1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 
14 #include <net/ipv6.h>
15 
16 #include "igc.h"
17 #include "igc_hw.h"
18 #include "igc_tsn.h"
19 
20 #define DRV_VERSION	"0.0.1-k"
21 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
22 
23 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
24 
25 static int debug = -1;
26 
27 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
28 MODULE_DESCRIPTION(DRV_SUMMARY);
29 MODULE_LICENSE("GPL v2");
30 MODULE_VERSION(DRV_VERSION);
31 module_param(debug, int, 0);
32 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
33 
34 char igc_driver_name[] = "igc";
35 char igc_driver_version[] = DRV_VERSION;
36 static const char igc_driver_string[] = DRV_SUMMARY;
37 static const char igc_copyright[] =
38 	"Copyright(c) 2018 Intel Corporation.";
39 
40 static const struct igc_info *igc_info_tbl[] = {
41 	[board_base] = &igc_base_info,
42 };
43 
44 static const struct pci_device_id igc_pci_tbl[] = {
45 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
46 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
47 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
48 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
54 	/* required last entry */
55 	{0, }
56 };
57 
58 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
59 
60 enum latency_range {
61 	lowest_latency = 0,
62 	low_latency = 1,
63 	bulk_latency = 2,
64 	latency_invalid = 255
65 };
66 
67 /**
68  * igc_power_down_link - Power down the phy/serdes link
69  * @adapter: address of board private structure
70  */
71 static void igc_power_down_link(struct igc_adapter *adapter)
72 {
73 	if (adapter->hw.phy.media_type == igc_media_type_copper)
74 		igc_power_down_phy_copper_base(&adapter->hw);
75 }
76 
77 void igc_reset(struct igc_adapter *adapter)
78 {
79 	struct net_device *dev = adapter->netdev;
80 	struct igc_hw *hw = &adapter->hw;
81 	struct igc_fc_info *fc = &hw->fc;
82 	u32 pba, hwm;
83 
84 	/* Repartition PBA for greater than 9k MTU if required */
85 	pba = IGC_PBA_34K;
86 
87 	/* flow control settings
88 	 * The high water mark must be low enough to fit one full frame
89 	 * after transmitting the pause frame.  As such we must have enough
90 	 * space to allow for us to complete our current transmit and then
91 	 * receive the frame that is in progress from the link partner.
92 	 * Set it to:
93 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94 	 */
95 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96 
97 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
98 	fc->low_water = fc->high_water - 16;
99 	fc->pause_time = 0xFFFF;
100 	fc->send_xon = 1;
101 	fc->current_mode = fc->requested_mode;
102 
103 	hw->mac.ops.reset_hw(hw);
104 
105 	if (hw->mac.ops.init_hw(hw))
106 		netdev_err(dev, "Error on hardware initialization\n");
107 
108 	if (!netif_running(adapter->netdev))
109 		igc_power_down_link(adapter);
110 
111 	/* Re-enable PTP, where applicable. */
112 	igc_ptp_reset(adapter);
113 
114 	/* Re-enable TSN offloading, where applicable. */
115 	igc_tsn_offload_apply(adapter);
116 
117 	igc_get_phy_info(hw);
118 }
119 
120 /**
121  * igc_power_up_link - Power up the phy link
122  * @adapter: address of board private structure
123  */
124 static void igc_power_up_link(struct igc_adapter *adapter)
125 {
126 	igc_reset_phy(&adapter->hw);
127 
128 	if (adapter->hw.phy.media_type == igc_media_type_copper)
129 		igc_power_up_phy_copper(&adapter->hw);
130 
131 	igc_setup_link(&adapter->hw);
132 }
133 
134 /**
135  * igc_release_hw_control - release control of the h/w to f/w
136  * @adapter: address of board private structure
137  *
138  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
139  * For ASF and Pass Through versions of f/w this means that the
140  * driver is no longer loaded.
141  */
142 static void igc_release_hw_control(struct igc_adapter *adapter)
143 {
144 	struct igc_hw *hw = &adapter->hw;
145 	u32 ctrl_ext;
146 
147 	/* Let firmware take over control of h/w */
148 	ctrl_ext = rd32(IGC_CTRL_EXT);
149 	wr32(IGC_CTRL_EXT,
150 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
151 }
152 
153 /**
154  * igc_get_hw_control - get control of the h/w from f/w
155  * @adapter: address of board private structure
156  *
157  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
158  * For ASF and Pass Through versions of f/w this means that
159  * the driver is loaded.
160  */
161 static void igc_get_hw_control(struct igc_adapter *adapter)
162 {
163 	struct igc_hw *hw = &adapter->hw;
164 	u32 ctrl_ext;
165 
166 	/* Let firmware know the driver has taken over */
167 	ctrl_ext = rd32(IGC_CTRL_EXT);
168 	wr32(IGC_CTRL_EXT,
169 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
170 }
171 
172 /**
173  * igc_clean_tx_ring - Free Tx Buffers
174  * @tx_ring: ring to be cleaned
175  */
176 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
177 {
178 	u16 i = tx_ring->next_to_clean;
179 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
180 
181 	while (i != tx_ring->next_to_use) {
182 		union igc_adv_tx_desc *eop_desc, *tx_desc;
183 
184 		/* Free all the Tx ring sk_buffs */
185 		dev_kfree_skb_any(tx_buffer->skb);
186 
187 		/* unmap skb header data */
188 		dma_unmap_single(tx_ring->dev,
189 				 dma_unmap_addr(tx_buffer, dma),
190 				 dma_unmap_len(tx_buffer, len),
191 				 DMA_TO_DEVICE);
192 
193 		/* check for eop_desc to determine the end of the packet */
194 		eop_desc = tx_buffer->next_to_watch;
195 		tx_desc = IGC_TX_DESC(tx_ring, i);
196 
197 		/* unmap remaining buffers */
198 		while (tx_desc != eop_desc) {
199 			tx_buffer++;
200 			tx_desc++;
201 			i++;
202 			if (unlikely(i == tx_ring->count)) {
203 				i = 0;
204 				tx_buffer = tx_ring->tx_buffer_info;
205 				tx_desc = IGC_TX_DESC(tx_ring, 0);
206 			}
207 
208 			/* unmap any remaining paged data */
209 			if (dma_unmap_len(tx_buffer, len))
210 				dma_unmap_page(tx_ring->dev,
211 					       dma_unmap_addr(tx_buffer, dma),
212 					       dma_unmap_len(tx_buffer, len),
213 					       DMA_TO_DEVICE);
214 		}
215 
216 		/* move us one more past the eop_desc for start of next pkt */
217 		tx_buffer++;
218 		i++;
219 		if (unlikely(i == tx_ring->count)) {
220 			i = 0;
221 			tx_buffer = tx_ring->tx_buffer_info;
222 		}
223 	}
224 
225 	/* reset BQL for queue */
226 	netdev_tx_reset_queue(txring_txq(tx_ring));
227 
228 	/* reset next_to_use and next_to_clean */
229 	tx_ring->next_to_use = 0;
230 	tx_ring->next_to_clean = 0;
231 }
232 
233 /**
234  * igc_free_tx_resources - Free Tx Resources per Queue
235  * @tx_ring: Tx descriptor ring for a specific queue
236  *
237  * Free all transmit software resources
238  */
239 void igc_free_tx_resources(struct igc_ring *tx_ring)
240 {
241 	igc_clean_tx_ring(tx_ring);
242 
243 	vfree(tx_ring->tx_buffer_info);
244 	tx_ring->tx_buffer_info = NULL;
245 
246 	/* if not set, then don't free */
247 	if (!tx_ring->desc)
248 		return;
249 
250 	dma_free_coherent(tx_ring->dev, tx_ring->size,
251 			  tx_ring->desc, tx_ring->dma);
252 
253 	tx_ring->desc = NULL;
254 }
255 
256 /**
257  * igc_free_all_tx_resources - Free Tx Resources for All Queues
258  * @adapter: board private structure
259  *
260  * Free all transmit software resources
261  */
262 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
263 {
264 	int i;
265 
266 	for (i = 0; i < adapter->num_tx_queues; i++)
267 		igc_free_tx_resources(adapter->tx_ring[i]);
268 }
269 
270 /**
271  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
272  * @adapter: board private structure
273  */
274 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
275 {
276 	int i;
277 
278 	for (i = 0; i < adapter->num_tx_queues; i++)
279 		if (adapter->tx_ring[i])
280 			igc_clean_tx_ring(adapter->tx_ring[i]);
281 }
282 
283 /**
284  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
285  * @tx_ring: tx descriptor ring (for a specific queue) to setup
286  *
287  * Return 0 on success, negative on failure
288  */
289 int igc_setup_tx_resources(struct igc_ring *tx_ring)
290 {
291 	struct net_device *ndev = tx_ring->netdev;
292 	struct device *dev = tx_ring->dev;
293 	int size = 0;
294 
295 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
296 	tx_ring->tx_buffer_info = vzalloc(size);
297 	if (!tx_ring->tx_buffer_info)
298 		goto err;
299 
300 	/* round up to nearest 4K */
301 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
302 	tx_ring->size = ALIGN(tx_ring->size, 4096);
303 
304 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
305 					   &tx_ring->dma, GFP_KERNEL);
306 
307 	if (!tx_ring->desc)
308 		goto err;
309 
310 	tx_ring->next_to_use = 0;
311 	tx_ring->next_to_clean = 0;
312 
313 	return 0;
314 
315 err:
316 	vfree(tx_ring->tx_buffer_info);
317 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
318 	return -ENOMEM;
319 }
320 
321 /**
322  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
323  * @adapter: board private structure
324  *
325  * Return 0 on success, negative on failure
326  */
327 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
328 {
329 	struct net_device *dev = adapter->netdev;
330 	int i, err = 0;
331 
332 	for (i = 0; i < adapter->num_tx_queues; i++) {
333 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
334 		if (err) {
335 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
336 			for (i--; i >= 0; i--)
337 				igc_free_tx_resources(adapter->tx_ring[i]);
338 			break;
339 		}
340 	}
341 
342 	return err;
343 }
344 
345 /**
346  * igc_clean_rx_ring - Free Rx Buffers per Queue
347  * @rx_ring: ring to free buffers from
348  */
349 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
350 {
351 	u16 i = rx_ring->next_to_clean;
352 
353 	dev_kfree_skb(rx_ring->skb);
354 	rx_ring->skb = NULL;
355 
356 	/* Free all the Rx ring sk_buffs */
357 	while (i != rx_ring->next_to_alloc) {
358 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
359 
360 		/* Invalidate cache lines that may have been written to by
361 		 * device so that we avoid corrupting memory.
362 		 */
363 		dma_sync_single_range_for_cpu(rx_ring->dev,
364 					      buffer_info->dma,
365 					      buffer_info->page_offset,
366 					      igc_rx_bufsz(rx_ring),
367 					      DMA_FROM_DEVICE);
368 
369 		/* free resources associated with mapping */
370 		dma_unmap_page_attrs(rx_ring->dev,
371 				     buffer_info->dma,
372 				     igc_rx_pg_size(rx_ring),
373 				     DMA_FROM_DEVICE,
374 				     IGC_RX_DMA_ATTR);
375 		__page_frag_cache_drain(buffer_info->page,
376 					buffer_info->pagecnt_bias);
377 
378 		i++;
379 		if (i == rx_ring->count)
380 			i = 0;
381 	}
382 
383 	rx_ring->next_to_alloc = 0;
384 	rx_ring->next_to_clean = 0;
385 	rx_ring->next_to_use = 0;
386 }
387 
388 /**
389  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
390  * @adapter: board private structure
391  */
392 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
393 {
394 	int i;
395 
396 	for (i = 0; i < adapter->num_rx_queues; i++)
397 		if (adapter->rx_ring[i])
398 			igc_clean_rx_ring(adapter->rx_ring[i]);
399 }
400 
401 /**
402  * igc_free_rx_resources - Free Rx Resources
403  * @rx_ring: ring to clean the resources from
404  *
405  * Free all receive software resources
406  */
407 void igc_free_rx_resources(struct igc_ring *rx_ring)
408 {
409 	igc_clean_rx_ring(rx_ring);
410 
411 	vfree(rx_ring->rx_buffer_info);
412 	rx_ring->rx_buffer_info = NULL;
413 
414 	/* if not set, then don't free */
415 	if (!rx_ring->desc)
416 		return;
417 
418 	dma_free_coherent(rx_ring->dev, rx_ring->size,
419 			  rx_ring->desc, rx_ring->dma);
420 
421 	rx_ring->desc = NULL;
422 }
423 
424 /**
425  * igc_free_all_rx_resources - Free Rx Resources for All Queues
426  * @adapter: board private structure
427  *
428  * Free all receive software resources
429  */
430 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
431 {
432 	int i;
433 
434 	for (i = 0; i < adapter->num_rx_queues; i++)
435 		igc_free_rx_resources(adapter->rx_ring[i]);
436 }
437 
438 /**
439  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
440  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
441  *
442  * Returns 0 on success, negative on failure
443  */
444 int igc_setup_rx_resources(struct igc_ring *rx_ring)
445 {
446 	struct net_device *ndev = rx_ring->netdev;
447 	struct device *dev = rx_ring->dev;
448 	int size, desc_len;
449 
450 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
451 	rx_ring->rx_buffer_info = vzalloc(size);
452 	if (!rx_ring->rx_buffer_info)
453 		goto err;
454 
455 	desc_len = sizeof(union igc_adv_rx_desc);
456 
457 	/* Round up to nearest 4K */
458 	rx_ring->size = rx_ring->count * desc_len;
459 	rx_ring->size = ALIGN(rx_ring->size, 4096);
460 
461 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
462 					   &rx_ring->dma, GFP_KERNEL);
463 
464 	if (!rx_ring->desc)
465 		goto err;
466 
467 	rx_ring->next_to_alloc = 0;
468 	rx_ring->next_to_clean = 0;
469 	rx_ring->next_to_use = 0;
470 
471 	return 0;
472 
473 err:
474 	vfree(rx_ring->rx_buffer_info);
475 	rx_ring->rx_buffer_info = NULL;
476 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
477 	return -ENOMEM;
478 }
479 
480 /**
481  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
482  *                                (Descriptors) for all queues
483  * @adapter: board private structure
484  *
485  * Return 0 on success, negative on failure
486  */
487 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
488 {
489 	struct net_device *dev = adapter->netdev;
490 	int i, err = 0;
491 
492 	for (i = 0; i < adapter->num_rx_queues; i++) {
493 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
494 		if (err) {
495 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
496 			for (i--; i >= 0; i--)
497 				igc_free_rx_resources(adapter->rx_ring[i]);
498 			break;
499 		}
500 	}
501 
502 	return err;
503 }
504 
505 /**
506  * igc_configure_rx_ring - Configure a receive ring after Reset
507  * @adapter: board private structure
508  * @ring: receive ring to be configured
509  *
510  * Configure the Rx unit of the MAC after a reset.
511  */
512 static void igc_configure_rx_ring(struct igc_adapter *adapter,
513 				  struct igc_ring *ring)
514 {
515 	struct igc_hw *hw = &adapter->hw;
516 	union igc_adv_rx_desc *rx_desc;
517 	int reg_idx = ring->reg_idx;
518 	u32 srrctl = 0, rxdctl = 0;
519 	u64 rdba = ring->dma;
520 
521 	/* disable the queue */
522 	wr32(IGC_RXDCTL(reg_idx), 0);
523 
524 	/* Set DMA base address registers */
525 	wr32(IGC_RDBAL(reg_idx),
526 	     rdba & 0x00000000ffffffffULL);
527 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
528 	wr32(IGC_RDLEN(reg_idx),
529 	     ring->count * sizeof(union igc_adv_rx_desc));
530 
531 	/* initialize head and tail */
532 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
533 	wr32(IGC_RDH(reg_idx), 0);
534 	writel(0, ring->tail);
535 
536 	/* reset next-to- use/clean to place SW in sync with hardware */
537 	ring->next_to_clean = 0;
538 	ring->next_to_use = 0;
539 
540 	/* set descriptor configuration */
541 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
542 	if (ring_uses_large_buffer(ring))
543 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
544 	else
545 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
546 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
547 
548 	wr32(IGC_SRRCTL(reg_idx), srrctl);
549 
550 	rxdctl |= IGC_RX_PTHRESH;
551 	rxdctl |= IGC_RX_HTHRESH << 8;
552 	rxdctl |= IGC_RX_WTHRESH << 16;
553 
554 	/* initialize rx_buffer_info */
555 	memset(ring->rx_buffer_info, 0,
556 	       sizeof(struct igc_rx_buffer) * ring->count);
557 
558 	/* initialize Rx descriptor 0 */
559 	rx_desc = IGC_RX_DESC(ring, 0);
560 	rx_desc->wb.upper.length = 0;
561 
562 	/* enable receive descriptor fetching */
563 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
564 
565 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
566 }
567 
568 /**
569  * igc_configure_rx - Configure receive Unit after Reset
570  * @adapter: board private structure
571  *
572  * Configure the Rx unit of the MAC after a reset.
573  */
574 static void igc_configure_rx(struct igc_adapter *adapter)
575 {
576 	int i;
577 
578 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
579 	 * the Base and Length of the Rx Descriptor Ring
580 	 */
581 	for (i = 0; i < adapter->num_rx_queues; i++)
582 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
583 }
584 
585 /**
586  * igc_configure_tx_ring - Configure transmit ring after Reset
587  * @adapter: board private structure
588  * @ring: tx ring to configure
589  *
590  * Configure a transmit ring after a reset.
591  */
592 static void igc_configure_tx_ring(struct igc_adapter *adapter,
593 				  struct igc_ring *ring)
594 {
595 	struct igc_hw *hw = &adapter->hw;
596 	int reg_idx = ring->reg_idx;
597 	u64 tdba = ring->dma;
598 	u32 txdctl = 0;
599 
600 	/* disable the queue */
601 	wr32(IGC_TXDCTL(reg_idx), 0);
602 	wrfl();
603 	mdelay(10);
604 
605 	wr32(IGC_TDLEN(reg_idx),
606 	     ring->count * sizeof(union igc_adv_tx_desc));
607 	wr32(IGC_TDBAL(reg_idx),
608 	     tdba & 0x00000000ffffffffULL);
609 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
610 
611 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
612 	wr32(IGC_TDH(reg_idx), 0);
613 	writel(0, ring->tail);
614 
615 	txdctl |= IGC_TX_PTHRESH;
616 	txdctl |= IGC_TX_HTHRESH << 8;
617 	txdctl |= IGC_TX_WTHRESH << 16;
618 
619 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
620 	wr32(IGC_TXDCTL(reg_idx), txdctl);
621 }
622 
623 /**
624  * igc_configure_tx - Configure transmit Unit after Reset
625  * @adapter: board private structure
626  *
627  * Configure the Tx unit of the MAC after a reset.
628  */
629 static void igc_configure_tx(struct igc_adapter *adapter)
630 {
631 	int i;
632 
633 	for (i = 0; i < adapter->num_tx_queues; i++)
634 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
635 }
636 
637 /**
638  * igc_setup_mrqc - configure the multiple receive queue control registers
639  * @adapter: Board private structure
640  */
641 static void igc_setup_mrqc(struct igc_adapter *adapter)
642 {
643 	struct igc_hw *hw = &adapter->hw;
644 	u32 j, num_rx_queues;
645 	u32 mrqc, rxcsum;
646 	u32 rss_key[10];
647 
648 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
649 	for (j = 0; j < 10; j++)
650 		wr32(IGC_RSSRK(j), rss_key[j]);
651 
652 	num_rx_queues = adapter->rss_queues;
653 
654 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
655 		for (j = 0; j < IGC_RETA_SIZE; j++)
656 			adapter->rss_indir_tbl[j] =
657 			(j * num_rx_queues) / IGC_RETA_SIZE;
658 		adapter->rss_indir_tbl_init = num_rx_queues;
659 	}
660 	igc_write_rss_indir_tbl(adapter);
661 
662 	/* Disable raw packet checksumming so that RSS hash is placed in
663 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
664 	 * offloads as they are enabled by default
665 	 */
666 	rxcsum = rd32(IGC_RXCSUM);
667 	rxcsum |= IGC_RXCSUM_PCSD;
668 
669 	/* Enable Receive Checksum Offload for SCTP */
670 	rxcsum |= IGC_RXCSUM_CRCOFL;
671 
672 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
673 	wr32(IGC_RXCSUM, rxcsum);
674 
675 	/* Generate RSS hash based on packet types, TCP/UDP
676 	 * port numbers and/or IPv4/v6 src and dst addresses
677 	 */
678 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
679 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
680 	       IGC_MRQC_RSS_FIELD_IPV6 |
681 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
682 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
683 
684 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
685 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
686 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
687 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
688 
689 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
690 
691 	wr32(IGC_MRQC, mrqc);
692 }
693 
694 /**
695  * igc_setup_rctl - configure the receive control registers
696  * @adapter: Board private structure
697  */
698 static void igc_setup_rctl(struct igc_adapter *adapter)
699 {
700 	struct igc_hw *hw = &adapter->hw;
701 	u32 rctl;
702 
703 	rctl = rd32(IGC_RCTL);
704 
705 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
706 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
707 
708 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
709 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
710 
711 	/* enable stripping of CRC. Newer features require
712 	 * that the HW strips the CRC.
