLPIC); 4862 adapter->stats.rlpic += rd32(IGC_RLPIC); 4863 adapter->stats.hgptc += rd32(IGC_HGPTC); 4864 4865 mpc = rd32(IGC_MPC); 4866 adapter->stats.mpc += mpc; 4867 net_stats->rx_fifo_errors += mpc; 4868 adapter->stats.scc += rd32(IGC_SCC); 4869 adapter->stats.ecol += rd32(IGC_ECOL); 4870 adapter->stats.mcc += rd32(IGC_MCC); 4871 adapter->stats.latecol += rd32(IGC_LATECOL); 4872 adapter->stats.dc += rd32(IGC_DC); 4873 adapter->stats.rlec += rd32(IGC_RLEC); 4874 adapter->stats.xonrxc += rd32(IGC_XONRXC); 4875 adapter->stats.xontxc += rd32(IGC_XONTXC); 4876 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 4877 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 4878 adapter->stats.fcruc += rd32(IGC_FCRUC); 4879 adapter->stats.gptc += rd32(IGC_GPTC); 4880 adapter->stats.gotc += rd32(IGC_GOTCL); 4881 rd32(IGC_GOTCH); /* clear GOTCL */ 4882 adapter->stats.rnbc += rd32(IGC_RNBC); 4883 adapter->stats.ruc += rd32(IGC_RUC); 4884 adapter->stats.rfc += rd32(IGC_RFC); 4885 adapter->stats.rjc += rd32(IGC_RJC); 4886 adapter->stats.tor += rd32(IGC_TORH); 4887 adapter->stats.tot += rd32(IGC_TOTH); 4888 adapter->stats.tpr += rd32(IGC_TPR); 4889 4890 adapter->stats.ptc64 += rd32(IGC_PTC64); 4891 adapter->stats.ptc127 += rd32(IGC_PTC127); 4892 adapter->stats.ptc255 += rd32(IGC_PTC255); 4893 adapter->stats.ptc511 += rd32(IGC_PTC511); 4894 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 4895 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 4896 4897 adapter->stats.mptc += rd32(IGC_MPTC); 4898 adapter->stats.bptc += rd32(IGC_BPTC); 4899 4900 adapter->stats.tpt += rd32(IGC_TPT); 4901 adapter->stats.colc += rd32(IGC_COLC); 4902 adapter->stats.colc += rd32(IGC_RERC); 4903 4904 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 4905 4906 adapter->stats.tsctc += rd32(IGC_TSCTC); 4907 4908 adapter->stats.iac += rd32(IGC_IAC); 4909 4910 /* Fill out the OS statistics structure */ 4911 net_stats->multicast = adapter->stats.mprc; 4912 net_stats->collisions = adapter->stats.colc; 4913 4914 /* Rx Errors */ 4915 4916 /* RLEC on some newer hardware can be incorrect so build 4917 * our own version based on RUC and ROC 4918 */ 4919 net_stats->rx_errors = adapter->stats.rxerrc + 4920 adapter->stats.crcerrs + adapter->stats.algnerrc + 4921 adapter->stats.ruc + adapter->stats.roc + 4922 adapter->stats.cexterr; 4923 net_stats->rx_length_errors = adapter->stats.ruc + 4924 adapter->stats.roc; 4925 net_stats->rx_crc_errors = adapter->stats.crcerrs; 4926 net_stats->rx_frame_errors = adapter->stats.algnerrc; 4927 net_stats->rx_missed_errors = adapter->stats.mpc; 4928 4929 /* Tx Errors */ 4930 net_stats->tx_errors = adapter->stats.ecol + 4931 adapter->stats.latecol; 4932 net_stats->tx_aborted_errors = adapter->stats.ecol; 4933 net_stats->tx_window_errors = adapter->stats.latecol; 4934 net_stats->tx_carrier_errors = adapter->stats.tncrs; 4935 4936 /* Tx Dropped */ 4937 net_stats->tx_dropped = adapter->stats.txdrop; 4938 4939 /* Management Stats */ 4940 adapter->stats.mgptc += rd32(IGC_MGTPTC); 4941 adapter->stats.mgprc += rd32(IGC_MGTPRC); 4942 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 4943 } 4944 4945 /** 4946 * igc_down - Close the interface 4947 * @adapter: board private structure 4948 */ 4949 void igc_down(struct igc_adapter *adapter) 4950 { 4951 struct net_device *netdev = adapter->netdev; 4952 struct igc_hw *hw = &adapter->hw; 4953 u32 tctl, rctl; 4954 int i = 0; 4955 4956 set_bit(__IGC_DOWN, &adapter->state); 4957 4958 igc_ptp_suspend(adapter); 4959 4960 if (pci_device_is_present(adapter->pdev)) { 4961 /* disable receives in the hardware */ 4962 rctl = rd32(IGC_RCTL); 4963 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 4964 /* flush and sleep below */ 4965 } 4966 /* set trans_start so we don't get spurious watchdogs during reset */ 4967 netif_trans_update(netdev); 4968 4969 netif_carrier_off(netdev); 4970 netif_tx_stop_all_queues(netdev); 4971 4972 if (pci_device_is_present(adapter->pdev)) { 4973 /* disable transmits in the hardware */ 4974 tctl = rd32(IGC_TCTL); 4975 tctl &= ~IGC_TCTL_EN; 4976 wr32(IGC_TCTL, tctl); 4977 /* flush both disables and wait for them to finish */ 4978 wrfl(); 4979 usleep_range(10000, 20000); 4980 4981 igc_irq_disable(adapter); 4982 } 4983 4984 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 4985 4986 for (i = 0; i < adapter->num_q_vectors; i++) { 4987 if (adapter->q_vector[i]) { 4988 napi_synchronize(&adapter->q_vector[i]->napi); 4989 napi_disable(&adapter->q_vector[i]->napi); 4990 } 4991 } 4992 4993 del_timer_sync(&adapter->watchdog_timer); 4994 del_timer_sync(&adapter->phy_info_timer); 4995 4996 /* record the stats before reset*/ 4997 spin_lock(&adapter->stats64_lock); 4998 igc_update_stats(adapter); 4999 spin_unlock(&adapter->stats64_lock); 5000 5001 adapter->link_speed = 0; 5002 adapter->link_duplex = 0; 5003 5004 if (!pci_channel_offline(adapter->pdev)) 5005 igc_reset(adapter); 5006 5007 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 5008 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 5009 5010 igc_clean_all_tx_rings(adapter); 5011 igc_clean_all_rx_rings(adapter); 5012 } 5013 5014 void igc_reinit_locked(struct igc_adapter *adapter) 5015 { 5016 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5017 usleep_range(1000, 2000); 5018 igc_down(adapter); 5019 igc_up(adapter); 5020 clear_bit(__IGC_RESETTING, &adapter->state); 5021 } 5022 5023 static void igc_reset_task(struct work_struct *work) 5024 { 5025 struct igc_adapter *adapter; 5026 5027 adapter = container_of(work, struct igc_adapter, reset_task); 5028 5029 rtnl_lock(); 5030 /* If we're already down or resetting, just bail */ 5031 if (test_bit(__IGC_DOWN, &adapter->state) || 5032 test_bit(__IGC_RESETTING, &adapter->state)) { 5033 rtnl_unlock(); 5034 return; 5035 } 5036 5037 igc_rings_dump(adapter); 5038 igc_regs_dump(adapter); 5039 netdev_err(adapter->netdev, "Reset adapter\n"); 5040 igc_reinit_locked(adapter); 5041 rtnl_unlock(); 5042 } 5043 5044 /** 5045 * igc_change_mtu - Change the Maximum Transfer Unit 5046 * @netdev: network interface device structure 5047 * @new_mtu: new value for maximum frame size 5048 * 5049 * Returns 0 on success, negative on failure 5050 */ 5051 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 5052 { 5053 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5054 struct igc_adapter *adapter = netdev_priv(netdev); 5055 5056 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 5057 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 5058 return -EINVAL; 5059 } 5060 5061 /* adjust max frame to be at least the size of a standard frame */ 5062 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5063 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5064 5065 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5066 usleep_range(1000, 2000); 5067 5068 /* igc_down has a dependency on max_frame_size */ 5069 adapter->max_frame_size = max_frame; 5070 5071 if (netif_running(netdev)) 5072 igc_down(adapter); 5073 5074 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5075 netdev->mtu = new_mtu; 5076 5077 if (netif_running(netdev)) 5078 igc_up(adapter); 5079 else 5080 igc_reset(adapter); 5081 5082 clear_bit(__IGC_RESETTING, &adapter->state); 5083 5084 return 0; 5085 } 5086 5087 /** 5088 * igc_tx_timeout - Respond to a Tx Hang 5089 * @netdev: network interface device structure 5090 * @txqueue: queue number that timed out 5091 **/ 5092 static void igc_tx_timeout(struct net_device *netdev, 5093 unsigned int __always_unused txqueue) 5094 { 5095 struct igc_adapter *adapter = netdev_priv(netdev); 5096 struct igc_hw *hw = &adapter->hw; 5097 5098 /* Do the reset outside of interrupt context */ 5099 adapter->tx_timeout_count++; 5100 schedule_work(&adapter->reset_task); 5101 wr32(IGC_EICS, 5102 (adapter->eims_enable_mask & ~adapter->eims_other)); 5103 } 5104 5105 /** 5106 * igc_get_stats64 - Get System Network Statistics 5107 * @netdev: network interface device structure 5108 * @stats: rtnl_link_stats64 pointer 5109 * 5110 * Returns the address of the device statistics structure. 5111 * The statistics are updated here and also from the timer callback. 