1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/tcp.h> 8 #include <linux/udp.h> 9 #include <linux/ip.h> 10 #include <linux/pm_runtime.h> 11 #include <net/pkt_sched.h> 12 #include <linux/bpf_trace.h> 13 #include <net/xdp_sock_drv.h> 14 #include <linux/pci.h> 15 16 #include <net/ipv6.h> 17 18 #include "igc.h" 19 #include "igc_hw.h" 20 #include "igc_tsn.h" 21 #include "igc_xdp.h" 22 23 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 24 25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 26 27 #define IGC_XDP_PASS 0 28 #define IGC_XDP_CONSUMED BIT(0) 29 #define IGC_XDP_TX BIT(1) 30 #define IGC_XDP_REDIRECT BIT(2) 31 32 static int debug = -1; 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 module_param(debug, int, 0); 38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 39 40 char igc_driver_name[] = "igc"; 41 static const char igc_driver_string[] = DRV_SUMMARY; 42 static const char igc_copyright[] = 43 "Copyright(c) 2018 Intel Corporation."; 44 45 static const struct igc_info *igc_info_tbl[] = { 46 [board_base] = &igc_base_info, 47 }; 48 49 static const struct pci_device_id igc_pci_tbl[] = { 50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 66 /* required last entry */ 67 {0, } 68 }; 69 70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 71 72 enum latency_range { 73 lowest_latency = 0, 74 low_latency = 1, 75 bulk_latency = 2, 76 latency_invalid = 255 77 }; 78 79 void igc_reset(struct igc_adapter *adapter) 80 { 81 struct net_device *dev = adapter->netdev; 82 struct igc_hw *hw = &adapter->hw; 83 struct igc_fc_info *fc = &hw->fc; 84 u32 pba, hwm; 85 86 /* Repartition PBA for greater than 9k MTU if required */ 87 pba = IGC_PBA_34K; 88 89 /* flow control settings 90 * The high water mark must be low enough to fit one full frame 91 * after transmitting the pause frame. As such we must have enough 92 * space to allow for us to complete our current transmit and then 93 * receive the frame that is in progress from the link partner. 94 * Set it to: 95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 96 */ 97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 98 99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 100 fc->low_water = fc->high_water - 16; 101 fc->pause_time = 0xFFFF; 102 fc->send_xon = 1; 103 fc->current_mode = fc->requested_mode; 104 105 hw->mac.ops.reset_hw(hw); 106 107 if (hw->mac.ops.init_hw(hw)) 108 netdev_err(dev, "Error on hardware initialization\n"); 109 110 /* Re-establish EEE setting */ 111 igc_set_eee_i225(hw, true, true, true); 112 113 if (!netif_running(adapter->netdev)) 114 igc_power_down_phy_copper_base(&adapter->hw); 115 116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 117 wr32(IGC_VET, ETH_P_8021Q); 118 119 /* Re-enable PTP, where applicable. */ 120 igc_ptp_reset(adapter); 121 122 /* Re-enable TSN offloading, where applicable. */ 123 igc_tsn_reset(adapter); 124 125 igc_get_phy_info(hw); 126 } 127 128 /** 129 * igc_power_up_link - Power up the phy link 130 * @adapter: address of board private structure 131 */ 132 static void igc_power_up_link(struct igc_adapter *adapter) 133 { 134 igc_reset_phy(&adapter->hw); 135 136 igc_power_up_phy_copper(&adapter->hw); 137 138 igc_setup_link(&adapter->hw); 139 } 140 141 /** 142 * igc_release_hw_control - release control of the h/w to f/w 143 * @adapter: address of board private structure 144 * 145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 146 * For ASF and Pass Through versions of f/w this means that the 147 * driver is no longer loaded. 148 */ 149 static void igc_release_hw_control(struct igc_adapter *adapter) 150 { 151 struct igc_hw *hw = &adapter->hw; 152 u32 ctrl_ext; 153 154 if (!pci_device_is_present(adapter->pdev)) 155 return; 156 157 /* Let firmware take over control of h/w */ 158 ctrl_ext = rd32(IGC_CTRL_EXT); 159 wr32(IGC_CTRL_EXT, 160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 161 } 162 163 /** 164 * igc_get_hw_control - get control of the h/w from f/w 165 * @adapter: address of board private structure 166 * 167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 168 * For ASF and Pass Through versions of f/w this means that 169 * the driver is loaded. 170 */ 171 static void igc_get_hw_control(struct igc_adapter *adapter) 172 { 173 struct igc_hw *hw = &adapter->hw; 174 u32 ctrl_ext; 175 176 /* Let firmware know the driver has taken over */ 177 ctrl_ext = rd32(IGC_CTRL_EXT); 178 wr32(IGC_CTRL_EXT, 179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 180 } 181 182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 183 { 184 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 185 dma_unmap_len(buf, len), DMA_TO_DEVICE); 186 187 dma_unmap_len_set(buf, len, 0); 188 } 189 190 /** 191 * igc_clean_tx_ring - Free Tx Buffers 192 * @tx_ring: ring to be cleaned 193 */ 194 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 195 { 196 u16 i = tx_ring->next_to_clean; 197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 198 u32 xsk_frames = 0; 199 200 while (i != tx_ring->next_to_use) { 201 union igc_adv_tx_desc *eop_desc, *tx_desc; 202 203 switch (tx_buffer->type) { 204 case IGC_TX_BUFFER_TYPE_XSK: 205 xsk_frames++; 206 break; 207 case IGC_TX_BUFFER_TYPE_XDP: 208 xdp_return_frame(tx_buffer->xdpf); 209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 210 break; 211 case IGC_TX_BUFFER_TYPE_SKB: 212 dev_kfree_skb_any(tx_buffer->skb); 213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 214 break; 215 default: 216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 217 break; 218 } 219 220 /* check for eop_desc to determine the end of the packet */ 221 eop_desc = tx_buffer->next_to_watch; 222 tx_desc = IGC_TX_DESC(tx_ring, i); 223 224 /* unmap remaining buffers */ 225 while (tx_desc != eop_desc) { 226 tx_buffer++; 227 tx_desc++; 228 i++; 229 if (unlikely(i == tx_ring->count)) { 230 i = 0; 231 tx_buffer = tx_ring->tx_buffer_info; 232 tx_desc = IGC_TX_DESC(tx_ring, 0); 233 } 234 235 /* unmap any remaining paged data */ 236 if (dma_unmap_len(tx_buffer, len)) 237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 238 } 239 240 tx_buffer->next_to_watch = NULL; 241 242 /* move us one more past the eop_desc for start of next pkt */ 243 tx_buffer++; 244 i++; 245 if (unlikely(i == tx_ring->count)) { 246 i = 0; 247 tx_buffer = tx_ring->tx_buffer_info; 248 } 249 } 250 251 if (tx_ring->xsk_pool && xsk_frames) 252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 253 254 /* reset BQL for queue */ 255 netdev_tx_reset_queue(txring_txq(tx_ring)); 256 257 /* Zero out the buffer ring */ 258 memset(tx_ring->tx_buffer_info, 0, 259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count); 260 261 /* Zero out the descriptor ring */ 262 memset(tx_ring->desc, 0, tx_ring->size); 263 264 /* reset next_to_use and next_to_clean */ 265 tx_ring->next_to_use = 0; 266 tx_ring->next_to_clean = 0; 267 } 268 269 /** 270 * igc_free_tx_resources - Free Tx Resources per Queue 271 * @tx_ring: Tx descriptor ring for a specific queue 272 * 273 * Free all transmit software resources 274 */ 275 void igc_free_tx_resources(struct igc_ring *tx_ring) 276 { 277 igc_disable_tx_ring(tx_ring); 278 279 vfree(tx_ring->tx_buffer_info); 280 tx_ring->tx_buffer_info = NULL; 281 282 /* if not set, then don't free */ 283 if (!tx_ring->desc) 284 return; 285 286 dma_free_coherent(tx_ring->dev, tx_ring->size, 287 tx_ring->desc, tx_ring->dma); 288 289 tx_ring->desc = NULL; 290 } 291 292 /** 293 * igc_free_all_tx_resources - Free Tx Resources for All Queues 294 * @adapter: board private structure 295 * 296 * Free all transmit software resources 297 */ 298 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 299 { 300 int i; 301 302 for (i = 0; i < adapter->num_tx_queues; i++) 303 igc_free_tx_resources(adapter->tx_ring[i]); 304 } 305 306 /** 307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 308 * @adapter: board private structure 309 */ 310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 311 { 312 int i; 313 314 for (i = 0; i < adapter->num_tx_queues; i++) 315 if (adapter->tx_ring[i]) 316 igc_clean_tx_ring(adapter->tx_ring[i]); 317 } 318 319 /** 320 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 321 * @tx_ring: tx descriptor ring (for a specific queue) to setup 322 * 323 * Return 0 on success, negative on failure 324 */ 325 int igc_setup_tx_resources(struct igc_ring *tx_ring) 326 { 327 struct net_device *ndev = tx_ring->netdev; 328 struct device *dev = tx_ring->dev; 329 int size = 0; 330 331 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 332 tx_ring->tx_buffer_info = vzalloc(size); 333 if (!tx_ring->tx_buffer_info) 334 goto err; 335 336 /* round up to nearest 4K */ 337 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 338 tx_ring->size = ALIGN(tx_ring->size, 4096); 339 340 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 341 &tx_ring->dma, GFP_KERNEL); 342 343 if (!tx_ring->desc) 344 goto err; 345 346 tx_ring->next_to_use = 0; 347 tx_ring->next_to_clean = 0; 348 349 return 0; 350 351 err: 352 vfree(tx_ring->tx_buffer_info); 353 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 354 return -ENOMEM; 355 } 356 357 /** 358 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 359 * @adapter: board private structure 360 * 361 * Return 0 on success, negative on failure 362 */ 363 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 364 { 365 struct net_device *dev = adapter->netdev; 366 int i, err = 0; 367 368 for (i = 0; i < adapter->num_tx_queues; i++) { 369 err = igc_setup_tx_resources(adapter->tx_ring[i]); 370 if (err) { 371 netdev_err(dev, "Error on Tx queue %u setup\n", i); 372 for (i--; i >= 0; i--) 373 igc_free_tx_resources(adapter->tx_ring[i]); 374 break; 375 } 376 } 377 378 return err; 379 } 380 381 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 382 { 383 u16 i = rx_ring->next_to_clean; 384 385 dev_kfree_skb(rx_ring->skb); 386 rx_ring->skb = NULL; 387 388 /* Free all the Rx ring sk_buffs */ 389 while (i != rx_ring->next_to_alloc) { 390 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 391 392 /* Invalidate cache lines that may have been written to by 393 * device so that we avoid corrupting memory. 394 */ 395 dma_sync_single_range_for_cpu(rx_ring->dev, 396 buffer_info->dma, 397 buffer_info->page_offset, 398 igc_rx_bufsz(rx_ring), 399 DMA_FROM_DEVICE); 400 401 /* free resources associated with mapping */ 402 dma_unmap_page_attrs(rx_ring->dev, 403 buffer_info->dma, 404 igc_rx_pg_size(rx_ring), 405 DMA_FROM_DEVICE, 406 IGC_RX_DMA_ATTR); 407 __page_frag_cache_drain(buffer_info->page, 408 buffer_info->pagecnt_bias); 409 410 i++; 411 if (i == rx_ring->count) 412 i = 0; 413 } 414 } 415 416 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 417 { 418 struct igc_rx_buffer *bi; 419 u16 i; 420 421 for (i = 0; i < ring->count; i++) { 422 bi = &ring->rx_buffer_info[i]; 423 if (!bi->xdp) 424 continue; 425 426 xsk_buff_free(bi->xdp); 427 bi->xdp = NULL; 428 } 429 } 430 431 /** 432 * igc_clean_rx_ring - Free Rx Buffers per Queue 433 * @ring: ring to free buffers from 434 */ 435 static void igc_clean_rx_ring(struct igc_ring *ring) 436 { 437 if (ring->xsk_pool) 438 igc_clean_rx_ring_xsk_pool(ring); 439 else 440 igc_clean_rx_ring_page_shared(ring); 441 442 clear_ring_uses_large_buffer(ring); 443 444 ring->next_to_alloc = 0; 445 ring->next_to_clean = 0; 446 ring->next_to_use = 0; 447 } 448 449 /** 450 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 451 * @adapter: board private structure 452 */ 453 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 454 { 455 int i; 456 457 for (i = 0; i < adapter->num_rx_queues; i++) 458 if (adapter->rx_ring[i]) 459 igc_clean_rx_ring(adapter->rx_ring[i]); 460 } 461 462 /** 463 * igc_free_rx_resources - Free Rx Resources 464 * @rx_ring: ring to clean the resources from 465 * 466 * Free all receive software resources 467 */ 468 void igc_free_rx_resources(struct igc_ring *rx_ring) 469 { 470 igc_clean_rx_ring(rx_ring); 471 472 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 473 474 vfree(rx_ring->rx_buffer_info); 475 rx_ring->rx_buffer_info = NULL; 476 477 /* if not set, then don't free */ 478 if (!rx_ring->desc) 479 return; 480 481 dma_free_coherent(rx_ring->dev, rx_ring->size, 482 rx_ring->desc, rx_ring->dma); 483 484 rx_ring->desc = NULL; 485 } 486 487 /** 488 * igc_free_all_rx_resources - Free Rx Resources for All Queues 489 * @adapter: board private structure 490 * 491 * Free all receive software resources 492 */ 493 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 494 { 495 int i; 496 497 for (i = 0; i < adapter->num_rx_queues; i++) 498 igc_free_rx_resources(adapter->rx_ring[i]); 499 } 500 501 /** 502 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 503 * @rx_ring: rx descriptor ring (for a specific queue) to setup 504 * 505 * Returns 0 on success, negative on failure 506 */ 507 int igc_setup_rx_resources(struct igc_ring *rx_ring) 508 { 509 struct net_device *ndev = rx_ring->netdev; 510 struct device *dev = rx_ring->dev; 511 u8 index = rx_ring->queue_index; 512 int size, desc_len, res; 513 514 /* XDP RX-queue info */ 515 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 516 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 517 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 518 rx_ring->q_vector->napi.napi_id); 519 if (res < 0) { 520 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 521 index); 522 return res; 523 } 524 525 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 526 rx_ring->rx_buffer_info = vzalloc(size); 527 if (!rx_ring->rx_buffer_info) 528 goto err; 529 530 desc_len = sizeof(union igc_adv_rx_desc); 531 532 /* Round up to nearest 4K */ 533 rx_ring->size = rx_ring->count * desc_len; 534 rx_ring->size = ALIGN(rx_ring->size, 4096); 535 536 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 537 &rx_ring->dma, GFP_KERNEL); 538 539 if (!rx_ring->desc) 540 goto err; 541 542 rx_ring->next_to_alloc = 0; 543 rx_ring->next_to_clean = 0; 544 rx_ring->next_to_use = 0; 545 546 return 0; 547 548 err: 549 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 550 vfree(rx_ring->rx_buffer_info); 551 rx_ring->rx_buffer_info = NULL; 552 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 553 return -ENOMEM; 554 } 555 556 /** 557 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 558 * (Descriptors) for all queues 559 * @adapter: board private structure 560 * 561 * Return 0 on success, negative on failure 562 */ 563 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 564 { 565 struct net_device *dev = adapter->netdev; 566 int i, err = 0; 567 568 for (i = 0; i < adapter->num_rx_queues; i++) { 569 err = igc_setup_rx_resources(adapter->rx_ring[i]); 570 if (err) { 571 netdev_err(dev, "Error on Rx queue %u setup\n", i); 572 for (i--; i >= 0; i--) 573 igc_free_rx_resources(adapter->rx_ring[i]); 574 break; 575 } 576 } 577 578 return err; 579 } 580 581 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 582 struct igc_ring *ring) 583 { 584 if (!igc_xdp_is_enabled(adapter) || 585 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 586 return NULL; 587 588 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 589 } 590 591 /** 592 * igc_configure_rx_ring - Configure a receive ring after Reset 593 * @adapter: board private structure 594 * @ring: receive ring to be configured 595 * 596 * Configure the Rx unit of the MAC after a reset. 