713 	 */
714 	rctl |= IGC_RCTL_SECRC;
715 
716 	/* disable store bad packets and clear size bits. */
717 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
718 
719 	/* enable LPE to allow for reception of jumbo frames */
720 	rctl |= IGC_RCTL_LPE;
721 
722 	/* disable queue 0 to prevent tail write w/o re-config */
723 	wr32(IGC_RXDCTL(0), 0);
724 
725 	/* This is useful for sniffing bad packets. */
726 	if (adapter->netdev->features & NETIF_F_RXALL) {
727 		/* UPE and MPE will be handled by normal PROMISC logic
728 		 * in set_rx_mode
729 		 */
730 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
731 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
732 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
733 
734 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
735 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
736 	}
737 
738 	wr32(IGC_RCTL, rctl);
739 }
740 
741 /**
742  * igc_setup_tctl - configure the transmit control registers
743  * @adapter: Board private structure
744  */
745 static void igc_setup_tctl(struct igc_adapter *adapter)
746 {
747 	struct igc_hw *hw = &adapter->hw;
748 	u32 tctl;
749 
750 	/* disable queue 0 which icould be enabled by default */
751 	wr32(IGC_TXDCTL(0), 0);
752 
753 	/* Program the Transmit Control Register */
754 	tctl = rd32(IGC_TCTL);
755 	tctl &= ~IGC_TCTL_CT;
756 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
757 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
758 
759 	/* Enable transmits */
760 	tctl |= IGC_TCTL_EN;
761 
762 	wr32(IGC_TCTL, tctl);
763 }
764 
765 /**
766  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
767  * @adapter: Pointer to adapter where the filter should be set
768  * @index: Filter index
769  * @type: MAC address filter type (source or destination)
770  * @addr: MAC address
771  * @queue: If non-negative, queue assignment feature is enabled and frames
772  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
773  *         assignment is disabled.
774  */
775 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
776 				  enum igc_mac_filter_type type,
777 				  const u8 *addr, int queue)
778 {
779 	struct net_device *dev = adapter->netdev;
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 ral, rah;
782 
783 	if (WARN_ON(index >= hw->mac.rar_entry_count))
784 		return;
785 
786 	ral = le32_to_cpup((__le32 *)(addr));
787 	rah = le16_to_cpup((__le16 *)(addr + 4));
788 
789 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
790 		rah &= ~IGC_RAH_ASEL_MASK;
791 		rah |= IGC_RAH_ASEL_SRC_ADDR;
792 	}
793 
794 	if (queue >= 0) {
795 		rah &= ~IGC_RAH_QSEL_MASK;
796 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
797 		rah |= IGC_RAH_QSEL_ENABLE;
798 	}
799 
800 	rah |= IGC_RAH_AV;
801 
802 	wr32(IGC_RAL(index), ral);
803 	wr32(IGC_RAH(index), rah);
804 
805 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
806 }
807 
808 /**
809  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
810  * @adapter: Pointer to adapter where the filter should be cleared
811  * @index: Filter index
812  */
813 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
814 {
815 	struct net_device *dev = adapter->netdev;
816 	struct igc_hw *hw = &adapter->hw;
817 
818 	if (WARN_ON(index >= hw->mac.rar_entry_count))
819 		return;
820 
821 	wr32(IGC_RAL(index), 0);
822 	wr32(IGC_RAH(index), 0);
823 
824 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
825 }
826 
827 /* Set default MAC address for the PF in the first RAR entry */
828 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
829 {
830 	struct net_device *dev = adapter->netdev;
831 	u8 *addr = adapter->hw.mac.addr;
832 
833 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
834 
835 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
836 }
837 
838 /**
839  * igc_set_mac - Change the Ethernet Address of the NIC
840  * @netdev: network interface device structure
841  * @p: pointer to an address structure
842  *
843  * Returns 0 on success, negative on failure
844  */
845 static int igc_set_mac(struct net_device *netdev, void *p)
846 {
847 	struct igc_adapter *adapter = netdev_priv(netdev);
848 	struct igc_hw *hw = &adapter->hw;
849 	struct sockaddr *addr = p;
850 
851 	if (!is_valid_ether_addr(addr->sa_data))
852 		return -EADDRNOTAVAIL;
853 
854 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
855 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
856 
857 	/* set the correct pool for the new PF MAC address in entry 0 */
858 	igc_set_default_mac_filter(adapter);
859 
860 	return 0;
861 }
862 
863 /**
864  *  igc_write_mc_addr_list - write multicast addresses to MTA
865  *  @netdev: network interface device structure
866  *
867  *  Writes multicast address list to the MTA hash table.
868  *  Returns: -ENOMEM on failure
869  *           0 on no addresses written
870  *           X on writing X addresses to MTA
871  **/
872 static int igc_write_mc_addr_list(struct net_device *netdev)
873 {
874 	struct igc_adapter *adapter = netdev_priv(netdev);
875 	struct igc_hw *hw = &adapter->hw;
876 	struct netdev_hw_addr *ha;
877 	u8  *mta_list;
878 	int i;
879 
880 	if (netdev_mc_empty(netdev)) {
881 		/* nothing to program, so clear mc list */
882 		igc_update_mc_addr_list(hw, NULL, 0);
883 		return 0;
884 	}
885 
886 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
887 	if (!mta_list)
888 		return -ENOMEM;
889 
890 	/* The shared function expects a packed array of only addresses. */
891 	i = 0;
892 	netdev_for_each_mc_addr(ha, netdev)
893 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
894 
895 	igc_update_mc_addr_list(hw, mta_list, i);
896 	kfree(mta_list);
897 
898 	return netdev_mc_count(netdev);
899 }
900 
901 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
902 {
903 	ktime_t cycle_time = adapter->cycle_time;
904 	ktime_t base_time = adapter->base_time;
905 	u32 launchtime;
906 
907 	/* FIXME: when using ETF together with taprio, we may have a
908 	 * case where 'delta' is larger than the cycle_time, this may
909 	 * cause problems if we don't read the current value of
910 	 * IGC_BASET, as the value writen into the launchtime
911 	 * descriptor field may be misinterpreted.
912 	 */
913 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
914 
915 	return cpu_to_le32(launchtime);
916 }
917 
918 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
919 			    struct igc_tx_buffer *first,
920 			    u32 vlan_macip_lens, u32 type_tucmd,
921 			    u32 mss_l4len_idx)
922 {
923 	struct igc_adv_tx_context_desc *context_desc;
924 	u16 i = tx_ring->next_to_use;
925 
926 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
927 
928 	i++;
929 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
930 
931 	/* set bits to identify this as an advanced context descriptor */
932 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
933 
934 	/* For i225, context index must be unique per ring. */
935 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
936 		mss_l4len_idx |= tx_ring->reg_idx << 4;
937 
938 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
939 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
940 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
941 
942 	/* We assume there is always a valid Tx time available. Invalid times
943 	 * should have been handled by the upper layers.
944 	 */
945 	if (tx_ring->launchtime_enable) {
946 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
947 		ktime_t txtime = first->skb->tstamp;
948 
949 		first->skb->tstamp = ktime_set(0, 0);
950 		context_desc->launch_time = igc_tx_launchtime(adapter,
951 							      txtime);
952 	} else {
953 		context_desc->launch_time = 0;
954 	}
955 }
956 
957 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
958 {
959 	unsigned int offset = 0;
960 
961 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
962 
963 	return offset == skb_checksum_start_offset(skb);
964 }
965 
966 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
967 {
968 	struct sk_buff *skb = first->skb;
969 	u32 vlan_macip_lens = 0;
970 	u32 type_tucmd = 0;
971 
972 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
973 csum_failed:
974 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
975 		    !tx_ring->launchtime_enable)
976 			return;
977 		goto no_csum;
978 	}
979 
980 	switch (skb->csum_offset) {
981 	case offsetof(struct tcphdr, check):
982 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
983 		/* fall through */
984 	case offsetof(struct udphdr, check):
985 		break;
986 	case offsetof(struct sctphdr, checksum):
987 		/* validate that this is actually an SCTP request */
988 		if ((first->protocol == htons(ETH_P_IP) &&
989 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
990 		    (first->protocol == htons(ETH_P_IPV6) &&
991 		     igc_ipv6_csum_is_sctp(skb))) {
992 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
993 			break;
994 		}
995 		/* fall through */
996 	default:
997 		skb_checksum_help(skb);
998 		goto csum_failed;
999 	}
1000 
1001 	/* update TX checksum flag */
1002 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1003 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1004 			  skb_network_offset(skb);
1005 no_csum:
1006 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1007 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1008 
1009 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1010 }
1011 
1012 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1013 {
1014 	struct net_device *netdev = tx_ring->netdev;
1015 
1016 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1017 
1018 	/* memory barriier comment */
1019 	smp_mb();
1020 
1021 	/* We need to check again in a case another CPU has just
1022 	 * made room available.
1023 	 */
1024 	if (igc_desc_unused(tx_ring) < size)
1025 		return -EBUSY;
1026 
1027 	/* A reprieve! */
1028 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1029 
1030 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1031 	tx_ring->tx_stats.restart_queue2++;
1032 	u64_stats_update_end(&tx_ring->tx_syncp2);
1033 
1034 	return 0;
1035 }
1036 
1037 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1038 {
1039 	if (igc_desc_unused(tx_ring) >= size)
1040 		return 0;
1041 	return __igc_maybe_stop_tx(tx_ring, size);
1042 }
1043 
1044 #define IGC_SET_FLAG(_input, _flag, _result) \
1045 	(((_flag) <= (_result)) ?				\
1046 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1047 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1048 
1049 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1050 {
1051 	/* set type for advanced descriptor with frame checksum insertion */
1052 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1053 		       IGC_ADVTXD_DCMD_DEXT |
1054 		       IGC_ADVTXD_DCMD_IFCS;
1055 
1056 	/* set segmentation bits for TSO */
1057 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1058 				 (IGC_ADVTXD_DCMD_TSE));
1059 
1060 	/* set timestamp bit if present */
1061 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1062 				 (IGC_ADVTXD_MAC_TSTAMP));
1063 
1064 	return cmd_type;
1065 }
1066 
1067 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1068 				 union igc_adv_tx_desc *tx_desc,
1069 				 u32 tx_flags, unsigned int paylen)
1070 {
1071 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1072 
1073 	/* insert L4 checksum */
1074 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1075 			  ((IGC_TXD_POPTS_TXSM << 8) /
1076 			  IGC_TX_FLAGS_CSUM);
1077 
1078 	/* insert IPv4 checksum */
1079 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1080 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1081 			  IGC_TX_FLAGS_IPV4);
1082 
1083 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1084 }
1085 
1086 static int igc_tx_map(struct igc_ring *tx_ring,
1087 		      struct igc_tx_buffer *first,
1088 		      const u8 hdr_len)
1089 {
1090 	struct sk_buff *skb = first->skb;
1091 	struct igc_tx_buffer *tx_buffer;
1092 	union igc_adv_tx_desc *tx_desc;
1093 	u32 tx_flags = first->tx_flags;
1094 	skb_frag_t *frag;
1095 	u16 i = tx_ring->next_to_use;
1096 	unsigned int data_len, size;
1097 	dma_addr_t dma;
1098 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1099 
1100 	tx_desc = IGC_TX_DESC(tx_ring, i);
1101 
1102 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1103 
1104 	size = skb_headlen(skb);
1105 	data_len = skb->data_len;
1106 
1107 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1108 
1109 	tx_buffer = first;
1110 
1111 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1112 		if (dma_mapping_error(tx_ring->dev, dma))
1113 			goto dma_error;
1114 
1115 		/* record length, and DMA address */
1116 		dma_unmap_len_set(tx_buffer, len, size);
1117 		dma_unmap_addr_set(tx_buffer, dma, dma);
1118 
1119 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1120 
1121 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1122 			tx_desc->read.cmd_type_len =
1123 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1124 
1125 			i++;
1126 			tx_desc++;
1127 			if (i == tx_ring->count) {
1128 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1129 				i = 0;
1130 			}
1131 			tx_desc->read.olinfo_status = 0;
1132 
1133 			dma += IGC_MAX_DATA_PER_TXD;
1134 			size -= IGC_MAX_DATA_PER_TXD;
1135 
1136 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1137 		}
1138 
1139 		if (likely(!data_len))
1140 			break;
1141 
1142 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1143 
1144 		i++;
1145 		tx_desc++;
1146 		if (i == tx_ring->count) {
1147 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1148 			i = 0;
1149 		}
1150 		tx_desc->read.olinfo_status = 0;
1151 
1152 		size = skb_frag_size(frag);
1153 		data_len -= size;
1154 
1155 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1156 				       size, DMA_TO_DEVICE);
1157 
1158 		tx_buffer = &tx_ring->tx_buffer_info[i];
1159 	}
1160 
1161 	/* write last descriptor with RS and EOP bits */
1162 	cmd_type |= size | IGC_TXD_DCMD;
1163 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1164 
1165 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1166 
1167 	/* set the timestamp */
1168 	first->time_stamp = jiffies;
1169 
1170 	skb_tx_timestamp(skb);
1171 
1172 	/* Force memory writes to complete before letting h/w know there
1173 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1174 	 * memory model archs, such as IA-64).
1175 	 *
1176 	 * We also need this memory barrier to make certain all of the
1177 	 * status bits have been updated before next_to_watch is written.
1178 	 */
1179 	wmb();
1180 
1181 	/* set next_to_watch value indicating a packet is present */
1182 	first->next_to_watch = tx_desc;
1183 
1184 	i++;
1185 	if (i == tx_ring->count)
1186 		i = 0;
1187 
1188 	tx_ring->next_to_use = i;
1189 
1190 	/* Make sure there is space in the ring for the next send. */
1191 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1192 
1193 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1194 		writel(i, tx_ring->tail);
1195 	}
1196 
1197 	return 0;
1198 dma_error:
1199 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1200 	tx_buffer = &tx_ring->tx_buffer_info[i];
1201 
1202 	/* clear dma mappings for failed tx_buffer_info map */
1203 	while (tx_buffer != first) {
1204 		if (dma_unmap_len(tx_buffer, len))
1205 			dma_unmap_page(tx_ring->dev,
1206 				       dma_unmap_addr(tx_buffer, dma),
1207 				       dma_unmap_len(tx_buffer, len),
1208 				       DMA_TO_DEVICE);
1209 		dma_unmap_len_set(tx_buffer, len, 0);
1210 
1211 		if (i-- == 0)
1212 			i += tx_ring->count;
1213 		tx_buffer = &tx_ring->tx_buffer_info[i];
1214 	}
1215 
1216 	if (dma_unmap_len(tx_buffer, len))
1217 		dma_unmap_single(tx_ring->dev,
1218 				 dma_unmap_addr(tx_buffer, dma),
1219 				 dma_unmap_len(tx_buffer, len),
1220 				 DMA_TO_DEVICE);
1221 	dma_unmap_len_set(tx_buffer, len, 0);
1222 
1223 	dev_kfree_skb_any(tx_buffer->skb);
1224 	tx_buffer->skb = NULL;
1225 
1226 	tx_ring->next_to_use = i;
1227 
1228 	return -1;
1229 }
1230 
1231 static int igc_tso(struct igc_ring *tx_ring,
1232 		   struct igc_tx_buffer *first,
1233 		   u8 *hdr_len)
1234 {
1235 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1236 	struct sk_buff *skb = first->skb;
1237 	union {
1238 		struct iphdr *v4;
1239 		struct ipv6hdr *v6;
1240 		unsigned char *hdr;
1241 	} ip;
1242 	union {
1243 		struct tcphdr *tcp;
1244 		struct udphdr *udp;
1245 		unsigned char *hdr;
1246 	} l4;
1247 	u32 paylen, l4_offset;
1248 	int err;
1249 
1250 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1251 		return 0;
1252 
1253 	if (!skb_is_gso(skb))
1254 		return 0;
1255 
1256 	err = skb_cow_head(skb, 0);
1257 	if (err < 0)
1258 		return err;
1259 
1260 	ip.hdr = skb_network_header(skb);
1261 	l4.hdr = skb_checksum_start(skb);
1262 
1263 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1264 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1265 
1266 	/* initialize outer IP header fields */
1267 	if (ip.v4->version == 4) {
1268 		unsigned char *csum_start = skb_checksum_start(skb);
1269 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1270 
1271 		/* IP header will have to cancel out any data that
1272 		 * is not a part of the outer IP header
1273 		 */
1274 		ip.v4->check = csum_fold(csum_partial(trans_start,
1275 						      csum_start - trans_start,
1276 						      0));
1277 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1278 
1279 		ip.v4->tot_len = 0;
1280 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1281 				   IGC_TX_FLAGS_CSUM |
1282 				   IGC_TX_FLAGS_IPV4;
1283 	} else {
1284 		ip.v6->payload_len = 0;
1285 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1286 				   IGC_TX_FLAGS_CSUM;
1287 	}
1288 
1289 	/* determine offset of inner transport header */
1290 	l4_offset = l4.hdr - skb->data;
1291 
1292 	/* remove payload length from inner checksum */
1293 	paylen = skb->len - l4_offset;
1294 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1295 		/* compute length of segmentation header */
1296 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1297 		csum_replace_by_diff(&l4.tcp->check,
1298 				     (__force __wsum)htonl(paylen));
1299 	} else {
1300 		/* compute length of segmentation header */
1301 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1302 		csum_replace_by_diff(&l4.udp->check,
1303 				     (__force __wsum)htonl(paylen));
1304 	}
1305 
1306 	/* update gso size and bytecount with header size */
1307 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1308 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1309 
1310 	/* MSS L4LEN IDX */
1311 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1312 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1313 
1314 	/* VLAN MACLEN IPLEN */
1315 	vlan_macip_lens = l4.hdr - ip.hdr;
1316 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1317 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1318 
1319 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1320 			type_tucmd, mss_l4len_idx);
1321 
1322 	return 1;
1323 }
1324 
1325 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1326 				       struct igc_ring *tx_ring)
1327 {
1328 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1329 	__be16 protocol = vlan_get_protocol(skb);
1330 	struct igc_tx_buffer *first;
1331 	u32 tx_flags = 0;
1332 	unsigned short f;
1333 	u8 hdr_len = 0;
1334 	int tso = 0;
1335 
1336 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1337 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1338 	 *	+ 2 desc gap to keep tail from touching head,
1339 	 *	+ 1 desc for context descriptor,
1340 	 * otherwise try next time
1341 	 */
1342 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1343 		count += TXD_USE_COUNT(skb_frag_size(
1344 						&skb_shinfo(skb)->frags[f]));
1345 
1346 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1347 		/* this is a hard error */
1348 		return NETDEV_TX_BUSY;
1349 	}
1350 
1351 	/* record the location of the first descriptor for this packet */
1352 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1353 	first->skb = skb;
1354 	first->bytecount = skb->len;
1355 	first->gso_segs = 1;
1356 
1357 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1358 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1359 
1360 		/* FIXME: add support for retrieving timestamps from
1361 		 * the other timer registers before skipping the
1362 		 * timestamping request.
1363 		 */
1364 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1365 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1366 					   &adapter->state)) {
1367 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1368 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1369 
1370 			adapter->ptp_tx_skb = skb_get(skb);
1371 			adapter->ptp_tx_start = jiffies;
1372 		} else {
1373 			adapter->tx_hwtstamp_skipped++;
1374 		}
1375 	}
1376 
1377 	/* record initial flags and protocol */
1378 	first->tx_flags = tx_flags;
1379 	first->protocol = protocol;
1380 
1381 	tso = igc_tso(tx_ring, first, &hdr_len);
1382 	if (tso < 0)
1383 		goto out_drop;
1384 	else if (!tso)
1385 		igc_tx_csum(tx_ring, first);
1386 
1387 	igc_tx_map(tx_ring, first, hdr_len);
1388 
1389 	return NETDEV_TX_OK;
1390 
1391 out_drop:
1392 	dev_kfree_skb_any(first->skb);
1393 	first->skb = NULL;
1394 
1395 	return NETDEV_TX_OK;
1396 }
1397 
1398 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1399 						    struct sk_buff *skb)
1400 {
1401 	unsigned int r_idx = skb->queue_mapping;
1402 
1403 	if (r_idx >= adapter->num_tx_queues)
1404 		r_idx = r_idx % adapter->num_tx_queues;
1405 
1406 	return adapter->tx_ring[r_idx];
1407 }
1408 
1409 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1410 				  struct net_device *netdev)
1411 {
1412 	struct igc_adapter *adapter = netdev_priv(netdev);
1413 
1414 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1415 	 * in order to meet this minimum size requirement.
1416 	 */
1417 	if (skb->len < 17) {
1418 		if (skb_padto(skb, 17))
1419 			return NETDEV_TX_OK;
1420 		skb->len = 17;
1421 	}
1422 
1423 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1424 }
1425 
1426 static void igc_rx_checksum(struct igc_ring *ring,
1427 			    union igc_adv_rx_desc *rx_desc,
1428 			    struct sk_buff *skb)
1429 {
1430 	skb_checksum_none_assert(skb);
1431 
1432 	/* Ignore Checksum bit is set */
1433 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1434 		return;
1435 
1436 	/* Rx checksum disabled via ethtool */
1437 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1438 		return;
1439 
1440 	/* TCP/UDP checksum error bit is set */
1441 	if (igc_test_staterr(rx_desc,
1442 			     IGC_RXDEXT_STATERR_TCPE |
1443 			     IGC_RXDEXT_STATERR_IPE)) {
1444 		/* work around errata with sctp packets where the TCPE aka
1445 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1446 		 * packets (aka let the stack check the crc32c)
1447 		 */
1448 		if (!(skb->len == 60 &&
1449 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1450 			u64_stats_update_begin(&ring->rx_syncp);
1451 			ring->rx_stats.csum_err++;
1452 			u64_stats_update_end(&ring->rx_syncp);
1453 		}
1454 		/* let the stack verify checksum errors */
1455 		return;
1456 	}
1457 	/* It must be a TCP or UDP packet with a valid checksum */
1458 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1459 				      IGC_RXD_STAT_UDPCS))
1460 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1461 
1462 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1463 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1464 }
1465 
1466 static inline void igc_rx_hash(struct igc_ring *ring,
1467 			       union igc_adv_rx_desc *rx_desc,
1468 			       struct sk_buff *skb)
1469 {
1470 	if (ring->netdev->features & NETIF_F_RXHASH)
1471 		skb_set_hash(skb,
1472 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1473 			     PKT_HASH_TYPE_L3);
1474 }
1475 
1476 /**
1477  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1478  * @rx_ring: rx descriptor ring packet is being transacted on
1479  * @rx_desc: pointer to the EOP Rx descriptor
1480  * @skb: pointer to current skb being populated
1481  *
1482  * This function checks the ring, descriptor, and packet information in
1483  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1484  * other fields within the skb.