5112 */ 5113 static void igc_get_stats64(struct net_device *netdev, 5114 struct rtnl_link_stats64 *stats) 5115 { 5116 struct igc_adapter *adapter = netdev_priv(netdev); 5117 5118 spin_lock(&adapter->stats64_lock); 5119 if (!test_bit(__IGC_RESETTING, &adapter->state)) 5120 igc_update_stats(adapter); 5121 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5122 spin_unlock(&adapter->stats64_lock); 5123 } 5124 5125 static netdev_features_t igc_fix_features(struct net_device *netdev, 5126 netdev_features_t features) 5127 { 5128 /* Since there is no support for separate Rx/Tx vlan accel 5129 * enable/disable make sure Tx flag is always in same state as Rx. 5130 */ 5131 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5132 features |= NETIF_F_HW_VLAN_CTAG_TX; 5133 else 5134 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5135 5136 return features; 5137 } 5138 5139 static int igc_set_features(struct net_device *netdev, 5140 netdev_features_t features) 5141 { 5142 netdev_features_t changed = netdev->features ^ features; 5143 struct igc_adapter *adapter = netdev_priv(netdev); 5144 5145 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 5146 igc_vlan_mode(netdev, features); 5147 5148 /* Add VLAN support */ 5149 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 5150 return 0; 5151 5152 if (!(features & NETIF_F_NTUPLE)) 5153 igc_flush_nfc_rules(adapter); 5154 5155 netdev->features = features; 5156 5157 if (netif_running(netdev)) 5158 igc_reinit_locked(adapter); 5159 else 5160 igc_reset(adapter); 5161 5162 return 1; 5163 } 5164 5165 static netdev_features_t 5166 igc_features_check(struct sk_buff *skb, struct net_device *dev, 5167 netdev_features_t features) 5168 { 5169 unsigned int network_hdr_len, mac_hdr_len; 5170 5171 /* Make certain the headers can be described by a context descriptor */ 5172 mac_hdr_len = skb_network_header(skb) - skb->data; 5173 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 5174 return features & ~(NETIF_F_HW_CSUM | 5175 NETIF_F_SCTP_CRC | 5176 NETIF_F_HW_VLAN_CTAG_TX | 5177 NETIF_F_TSO | 5178 NETIF_F_TSO6); 5179 5180 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 5181 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 5182 return features & ~(NETIF_F_HW_CSUM | 5183 NETIF_F_SCTP_CRC | 5184 NETIF_F_TSO | 5185 NETIF_F_TSO6); 5186 5187 /* We can only support IPv4 TSO in tunnels if we can mangle the 5188 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5189 */ 5190 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5191 features &= ~NETIF_F_TSO; 5192 5193 return features; 5194 } 5195 5196 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5197 { 5198 u32 ack, tsauxc, sec, nsec, tsicr; 5199 struct igc_hw *hw = &adapter->hw; 5200 struct ptp_clock_event event; 5201 struct timespec64 ts; 5202 5203 tsicr = rd32(IGC_TSICR); 5204 ack = 0; 5205 5206 if (tsicr & IGC_TSICR_SYS_WRAP) { 5207 event.type = PTP_CLOCK_PPS; 5208 if (adapter->ptp_caps.pps) 5209 ptp_clock_event(adapter->ptp_clock, &event); 5210 ack |= IGC_TSICR_SYS_WRAP; 5211 } 5212 5213 if (tsicr & IGC_TSICR_TXTS) { 5214 /* retrieve hardware timestamp */ 5215 schedule_work(&adapter->ptp_tx_work); 5216 ack |= IGC_TSICR_TXTS; 5217 } 5218 5219 if (tsicr & IGC_TSICR_TT0) { 5220 spin_lock(&adapter->tmreg_lock); 5221 ts = timespec64_add(adapter->perout[0].start, 5222 adapter->perout[0].period); 5223 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5224 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5225 tsauxc = rd32(IGC_TSAUXC); 5226 tsauxc |= IGC_TSAUXC_EN_TT0; 5227 wr32(IGC_TSAUXC, tsauxc); 5228 adapter->perout[0].start = ts; 5229 spin_unlock(&adapter->tmreg_lock); 5230 ack |= IGC_TSICR_TT0; 5231 } 5232 5233 if (tsicr & IGC_TSICR_TT1) { 5234 spin_lock(&adapter->tmreg_lock); 5235 ts = timespec64_add(adapter->perout[1].start, 5236 adapter->perout[1].period); 5237 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5238 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5239 tsauxc = rd32(IGC_TSAUXC); 5240 tsauxc |= IGC_TSAUXC_EN_TT1; 5241 wr32(IGC_TSAUXC, tsauxc); 5242 adapter->perout[1].start = ts; 5243 spin_unlock(&adapter->tmreg_lock); 5244 ack |= IGC_TSICR_TT1; 5245 } 5246 5247 if (tsicr & IGC_TSICR_AUTT0) { 5248 nsec = rd32(IGC_AUXSTMPL0); 5249 sec = rd32(IGC_AUXSTMPH0); 5250 event.type = PTP_CLOCK_EXTTS; 5251 event.index = 0; 5252 event.timestamp = sec * NSEC_PER_SEC + nsec; 5253 ptp_clock_event(adapter->ptp_clock, &event); 5254 ack |= IGC_TSICR_AUTT0; 5255 } 5256 5257 if (tsicr & IGC_TSICR_AUTT1) { 5258 nsec = rd32(IGC_AUXSTMPL1); 5259 sec = rd32(IGC_AUXSTMPH1); 5260 event.type = PTP_CLOCK_EXTTS; 5261 event.index = 1; 5262 event.timestamp = sec * NSEC_PER_SEC + nsec; 5263 ptp_clock_event(adapter->ptp_clock, &event); 5264 ack |= IGC_TSICR_AUTT1; 5265 } 5266 5267 /* acknowledge the interrupts */ 5268 wr32(IGC_TSICR, ack); 5269 } 5270 5271 /** 5272 * igc_msix_other - msix other interrupt handler 5273 * @irq: interrupt number 5274 * @data: pointer to a q_vector 5275 */ 5276 static irqreturn_t igc_msix_other(int irq, void *data) 5277 { 5278 struct igc_adapter *adapter = data; 5279 struct igc_hw *hw = &adapter->hw; 5280 u32 icr = rd32(IGC_ICR); 5281 5282 /* reading ICR causes bit 31 of EICR to be cleared */ 5283 if (icr & IGC_ICR_DRSTA) 5284 schedule_work(&adapter->reset_task); 5285 5286 if (icr & IGC_ICR_DOUTSYNC) { 5287 /* HW is reporting DMA is out of sync */ 5288 adapter->stats.doosync++; 5289 } 5290 5291 if (icr & IGC_ICR_LSC) { 5292 hw->mac.get_link_status = true; 5293 /* guard against interrupt when we're going down */ 5294 if (!test_bit(__IGC_DOWN, &adapter->state)) 5295 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5296 } 5297 5298 if (icr & IGC_ICR_TS) 5299 igc_tsync_interrupt(adapter); 5300 5301 wr32(IGC_EIMS, adapter->eims_other); 5302 5303 return IRQ_HANDLED; 5304 } 5305 5306 static void igc_write_itr(struct igc_q_vector *q_vector) 5307 { 5308 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5309 5310 if (!q_vector->set_itr) 5311 return; 5312 5313 if (!itr_val) 5314 itr_val = IGC_ITR_VAL_MASK; 5315 5316 itr_val |= IGC_EITR_CNT_IGNR; 5317 5318 writel(itr_val, q_vector->itr_register); 5319 q_vector->set_itr = 0; 5320 } 5321 5322 static irqreturn_t igc_msix_ring(int irq, void *data) 5323 { 5324 struct igc_q_vector *q_vector = data; 5325 5326 /* Write the ITR value calculated from the previous interrupt. */ 5327 igc_write_itr(q_vector); 5328 5329 napi_schedule(&q_vector->napi); 5330 5331 return IRQ_HANDLED; 5332 } 5333 5334 /** 5335 * igc_request_msix - Initialize MSI-X interrupts 5336 * @adapter: Pointer to adapter structure 5337 * 5338 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5339 * kernel. 5340 */ 5341 static int igc_request_msix(struct igc_adapter *adapter) 5342 { 5343 unsigned int num_q_vectors = adapter->num_q_vectors; 5344 int i = 0, err = 0, vector = 0, free_vector = 0; 5345 struct net_device *netdev = adapter->netdev; 5346 5347 err = request_irq(adapter->msix_entries[vector].vector, 5348 &igc_msix_other, 0, netdev->name, adapter); 5349 if (err) 5350 goto err_out; 5351 5352 if (num_q_vectors > MAX_Q_VECTORS) { 5353 num_q_vectors = MAX_Q_VECTORS; 5354 dev_warn(&adapter->pdev->dev, 5355 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5356 adapter->num_q_vectors, MAX_Q_VECTORS); 5357 } 5358 for (i = 0; i < num_q_vectors; i++) { 5359 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5360 5361 vector++; 5362 5363 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5364 5365 if (q_vector->rx.ring && q_vector->tx.ring) 5366 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5367 q_vector->rx.ring->queue_index); 5368 else if (q_vector->tx.ring) 5369 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5370 q_vector->tx.ring->queue_index); 5371 else if (q_vector->rx.ring) 5372 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5373 q_vector->rx.ring->queue_index); 5374 else 5375 sprintf(q_vector->name, "%s-unused", netdev->name); 5376 5377 err = request_irq(adapter->msix_entries[vector].vector, 5378 igc_msix_ring, 0, q_vector->name, 5379 q_vector); 5380 if (err) 5381 goto err_free; 5382 } 5383 5384 igc_configure_msix(adapter); 5385 return 0; 5386 5387 err_free: 5388 /* free already assigned IRQs */ 5389 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5390 5391 vector--; 5392 for (i = 0; i < vector; i++) { 5393 free_irq(adapter->msix_entries[free_vector++].vector, 5394 adapter->q_vector[i]); 5395 } 5396 err_out: 5397 return err; 5398 } 5399 5400 /** 5401 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5402 * @adapter: Pointer to adapter structure 5403 * 5404 * This function resets the device so that it has 0 rx queues, tx queues, and 5405 * MSI-X interrupts allocated. 