597 */ 598 static void igc_configure_rx_ring(struct igc_adapter *adapter, 599 struct igc_ring *ring) 600 { 601 struct igc_hw *hw = &adapter->hw; 602 union igc_adv_rx_desc *rx_desc; 603 int reg_idx = ring->reg_idx; 604 u32 srrctl = 0, rxdctl = 0; 605 u64 rdba = ring->dma; 606 u32 buf_size; 607 608 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 609 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 610 if (ring->xsk_pool) { 611 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 612 MEM_TYPE_XSK_BUFF_POOL, 613 NULL)); 614 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 615 } else { 616 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 617 MEM_TYPE_PAGE_SHARED, 618 NULL)); 619 } 620 621 if (igc_xdp_is_enabled(adapter)) 622 set_ring_uses_large_buffer(ring); 623 624 /* disable the queue */ 625 wr32(IGC_RXDCTL(reg_idx), 0); 626 627 /* Set DMA base address registers */ 628 wr32(IGC_RDBAL(reg_idx), 629 rdba & 0x00000000ffffffffULL); 630 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 631 wr32(IGC_RDLEN(reg_idx), 632 ring->count * sizeof(union igc_adv_rx_desc)); 633 634 /* initialize head and tail */ 635 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 636 wr32(IGC_RDH(reg_idx), 0); 637 writel(0, ring->tail); 638 639 /* reset next-to- use/clean to place SW in sync with hardware */ 640 ring->next_to_clean = 0; 641 ring->next_to_use = 0; 642 643 if (ring->xsk_pool) 644 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 645 else if (ring_uses_large_buffer(ring)) 646 buf_size = IGC_RXBUFFER_3072; 647 else 648 buf_size = IGC_RXBUFFER_2048; 649 650 srrctl = rd32(IGC_SRRCTL(reg_idx)); 651 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK | 652 IGC_SRRCTL_DESCTYPE_MASK); 653 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN); 654 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size); 655 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 656 657 wr32(IGC_SRRCTL(reg_idx), srrctl); 658 659 rxdctl |= IGC_RX_PTHRESH; 660 rxdctl |= IGC_RX_HTHRESH << 8; 661 rxdctl |= IGC_RX_WTHRESH << 16; 662 663 /* initialize rx_buffer_info */ 664 memset(ring->rx_buffer_info, 0, 665 sizeof(struct igc_rx_buffer) * ring->count); 666 667 /* initialize Rx descriptor 0 */ 668 rx_desc = IGC_RX_DESC(ring, 0); 669 rx_desc->wb.upper.length = 0; 670 671 /* enable receive descriptor fetching */ 672 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 673 674 wr32(IGC_RXDCTL(reg_idx), rxdctl); 675 } 676 677 /** 678 * igc_configure_rx - Configure receive Unit after Reset 679 * @adapter: board private structure 680 * 681 * Configure the Rx unit of the MAC after a reset. 682 */ 683 static void igc_configure_rx(struct igc_adapter *adapter) 684 { 685 int i; 686 687 /* Setup the HW Rx Head and Tail Descriptor Pointers and 688 * the Base and Length of the Rx Descriptor Ring 689 */ 690 for (i = 0; i < adapter->num_rx_queues; i++) 691 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 692 } 693 694 /** 695 * igc_configure_tx_ring - Configure transmit ring after Reset 696 * @adapter: board private structure 697 * @ring: tx ring to configure 698 * 699 * Configure a transmit ring after a reset. 700 */ 701 static void igc_configure_tx_ring(struct igc_adapter *adapter, 702 struct igc_ring *ring) 703 { 704 struct igc_hw *hw = &adapter->hw; 705 int reg_idx = ring->reg_idx; 706 u64 tdba = ring->dma; 707 u32 txdctl = 0; 708 709 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 710 711 /* disable the queue */ 712 wr32(IGC_TXDCTL(reg_idx), 0); 713 wrfl(); 714 mdelay(10); 715 716 wr32(IGC_TDLEN(reg_idx), 717 ring->count * sizeof(union igc_adv_tx_desc)); 718 wr32(IGC_TDBAL(reg_idx), 719 tdba & 0x00000000ffffffffULL); 720 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 721 722 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 723 wr32(IGC_TDH(reg_idx), 0); 724 writel(0, ring->tail); 725 726 txdctl |= IGC_TX_PTHRESH; 727 txdctl |= IGC_TX_HTHRESH << 8; 728 txdctl |= IGC_TX_WTHRESH << 16; 729 730 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 731 wr32(IGC_TXDCTL(reg_idx), txdctl); 732 } 733 734 /** 735 * igc_configure_tx - Configure transmit Unit after Reset 736 * @adapter: board private structure 737 * 738 * Configure the Tx unit of the MAC after a reset. 739 */ 740 static void igc_configure_tx(struct igc_adapter *adapter) 741 { 742 int i; 743 744 for (i = 0; i < adapter->num_tx_queues; i++) 745 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 746 } 747 748 /** 749 * igc_setup_mrqc - configure the multiple receive queue control registers 750 * @adapter: Board private structure 751 */ 752 static void igc_setup_mrqc(struct igc_adapter *adapter) 753 { 754 struct igc_hw *hw = &adapter->hw; 755 u32 j, num_rx_queues; 756 u32 mrqc, rxcsum; 757 u32 rss_key[10]; 758 759 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 760 for (j = 0; j < 10; j++) 761 wr32(IGC_RSSRK(j), rss_key[j]); 762 763 num_rx_queues = adapter->rss_queues; 764 765 if (adapter->rss_indir_tbl_init != num_rx_queues) { 766 for (j = 0; j < IGC_RETA_SIZE; j++) 767 adapter->rss_indir_tbl[j] = 768 (j * num_rx_queues) / IGC_RETA_SIZE; 769 adapter->rss_indir_tbl_init = num_rx_queues; 770 } 771 igc_write_rss_indir_tbl(adapter); 772 773 /* Disable raw packet checksumming so that RSS hash is placed in 774 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 775 * offloads as they are enabled by default 776 */ 777 rxcsum = rd32(IGC_RXCSUM); 778 rxcsum |= IGC_RXCSUM_PCSD; 779 780 /* Enable Receive Checksum Offload for SCTP */ 781 rxcsum |= IGC_RXCSUM_CRCOFL; 782 783 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 784 wr32(IGC_RXCSUM, rxcsum); 785 786 /* Generate RSS hash based on packet types, TCP/UDP 787 * port numbers and/or IPv4/v6 src and dst addresses 788 */ 789 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 790 IGC_MRQC_RSS_FIELD_IPV4_TCP | 791 IGC_MRQC_RSS_FIELD_IPV6 | 792 IGC_MRQC_RSS_FIELD_IPV6_TCP | 793 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 794 795 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 796 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 797 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 798 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 799 800 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 801 802 wr32(IGC_MRQC, mrqc); 803 } 804 805 /** 806 * igc_setup_rctl - configure the receive control registers 807 * @adapter: Board private structure 808 */ 809 static void igc_setup_rctl(struct igc_adapter *adapter) 810 { 811 struct igc_hw *hw = &adapter->hw; 812 u32 rctl; 813 814 rctl = rd32(IGC_RCTL); 815 816 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 817 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 818 819 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 820 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 821 822 /* enable stripping of CRC. Newer features require 823 * that the HW strips the CRC. 824 */ 825 rctl |= IGC_RCTL_SECRC; 826 827 /* disable store bad packets and clear size bits. */ 828 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 829 830 /* enable LPE to allow for reception of jumbo frames */ 831 rctl |= IGC_RCTL_LPE; 832 833 /* disable queue 0 to prevent tail write w/o re-config */ 834 wr32(IGC_RXDCTL(0), 0); 835 836 /* This is useful for sniffing bad packets. */ 837 if (adapter->netdev->features & NETIF_F_RXALL) { 838 /* UPE and MPE will be handled by normal PROMISC logic 839 * in set_rx_mode 840 */ 841 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 842 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 843 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 844 845 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 846 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 847 } 848 849 wr32(IGC_RCTL, rctl); 850 } 851 852 /** 853 * igc_setup_tctl - configure the transmit control registers 854 * @adapter: Board private structure 855 */ 856 static void igc_setup_tctl(struct igc_adapter *adapter) 857 { 858 struct igc_hw *hw = &adapter->hw; 859 u32 tctl; 860 861 /* disable queue 0 which icould be enabled by default */ 862 wr32(IGC_TXDCTL(0), 0); 863 864 /* Program the Transmit Control Register */ 865 tctl = rd32(IGC_TCTL); 866 tctl &= ~IGC_TCTL_CT; 867 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 868 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 869 870 /* Enable transmits */ 871 tctl |= IGC_TCTL_EN; 872 873 wr32(IGC_TCTL, tctl); 874 } 875 876 /** 877 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 878 * @adapter: Pointer to adapter where the filter should be set 879 * @index: Filter index 880 * @type: MAC address filter type (source or destination) 881 * @addr: MAC address 882 * @queue: If non-negative, queue assignment feature is enabled and frames 883 * matching the filter are enqueued onto 'queue'. Otherwise, queue 884 * assignment is disabled. 885 */ 886 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 887 enum igc_mac_filter_type type, 888 const u8 *addr, int queue) 889 { 890 struct net_device *dev = adapter->netdev; 891 struct igc_hw *hw = &adapter->hw; 892 u32 ral, rah; 893 894 if (WARN_ON(index >= hw->mac.rar_entry_count)) 895 return; 896 897 ral = le32_to_cpup((__le32 *)(addr)); 898 rah = le16_to_cpup((__le16 *)(addr + 4)); 899 900 if (type == IGC_MAC_FILTER_TYPE_SRC) { 901 rah &= ~IGC_RAH_ASEL_MASK; 902 rah |= IGC_RAH_ASEL_SRC_ADDR; 903 } 904 905 if (queue >= 0) { 906 rah &= ~IGC_RAH_QSEL_MASK; 907 rah |= (queue << IGC_RAH_QSEL_SHIFT); 908 rah |= IGC_RAH_QSEL_ENABLE; 909 } 910 911 rah |= IGC_RAH_AV; 912 913 wr32(IGC_RAL(index), ral); 914 wr32(IGC_RAH(index), rah); 915 916 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 917 } 918 919 /** 920 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 921 * @adapter: Pointer to adapter where the filter should be cleared 922 * @index: Filter index 923 */ 924 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 925 { 926 struct net_device *dev = adapter->netdev; 927 struct igc_hw *hw = &adapter->hw; 928 929 if (WARN_ON(index >= hw->mac.rar_entry_count)) 930 return; 931 932 wr32(IGC_RAL(index), 0); 933 wr32(IGC_RAH(index), 0); 934 935 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 936 } 937 938 /* Set default MAC address for the PF in the first RAR entry */ 939 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 940 { 941 struct net_device *dev = adapter->netdev; 942 u8 *addr = adapter->hw.mac.addr; 943 944 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 945 946 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 947 } 948 949 /** 950 * igc_set_mac - Change the Ethernet Address of the NIC 951 * @netdev: network interface device structure 952 * @p: pointer to an address structure 953 * 954 * Returns 0 on success, negative on failure 955 */ 956 static int igc_set_mac(struct net_device *netdev, void *p) 957 { 958 struct igc_adapter *adapter = netdev_priv(netdev); 959 struct igc_hw *hw = &adapter->hw; 960 struct sockaddr *addr = p; 961 962 if (!is_valid_ether_addr(addr->sa_data)) 963 return -EADDRNOTAVAIL; 964 965 eth_hw_addr_set(netdev, addr->sa_data); 966 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 967 968 /* set the correct pool for the new PF MAC address in entry 0 */ 969 igc_set_default_mac_filter(adapter); 970 971 return 0; 972 } 973 974 /** 975 * igc_write_mc_addr_list - write multicast addresses to MTA 976 * @netdev: network interface device structure 977 * 978 * Writes multicast address list to the MTA hash table. 979 * Returns: -ENOMEM on failure 980 * 0 on no addresses written 981 * X on writing X addresses to MTA 982 **/ 983 static int igc_write_mc_addr_list(struct net_device *netdev) 984 { 985 struct igc_adapter *adapter = netdev_priv(netdev); 986 struct igc_hw *hw = &adapter->hw; 987 struct netdev_hw_addr *ha; 988 u8 *mta_list; 989 int i; 990 991 if (netdev_mc_empty(netdev)) { 992 /* nothing to program, so clear mc list */ 993 igc_update_mc_addr_list(hw, NULL, 0); 994 return 0; 995 } 996 997 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 998 if (!mta_list) 999 return -ENOMEM; 1000 1001 /* The shared function expects a packed array of only addresses. */ 1002 i = 0; 1003 netdev_for_each_mc_addr(ha, netdev) 1004 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1005 1006 igc_update_mc_addr_list(hw, mta_list, i); 1007 kfree(mta_list); 1008 1009 return netdev_mc_count(netdev); 1010 } 1011 1012 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime, 1013 bool *first_flag, bool *insert_empty) 1014 { 1015 struct igc_adapter *adapter = netdev_priv(ring->netdev); 1016 ktime_t cycle_time = adapter->cycle_time; 1017 ktime_t base_time = adapter->base_time; 1018 ktime_t now = ktime_get_clocktai(); 1019 ktime_t baset_est, end_of_cycle; 1020 u32 launchtime; 1021 s64 n; 1022 1023 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time); 1024 1025 baset_est = ktime_add_ns(base_time, cycle_time * (n)); 1026 end_of_cycle = ktime_add_ns(baset_est, cycle_time); 1027 1028 if (ktime_compare(txtime, end_of_cycle) >= 0) { 1029 if (baset_est != ring->last_ff_cycle) { 1030 *first_flag = true; 1031 ring->last_ff_cycle = baset_est; 1032 1033 if (ktime_compare(txtime, ring->last_tx_cycle) > 0) 1034 *insert_empty = true; 1035 } 1036 } 1037 1038 /* Introducing a window at end of cycle on which packets 1039 * potentially not honor launchtime. Window of 5us chosen 1040 * considering software update the tail pointer and packets 1041 * are dma'ed to packet buffer. 