1485  */
1486 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1487 				   union igc_adv_rx_desc *rx_desc,
1488 				   struct sk_buff *skb)
1489 {
1490 	igc_rx_hash(rx_ring, rx_desc, skb);
1491 
1492 	igc_rx_checksum(rx_ring, rx_desc, skb);
1493 
1494 	if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TS) &&
1495 	    !igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))
1496 		igc_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
1497 
1498 	skb_record_rx_queue(skb, rx_ring->queue_index);
1499 
1500 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1501 }
1502 
1503 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1504 					       const unsigned int size)
1505 {
1506 	struct igc_rx_buffer *rx_buffer;
1507 
1508 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1509 	prefetchw(rx_buffer->page);
1510 
1511 	/* we are reusing so sync this buffer for CPU use */
1512 	dma_sync_single_range_for_cpu(rx_ring->dev,
1513 				      rx_buffer->dma,
1514 				      rx_buffer->page_offset,
1515 				      size,
1516 				      DMA_FROM_DEVICE);
1517 
1518 	rx_buffer->pagecnt_bias--;
1519 
1520 	return rx_buffer;
1521 }
1522 
1523 /**
1524  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1525  * @rx_ring: rx descriptor ring to transact packets on
1526  * @rx_buffer: buffer containing page to add
1527  * @skb: sk_buff to place the data into
1528  * @size: size of buffer to be added
1529  *
1530  * This function will add the data contained in rx_buffer->page to the skb.
1531  */
1532 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1533 			    struct igc_rx_buffer *rx_buffer,
1534 			    struct sk_buff *skb,
1535 			    unsigned int size)
1536 {
1537 #if (PAGE_SIZE < 8192)
1538 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1539 
1540 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1541 			rx_buffer->page_offset, size, truesize);
1542 	rx_buffer->page_offset ^= truesize;
1543 #else
1544 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1545 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1546 				SKB_DATA_ALIGN(size);
1547 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1548 			rx_buffer->page_offset, size, truesize);
1549 	rx_buffer->page_offset += truesize;
1550 #endif
1551 }
1552 
1553 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1554 				     struct igc_rx_buffer *rx_buffer,
1555 				     union igc_adv_rx_desc *rx_desc,
1556 				     unsigned int size)
1557 {
1558 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1559 #if (PAGE_SIZE < 8192)
1560 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1561 #else
1562 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1563 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1564 #endif
1565 	struct sk_buff *skb;
1566 
1567 	/* prefetch first cache line of first page */
1568 	prefetch(va);
1569 #if L1_CACHE_BYTES < 128
1570 	prefetch(va + L1_CACHE_BYTES);
1571 #endif
1572 
1573 	/* build an skb around the page buffer */
1574 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1575 	if (unlikely(!skb))
1576 		return NULL;
1577 
1578 	/* update pointers within the skb to store the data */
1579 	skb_reserve(skb, IGC_SKB_PAD);
1580 	__skb_put(skb, size);
1581 
1582 	/* update buffer offset */
1583 #if (PAGE_SIZE < 8192)
1584 	rx_buffer->page_offset ^= truesize;
1585 #else
1586 	rx_buffer->page_offset += truesize;
1587 #endif
1588 
1589 	return skb;
1590 }
1591 
1592 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1593 					 struct igc_rx_buffer *rx_buffer,
1594 					 union igc_adv_rx_desc *rx_desc,
1595 					 unsigned int size)
1596 {
1597 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1598 #if (PAGE_SIZE < 8192)
1599 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1600 #else
1601 	unsigned int truesize = SKB_DATA_ALIGN(size);
1602 #endif
1603 	unsigned int headlen;
1604 	struct sk_buff *skb;
1605 
1606 	/* prefetch first cache line of first page */
1607 	prefetch(va);
1608 #if L1_CACHE_BYTES < 128
1609 	prefetch(va + L1_CACHE_BYTES);
1610 #endif
1611 
1612 	/* allocate a skb to store the frags */
1613 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1614 	if (unlikely(!skb))
1615 		return NULL;
1616 
1617 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1618 		igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1619 		va += IGC_TS_HDR_LEN;
1620 		size -= IGC_TS_HDR_LEN;
1621 	}
1622 
1623 	/* Determine available headroom for copy */
1624 	headlen = size;
1625 	if (headlen > IGC_RX_HDR_LEN)
1626 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1627 
1628 	/* align pull length to size of long to optimize memcpy performance */
1629 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1630 
1631 	/* update all of the pointers */
1632 	size -= headlen;
1633 	if (size) {
1634 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1635 				(va + headlen) - page_address(rx_buffer->page),
1636 				size, truesize);
1637 #if (PAGE_SIZE < 8192)
1638 		rx_buffer->page_offset ^= truesize;
1639 #else
1640 		rx_buffer->page_offset += truesize;
1641 #endif
1642 	} else {
1643 		rx_buffer->pagecnt_bias++;
1644 	}
1645 
1646 	return skb;
1647 }
1648 
1649 /**
1650  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1651  * @rx_ring: rx descriptor ring to store buffers on
1652  * @old_buff: donor buffer to have page reused
1653  *
1654  * Synchronizes page for reuse by the adapter
1655  */
1656 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1657 			      struct igc_rx_buffer *old_buff)
1658 {
1659 	u16 nta = rx_ring->next_to_alloc;
1660 	struct igc_rx_buffer *new_buff;
1661 
1662 	new_buff = &rx_ring->rx_buffer_info[nta];
1663 
1664 	/* update, and store next to alloc */
1665 	nta++;
1666 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1667 
1668 	/* Transfer page from old buffer to new buffer.
1669 	 * Move each member individually to avoid possible store
1670 	 * forwarding stalls.
1671 	 */
1672 	new_buff->dma		= old_buff->dma;
1673 	new_buff->page		= old_buff->page;
1674 	new_buff->page_offset	= old_buff->page_offset;
1675 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1676 }
1677 
1678 static inline bool igc_page_is_reserved(struct page *page)
1679 {
1680 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1681 }
1682 
1683 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1684 {
1685 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1686 	struct page *page = rx_buffer->page;
1687 
1688 	/* avoid re-using remote pages */
1689 	if (unlikely(igc_page_is_reserved(page)))
1690 		return false;
1691 
1692 #if (PAGE_SIZE < 8192)
1693 	/* if we are only owner of page we can reuse it */
1694 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1695 		return false;
1696 #else
1697 #define IGC_LAST_OFFSET \
1698 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1699 
1700 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1701 		return false;
1702 #endif
1703 
1704 	/* If we have drained the page fragment pool we need to update
1705 	 * the pagecnt_bias and page count so that we fully restock the
1706 	 * number of references the driver holds.
1707 	 */
1708 	if (unlikely(!pagecnt_bias)) {
1709 		page_ref_add(page, USHRT_MAX);
1710 		rx_buffer->pagecnt_bias = USHRT_MAX;
1711 	}
1712 
1713 	return true;
1714 }
1715 
1716 /**
1717  * igc_is_non_eop - process handling of non-EOP buffers
1718  * @rx_ring: Rx ring being processed
1719  * @rx_desc: Rx descriptor for current buffer
1720  *
1721  * This function updates next to clean.  If the buffer is an EOP buffer
1722  * this function exits returning false, otherwise it will place the
1723  * sk_buff in the next buffer to be chained and return true indicating
1724  * that this is in fact a non-EOP buffer.
1725  */
1726 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1727 			   union igc_adv_rx_desc *rx_desc)
1728 {
1729 	u32 ntc = rx_ring->next_to_clean + 1;
1730 
1731 	/* fetch, update, and store next to clean */
1732 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1733 	rx_ring->next_to_clean = ntc;
1734 
1735 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1736 
1737 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1738 		return false;
1739 
1740 	return true;
1741 }
1742 
1743 /**
1744  * igc_cleanup_headers - Correct corrupted or empty headers
1745  * @rx_ring: rx descriptor ring packet is being transacted on
1746  * @rx_desc: pointer to the EOP Rx descriptor
1747  * @skb: pointer to current skb being fixed
1748  *
1749  * Address the case where we are pulling data in on pages only
1750  * and as such no data is present in the skb header.
1751  *
1752  * In addition if skb is not at least 60 bytes we need to pad it so that
1753  * it is large enough to qualify as a valid Ethernet frame.
1754  *
1755  * Returns true if an error was encountered and skb was freed.
1756  */
1757 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1758 				union igc_adv_rx_desc *rx_desc,
1759 				struct sk_buff *skb)
1760 {
1761 	if (unlikely((igc_test_staterr(rx_desc,
1762 				       IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1763 		struct net_device *netdev = rx_ring->netdev;
1764 
1765 		if (!(netdev->features & NETIF_F_RXALL)) {
1766 			dev_kfree_skb_any(skb);
1767 			return true;
1768 		}
1769 	}
1770 
1771 	/* if eth_skb_pad returns an error the skb was freed */
1772 	if (eth_skb_pad(skb))
1773 		return true;
1774 
1775 	return false;
1776 }
1777 
1778 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1779 			      struct igc_rx_buffer *rx_buffer)
1780 {
1781 	if (igc_can_reuse_rx_page(rx_buffer)) {
1782 		/* hand second half of page back to the ring */
1783 		igc_reuse_rx_page(rx_ring, rx_buffer);
1784 	} else {
1785 		/* We are not reusing the buffer so unmap it and free
1786 		 * any references we are holding to it
1787 		 */
1788 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1789 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1790 				     IGC_RX_DMA_ATTR);
1791 		__page_frag_cache_drain(rx_buffer->page,
1792 					rx_buffer->pagecnt_bias);
1793 	}
1794 
1795 	/* clear contents of rx_buffer */
1796 	rx_buffer->page = NULL;
1797 }
1798 
1799 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1800 {
1801 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1802 }
1803 
1804 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1805 				  struct igc_rx_buffer *bi)
1806 {
1807 	struct page *page = bi->page;
1808 	dma_addr_t dma;
1809 
1810 	/* since we are recycling buffers we should seldom need to alloc */
1811 	if (likely(page))
1812 		return true;
1813 
1814 	/* alloc new page for storage */
1815 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1816 	if (unlikely(!page)) {
1817 		rx_ring->rx_stats.alloc_failed++;
1818 		return false;
1819 	}
1820 
1821 	/* map page for use */
1822 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1823 				 igc_rx_pg_size(rx_ring),
1824 				 DMA_FROM_DEVICE,
1825 				 IGC_RX_DMA_ATTR);
1826 
1827 	/* if mapping failed free memory back to system since
1828 	 * there isn't much point in holding memory we can't use
1829 	 */
1830 	if (dma_mapping_error(rx_ring->dev, dma)) {
1831 		__free_page(page);
1832 
1833 		rx_ring->rx_stats.alloc_failed++;
1834 		return false;
1835 	}
1836 
1837 	bi->dma = dma;
1838 	bi->page = page;
1839 	bi->page_offset = igc_rx_offset(rx_ring);
1840 	bi->pagecnt_bias = 1;
1841 
1842 	return true;
1843 }
1844 
1845 /**
1846  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1847  * @rx_ring: rx descriptor ring
1848  * @cleaned_count: number of buffers to clean
1849  */
1850 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1851 {
1852 	union igc_adv_rx_desc *rx_desc;
1853 	u16 i = rx_ring->next_to_use;
1854 	struct igc_rx_buffer *bi;
1855 	u16 bufsz;
1856 
1857 	/* nothing to do */
1858 	if (!cleaned_count)
1859 		return;
1860 
1861 	rx_desc = IGC_RX_DESC(rx_ring, i);
1862 	bi = &rx_ring->rx_buffer_info[i];
1863 	i -= rx_ring->count;
1864 
1865 	bufsz = igc_rx_bufsz(rx_ring);
1866 
1867 	do {
1868 		if (!igc_alloc_mapped_page(rx_ring, bi))
1869 			break;
1870 
1871 		/* sync the buffer for use by the device */
1872 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1873 						 bi->page_offset, bufsz,
1874 						 DMA_FROM_DEVICE);
1875 
1876 		/* Refresh the desc even if buffer_addrs didn't change
1877 		 * because each write-back erases this info.
1878 		 */
1879 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1880 
1881 		rx_desc++;
1882 		bi++;
1883 		i++;
1884 		if (unlikely(!i)) {
1885 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1886 			bi = rx_ring->rx_buffer_info;
1887 			i -= rx_ring->count;
1888 		}
1889 
1890 		/* clear the length for the next_to_use descriptor */
1891 		rx_desc->wb.upper.length = 0;
1892 
1893 		cleaned_count--;
1894 	} while (cleaned_count);
1895 
1896 	i += rx_ring->count;
1897 
1898 	if (rx_ring->next_to_use != i) {
1899 		/* record the next descriptor to use */
1900 		rx_ring->next_to_use = i;
1901 
1902 		/* update next to alloc since we have filled the ring */
1903 		rx_ring->next_to_alloc = i;
1904 
1905 		/* Force memory writes to complete before letting h/w
1906 		 * know there are new descriptors to fetch.  (Only
1907 		 * applicable for weak-ordered memory model archs,
1908 		 * such as IA-64).
1909 		 */
1910 		wmb();
1911 		writel(i, rx_ring->tail);
1912 	}
1913 }
1914 
1915 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1916 {
1917 	unsigned int total_bytes = 0, total_packets = 0;
1918 	struct igc_ring *rx_ring = q_vector->rx.ring;
1919 	struct sk_buff *skb = rx_ring->skb;
1920 	u16 cleaned_count = igc_desc_unused(rx_ring);
1921 
1922 	while (likely(total_packets < budget)) {
1923 		union igc_adv_rx_desc *rx_desc;
1924 		struct igc_rx_buffer *rx_buffer;
1925 		unsigned int size;
1926 
1927 		/* return some buffers to hardware, one at a time is too slow */
1928 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1929 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
1930 			cleaned_count = 0;
1931 		}
1932 
1933 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1934 		size = le16_to_cpu(rx_desc->wb.upper.length);
1935 		if (!size)
1936 			break;
1937 
1938 		/* This memory barrier is needed to keep us from reading
1939 		 * any other fields out of the rx_desc until we know the
1940 		 * descriptor has been written back
1941 		 */
1942 		dma_rmb();
1943 
1944 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
1945 
1946 		/* retrieve a buffer from the ring */
1947 		if (skb)
1948 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1949 		else if (ring_uses_build_skb(rx_ring))
1950 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1951 		else
1952 			skb = igc_construct_skb(rx_ring, rx_buffer,
1953 						rx_desc, size);
1954 
1955 		/* exit if we failed to retrieve a buffer */
1956 		if (!skb) {
1957 			rx_ring->rx_stats.alloc_failed++;
1958 			rx_buffer->pagecnt_bias++;
1959 			break;
1960 		}
1961 
1962 		igc_put_rx_buffer(rx_ring, rx_buffer);
1963 		cleaned_count++;
1964 
1965 		/* fetch next buffer in frame if non-eop */
1966 		if (igc_is_non_eop(rx_ring, rx_desc))
1967 			continue;
1968 
1969 		/* verify the packet layout is correct */
1970 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1971 			skb = NULL;
1972 			continue;
1973 		}
1974 
1975 		/* probably a little skewed due to removing CRC */
1976 		total_bytes += skb->len;
1977 
1978 		/* populate checksum, timestamp, VLAN, and protocol */
1979 		igc_process_skb_fields(rx_ring, rx_desc, skb);
1980 
1981 		napi_gro_receive(&q_vector->napi, skb);
1982 
1983 		/* reset skb pointer */
1984 		skb = NULL;
1985 
1986 		/* update budget accounting */
1987 		total_packets++;
1988 	}
1989 
1990 	/* place incomplete frames back on ring for completion */
1991 	rx_ring->skb = skb;
1992 
1993 	u64_stats_update_begin(&rx_ring->rx_syncp);
1994 	rx_ring->rx_stats.packets += total_packets;
1995 	rx_ring->rx_stats.bytes += total_bytes;
1996 	u64_stats_update_end(&rx_ring->rx_syncp);
1997 	q_vector->rx.total_packets += total_packets;
1998 	q_vector->rx.total_bytes += total_bytes;
1999 
2000 	if (cleaned_count)
2001 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2002 
2003 	return total_packets;
2004 }
2005 
2006 /**
2007  * igc_clean_tx_irq - Reclaim resources after transmit completes
2008  * @q_vector: pointer to q_vector containing needed info
2009  * @napi_budget: Used to determine if we are in netpoll
2010  *
2011  * returns true if ring is completely cleaned
2012  */
2013 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2014 {
2015 	struct igc_adapter *adapter = q_vector->adapter;
2016 	unsigned int total_bytes = 0, total_packets = 0;
2017 	unsigned int budget = q_vector->tx.work_limit;
2018 	struct igc_ring *tx_ring = q_vector->tx.ring;
2019 	unsigned int i = tx_ring->next_to_clean;
2020 	struct igc_tx_buffer *tx_buffer;
2021 	union igc_adv_tx_desc *tx_desc;
2022 
2023 	if (test_bit(__IGC_DOWN, &adapter->state))
2024 		return true;
2025 
2026 	tx_buffer = &tx_ring->tx_buffer_info[i];
2027 	tx_desc = IGC_TX_DESC(tx_ring, i);
2028 	i -= tx_ring->count;
2029 
2030 	do {
2031 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2032 
2033 		/* if next_to_watch is not set then there is no work pending */
2034 		if (!eop_desc)
2035 			break;
2036 
2037 		/* prevent any other reads prior to eop_desc */
2038 		smp_rmb();
2039 
2040 		/* if DD is not set pending work has not been completed */
2041 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2042 			break;
2043 
2044 		/* clear next_to_watch to prevent false hangs */
2045 		tx_buffer->next_to_watch = NULL;
2046 
2047 		/* update the statistics for this packet */
2048 		total_bytes += tx_buffer->bytecount;
2049 		total_packets += tx_buffer->gso_segs;
2050 
2051 		/* free the skb */
2052 		napi_consume_skb(tx_buffer->skb, napi_budget);
2053 
2054 		/* unmap skb header data */
2055 		dma_unmap_single(tx_ring->dev,
2056 				 dma_unmap_addr(tx_buffer, dma),
2057 				 dma_unmap_len(tx_buffer, len),
2058 				 DMA_TO_DEVICE);
2059 
2060 		/* clear tx_buffer data */
2061 		dma_unmap_len_set(tx_buffer, len, 0);
2062 
2063 		/* clear last DMA location and unmap remaining buffers */
2064 		while (tx_desc != eop_desc) {
2065 			tx_buffer++;
2066 			tx_desc++;
2067 			i++;
2068 			if (unlikely(!i)) {
2069 				i -= tx_ring->count;
2070 				tx_buffer = tx_ring->tx_buffer_info;
2071 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2072 			}
2073 
2074 			/* unmap any remaining paged data */
2075 			if (dma_unmap_len(tx_buffer, len)) {
2076 				dma_unmap_page(tx_ring->dev,
2077 					       dma_unmap_addr(tx_buffer, dma),
2078 					       dma_unmap_len(tx_buffer, len),
2079 					       DMA_TO_DEVICE);
2080 				dma_unmap_len_set(tx_buffer, len, 0);
2081 			}
2082 		}
2083 
2084 		/* move us one more past the eop_desc for start of next pkt */
2085 		tx_buffer++;
2086 		tx_desc++;
2087 		i++;
2088 		if (unlikely(!i)) {
2089 			i -= tx_ring->count;
2090 			tx_buffer = tx_ring->tx_buffer_info;
2091 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2092 		}
2093 
2094 		/* issue prefetch for next Tx descriptor */
2095 		prefetch(tx_desc);
2096 
2097 		/* update budget accounting */
2098 		budget--;
2099 	} while (likely(budget));
2100 
2101 	netdev_tx_completed_queue(txring_txq(tx_ring),
2102 				  total_packets, total_bytes);
2103 
2104 	i += tx_ring->count;
2105 	tx_ring->next_to_clean = i;
2106 	u64_stats_update_begin(&tx_ring->tx_syncp);
2107 	tx_ring->tx_stats.bytes += total_bytes;
2108 	tx_ring->tx_stats.packets += total_packets;
2109 	u64_stats_update_end(&tx_ring->tx_syncp);
2110 	q_vector->tx.total_bytes += total_bytes;
2111 	q_vector->tx.total_packets += total_packets;
2112 
2113 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2114 		struct igc_hw *hw = &adapter->hw;
2115 
2116 		/* Detect a transmit hang in hardware, this serializes the
2117 		 * check with the clearing of time_stamp and movement of i
2118 		 */
2119 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2120 		if (tx_buffer->next_to_watch &&
2121 		    time_after(jiffies, tx_buffer->time_stamp +
2122 		    (adapter->tx_timeout_factor * HZ)) &&
2123 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2124 			/* detected Tx unit hang */
2125 			netdev_err(tx_ring->netdev,
2126 				   "Detected Tx Unit Hang\n"
2127 				   "  Tx Queue             <%d>\n"
2128 				   "  TDH                  <%x>\n"
2129 				   "  TDT                  <%x>\n"
2130 				   "  next_to_use          <%x>\n"
2131 				   "  next_to_clean        <%x>\n"
2132 				   "buffer_info[next_to_clean]\n"
2133 				   "  time_stamp           <%lx>\n"
2134 				   "  next_to_watch        <%p>\n"
2135 				   "  jiffies              <%lx>\n"
2136 				   "  desc.status          <%x>\n",
2137 				   tx_ring->queue_index,
2138 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2139 				   readl(tx_ring->tail),
2140 				   tx_ring->next_to_use,
2141 				   tx_ring->next_to_clean,
2142 				   tx_buffer->time_stamp,
2143 				   tx_buffer->next_to_watch,
2144 				   jiffies,
2145 				   tx_buffer->next_to_watch->wb.status);
2146 			netif_stop_subqueue(tx_ring->netdev,
2147 					    tx_ring->queue_index);
2148 
2149 			/* we are about to reset, no point in enabling stuff */
2150 			return true;
2151 		}
2152 	}
2153 
2154 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2155 	if (unlikely(total_packets &&
2156 		     netif_carrier_ok(tx_ring->netdev) &&
2157 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2158 		/* Make sure that anybody stopping the queue after this
2159 		 * sees the new next_to_clean.