5406 */ 5407 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5408 { 5409 igc_free_q_vectors(adapter); 5410 igc_reset_interrupt_capability(adapter); 5411 } 5412 5413 /* Need to wait a few seconds after link up to get diagnostic information from 5414 * the phy 5415 */ 5416 static void igc_update_phy_info(struct timer_list *t) 5417 { 5418 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5419 5420 igc_get_phy_info(&adapter->hw); 5421 } 5422 5423 /** 5424 * igc_has_link - check shared code for link and determine up/down 5425 * @adapter: pointer to driver private info 5426 */ 5427 bool igc_has_link(struct igc_adapter *adapter) 5428 { 5429 struct igc_hw *hw = &adapter->hw; 5430 bool link_active = false; 5431 5432 /* get_link_status is set on LSC (link status) interrupt or 5433 * rx sequence error interrupt. get_link_status will stay 5434 * false until the igc_check_for_link establishes link 5435 * for copper adapters ONLY 5436 */ 5437 if (!hw->mac.get_link_status) 5438 return true; 5439 hw->mac.ops.check_for_link(hw); 5440 link_active = !hw->mac.get_link_status; 5441 5442 if (hw->mac.type == igc_i225) { 5443 if (!netif_carrier_ok(adapter->netdev)) { 5444 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5445 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5446 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5447 adapter->link_check_timeout = jiffies; 5448 } 5449 } 5450 5451 return link_active; 5452 } 5453 5454 /** 5455 * igc_watchdog - Timer Call-back 5456 * @t: timer for the watchdog 5457 */ 5458 static void igc_watchdog(struct timer_list *t) 5459 { 5460 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5461 /* Do the rest outside of interrupt context */ 5462 schedule_work(&adapter->watchdog_task); 5463 } 5464 5465 static void igc_watchdog_task(struct work_struct *work) 5466 { 5467 struct igc_adapter *adapter = container_of(work, 5468 struct igc_adapter, 5469 watchdog_task); 5470 struct net_device *netdev = adapter->netdev; 5471 struct igc_hw *hw = &adapter->hw; 5472 struct igc_phy_info *phy = &hw->phy; 5473 u16 phy_data, retry_count = 20; 5474 u32 link; 5475 int i; 5476 5477 link = igc_has_link(adapter); 5478 5479 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5480 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5481 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5482 else 5483 link = false; 5484 } 5485 5486 if (link) { 5487 /* Cancel scheduled suspend requests. */ 5488 pm_runtime_resume(netdev->dev.parent); 5489 5490 if (!netif_carrier_ok(netdev)) { 5491 u32 ctrl; 5492 5493 hw->mac.ops.get_speed_and_duplex(hw, 5494 &adapter->link_speed, 5495 &adapter->link_duplex); 5496 5497 ctrl = rd32(IGC_CTRL); 5498 /* Link status message must follow this format */ 5499 netdev_info(netdev, 5500 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5501 adapter->link_speed, 5502 adapter->link_duplex == FULL_DUPLEX ? 5503 "Full" : "Half", 5504 (ctrl & IGC_CTRL_TFCE) && 5505 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5506 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5507 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5508 5509 /* disable EEE if enabled */ 5510 if ((adapter->flags & IGC_FLAG_EEE) && 5511 adapter->link_duplex == HALF_DUPLEX) { 5512 netdev_info(netdev, 5513 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5514 adapter->hw.dev_spec._base.eee_enable = false; 5515 adapter->flags &= ~IGC_FLAG_EEE; 5516 } 5517 5518 /* check if SmartSpeed worked */ 5519 igc_check_downshift(hw); 5520 if (phy->speed_downgraded) 5521 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5522 5523 /* adjust timeout factor according to speed/duplex */ 5524 adapter->tx_timeout_factor = 1; 5525 switch (adapter->link_speed) { 5526 case SPEED_10: 5527 adapter->tx_timeout_factor = 14; 5528 break; 5529 case SPEED_100: 5530 case SPEED_1000: 5531 case SPEED_2500: 5532 adapter->tx_timeout_factor = 1; 5533 break; 5534 } 5535 5536 /* Once the launch time has been set on the wire, there 5537 * is a delay before the link speed can be determined 5538 * based on link-up activity. Write into the register 5539 * as soon as we know the correct link speed. 5540 */ 5541 igc_tsn_adjust_txtime_offset(adapter); 5542 5543 if (adapter->link_speed != SPEED_1000) 5544 goto no_wait; 5545 5546 /* wait for Remote receiver status OK */ 5547 retry_read_status: 5548 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5549 &phy_data)) { 5550 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5551 retry_count) { 5552 msleep(100); 5553 retry_count--; 5554 goto retry_read_status; 5555 } else if (!retry_count) { 5556 netdev_err(netdev, "exceed max 2 second\n"); 5557 } 5558 } else { 5559 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5560 } 5561 no_wait: 5562 netif_carrier_on(netdev); 5563 5564 /* link state has changed, schedule phy info update */ 5565 if (!test_bit(__IGC_DOWN, &adapter->state)) 5566 mod_timer(&adapter->phy_info_timer, 5567 round_jiffies(jiffies + 2 * HZ)); 5568 } 5569 } else { 5570 if (netif_carrier_ok(netdev)) { 5571 adapter->link_speed = 0; 5572 adapter->link_duplex = 0; 5573 5574 /* Links status message must follow this format */ 5575 netdev_info(netdev, "NIC Link is Down\n"); 5576 netif_carrier_off(netdev); 5577 5578 /* link state has changed, schedule phy info update */ 5579 if (!test_bit(__IGC_DOWN, &adapter->state)) 5580 mod_timer(&adapter->phy_info_timer, 5581 round_jiffies(jiffies + 2 * HZ)); 5582 5583 pm_schedule_suspend(netdev->dev.parent, 5584 MSEC_PER_SEC * 5); 5585 } 5586 } 5587 5588 spin_lock(&adapter->stats64_lock); 5589 igc_update_stats(adapter); 5590 spin_unlock(&adapter->stats64_lock); 5591 5592 for (i = 0; i < adapter->num_tx_queues; i++) { 5593 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5594 5595 if (!netif_carrier_ok(netdev)) { 5596 /* We've lost link, so the controller stops DMA, 5597 * but we've got queued Tx work that's never going 5598 * to get done, so reset controller to flush Tx. 5599 * (Do the reset outside of interrupt context). 5600 */ 5601 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5602 adapter->tx_timeout_count++; 5603 schedule_work(&adapter->reset_task); 5604 /* return immediately since reset is imminent */ 5605 return; 5606 } 5607 } 5608 5609 /* Force detection of hung controller every watchdog period */ 5610 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5611 } 5612 5613 /* Cause software interrupt to ensure Rx ring is cleaned */ 5614 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5615 u32 eics = 0; 5616 5617 for (i = 0; i < adapter->num_q_vectors; i++) 5618 eics |= adapter->q_vector[i]->eims_value; 5619 wr32(IGC_EICS, eics); 5620 } else { 5621 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5622 } 5623 5624 igc_ptp_tx_hang(adapter); 5625 5626 /* Reset the timer */ 5627 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5628 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5629 mod_timer(&adapter->watchdog_timer, 5630 round_jiffies(jiffies + HZ)); 5631 else 5632 mod_timer(&adapter->watchdog_timer, 5633 round_jiffies(jiffies + 2 * HZ)); 5634 } 5635 } 5636 5637 /** 5638 * igc_intr_msi - Interrupt Handler 5639 * @irq: interrupt number 5640 * @data: pointer to a network interface device structure 5641 */ 5642 static irqreturn_t igc_intr_msi(int irq, void *data) 5643 { 5644 struct igc_adapter *adapter = data; 5645 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5646 struct igc_hw *hw = &adapter->hw; 5647 /* read ICR disables interrupts using IAM */ 5648 u32 icr = rd32(IGC_ICR); 5649 5650 igc_write_itr(q_vector); 5651 5652 if (icr & IGC_ICR_DRSTA) 5653 schedule_work(&adapter->reset_task); 5654 5655 if (icr & IGC_ICR_DOUTSYNC) { 5656 /* HW is reporting DMA is out of sync */ 5657 adapter->stats.doosync++; 5658 } 5659 5660 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5661 hw->mac.get_link_status = true; 5662 if (!test_bit(__IGC_DOWN, &adapter->state)) 5663 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5664 } 5665 5666 if (icr & IGC_ICR_TS) 5667 igc_tsync_interrupt(adapter); 5668 5669 napi_schedule(&q_vector->napi); 5670 5671 return IRQ_HANDLED; 5672 } 5673 5674 /** 5675 * igc_intr - Legacy Interrupt Handler 5676 * @irq: interrupt number 5677 * @data: pointer to a network interface device structure 5678 */ 5679 static irqreturn_t igc_intr(int irq, void *data) 5680 { 5681 struct igc_adapter *adapter = data; 5682 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5683 struct igc_hw *hw = &adapter->hw; 5684 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5685 * need for the IMC write 5686 */ 5687 u32 icr = rd32(IGC_ICR); 5688 5689 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5690 * not set, then the adapter didn't send an interrupt 5691 */ 5692 if (!