1042 */ 1043 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC)) 1044 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n", 1045 txtime); 1046 1047 ring->last_tx_cycle = end_of_cycle; 1048 1049 launchtime = ktime_sub_ns(txtime, baset_est); 1050 if (launchtime > 0) 1051 div_s64_rem(launchtime, cycle_time, &launchtime); 1052 else 1053 launchtime = 0; 1054 1055 return cpu_to_le32(launchtime); 1056 } 1057 1058 static int igc_init_empty_frame(struct igc_ring *ring, 1059 struct igc_tx_buffer *buffer, 1060 struct sk_buff *skb) 1061 { 1062 unsigned int size; 1063 dma_addr_t dma; 1064 1065 size = skb_headlen(skb); 1066 1067 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE); 1068 if (dma_mapping_error(ring->dev, dma)) { 1069 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 1070 return -ENOMEM; 1071 } 1072 1073 buffer->skb = skb; 1074 buffer->protocol = 0; 1075 buffer->bytecount = skb->len; 1076 buffer->gso_segs = 1; 1077 buffer->time_stamp = jiffies; 1078 dma_unmap_len_set(buffer, len, skb->len); 1079 dma_unmap_addr_set(buffer, dma, dma); 1080 1081 return 0; 1082 } 1083 1084 static int igc_init_tx_empty_descriptor(struct igc_ring *ring, 1085 struct sk_buff *skb, 1086 struct igc_tx_buffer *first) 1087 { 1088 union igc_adv_tx_desc *desc; 1089 u32 cmd_type, olinfo_status; 1090 int err; 1091 1092 if (!igc_desc_unused(ring)) 1093 return -EBUSY; 1094 1095 err = igc_init_empty_frame(ring, first, skb); 1096 if (err) 1097 return err; 1098 1099 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 1100 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 1101 first->bytecount; 1102 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 1103 1104 desc = IGC_TX_DESC(ring, ring->next_to_use); 1105 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1106 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1107 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma)); 1108 1109 netdev_tx_sent_queue(txring_txq(ring), skb->len); 1110 1111 first->next_to_watch = desc; 1112 1113 ring->next_to_use++; 1114 if (ring->next_to_use == ring->count) 1115 ring->next_to_use = 0; 1116 1117 return 0; 1118 } 1119 1120 #define IGC_EMPTY_FRAME_SIZE 60 1121 1122 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1123 __le32 launch_time, bool first_flag, 1124 u32 vlan_macip_lens, u32 type_tucmd, 1125 u32 mss_l4len_idx) 1126 { 1127 struct igc_adv_tx_context_desc *context_desc; 1128 u16 i = tx_ring->next_to_use; 1129 1130 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1131 1132 i++; 1133 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1134 1135 /* set bits to identify this as an advanced context descriptor */ 1136 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1137 1138 /* For i225, context index must be unique per ring. */ 1139 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1140 mss_l4len_idx |= tx_ring->reg_idx << 4; 1141 1142 if (first_flag) 1143 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST; 1144 1145 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1146 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1147 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1148 context_desc->launch_time = launch_time; 1149 } 1150 1151 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first, 1152 __le32 launch_time, bool first_flag) 1153 { 1154 struct sk_buff *skb = first->skb; 1155 u32 vlan_macip_lens = 0; 1156 u32 type_tucmd = 0; 1157 1158 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1159 csum_failed: 1160 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1161 !tx_ring->launchtime_enable) 1162 return; 1163 goto no_csum; 1164 } 1165 1166 switch (skb->csum_offset) { 1167 case offsetof(struct tcphdr, check): 1168 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1169 fallthrough; 1170 case offsetof(struct udphdr, check): 1171 break; 1172 case offsetof(struct sctphdr, checksum): 1173 /* validate that this is actually an SCTP request */ 1174 if (skb_csum_is_sctp(skb)) { 1175 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1176 break; 1177 } 1178 fallthrough; 1179 default: 1180 skb_checksum_help(skb); 1181 goto csum_failed; 1182 } 1183 1184 /* update TX checksum flag */ 1185 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1186 vlan_macip_lens = skb_checksum_start_offset(skb) - 1187 skb_network_offset(skb); 1188 no_csum: 1189 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1190 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1191 1192 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1193 vlan_macip_lens, type_tucmd, 0); 1194 } 1195 1196 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1197 { 1198 struct net_device *netdev = tx_ring->netdev; 1199 1200 netif_stop_subqueue(netdev, tx_ring->queue_index); 1201 1202 /* memory barriier comment */ 1203 smp_mb(); 1204 1205 /* We need to check again in a case another CPU has just 1206 * made room available. 1207 */ 1208 if (igc_desc_unused(tx_ring) < size) 1209 return -EBUSY; 1210 1211 /* A reprieve! */ 1212 netif_wake_subqueue(netdev, tx_ring->queue_index); 1213 1214 u64_stats_update_begin(&tx_ring->tx_syncp2); 1215 tx_ring->tx_stats.restart_queue2++; 1216 u64_stats_update_end(&tx_ring->tx_syncp2); 1217 1218 return 0; 1219 } 1220 1221 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1222 { 1223 if (igc_desc_unused(tx_ring) >= size) 1224 return 0; 1225 return __igc_maybe_stop_tx(tx_ring, size); 1226 } 1227 1228 #define IGC_SET_FLAG(_input, _flag, _result) \ 1229 (((_flag) <= (_result)) ? \ 1230 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1231 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1232 1233 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1234 { 1235 /* set type for advanced descriptor with frame checksum insertion */ 1236 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1237 IGC_ADVTXD_DCMD_DEXT | 1238 IGC_ADVTXD_DCMD_IFCS; 1239 1240 /* set HW vlan bit if vlan is present */ 1241 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1242 IGC_ADVTXD_DCMD_VLE); 1243 1244 /* set segmentation bits for TSO */ 1245 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1246 (IGC_ADVTXD_DCMD_TSE)); 1247 1248 /* set timestamp bit if present */ 1249 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1250 (IGC_ADVTXD_MAC_TSTAMP)); 1251 1252 /* insert frame checksum */ 1253 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1254 1255 return cmd_type; 1256 } 1257 1258 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1259 union igc_adv_tx_desc *tx_desc, 1260 u32 tx_flags, unsigned int paylen) 1261 { 1262 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1263 1264 /* insert L4 checksum */ 1265 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 1266 ((IGC_TXD_POPTS_TXSM << 8) / 1267 IGC_TX_FLAGS_CSUM); 1268 1269 /* insert IPv4 checksum */ 1270 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 1271 (((IGC_TXD_POPTS_IXSM << 8)) / 1272 IGC_TX_FLAGS_IPV4); 1273 1274 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1275 } 1276 1277 static int igc_tx_map(struct igc_ring *tx_ring, 1278 struct igc_tx_buffer *first, 1279 const u8 hdr_len) 1280 { 1281 struct sk_buff *skb = first->skb; 1282 struct igc_tx_buffer *tx_buffer; 1283 union igc_adv_tx_desc *tx_desc; 1284 u32 tx_flags = first->tx_flags; 1285 skb_frag_t *frag; 1286 u16 i = tx_ring->next_to_use; 1287 unsigned int data_len, size; 1288 dma_addr_t dma; 1289 u32 cmd_type; 1290 1291 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1292 tx_desc = IGC_TX_DESC(tx_ring, i); 1293 1294 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1295 1296 size = skb_headlen(skb); 1297 data_len = skb->data_len; 1298 1299 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1300 1301 tx_buffer = first; 1302 1303 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1304 if (dma_mapping_error(tx_ring->dev, dma)) 1305 goto dma_error; 1306 1307 /* record length, and DMA address */ 1308 dma_unmap_len_set(tx_buffer, len, size); 1309 dma_unmap_addr_set(tx_buffer, dma, dma); 1310 1311 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1312 1313 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1314 tx_desc->read.cmd_type_len = 1315 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1316 1317 i++; 1318 tx_desc++; 1319 if (i == tx_ring->count) { 1320 tx_desc = IGC_TX_DESC(tx_ring, 0); 1321 i = 0; 1322 } 1323 tx_desc->read.olinfo_status = 0; 1324 1325 dma += IGC_MAX_DATA_PER_TXD; 1326 size -= IGC_MAX_DATA_PER_TXD; 1327 1328 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1329 } 1330 1331 if (likely(!data_len)) 1332 break; 1333 1334 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1335 1336 i++; 1337 tx_desc++; 1338 if (i == tx_ring->count) { 1339 tx_desc = IGC_TX_DESC(tx_ring, 0); 1340 i = 0; 1341 } 1342 tx_desc->read.olinfo_status = 0; 1343 1344 size = skb_frag_size(frag); 1345 data_len -= size; 1346 1347 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1348 size, DMA_TO_DEVICE); 1349 1350 tx_buffer = &tx_ring->tx_buffer_info[i]; 1351 } 1352 1353 /* write last descriptor with RS and EOP bits */ 1354 cmd_type |= size | IGC_TXD_DCMD; 1355 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1356 1357 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1358 1359 /* set the timestamp */ 1360 first->time_stamp = jiffies; 1361 1362 skb_tx_timestamp(skb); 1363 1364 /* Force memory writes to complete before letting h/w know there 1365 * are new descriptors to fetch. (Only applicable for weak-ordered 1366 * memory model archs, such as IA-64). 1367 * 1368 * We also need this memory barrier to make certain all of the 1369 * status bits have been updated before next_to_watch is written. 1370 */ 1371 wmb(); 1372 1373 /* set next_to_watch value indicating a packet is present */ 1374 first->next_to_watch = tx_desc; 1375 1376 i++; 1377 if (i == tx_ring->count) 1378 i = 0; 1379 1380 tx_ring->next_to_use = i; 1381 1382 /* Make sure there is space in the ring for the next send. */ 1383 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1384 1385 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1386 writel(i, tx_ring->tail); 1387 } 1388 1389 return 0; 1390 dma_error: 1391 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1392 tx_buffer = &tx_ring->tx_buffer_info[i]; 1393 1394 /* clear dma mappings for failed tx_buffer_info map */ 1395 while (tx_buffer != first) { 1396 if (dma_unmap_len(tx_buffer, len)) 1397 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1398 1399 if (i-- == 0) 1400 i += tx_ring->count; 1401 tx_buffer = &tx_ring->tx_buffer_info[i]; 1402 } 1403 1404 if (dma_unmap_len(tx_buffer, len)) 1405 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1406 1407 dev_kfree_skb_any(tx_buffer->skb); 1408 tx_buffer->skb = NULL; 1409 1410 tx_ring->next_to_use = i; 1411 1412 return -1; 1413 } 1414 1415 static int igc_tso(struct igc_ring *tx_ring, 1416 struct igc_tx_buffer *first, 1417 __le32 launch_time, bool first_flag, 1418 u8 *hdr_len) 1419 { 1420 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1421 struct sk_buff *skb = first->skb; 1422 union { 1423 struct iphdr *v4; 1424 struct ipv6hdr *v6; 1425 unsigned char *hdr; 1426 } ip; 1427 union { 1428 struct tcphdr *tcp; 1429 struct udphdr *udp; 1430 unsigned char *hdr; 1431 } l4; 1432 u32 paylen, l4_offset; 1433 int err; 1434 1435 if (skb->ip_summed != CHECKSUM_PARTIAL) 1436 return 0; 1437 1438 if (!skb_is_gso(skb)) 1439 return 0; 1440 1441 err = skb_cow_head(skb, 0); 1442 if (err < 0) 1443 return err; 1444 1445 ip.hdr = skb_network_header(skb); 1446 l4.hdr = skb_checksum_start(skb); 1447 1448 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1449 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1450 1451 /* initialize outer IP header fields */ 1452 if (ip.v4->version == 4) { 1453 unsigned char *csum_start = skb_checksum_start(skb); 1454 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1455 1456 /* IP header will have to cancel out any data that 1457 * is not a part of the outer IP header 1458 */ 1459 ip.v4->check = csum_fold(csum_partial(trans_start, 1460 csum_start - trans_start, 1461 0)); 1462 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1463 1464 ip.v4->tot_len = 0; 1465 first->tx_flags |= IGC_TX_FLAGS_TSO | 1466 IGC_TX_FLAGS_CSUM | 1467 IGC_TX_FLAGS_IPV4; 1468 } else { 1469 ip.v6->payload_len = 0; 1470 first->tx_flags |= IGC_TX_FLAGS_TSO | 1471 IGC_TX_FLAGS_CSUM; 1472 } 1473 1474 /* determine offset of inner transport header */ 1475 l4_offset = l4.hdr - skb->data; 1476 1477 /* remove payload length from inner checksum */ 1478 paylen = skb->len - l4_offset; 1479 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1480 /* compute length of segmentation header */ 1481 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1482 csum_replace_by_diff(&l4.tcp->check, 1483 (__force __wsum)htonl(paylen)); 1484 } else { 1485 /* compute length of segmentation header */ 1486 *hdr_len = sizeof(*l4.udp) + l4_offset; 1487 csum_replace_by_diff(&l4.udp->check, 1488 (__force __wsum)htonl(paylen)); 1489 } 1490 1491 /* update gso size and bytecount with header size */ 1492 first->gso_segs = skb_shinfo(skb)->gso_segs; 1493 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1494 1495 /* MSS L4LEN IDX */ 1496 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1497 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1498 1499 /* VLAN MACLEN IPLEN */ 1500 vlan_macip_lens = l4.hdr - ip.hdr; 1501 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1502 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1503 1504 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1505 vlan_macip_lens, type_tucmd, mss_l4len_idx); 1506 1507 return 1; 1508 } 1509 1510 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1511 struct igc_ring *tx_ring) 1512 { 1513 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1514 bool first_flag = false, insert_empty = false; 1515 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1516 __be16 protocol = vlan_get_protocol(skb); 1517 struct igc_tx_buffer *first; 1518 __le32 launch_time = 0; 1519 u32 tx_flags = 0; 1520 unsigned short f; 1521 ktime_t txtime; 1522 u8 hdr_len = 0; 1523 int tso = 0; 1524 1525 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1526 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1527 * + 2 desc gap to keep tail from touching head, 1528 * + 1 desc for context descriptor, 1529 * otherwise try next time 1530 */ 1531 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1532 count += TXD_USE_COUNT(skb_frag_size( 1533 &skb_shinfo(skb)->frags[f])); 1534 1535 if (igc_maybe_stop_tx(tx_ring, count + 5)) { 1536 /* this is a hard error */ 1537 return NETDEV_TX_BUSY; 1538 } 1539 1540 if (!tx_ring->launchtime_enable) 1541 goto done; 1542 1543 txtime = skb->tstamp; 1544 skb->tstamp = ktime_set(0, 0); 1545 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty); 1546 1547 if (insert_empty) { 1548 struct igc_tx_buffer *empty_info; 1549 struct sk_buff *empty; 1550 void *data; 1551 1552 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1553 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC); 1554 if (!empty) 1555 goto done; 1556 1557 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE); 1558 memset(data, 0, IGC_EMPTY_FRAME_SIZE); 1559 1560 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0); 1561 1562 if (igc_init_tx_empty_descriptor(tx_ring, 1563 empty, 1564 empty_info) < 0) 1565 dev_kfree_skb_any(empty); 1566 } 1567 1568 done: 1569 /* record the location of the first descriptor for this packet */ 1570 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1571 first->type = IGC_TX_BUFFER_TYPE_SKB; 1572 first->skb = skb; 1573 first->bytecount = skb->len; 1574 first->gso_segs = 1; 1575 1576 if (tx_ring->max_sdu > 0) { 1577 u32 max_sdu = 0; 1578 1579 max_sdu = tx_ring->max_sdu + 1580 (skb_vlan_tagged(first->skb) ? VLAN_HLEN : 0); 1581 1582 if (first->bytecount > max_sdu) { 1583 adapter->stats.txdrop++; 1584 goto out_drop; 1585 } 1586 } 1587 1588 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1589 /* FIXME: add support for retrieving timestamps from 1590 * the other timer registers before skipping the 1591 * timestamping request. 