2160 		 */
2161 		smp_mb();
2162 		if (__netif_subqueue_stopped(tx_ring->netdev,
2163 					     tx_ring->queue_index) &&
2164 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2165 			netif_wake_subqueue(tx_ring->netdev,
2166 					    tx_ring->queue_index);
2167 
2168 			u64_stats_update_begin(&tx_ring->tx_syncp);
2169 			tx_ring->tx_stats.restart_queue++;
2170 			u64_stats_update_end(&tx_ring->tx_syncp);
2171 		}
2172 	}
2173 
2174 	return !!budget;
2175 }
2176 
2177 static int igc_find_mac_filter(struct igc_adapter *adapter,
2178 			       enum igc_mac_filter_type type, const u8 *addr)
2179 {
2180 	struct igc_hw *hw = &adapter->hw;
2181 	int max_entries = hw->mac.rar_entry_count;
2182 	u32 ral, rah;
2183 	int i;
2184 
2185 	for (i = 0; i < max_entries; i++) {
2186 		ral = rd32(IGC_RAL(i));
2187 		rah = rd32(IGC_RAH(i));
2188 
2189 		if (!(rah & IGC_RAH_AV))
2190 			continue;
2191 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2192 			continue;
2193 		if ((rah & IGC_RAH_RAH_MASK) !=
2194 		    le16_to_cpup((__le16 *)(addr + 4)))
2195 			continue;
2196 		if (ral != le32_to_cpup((__le32 *)(addr)))
2197 			continue;
2198 
2199 		return i;
2200 	}
2201 
2202 	return -1;
2203 }
2204 
2205 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2206 {
2207 	struct igc_hw *hw = &adapter->hw;
2208 	int max_entries = hw->mac.rar_entry_count;
2209 	u32 rah;
2210 	int i;
2211 
2212 	for (i = 0; i < max_entries; i++) {
2213 		rah = rd32(IGC_RAH(i));
2214 
2215 		if (!(rah & IGC_RAH_AV))
2216 			return i;
2217 	}
2218 
2219 	return -1;
2220 }
2221 
2222 /**
2223  * igc_add_mac_filter() - Add MAC address filter
2224  * @adapter: Pointer to adapter where the filter should be added
2225  * @type: MAC address filter type (source or destination)
2226  * @addr: MAC address
2227  * @queue: If non-negative, queue assignment feature is enabled and frames
2228  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2229  *         assignment is disabled.
2230  *
2231  * Return: 0 in case of success, negative errno code otherwise.
2232  */
2233 static int igc_add_mac_filter(struct igc_adapter *adapter,
2234 			      enum igc_mac_filter_type type, const u8 *addr,
2235 			      int queue)
2236 {
2237 	struct net_device *dev = adapter->netdev;
2238 	int index;
2239 
2240 	index = igc_find_mac_filter(adapter, type, addr);
2241 	if (index >= 0)
2242 		goto update_filter;
2243 
2244 	index = igc_get_avail_mac_filter_slot(adapter);
2245 	if (index < 0)
2246 		return -ENOSPC;
2247 
2248 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2249 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2250 		   addr, queue);
2251 
2252 update_filter:
2253 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2254 	return 0;
2255 }
2256 
2257 /**
2258  * igc_del_mac_filter() - Delete MAC address filter
2259  * @adapter: Pointer to adapter where the filter should be deleted from
2260  * @type: MAC address filter type (source or destination)
2261  * @addr: MAC address
2262  */
2263 static void igc_del_mac_filter(struct igc_adapter *adapter,
2264 			       enum igc_mac_filter_type type, const u8 *addr)
2265 {
2266 	struct net_device *dev = adapter->netdev;
2267 	int index;
2268 
2269 	index = igc_find_mac_filter(adapter, type, addr);
2270 	if (index < 0)
2271 		return;
2272 
2273 	if (index == 0) {
2274 		/* If this is the default filter, we don't actually delete it.
2275 		 * We just reset to its default value i.e. disable queue
2276 		 * assignment.
2277 		 */
2278 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2279 
2280 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2281 	} else {
2282 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2283 			   index,
2284 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2285 			   addr);
2286 
2287 		igc_clear_mac_filter_hw(adapter, index);
2288 	}
2289 }
2290 
2291 /**
2292  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2293  * @adapter: Pointer to adapter where the filter should be added
2294  * @prio: VLAN priority value
2295  * @queue: Queue number which matching frames are assigned to
2296  *
2297  * Return: 0 in case of success, negative errno code otherwise.
2298  */
2299 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2300 				    int queue)
2301 {
2302 	struct net_device *dev = adapter->netdev;
2303 	struct igc_hw *hw = &adapter->hw;
2304 	u32 vlanpqf;
2305 
2306 	vlanpqf = rd32(IGC_VLANPQF);
2307 
2308 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2309 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2310 		return -EEXIST;
2311 	}
2312 
2313 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2314 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2315 
2316 	wr32(IGC_VLANPQF, vlanpqf);
2317 
2318 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2319 		   prio, queue);
2320 	return 0;
2321 }
2322 
2323 /**
2324  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2325  * @adapter: Pointer to adapter where the filter should be deleted from
2326  * @prio: VLAN priority value
2327  */
2328 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2329 {
2330 	struct igc_hw *hw = &adapter->hw;
2331 	u32 vlanpqf;
2332 
2333 	vlanpqf = rd32(IGC_VLANPQF);
2334 
2335 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2336 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2337 
2338 	wr32(IGC_VLANPQF, vlanpqf);
2339 
2340 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2341 		   prio);
2342 }
2343 
2344 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2345 {
2346 	struct igc_hw *hw = &adapter->hw;
2347 	int i;
2348 
2349 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2350 		u32 etqf = rd32(IGC_ETQF(i));
2351 
2352 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2353 			return i;
2354 	}
2355 
2356 	return -1;
2357 }
2358 
2359 /**
2360  * igc_add_etype_filter() - Add ethertype filter
2361  * @adapter: Pointer to adapter where the filter should be added
2362  * @etype: Ethertype value
2363  * @queue: If non-negative, queue assignment feature is enabled and frames
2364  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2365  *         assignment is disabled.
2366  *
2367  * Return: 0 in case of success, negative errno code otherwise.
2368  */
2369 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2370 				int queue)
2371 {
2372 	struct igc_hw *hw = &adapter->hw;
2373 	int index;
2374 	u32 etqf;
2375 
2376 	index = igc_get_avail_etype_filter_slot(adapter);
2377 	if (index < 0)
2378 		return -ENOSPC;
2379 
2380 	etqf = rd32(IGC_ETQF(index));
2381 
2382 	etqf &= ~IGC_ETQF_ETYPE_MASK;
2383 	etqf |= etype;
2384 
2385 	if (queue >= 0) {
2386 		etqf &= ~IGC_ETQF_QUEUE_MASK;
2387 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2388 		etqf |= IGC_ETQF_QUEUE_ENABLE;
2389 	}
2390 
2391 	etqf |= IGC_ETQF_FILTER_ENABLE;
2392 
2393 	wr32(IGC_ETQF(index), etqf);
2394 
2395 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2396 		   etype, queue);
2397 	return 0;
2398 }
2399 
2400 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2401 {
2402 	struct igc_hw *hw = &adapter->hw;
2403 	int i;
2404 
2405 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2406 		u32 etqf = rd32(IGC_ETQF(i));
2407 
2408 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2409 			return i;
2410 	}
2411 
2412 	return -1;
2413 }
2414 
2415 /**
2416  * igc_del_etype_filter() - Delete ethertype filter
2417  * @adapter: Pointer to adapter where the filter should be deleted from
2418  * @etype: Ethertype value
2419  */
2420 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2421 {
2422 	struct igc_hw *hw = &adapter->hw;
2423 	int index;
2424 
2425 	index = igc_find_etype_filter(adapter, etype);
2426 	if (index < 0)
2427 		return;
2428 
2429 	wr32(IGC_ETQF(index), 0);
2430 
2431 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2432 		   etype);
2433 }
2434 
2435 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2436 			       const struct igc_nfc_rule *rule)
2437 {
2438 	int err;
2439 
2440 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2441 		err = igc_add_etype_filter(adapter, rule->filter.etype,
2442 					   rule->action);
2443 		if (err)
2444 			return err;
2445 	}
2446 
2447 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2448 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2449 					 rule->filter.src_addr, rule->action);
2450 		if (err)
2451 			return err;
2452 	}
2453 
2454 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2455 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2456 					 rule->filter.dst_addr, rule->action);
2457 		if (err)
2458 			return err;
2459 	}
2460 
2461 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2462 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2463 			   VLAN_PRIO_SHIFT;
2464 
2465 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2466 		if (err)
2467 			return err;
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2474 				 const struct igc_nfc_rule *rule)
2475 {
2476 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2477 		igc_del_etype_filter(adapter, rule->filter.etype);
2478 
2479 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2480 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2481 			   VLAN_PRIO_SHIFT;
2482 
2483 		igc_del_vlan_prio_filter(adapter, prio);
2484 	}
2485 
2486 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2487 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2488 				   rule->filter.src_addr);
2489 
2490 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2491 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2492 				   rule->filter.dst_addr);
2493 }
2494 
2495 /**
2496  * igc_get_nfc_rule() - Get NFC rule
2497  * @adapter: Pointer to adapter
2498  * @location: Rule location
2499  *
2500  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2501  *
2502  * Return: Pointer to NFC rule at @location. If not found, NULL.
2503  */
2504 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2505 				      u32 location)
2506 {
2507 	struct igc_nfc_rule *rule;
2508 
2509 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2510 		if (rule->location == location)
2511 			return rule;
2512 		if (rule->location > location)
2513 			break;
2514 	}
2515 
2516 	return NULL;
2517 }
2518 
2519 /**
2520  * igc_del_nfc_rule() - Delete NFC rule
2521  * @adapter: Pointer to adapter
2522  * @rule: Pointer to rule to be deleted
2523  *
2524  * Disable NFC rule in hardware and delete it from adapter.
2525  *
2526  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2527  */
2528 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2529 {
2530 	igc_disable_nfc_rule(adapter, rule);
2531 
2532 	list_del(&rule->list);
2533 	adapter->nfc_rule_count--;
2534 
2535 	kfree(rule);
2536 }
2537 
2538 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2539 {
2540 	struct igc_nfc_rule *rule, *tmp;
2541 
2542 	mutex_lock(&adapter->nfc_rule_lock);
2543 
2544 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2545 		igc_del_nfc_rule(adapter, rule);
2546 
2547 	mutex_unlock(&adapter->nfc_rule_lock);
2548 }
2549 
2550 /**
2551  * igc_add_nfc_rule() - Add NFC rule
2552  * @adapter: Pointer to adapter
2553  * @rule: Pointer to rule to be added
2554  *
2555  * Enable NFC rule in hardware and add it to adapter.
2556  *
2557  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2558  *
2559  * Return: 0 on success, negative errno on failure.
2560  */
2561 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2562 {
2563 	struct igc_nfc_rule *pred, *cur;
2564 	int err;
2565 
2566 	err = igc_enable_nfc_rule(adapter, rule);
2567 	if (err)
2568 		return err;
2569 
2570 	pred = NULL;
2571 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2572 		if (cur->location >= rule->location)
2573 			break;
2574 		pred = cur;
2575 	}
2576 
2577 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2578 	adapter->nfc_rule_count++;
2579 	return 0;
2580 }
2581 
2582 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2583 {
2584 	struct igc_nfc_rule *rule;
2585 
2586 	mutex_lock(&adapter->nfc_rule_lock);
2587 
2588 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2589 		igc_enable_nfc_rule(adapter, rule);
2590 
2591 	mutex_unlock(&adapter->nfc_rule_lock);
2592 }
2593 
2594 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2595 {
2596 	struct igc_adapter *adapter = netdev_priv(netdev);
2597 
2598 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2599 }
2600 
2601 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2602 {
2603 	struct igc_adapter *adapter = netdev_priv(netdev);
2604 
2605 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2606 	return 0;
2607 }
2608 
2609 /**
2610  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2611  * @netdev: network interface device structure
2612  *
2613  * The set_rx_mode entry point is called whenever the unicast or multicast
2614  * address lists or the network interface flags are updated.  This routine is
2615  * responsible for configuring the hardware for proper unicast, multicast,
2616  * promiscuous mode, and all-multi behavior.
2617  */
2618 static void igc_set_rx_mode(struct net_device *netdev)
2619 {
2620 	struct igc_adapter *adapter = netdev_priv(netdev);
2621 	struct igc_hw *hw = &adapter->hw;
2622 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2623 	int count;
2624 
2625 	/* Check for Promiscuous and All Multicast modes */
2626 	if (netdev->flags & IFF_PROMISC) {
2627 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2628 	} else {
2629 		if (netdev->flags & IFF_ALLMULTI) {
2630 			rctl |= IGC_RCTL_MPE;
2631 		} else {
2632 			/* Write addresses to the MTA, if the attempt fails
2633 			 * then we should just turn on promiscuous mode so
2634 			 * that we can at least receive multicast traffic
2635 			 */
2636 			count = igc_write_mc_addr_list(netdev);
2637 			if (count < 0)
2638 				rctl |= IGC_RCTL_MPE;
2639 		}
2640 	}
2641 
2642 	/* Write addresses to available RAR registers, if there is not
2643 	 * sufficient space to store all the addresses then enable
2644 	 * unicast promiscuous mode
2645 	 */
2646 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2647 		rctl |= IGC_RCTL_UPE;
2648 
2649 	/* update state of unicast and multicast */
2650 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2651 	wr32(IGC_RCTL, rctl);
2652 
2653 #if (PAGE_SIZE < 8192)
2654 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2655 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
2656 #endif
2657 	wr32(IGC_RLPML, rlpml);
2658 }
2659 
2660 /**
2661  * igc_configure - configure the hardware for RX and TX
2662  * @adapter: private board structure
2663  */
2664 static void igc_configure(struct igc_adapter *adapter)
2665 {
2666 	struct net_device *netdev = adapter->netdev;
2667 	int i = 0;
2668 
2669 	igc_get_hw_control(adapter);
2670 	igc_set_rx_mode(netdev);
2671 
2672 	igc_setup_tctl(adapter);
2673 	igc_setup_mrqc(adapter);
2674 	igc_setup_rctl(adapter);
2675 
2676 	igc_set_default_mac_filter(adapter);
2677 	igc_restore_nfc_rules(adapter);
2678 
2679 	igc_configure_tx(adapter);
2680 	igc_configure_rx(adapter);
2681 
2682 	igc_rx_fifo_flush_base(&adapter->hw);
2683 
2684 	/* call igc_desc_unused which always leaves
2685 	 * at least 1 descriptor unused to make sure
2686 	 * next_to_use != next_to_clean
2687 	 */
2688 	for (i = 0; i < adapter->num_rx_queues; i++) {
2689 		struct igc_ring *ring = adapter->rx_ring[i];
2690 
2691 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2692 	}
2693 }
2694 
2695 /**
2696  * igc_write_ivar - configure ivar for given MSI-X vector
2697  * @hw: pointer to the HW structure
2698  * @msix_vector: vector number we are allocating to a given ring
2699  * @index: row index of IVAR register to write within IVAR table
2700  * @offset: column offset of in IVAR, should be multiple of 8
2701  *
2702  * The IVAR table consists of 2 columns,
2703  * each containing an cause allocation for an Rx and Tx ring, and a
2704  * variable number of rows depending on the number of queues supported.
2705  */
2706 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2707 			   int index, int offset)
2708 {
2709 	u32 ivar = array_rd32(IGC_IVAR0, index);
2710 
2711 	/* clear any bits that are currently set */
2712 	ivar &= ~((u32)0xFF << offset);
2713 
2714 	/* write vector and valid bit */
2715 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2716 
2717 	array_wr32(IGC_IVAR0, index, ivar);
2718 }
2719 
2720 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2721 {
2722 	struct igc_adapter *adapter = q_vector->adapter;
2723 	struct igc_hw *hw = &adapter->hw;
2724 	int rx_queue = IGC_N0_QUEUE;
2725 	int tx_queue = IGC_N0_QUEUE;
2726 
2727 	if (q_vector->rx.ring)
2728 		rx_queue = q_vector->rx.ring->reg_idx;
2729 	if (q_vector->tx.ring)
2730 		tx_queue = q_vector->tx.ring->reg_idx;
2731 
2732 	switch (hw->mac.type) {
2733 	case igc_i225:
2734 		if (rx_queue > IGC_N0_QUEUE)
2735 			igc_write_ivar(hw, msix_vector,
2736 				       rx_queue >> 1,
2737 				       (rx_queue & 0x1) << 4);
2738 		if (tx_queue > IGC_N0_QUEUE)
2739 			igc_write_ivar(hw, msix_vector,
2740 				       tx_queue >> 1,
2741 				       ((tx_queue & 0x1) << 4) + 8);
2742 		q_vector->eims_value = BIT(msix_vector);
2743 		break;
2744 	default:
2745 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2746 		break;
2747 	}
2748 
2749 	/* add q_vector eims value to global eims_enable_mask */
2750 	adapter->eims_enable_mask |= q_vector->eims_value;
2751 
2752 	/* configure q_vector to set itr on first interrupt */
2753 	q_vector->set_itr = 1;
2754 }
2755 
2756 /**
2757  * igc_configure_msix - Configure MSI-X hardware
2758  * @adapter: Pointer to adapter structure
2759  *
2760  * igc_configure_msix sets up the hardware to properly
2761  * generate MSI-X interrupts.
2762  */
2763 static void igc_configure_msix(struct igc_adapter *adapter)
2764 {
2765 	struct igc_hw *hw = &adapter->hw;
2766 	int i, vector = 0;
2767 	u32 tmp;
2768 
2769 	adapter->eims_enable_mask = 0;
2770 
2771 	/* set vector for other causes, i.e. link changes */
2772 	switch (hw->mac.type) {
2773 	case igc_i225:
2774 		/* Turn on MSI-X capability first, or our settings
2775 		 * won't stick.  And it will take days to debug.
2776 		 */
2777 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2778 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2779 		     IGC_GPIE_NSICR);
2780 
2781 		/* enable msix_other interrupt */
2782 		adapter->eims_other = BIT(vector);
2783 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2784 
2785 		wr32(IGC_IVAR_MISC, tmp);
2786 		break;
2787 	default:
2788 		/* do nothing, since nothing else supports MSI-X */
2789 		break;
2790 	} /* switch (hw->mac.type) */
2791 
2792 	adapter->eims_enable_mask |= adapter->eims_other;
2793 
2794 	for (i = 0; i < adapter->num_q_vectors; i++)
2795 		igc_assign_vector(adapter->q_vector[i], vector++);
2796 
2797 	wrfl();
2798 }
2799 
2800 /**
2801  * igc_irq_enable - Enable default interrupt generation settings
2802  * @adapter: board private structure
2803  */
2804 static void igc_irq_enable(struct igc_adapter *adapter)
2805 {
2806 	struct igc_hw *hw = &adapter->hw;
2807 
2808 	if (adapter->msix_entries) {
2809 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2810 		u32 regval = rd32(IGC_EIAC);
2811 
2812 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2813 		regval = rd32(IGC_EIAM);
2814 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2815 		wr32(IGC_EIMS, adapter->eims_enable_mask);
2816 		wr32(IGC_IMS, ims);
2817 	} else {
2818 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2819 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2820 	}
2821 }
2822 
2823 /**
2824  * igc_irq_disable - Mask off interrupt generation on the NIC
2825  * @adapter: board private structure
2826  */
2827 static void igc_irq_disable(struct igc_adapter *adapter)
2828 {
2829 	struct igc_hw *hw = &adapter->hw;
2830 
2831 	if (adapter->msix_entries) {
2832 		u32 regval = rd32(IGC_EIAM);
2833 
2834 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2835 		wr32(IGC_EIMC, adapter->eims_enable_mask);
2836 		regval = rd32(IGC_EIAC);
2837 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2838 	}
2839 
2840 	wr32(IGC_IAM, 0);
2841 	wr32(IGC_IMC, ~0);
2842 	wrfl();
2843 
2844 	if (adapter->msix_entries) {
2845 		int vector = 0, i;
2846 
2847 		synchronize_irq(adapter->msix_entries[vector++].vector);
2848 
2849 		for (i = 0; i < adapter->num_q_vectors; i++)
2850 			synchronize_irq(adapter->msix_entries[vector++].vector);
2851 	} else {
2852 		synchronize_irq(adapter->pdev->irq);
2853 	}
2854 }
2855 
2856 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2857 			      const u32 max_rss_queues)
2858 {
2859 	/* Determine if we need to pair queues. */
2860 	/* If rss_queues > half of max_rss_queues, pair the queues in
2861 	 * order to conserve interrupts due to limited supply.
2862 	 */
2863 	if (adapter->rss_queues > (max_rss_queues / 2))
2864 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2865 	else
2866 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2867 }
2868 
2869 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2870 {
2871 	return IGC_MAX_RX_QUEUES;
2872 }
2873 
2874 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2875 {
2876 	u32 max_rss_queues;
2877 
2878 	max_rss_queues = igc_get_max_rss_queues(adapter);
2879 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2880 
2881 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
2882 }
2883 
2884 /**
2885  * igc_reset_q_vector - Reset config for interrupt vector
2886  * @adapter: board private structure to initialize
2887  * @v_idx: Index of vector to be reset
2888  *
2889  * If NAPI is enabled it will delete any references to the
2890  * NAPI struct. This is preparation for igc_free_q_vector.
2891  */
2892 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2893 {
2894 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2895 
2896 	/* if we're coming from igc_set_interrupt_capability, the vectors are
2897 	 * not yet allocated
2898 	 */
2899 	if (!q_vector)
2900 		return;
2901 
2902 	if (q_vector->tx.ring)
2903 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2904 
2905 	if (q_vector->rx.ring)
2906 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2907 
2908 	netif_napi_del(&q_vector->napi);
2909 }
2910 
2911 /**
2912  * igc_free_q_vector - Free memory allocated for specific interrupt vector
2913  * @adapter: board private structure to initialize
2914  * @v_idx: Index of vector to be freed
2915  *
2916  * This function frees the memory allocated to the q_vector.
2917  */
2918 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2919 {
2920 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2921 
2922 	adapter->q_vector[v_idx] = NULL;
2923 
2924 	/* igc_get_stats64() might access the rings on this vector,
2925 	 * we must wait a grace period before freeing it.