(icr & IGC_ICR_INT_ASSERTED)) 5693 return IRQ_NONE; 5694 5695 igc_write_itr(q_vector); 5696 5697 if (icr & IGC_ICR_DRSTA) 5698 schedule_work(&adapter->reset_task); 5699 5700 if (icr & IGC_ICR_DOUTSYNC) { 5701 /* HW is reporting DMA is out of sync */ 5702 adapter->stats.doosync++; 5703 } 5704 5705 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5706 hw->mac.get_link_status = true; 5707 /* guard against interrupt when we're going down */ 5708 if (!test_bit(__IGC_DOWN, &adapter->state)) 5709 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5710 } 5711 5712 if (icr & IGC_ICR_TS) 5713 igc_tsync_interrupt(adapter); 5714 5715 napi_schedule(&q_vector->napi); 5716 5717 return IRQ_HANDLED; 5718 } 5719 5720 static void igc_free_irq(struct igc_adapter *adapter) 5721 { 5722 if (adapter->msix_entries) { 5723 int vector = 0, i; 5724 5725 free_irq(adapter->msix_entries[vector++].vector, adapter); 5726 5727 for (i = 0; i < adapter->num_q_vectors; i++) 5728 free_irq(adapter->msix_entries[vector++].vector, 5729 adapter->q_vector[i]); 5730 } else { 5731 free_irq(adapter->pdev->irq, adapter); 5732 } 5733 } 5734 5735 /** 5736 * igc_request_irq - initialize interrupts 5737 * @adapter: Pointer to adapter structure 5738 * 5739 * Attempts to configure interrupts using the best available 5740 * capabilities of the hardware and kernel. 5741 */ 5742 static int igc_request_irq(struct igc_adapter *adapter) 5743 { 5744 struct net_device *netdev = adapter->netdev; 5745 struct pci_dev *pdev = adapter->pdev; 5746 int err = 0; 5747 5748 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5749 err = igc_request_msix(adapter); 5750 if (!err) 5751 goto request_done; 5752 /* fall back to MSI */ 5753 igc_free_all_tx_resources(adapter); 5754 igc_free_all_rx_resources(adapter); 5755 5756 igc_clear_interrupt_scheme(adapter); 5757 err = igc_init_interrupt_scheme(adapter, false); 5758 if (err) 5759 goto request_done; 5760 igc_setup_all_tx_resources(adapter); 5761 igc_setup_all_rx_resources(adapter); 5762 igc_configure(adapter); 5763 } 5764 5765 igc_assign_vector(adapter->q_vector[0], 0); 5766 5767 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5768 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5769 netdev->name, adapter); 5770 if (!err) 5771 goto request_done; 5772 5773 /* fall back to legacy interrupts */ 5774 igc_reset_interrupt_capability(adapter); 5775 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5776 } 5777 5778 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5779 netdev->name, adapter); 5780 5781 if (err) 5782 netdev_err(netdev, "Error %d getting interrupt\n", err); 5783 5784 request_done: 5785 return err; 5786 } 5787 5788 /** 5789 * __igc_open - Called when a network interface is made active 5790 * @netdev: network interface device structure 5791 * @resuming: boolean indicating if the device is resuming 5792 * 5793 * Returns 0 on success, negative value on failure 5794 * 5795 * The open entry point is called when a network interface is made 5796 * active by the system (IFF_UP). At this point all resources needed 5797 * for transmit and receive operations are allocated, the interrupt 5798 * handler is registered with the OS, the watchdog timer is started, 5799 * and the stack is notified that the interface is ready. 5800 */ 5801 static int __igc_open(struct net_device *netdev, bool resuming) 5802 { 5803 struct igc_adapter *adapter = netdev_priv(netdev); 5804 struct pci_dev *pdev = adapter->pdev; 5805 struct igc_hw *hw = &adapter->hw; 5806 int err = 0; 5807 int i = 0; 5808 5809 /* disallow open during test */ 5810 5811 if (test_bit(__IGC_TESTING, &adapter->state)) { 5812 WARN_ON(resuming); 5813 return -EBUSY; 5814 } 5815 5816 if (!resuming) 5817 pm_runtime_get_sync(&pdev->dev); 5818 5819 netif_carrier_off(netdev); 5820 5821 /* allocate transmit descriptors */ 5822 err = igc_setup_all_tx_resources(adapter); 5823 if (err) 5824 goto err_setup_tx; 5825 5826 /* allocate receive descriptors */ 5827 err = igc_setup_all_rx_resources(adapter); 5828 if (err) 5829 goto err_setup_rx; 5830 5831 igc_power_up_link(adapter); 5832 5833 igc_configure(adapter); 5834 5835 err = igc_request_irq(adapter); 5836 if (err) 5837 goto err_req_irq; 5838 5839 /* Notify the stack of the actual queue counts. */ 5840 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 5841 if (err) 5842 goto err_set_queues; 5843 5844 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 5845 if (err) 5846 goto err_set_queues; 5847 5848 clear_bit(__IGC_DOWN, &adapter->state); 5849 5850 for (i = 0; i < adapter->num_q_vectors; i++) 5851 napi_enable(&adapter->q_vector[i]->napi); 5852 5853 /* Clear any pending interrupts. */ 5854 rd32(IGC_ICR); 5855 igc_irq_enable(adapter); 5856 5857 if (!resuming) 5858 pm_runtime_put(&pdev->dev); 5859 5860 netif_tx_start_all_queues(netdev); 5861 5862 /* start the watchdog. */ 5863 hw->mac.get_link_status = true; 5864 schedule_work(&adapter->watchdog_task); 5865 5866 return IGC_SUCCESS; 5867 5868 err_set_queues: 5869 igc_free_irq(adapter); 5870 err_req_irq: 5871 igc_release_hw_control(adapter); 5872 igc_power_down_phy_copper_base(&adapter->hw); 5873 igc_free_all_rx_resources(adapter); 5874 err_setup_rx: 5875 igc_free_all_tx_resources(adapter); 5876 err_setup_tx: 5877 igc_reset(adapter); 5878 if (!resuming) 5879 pm_runtime_put(&pdev->dev); 5880 5881 return err; 5882 } 5883 5884 int igc_open(struct net_device *netdev) 5885 { 5886 return __igc_open(netdev, false); 5887 } 5888 5889 /** 5890 * __igc_close - Disables a network interface 5891 * @netdev: network interface device structure 5892 * @suspending: boolean indicating the device is suspending 5893 * 5894 * Returns 0, this is not allowed to fail 5895 * 5896 * The close entry point is called when an interface is de-activated 5897 * by the OS. The hardware is still under the driver's control, but 5898 * needs to be disabled. A global MAC reset is issued to stop the 5899 * hardware, and all transmit and receive resources are freed. 5900 */ 5901 static int __igc_close(struct net_device *netdev, bool suspending) 5902 { 5903 struct igc_adapter *adapter = netdev_priv(netdev); 5904 struct pci_dev *pdev = adapter->pdev; 5905 5906 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 5907 5908 if (!suspending) 5909 pm_runtime_get_sync(&pdev->dev); 5910 5911 igc_down(adapter); 5912 5913 igc_release_hw_control(adapter); 5914 5915 igc_free_irq(adapter); 5916 5917 igc_free_all_tx_resources(adapter); 5918 igc_free_all_rx_resources(adapter); 5919 5920 if (!suspending) 5921 pm_runtime_put_sync(&pdev->dev); 5922 5923 return 0; 5924 } 5925 5926 int igc_close(struct net_device *netdev) 5927 { 5928 if (netif_device_present(netdev) || netdev->dismantle) 5929 return __igc_close(netdev, false); 5930 return 0; 5931 } 5932 5933 /** 5934 * igc_ioctl - Access the hwtstamp interface 5935 * @netdev: network interface device structure 5936 * @ifr: interface request data 5937 * @cmd: ioctl command 5938 **/ 5939 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5940 { 5941 switch (cmd) { 5942 case SIOCGHWTSTAMP: 5943 return igc_ptp_get_ts_config(netdev, ifr); 5944 case SIOCSHWTSTAMP: 5945 return igc_ptp_set_ts_config(netdev, ifr); 5946 default: 5947 return -EOPNOTSUPP; 5948 } 5949 } 5950 5951 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 5952 bool enable) 5953 { 5954 struct igc_ring *ring; 5955 5956 if (queue < 0 || queue >= adapter->num_tx_queues) 5957 return -EINVAL; 5958 5959 ring = adapter->tx_ring[queue]; 5960 ring->launchtime_enable = enable; 5961 5962 return 0; 5963 } 5964 5965 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 5966 { 5967 struct timespec64 b; 5968 5969 b = ktime_to_timespec64(base_time); 5970 5971 return timespec64_compare(now, &b) > 0; 5972 } 5973 5974 static bool validate_schedule(struct igc_adapter *adapter, 5975 const struct tc_taprio_qopt_offload *qopt) 5976 { 5977 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 5978 struct igc_hw *hw = &adapter->hw; 5979 struct timespec64 now; 5980 size_t n; 5981 5982 if (qopt->cycle_time_extension) 5983 return false; 5984 5985 igc_ptp_read(adapter, &now); 5986 5987 /* If we program the controller's BASET registers with a time 5988 * in the future, it will hold all the packets until that 5989 * time, causing a lot of TX Hangs, so to avoid that, we 5990 * reject schedules that would start in the future. 