1592 */ 1593 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 1594 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS, 1595 &adapter->state)) { 1596 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1597 tx_flags |= IGC_TX_FLAGS_TSTAMP; 1598 1599 adapter->ptp_tx_skb = skb_get(skb); 1600 adapter->ptp_tx_start = jiffies; 1601 } else { 1602 adapter->tx_hwtstamp_skipped++; 1603 } 1604 } 1605 1606 if (skb_vlan_tag_present(skb)) { 1607 tx_flags |= IGC_TX_FLAGS_VLAN; 1608 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1609 } 1610 1611 /* record initial flags and protocol */ 1612 first->tx_flags = tx_flags; 1613 first->protocol = protocol; 1614 1615 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len); 1616 if (tso < 0) 1617 goto out_drop; 1618 else if (!tso) 1619 igc_tx_csum(tx_ring, first, launch_time, first_flag); 1620 1621 igc_tx_map(tx_ring, first, hdr_len); 1622 1623 return NETDEV_TX_OK; 1624 1625 out_drop: 1626 dev_kfree_skb_any(first->skb); 1627 first->skb = NULL; 1628 1629 return NETDEV_TX_OK; 1630 } 1631 1632 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1633 struct sk_buff *skb) 1634 { 1635 unsigned int r_idx = skb->queue_mapping; 1636 1637 if (r_idx >= adapter->num_tx_queues) 1638 r_idx = r_idx % adapter->num_tx_queues; 1639 1640 return adapter->tx_ring[r_idx]; 1641 } 1642 1643 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1644 struct net_device *netdev) 1645 { 1646 struct igc_adapter *adapter = netdev_priv(netdev); 1647 1648 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1649 * in order to meet this minimum size requirement. 1650 */ 1651 if (skb->len < 17) { 1652 if (skb_padto(skb, 17)) 1653 return NETDEV_TX_OK; 1654 skb->len = 17; 1655 } 1656 1657 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1658 } 1659 1660 static void igc_rx_checksum(struct igc_ring *ring, 1661 union igc_adv_rx_desc *rx_desc, 1662 struct sk_buff *skb) 1663 { 1664 skb_checksum_none_assert(skb); 1665 1666 /* Ignore Checksum bit is set */ 1667 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1668 return; 1669 1670 /* Rx checksum disabled via ethtool */ 1671 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1672 return; 1673 1674 /* TCP/UDP checksum error bit is set */ 1675 if (igc_test_staterr(rx_desc, 1676 IGC_RXDEXT_STATERR_L4E | 1677 IGC_RXDEXT_STATERR_IPE)) { 1678 /* work around errata with sctp packets where the TCPE aka 1679 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1680 * packets (aka let the stack check the crc32c) 1681 */ 1682 if (!(skb->len == 60 && 1683 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1684 u64_stats_update_begin(&ring->rx_syncp); 1685 ring->rx_stats.csum_err++; 1686 u64_stats_update_end(&ring->rx_syncp); 1687 } 1688 /* let the stack verify checksum errors */ 1689 return; 1690 } 1691 /* It must be a TCP or UDP packet with a valid checksum */ 1692 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1693 IGC_RXD_STAT_UDPCS)) 1694 skb->ip_summed = CHECKSUM_UNNECESSARY; 1695 1696 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1697 le32_to_cpu(rx_desc->wb.upper.status_error)); 1698 } 1699 1700 static inline void igc_rx_hash(struct igc_ring *ring, 1701 union igc_adv_rx_desc *rx_desc, 1702 struct sk_buff *skb) 1703 { 1704 if (ring->netdev->features & NETIF_F_RXHASH) 1705 skb_set_hash(skb, 1706 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1707 PKT_HASH_TYPE_L3); 1708 } 1709 1710 static void igc_rx_vlan(struct igc_ring *rx_ring, 1711 union igc_adv_rx_desc *rx_desc, 1712 struct sk_buff *skb) 1713 { 1714 struct net_device *dev = rx_ring->netdev; 1715 u16 vid; 1716 1717 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1718 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1719 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1720 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1721 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1722 else 1723 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1724 1725 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1726 } 1727 } 1728 1729 /** 1730 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1731 * @rx_ring: rx descriptor ring packet is being transacted on 1732 * @rx_desc: pointer to the EOP Rx descriptor 1733 * @skb: pointer to current skb being populated 1734 * 1735 * This function checks the ring, descriptor, and packet information in order 1736 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1737 * skb. 1738 */ 1739 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1740 union igc_adv_rx_desc *rx_desc, 1741 struct sk_buff *skb) 1742 { 1743 igc_rx_hash(rx_ring, rx_desc, skb); 1744 1745 igc_rx_checksum(rx_ring, rx_desc, skb); 1746 1747 igc_rx_vlan(rx_ring, rx_desc, skb); 1748 1749 skb_record_rx_queue(skb, rx_ring->queue_index); 1750 1751 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1752 } 1753 1754 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1755 { 1756 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1757 struct igc_adapter *adapter = netdev_priv(netdev); 1758 struct igc_hw *hw = &adapter->hw; 1759 u32 ctrl; 1760 1761 ctrl = rd32(IGC_CTRL); 1762 1763 if (enable) { 1764 /* enable VLAN tag insert/strip */ 1765 ctrl |= IGC_CTRL_VME; 1766 } else { 1767 /* disable VLAN tag insert/strip */ 1768 ctrl &= ~IGC_CTRL_VME; 1769 } 1770 wr32(IGC_CTRL, ctrl); 1771 } 1772 1773 static void igc_restore_vlan(struct igc_adapter *adapter) 1774 { 1775 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1776 } 1777 1778 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1779 const unsigned int size, 1780 int *rx_buffer_pgcnt) 1781 { 1782 struct igc_rx_buffer *rx_buffer; 1783 1784 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1785 *rx_buffer_pgcnt = 1786 #if (PAGE_SIZE < 8192) 1787 page_count(rx_buffer->page); 1788 #else 1789 0; 1790 #endif 1791 prefetchw(rx_buffer->page); 1792 1793 /* we are reusing so sync this buffer for CPU use */ 1794 dma_sync_single_range_for_cpu(rx_ring->dev, 1795 rx_buffer->dma, 1796 rx_buffer->page_offset, 1797 size, 1798 DMA_FROM_DEVICE); 1799 1800 rx_buffer->pagecnt_bias--; 1801 1802 return rx_buffer; 1803 } 1804 1805 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1806 unsigned int truesize) 1807 { 1808 #if (PAGE_SIZE < 8192) 1809 buffer->page_offset ^= truesize; 1810 #else 1811 buffer->page_offset += truesize; 1812 #endif 1813 } 1814 1815 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1816 unsigned int size) 1817 { 1818 unsigned int truesize; 1819 1820 #if (PAGE_SIZE < 8192) 1821 truesize = igc_rx_pg_size(ring) / 2; 1822 #else 1823 truesize = ring_uses_build_skb(ring) ? 1824 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1825 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1826 SKB_DATA_ALIGN(size); 1827 #endif 1828 return truesize; 1829 } 1830 1831 /** 1832 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1833 * @rx_ring: rx descriptor ring to transact packets on 1834 * @rx_buffer: buffer containing page to add 1835 * @skb: sk_buff to place the data into 1836 * @size: size of buffer to be added 1837 * 1838 * This function will add the data contained in rx_buffer->page to the skb. 1839 */ 1840 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1841 struct igc_rx_buffer *rx_buffer, 1842 struct sk_buff *skb, 1843 unsigned int size) 1844 { 1845 unsigned int truesize; 1846 1847 #if (PAGE_SIZE < 8192) 1848 truesize = igc_rx_pg_size(rx_ring) / 2; 1849 #else 1850 truesize = ring_uses_build_skb(rx_ring) ? 1851 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1852 SKB_DATA_ALIGN(size); 1853 #endif 1854 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1855 rx_buffer->page_offset, size, truesize); 1856 1857 igc_rx_buffer_flip(rx_buffer, truesize); 1858 } 1859 1860 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1861 struct igc_rx_buffer *rx_buffer, 1862 struct xdp_buff *xdp) 1863 { 1864 unsigned int size = xdp->data_end - xdp->data; 1865 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1866 unsigned int metasize = xdp->data - xdp->data_meta; 1867 struct sk_buff *skb; 1868 1869 /* prefetch first cache line of first page */ 1870 net_prefetch(xdp->data_meta); 1871 1872 /* build an skb around the page buffer */ 1873 skb = napi_build_skb(xdp->data_hard_start, truesize); 1874 if (unlikely(!skb)) 1875 return NULL; 1876 1877 /* update pointers within the skb to store the data */ 1878 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1879 __skb_put(skb, size); 1880 if (metasize) 1881 skb_metadata_set(skb, metasize); 1882 1883 igc_rx_buffer_flip(rx_buffer, truesize); 1884 return skb; 1885 } 1886 1887 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1888 struct igc_rx_buffer *rx_buffer, 1889 struct xdp_buff *xdp, 1890 ktime_t timestamp) 1891 { 1892 unsigned int metasize = xdp->data - xdp->data_meta; 1893 unsigned int size = xdp->data_end - xdp->data; 1894 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1895 void *va = xdp->data; 1896 unsigned int headlen; 1897 struct sk_buff *skb; 1898 1899 /* prefetch first cache line of first page */ 1900 net_prefetch(xdp->data_meta); 1901 1902 /* allocate a skb to store the frags */ 1903 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1904 IGC_RX_HDR_LEN + metasize); 1905 if (unlikely(!skb)) 1906 return NULL; 1907 1908 if (timestamp) 1909 skb_hwtstamps(skb)->hwtstamp = timestamp; 1910 1911 /* Determine available headroom for copy */ 1912 headlen = size; 1913 if (headlen > IGC_RX_HDR_LEN) 1914 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1915 1916 /* align pull length to size of long to optimize memcpy performance */ 1917 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1918 ALIGN(headlen + metasize, sizeof(long))); 1919 1920 if (metasize) { 1921 skb_metadata_set(skb, metasize); 1922 __skb_pull(skb, metasize); 1923 } 1924 1925 /* update all of the pointers */ 1926 size -= headlen; 1927 if (size) { 1928 skb_add_rx_frag(skb, 0, rx_buffer->page, 1929 (va + headlen) - page_address(rx_buffer->page), 1930 size, truesize); 1931 igc_rx_buffer_flip(rx_buffer, truesize); 1932 } else { 1933 rx_buffer->pagecnt_bias++; 1934 } 1935 1936 return skb; 1937 } 1938 1939 /** 1940 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1941 * @rx_ring: rx descriptor ring to store buffers on 1942 * @old_buff: donor buffer to have page reused 1943 * 1944 * Synchronizes page for reuse by the adapter 1945 */ 1946 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1947 struct igc_rx_buffer *old_buff) 1948 { 1949 u16 nta = rx_ring->next_to_alloc; 1950 struct igc_rx_buffer *new_buff; 1951 1952 new_buff = &rx_ring->rx_buffer_info[nta]; 1953 1954 /* update, and store next to alloc */ 1955 nta++; 1956 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1957 1958 /* Transfer page from old buffer to new buffer. 1959 * Move each member individually to avoid possible store 1960 * forwarding stalls. 1961 */ 1962 new_buff->dma = old_buff->dma; 1963 new_buff->page = old_buff->page; 1964 new_buff->page_offset = old_buff->page_offset; 1965 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1966 } 1967 1968 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 1969 int rx_buffer_pgcnt) 1970 { 1971 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1972 struct page *page = rx_buffer->page; 1973 1974 /* avoid re-using remote and pfmemalloc pages */ 1975 if (!dev_page_is_reusable(page)) 1976 return false; 1977 1978 #if (PAGE_SIZE < 8192) 1979 /* if we are only owner of page we can reuse it */ 1980 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 1981 return false; 1982 #else 1983 #define IGC_LAST_OFFSET \ 1984 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1985 1986 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1987 return false; 1988 #endif 1989 1990 /* If we have drained the page fragment pool we need to update 1991 * the pagecnt_bias and page count so that we fully restock the 1992 * number of references the driver holds. 1993 */ 1994 if (unlikely(pagecnt_bias == 1)) { 1995 page_ref_add(page, USHRT_MAX - 1); 1996 rx_buffer->pagecnt_bias = USHRT_MAX; 1997 } 1998 1999 return true; 2000 } 2001 2002 /** 2003 * igc_is_non_eop - process handling of non-EOP buffers 2004 * @rx_ring: Rx ring being processed 2005 * @rx_desc: Rx descriptor for current buffer 2006 * 2007 * This function updates next to clean. If the buffer is an EOP buffer 2008 * this function exits returning false, otherwise it will place the 2009 * sk_buff in the next buffer to be chained and return true indicating 2010 * that this is in fact a non-EOP buffer. 2011 */ 2012 static bool igc_is_non_eop(struct igc_ring *rx_ring, 2013 union igc_adv_rx_desc *rx_desc) 2014 { 2015 u32 ntc = rx_ring->next_to_clean + 1; 2016 2017 /* fetch, update, and store next to clean */ 2018 ntc = (ntc < rx_ring->count) ? ntc : 0; 2019 rx_ring->next_to_clean = ntc; 2020 2021 prefetch(IGC_RX_DESC(rx_ring, ntc)); 2022 2023 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 2024 return false; 2025 2026 return true; 2027 } 2028 2029 /** 2030 * igc_cleanup_headers - Correct corrupted or empty headers 2031 * @rx_ring: rx descriptor ring packet is being transacted on 2032 * @rx_desc: pointer to the EOP Rx descriptor 2033 * @skb: pointer to current skb being fixed 2034 * 2035 * Address the case where we are pulling data in on pages only 2036 * and as such no data is present in the skb header. 