2926 	 */
2927 	if (q_vector)
2928 		kfree_rcu(q_vector, rcu);
2929 }
2930 
2931 /**
2932  * igc_free_q_vectors - Free memory allocated for interrupt vectors
2933  * @adapter: board private structure to initialize
2934  *
2935  * This function frees the memory allocated to the q_vectors.  In addition if
2936  * NAPI is enabled it will delete any references to the NAPI struct prior
2937  * to freeing the q_vector.
2938  */
2939 static void igc_free_q_vectors(struct igc_adapter *adapter)
2940 {
2941 	int v_idx = adapter->num_q_vectors;
2942 
2943 	adapter->num_tx_queues = 0;
2944 	adapter->num_rx_queues = 0;
2945 	adapter->num_q_vectors = 0;
2946 
2947 	while (v_idx--) {
2948 		igc_reset_q_vector(adapter, v_idx);
2949 		igc_free_q_vector(adapter, v_idx);
2950 	}
2951 }
2952 
2953 /**
2954  * igc_update_itr - update the dynamic ITR value based on statistics
2955  * @q_vector: pointer to q_vector
2956  * @ring_container: ring info to update the itr for
2957  *
2958  * Stores a new ITR value based on packets and byte
2959  * counts during the last interrupt.  The advantage of per interrupt
2960  * computation is faster updates and more accurate ITR for the current
2961  * traffic pattern.  Constants in this function were computed
2962  * based on theoretical maximum wire speed and thresholds were set based
2963  * on testing data as well as attempting to minimize response time
2964  * while increasing bulk throughput.
2965  * NOTE: These calculations are only valid when operating in a single-
2966  * queue environment.
2967  */
2968 static void igc_update_itr(struct igc_q_vector *q_vector,
2969 			   struct igc_ring_container *ring_container)
2970 {
2971 	unsigned int packets = ring_container->total_packets;
2972 	unsigned int bytes = ring_container->total_bytes;
2973 	u8 itrval = ring_container->itr;
2974 
2975 	/* no packets, exit with status unchanged */
2976 	if (packets == 0)
2977 		return;
2978 
2979 	switch (itrval) {
2980 	case lowest_latency:
2981 		/* handle TSO and jumbo frames */
2982 		if (bytes / packets > 8000)
2983 			itrval = bulk_latency;
2984 		else if ((packets < 5) && (bytes > 512))
2985 			itrval = low_latency;
2986 		break;
2987 	case low_latency:  /* 50 usec aka 20000 ints/s */
2988 		if (bytes > 10000) {
2989 			/* this if handles the TSO accounting */
2990 			if (bytes / packets > 8000)
2991 				itrval = bulk_latency;
2992 			else if ((packets < 10) || ((bytes / packets) > 1200))
2993 				itrval = bulk_latency;
2994 			else if ((packets > 35))
2995 				itrval = lowest_latency;
2996 		} else if (bytes / packets > 2000) {
2997 			itrval = bulk_latency;
2998 		} else if (packets <= 2 && bytes < 512) {
2999 			itrval = lowest_latency;
3000 		}
3001 		break;
3002 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3003 		if (bytes > 25000) {
3004 			if (packets > 35)
3005 				itrval = low_latency;
3006 		} else if (bytes < 1500) {
3007 			itrval = low_latency;
3008 		}
3009 		break;
3010 	}
3011 
3012 	/* clear work counters since we have the values we need */
3013 	ring_container->total_bytes = 0;
3014 	ring_container->total_packets = 0;
3015 
3016 	/* write updated itr to ring container */
3017 	ring_container->itr = itrval;
3018 }
3019 
3020 static void igc_set_itr(struct igc_q_vector *q_vector)
3021 {
3022 	struct igc_adapter *adapter = q_vector->adapter;
3023 	u32 new_itr = q_vector->itr_val;
3024 	u8 current_itr = 0;
3025 
3026 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3027 	switch (adapter->link_speed) {
3028 	case SPEED_10:
3029 	case SPEED_100:
3030 		current_itr = 0;
3031 		new_itr = IGC_4K_ITR;
3032 		goto set_itr_now;
3033 	default:
3034 		break;
3035 	}
3036 
3037 	igc_update_itr(q_vector, &q_vector->tx);
3038 	igc_update_itr(q_vector, &q_vector->rx);
3039 
3040 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3041 
3042 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3043 	if (current_itr == lowest_latency &&
3044 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3045 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3046 		current_itr = low_latency;
3047 
3048 	switch (current_itr) {
3049 	/* counts and packets in update_itr are dependent on these numbers */
3050 	case lowest_latency:
3051 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3052 		break;
3053 	case low_latency:
3054 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3055 		break;
3056 	case bulk_latency:
3057 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3058 		break;
3059 	default:
3060 		break;
3061 	}
3062 
3063 set_itr_now:
3064 	if (new_itr != q_vector->itr_val) {
3065 		/* this attempts to bias the interrupt rate towards Bulk
3066 		 * by adding intermediate steps when interrupt rate is
3067 		 * increasing
3068 		 */
3069 		new_itr = new_itr > q_vector->itr_val ?
3070 			  max((new_itr * q_vector->itr_val) /
3071 			  (new_itr + (q_vector->itr_val >> 2)),
3072 			  new_itr) : new_itr;
3073 		/* Don't write the value here; it resets the adapter's
3074 		 * internal timer, and causes us to delay far longer than
3075 		 * we should between interrupts.  Instead, we write the ITR
3076 		 * value at the beginning of the next interrupt so the timing
3077 		 * ends up being correct.
3078 		 */
3079 		q_vector->itr_val = new_itr;
3080 		q_vector->set_itr = 1;
3081 	}
3082 }
3083 
3084 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3085 {
3086 	int v_idx = adapter->num_q_vectors;
3087 
3088 	if (adapter->msix_entries) {
3089 		pci_disable_msix(adapter->pdev);
3090 		kfree(adapter->msix_entries);
3091 		adapter->msix_entries = NULL;
3092 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3093 		pci_disable_msi(adapter->pdev);
3094 	}
3095 
3096 	while (v_idx--)
3097 		igc_reset_q_vector(adapter, v_idx);
3098 }
3099 
3100 /**
3101  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3102  * @adapter: Pointer to adapter structure
3103  * @msix: boolean value for MSI-X capability
3104  *
3105  * Attempt to configure interrupts using the best available
3106  * capabilities of the hardware and kernel.
3107  */
3108 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3109 					 bool msix)
3110 {
3111 	int numvecs, i;
3112 	int err;
3113 
3114 	if (!msix)
3115 		goto msi_only;
3116 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3117 
3118 	/* Number of supported queues. */
3119 	adapter->num_rx_queues = adapter->rss_queues;
3120 
3121 	adapter->num_tx_queues = adapter->rss_queues;
3122 
3123 	/* start with one vector for every Rx queue */
3124 	numvecs = adapter->num_rx_queues;
3125 
3126 	/* if Tx handler is separate add 1 for every Tx queue */
3127 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3128 		numvecs += adapter->num_tx_queues;
3129 
3130 	/* store the number of vectors reserved for queues */
3131 	adapter->num_q_vectors = numvecs;
3132 
3133 	/* add 1 vector for link status interrupts */
3134 	numvecs++;
3135 
3136 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3137 					GFP_KERNEL);
3138 
3139 	if (!adapter->msix_entries)
3140 		return;
3141 
3142 	/* populate entry values */
3143 	for (i = 0; i < numvecs; i++)
3144 		adapter->msix_entries[i].entry = i;
3145 
3146 	err = pci_enable_msix_range(adapter->pdev,
3147 				    adapter->msix_entries,
3148 				    numvecs,
3149 				    numvecs);
3150 	if (err > 0)
3151 		return;
3152 
3153 	kfree(adapter->msix_entries);
3154 	adapter->msix_entries = NULL;
3155 
3156 	igc_reset_interrupt_capability(adapter);
3157 
3158 msi_only:
3159 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3160 
3161 	adapter->rss_queues = 1;
3162 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3163 	adapter->num_rx_queues = 1;
3164 	adapter->num_tx_queues = 1;
3165 	adapter->num_q_vectors = 1;
3166 	if (!pci_enable_msi(adapter->pdev))
3167 		adapter->flags |= IGC_FLAG_HAS_MSI;
3168 }
3169 
3170 /**
3171  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3172  * @q_vector: pointer to q_vector
3173  *
3174  * Stores a new ITR value based on strictly on packet size.  This
3175  * algorithm is less sophisticated than that used in igc_update_itr,
3176  * due to the difficulty of synchronizing statistics across multiple
3177  * receive rings.  The divisors and thresholds used by this function
3178  * were determined based on theoretical maximum wire speed and testing
3179  * data, in order to minimize response time while increasing bulk
3180  * throughput.
3181  * NOTE: This function is called only when operating in a multiqueue
3182  * receive environment.
3183  */
3184 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3185 {
3186 	struct igc_adapter *adapter = q_vector->adapter;
3187 	int new_val = q_vector->itr_val;
3188 	int avg_wire_size = 0;
3189 	unsigned int packets;
3190 
3191 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3192 	 * ints/sec - ITR timer value of 120 ticks.
3193 	 */
3194 	switch (adapter->link_speed) {
3195 	case SPEED_10:
3196 	case SPEED_100:
3197 		new_val = IGC_4K_ITR;
3198 		goto set_itr_val;
3199 	default:
3200 		break;
3201 	}
3202 
3203 	packets = q_vector->rx.total_packets;
3204 	if (packets)
3205 		avg_wire_size = q_vector->rx.total_bytes / packets;
3206 
3207 	packets = q_vector->tx.total_packets;
3208 	if (packets)
3209 		avg_wire_size = max_t(u32, avg_wire_size,
3210 				      q_vector->tx.total_bytes / packets);
3211 
3212 	/* if avg_wire_size isn't set no work was done */
3213 	if (!avg_wire_size)
3214 		goto clear_counts;
3215 
3216 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3217 	avg_wire_size += 24;
3218 
3219 	/* Don't starve jumbo frames */
3220 	avg_wire_size = min(avg_wire_size, 3000);
3221 
3222 	/* Give a little boost to mid-size frames */
3223 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3224 		new_val = avg_wire_size / 3;
3225 	else
3226 		new_val = avg_wire_size / 2;
3227 
3228 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3229 	if (new_val < IGC_20K_ITR &&
3230 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3231 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3232 		new_val = IGC_20K_ITR;
3233 
3234 set_itr_val:
3235 	if (new_val != q_vector->itr_val) {
3236 		q_vector->itr_val = new_val;
3237 		q_vector->set_itr = 1;
3238 	}
3239 clear_counts:
3240 	q_vector->rx.total_bytes = 0;
3241 	q_vector->rx.total_packets = 0;
3242 	q_vector->tx.total_bytes = 0;
3243 	q_vector->tx.total_packets = 0;
3244 }
3245 
3246 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3247 {
3248 	struct igc_adapter *adapter = q_vector->adapter;
3249 	struct igc_hw *hw = &adapter->hw;
3250 
3251 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3252 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3253 		if (adapter->num_q_vectors == 1)
3254 			igc_set_itr(q_vector);
3255 		else
3256 			igc_update_ring_itr(q_vector);
3257 	}
3258 
3259 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3260 		if (adapter->msix_entries)
3261 			wr32(IGC_EIMS, q_vector->eims_value);
3262 		else
3263 			igc_irq_enable(adapter);
3264 	}
3265 }
3266 
3267 static void igc_add_ring(struct igc_ring *ring,
3268 			 struct igc_ring_container *head)
3269 {
3270 	head->ring = ring;
3271 	head->count++;
3272 }
3273 
3274 /**
3275  * igc_cache_ring_register - Descriptor ring to register mapping
3276  * @adapter: board private structure to initialize
3277  *
3278  * Once we know the feature-set enabled for the device, we'll cache
3279  * the register offset the descriptor ring is assigned to.
3280  */
3281 static void igc_cache_ring_register(struct igc_adapter *adapter)
3282 {
3283 	int i = 0, j = 0;
3284 
3285 	switch (adapter->hw.mac.type) {
3286 	case igc_i225:
3287 	/* Fall through */
3288 	default:
3289 		for (; i < adapter->num_rx_queues; i++)
3290 			adapter->rx_ring[i]->reg_idx = i;
3291 		for (; j < adapter->num_tx_queues; j++)
3292 			adapter->tx_ring[j]->reg_idx = j;
3293 		break;
3294 	}
3295 }
3296 
3297 /**
3298  * igc_poll - NAPI Rx polling callback
3299  * @napi: napi polling structure
3300  * @budget: count of how many packets we should handle
3301  */
3302 static int igc_poll(struct napi_struct *napi, int budget)
3303 {
3304 	struct igc_q_vector *q_vector = container_of(napi,
3305 						     struct igc_q_vector,
3306 						     napi);
3307 	bool clean_complete = true;
3308 	int work_done = 0;
3309 
3310 	if (q_vector->tx.ring)
3311 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3312 
3313 	if (q_vector->rx.ring) {
3314 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3315 
3316 		work_done += cleaned;
3317 		if (cleaned >= budget)
3318 			clean_complete = false;
3319 	}
3320 
3321 	/* If all work not completed, return budget and keep polling */
3322 	if (!clean_complete)
3323 		return budget;
3324 
3325 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3326 	 * poll us due to busy-polling
3327 	 */
3328 	if (likely(napi_complete_done(napi, work_done)))
3329 		igc_ring_irq_enable(q_vector);
3330 
3331 	return min(work_done, budget - 1);
3332 }
3333 
3334 /**
3335  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3336  * @adapter: board private structure to initialize
3337  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3338  * @v_idx: index of vector in adapter struct
3339  * @txr_count: total number of Tx rings to allocate
3340  * @txr_idx: index of first Tx ring to allocate
3341  * @rxr_count: total number of Rx rings to allocate
3342  * @rxr_idx: index of first Rx ring to allocate
3343  *
3344  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3345  */
3346 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3347 			      unsigned int v_count, unsigned int v_idx,
3348 			      unsigned int txr_count, unsigned int txr_idx,
3349 			      unsigned int rxr_count, unsigned int rxr_idx)
3350 {
3351 	struct igc_q_vector *q_vector;
3352 	struct igc_ring *ring;
3353 	int ring_count;
3354 
3355 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3356 	if (txr_count > 1 || rxr_count > 1)
3357 		return -ENOMEM;
3358 
3359 	ring_count = txr_count + rxr_count;
3360 
3361 	/* allocate q_vector and rings */
3362 	q_vector = adapter->q_vector[v_idx];
3363 	if (!q_vector)
3364 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3365 				   GFP_KERNEL);
3366 	else
3367 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3368 	if (!q_vector)
3369 		return -ENOMEM;
3370 
3371 	/* initialize NAPI */
3372 	netif_napi_add(adapter->netdev, &q_vector->napi,
3373 		       igc_poll, 64);
3374 
3375 	/* tie q_vector and adapter together */
3376 	adapter->q_vector[v_idx] = q_vector;
3377 	q_vector->adapter = adapter;
3378 
3379 	/* initialize work limits */
3380 	q_vector->tx.work_limit = adapter->tx_work_limit;
3381 
3382 	/* initialize ITR configuration */
3383 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3384 	q_vector->itr_val = IGC_START_ITR;
3385 
3386 	/* initialize pointer to rings */
3387 	ring = q_vector->ring;
3388 
3389 	/* initialize ITR */
3390 	if (rxr_count) {
3391 		/* rx or rx/tx vector */
3392 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3393 			q_vector->itr_val = adapter->rx_itr_setting;
3394 	} else {
3395 		/* tx only vector */
3396 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3397 			q_vector->itr_val = adapter->tx_itr_setting;
3398 	}
3399 
3400 	if (txr_count) {
3401 		/* assign generic ring traits */
3402 		ring->dev = &adapter->pdev->dev;
3403 		ring->netdev = adapter->netdev;
3404 
3405 		/* configure backlink on ring */
3406 		ring->q_vector = q_vector;
3407 
3408 		/* update q_vector Tx values */
3409 		igc_add_ring(ring, &q_vector->tx);
3410 
3411 		/* apply Tx specific ring traits */
3412 		ring->count = adapter->tx_ring_count;
3413 		ring->queue_index = txr_idx;
3414 
3415 		/* assign ring to adapter */
3416 		adapter->tx_ring[txr_idx] = ring;
3417 
3418 		/* push pointer to next ring */
3419 		ring++;
3420 	}
3421 
3422 	if (rxr_count) {
3423 		/* assign generic ring traits */
3424 		ring->dev = &adapter->pdev->dev;
3425 		ring->netdev = adapter->netdev;
3426 
3427 		/* configure backlink on ring */
3428 		ring->q_vector = q_vector;
3429 
3430 		/* update q_vector Rx values */
3431 		igc_add_ring(ring, &q_vector->rx);
3432 
3433 		/* apply Rx specific ring traits */
3434 		ring->count = adapter->rx_ring_count;
3435 		ring->queue_index = rxr_idx;
3436 
3437 		/* assign ring to adapter */
3438 		adapter->rx_ring[rxr_idx] = ring;
3439 	}
3440 
3441 	return 0;
3442 }
3443 
3444 /**
3445  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3446  * @adapter: board private structure to initialize
3447  *
3448  * We allocate one q_vector per queue interrupt.  If allocation fails we
3449  * return -ENOMEM.
3450  */
3451 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3452 {
3453 	int rxr_remaining = adapter->num_rx_queues;
3454 	int txr_remaining = adapter->num_tx_queues;
3455 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3456 	int q_vectors = adapter->num_q_vectors;
3457 	int err;
3458 
3459 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3460 		for (; rxr_remaining; v_idx++) {
3461 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3462 						 0, 0, 1, rxr_idx);
3463 
3464 			if (err)
3465 				goto err_out;
3466 
3467 			/* update counts and index */
3468 			rxr_remaining--;
3469 			rxr_idx++;
3470 		}
3471 	}
3472 
3473 	for (; v_idx < q_vectors; v_idx++) {
3474 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3475 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3476 
3477 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3478 					 tqpv, txr_idx, rqpv, rxr_idx);
3479 
3480 		if (err)
3481 			goto err_out;
3482 
3483 		/* update counts and index */
3484 		rxr_remaining -= rqpv;
3485 		txr_remaining -= tqpv;
3486 		rxr_idx++;
3487 		txr_idx++;
3488 	}
3489 
3490 	return 0;
3491 
3492 err_out:
3493 	adapter->num_tx_queues = 0;
3494 	adapter->num_rx_queues = 0;
3495 	adapter->num_q_vectors = 0;
3496 
3497 	while (v_idx--)
3498 		igc_free_q_vector(adapter, v_idx);
3499 
3500 	return -ENOMEM;
3501 }
3502 
3503 /**
3504  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3505  * @adapter: Pointer to adapter structure
3506  * @msix: boolean for MSI-X capability
3507  *
3508  * This function initializes the interrupts and allocates all of the queues.
3509  */
3510 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3511 {
3512 	struct net_device *dev = adapter->netdev;
3513 	int err = 0;
3514 
3515 	igc_set_interrupt_capability(adapter, msix);
3516 
3517 	err = igc_alloc_q_vectors(adapter);
3518 	if (err) {
3519 		netdev_err(dev, "Unable to allocate memory for vectors\n");
3520 		goto err_alloc_q_vectors;
3521 	}
3522 
3523 	igc_cache_ring_register(adapter);
3524 
3525 	return 0;
3526 
3527 err_alloc_q_vectors:
3528 	igc_reset_interrupt_capability(adapter);
3529 	return err;
3530 }
3531 
3532 /**
3533  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3534  * @adapter: board private structure to initialize
3535  *
3536  * igc_sw_init initializes the Adapter private data structure.
3537  * Fields are initialized based on PCI device information and
3538  * OS network device settings (MTU size).
3539  */
3540 static int igc_sw_init(struct igc_adapter *adapter)
3541 {
3542 	struct net_device *netdev = adapter->netdev;
3543 	struct pci_dev *pdev = adapter->pdev;
3544 	struct igc_hw *hw = &adapter->hw;
3545 
3546 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3547 
3548 	/* set default ring sizes */
3549 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
3550 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
3551 
3552 	/* set default ITR values */
3553 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3554 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3555 
3556 	/* set default work limits */
3557 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3558 
3559 	/* adjust max frame to be at least the size of a standard frame */
3560 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3561 				VLAN_HLEN;
3562 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3563 
3564 	mutex_init(&adapter->nfc_rule_lock);
3565 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
3566 	adapter->nfc_rule_count = 0;
3567 
3568 	spin_lock_init(&adapter->stats64_lock);
3569 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3570 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3571 
3572 	igc_init_queue_configuration(adapter);
3573 
3574 	/* This call may decrease the number of queues */
3575 	if (igc_init_interrupt_scheme(adapter, true)) {
3576 		netdev_err(netdev, "Unable to allocate memory for queues\n");
3577 		return -ENOMEM;
3578 	}
3579 
3580 	/* Explicitly disable IRQ since the NIC can be in any state. */
3581 	igc_irq_disable(adapter);
3582 
3583 	set_bit(__IGC_DOWN, &adapter->state);
3584 
3585 	return 0;
3586 }
3587 
3588 /**
3589  * igc_up - Open the interface and prepare it to handle traffic
3590  * @adapter: board private structure
3591  */
3592 void igc_up(struct igc_adapter *adapter)
3593 {
3594 	struct igc_hw *hw = &adapter->hw;
3595 	int i = 0;
3596 
3597 	/* hardware has been reset, we need to reload some things */
3598 	igc_configure(adapter);
3599 
3600 	clear_bit(__IGC_DOWN, &adapter->state);
3601 
3602 	for (i = 0; i < adapter->num_q_vectors; i++)
3603 		napi_enable(&adapter->q_vector[i]->napi);
3604 
3605 	if (adapter->msix_entries)
3606 		igc_configure_msix(adapter);
3607 	else
3608 		igc_assign_vector(adapter->q_vector[0], 0);
3609 
3610 	/* Clear any pending interrupts. */
3611 	rd32(IGC_ICR);
3612 	igc_irq_enable(adapter);
3613 
3614 	netif_tx_start_all_queues(adapter->netdev);
3615 
3616 	/* start the watchdog. */
3617 	hw->mac.get_link_status = 1;
3618 	schedule_work(&adapter->watchdog_task);
3619 }
3620 
3621 /**
3622  * igc_update_stats - Update the board statistics counters
3623  * @adapter: board private structure
3624  */
3625 void igc_update_stats(struct igc_adapter *adapter)
3626 {
3627 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3628 	struct pci_dev *pdev = adapter->pdev;
3629 	struct igc_hw *hw = &adapter->hw;
3630 	u64 _bytes, _packets;
3631 	u64 bytes, packets;
3632 	unsigned int start;
3633 	u32 mpc;
3634 	int i;
3635 
3636 	/* Prevent stats update while adapter is being reset, or if the pci
3637 	 * connection is down.