5991 * Note: Limitation above is no longer in i226. 5992 */ 5993 if (!is_base_time_past(qopt->base_time, &now) && 5994 igc_is_device_id_i225(hw)) 5995 return false; 5996 5997 for (n = 0; n < qopt->num_entries; n++) { 5998 const struct tc_taprio_sched_entry *e, *prev; 5999 int i; 6000 6001 prev = n ? &qopt->entries[n - 1] : NULL; 6002 e = &qopt->entries[n]; 6003 6004 /* i225 only supports "global" frame preemption 6005 * settings. 6006 */ 6007 if (e->command != TC_TAPRIO_CMD_SET_GATES) 6008 return false; 6009 6010 for (i = 0; i < adapter->num_tx_queues; i++) 6011 if (e->gate_mask & BIT(i)) { 6012 queue_uses[i]++; 6013 6014 /* There are limitations: A single queue cannot 6015 * be opened and closed multiple times per cycle 6016 * unless the gate stays open. Check for it. 6017 */ 6018 if (queue_uses[i] > 1 && 6019 !(prev->gate_mask & BIT(i))) 6020 return false; 6021 } 6022 } 6023 6024 return true; 6025 } 6026 6027 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 6028 struct tc_etf_qopt_offload *qopt) 6029 { 6030 struct igc_hw *hw = &adapter->hw; 6031 int err; 6032 6033 if (hw->mac.type != igc_i225) 6034 return -EOPNOTSUPP; 6035 6036 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 6037 if (err) 6038 return err; 6039 6040 return igc_tsn_offload_apply(adapter); 6041 } 6042 6043 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 6044 { 6045 int i; 6046 6047 adapter->base_time = 0; 6048 adapter->cycle_time = NSEC_PER_SEC; 6049 adapter->qbv_config_change_errors = 0; 6050 6051 for (i = 0; i < adapter->num_tx_queues; i++) { 6052 struct igc_ring *ring = adapter->tx_ring[i]; 6053 6054 ring->start_time = 0; 6055 ring->end_time = NSEC_PER_SEC; 6056 ring->max_sdu = 0; 6057 } 6058 6059 return 0; 6060 } 6061 6062 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 6063 struct tc_taprio_qopt_offload *qopt) 6064 { 6065 bool queue_configured[IGC_MAX_TX_QUEUES] = { }; 6066 struct igc_hw *hw = &adapter->hw; 6067 u32 start_time = 0, end_time = 0; 6068 size_t n; 6069 int i; 6070 6071 adapter->qbv_enable = qopt->enable; 6072 6073 if (!qopt->enable) 6074 return igc_tsn_clear_schedule(adapter); 6075 6076 if (qopt->base_time < 0) 6077 return -ERANGE; 6078 6079 if (igc_is_device_id_i225(hw) && adapter->base_time) 6080 return -EALREADY; 6081 6082 if (!validate_schedule(adapter, qopt)) 6083 return -EINVAL; 6084 6085 adapter->cycle_time = qopt->cycle_time; 6086 adapter->base_time = qopt->base_time; 6087 6088 for (n = 0; n < qopt->num_entries; n++) { 6089 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 6090 6091 end_time += e->interval; 6092 6093 /* If any of the conditions below are true, we need to manually 6094 * control the end time of the cycle. 6095 * 1. Qbv users can specify a cycle time that is not equal 6096 * to the total GCL intervals. Hence, recalculation is 6097 * necessary here to exclude the time interval that 6098 * exceeds the cycle time. 6099 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2, 6100 * once the end of the list is reached, it will switch 6101 * to the END_OF_CYCLE state and leave the gates in the 6102 * same state until the next cycle is started. 6103 */ 6104 if (end_time > adapter->cycle_time || 6105 n + 1 == qopt->num_entries) 6106 end_time = adapter->cycle_time; 6107 6108 for (i = 0; i < adapter->num_tx_queues; i++) { 6109 struct igc_ring *ring = adapter->tx_ring[i]; 6110 6111 if (!(e->gate_mask & BIT(i))) 6112 continue; 6113 6114 /* Check whether a queue stays open for more than one 6115 * entry. If so, keep the start and advance the end 6116 * time. 6117 */ 6118 if (!queue_configured[i]) 6119 ring->start_time = start_time; 6120 ring->end_time = end_time; 6121 6122 queue_configured[i] = true; 6123 } 6124 6125 start_time += e->interval; 6126 } 6127 6128 /* Check whether a queue gets configured. 6129 * If not, set the start and end time to be end time. 6130 */ 6131 for (i = 0; i < adapter->num_tx_queues; i++) { 6132 if (!queue_configured[i]) { 6133 struct igc_ring *ring = adapter->tx_ring[i]; 6134 6135 ring->start_time = end_time; 6136 ring->end_time = end_time; 6137 } 6138 } 6139 6140 for (i = 0; i < adapter->num_tx_queues; i++) { 6141 struct igc_ring *ring = adapter->tx_ring[i]; 6142 struct net_device *dev = adapter->netdev; 6143 6144 if (qopt->max_sdu[i]) 6145 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len; 6146 else 6147 ring->max_sdu = 0; 6148 } 6149 6150 return 0; 6151 } 6152 6153 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 6154 struct tc_taprio_qopt_offload *qopt) 6155 { 6156 struct igc_hw *hw = &adapter->hw; 6157 int err; 6158 6159 if (hw->mac.type != igc_i225) 6160 return -EOPNOTSUPP; 6161 6162 err = igc_save_qbv_schedule(adapter, qopt); 6163 if (err) 6164 return err; 6165 6166 return igc_tsn_offload_apply(adapter); 6167 } 6168 6169 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 6170 bool enable, int idleslope, int sendslope, 6171 int hicredit, int locredit) 6172 { 6173 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 6174 struct net_device *netdev = adapter->netdev; 6175 struct igc_ring *ring; 6176 int i; 6177 6178 /* i225 has two sets of credit-based shaper logic. 6179 * Supporting it only on the top two priority queues 6180 */ 6181 if (queue < 0 || queue > 1) 6182 return -EINVAL; 6183 6184 ring = adapter->tx_ring[queue]; 6185 6186 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 6187 if (adapter->tx_ring[i]) 6188 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 6189 6190 /* CBS should be enabled on the highest priority queue first in order 6191 * for the CBS algorithm to operate as intended. 6192 */ 6193 if (enable) { 6194 if (queue == 1 && !cbs_status[0]) { 6195 netdev_err(netdev, 6196 "Enabling CBS on queue1 before queue0\n"); 6197 return -EINVAL; 6198 } 6199 } else { 6200 if (queue == 0 && cbs_status[1]) { 6201 netdev_err(netdev, 6202 "Disabling CBS on queue0 before queue1\n"); 6203 return -EINVAL; 6204 } 6205 } 6206 6207 ring->cbs_enable = enable; 6208 ring->idleslope = idleslope; 6209 ring->sendslope = sendslope; 6210 ring->hicredit = hicredit; 6211 ring->locredit = locredit; 6212 6213 return 0; 6214 } 6215 6216 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 6217 struct tc_cbs_qopt_offload *qopt) 6218 { 6219 struct igc_hw *hw = &adapter->hw; 6220 int err; 6221 6222 if (hw->mac.type != igc_i225) 6223 return -EOPNOTSUPP; 6224 6225 if (qopt->queue < 0 || qopt->queue > 1) 6226 return -EINVAL; 6227 6228 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 6229 qopt->idleslope, qopt->sendslope, 6230 qopt->hicredit, qopt->locredit); 6231 if (err) 6232 return err; 6233 6234 return igc_tsn_offload_apply(adapter); 6235 } 6236 6237 static int igc_tc_query_caps(struct igc_adapter *adapter, 6238 struct tc_query_caps_base *base) 6239 { 6240 struct igc_hw *hw = &adapter->hw; 6241 6242 switch (base->type) { 6243 case TC_SETUP_QDISC_TAPRIO: { 6244 struct tc_taprio_caps *caps = base->caps; 6245 6246 caps->broken_mqprio = true; 6247 6248 if (hw->mac.type == igc_i225) { 6249 caps->supports_queue_max_sdu = true; 6250 caps->gate_mask_per_txq = true; 6251 } 6252 6253 return 0; 6254 } 6255 default: 6256 return -EOPNOTSUPP; 6257 } 6258 } 6259 6260 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6261 void *type_data) 6262 { 6263 struct igc_adapter *adapter = netdev_priv(dev); 6264 6265 switch (type) { 6266 case TC_QUERY_CAPS: 6267 return igc_tc_query_caps(adapter, type_data); 6268 case TC_SETUP_QDISC_TAPRIO: 6269 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6270 6271 case TC_SETUP_QDISC_ETF: 6272 return igc_tsn_enable_launchtime(adapter, type_data); 6273 6274 case TC_SETUP_QDISC_CBS: 6275 return igc_tsn_enable_cbs(adapter, type_data); 6276 6277 default: 6278 return -EOPNOTSUPP; 6279 } 6280 } 6281 6282 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6283 { 6284 struct igc_adapter *adapter = netdev_priv(dev); 6285 6286 switch (bpf->command) { 6287 case XDP_SETUP_PROG: 6288 