2037 * 2038 * In addition if skb is not at least 60 bytes we need to pad it so that 2039 * it is large enough to qualify as a valid Ethernet frame. 2040 * 2041 * Returns true if an error was encountered and skb was freed. 2042 */ 2043 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 2044 union igc_adv_rx_desc *rx_desc, 2045 struct sk_buff *skb) 2046 { 2047 /* XDP packets use error pointer so abort at this point */ 2048 if (IS_ERR(skb)) 2049 return true; 2050 2051 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 2052 struct net_device *netdev = rx_ring->netdev; 2053 2054 if (!(netdev->features & NETIF_F_RXALL)) { 2055 dev_kfree_skb_any(skb); 2056 return true; 2057 } 2058 } 2059 2060 /* if eth_skb_pad returns an error the skb was freed */ 2061 if (eth_skb_pad(skb)) 2062 return true; 2063 2064 return false; 2065 } 2066 2067 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 2068 struct igc_rx_buffer *rx_buffer, 2069 int rx_buffer_pgcnt) 2070 { 2071 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2072 /* hand second half of page back to the ring */ 2073 igc_reuse_rx_page(rx_ring, rx_buffer); 2074 } else { 2075 /* We are not reusing the buffer so unmap it and free 2076 * any references we are holding to it 2077 */ 2078 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2079 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 2080 IGC_RX_DMA_ATTR); 2081 __page_frag_cache_drain(rx_buffer->page, 2082 rx_buffer->pagecnt_bias); 2083 } 2084 2085 /* clear contents of rx_buffer */ 2086 rx_buffer->page = NULL; 2087 } 2088 2089 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 2090 { 2091 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 2092 2093 if (ring_uses_build_skb(rx_ring)) 2094 return IGC_SKB_PAD; 2095 if (igc_xdp_is_enabled(adapter)) 2096 return XDP_PACKET_HEADROOM; 2097 2098 return 0; 2099 } 2100 2101 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 2102 struct igc_rx_buffer *bi) 2103 { 2104 struct page *page = bi->page; 2105 dma_addr_t dma; 2106 2107 /* since we are recycling buffers we should seldom need to alloc */ 2108 if (likely(page)) 2109 return true; 2110 2111 /* alloc new page for storage */ 2112 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 2113 if (unlikely(!page)) { 2114 rx_ring->rx_stats.alloc_failed++; 2115 return false; 2116 } 2117 2118 /* map page for use */ 2119 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 2120 igc_rx_pg_size(rx_ring), 2121 DMA_FROM_DEVICE, 2122 IGC_RX_DMA_ATTR); 2123 2124 /* if mapping failed free memory back to system since 2125 * there isn't much point in holding memory we can't use 2126 */ 2127 if (dma_mapping_error(rx_ring->dev, dma)) { 2128 __free_page(page); 2129 2130 rx_ring->rx_stats.alloc_failed++; 2131 return false; 2132 } 2133 2134 bi->dma = dma; 2135 bi->page = page; 2136 bi->page_offset = igc_rx_offset(rx_ring); 2137 page_ref_add(page, USHRT_MAX - 1); 2138 bi->pagecnt_bias = USHRT_MAX; 2139 2140 return true; 2141 } 2142 2143 /** 2144 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2145 * @rx_ring: rx descriptor ring 2146 * @cleaned_count: number of buffers to clean 2147 */ 2148 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2149 { 2150 union igc_adv_rx_desc *rx_desc; 2151 u16 i = rx_ring->next_to_use; 2152 struct igc_rx_buffer *bi; 2153 u16 bufsz; 2154 2155 /* nothing to do */ 2156 if (!cleaned_count) 2157 return; 2158 2159 rx_desc = IGC_RX_DESC(rx_ring, i); 2160 bi = &rx_ring->rx_buffer_info[i]; 2161 i -= rx_ring->count; 2162 2163 bufsz = igc_rx_bufsz(rx_ring); 2164 2165 do { 2166 if (!igc_alloc_mapped_page(rx_ring, bi)) 2167 break; 2168 2169 /* sync the buffer for use by the device */ 2170 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2171 bi->page_offset, bufsz, 2172 DMA_FROM_DEVICE); 2173 2174 /* Refresh the desc even if buffer_addrs didn't change 2175 * because each write-back erases this info. 2176 */ 2177 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2178 2179 rx_desc++; 2180 bi++; 2181 i++; 2182 if (unlikely(!i)) { 2183 rx_desc = IGC_RX_DESC(rx_ring, 0); 2184 bi = rx_ring->rx_buffer_info; 2185 i -= rx_ring->count; 2186 } 2187 2188 /* clear the length for the next_to_use descriptor */ 2189 rx_desc->wb.upper.length = 0; 2190 2191 cleaned_count--; 2192 } while (cleaned_count); 2193 2194 i += rx_ring->count; 2195 2196 if (rx_ring->next_to_use != i) { 2197 /* record the next descriptor to use */ 2198 rx_ring->next_to_use = i; 2199 2200 /* update next to alloc since we have filled the ring */ 2201 rx_ring->next_to_alloc = i; 2202 2203 /* Force memory writes to complete before letting h/w 2204 * know there are new descriptors to fetch. (Only 2205 * applicable for weak-ordered memory model archs, 2206 * such as IA-64). 2207 */ 2208 wmb(); 2209 writel(i, rx_ring->tail); 2210 } 2211 } 2212 2213 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2214 { 2215 union igc_adv_rx_desc *desc; 2216 u16 i = ring->next_to_use; 2217 struct igc_rx_buffer *bi; 2218 dma_addr_t dma; 2219 bool ok = true; 2220 2221 if (!count) 2222 return ok; 2223 2224 desc = IGC_RX_DESC(ring, i); 2225 bi = &ring->rx_buffer_info[i]; 2226 i -= ring->count; 2227 2228 do { 2229 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2230 if (!bi->xdp) { 2231 ok = false; 2232 break; 2233 } 2234 2235 dma = xsk_buff_xdp_get_dma(bi->xdp); 2236 desc->read.pkt_addr = cpu_to_le64(dma); 2237 2238 desc++; 2239 bi++; 2240 i++; 2241 if (unlikely(!i)) { 2242 desc = IGC_RX_DESC(ring, 0); 2243 bi = ring->rx_buffer_info; 2244 i -= ring->count; 2245 } 2246 2247 /* Clear the length for the next_to_use descriptor. */ 2248 desc->wb.upper.length = 0; 2249 2250 count--; 2251 } while (count); 2252 2253 i += ring->count; 2254 2255 if (ring->next_to_use != i) { 2256 ring->next_to_use = i; 2257 2258 /* Force memory writes to complete before letting h/w 2259 * know there are new descriptors to fetch. (Only 2260 * applicable for weak-ordered memory model archs, 2261 * such as IA-64). 2262 */ 2263 wmb(); 2264 writel(i, ring->tail); 2265 } 2266 2267 return ok; 2268 } 2269 2270 /* This function requires __netif_tx_lock is held by the caller. */ 2271 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2272 struct xdp_frame *xdpf) 2273 { 2274 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2275 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 2276 u16 count, index = ring->next_to_use; 2277 struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; 2278 struct igc_tx_buffer *buffer = head; 2279 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); 2280 u32 olinfo_status, len = xdpf->len, cmd_type; 2281 void *data = xdpf->data; 2282 u16 i; 2283 2284 count = TXD_USE_COUNT(len); 2285 for (i = 0; i < nr_frags; i++) 2286 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 2287 2288 if (igc_maybe_stop_tx(ring, count + 3)) { 2289 /* this is a hard error */ 2290 return -EBUSY; 2291 } 2292 2293 i = 0; 2294 head->bytecount = xdp_get_frame_len(xdpf); 2295 head->type = IGC_TX_BUFFER_TYPE_XDP; 2296 head->gso_segs = 1; 2297 head->xdpf = xdpf; 2298 2299 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2300 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2301 2302 for (;;) { 2303 dma_addr_t dma; 2304 2305 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); 2306 if (dma_mapping_error(ring->dev, dma)) { 2307 netdev_err_once(ring->netdev, 2308 "Failed to map DMA for TX\n"); 2309 goto unmap; 2310 } 2311 2312 dma_unmap_len_set(buffer, len, len); 2313 dma_unmap_addr_set(buffer, dma, dma); 2314 2315 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2316 IGC_ADVTXD_DCMD_IFCS | len; 2317 2318 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2319 desc->read.buffer_addr = cpu_to_le64(dma); 2320 2321 buffer->protocol = 0; 2322 2323 if (++index == ring->count) 2324 index = 0; 2325 2326 if (i == nr_frags) 2327 break; 2328 2329 buffer = &ring->tx_buffer_info[index]; 2330 desc = IGC_TX_DESC(ring, index); 2331 desc->read.olinfo_status = 0; 2332 2333 data = skb_frag_address(&sinfo->frags[i]); 2334 len = skb_frag_size(&sinfo->frags[i]); 2335 i++; 2336 } 2337 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); 2338 2339 netdev_tx_sent_queue(txring_txq(ring), head->bytecount); 2340 /* set the timestamp */ 2341 head->time_stamp = jiffies; 2342 /* set next_to_watch value indicating a packet is present */ 2343 head->next_to_watch = desc; 2344 ring->next_to_use = index; 2345 2346 return 0; 2347 2348 unmap: 2349 for (;;) { 2350 buffer = &ring->tx_buffer_info[index]; 2351 if (dma_unmap_len(buffer, len)) 2352 dma_unmap_page(ring->dev, 2353 dma_unmap_addr(buffer, dma), 2354 dma_unmap_len(buffer, len), 2355 DMA_TO_DEVICE); 2356 dma_unmap_len_set(buffer, len, 0); 2357 if (buffer == head) 2358 break; 2359 2360 if (!index) 2361 index += ring->count; 2362 index--; 2363 } 2364 2365 return -ENOMEM; 2366 } 2367 2368 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2369 int cpu) 2370 { 2371 int index = cpu; 2372 2373 if (unlikely(index < 0)) 2374 index = 0; 2375 2376 while (index >= adapter->num_tx_queues) 2377 index -= adapter->num_tx_queues; 2378 2379 return adapter->tx_ring[index]; 2380 } 2381 2382 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2383 { 2384 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2385 int cpu = smp_processor_id(); 2386 struct netdev_queue *nq; 2387 struct igc_ring *ring; 2388 int res; 2389 2390 if (unlikely(!xdpf)) 2391 return -EFAULT; 2392 2393 ring = igc_xdp_get_tx_ring(adapter, cpu); 2394 nq = txring_txq(ring); 2395 2396 __netif_tx_lock(nq, cpu); 2397 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2398 __netif_tx_unlock(nq); 2399 return res; 2400 } 2401 2402 /* This function assumes rcu_read_lock() is held by the caller. */ 2403 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2404 struct bpf_prog *prog, 2405 struct xdp_buff *xdp) 2406 { 2407 u32 act = bpf_prog_run_xdp(prog, xdp); 2408 2409 switch (act) { 2410 case XDP_PASS: 2411 return IGC_XDP_PASS; 2412 case XDP_TX: 2413 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2414 goto out_failure; 2415 return IGC_XDP_TX; 2416 case XDP_REDIRECT: 2417 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2418 goto out_failure; 2419 return IGC_XDP_REDIRECT; 2420 break; 2421 default: 2422 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2423 fallthrough; 2424 case XDP_ABORTED: 2425 out_failure: 2426 trace_xdp_exception(adapter->netdev, prog, act); 2427 fallthrough; 2428 case XDP_DROP: 2429 return IGC_XDP_CONSUMED; 2430 } 2431 } 2432 2433 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2434 struct xdp_buff *xdp) 2435 { 2436 struct bpf_prog *prog; 2437 int res; 2438 2439 prog = READ_ONCE(adapter->xdp_prog); 2440 if (!prog) { 2441 res = IGC_XDP_PASS; 2442 goto out; 2443 } 2444 2445 res = __igc_xdp_run_prog(adapter, prog, xdp); 2446 2447 out: 2448 return ERR_PTR(-res); 2449 } 2450 2451 /* This function assumes __netif_tx_lock is held by the caller. */ 2452 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2453 { 2454 /* Once tail pointer is updated, hardware can fetch the descriptors 2455 * any time so we issue a write membar here to ensure all memory 2456 * writes are complete before the tail pointer is updated. 2457 */ 2458 wmb(); 2459 writel(ring->next_to_use, ring->tail); 2460 } 2461 2462 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2463 { 2464 int cpu = smp_processor_id(); 2465 struct netdev_queue *nq; 2466 struct igc_ring *ring; 2467 2468 if (status & IGC_XDP_TX) { 2469 ring = igc_xdp_get_tx_ring(adapter, cpu); 2470 nq = txring_txq(ring); 2471 2472 __netif_tx_lock(nq, cpu); 2473 igc_flush_tx_descriptors(ring); 2474 __netif_tx_unlock(nq); 2475 } 2476 2477 if (status & IGC_XDP_REDIRECT) 2478 xdp_do_flush(); 2479 } 2480 2481 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2482 unsigned int packets, unsigned int bytes) 2483 { 2484 struct igc_ring *ring = q_vector->rx.ring; 2485 2486 u64_stats_update_begin(&ring->rx_syncp); 2487 ring->rx_stats.packets += packets; 2488 ring->rx_stats.bytes += bytes; 2489 u64_stats_update_end(&ring->rx_syncp); 2490 2491 q_vector->rx.total_packets += packets; 2492 q_vector->rx.total_bytes += bytes; 2493 } 2494 2495 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2496 { 2497 unsigned int total_bytes = 0, total_packets = 0; 2498 struct igc_adapter *adapter = q_vector->adapter; 2499 struct igc_ring *rx_ring = q_vector->rx.ring; 2500 struct sk_buff *skb = rx_ring->skb; 2501 u16 cleaned_count = igc_desc_unused(rx_ring); 2502 int xdp_status = 0, rx_buffer_pgcnt; 2503 2504 while (likely(total_packets < budget)) { 2505 union igc_adv_rx_desc *rx_desc; 2506 struct igc_rx_buffer *rx_buffer; 2507 unsigned int size, truesize; 2508 ktime_t timestamp = 0; 2509 struct xdp_buff xdp; 2510 int pkt_offset = 0; 2511 void *pktbuf; 2512 2513 /* return some buffers to hardware, one at a time is too slow */ 2514 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2515 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2516 cleaned_count = 0; 2517 } 2518 2519 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2520 size = le16_to_cpu(rx_desc->wb.upper.length); 2521 if (!size) 2522 break; 2523 2524 /* This memory barrier is needed to keep us from reading 2525 * any other fields out of the rx_desc until we know the 2526 * descriptor has been written back 2527 */ 2528 dma_rmb(); 2529 2530 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2531 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2532 2533 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2534 2535 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2536 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2537 pktbuf); 2538 pkt_offset = IGC_TS_HDR_LEN; 2539 size -= IGC_TS_HDR_LEN; 2540 } 2541 2542 if (!skb) { 2543 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq); 2544 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring), 2545 igc_rx_offset(rx_ring) + pkt_offset, 2546 size, true); 2547 xdp_buff_clear_frags_flag(&xdp); 2548 2549 skb = igc_xdp_run_prog(adapter, &xdp); 2550 } 2551 2552 if (IS_ERR(skb)) { 2553 unsigned int xdp_res = -PTR_ERR(skb); 2554 2555 switch (xdp_res) { 2556 case IGC_XDP_CONSUMED: 2557 rx_buffer->pagecnt_bias++; 2558 break; 2559 case IGC_XDP_TX: 2560 case IGC_XDP_REDIRECT: 2561 igc_rx_buffer_flip(rx_buffer, truesize); 2562 xdp_status |= xdp_res; 2563 break; 2564 } 2565 2566 total_packets++; 2567 total_bytes += size; 2568 } else if (skb) 2569 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2570 