3638 	 */
3639 	if (adapter->link_speed == 0)
3640 		return;
3641 	if (pci_channel_offline(pdev))
3642 		return;
3643 
3644 	packets = 0;
3645 	bytes = 0;
3646 
3647 	rcu_read_lock();
3648 	for (i = 0; i < adapter->num_rx_queues; i++) {
3649 		struct igc_ring *ring = adapter->rx_ring[i];
3650 		u32 rqdpc = rd32(IGC_RQDPC(i));
3651 
3652 		if (hw->mac.type >= igc_i225)
3653 			wr32(IGC_RQDPC(i), 0);
3654 
3655 		if (rqdpc) {
3656 			ring->rx_stats.drops += rqdpc;
3657 			net_stats->rx_fifo_errors += rqdpc;
3658 		}
3659 
3660 		do {
3661 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3662 			_bytes = ring->rx_stats.bytes;
3663 			_packets = ring->rx_stats.packets;
3664 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3665 		bytes += _bytes;
3666 		packets += _packets;
3667 	}
3668 
3669 	net_stats->rx_bytes = bytes;
3670 	net_stats->rx_packets = packets;
3671 
3672 	packets = 0;
3673 	bytes = 0;
3674 	for (i = 0; i < adapter->num_tx_queues; i++) {
3675 		struct igc_ring *ring = adapter->tx_ring[i];
3676 
3677 		do {
3678 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3679 			_bytes = ring->tx_stats.bytes;
3680 			_packets = ring->tx_stats.packets;
3681 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3682 		bytes += _bytes;
3683 		packets += _packets;
3684 	}
3685 	net_stats->tx_bytes = bytes;
3686 	net_stats->tx_packets = packets;
3687 	rcu_read_unlock();
3688 
3689 	/* read stats registers */
3690 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3691 	adapter->stats.gprc += rd32(IGC_GPRC);
3692 	adapter->stats.gorc += rd32(IGC_GORCL);
3693 	rd32(IGC_GORCH); /* clear GORCL */
3694 	adapter->stats.bprc += rd32(IGC_BPRC);
3695 	adapter->stats.mprc += rd32(IGC_MPRC);
3696 	adapter->stats.roc += rd32(IGC_ROC);
3697 
3698 	adapter->stats.prc64 += rd32(IGC_PRC64);
3699 	adapter->stats.prc127 += rd32(IGC_PRC127);
3700 	adapter->stats.prc255 += rd32(IGC_PRC255);
3701 	adapter->stats.prc511 += rd32(IGC_PRC511);
3702 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
3703 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
3704 
3705 	mpc = rd32(IGC_MPC);
3706 	adapter->stats.mpc += mpc;
3707 	net_stats->rx_fifo_errors += mpc;
3708 	adapter->stats.scc += rd32(IGC_SCC);
3709 	adapter->stats.ecol += rd32(IGC_ECOL);
3710 	adapter->stats.mcc += rd32(IGC_MCC);
3711 	adapter->stats.latecol += rd32(IGC_LATECOL);
3712 	adapter->stats.dc += rd32(IGC_DC);
3713 	adapter->stats.rlec += rd32(IGC_RLEC);
3714 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
3715 	adapter->stats.xontxc += rd32(IGC_XONTXC);
3716 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3717 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3718 	adapter->stats.fcruc += rd32(IGC_FCRUC);
3719 	adapter->stats.gptc += rd32(IGC_GPTC);
3720 	adapter->stats.gotc += rd32(IGC_GOTCL);
3721 	rd32(IGC_GOTCH); /* clear GOTCL */
3722 	adapter->stats.rnbc += rd32(IGC_RNBC);
3723 	adapter->stats.ruc += rd32(IGC_RUC);
3724 	adapter->stats.rfc += rd32(IGC_RFC);
3725 	adapter->stats.rjc += rd32(IGC_RJC);
3726 	adapter->stats.tor += rd32(IGC_TORH);
3727 	adapter->stats.tot += rd32(IGC_TOTH);
3728 	adapter->stats.tpr += rd32(IGC_TPR);
3729 
3730 	adapter->stats.ptc64 += rd32(IGC_PTC64);
3731 	adapter->stats.ptc127 += rd32(IGC_PTC127);
3732 	adapter->stats.ptc255 += rd32(IGC_PTC255);
3733 	adapter->stats.ptc511 += rd32(IGC_PTC511);
3734 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3735 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3736 
3737 	adapter->stats.mptc += rd32(IGC_MPTC);
3738 	adapter->stats.bptc += rd32(IGC_BPTC);
3739 
3740 	adapter->stats.tpt += rd32(IGC_TPT);
3741 	adapter->stats.colc += rd32(IGC_COLC);
3742 	adapter->stats.colc += rd32(IGC_RERC);
3743 
3744 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3745 
3746 	adapter->stats.tsctc += rd32(IGC_TSCTC);
3747 	adapter->stats.tsctfc += rd32(IGC_TSCTFC);
3748 
3749 	adapter->stats.iac += rd32(IGC_IAC);
3750 	adapter->stats.icrxoc += rd32(IGC_ICRXOC);
3751 	adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
3752 	adapter->stats.icrxatc += rd32(IGC_ICRXATC);
3753 	adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
3754 	adapter->stats.ictxatc += rd32(IGC_ICTXATC);
3755 	adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
3756 	adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
3757 	adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
3758 
3759 	/* Fill out the OS statistics structure */
3760 	net_stats->multicast = adapter->stats.mprc;
3761 	net_stats->collisions = adapter->stats.colc;
3762 
3763 	/* Rx Errors */
3764 
3765 	/* RLEC on some newer hardware can be incorrect so build
3766 	 * our own version based on RUC and ROC
3767 	 */
3768 	net_stats->rx_errors = adapter->stats.rxerrc +
3769 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3770 		adapter->stats.ruc + adapter->stats.roc +
3771 		adapter->stats.cexterr;
3772 	net_stats->rx_length_errors = adapter->stats.ruc +
3773 				      adapter->stats.roc;
3774 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
3775 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
3776 	net_stats->rx_missed_errors = adapter->stats.mpc;
3777 
3778 	/* Tx Errors */
3779 	net_stats->tx_errors = adapter->stats.ecol +
3780 			       adapter->stats.latecol;
3781 	net_stats->tx_aborted_errors = adapter->stats.ecol;
3782 	net_stats->tx_window_errors = adapter->stats.latecol;
3783 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
3784 
3785 	/* Tx Dropped needs to be maintained elsewhere */
3786 
3787 	/* Management Stats */
3788 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
3789 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
3790 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3791 }
3792 
3793 /**
3794  * igc_down - Close the interface
3795  * @adapter: board private structure
3796  */
3797 void igc_down(struct igc_adapter *adapter)
3798 {
3799 	struct net_device *netdev = adapter->netdev;
3800 	struct igc_hw *hw = &adapter->hw;
3801 	u32 tctl, rctl;
3802 	int i = 0;
3803 
3804 	set_bit(__IGC_DOWN, &adapter->state);
3805 
3806 	/* disable receives in the hardware */
3807 	rctl = rd32(IGC_RCTL);
3808 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3809 	/* flush and sleep below */
3810 
3811 	/* set trans_start so we don't get spurious watchdogs during reset */
3812 	netif_trans_update(netdev);
3813 
3814 	netif_carrier_off(netdev);
3815 	netif_tx_stop_all_queues(netdev);
3816 
3817 	/* disable transmits in the hardware */
3818 	tctl = rd32(IGC_TCTL);
3819 	tctl &= ~IGC_TCTL_EN;
3820 	wr32(IGC_TCTL, tctl);
3821 	/* flush both disables and wait for them to finish */
3822 	wrfl();
3823 	usleep_range(10000, 20000);
3824 
3825 	igc_irq_disable(adapter);
3826 
3827 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3828 
3829 	for (i = 0; i < adapter->num_q_vectors; i++) {
3830 		if (adapter->q_vector[i]) {
3831 			napi_synchronize(&adapter->q_vector[i]->napi);
3832 			napi_disable(&adapter->q_vector[i]->napi);
3833 		}
3834 	}
3835 
3836 	del_timer_sync(&adapter->watchdog_timer);
3837 	del_timer_sync(&adapter->phy_info_timer);
3838 
3839 	/* record the stats before reset*/
3840 	spin_lock(&adapter->stats64_lock);
3841 	igc_update_stats(adapter);
3842 	spin_unlock(&adapter->stats64_lock);
3843 
3844 	adapter->link_speed = 0;
3845 	adapter->link_duplex = 0;
3846 
3847 	if (!pci_channel_offline(adapter->pdev))
3848 		igc_reset(adapter);
3849 
3850 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
3851 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3852 
3853 	igc_clean_all_tx_rings(adapter);
3854 	igc_clean_all_rx_rings(adapter);
3855 }
3856 
3857 void igc_reinit_locked(struct igc_adapter *adapter)
3858 {
3859 	WARN_ON(in_interrupt());
3860 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3861 		usleep_range(1000, 2000);
3862 	igc_down(adapter);
3863 	igc_up(adapter);
3864 	clear_bit(__IGC_RESETTING, &adapter->state);
3865 }
3866 
3867 static void igc_reset_task(struct work_struct *work)
3868 {
3869 	struct igc_adapter *adapter;
3870 
3871 	adapter = container_of(work, struct igc_adapter, reset_task);
3872 
3873 	igc_rings_dump(adapter);
3874 	igc_regs_dump(adapter);
3875 	netdev_err(adapter->netdev, "Reset adapter\n");
3876 	igc_reinit_locked(adapter);
3877 }
3878 
3879 /**
3880  * igc_change_mtu - Change the Maximum Transfer Unit
3881  * @netdev: network interface device structure
3882  * @new_mtu: new value for maximum frame size
3883  *
3884  * Returns 0 on success, negative on failure
3885  */
3886 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3887 {
3888 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3889 	struct igc_adapter *adapter = netdev_priv(netdev);
3890 
3891 	/* adjust max frame to be at least the size of a standard frame */
3892 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3893 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3894 
3895 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3896 		usleep_range(1000, 2000);
3897 
3898 	/* igc_down has a dependency on max_frame_size */
3899 	adapter->max_frame_size = max_frame;
3900 
3901 	if (netif_running(netdev))
3902 		igc_down(adapter);
3903 
3904 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3905 	netdev->mtu = new_mtu;
3906 
3907 	if (netif_running(netdev))
3908 		igc_up(adapter);
3909 	else
3910 		igc_reset(adapter);
3911 
3912 	clear_bit(__IGC_RESETTING, &adapter->state);
3913 
3914 	return 0;
3915 }
3916 
3917 /**
3918  * igc_get_stats - Get System Network Statistics
3919  * @netdev: network interface device structure
3920  *
3921  * Returns the address of the device statistics structure.
3922  * The statistics are updated here and also from the timer callback.
3923  */
3924 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
3925 {
3926 	struct igc_adapter *adapter = netdev_priv(netdev);
3927 
3928 	if (!test_bit(__IGC_RESETTING, &adapter->state))
3929 		igc_update_stats(adapter);
3930 
3931 	/* only return the current stats */
3932 	return &netdev->stats;
3933 }
3934 
3935 static netdev_features_t igc_fix_features(struct net_device *netdev,
3936 					  netdev_features_t features)
3937 {
3938 	/* Since there is no support for separate Rx/Tx vlan accel
3939 	 * enable/disable make sure Tx flag is always in same state as Rx.
3940 	 */
3941 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
3942 		features |= NETIF_F_HW_VLAN_CTAG_TX;
3943 	else
3944 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3945 
3946 	return features;
3947 }
3948 
3949 static int igc_set_features(struct net_device *netdev,
3950 			    netdev_features_t features)
3951 {
3952 	netdev_features_t changed = netdev->features ^ features;
3953 	struct igc_adapter *adapter = netdev_priv(netdev);
3954 
3955 	/* Add VLAN support */
3956 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3957 		return 0;
3958 
3959 	if (!(features & NETIF_F_NTUPLE))
3960 		igc_flush_nfc_rules(adapter);
3961 
3962 	netdev->features = features;
3963 
3964 	if (netif_running(netdev))
3965 		igc_reinit_locked(adapter);
3966 	else
3967 		igc_reset(adapter);
3968 
3969 	return 1;
3970 }
3971 
3972 static netdev_features_t
3973 igc_features_check(struct sk_buff *skb, struct net_device *dev,
3974 		   netdev_features_t features)
3975 {
3976 	unsigned int network_hdr_len, mac_hdr_len;
3977 
3978 	/* Make certain the headers can be described by a context descriptor */
3979 	mac_hdr_len = skb_network_header(skb) - skb->data;
3980 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3981 		return features & ~(NETIF_F_HW_CSUM |
3982 				    NETIF_F_SCTP_CRC |
3983 				    NETIF_F_HW_VLAN_CTAG_TX |
3984 				    NETIF_F_TSO |
3985 				    NETIF_F_TSO6);
3986 
3987 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3988 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
3989 		return features & ~(NETIF_F_HW_CSUM |
3990 				    NETIF_F_SCTP_CRC |
3991 				    NETIF_F_TSO |
3992 				    NETIF_F_TSO6);
3993 
3994 	/* We can only support IPv4 TSO in tunnels if we can mangle the
3995 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3996 	 */
3997 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3998 		features &= ~NETIF_F_TSO;
3999 
4000 	return features;
4001 }
4002 
4003 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4004 {
4005 	struct igc_hw *hw = &adapter->hw;
4006 	u32 tsicr = rd32(IGC_TSICR);
4007 	u32 ack = 0;
4008 
4009 	if (tsicr & IGC_TSICR_TXTS) {
4010 		/* retrieve hardware timestamp */
4011 		schedule_work(&adapter->ptp_tx_work);
4012 		ack |= IGC_TSICR_TXTS;
4013 	}
4014 
4015 	/* acknowledge the interrupts */
4016 	wr32(IGC_TSICR, ack);
4017 }
4018 
4019 /**
4020  * igc_msix_other - msix other interrupt handler
4021  * @irq: interrupt number
4022  * @data: pointer to a q_vector
4023  */
4024 static irqreturn_t igc_msix_other(int irq, void *data)
4025 {
4026 	struct igc_adapter *adapter = data;
4027 	struct igc_hw *hw = &adapter->hw;
4028 	u32 icr = rd32(IGC_ICR);
4029 
4030 	/* reading ICR causes bit 31 of EICR to be cleared */
4031 	if (icr & IGC_ICR_DRSTA)
4032 		schedule_work(&adapter->reset_task);
4033 
4034 	if (icr & IGC_ICR_DOUTSYNC) {
4035 		/* HW is reporting DMA is out of sync */
4036 		adapter->stats.doosync++;
4037 	}
4038 
4039 	if (icr & IGC_ICR_LSC) {
4040 		hw->mac.get_link_status = 1;
4041 		/* guard against interrupt when we're going down */
4042 		if (!test_bit(__IGC_DOWN, &adapter->state))
4043 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4044 	}
4045 
4046 	if (icr & IGC_ICR_TS)
4047 		igc_tsync_interrupt(adapter);
4048 
4049 	wr32(IGC_EIMS, adapter->eims_other);
4050 
4051 	return IRQ_HANDLED;
4052 }
4053 
4054 static void igc_write_itr(struct igc_q_vector *q_vector)
4055 {
4056 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4057 
4058 	if (!q_vector->set_itr)
4059 		return;
4060 
4061 	if (!itr_val)
4062 		itr_val = IGC_ITR_VAL_MASK;
4063 
4064 	itr_val |= IGC_EITR_CNT_IGNR;
4065 
4066 	writel(itr_val, q_vector->itr_register);
4067 	q_vector->set_itr = 0;
4068 }
4069 
4070 static irqreturn_t igc_msix_ring(int irq, void *data)
4071 {
4072 	struct igc_q_vector *q_vector = data;
4073 
4074 	/* Write the ITR value calculated from the previous interrupt. */
4075 	igc_write_itr(q_vector);
4076 
4077 	napi_schedule(&q_vector->napi);
4078 
4079 	return IRQ_HANDLED;
4080 }
4081 
4082 /**
4083  * igc_request_msix - Initialize MSI-X interrupts
4084  * @adapter: Pointer to adapter structure
4085  *
4086  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4087  * kernel.
4088  */
4089 static int igc_request_msix(struct igc_adapter *adapter)
4090 {
4091 	int i = 0, err = 0, vector = 0, free_vector = 0;
4092 	struct net_device *netdev = adapter->netdev;
4093 
4094 	err = request_irq(adapter->msix_entries[vector].vector,
4095 			  &igc_msix_other, 0, netdev->name, adapter);
4096 	if (err)
4097 		goto err_out;
4098 
4099 	for (i = 0; i < adapter->num_q_vectors; i++) {
4100 		struct igc_q_vector *q_vector = adapter->q_vector[i];
4101 
4102 		vector++;
4103 
4104 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4105 
4106 		if (q_vector->rx.ring && q_vector->tx.ring)
4107 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4108 				q_vector->rx.ring->queue_index);
4109 		else if (q_vector->tx.ring)
4110 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4111 				q_vector->tx.ring->queue_index);
4112 		else if (q_vector->rx.ring)
4113 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4114 				q_vector->rx.ring->queue_index);
4115 		else
4116 			sprintf(q_vector->name, "%s-unused", netdev->name);
4117 
4118 		err = request_irq(adapter->msix_entries[vector].vector,
4119 				  igc_msix_ring, 0, q_vector->name,
4120 				  q_vector);
4121 		if (err)
4122 			goto err_free;
4123 	}
4124 
4125 	igc_configure_msix(adapter);
4126 	return 0;
4127 
4128 err_free:
4129 	/* free already assigned IRQs */
4130 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4131 
4132 	vector--;
4133 	for (i = 0; i < vector; i++) {
4134 		free_irq(adapter->msix_entries[free_vector++].vector,
4135 			 adapter->q_vector[i]);
4136 	}
4137 err_out:
4138 	return err;
4139 }
4140 
4141 /**
4142  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4143  * @adapter: Pointer to adapter structure
4144  *
4145  * This function resets the device so that it has 0 rx queues, tx queues, and
4146  * MSI-X interrupts allocated.
4147  */
4148 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4149 {
4150 	igc_free_q_vectors(adapter);
4151 	igc_reset_interrupt_capability(adapter);
4152 }
4153 
4154 /* Need to wait a few seconds after link up to get diagnostic information from
4155  * the phy
4156  */
4157 static void igc_update_phy_info(struct timer_list *t)
4158 {
4159 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4160 
4161 	igc_get_phy_info(&adapter->hw);
4162 }
4163 
4164 /**
4165  * igc_has_link - check shared code for link and determine up/down
4166  * @adapter: pointer to driver private info
4167  */
4168 bool igc_has_link(struct igc_adapter *adapter)
4169 {
4170 	struct igc_hw *hw = &adapter->hw;
4171 	bool link_active = false;
4172 
4173 	/* get_link_status is set on LSC (link status) interrupt or
4174 	 * rx sequence error interrupt.  get_link_status will stay
4175 	 * false until the igc_check_for_link establishes link
4176 	 * for copper adapters ONLY
4177 	 */
4178 	switch (hw->phy.media_type) {
4179 	case igc_media_type_copper:
4180 		if (!hw->mac.get_link_status)
4181 			return true;
4182 		hw->mac.ops.check_for_link(hw);
4183 		link_active = !hw->mac.get_link_status;
4184 		break;
4185 	default:
4186 	case igc_media_type_unknown:
4187 		break;
4188 	}
4189 
4190 	if (hw->mac.type == igc_i225 &&
4191 	    hw->phy.id == I225_I_PHY_ID) {
4192 		if (!netif_carrier_ok(adapter->netdev)) {
4193 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4194 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4195 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4196 			adapter->link_check_timeout = jiffies;
4197 		}
4198 	}
4199 
4200 	return link_active;
4201 }
4202 
4203 /**
4204  * igc_watchdog - Timer Call-back
4205  * @t: timer for the watchdog
4206  */
4207 static void igc_watchdog(struct timer_list *t)
4208 {
4209 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4210 	/* Do the rest outside of interrupt context */
4211 	schedule_work(&adapter->watchdog_task);
4212 }
4213 
4214 static void igc_watchdog_task(struct work_struct *work)
4215 {
4216 	struct igc_adapter *adapter = container_of(work,
4217 						   struct igc_adapter,
4218 						   watchdog_task);
4219 	struct net_device *netdev = adapter->netdev;
4220 	struct igc_hw *hw = &adapter->hw;
4221 	struct igc_phy_info *phy = &hw->phy;
4222 	u16 phy_data, retry_count = 20;
4223 	u32 link;
4224 	int i;
4225 
4226 	link = igc_has_link(adapter);
4227 
4228 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4229 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4230 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4231 		else
4232 			link = false;
4233 	}
4234 
4235 	if (link) {
4236 		/* Cancel scheduled suspend requests. */
4237 		pm_runtime_resume(netdev->dev.parent);
4238 
4239 		if (!netif_carrier_ok(netdev)) {
4240 			u32 ctrl;
4241 
4242 			hw->mac.ops.get_speed_and_duplex(hw,
4243 							 &adapter->link_speed,
4244 							 &adapter->link_duplex);
4245 
4246 			ctrl = rd32(IGC_CTRL);
4247 			/* Link status message must follow this format */
4248 			netdev_info(netdev,
4249 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4250 				    adapter->link_speed,
4251 				    adapter->link_duplex == FULL_DUPLEX ?