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6289 case XDP_SETUP_XSK_POOL: 6290 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6291 bpf->xsk.queue_id); 6292 default: 6293 return -EOPNOTSUPP; 6294 } 6295 } 6296 6297 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6298 struct xdp_frame **frames, u32 flags) 6299 { 6300 struct igc_adapter *adapter = netdev_priv(dev); 6301 int cpu = smp_processor_id(); 6302 struct netdev_queue *nq; 6303 struct igc_ring *ring; 6304 int i, drops; 6305 6306 if (unlikely(test_bit(__IGC_DOWN, &adapter->state))) 6307 return -ENETDOWN; 6308 6309 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6310 return -EINVAL; 6311 6312 ring = igc_xdp_get_tx_ring(adapter, cpu); 6313 nq = txring_txq(ring); 6314 6315 __netif_tx_lock(nq, cpu); 6316 6317 drops = 0; 6318 for (i = 0; i < num_frames; i++) { 6319 int err; 6320 struct xdp_frame *xdpf = frames[i]; 6321 6322 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6323 if (err) { 6324 xdp_return_frame_rx_napi(xdpf); 6325 drops++; 6326 } 6327 } 6328 6329 if (flags & XDP_XMIT_FLUSH) 6330 igc_flush_tx_descriptors(ring); 6331 6332 __netif_tx_unlock(nq); 6333 6334 return num_frames - drops; 6335 } 6336 6337 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6338 struct igc_q_vector *q_vector) 6339 { 6340 struct igc_hw *hw = &adapter->hw; 6341 u32 eics = 0; 6342 6343 eics |= q_vector->eims_value; 6344 wr32(IGC_EICS, eics); 6345 } 6346 6347 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6348 { 6349 struct igc_adapter *adapter = netdev_priv(dev); 6350 struct igc_q_vector *q_vector; 6351 struct igc_ring *ring; 6352 6353 if (test_bit(__IGC_DOWN, &adapter->state)) 6354 return -ENETDOWN; 6355 6356 if (!igc_xdp_is_enabled(adapter)) 6357 return -ENXIO; 6358 6359 if (queue_id >= adapter->num_rx_queues) 6360 return -EINVAL; 6361 6362 ring = adapter->rx_ring[queue_id]; 6363 6364 if (!ring->xsk_pool) 6365 return -ENXIO; 6366 6367 q_vector = adapter->q_vector[queue_id]; 6368 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6369 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6370 6371 return 0; 6372 } 6373 6374 static const struct net_device_ops igc_netdev_ops = { 6375 .ndo_open = igc_open, 6376 .ndo_stop = igc_close, 6377 .ndo_start_xmit = igc_xmit_frame, 6378 .ndo_set_rx_mode = igc_set_rx_mode, 6379 .ndo_set_mac_address = igc_set_mac, 6380 .ndo_change_mtu = igc_change_mtu, 6381 .ndo_tx_timeout = igc_tx_timeout, 6382 .ndo_get_stats64 = igc_get_stats64, 6383 .ndo_fix_features = igc_fix_features, 6384 .ndo_set_features = igc_set_features, 6385 .ndo_features_check = igc_features_check, 6386 .ndo_eth_ioctl = igc_ioctl, 6387 .ndo_setup_tc = igc_setup_tc, 6388 .ndo_bpf = igc_bpf, 6389 .ndo_xdp_xmit = igc_xdp_xmit, 6390 .ndo_xsk_wakeup = igc_xsk_wakeup, 6391 }; 6392 6393 /* PCIe configuration access */ 6394 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6395 { 6396 struct igc_adapter *adapter = hw->back; 6397 6398 pci_read_config_word(adapter->pdev, reg, value); 6399 } 6400 6401 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6402 { 6403 struct igc_adapter *adapter = hw->back; 6404 6405 pci_write_config_word(adapter->pdev, reg, *value); 6406 } 6407 6408 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6409 { 6410 struct igc_adapter *adapter = hw->back; 6411 6412 if (!pci_is_pcie(adapter->pdev)) 6413 return -IGC_ERR_CONFIG; 6414 6415 pcie_capability_read_word(adapter->pdev, reg, value); 6416 6417 return IGC_SUCCESS; 6418 } 6419 6420 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6421 { 6422 struct igc_adapter *adapter = hw->back; 6423 6424 if (!pci_is_pcie(adapter->pdev)) 6425 return -IGC_ERR_CONFIG; 6426 6427 pcie_capability_write_word(adapter->pdev, reg, *value); 6428 6429 return IGC_SUCCESS; 6430 } 6431 6432 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6433 { 6434 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6435 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6436 u32 value = 0; 6437 6438 if (IGC_REMOVED(hw_addr)) 6439 return ~value; 6440 6441 value = readl(&hw_addr[reg]); 6442 6443 /* reads should not return all F's */ 6444 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6445 struct net_device *netdev = igc->netdev; 6446 6447 hw->hw_addr = NULL; 6448 netif_device_detach(netdev); 6449 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6450 WARN(pci_device_is_present(igc->pdev), 6451 "igc: Failed to read reg 0x%x!\n", reg); 6452 } 6453 6454 return value; 6455 } 6456 6457 /** 6458 * igc_probe - Device Initialization Routine 6459 * @pdev: PCI device information struct 6460 * @ent: entry in igc_pci_tbl 6461 * 6462 * Returns 0 on success, negative on failure 6463 * 6464 * igc_probe initializes an adapter identified by a pci_dev structure. 6465 * The OS initialization, configuring the adapter private structure, 6466 * and a hardware reset occur. 6467 */ 6468 static int igc_probe(struct pci_dev *pdev, 6469 const struct pci_device_id *ent) 6470 { 6471 struct igc_adapter *adapter; 6472 struct net_device *netdev; 6473 struct igc_hw *hw; 6474 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6475 int err; 6476 6477 err = pci_enable_device_mem(pdev); 6478 if (err) 6479 return err; 6480 6481 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6482 if (err) { 6483 dev_err(&pdev->dev, 6484 "No usable DMA configuration, aborting\n"); 6485 goto err_dma; 6486 } 6487 6488 err = pci_request_mem_regions(pdev, igc_driver_name); 6489 if (err) 6490 goto err_pci_reg; 6491 6492 err = pci_enable_ptm(pdev, NULL); 6493 if (err < 0) 6494 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6495 6496 pci_set_master(pdev); 6497 6498 err = -ENOMEM; 6499 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6500 IGC_MAX_TX_QUEUES); 6501 6502 if (!netdev) 6503 goto err_alloc_etherdev; 6504 6505 SET_NETDEV_DEV(netdev, &pdev->dev); 6506 6507 pci_set_drvdata(pdev, netdev); 6508 adapter = netdev_priv(netdev); 6509 adapter->netdev = netdev; 6510 adapter->pdev = pdev; 6511 hw = &adapter->hw; 6512 hw->back = adapter; 6513 adapter->port_num = hw->bus.func; 6514 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6515 6516 err = pci_save_state(pdev); 6517 if (err) 6518 goto err_ioremap; 6519 6520 err = -EIO; 6521 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6522 pci_resource_len(pdev, 0)); 6523 if (!adapter->io_addr) 6524 goto err_ioremap; 6525 6526 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6527 hw->hw_addr = adapter->io_addr; 6528 6529 netdev->netdev_ops = &igc_netdev_ops; 6530 igc_ethtool_set_ops(netdev); 6531 netdev->watchdog_timeo = 5 * HZ; 6532 6533 netdev->mem_start = pci_resource_start(pdev, 0); 6534 netdev->mem_end = pci_resource_end(pdev, 0); 6535 6536 /* PCI config space info */ 6537 hw->vendor_id = pdev->vendor; 6538 hw->device_id = pdev->device; 6539 hw->revision_id = pdev->revision; 6540 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6541 hw->subsystem_device_id = pdev->subsystem_device; 6542 6543 /* Copy the default MAC and PHY function pointers */ 6544 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6545 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6546 6547 /* Initialize skew-specific constants */ 6548 err = ei->get_invariants(hw); 6549 if (err) 6550 goto err_sw_init; 6551 6552 /* Add supported features to the features list*/ 6553 netdev->features |= NETIF_F_SG; 6554 netdev->features |= NETIF_F_TSO; 6555 netdev->features |= NETIF_F_TSO6; 6556 netdev->features |= NETIF_F_TSO_ECN; 6557 netdev->features |= NETIF_F_RXCSUM; 6558 netdev->features |= NETIF_F_HW_CSUM; 6559 netdev->features |= NETIF_F_SCTP_CRC; 6560 netdev->features |= NETIF_F_HW_TC; 6561 6562 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6563 NETIF_F_GSO_GRE_CSUM | \ 6564 NETIF_F_GSO_IPXIP4 | \ 6565 NETIF_F_GSO_IPXIP6 | \ 6566 NETIF_F_GSO_UDP_TUNNEL | \ 6567 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6568 6569 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6570 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6571 6572 /* setup the private structure */ 6573 err = igc_sw_init(adapter); 6574 if (err) 6575 goto err_sw_init; 6576 6577 /* copy netdev features into list of user selectable features */ 6578 netdev->hw_features |= NETIF_F_NTUPLE; 6579 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6580 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6581 netdev->hw_features |= netdev->features; 