else if (ring_uses_build_skb(rx_ring)) 2571 skb = igc_build_skb(rx_ring, rx_buffer, &xdp); 2572 else 2573 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp, 2574 timestamp); 2575 2576 /* exit if we failed to retrieve a buffer */ 2577 if (!skb) { 2578 rx_ring->rx_stats.alloc_failed++; 2579 rx_buffer->pagecnt_bias++; 2580 break; 2581 } 2582 2583 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2584 cleaned_count++; 2585 2586 /* fetch next buffer in frame if non-eop */ 2587 if (igc_is_non_eop(rx_ring, rx_desc)) 2588 continue; 2589 2590 /* verify the packet layout is correct */ 2591 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2592 skb = NULL; 2593 continue; 2594 } 2595 2596 /* probably a little skewed due to removing CRC */ 2597 total_bytes += skb->len; 2598 2599 /* populate checksum, VLAN, and protocol */ 2600 igc_process_skb_fields(rx_ring, rx_desc, skb); 2601 2602 napi_gro_receive(&q_vector->napi, skb); 2603 2604 /* reset skb pointer */ 2605 skb = NULL; 2606 2607 /* update budget accounting */ 2608 total_packets++; 2609 } 2610 2611 if (xdp_status) 2612 igc_finalize_xdp(adapter, xdp_status); 2613 2614 /* place incomplete frames back on ring for completion */ 2615 rx_ring->skb = skb; 2616 2617 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2618 2619 if (cleaned_count) 2620 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2621 2622 return total_packets; 2623 } 2624 2625 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2626 struct xdp_buff *xdp) 2627 { 2628 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2629 unsigned int metasize = xdp->data - xdp->data_meta; 2630 struct sk_buff *skb; 2631 2632 net_prefetch(xdp->data_meta); 2633 2634 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize, 2635 GFP_ATOMIC | __GFP_NOWARN); 2636 if (unlikely(!skb)) 2637 return NULL; 2638 2639 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2640 ALIGN(totalsize, sizeof(long))); 2641 2642 if (metasize) { 2643 skb_metadata_set(skb, metasize); 2644 __skb_pull(skb, metasize); 2645 } 2646 2647 return skb; 2648 } 2649 2650 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2651 union igc_adv_rx_desc *desc, 2652 struct xdp_buff *xdp, 2653 ktime_t timestamp) 2654 { 2655 struct igc_ring *ring = q_vector->rx.ring; 2656 struct sk_buff *skb; 2657 2658 skb = igc_construct_skb_zc(ring, xdp); 2659 if (!skb) { 2660 ring->rx_stats.alloc_failed++; 2661 return; 2662 } 2663 2664 if (timestamp) 2665 skb_hwtstamps(skb)->hwtstamp = timestamp; 2666 2667 if (igc_cleanup_headers(ring, desc, skb)) 2668 return; 2669 2670 igc_process_skb_fields(ring, desc, skb); 2671 napi_gro_receive(&q_vector->napi, skb); 2672 } 2673 2674 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2675 { 2676 struct igc_adapter *adapter = q_vector->adapter; 2677 struct igc_ring *ring = q_vector->rx.ring; 2678 u16 cleaned_count = igc_desc_unused(ring); 2679 int total_bytes = 0, total_packets = 0; 2680 u16 ntc = ring->next_to_clean; 2681 struct bpf_prog *prog; 2682 bool failure = false; 2683 int xdp_status = 0; 2684 2685 rcu_read_lock(); 2686 2687 prog = READ_ONCE(adapter->xdp_prog); 2688 2689 while (likely(total_packets < budget)) { 2690 union igc_adv_rx_desc *desc; 2691 struct igc_rx_buffer *bi; 2692 ktime_t timestamp = 0; 2693 unsigned int size; 2694 int res; 2695 2696 desc = IGC_RX_DESC(ring, ntc); 2697 size = le16_to_cpu(desc->wb.upper.length); 2698 if (!size) 2699 break; 2700 2701 /* This memory barrier is needed to keep us from reading 2702 * any other fields out of the rx_desc until we know the 2703 * descriptor has been written back 2704 */ 2705 dma_rmb(); 2706 2707 bi = &ring->rx_buffer_info[ntc]; 2708 2709 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2710 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2711 bi->xdp->data); 2712 2713 bi->xdp->data += IGC_TS_HDR_LEN; 2714 2715 /* HW timestamp has been copied into local variable. Metadata 2716 * length when XDP program is called should be 0. 2717 */ 2718 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2719 size -= IGC_TS_HDR_LEN; 2720 } 2721 2722 bi->xdp->data_end = bi->xdp->data + size; 2723 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); 2724 2725 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2726 switch (res) { 2727 case IGC_XDP_PASS: 2728 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2729 fallthrough; 2730 case IGC_XDP_CONSUMED: 2731 xsk_buff_free(bi->xdp); 2732 break; 2733 case IGC_XDP_TX: 2734 case IGC_XDP_REDIRECT: 2735 xdp_status |= res; 2736 break; 2737 } 2738 2739 bi->xdp = NULL; 2740 total_bytes += size; 2741 total_packets++; 2742 cleaned_count++; 2743 ntc++; 2744 if (ntc == ring->count) 2745 ntc = 0; 2746 } 2747 2748 ring->next_to_clean = ntc; 2749 rcu_read_unlock(); 2750 2751 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2752 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2753 2754 if (xdp_status) 2755 igc_finalize_xdp(adapter, xdp_status); 2756 2757 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2758 2759 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2760 if (failure || ring->next_to_clean == ring->next_to_use) 2761 xsk_set_rx_need_wakeup(ring->xsk_pool); 2762 else 2763 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2764 return total_packets; 2765 } 2766 2767 return failure ? budget : total_packets; 2768 } 2769 2770 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2771 unsigned int packets, unsigned int bytes) 2772 { 2773 struct igc_ring *ring = q_vector->tx.ring; 2774 2775 u64_stats_update_begin(&ring->tx_syncp); 2776 ring->tx_stats.bytes += bytes; 2777 ring->tx_stats.packets += packets; 2778 u64_stats_update_end(&ring->tx_syncp); 2779 2780 q_vector->tx.total_bytes += bytes; 2781 q_vector->tx.total_packets += packets; 2782 } 2783 2784 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2785 { 2786 struct xsk_buff_pool *pool = ring->xsk_pool; 2787 struct netdev_queue *nq = txring_txq(ring); 2788 union igc_adv_tx_desc *tx_desc = NULL; 2789 int cpu = smp_processor_id(); 2790 u16 ntu = ring->next_to_use; 2791 struct xdp_desc xdp_desc; 2792 u16 budget; 2793 2794 if (!netif_carrier_ok(ring->netdev)) 2795 return; 2796 2797 __netif_tx_lock(nq, cpu); 2798 2799 budget = igc_desc_unused(ring); 2800 2801 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2802 u32 cmd_type, olinfo_status; 2803 struct igc_tx_buffer *bi; 2804 dma_addr_t dma; 2805 2806 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2807 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2808 xdp_desc.len; 2809 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2810 2811 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2812 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2813 2814 tx_desc = IGC_TX_DESC(ring, ntu); 2815 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2816 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2817 tx_desc->read.buffer_addr = cpu_to_le64(dma); 2818 2819 bi = &ring->tx_buffer_info[ntu]; 2820 bi->type = IGC_TX_BUFFER_TYPE_XSK; 2821 bi->protocol = 0; 2822 bi->bytecount = xdp_desc.len; 2823 bi->gso_segs = 1; 2824 bi->time_stamp = jiffies; 2825 bi->next_to_watch = tx_desc; 2826 2827 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 2828 2829 ntu++; 2830 if (ntu == ring->count) 2831 ntu = 0; 2832 } 2833 2834 ring->next_to_use = ntu; 2835 if (tx_desc) { 2836 igc_flush_tx_descriptors(ring); 2837 xsk_tx_release(pool); 2838 } 2839 2840 __netif_tx_unlock(nq); 2841 } 2842 2843 /** 2844 * igc_clean_tx_irq - Reclaim resources after transmit completes 2845 * @q_vector: pointer to q_vector containing needed info 2846 * @napi_budget: Used to determine if we are in netpoll 2847 * 2848 * returns true if ring is completely cleaned 2849 */ 2850 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 2851 { 2852 struct igc_adapter *adapter = q_vector->adapter; 2853 unsigned int total_bytes = 0, total_packets = 0; 2854 unsigned int budget = q_vector->tx.work_limit; 2855 struct igc_ring *tx_ring = q_vector->tx.ring; 2856 unsigned int i = tx_ring->next_to_clean; 2857 struct igc_tx_buffer *tx_buffer; 2858 union igc_adv_tx_desc *tx_desc; 2859 u32 xsk_frames = 0; 2860 2861 if (test_bit(__IGC_DOWN, &adapter->state)) 2862 return true; 2863 2864 tx_buffer = &tx_ring->tx_buffer_info[i]; 2865 tx_desc = IGC_TX_DESC(tx_ring, i); 2866 i -= tx_ring->count; 2867 2868 do { 2869 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2870 2871 /* if next_to_watch is not set then there is no work pending */ 2872 if (!eop_desc) 2873 break; 2874 2875 /* prevent any other reads prior to eop_desc */ 2876 smp_rmb(); 2877 2878 /* if DD is not set pending work has not been completed */ 2879 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2880 break; 2881 2882 /* clear next_to_watch to prevent false hangs */ 2883 tx_buffer->next_to_watch = NULL; 2884 2885 /* update the statistics for this packet */ 2886 total_bytes += tx_buffer->bytecount; 2887 total_packets += tx_buffer->gso_segs; 2888 2889 switch (tx_buffer->type) { 2890 case IGC_TX_BUFFER_TYPE_XSK: 2891 xsk_frames++; 2892 break; 2893 case IGC_TX_BUFFER_TYPE_XDP: 2894 xdp_return_frame(tx_buffer->xdpf); 2895 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2896 break; 2897 case IGC_TX_BUFFER_TYPE_SKB: 2898 napi_consume_skb(tx_buffer->skb, napi_budget); 2899 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2900 break; 2901 default: 2902 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 2903 break; 2904 } 2905 2906 /* clear last DMA location and unmap remaining buffers */ 2907 while (tx_desc != eop_desc) { 2908 tx_buffer++; 2909 tx_desc++; 2910 i++; 2911 if (unlikely(!i)) { 2912 i -= tx_ring->count; 2913 tx_buffer = tx_ring->tx_buffer_info; 2914 tx_desc = IGC_TX_DESC(tx_ring, 0); 2915 } 2916 2917 /* unmap any remaining paged data */ 2918 if (dma_unmap_len(tx_buffer, len)) 2919 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2920 } 2921 2922 /* move us one more past the eop_desc for start of next pkt */ 2923 tx_buffer++; 2924 tx_desc++; 2925 i++; 2926 if (unlikely(!i)) { 2927 i -= tx_ring->count; 2928 tx_buffer = tx_ring->tx_buffer_info; 2929 tx_desc = IGC_TX_DESC(tx_ring, 0); 2930 } 2931 2932 /* issue prefetch for next Tx descriptor */ 2933 prefetch(tx_desc); 2934 2935 /* update budget accounting */ 2936 budget--; 2937 } while (likely(budget)); 2938 2939 netdev_tx_completed_queue(txring_txq(tx_ring), 2940 total_packets, total_bytes); 2941 2942 i += tx_ring->count; 2943 tx_ring->next_to_clean = i; 2944 2945 igc_update_tx_stats(q_vector, total_packets, total_bytes); 2946 2947 if (tx_ring->xsk_pool) { 2948 if (xsk_frames) 2949 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 2950 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 2951 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 2952 igc_xdp_xmit_zc(tx_ring); 2953 } 2954 2955 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 2956 struct igc_hw *hw = &adapter->hw; 2957 2958 /* Detect a transmit hang in hardware, this serializes the 2959 * check with the clearing of time_stamp and movement of i 2960 */ 2961 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2962 if (tx_buffer->next_to_watch && 2963 time_after(jiffies, tx_buffer->time_stamp + 2964 (adapter->tx_timeout_factor * HZ)) && 2965 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) && 2966 (rd32(IGC_TDH(tx_ring->reg_idx)) != 2967 readl(tx_ring->tail))) { 2968 /* detected Tx unit hang */ 2969 netdev_err(tx_ring->netdev, 2970 "Detected Tx Unit Hang\n" 2971 " Tx Queue <%d>\n" 2972 " TDH <%x>\n" 2973 " TDT <%x>\n" 2974 " next_to_use <%x>\n" 2975 " next_to_clean <%x>\n" 2976 "buffer_info[next_to_clean]\n" 2977 " time_stamp <%lx>\n" 2978 " next_to_watch <%p>\n" 2979 " jiffies <%lx>\n" 2980 " desc.status <%x>\n", 2981 tx_ring->queue_index, 2982 rd32(IGC_TDH(tx_ring->reg_idx)), 2983 readl(tx_ring->tail), 2984 tx_ring->next_to_use, 2985 tx_ring->next_to_clean, 2986 tx_buffer->time_stamp, 2987 tx_buffer->next_to_watch, 2988 jiffies, 2989 tx_buffer->next_to_watch->wb.status); 2990 netif_stop_subqueue(tx_ring->netdev, 2991 tx_ring->queue_index); 2992 2993 /* we are about to reset, no point in enabling stuff */ 2994 return true; 2995 } 2996 } 2997 2998 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 2999 if (unlikely(total_packets && 3000 netif_carrier_ok(tx_ring->netdev) && 3001 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 3002 /* Make sure that anybody stopping the queue after this 3003 * sees the new next_to_clean. 3004 */ 3005 smp_mb(); 3006 if (__netif_subqueue_stopped(tx_ring->netdev, 3007 tx_ring->queue_index) && 3008 !(test_bit(__IGC_DOWN, &adapter->state))) { 3009 netif_wake_subqueue(tx_ring->netdev, 3010 tx_ring->queue_index); 3011 3012 u64_stats_update_begin(&tx_ring->tx_syncp); 3013 tx_ring->tx_stats.restart_queue++; 3014 u64_stats_update_end(&tx_ring->tx_syncp); 3015 } 3016 } 3017 3018 return !!budget; 3019 } 3020 3021 static int igc_find_mac_filter(struct igc_adapter *adapter, 3022 enum igc_mac_filter_type type, const u8 *addr) 3023 { 3024 struct igc_hw *hw = &adapter->hw; 3025 int max_entries = hw->mac.rar_entry_count; 3026 u32 ral, rah; 3027 int i; 3028 3029 for (i = 0; i < max_entries; i++) { 3030 ral = rd32(IGC_RAL(i)); 3031 rah = rd32(IGC_RAH(i)); 3032 3033 if (!(rah & IGC_RAH_AV)) 3034 continue; 3035 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 3036 continue; 3037 if ((rah & IGC_RAH_RAH_MASK) != 3038 le16_to_cpup((__le16 *)(addr + 4))) 3039 continue; 3040 if (ral != le32_to_cpup((__le32 *)(addr))) 3041 continue; 3042 3043 return i; 3044 } 3045 3046 return -1; 3047 } 3048 3049 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 3050 { 3051 struct igc_hw *hw = &adapter->hw; 3052 int max_entries = hw->mac.rar_entry_count; 3053 u32 rah; 3054 int i; 3055 3056 for (i = 0; i < max_entries; i++) { 3057 rah = rd32(IGC_RAH(i)); 3058 3059 if (!(rah & IGC_RAH_AV)) 3060 return i; 3061 } 3062 3063 return -1; 3064 } 3065 3066 /** 3067 * igc_add_mac_filter() - Add MAC address filter 3068 * @adapter: Pointer to adapter where the filter should be added 3069 * @type: MAC address filter type (source or destination) 3070 * @addr: MAC address 3071 * @queue: If non-negative, queue assignment feature is enabled and frames 3072 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3073 * assignment is disabled. 3074 * 3075 * Return: 0 in case of success, negative errno code otherwise. 