4252 				    "Full" : "Half",
4253 				    (ctrl & IGC_CTRL_TFCE) &&
4254 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4255 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4256 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4257 
4258 			/* check if SmartSpeed worked */
4259 			igc_check_downshift(hw);
4260 			if (phy->speed_downgraded)
4261 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4262 
4263 			/* adjust timeout factor according to speed/duplex */
4264 			adapter->tx_timeout_factor = 1;
4265 			switch (adapter->link_speed) {
4266 			case SPEED_10:
4267 				adapter->tx_timeout_factor = 14;
4268 				break;
4269 			case SPEED_100:
4270 				/* maybe add some timeout factor ? */
4271 				break;
4272 			}
4273 
4274 			if (adapter->link_speed != SPEED_1000)
4275 				goto no_wait;
4276 
4277 			/* wait for Remote receiver status OK */
4278 retry_read_status:
4279 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4280 					      &phy_data)) {
4281 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4282 				    retry_count) {
4283 					msleep(100);
4284 					retry_count--;
4285 					goto retry_read_status;
4286 				} else if (!retry_count) {
4287 					netdev_err(netdev, "exceed max 2 second\n");
4288 				}
4289 			} else {
4290 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
4291 			}
4292 no_wait:
4293 			netif_carrier_on(netdev);
4294 
4295 			/* link state has changed, schedule phy info update */
4296 			if (!test_bit(__IGC_DOWN, &adapter->state))
4297 				mod_timer(&adapter->phy_info_timer,
4298 					  round_jiffies(jiffies + 2 * HZ));
4299 		}
4300 	} else {
4301 		if (netif_carrier_ok(netdev)) {
4302 			adapter->link_speed = 0;
4303 			adapter->link_duplex = 0;
4304 
4305 			/* Links status message must follow this format */
4306 			netdev_info(netdev, "NIC Link is Down\n");
4307 			netif_carrier_off(netdev);
4308 
4309 			/* link state has changed, schedule phy info update */
4310 			if (!test_bit(__IGC_DOWN, &adapter->state))
4311 				mod_timer(&adapter->phy_info_timer,
4312 					  round_jiffies(jiffies + 2 * HZ));
4313 
4314 			/* link is down, time to check for alternate media */
4315 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4316 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4317 					schedule_work(&adapter->reset_task);
4318 					/* return immediately */
4319 					return;
4320 				}
4321 			}
4322 			pm_schedule_suspend(netdev->dev.parent,
4323 					    MSEC_PER_SEC * 5);
4324 
4325 		/* also check for alternate media here */
4326 		} else if (!netif_carrier_ok(netdev) &&
4327 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4328 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4329 				schedule_work(&adapter->reset_task);
4330 				/* return immediately */
4331 				return;
4332 			}
4333 		}
4334 	}
4335 
4336 	spin_lock(&adapter->stats64_lock);
4337 	igc_update_stats(adapter);
4338 	spin_unlock(&adapter->stats64_lock);
4339 
4340 	for (i = 0; i < adapter->num_tx_queues; i++) {
4341 		struct igc_ring *tx_ring = adapter->tx_ring[i];
4342 
4343 		if (!netif_carrier_ok(netdev)) {
4344 			/* We've lost link, so the controller stops DMA,
4345 			 * but we've got queued Tx work that's never going
4346 			 * to get done, so reset controller to flush Tx.
4347 			 * (Do the reset outside of interrupt context).
4348 			 */
4349 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4350 				adapter->tx_timeout_count++;
4351 				schedule_work(&adapter->reset_task);
4352 				/* return immediately since reset is imminent */
4353 				return;
4354 			}
4355 		}
4356 
4357 		/* Force detection of hung controller every watchdog period */
4358 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4359 	}
4360 
4361 	/* Cause software interrupt to ensure Rx ring is cleaned */
4362 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4363 		u32 eics = 0;
4364 
4365 		for (i = 0; i < adapter->num_q_vectors; i++)
4366 			eics |= adapter->q_vector[i]->eims_value;
4367 		wr32(IGC_EICS, eics);
4368 	} else {
4369 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
4370 	}
4371 
4372 	igc_ptp_tx_hang(adapter);
4373 
4374 	/* Reset the timer */
4375 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4376 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4377 			mod_timer(&adapter->watchdog_timer,
4378 				  round_jiffies(jiffies +  HZ));
4379 		else
4380 			mod_timer(&adapter->watchdog_timer,
4381 				  round_jiffies(jiffies + 2 * HZ));
4382 	}
4383 }
4384 
4385 /**
4386  * igc_intr_msi - Interrupt Handler
4387  * @irq: interrupt number
4388  * @data: pointer to a network interface device structure
4389  */
4390 static irqreturn_t igc_intr_msi(int irq, void *data)
4391 {
4392 	struct igc_adapter *adapter = data;
4393 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4394 	struct igc_hw *hw = &adapter->hw;
4395 	/* read ICR disables interrupts using IAM */
4396 	u32 icr = rd32(IGC_ICR);
4397 
4398 	igc_write_itr(q_vector);
4399 
4400 	if (icr & IGC_ICR_DRSTA)
4401 		schedule_work(&adapter->reset_task);
4402 
4403 	if (icr & IGC_ICR_DOUTSYNC) {
4404 		/* HW is reporting DMA is out of sync */
4405 		adapter->stats.doosync++;
4406 	}
4407 
4408 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4409 		hw->mac.get_link_status = 1;
4410 		if (!test_bit(__IGC_DOWN, &adapter->state))
4411 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4412 	}
4413 
4414 	napi_schedule(&q_vector->napi);
4415 
4416 	return IRQ_HANDLED;
4417 }
4418 
4419 /**
4420  * igc_intr - Legacy Interrupt Handler
4421  * @irq: interrupt number
4422  * @data: pointer to a network interface device structure
4423  */
4424 static irqreturn_t igc_intr(int irq, void *data)
4425 {
4426 	struct igc_adapter *adapter = data;
4427 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4428 	struct igc_hw *hw = &adapter->hw;
4429 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4430 	 * need for the IMC write
4431 	 */
4432 	u32 icr = rd32(IGC_ICR);
4433 
4434 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4435 	 * not set, then the adapter didn't send an interrupt
4436 	 */
4437 	if (!(icr & IGC_ICR_INT_ASSERTED))
4438 		return IRQ_NONE;
4439 
4440 	igc_write_itr(q_vector);
4441 
4442 	if (icr & IGC_ICR_DRSTA)
4443 		schedule_work(&adapter->reset_task);
4444 
4445 	if (icr & IGC_ICR_DOUTSYNC) {
4446 		/* HW is reporting DMA is out of sync */
4447 		adapter->stats.doosync++;
4448 	}
4449 
4450 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4451 		hw->mac.get_link_status = 1;
4452 		/* guard against interrupt when we're going down */
4453 		if (!test_bit(__IGC_DOWN, &adapter->state))
4454 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4455 	}
4456 
4457 	napi_schedule(&q_vector->napi);
4458 
4459 	return IRQ_HANDLED;
4460 }
4461 
4462 static void igc_free_irq(struct igc_adapter *adapter)
4463 {
4464 	if (adapter->msix_entries) {
4465 		int vector = 0, i;
4466 
4467 		free_irq(adapter->msix_entries[vector++].vector, adapter);
4468 
4469 		for (i = 0; i < adapter->num_q_vectors; i++)
4470 			free_irq(adapter->msix_entries[vector++].vector,
4471 				 adapter->q_vector[i]);
4472 	} else {
4473 		free_irq(adapter->pdev->irq, adapter);
4474 	}
4475 }
4476 
4477 /**
4478  * igc_request_irq - initialize interrupts
4479  * @adapter: Pointer to adapter structure
4480  *
4481  * Attempts to configure interrupts using the best available
4482  * capabilities of the hardware and kernel.
4483  */
4484 static int igc_request_irq(struct igc_adapter *adapter)
4485 {
4486 	struct net_device *netdev = adapter->netdev;
4487 	struct pci_dev *pdev = adapter->pdev;
4488 	int err = 0;
4489 
4490 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4491 		err = igc_request_msix(adapter);
4492 		if (!err)
4493 			goto request_done;
4494 		/* fall back to MSI */
4495 		igc_free_all_tx_resources(adapter);
4496 		igc_free_all_rx_resources(adapter);
4497 
4498 		igc_clear_interrupt_scheme(adapter);
4499 		err = igc_init_interrupt_scheme(adapter, false);
4500 		if (err)
4501 			goto request_done;
4502 		igc_setup_all_tx_resources(adapter);
4503 		igc_setup_all_rx_resources(adapter);
4504 		igc_configure(adapter);
4505 	}
4506 
4507 	igc_assign_vector(adapter->q_vector[0], 0);
4508 
4509 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
4510 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
4511 				  netdev->name, adapter);
4512 		if (!err)
4513 			goto request_done;
4514 
4515 		/* fall back to legacy interrupts */
4516 		igc_reset_interrupt_capability(adapter);
4517 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
4518 	}
4519 
4520 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4521 			  netdev->name, adapter);
4522 
4523 	if (err)
4524 		netdev_err(netdev, "Error %d getting interrupt\n", err);
4525 
4526 request_done:
4527 	return err;
4528 }
4529 
4530 /**
4531  * __igc_open - Called when a network interface is made active
4532  * @netdev: network interface device structure
4533  * @resuming: boolean indicating if the device is resuming
4534  *
4535  * Returns 0 on success, negative value on failure
4536  *
4537  * The open entry point is called when a network interface is made
4538  * active by the system (IFF_UP).  At this point all resources needed
4539  * for transmit and receive operations are allocated, the interrupt
4540  * handler is registered with the OS, the watchdog timer is started,
4541  * and the stack is notified that the interface is ready.
4542  */
4543 static int __igc_open(struct net_device *netdev, bool resuming)
4544 {
4545 	struct igc_adapter *adapter = netdev_priv(netdev);
4546 	struct pci_dev *pdev = adapter->pdev;
4547 	struct igc_hw *hw = &adapter->hw;
4548 	int err = 0;
4549 	int i = 0;
4550 
4551 	/* disallow open during test */
4552 
4553 	if (test_bit(__IGC_TESTING, &adapter->state)) {
4554 		WARN_ON(resuming);
4555 		return -EBUSY;
4556 	}
4557 
4558 	if (!resuming)
4559 		pm_runtime_get_sync(&pdev->dev);
4560 
4561 	netif_carrier_off(netdev);
4562 
4563 	/* allocate transmit descriptors */
4564 	err = igc_setup_all_tx_resources(adapter);
4565 	if (err)
4566 		goto err_setup_tx;
4567 
4568 	/* allocate receive descriptors */
4569 	err = igc_setup_all_rx_resources(adapter);
4570 	if (err)
4571 		goto err_setup_rx;
4572 
4573 	igc_power_up_link(adapter);
4574 
4575 	igc_configure(adapter);
4576 
4577 	err = igc_request_irq(adapter);
4578 	if (err)
4579 		goto err_req_irq;
4580 
4581 	/* Notify the stack of the actual queue counts. */
4582 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4583 	if (err)
4584 		goto err_set_queues;
4585 
4586 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4587 	if (err)
4588 		goto err_set_queues;
4589 
4590 	clear_bit(__IGC_DOWN, &adapter->state);
4591 
4592 	for (i = 0; i < adapter->num_q_vectors; i++)
4593 		napi_enable(&adapter->q_vector[i]->napi);
4594 
4595 	/* Clear any pending interrupts. */
4596 	rd32(IGC_ICR);
4597 	igc_irq_enable(adapter);
4598 
4599 	if (!resuming)
4600 		pm_runtime_put(&pdev->dev);
4601 
4602 	netif_tx_start_all_queues(netdev);
4603 
4604 	/* start the watchdog. */
4605 	hw->mac.get_link_status = 1;
4606 	schedule_work(&adapter->watchdog_task);
4607 
4608 	return IGC_SUCCESS;
4609 
4610 err_set_queues:
4611 	igc_free_irq(adapter);
4612 err_req_irq:
4613 	igc_release_hw_control(adapter);
4614 	igc_power_down_link(adapter);
4615 	igc_free_all_rx_resources(adapter);
4616 err_setup_rx:
4617 	igc_free_all_tx_resources(adapter);
4618 err_setup_tx:
4619 	igc_reset(adapter);
4620 	if (!resuming)
4621 		pm_runtime_put(&pdev->dev);
4622 
4623 	return err;
4624 }
4625 
4626 int igc_open(struct net_device *netdev)
4627 {
4628 	return __igc_open(netdev, false);
4629 }
4630 
4631 /**
4632  * __igc_close - Disables a network interface
4633  * @netdev: network interface device structure
4634  * @suspending: boolean indicating the device is suspending
4635  *
4636  * Returns 0, this is not allowed to fail
4637  *
4638  * The close entry point is called when an interface is de-activated
4639  * by the OS.  The hardware is still under the driver's control, but
4640  * needs to be disabled.  A global MAC reset is issued to stop the
4641  * hardware, and all transmit and receive resources are freed.
4642  */
4643 static int __igc_close(struct net_device *netdev, bool suspending)
4644 {
4645 	struct igc_adapter *adapter = netdev_priv(netdev);
4646 	struct pci_dev *pdev = adapter->pdev;
4647 
4648 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4649 
4650 	if (!suspending)
4651 		pm_runtime_get_sync(&pdev->dev);
4652 
4653 	igc_down(adapter);
4654 
4655 	igc_release_hw_control(adapter);
4656 
4657 	igc_free_irq(adapter);
4658 
4659 	igc_free_all_tx_resources(adapter);
4660 	igc_free_all_rx_resources(adapter);
4661 
4662 	if (!suspending)
4663 		pm_runtime_put_sync(&pdev->dev);
4664 
4665 	return 0;
4666 }
4667 
4668 int igc_close(struct net_device *netdev)
4669 {
4670 	if (netif_device_present(netdev) || netdev->dismantle)
4671 		return __igc_close(netdev, false);
4672 	return 0;
4673 }
4674 
4675 /**
4676  * igc_ioctl - Access the hwtstamp interface
4677  * @netdev: network interface device structure
4678  * @ifreq: interface request data
4679  * @cmd: ioctl command
4680  **/
4681 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4682 {
4683 	switch (cmd) {
4684 	case SIOCGHWTSTAMP:
4685 		return igc_ptp_get_ts_config(netdev, ifr);
4686 	case SIOCSHWTSTAMP:
4687 		return igc_ptp_set_ts_config(netdev, ifr);
4688 	default:
4689 		return -EOPNOTSUPP;
4690 	}
4691 }
4692 
4693 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4694 				      bool enable)
4695 {
4696 	struct igc_ring *ring;
4697 	int i;
4698 
4699 	if (queue < 0 || queue >= adapter->num_tx_queues)
4700 		return -EINVAL;
4701 
4702 	ring = adapter->tx_ring[queue];
4703 	ring->launchtime_enable = enable;
4704 
4705 	if (adapter->base_time)
4706 		return 0;
4707 
4708 	adapter->cycle_time = NSEC_PER_SEC;
4709 
4710 	for (i = 0; i < adapter->num_tx_queues; i++) {
4711 		ring = adapter->tx_ring[i];
4712 		ring->start_time = 0;
4713 		ring->end_time = NSEC_PER_SEC;
4714 	}
4715 
4716 	return 0;
4717 }
4718 
4719 static bool validate_schedule(const struct tc_taprio_qopt_offload *qopt)
4720 {
4721 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
4722 	size_t n;
4723 
4724 	if (qopt->cycle_time_extension)
4725 		return false;
4726 
4727 	for (n = 0; n < qopt->num_entries; n++) {
4728 		const struct tc_taprio_sched_entry *e;
4729 		int i;
4730 
4731 		e = &qopt->entries[n];
4732 
4733 		/* i225 only supports "global" frame preemption
4734 		 * settings.
4735 		 */
4736 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
4737 			return false;
4738 
4739 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4740 			if (e->gate_mask & BIT(i))
4741 				queue_uses[i]++;
4742 
4743 			if (queue_uses[i] > 1)
4744 				return false;
4745 		}
4746 	}
4747 
4748 	return true;
4749 }
4750 
4751 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4752 				     struct tc_etf_qopt_offload *qopt)
4753 {
4754 	struct igc_hw *hw = &adapter->hw;
4755 	int err;
4756 
4757 	if (hw->mac.type != igc_i225)
4758 		return -EOPNOTSUPP;
4759 
4760 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4761 	if (err)
4762 		return err;
4763 
4764 	return igc_tsn_offload_apply(adapter);
4765 }
4766 
4767 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4768 				 struct tc_taprio_qopt_offload *qopt)
4769 {
4770 	u32 start_time = 0, end_time = 0;
4771 	size_t n;
4772 
4773 	if (!qopt->enable) {
4774 		adapter->base_time = 0;
4775 		return 0;
4776 	}
4777 
4778 	if (adapter->base_time)
4779 		return -EALREADY;
4780 
4781 	if (!validate_schedule(qopt))
4782 		return -EINVAL;
4783 
4784 	adapter->cycle_time = qopt->cycle_time;
4785 	adapter->base_time = qopt->base_time;
4786 
4787 	/* FIXME: be a little smarter about cases when the gate for a
4788 	 * queue stays open for more than one entry.
4789 	 */
4790 	for (n = 0; n < qopt->num_entries; n++) {
4791 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
4792 		int i;
4793 
4794 		end_time += e->interval;
4795 
4796 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4797 			struct igc_ring *ring = adapter->tx_ring[i];
4798 
4799 			if (!(e->gate_mask & BIT(i)))
4800 				continue;
4801 
4802 			ring->start_time = start_time;
4803 			ring->end_time = end_time;
4804 		}
4805 
4806 		start_time += e->interval;
4807 	}
4808 
4809 	return 0;
4810 }
4811 
4812 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4813 					 struct tc_taprio_qopt_offload *qopt)
4814 {
4815 	struct igc_hw *hw = &adapter->hw;
4816 	int err;
4817 
4818 	if (hw->mac.type != igc_i225)
4819 		return -EOPNOTSUPP;
4820 
4821 	err = igc_save_qbv_schedule(adapter, qopt);
4822 	if (err)
4823 		return err;
4824 
4825 	return igc_tsn_offload_apply(adapter);
4826 }
4827 
4828 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4829 			void *type_data)
4830 {
4831 	struct igc_adapter *adapter = netdev_priv(dev);
4832 
4833 	switch (type) {
4834 	case TC_SETUP_QDISC_TAPRIO:
4835 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4836 
4837 	case TC_SETUP_QDISC_ETF:
4838 		return igc_tsn_enable_launchtime(adapter, type_data);
4839 
4840 	default:
4841 		return -EOPNOTSUPP;
4842 	}
4843 }
4844 
4845 static const struct net_device_ops igc_netdev_ops = {
4846 	.ndo_open		= igc_open,
4847 	.ndo_stop		= igc_close,
4848 	.ndo_start_xmit		= igc_xmit_frame,
4849 	.ndo_set_rx_mode	= igc_set_rx_mode,
4850 	.ndo_set_mac_address	= igc_set_mac,
4851 	.ndo_change_mtu		= igc_change_mtu,
4852 	.ndo_get_stats		= igc_get_stats,
4853 	.ndo_fix_features	= igc_fix_features,
4854 	.ndo_set_features	= igc_set_features,
4855 	.ndo_features_check	= igc_features_check,
4856 	.ndo_do_ioctl		= igc_ioctl,
4857 	.ndo_setup_tc		= igc_setup_tc,
4858 };
4859 
4860 /* PCIe configuration access */
4861 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4862 {
4863 	struct igc_adapter *adapter = hw->back;
4864 
4865 	pci_read_config_word(adapter->pdev, reg, value);
4866 }
4867 
4868 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4869 {
4870 	struct igc_adapter *adapter = hw->back;
4871 
4872 	pci_write_config_word(adapter->pdev, reg, *value);
4873 }
4874 
4875 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4876 {
4877 	struct igc_adapter *adapter = hw->back;
4878 
4879 	if (!pci_is_pcie(adapter->pdev))
4880 		return -IGC_ERR_CONFIG;
4881 
4882 	pcie_capability_read_word(adapter->pdev, reg, value);
4883 
4884 	return IGC_SUCCESS;
4885 }
4886 
4887 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4888 {
4889 	struct igc_adapter *adapter = hw->back;
4890 
4891 	if (!pci_is_pcie(adapter->pdev))
4892 		return -IGC_ERR_CONFIG;
4893 
4894 	pcie_capability_write_word(adapter->pdev, reg, *value);
4895 
4896 	return IGC_SUCCESS;
4897 }
4898 
4899 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4900 {
4901 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4902 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4903 	u32 value = 0;
4904 
4905 	value = readl(&hw_addr[reg]);
4906 
4907 	/* reads should not return all F's */
4908 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4909 		struct net_device *netdev = igc->netdev;
4910 
4911 		hw->hw_addr = NULL;
4912 		netif_device_detach(netdev);
4913 		netdev_err(netdev, "PCIe link lost, device now detached\n");
4914 		WARN(pci_device_is_present(igc->pdev),
4915 		     "igc: Failed to read reg 0x%x!\n", reg);
4916 	}
4917 
4918 	return value;
4919 }
4920 
4921 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4922 {
4923 	struct igc_mac_info *mac = &adapter->hw.mac;
4924 
4925 	mac->autoneg = 0;
4926 
4927 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4928 	 * for the switch() below to work
4929 	 */
4930 	if ((spd & 1) || (dplx & ~1))
4931 		goto err_inval;
4932 
4933 	switch (spd + dplx) {
4934 	case SPEED_10 + DUPLEX_HALF:
4935 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4936 		break;
4937 	case SPEED_10 + DUPLEX_FULL:
4938 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4939 		break;
4940 	case SPEED_100 + DUPLEX_HALF:
4941 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4942 		break;
4943 	case SPEED_100 + DUPLEX_FULL:
4944 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4945 		break;
4946 	case SPEED_1000 + DUPLEX_FULL:
4947 		mac->autoneg = 1;
4948 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4949 		break;
4950 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4951 		goto err_inval;
4952 	case SPEED_2500 + DUPLEX_FULL:
4953 		mac->autoneg = 1;
4954 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4955 		break;
4956 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
4957 	default:
4958 		goto err_inval;
4959 	}
4960 
4961 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4962 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
4963 
4964 	return 0;
4965 
4966 err_inval:
4967 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
4968 	return -EINVAL;
4969 }
4970 
4971 /**
4972  * igc_probe - Device Initialization Routine
4973  * @pdev: PCI device information struct
4974  * @ent: entry in igc_pci_tbl
4975  *
4976  * Returns 0 on success, negative on failure
4977  *
4978  * igc_probe initializes an adapter identified by a pci_dev structure.