6582 6583 netdev->features |= NETIF_F_HIGHDMA; 6584 6585 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6586 netdev->mpls_features |= NETIF_F_HW_CSUM; 6587 netdev->hw_enc_features |= netdev->vlan_features; 6588 6589 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 6590 NETDEV_XDP_ACT_XSK_ZEROCOPY; 6591 6592 /* MTU range: 68 - 9216 */ 6593 netdev->min_mtu = ETH_MIN_MTU; 6594 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6595 6596 /* before reading the NVM, reset the controller to put the device in a 6597 * known good starting state 6598 */ 6599 hw->mac.ops.reset_hw(hw); 6600 6601 if (igc_get_flash_presence_i225(hw)) { 6602 if (hw->nvm.ops.validate(hw) < 0) { 6603 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6604 err = -EIO; 6605 goto err_eeprom; 6606 } 6607 } 6608 6609 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6610 /* copy the MAC address out of the NVM */ 6611 if (hw->mac.ops.read_mac_addr(hw)) 6612 dev_err(&pdev->dev, "NVM Read Error\n"); 6613 } 6614 6615 eth_hw_addr_set(netdev, hw->mac.addr); 6616 6617 if (!is_valid_ether_addr(netdev->dev_addr)) { 6618 dev_err(&pdev->dev, "Invalid MAC Address\n"); 6619 err = -EIO; 6620 goto err_eeprom; 6621 } 6622 6623 /* configure RXPBSIZE and TXPBSIZE */ 6624 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 6625 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 6626 6627 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 6628 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 6629 6630 INIT_WORK(&adapter->reset_task, igc_reset_task); 6631 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 6632 6633 /* Initialize link properties that are user-changeable */ 6634 adapter->fc_autoneg = true; 6635 hw->mac.autoneg = true; 6636 hw->phy.autoneg_advertised = 0xaf; 6637 6638 hw->fc.requested_mode = igc_fc_default; 6639 hw->fc.current_mode = igc_fc_default; 6640 6641 /* By default, support wake on port A */ 6642 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 6643 6644 /* initialize the wol settings based on the eeprom settings */ 6645 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 6646 adapter->wol |= IGC_WUFC_MAG; 6647 6648 device_set_wakeup_enable(&adapter->pdev->dev, 6649 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 6650 6651 igc_ptp_init(adapter); 6652 6653 igc_tsn_clear_schedule(adapter); 6654 6655 /* reset the hardware with the new settings */ 6656 igc_reset(adapter); 6657 6658 /* let the f/w know that the h/w is now under the control of the 6659 * driver. 6660 */ 6661 igc_get_hw_control(adapter); 6662 6663 strncpy(netdev->name, "eth%d", IFNAMSIZ); 6664 err = register_netdev(netdev); 6665 if (err) 6666 goto err_register; 6667 6668 /* carrier off reporting is important to ethtool even BEFORE open */ 6669 netif_carrier_off(netdev); 6670 6671 /* Check if Media Autosense is enabled */ 6672 adapter->ei = *ei; 6673 6674 /* print pcie link status and MAC address */ 6675 pcie_print_link_status(pdev); 6676 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 6677 6678 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 6679 /* Disable EEE for internal PHY devices */ 6680 hw->dev_spec._base.eee_enable = false; 6681 adapter->flags &= ~IGC_FLAG_EEE; 6682 igc_set_eee_i225(hw, false, false, false); 6683 6684 pm_runtime_put_noidle(&pdev->dev); 6685 6686 return 0; 6687 6688 err_register: 6689 igc_release_hw_control(adapter); 6690 err_eeprom: 6691 if (!igc_check_reset_block(hw)) 6692 igc_reset_phy(hw); 6693 err_sw_init: 6694 igc_clear_interrupt_scheme(adapter); 6695 iounmap(adapter->io_addr); 6696 err_ioremap: 6697 free_netdev(netdev); 6698 err_alloc_etherdev: 6699 pci_release_mem_regions(pdev); 6700 err_pci_reg: 6701 err_dma: 6702 pci_disable_device(pdev); 6703 return err; 6704 } 6705 6706 /** 6707 * igc_remove - Device Removal Routine 6708 * @pdev: PCI device information struct 6709 * 6710 * igc_remove is called by the PCI subsystem to alert the driver 6711 * that it should release a PCI device. This could be caused by a 6712 * Hot-Plug event, or because the driver is going to be removed from 6713 * memory. 6714 */ 6715 static void igc_remove(struct pci_dev *pdev) 6716 { 6717 struct net_device *netdev = pci_get_drvdata(pdev); 6718 struct igc_adapter *adapter = netdev_priv(netdev); 6719 6720 pm_runtime_get_noresume(&pdev->dev); 6721 6722 igc_flush_nfc_rules(adapter); 6723 6724 igc_ptp_stop(adapter); 6725 6726 set_bit(__IGC_DOWN, &adapter->state); 6727 6728 del_timer_sync(&adapter->watchdog_timer); 6729 del_timer_sync(&adapter->phy_info_timer); 6730 6731 cancel_work_sync(&adapter->reset_task); 6732 cancel_work_sync(&adapter->watchdog_task); 6733 6734 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6735 * would have already happened in close and is redundant. 6736 */ 6737 igc_release_hw_control(adapter); 6738 unregister_netdev(netdev); 6739 6740 igc_clear_interrupt_scheme(adapter); 6741 pci_iounmap(pdev, adapter->io_addr); 6742 pci_release_mem_regions(pdev); 6743 6744 free_netdev(netdev); 6745 6746 pci_disable_device(pdev); 6747 } 6748 6749 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 6750 bool runtime) 6751 { 6752 struct net_device *netdev = pci_get_drvdata(pdev); 6753 struct igc_adapter *adapter = netdev_priv(netdev); 6754 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 6755 struct igc_hw *hw = &adapter->hw; 6756 u32 ctrl, rctl, status; 6757 bool wake; 6758 6759 rtnl_lock(); 6760 netif_device_detach(netdev); 6761 6762 if (netif_running(netdev)) 6763 __igc_close(netdev, true); 6764 6765 igc_ptp_suspend(adapter); 6766 6767 igc_clear_interrupt_scheme(adapter); 6768 rtnl_unlock(); 6769 6770 status = rd32(IGC_STATUS); 6771 if (status & IGC_STATUS_LU) 6772 wufc &= ~IGC_WUFC_LNKC; 6773 6774 if (wufc) { 6775 igc_setup_rctl(adapter); 6776 igc_set_rx_mode(netdev); 6777 6778 /* turn on all-multi mode if wake on multicast is enabled */ 6779 if (wufc & IGC_WUFC_MC) { 6780 rctl = rd32(IGC_RCTL); 6781 rctl |= IGC_RCTL_MPE; 6782 wr32(IGC_RCTL, rctl); 6783 } 6784 6785 ctrl = rd32(IGC_CTRL); 6786 ctrl |= IGC_CTRL_ADVD3WUC; 6787 wr32(IGC_CTRL, ctrl); 6788 6789 /* Allow time for pending master requests to run */ 6790 igc_disable_pcie_master(hw); 6791 6792 wr32(IGC_WUC, IGC_WUC_PME_EN); 6793 wr32(IGC_WUFC, wufc); 6794 } else { 6795 wr32(IGC_WUC, 0); 6796 wr32(IGC_WUFC, 0); 6797 } 6798 6799 wake = wufc || adapter->en_mng_pt; 6800 if (!wake) 6801 igc_power_down_phy_copper_base(&adapter->hw); 6802 else 6803 igc_power_up_link(adapter); 6804 6805 if (enable_wake) 6806 *enable_wake = wake; 6807 6808 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6809 * would have already happened in close and is redundant. 6810 */ 6811 igc_release_hw_control(adapter); 6812 6813 pci_disable_device(pdev); 6814 6815 return 0; 6816 } 6817 6818 #ifdef CONFIG_PM 6819 static int __maybe_unused igc_runtime_suspend(struct device *dev) 6820 { 6821 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 6822 } 6823 6824 static void igc_deliver_wake_packet(struct net_device *netdev) 6825 { 6826 struct igc_adapter *adapter = netdev_priv(netdev); 6827 struct igc_hw *hw = &adapter->hw; 6828 struct sk_buff *skb; 6829 u32 wupl; 6830 6831 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 6832 6833 /* WUPM stores only the first 128 bytes of the wake packet. 6834 * Read the packet only if we have the whole thing. 6835 */ 6836 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 6837 return; 6838 6839 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 6840 if (!skb) 6841 return; 6842 6843 skb_put(skb, wupl); 6844 6845 /* Ensure reads are 32-bit aligned */ 6846 wupl = roundup(wupl, 4); 6847 6848 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 6849 6850 skb->protocol = eth_type_trans(skb, netdev); 6851 netif_rx(skb); 6852 } 6853 6854 static int __maybe_unused igc_resume(struct device *dev) 6855 { 6856 struct pci_dev *pdev = to_pci_dev(dev); 6857 struct net_device *netdev = pci_get_drvdata(pdev); 6858 struct igc_adapter *adapter = netdev_priv(netdev); 6859 struct igc_hw *hw = &adapter->hw; 6860 u32 err, val; 6861 6862 pci_set_power_state(pdev, PCI_D0); 6863 pci_restore_state(pdev); 6864 pci_save_state(pdev); 6865 6866 if (!pci_device_is_present(pdev)) 6867 return -ENODEV; 6868 err = pci_enable_device_mem(pdev); 6869 if (err) { 6870 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 6871 return err; 6872 } 6873 pci_set_master(pdev); 6874 6875 pci_enable_wake(pdev, PCI_D3hot, 0); 6876 pci_enable_wake(pdev, PCI_D3cold, 0); 6877 6878 if (igc_init_interrupt_scheme(adapter, true)) { 6879 netdev_err(netdev, "Unable to allocate memory for queues\n"); 6880 return -ENOMEM; 6881 } 6882 6883 igc_reset(adapter); 6884 6885 /* let the f/w know that the h/w is now under the control of the 6886 * driver. 