3076 */ 3077 static int igc_add_mac_filter(struct igc_adapter *adapter, 3078 enum igc_mac_filter_type type, const u8 *addr, 3079 int queue) 3080 { 3081 struct net_device *dev = adapter->netdev; 3082 int index; 3083 3084 index = igc_find_mac_filter(adapter, type, addr); 3085 if (index >= 0) 3086 goto update_filter; 3087 3088 index = igc_get_avail_mac_filter_slot(adapter); 3089 if (index < 0) 3090 return -ENOSPC; 3091 3092 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 3093 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3094 addr, queue); 3095 3096 update_filter: 3097 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 3098 return 0; 3099 } 3100 3101 /** 3102 * igc_del_mac_filter() - Delete MAC address filter 3103 * @adapter: Pointer to adapter where the filter should be deleted from 3104 * @type: MAC address filter type (source or destination) 3105 * @addr: MAC address 3106 */ 3107 static void igc_del_mac_filter(struct igc_adapter *adapter, 3108 enum igc_mac_filter_type type, const u8 *addr) 3109 { 3110 struct net_device *dev = adapter->netdev; 3111 int index; 3112 3113 index = igc_find_mac_filter(adapter, type, addr); 3114 if (index < 0) 3115 return; 3116 3117 if (index == 0) { 3118 /* If this is the default filter, we don't actually delete it. 3119 * We just reset to its default value i.e. disable queue 3120 * assignment. 3121 */ 3122 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 3123 3124 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 3125 } else { 3126 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 3127 index, 3128 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3129 addr); 3130 3131 igc_clear_mac_filter_hw(adapter, index); 3132 } 3133 } 3134 3135 /** 3136 * igc_add_vlan_prio_filter() - Add VLAN priority filter 3137 * @adapter: Pointer to adapter where the filter should be added 3138 * @prio: VLAN priority value 3139 * @queue: Queue number which matching frames are assigned to 3140 * 3141 * Return: 0 in case of success, negative errno code otherwise. 3142 */ 3143 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 3144 int queue) 3145 { 3146 struct net_device *dev = adapter->netdev; 3147 struct igc_hw *hw = &adapter->hw; 3148 u32 vlanpqf; 3149 3150 vlanpqf = rd32(IGC_VLANPQF); 3151 3152 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 3153 netdev_dbg(dev, "VLAN priority filter already in use\n"); 3154 return -EEXIST; 3155 } 3156 3157 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 3158 vlanpqf |= IGC_VLANPQF_VALID(prio); 3159 3160 wr32(IGC_VLANPQF, vlanpqf); 3161 3162 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 3163 prio, queue); 3164 return 0; 3165 } 3166 3167 /** 3168 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 3169 * @adapter: Pointer to adapter where the filter should be deleted from 3170 * @prio: VLAN priority value 3171 */ 3172 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 3173 { 3174 struct igc_hw *hw = &adapter->hw; 3175 u32 vlanpqf; 3176 3177 vlanpqf = rd32(IGC_VLANPQF); 3178 3179 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3180 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3181 3182 wr32(IGC_VLANPQF, vlanpqf); 3183 3184 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3185 prio); 3186 } 3187 3188 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3189 { 3190 struct igc_hw *hw = &adapter->hw; 3191 int i; 3192 3193 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3194 u32 etqf = rd32(IGC_ETQF(i)); 3195 3196 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3197 return i; 3198 } 3199 3200 return -1; 3201 } 3202 3203 /** 3204 * igc_add_etype_filter() - Add ethertype filter 3205 * @adapter: Pointer to adapter where the filter should be added 3206 * @etype: Ethertype value 3207 * @queue: If non-negative, queue assignment feature is enabled and frames 3208 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3209 * assignment is disabled. 3210 * 3211 * Return: 0 in case of success, negative errno code otherwise. 3212 */ 3213 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3214 int queue) 3215 { 3216 struct igc_hw *hw = &adapter->hw; 3217 int index; 3218 u32 etqf; 3219 3220 index = igc_get_avail_etype_filter_slot(adapter); 3221 if (index < 0) 3222 return -ENOSPC; 3223 3224 etqf = rd32(IGC_ETQF(index)); 3225 3226 etqf &= ~IGC_ETQF_ETYPE_MASK; 3227 etqf |= etype; 3228 3229 if (queue >= 0) { 3230 etqf &= ~IGC_ETQF_QUEUE_MASK; 3231 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3232 etqf |= IGC_ETQF_QUEUE_ENABLE; 3233 } 3234 3235 etqf |= IGC_ETQF_FILTER_ENABLE; 3236 3237 wr32(IGC_ETQF(index), etqf); 3238 3239 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3240 etype, queue); 3241 return 0; 3242 } 3243 3244 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3245 { 3246 struct igc_hw *hw = &adapter->hw; 3247 int i; 3248 3249 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3250 u32 etqf = rd32(IGC_ETQF(i)); 3251 3252 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3253 return i; 3254 } 3255 3256 return -1; 3257 } 3258 3259 /** 3260 * igc_del_etype_filter() - Delete ethertype filter 3261 * @adapter: Pointer to adapter where the filter should be deleted from 3262 * @etype: Ethertype value 3263 */ 3264 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3265 { 3266 struct igc_hw *hw = &adapter->hw; 3267 int index; 3268 3269 index = igc_find_etype_filter(adapter, etype); 3270 if (index < 0) 3271 return; 3272 3273 wr32(IGC_ETQF(index), 0); 3274 3275 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3276 etype); 3277 } 3278 3279 static int igc_flex_filter_select(struct igc_adapter *adapter, 3280 struct igc_flex_filter *input, 3281 u32 *fhft) 3282 { 3283 struct igc_hw *hw = &adapter->hw; 3284 u8 fhft_index; 3285 u32 fhftsl; 3286 3287 if (input->index >= MAX_FLEX_FILTER) { 3288 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n"); 3289 return -EINVAL; 3290 } 3291 3292 /* Indirect table select register */ 3293 fhftsl = rd32(IGC_FHFTSL); 3294 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3295 switch (input->index) { 3296 case 0 ... 7: 3297 fhftsl |= 0x00; 3298 break; 3299 case 8 ... 15: 3300 fhftsl |= 0x01; 3301 break; 3302 case 16 ... 23: 3303 fhftsl |= 0x02; 3304 break; 3305 case 24 ... 31: 3306 fhftsl |= 0x03; 3307 break; 3308 } 3309 wr32(IGC_FHFTSL, fhftsl); 3310 3311 /* Normalize index down to host table register */ 3312 fhft_index = input->index % 8; 3313 3314 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3315 IGC_FHFT_EXT(fhft_index - 4); 3316 3317 return 0; 3318 } 3319 3320 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3321 struct igc_flex_filter *input) 3322 { 3323 struct device *dev = &adapter->pdev->dev; 3324 struct igc_hw *hw = &adapter->hw; 3325 u8 *data = input->data; 3326 u8 *mask = input->mask; 3327 u32 queuing; 3328 u32 fhft; 3329 u32 wufc; 3330 int ret; 3331 int i; 3332 3333 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3334 * out early to avoid surprises later. 3335 */ 3336 if (input->length % 8 != 0) { 3337 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n"); 3338 return -EINVAL; 3339 } 3340 3341 /* Select corresponding flex filter register and get base for host table. */ 3342 ret = igc_flex_filter_select(adapter, input, &fhft); 3343 if (ret) 3344 return ret; 3345 3346 /* When adding a filter globally disable flex filter feature. That is 3347 * recommended within the datasheet. 3348 */ 3349 wufc = rd32(IGC_WUFC); 3350 wufc &= ~IGC_WUFC_FLEX_HQ; 3351 wr32(IGC_WUFC, wufc); 3352 3353 /* Configure filter */ 3354 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3355 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK; 3356 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK; 3357 3358 if (input->immediate_irq) 3359 queuing |= IGC_FHFT_IMM_INT; 3360 3361 if (input->drop) 3362 queuing |= IGC_FHFT_DROP; 3363 3364 wr32(fhft + 0xFC, queuing); 3365 3366 /* Write data (128 byte) and mask (128 bit) */ 3367 for (i = 0; i < 16; ++i) { 3368 const size_t data_idx = i * 8; 3369 const size_t row_idx = i * 16; 3370 u32 dw0 = 3371 (data[data_idx + 0] << 0) | 3372 (data[data_idx + 1] << 8) | 3373 (data[data_idx + 2] << 16) | 3374 (data[data_idx + 3] << 24); 3375 u32 dw1 = 3376 (data[data_idx + 4] << 0) | 3377 (data[data_idx + 5] << 8) | 3378 (data[data_idx + 6] << 16) | 3379 (data[data_idx + 7] << 24); 3380 u32 tmp; 3381 3382 /* Write row: dw0, dw1 and mask */ 3383 wr32(fhft + row_idx, dw0); 3384 wr32(fhft + row_idx + 4, dw1); 3385 3386 /* mask is only valid for MASK(7, 0) */ 3387 tmp = rd32(fhft + row_idx + 8); 3388 tmp &= ~GENMASK(7, 0); 3389 tmp |= mask[i]; 3390 wr32(fhft + row_idx + 8, tmp); 3391 } 3392 3393 /* Enable filter. */ 3394 wufc |= IGC_WUFC_FLEX_HQ; 3395 if (input->index > 8) { 3396 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3397 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3398 3399 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3400 3401 wr32(IGC_WUFC_EXT, wufc_ext); 3402 } else { 3403 wufc |= (IGC_WUFC_FLX0 << input->index); 3404 } 3405 wr32(IGC_WUFC, wufc); 3406 3407 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n", 3408 input->index); 3409 3410 return 0; 3411 } 3412 3413 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3414 const void *src, unsigned int offset, 3415 size_t len, const void *mask) 3416 { 3417 int i; 3418 3419 /* data */ 3420 memcpy(&flex->data[offset], src, len); 3421 3422 /* mask */ 3423 for (i = 0; i < len; ++i) { 3424 const unsigned int idx = i + offset; 3425 const u8 *ptr = mask; 3426 3427 if (mask) { 3428 if (ptr[i] & 0xff) 3429 flex->mask[idx / 8] |= BIT(idx % 8); 3430 3431 continue; 3432 } 3433 3434 flex->mask[idx / 8] |= BIT(idx % 8); 3435 } 3436 } 3437 3438 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3439 { 3440 struct igc_hw *hw = &adapter->hw; 3441 u32 wufc, wufc_ext; 3442 int i; 3443 3444 wufc = rd32(IGC_WUFC); 3445 wufc_ext = rd32(IGC_WUFC_EXT); 3446 3447 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3448 if (i < 8) { 3449 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3450 return i; 3451 } else { 3452 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3453 return i; 3454 } 3455 } 3456 3457 return -ENOSPC; 3458 } 3459 3460 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3461 { 3462 struct igc_hw *hw = &adapter->hw; 3463 u32 wufc, wufc_ext; 3464 3465 wufc = rd32(IGC_WUFC); 3466 wufc_ext = rd32(IGC_WUFC_EXT); 3467 3468 if (wufc & IGC_WUFC_FILTER_MASK) 3469 return true; 3470 3471 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3472 return true; 3473 3474 return false; 3475 } 3476 3477 static int igc_add_flex_filter(struct igc_adapter *adapter, 3478 struct igc_nfc_rule *rule) 3479 { 3480 struct igc_flex_filter flex = { }; 3481 struct igc_nfc_filter *filter = &rule->filter; 3482 unsigned int eth_offset, user_offset; 3483 int ret, index; 3484 bool vlan; 3485 3486 index = igc_find_avail_flex_filter_slot(adapter); 3487 if (index < 0) 3488 return -ENOSPC; 3489 3490 /* Construct the flex filter: 3491 * -> dest_mac [6] 3492 * -> src_mac [6] 3493 * -> tpid [2] 3494 * -> vlan tci [2] 3495 * -> ether type [2] 3496 * -> user data [8] 3497 * -> = 26 bytes => 32 length 3498 */ 3499 flex.index = index; 3500 flex.length = 32; 3501 flex.rx_queue = rule->action; 3502 3503 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3504 eth_offset = vlan ? 16 : 12; 3505 user_offset = vlan ? 18 : 14; 3506 3507 /* Add destination MAC */ 3508 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3509 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3510 ETH_ALEN, NULL); 3511 3512 /* Add source MAC */ 3513 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3514 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3515 ETH_ALEN, NULL); 3516 3517 /* Add VLAN etype */ 3518 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) 3519 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12, 3520 sizeof(filter->vlan_etype), 3521 NULL); 3522 3523 /* Add VLAN TCI */ 3524 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3525 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3526 sizeof(filter->vlan_tci), NULL); 3527 3528 /* Add Ether type */ 3529 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3530 __be16 etype = cpu_to_be16(filter->etype); 3531 3532 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3533 sizeof(etype), NULL); 3534 } 3535 3536 /* Add user data */ 3537 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3538 igc_flex_filter_add_field(&flex, &filter->user_data, 3539 user_offset, 3540 sizeof(filter->user_data), 3541 filter->user_mask); 3542 3543 /* Add it down to the hardware and enable it. */ 3544 ret = igc_write_flex_filter_ll(adapter, &flex); 3545 if (ret) 3546 return ret; 3547 3548 filter->flex_index = index; 3549 3550 return 0; 3551 } 3552 3553 static void igc_del_flex_filter(struct igc_adapter *adapter, 3554 u16 reg_index) 3555 { 3556 struct igc_hw *hw = &adapter->hw; 3557 u32 wufc; 3558 3559 /* Just disable the filter. The filter table itself is kept 3560 * intact. Another flex_filter_add() should override the "old" data 3561 * then. 3562 */ 3563 if (reg_index > 8) { 3564 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3565 3566 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3567 wr32(IGC_WUFC_EXT, wufc_ext); 3568 } else { 3569 wufc = rd32(IGC_WUFC); 3570 3571 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3572 wr32(IGC_WUFC, wufc); 3573 } 3574 3575 if (igc_flex_filter_in_use(adapter)) 3576 return; 3577 3578 /* No filters are in use, we may disable flex filters */ 3579 wufc = rd32(IGC_WUFC); 3580 wufc &= ~IGC_WUFC_FLEX_HQ; 3581 wr32(IGC_WUFC, wufc); 3582 } 3583 3584 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3585 struct igc_nfc_rule *rule) 3586 { 3587 int err; 3588 3589 if (rule->flex) { 3590 return igc_add_flex_filter(adapter, rule); 3591 } 3592 3593 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3594 err = igc_add_etype_filter(adapter, rule->filter.etype, 3595 rule->action); 3596 if (err) 3597 return err; 3598 } 3599 3600 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3601 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3602 rule->filter.src_addr, rule->action); 3603 if (err) 3604 return err; 3605 } 3606 3607 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3608 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3609 rule->filter.dst_addr, rule->action); 3610 if (err) 3611 return err; 3612 } 3613 3614 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3615 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3616 VLAN_PRIO_SHIFT; 3617 3618 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3619 if (err) 3620 return err; 3621 } 3622 3623 return 0; 3624 } 3625 3626 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3627 const struct igc_nfc_rule *rule) 3628 { 3629 if (rule->flex) { 3630 igc_del_flex_filter(adapter, rule->filter.flex_index); 3631 return; 3632 } 3633 3634 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3635 igc_del_etype_filter(adapter, rule->filter.etype); 3636 3637 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3638 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3639 VLAN_PRIO_SHIFT; 3640 3641 igc_del_vlan_prio_filter(adapter, prio); 3642 } 3643 3644 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3645 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3646 rule->filter.src_addr); 3647 3648 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3649 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3650 rule->filter.dst_addr); 3651 } 3652 3653 /** 3654 * igc_get_nfc_rule() - Get NFC rule 3655 * @adapter: Pointer to adapter 3656 * @location: Rule location 3657 * 3658 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3659 * 3660 * Return: Pointer to NFC rule at @location. If not found, NULL. 3661 */ 3662 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3663 u32 location) 3664 { 3665 struct igc_nfc_rule *rule; 3666 3667 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3668 if (rule->location == location) 3669 return rule; 3670 if (rule->location > location) 3671 break; 3672 } 3673 3674 return NULL; 3675 } 3676 3677 /** 3678 * igc_del_nfc_rule() - Delete NFC rule 3679 * @adapter: Pointer to adapter 3680 * @rule: Pointer to rule to be deleted 3681 * 3682 * Disable NFC rule in hardware and delete it from adapter. 