4979  * The OS initialization, configuring the adapter private structure,
4980  * and a hardware reset occur.
4981  */
4982 static int igc_probe(struct pci_dev *pdev,
4983 		     const struct pci_device_id *ent)
4984 {
4985 	struct igc_adapter *adapter;
4986 	struct net_device *netdev;
4987 	struct igc_hw *hw;
4988 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4989 	int err, pci_using_dac;
4990 
4991 	err = pci_enable_device_mem(pdev);
4992 	if (err)
4993 		return err;
4994 
4995 	pci_using_dac = 0;
4996 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4997 	if (!err) {
4998 		pci_using_dac = 1;
4999 	} else {
5000 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5001 		if (err) {
5002 			dev_err(&pdev->dev,
5003 				"No usable DMA configuration, aborting\n");
5004 			goto err_dma;
5005 		}
5006 	}
5007 
5008 	err = pci_request_mem_regions(pdev, igc_driver_name);
5009 	if (err)
5010 		goto err_pci_reg;
5011 
5012 	pci_enable_pcie_error_reporting(pdev);
5013 
5014 	pci_set_master(pdev);
5015 
5016 	err = -ENOMEM;
5017 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5018 				   IGC_MAX_TX_QUEUES);
5019 
5020 	if (!netdev)
5021 		goto err_alloc_etherdev;
5022 
5023 	SET_NETDEV_DEV(netdev, &pdev->dev);
5024 
5025 	pci_set_drvdata(pdev, netdev);
5026 	adapter = netdev_priv(netdev);
5027 	adapter->netdev = netdev;
5028 	adapter->pdev = pdev;
5029 	hw = &adapter->hw;
5030 	hw->back = adapter;
5031 	adapter->port_num = hw->bus.func;
5032 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5033 
5034 	err = pci_save_state(pdev);
5035 	if (err)
5036 		goto err_ioremap;
5037 
5038 	err = -EIO;
5039 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5040 				   pci_resource_len(pdev, 0));
5041 	if (!adapter->io_addr)
5042 		goto err_ioremap;
5043 
5044 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5045 	hw->hw_addr = adapter->io_addr;
5046 
5047 	netdev->netdev_ops = &igc_netdev_ops;
5048 	igc_ethtool_set_ops(netdev);
5049 	netdev->watchdog_timeo = 5 * HZ;
5050 
5051 	netdev->mem_start = pci_resource_start(pdev, 0);
5052 	netdev->mem_end = pci_resource_end(pdev, 0);
5053 
5054 	/* PCI config space info */
5055 	hw->vendor_id = pdev->vendor;
5056 	hw->device_id = pdev->device;
5057 	hw->revision_id = pdev->revision;
5058 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5059 	hw->subsystem_device_id = pdev->subsystem_device;
5060 
5061 	/* Copy the default MAC and PHY function pointers */
5062 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5063 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5064 
5065 	/* Initialize skew-specific constants */
5066 	err = ei->get_invariants(hw);
5067 	if (err)
5068 		goto err_sw_init;
5069 
5070 	/* Add supported features to the features list*/
5071 	netdev->features |= NETIF_F_SG;
5072 	netdev->features |= NETIF_F_TSO;
5073 	netdev->features |= NETIF_F_TSO6;
5074 	netdev->features |= NETIF_F_TSO_ECN;
5075 	netdev->features |= NETIF_F_RXCSUM;
5076 	netdev->features |= NETIF_F_HW_CSUM;
5077 	netdev->features |= NETIF_F_SCTP_CRC;
5078 	netdev->features |= NETIF_F_HW_TC;
5079 
5080 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5081 				  NETIF_F_GSO_GRE_CSUM | \
5082 				  NETIF_F_GSO_IPXIP4 | \
5083 				  NETIF_F_GSO_IPXIP6 | \
5084 				  NETIF_F_GSO_UDP_TUNNEL | \
5085 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5086 
5087 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5088 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5089 
5090 	/* setup the private structure */
5091 	err = igc_sw_init(adapter);
5092 	if (err)
5093 		goto err_sw_init;
5094 
5095 	/* copy netdev features into list of user selectable features */
5096 	netdev->hw_features |= NETIF_F_NTUPLE;
5097 	netdev->hw_features |= netdev->features;
5098 
5099 	if (pci_using_dac)
5100 		netdev->features |= NETIF_F_HIGHDMA;
5101 
5102 	/* MTU range: 68 - 9216 */
5103 	netdev->min_mtu = ETH_MIN_MTU;
5104 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5105 
5106 	/* before reading the NVM, reset the controller to put the device in a
5107 	 * known good starting state
5108 	 */
5109 	hw->mac.ops.reset_hw(hw);
5110 
5111 	if (igc_get_flash_presence_i225(hw)) {
5112 		if (hw->nvm.ops.validate(hw) < 0) {
5113 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5114 			err = -EIO;
5115 			goto err_eeprom;
5116 		}
5117 	}
5118 
5119 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5120 		/* copy the MAC address out of the NVM */
5121 		if (hw->mac.ops.read_mac_addr(hw))
5122 			dev_err(&pdev->dev, "NVM Read Error\n");
5123 	}
5124 
5125 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5126 
5127 	if (!is_valid_ether_addr(netdev->dev_addr)) {
5128 		dev_err(&pdev->dev, "Invalid MAC Address\n");
5129 		err = -EIO;
5130 		goto err_eeprom;
5131 	}
5132 
5133 	/* configure RXPBSIZE and TXPBSIZE */
5134 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5135 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5136 
5137 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5138 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5139 
5140 	INIT_WORK(&adapter->reset_task, igc_reset_task);
5141 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5142 
5143 	/* Initialize link properties that are user-changeable */
5144 	adapter->fc_autoneg = true;
5145 	hw->mac.autoneg = true;
5146 	hw->phy.autoneg_advertised = 0xaf;
5147 
5148 	hw->fc.requested_mode = igc_fc_default;
5149 	hw->fc.current_mode = igc_fc_default;
5150 
5151 	/* By default, support wake on port A */
5152 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5153 
5154 	/* initialize the wol settings based on the eeprom settings */
5155 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5156 		adapter->wol |= IGC_WUFC_MAG;
5157 
5158 	device_set_wakeup_enable(&adapter->pdev->dev,
5159 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5160 
5161 	/* reset the hardware with the new settings */
5162 	igc_reset(adapter);
5163 
5164 	/* let the f/w know that the h/w is now under the control of the
5165 	 * driver.
5166 	 */
5167 	igc_get_hw_control(adapter);
5168 
5169 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
5170 	err = register_netdev(netdev);
5171 	if (err)
5172 		goto err_register;
5173 
5174 	 /* carrier off reporting is important to ethtool even BEFORE open */
5175 	netif_carrier_off(netdev);
5176 
5177 	/* do hw tstamp init after resetting */
5178 	igc_ptp_init(adapter);
5179 
5180 	/* Check if Media Autosense is enabled */
5181 	adapter->ei = *ei;
5182 
5183 	/* print pcie link status and MAC address */
5184 	pcie_print_link_status(pdev);
5185 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5186 
5187 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5188 
5189 	pm_runtime_put_noidle(&pdev->dev);
5190 
5191 	return 0;
5192 
5193 err_register:
5194 	igc_release_hw_control(adapter);
5195 err_eeprom:
5196 	if (!igc_check_reset_block(hw))
5197 		igc_reset_phy(hw);
5198 err_sw_init:
5199 	igc_clear_interrupt_scheme(adapter);
5200 	iounmap(adapter->io_addr);
5201 err_ioremap:
5202 	free_netdev(netdev);
5203 err_alloc_etherdev:
5204 	pci_release_mem_regions(pdev);
5205 err_pci_reg:
5206 err_dma:
5207 	pci_disable_device(pdev);
5208 	return err;
5209 }
5210 
5211 /**
5212  * igc_remove - Device Removal Routine
5213  * @pdev: PCI device information struct
5214  *
5215  * igc_remove is called by the PCI subsystem to alert the driver
5216  * that it should release a PCI device.  This could be caused by a
5217  * Hot-Plug event, or because the driver is going to be removed from
5218  * memory.
5219  */
5220 static void igc_remove(struct pci_dev *pdev)
5221 {
5222 	struct net_device *netdev = pci_get_drvdata(pdev);
5223 	struct igc_adapter *adapter = netdev_priv(netdev);
5224 
5225 	pm_runtime_get_noresume(&pdev->dev);
5226 
5227 	igc_flush_nfc_rules(adapter);
5228 
5229 	igc_ptp_stop(adapter);
5230 
5231 	set_bit(__IGC_DOWN, &adapter->state);
5232 
5233 	del_timer_sync(&adapter->watchdog_timer);
5234 	del_timer_sync(&adapter->phy_info_timer);
5235 
5236 	cancel_work_sync(&adapter->reset_task);
5237 	cancel_work_sync(&adapter->watchdog_task);
5238 
5239 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5240 	 * would have already happened in close and is redundant.
5241 	 */
5242 	igc_release_hw_control(adapter);
5243 	unregister_netdev(netdev);
5244 
5245 	igc_clear_interrupt_scheme(adapter);
5246 	pci_iounmap(pdev, adapter->io_addr);
5247 	pci_release_mem_regions(pdev);
5248 
5249 	free_netdev(netdev);
5250 
5251 	pci_disable_pcie_error_reporting(pdev);
5252 
5253 	pci_disable_device(pdev);
5254 }
5255 
5256 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5257 			  bool runtime)
5258 {
5259 	struct net_device *netdev = pci_get_drvdata(pdev);
5260 	struct igc_adapter *adapter = netdev_priv(netdev);
5261 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5262 	struct igc_hw *hw = &adapter->hw;
5263 	u32 ctrl, rctl, status;
5264 	bool wake;
5265 
5266 	rtnl_lock();
5267 	netif_device_detach(netdev);
5268 
5269 	if (netif_running(netdev))
5270 		__igc_close(netdev, true);
5271 
5272 	igc_ptp_suspend(adapter);
5273 
5274 	igc_clear_interrupt_scheme(adapter);
5275 	rtnl_unlock();
5276 
5277 	status = rd32(IGC_STATUS);
5278 	if (status & IGC_STATUS_LU)
5279 		wufc &= ~IGC_WUFC_LNKC;
5280 
5281 	if (wufc) {
5282 		igc_setup_rctl(adapter);
5283 		igc_set_rx_mode(netdev);
5284 
5285 		/* turn on all-multi mode if wake on multicast is enabled */
5286 		if (wufc & IGC_WUFC_MC) {
5287 			rctl = rd32(IGC_RCTL);
5288 			rctl |= IGC_RCTL_MPE;
5289 			wr32(IGC_RCTL, rctl);
5290 		}
5291 
5292 		ctrl = rd32(IGC_CTRL);
5293 		ctrl |= IGC_CTRL_ADVD3WUC;
5294 		wr32(IGC_CTRL, ctrl);
5295 
5296 		/* Allow time for pending master requests to run */
5297 		igc_disable_pcie_master(hw);
5298 
5299 		wr32(IGC_WUC, IGC_WUC_PME_EN);
5300 		wr32(IGC_WUFC, wufc);
5301 	} else {
5302 		wr32(IGC_WUC, 0);
5303 		wr32(IGC_WUFC, 0);
5304 	}
5305 
5306 	wake = wufc || adapter->en_mng_pt;
5307 	if (!wake)
5308 		igc_power_down_link(adapter);
5309 	else
5310 		igc_power_up_link(adapter);
5311 
5312 	if (enable_wake)
5313 		*enable_wake = wake;
5314 
5315 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5316 	 * would have already happened in close and is redundant.
5317 	 */
5318 	igc_release_hw_control(adapter);
5319 
5320 	pci_disable_device(pdev);
5321 
5322 	return 0;
5323 }
5324 
5325 #ifdef CONFIG_PM
5326 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5327 {
5328 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5329 }
5330 
5331 static void igc_deliver_wake_packet(struct net_device *netdev)
5332 {
5333 	struct igc_adapter *adapter = netdev_priv(netdev);
5334 	struct igc_hw *hw = &adapter->hw;
5335 	struct sk_buff *skb;
5336 	u32 wupl;
5337 
5338 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5339 
5340 	/* WUPM stores only the first 128 bytes of the wake packet.
5341 	 * Read the packet only if we have the whole thing.
5342 	 */
5343 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5344 		return;
5345 
5346 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5347 	if (!skb)
5348 		return;
5349 
5350 	skb_put(skb, wupl);
5351 
5352 	/* Ensure reads are 32-bit aligned */
5353 	wupl = roundup(wupl, 4);
5354 
5355 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5356 
5357 	skb->protocol = eth_type_trans(skb, netdev);
5358 	netif_rx(skb);
5359 }
5360 
5361 static int __maybe_unused igc_resume(struct device *dev)
5362 {
5363 	struct pci_dev *pdev = to_pci_dev(dev);
5364 	struct net_device *netdev = pci_get_drvdata(pdev);
5365 	struct igc_adapter *adapter = netdev_priv(netdev);
5366 	struct igc_hw *hw = &adapter->hw;
5367 	u32 err, val;
5368 
5369 	pci_set_power_state(pdev, PCI_D0);
5370 	pci_restore_state(pdev);
5371 	pci_save_state(pdev);
5372 
5373 	if (!pci_device_is_present(pdev))
5374 		return -ENODEV;
5375 	err = pci_enable_device_mem(pdev);
5376 	if (err) {
5377 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5378 		return err;
5379 	}
5380 	pci_set_master(pdev);
5381 
5382 	pci_enable_wake(pdev, PCI_D3hot, 0);
5383 	pci_enable_wake(pdev, PCI_D3cold, 0);
5384 
5385 	if (igc_init_interrupt_scheme(adapter, true)) {
5386 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5387 		return -ENOMEM;
5388 	}
5389 
5390 	igc_reset(adapter);
5391 
5392 	/* let the f/w know that the h/w is now under the control of the
5393 	 * driver.
5394 	 */
5395 	igc_get_hw_control(adapter);
5396 
5397 	val = rd32(IGC_WUS);
5398 	if (val & WAKE_PKT_WUS)
5399 		igc_deliver_wake_packet(netdev);
5400 
5401 	wr32(IGC_WUS, ~0);
5402 
5403 	rtnl_lock();
5404 	if (!err && netif_running(netdev))
5405 		err = __igc_open(netdev, true);
5406 
5407 	if (!err)
5408 		netif_device_attach(netdev);
5409 	rtnl_unlock();
5410 
5411 	return err;
5412 }
5413 
5414 static int __maybe_unused igc_runtime_resume(struct device *dev)
5415 {
5416 	return igc_resume(dev);
5417 }
5418 
5419 static int __maybe_unused igc_suspend(struct device *dev)
5420 {
5421 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5422 }
5423 
5424 static int __maybe_unused igc_runtime_idle(struct device *dev)
5425 {
5426 	struct net_device *netdev = dev_get_drvdata(dev);
5427 	struct igc_adapter *adapter = netdev_priv(netdev);
5428 
5429 	if (!igc_has_link(adapter))
5430 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5431 
5432 	return -EBUSY;
5433 }
5434 #endif /* CONFIG_PM */
5435 
5436 static void igc_shutdown(struct pci_dev *pdev)
5437 {
5438 	bool wake;
5439 
5440 	__igc_shutdown(pdev, &wake, 0);
5441 
5442 	if (system_state == SYSTEM_POWER_OFF) {
5443 		pci_wake_from_d3(pdev, wake);
5444 		pci_set_power_state(pdev, PCI_D3hot);
5445 	}
5446 }
5447 
5448 /**
5449  *  igc_io_error_detected - called when PCI error is detected
5450  *  @pdev: Pointer to PCI device
5451  *  @state: The current PCI connection state
5452  *
5453  *  This function is called after a PCI bus error affecting
5454  *  this device has been detected.
5455  **/
5456 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5457 					      pci_channel_state_t state)
5458 {
5459 	struct net_device *netdev = pci_get_drvdata(pdev);
5460 	struct igc_adapter *adapter = netdev_priv(netdev);
5461 
5462 	netif_device_detach(netdev);
5463 
5464 	if (state == pci_channel_io_perm_failure)
5465 		return PCI_ERS_RESULT_DISCONNECT;
5466 
5467 	if (netif_running(netdev))
5468 		igc_down(adapter);
5469 	pci_disable_device(pdev);
5470 
5471 	/* Request a slot reset. */
5472 	return PCI_ERS_RESULT_NEED_RESET;
5473 }
5474 
5475 /**
5476  *  igc_io_slot_reset - called after the PCI bus has been reset.
5477  *  @pdev: Pointer to PCI device
5478  *
5479  *  Restart the card from scratch, as if from a cold-boot. Implementation
5480  *  resembles the first-half of the igc_resume routine.
5481  **/
5482 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5483 {
5484 	struct net_device *netdev = pci_get_drvdata(pdev);
5485 	struct igc_adapter *adapter = netdev_priv(netdev);
5486 	struct igc_hw *hw = &adapter->hw;
5487 	pci_ers_result_t result;
5488 
5489 	if (pci_enable_device_mem(pdev)) {
5490 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5491 		result = PCI_ERS_RESULT_DISCONNECT;
5492 	} else {
5493 		pci_set_master(pdev);
5494 		pci_restore_state(pdev);
5495 		pci_save_state(pdev);
5496 
5497 		pci_enable_wake(pdev, PCI_D3hot, 0);
5498 		pci_enable_wake(pdev, PCI_D3cold, 0);
5499 
5500 		/* In case of PCI error, adapter loses its HW address
5501 		 * so we should re-assign it here.
5502 		 */
5503 		hw->hw_addr = adapter->io_addr;
5504 
5505 		igc_reset(adapter);
5506 		wr32(IGC_WUS, ~0);
5507 		result = PCI_ERS_RESULT_RECOVERED;
5508 	}
5509 
5510 	return result;
5511 }
5512 
5513 /**
5514  *  igc_io_resume - called when traffic can start to flow again.
5515  *  @pdev: Pointer to PCI device
5516  *
5517  *  This callback is called when the error recovery driver tells us that
5518  *  its OK to resume normal operation. Implementation resembles the
5519  *  second-half of the igc_resume routine.
5520  */
5521 static void igc_io_resume(struct pci_dev *pdev)
5522 {
5523 	struct net_device *netdev = pci_get_drvdata(pdev);
5524 	struct igc_adapter *adapter = netdev_priv(netdev);
5525 
5526 	rtnl_lock();
5527 	if (netif_running(netdev)) {
5528 		if (igc_open(netdev)) {
5529 			netdev_err(netdev, "igc_open failed after reset\n");
5530 			return;
5531 		}
5532 	}
5533 
5534 	netif_device_attach(netdev);
5535 
5536 	/* let the f/w know that the h/w is now under the control of the
5537 	 * driver.
5538 	 */
5539 	igc_get_hw_control(adapter);
5540 	rtnl_unlock();
5541 }
5542 
5543 static const struct pci_error_handlers igc_err_handler = {
5544 	.error_detected = igc_io_error_detected,
5545 	.slot_reset = igc_io_slot_reset,
5546 	.resume = igc_io_resume,
5547 };
5548 
5549 #ifdef CONFIG_PM
5550 static const struct dev_pm_ops igc_pm_ops = {
5551 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5552 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5553 			   igc_runtime_idle)
5554 };
5555 #endif
5556 
5557 static struct pci_driver igc_driver = {
5558 	.name     = igc_driver_name,
5559 	.id_table = igc_pci_tbl,
5560 	.probe    = igc_probe,
5561 	.remove   = igc_remove,
5562 #ifdef CONFIG_PM
5563 	.driver.pm = &igc_pm_ops,
5564 #endif
5565 	.shutdown = igc_shutdown,
5566 	.err_handler = &igc_err_handler,
5567 };
5568 
5569 /**
5570  * igc_reinit_queues - return error
5571  * @adapter: pointer to adapter structure
5572  */
5573 int igc_reinit_queues(struct igc_adapter *adapter)
5574 {
5575 	struct net_device *netdev = adapter->netdev;
5576 	int err = 0;
5577 
5578 	if (netif_running(netdev))
5579 		igc_close(netdev);
5580 
5581 	igc_reset_interrupt_capability(adapter);
5582 
5583 	if (igc_init_interrupt_scheme(adapter, true)) {
5584 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5585 		return -ENOMEM;
5586 	}
5587 
5588 	if (netif_running(netdev))
5589 		err = igc_open(netdev);
5590 
5591 	return err;
5592 }
5593 
5594 /**
5595  * igc_get_hw_dev - return device
5596  * @hw: pointer to hardware structure
5597  *
5598  * used by hardware layer to print debugging information
5599  */
5600 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5601 {
5602 	struct igc_adapter *adapter = hw->back;
5603 
5604 	return adapter->netdev;
5605 }
5606 
5607 /**
5608  * igc_init_module - Driver Registration Routine
5609  *
5610  * igc_init_module is the first routine called when the driver is
5611  * loaded. All it does is register with the PCI subsystem.
5612  */
5613 static int __init igc_init_module(void)
5614 {
5615 	int ret;
5616 
5617 	pr_info("%s - version %s\n",
5618 		igc_driver_string, igc_driver_version);
5619 
5620 	pr_info("%s\n", igc_copyright);
5621 
5622 	ret = pci_register_driver(&igc_driver);
5623 	return ret;
5624 }
5625 
5626 module_init(igc_init_module);
5627 
5628 /**
5629  * igc_exit_module - Driver Exit Cleanup Routine
5630  *
5631  * igc_exit_module is called just before the driver is removed
5632  * from memory.
5633  */
5634 static void __exit igc_exit_module(void)
5635 {
5636 	pci_unregister_driver(&igc_driver);
5637 }
5638 
5639 module_exit(igc_exit_module);
5640 /* igc_main.c */
5641