6887 */ 6888 igc_get_hw_control(adapter); 6889 6890 val = rd32(IGC_WUS); 6891 if (val & WAKE_PKT_WUS) 6892 igc_deliver_wake_packet(netdev); 6893 6894 wr32(IGC_WUS, ~0); 6895 6896 rtnl_lock(); 6897 if (!err && netif_running(netdev)) 6898 err = __igc_open(netdev, true); 6899 6900 if (!err) 6901 netif_device_attach(netdev); 6902 rtnl_unlock(); 6903 6904 return err; 6905 } 6906 6907 static int __maybe_unused igc_runtime_resume(struct device *dev) 6908 { 6909 return igc_resume(dev); 6910 } 6911 6912 static int __maybe_unused igc_suspend(struct device *dev) 6913 { 6914 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 6915 } 6916 6917 static int __maybe_unused igc_runtime_idle(struct device *dev) 6918 { 6919 struct net_device *netdev = dev_get_drvdata(dev); 6920 struct igc_adapter *adapter = netdev_priv(netdev); 6921 6922 if (!igc_has_link(adapter)) 6923 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 6924 6925 return -EBUSY; 6926 } 6927 #endif /* CONFIG_PM */ 6928 6929 static void igc_shutdown(struct pci_dev *pdev) 6930 { 6931 bool wake; 6932 6933 __igc_shutdown(pdev, &wake, 0); 6934 6935 if (system_state == SYSTEM_POWER_OFF) { 6936 pci_wake_from_d3(pdev, wake); 6937 pci_set_power_state(pdev, PCI_D3hot); 6938 } 6939 } 6940 6941 /** 6942 * igc_io_error_detected - called when PCI error is detected 6943 * @pdev: Pointer to PCI device 6944 * @state: The current PCI connection state 6945 * 6946 * This function is called after a PCI bus error affecting 6947 * this device has been detected. 6948 **/ 6949 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 6950 pci_channel_state_t state) 6951 { 6952 struct net_device *netdev = pci_get_drvdata(pdev); 6953 struct igc_adapter *adapter = netdev_priv(netdev); 6954 6955 netif_device_detach(netdev); 6956 6957 if (state == pci_channel_io_perm_failure) 6958 return PCI_ERS_RESULT_DISCONNECT; 6959 6960 if (netif_running(netdev)) 6961 igc_down(adapter); 6962 pci_disable_device(pdev); 6963 6964 /* Request a slot reset. */ 6965 return PCI_ERS_RESULT_NEED_RESET; 6966 } 6967 6968 /** 6969 * igc_io_slot_reset - called after the PCI bus has been reset. 6970 * @pdev: Pointer to PCI device 6971 * 6972 * Restart the card from scratch, as if from a cold-boot. Implementation 6973 * resembles the first-half of the igc_resume routine. 6974 **/ 6975 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 6976 { 6977 struct net_device *netdev = pci_get_drvdata(pdev); 6978 struct igc_adapter *adapter = netdev_priv(netdev); 6979 struct igc_hw *hw = &adapter->hw; 6980 pci_ers_result_t result; 6981 6982 if (pci_enable_device_mem(pdev)) { 6983 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 6984 result = PCI_ERS_RESULT_DISCONNECT; 6985 } else { 6986 pci_set_master(pdev); 6987 pci_restore_state(pdev); 6988 pci_save_state(pdev); 6989 6990 pci_enable_wake(pdev, PCI_D3hot, 0); 6991 pci_enable_wake(pdev, PCI_D3cold, 0); 6992 6993 /* In case of PCI error, adapter loses its HW address 6994 * so we should re-assign it here. 6995 */ 6996 hw->hw_addr = adapter->io_addr; 6997 6998 igc_reset(adapter); 6999 wr32(IGC_WUS, ~0); 7000 result = PCI_ERS_RESULT_RECOVERED; 7001 } 7002 7003 return result; 7004 } 7005 7006 /** 7007 * igc_io_resume - called when traffic can start to flow again. 7008 * @pdev: Pointer to PCI device 7009 * 7010 * This callback is called when the error recovery driver tells us that 7011 * its OK to resume normal operation. Implementation resembles the 7012 * second-half of the igc_resume routine. 7013 */ 7014 static void igc_io_resume(struct pci_dev *pdev) 7015 { 7016 struct net_device *netdev = pci_get_drvdata(pdev); 7017 struct igc_adapter *adapter = netdev_priv(netdev); 7018 7019 rtnl_lock(); 7020 if (netif_running(netdev)) { 7021 if (igc_open(netdev)) { 7022 netdev_err(netdev, "igc_open failed after reset\n"); 7023 return; 7024 } 7025 } 7026 7027 netif_device_attach(netdev); 7028 7029 /* let the f/w know that the h/w is now under the control of the 7030 * driver. 7031 */ 7032 igc_get_hw_control(adapter); 7033 rtnl_unlock(); 7034 } 7035 7036 static const struct pci_error_handlers igc_err_handler = { 7037 .error_detected = igc_io_error_detected, 7038 .slot_reset = igc_io_slot_reset, 7039 .resume = igc_io_resume, 7040 }; 7041 7042 #ifdef CONFIG_PM 7043 static const struct dev_pm_ops igc_pm_ops = { 7044 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 7045 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 7046 igc_runtime_idle) 7047 }; 7048 #endif 7049 7050 static struct pci_driver igc_driver = { 7051 .name = igc_driver_name, 7052 .id_table = igc_pci_tbl, 7053 .probe = igc_probe, 7054 .remove = igc_remove, 7055 #ifdef CONFIG_PM 7056 .driver.pm = &igc_pm_ops, 7057 #endif 7058 .shutdown = igc_shutdown, 7059 .err_handler = &igc_err_handler, 7060 }; 7061 7062 /** 7063 * igc_reinit_queues - return error 7064 * @adapter: pointer to adapter structure 7065 */ 7066 int igc_reinit_queues(struct igc_adapter *adapter) 7067 { 7068 struct net_device *netdev = adapter->netdev; 7069 int err = 0; 7070 7071 if (netif_running(netdev)) 7072 igc_close(netdev); 7073 7074 igc_reset_interrupt_capability(adapter); 7075 7076 if (igc_init_interrupt_scheme(adapter, true)) { 7077 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7078 return -ENOMEM; 7079 } 7080 7081 if (netif_running(netdev)) 7082 err = igc_open(netdev); 7083 7084 return err; 7085 } 7086 7087 /** 7088 * igc_get_hw_dev - return device 7089 * @hw: pointer to hardware structure 7090 * 7091 * used by hardware layer to print debugging information 7092 */ 7093 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 7094 { 7095 struct igc_adapter *adapter = hw->back; 7096 7097 return adapter->netdev; 7098 } 7099 7100 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 7101 { 7102 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7103 u8 idx = ring->reg_idx; 7104 u32 rxdctl; 7105 7106 rxdctl = rd32(IGC_RXDCTL(idx)); 7107 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 7108 rxdctl |= IGC_RXDCTL_SWFLUSH; 7109 wr32(IGC_RXDCTL(idx), rxdctl); 7110 } 7111 7112 void igc_disable_rx_ring(struct igc_ring *ring) 7113 { 7114 igc_disable_rx_ring_hw(ring); 7115 igc_clean_rx_ring(ring); 7116 } 7117 7118 void igc_enable_rx_ring(struct igc_ring *ring) 7119 { 7120 struct igc_adapter *adapter = ring->q_vector->adapter; 7121 7122 igc_configure_rx_ring(adapter, ring); 7123 7124 if (ring->xsk_pool) 7125 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 7126 else 7127 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 7128 } 7129 7130 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 7131 { 7132 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7133 u8 idx = ring->reg_idx; 7134 u32 txdctl; 7135 7136 txdctl = rd32(IGC_TXDCTL(idx)); 7137 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 7138 txdctl |= IGC_TXDCTL_SWFLUSH; 7139 wr32(IGC_TXDCTL(idx), txdctl); 7140 } 7141 7142 void igc_disable_tx_ring(struct igc_ring *ring) 7143 { 7144 igc_disable_tx_ring_hw(ring); 7145 igc_clean_tx_ring(ring); 7146 } 7147 7148 void igc_enable_tx_ring(struct igc_ring *ring) 7149 { 7150 struct igc_adapter *adapter = ring->q_vector->adapter; 7151 7152 igc_configure_tx_ring(adapter, ring); 7153 } 7154 7155 /** 7156 * igc_init_module - Driver Registration Routine 7157 * 7158 * igc_init_module is the first routine called when the driver is 7159 * loaded. All it does is register with the PCI subsystem. 7160 */ 7161 static int __init igc_init_module(void) 7162 { 7163 int ret; 7164 7165 pr_info("%s\n", igc_driver_string); 7166 pr_info("%s\n", igc_copyright); 7167 7168 ret = pci_register_driver(&igc_driver); 7169 return ret; 7170 } 7171 7172 module_init(igc_init_module); 7173 7174 /** 7175 * igc_exit_module - Driver Exit Cleanup Routine 7176 * 7177 * igc_exit_module is called just before the driver is removed 7178 * from memory. 7179 */ 7180 static void __exit igc_exit_module(void) 7181 { 7182 pci_unregister_driver(&igc_driver); 7183 } 7184 7185 module_exit(igc_exit_module); 7186 /* igc_main.c */ 7187