3683 * 3684 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3685 */ 3686 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3687 { 3688 igc_disable_nfc_rule(adapter, rule); 3689 3690 list_del(&rule->list); 3691 adapter->nfc_rule_count--; 3692 3693 kfree(rule); 3694 } 3695 3696 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3697 { 3698 struct igc_nfc_rule *rule, *tmp; 3699 3700 mutex_lock(&adapter->nfc_rule_lock); 3701 3702 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3703 igc_del_nfc_rule(adapter, rule); 3704 3705 mutex_unlock(&adapter->nfc_rule_lock); 3706 } 3707 3708 /** 3709 * igc_add_nfc_rule() - Add NFC rule 3710 * @adapter: Pointer to adapter 3711 * @rule: Pointer to rule to be added 3712 * 3713 * Enable NFC rule in hardware and add it to adapter. 3714 * 3715 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3716 * 3717 * Return: 0 on success, negative errno on failure. 3718 */ 3719 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3720 { 3721 struct igc_nfc_rule *pred, *cur; 3722 int err; 3723 3724 err = igc_enable_nfc_rule(adapter, rule); 3725 if (err) 3726 return err; 3727 3728 pred = NULL; 3729 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3730 if (cur->location >= rule->location) 3731 break; 3732 pred = cur; 3733 } 3734 3735 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3736 adapter->nfc_rule_count++; 3737 return 0; 3738 } 3739 3740 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3741 { 3742 struct igc_nfc_rule *rule; 3743 3744 mutex_lock(&adapter->nfc_rule_lock); 3745 3746 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3747 igc_enable_nfc_rule(adapter, rule); 3748 3749 mutex_unlock(&adapter->nfc_rule_lock); 3750 } 3751 3752 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3753 { 3754 struct igc_adapter *adapter = netdev_priv(netdev); 3755 3756 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3757 } 3758 3759 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3760 { 3761 struct igc_adapter *adapter = netdev_priv(netdev); 3762 3763 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3764 return 0; 3765 } 3766 3767 /** 3768 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3769 * @netdev: network interface device structure 3770 * 3771 * The set_rx_mode entry point is called whenever the unicast or multicast 3772 * address lists or the network interface flags are updated. This routine is 3773 * responsible for configuring the hardware for proper unicast, multicast, 3774 * promiscuous mode, and all-multi behavior. 3775 */ 3776 static void igc_set_rx_mode(struct net_device *netdev) 3777 { 3778 struct igc_adapter *adapter = netdev_priv(netdev); 3779 struct igc_hw *hw = &adapter->hw; 3780 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3781 int count; 3782 3783 /* Check for Promiscuous and All Multicast modes */ 3784 if (netdev->flags & IFF_PROMISC) { 3785 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3786 } else { 3787 if (netdev->flags & IFF_ALLMULTI) { 3788 rctl |= IGC_RCTL_MPE; 3789 } else { 3790 /* Write addresses to the MTA, if the attempt fails 3791 * then we should just turn on promiscuous mode so 3792 * that we can at least receive multicast traffic 3793 */ 3794 count = igc_write_mc_addr_list(netdev); 3795 if (count < 0) 3796 rctl |= IGC_RCTL_MPE; 3797 } 3798 } 3799 3800 /* Write addresses to available RAR registers, if there is not 3801 * sufficient space to store all the addresses then enable 3802 * unicast promiscuous mode 3803 */ 3804 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3805 rctl |= IGC_RCTL_UPE; 3806 3807 /* update state of unicast and multicast */ 3808 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 3809 wr32(IGC_RCTL, rctl); 3810 3811 #if (PAGE_SIZE < 8192) 3812 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 3813 rlpml = IGC_MAX_FRAME_BUILD_SKB; 3814 #endif 3815 wr32(IGC_RLPML, rlpml); 3816 } 3817 3818 /** 3819 * igc_configure - configure the hardware for RX and TX 3820 * @adapter: private board structure 3821 */ 3822 static void igc_configure(struct igc_adapter *adapter) 3823 { 3824 struct net_device *netdev = adapter->netdev; 3825 int i = 0; 3826 3827 igc_get_hw_control(adapter); 3828 igc_set_rx_mode(netdev); 3829 3830 igc_restore_vlan(adapter); 3831 3832 igc_setup_tctl(adapter); 3833 igc_setup_mrqc(adapter); 3834 igc_setup_rctl(adapter); 3835 3836 igc_set_default_mac_filter(adapter); 3837 igc_restore_nfc_rules(adapter); 3838 3839 igc_configure_tx(adapter); 3840 igc_configure_rx(adapter); 3841 3842 igc_rx_fifo_flush_base(&adapter->hw); 3843 3844 /* call igc_desc_unused which always leaves 3845 * at least 1 descriptor unused to make sure 3846 * next_to_use != next_to_clean 3847 */ 3848 for (i = 0; i < adapter->num_rx_queues; i++) { 3849 struct igc_ring *ring = adapter->rx_ring[i]; 3850 3851 if (ring->xsk_pool) 3852 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 3853 else 3854 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 3855 } 3856 } 3857 3858 /** 3859 * igc_write_ivar - configure ivar for given MSI-X vector 3860 * @hw: pointer to the HW structure 3861 * @msix_vector: vector number we are allocating to a given ring 3862 * @index: row index of IVAR register to write within IVAR table 3863 * @offset: column offset of in IVAR, should be multiple of 8 3864 * 3865 * The IVAR table consists of 2 columns, 3866 * each containing an cause allocation for an Rx and Tx ring, and a 3867 * variable number of rows depending on the number of queues supported. 3868 */ 3869 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 3870 int index, int offset) 3871 { 3872 u32 ivar = array_rd32(IGC_IVAR0, index); 3873 3874 /* clear any bits that are currently set */ 3875 ivar &= ~((u32)0xFF << offset); 3876 3877 /* write vector and valid bit */ 3878 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 3879 3880 array_wr32(IGC_IVAR0, index, ivar); 3881 } 3882 3883 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 3884 { 3885 struct igc_adapter *adapter = q_vector->adapter; 3886 struct igc_hw *hw = &adapter->hw; 3887 int rx_queue = IGC_N0_QUEUE; 3888 int tx_queue = IGC_N0_QUEUE; 3889 3890 if (q_vector->rx.ring) 3891 rx_queue = q_vector->rx.ring->reg_idx; 3892 if (q_vector->tx.ring) 3893 tx_queue = q_vector->tx.ring->reg_idx; 3894 3895 switch (hw->mac.type) { 3896 case igc_i225: 3897 if (rx_queue > IGC_N0_QUEUE) 3898 igc_write_ivar(hw, msix_vector, 3899 rx_queue >> 1, 3900 (rx_queue & 0x1) << 4); 3901 if (tx_queue > IGC_N0_QUEUE) 3902 igc_write_ivar(hw, msix_vector, 3903 tx_queue >> 1, 3904 ((tx_queue & 0x1) << 4) + 8); 3905 q_vector->eims_value = BIT(msix_vector); 3906 break; 3907 default: 3908 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 3909 break; 3910 } 3911 3912 /* add q_vector eims value to global eims_enable_mask */ 3913 adapter->eims_enable_mask |= q_vector->eims_value; 3914 3915 /* configure q_vector to set itr on first interrupt */ 3916 q_vector->set_itr = 1; 3917 } 3918 3919 /** 3920 * igc_configure_msix - Configure MSI-X hardware 3921 * @adapter: Pointer to adapter structure 3922 * 3923 * igc_configure_msix sets up the hardware to properly 3924 * generate MSI-X interrupts. 3925 */ 3926 static void igc_configure_msix(struct igc_adapter *adapter) 3927 { 3928 struct igc_hw *hw = &adapter->hw; 3929 int i, vector = 0; 3930 u32 tmp; 3931 3932 adapter->eims_enable_mask = 0; 3933 3934 /* set vector for other causes, i.e. link changes */ 3935 switch (hw->mac.type) { 3936 case igc_i225: 3937 /* Turn on MSI-X capability first, or our settings 3938 * won't stick. And it will take days to debug. 3939 */ 3940 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 3941 IGC_GPIE_PBA | IGC_GPIE_EIAME | 3942 IGC_GPIE_NSICR); 3943 3944 /* enable msix_other interrupt */ 3945 adapter->eims_other = BIT(vector); 3946 tmp = (vector++ | IGC_IVAR_VALID) << 8; 3947 3948 wr32(IGC_IVAR_MISC, tmp); 3949 break; 3950 default: 3951 /* do nothing, since nothing else supports MSI-X */ 3952 break; 3953 } /* switch (hw->mac.type) */ 3954 3955 adapter->eims_enable_mask |= adapter->eims_other; 3956 3957 for (i = 0; i < adapter->num_q_vectors; i++) 3958 igc_assign_vector(adapter->q_vector[i], vector++); 3959 3960 wrfl(); 3961 } 3962 3963 /** 3964 * igc_irq_enable - Enable default interrupt generation settings 3965 * @adapter: board private structure 3966 */ 3967 static void igc_irq_enable(struct igc_adapter *adapter) 3968 { 3969 struct igc_hw *hw = &adapter->hw; 3970 3971 if (adapter->msix_entries) { 3972 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3973 u32 regval = rd32(IGC_EIAC); 3974 3975 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3976 regval = rd32(IGC_EIAM); 3977 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3978 wr32(IGC_EIMS, adapter->eims_enable_mask); 3979 wr32(IGC_IMS, ims); 3980 } else { 3981 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3982 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3983 } 3984 } 3985 3986 /** 3987 * igc_irq_disable - Mask off interrupt generation on the NIC 3988 * @adapter: board private structure 3989 */ 3990 static void igc_irq_disable(struct igc_adapter *adapter) 3991 { 3992 struct igc_hw *hw = &adapter->hw; 3993 3994 if (adapter->msix_entries) { 3995 u32 regval = rd32(IGC_EIAM); 3996 3997 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3998 wr32(IGC_EIMC, adapter->eims_enable_mask); 3999 regval = rd32(IGC_EIAC); 4000 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 4001 } 4002 4003 wr32(IGC_IAM, 0); 4004 wr32(IGC_IMC, ~0); 4005 wrfl(); 4006 4007 if (adapter->msix_entries) { 4008 int vector = 0, i; 4009 4010 synchronize_irq(adapter->msix_entries[vector++].vector); 4011 4012 for (i = 0; i < adapter->num_q_vectors; i++) 4013 synchronize_irq(adapter->msix_entries[vector++].vector); 4014 } else { 4015 synchronize_irq(adapter->pdev->irq); 4016 } 4017 } 4018 4019 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 4020 const u32 max_rss_queues) 4021 { 4022 /* Determine if we need to pair queues. */ 4023 /* If rss_queues > half of max_rss_queues, pair the queues in 4024 * order to conserve interrupts due to limited supply. 4025 */ 4026 if (adapter->rss_queues > (max_rss_queues / 2)) 4027 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4028 else 4029 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4030 } 4031 4032 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4033 { 4034 return IGC_MAX_RX_QUEUES; 4035 } 4036 4037 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4038 { 4039 u32 max_rss_queues; 4040 4041 max_rss_queues = igc_get_max_rss_queues(adapter); 4042 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4043 4044 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4045 } 4046 4047 /** 4048 * igc_reset_q_vector - Reset config for interrupt vector 4049 * @adapter: board private structure to initialize 4050 * @v_idx: Index of vector to be reset 4051 * 4052 * If NAPI is enabled it will delete any references to the 4053 * NAPI struct. This is preparation for igc_free_q_vector. 4054 */ 4055 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 4056 { 4057 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4058 4059 /* if we're coming from igc_set_interrupt_capability, the vectors are 4060 * not yet allocated 4061 */ 4062 if (!q_vector) 4063 return; 4064 4065 if (q_vector->tx.ring) 4066 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 4067 4068 if (q_vector->rx.ring) 4069 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 4070 4071 netif_napi_del(&q_vector->napi); 4072 } 4073 4074 /** 4075 * igc_free_q_vector - Free memory allocated for specific interrupt vector 4076 * @adapter: board private structure to initialize 4077 * @v_idx: Index of vector to be freed 4078 * 4079 * This function frees the memory allocated to the q_vector. 4080 */ 4081 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 4082 { 4083 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4084 4085 adapter->q_vector[v_idx] = NULL; 4086 4087 /* igc_get_stats64() might access the rings on this vector, 4088 * we must wait a grace period before freeing it. 4089 */ 4090 if (q_vector) 4091 kfree_rcu(q_vector, rcu); 4092 } 4093 4094 /** 4095 * igc_free_q_vectors - Free memory allocated for interrupt vectors 4096 * @adapter: board private structure to initialize 4097 * 4098 * This function frees the memory allocated to the q_vectors. In addition if 4099 * NAPI is enabled it will delete any references to the NAPI struct prior 4100 * to freeing the q_vector. 4101 */ 4102 static void igc_free_q_vectors(struct igc_adapter *adapter) 4103 { 4104 int v_idx = adapter->num_q_vectors; 4105 4106 adapter->num_tx_queues = 0; 4107 adapter->num_rx_queues = 0; 4108 adapter->num_q_vectors = 0; 4109 4110 while (v_idx--) { 4111 igc_reset_q_vector(adapter, v_idx); 4112 igc_free_q_vector(adapter, v_idx); 4113 } 4114 } 4115 4116 /** 4117 * igc_update_itr - update the dynamic ITR value based on statistics 4118 * @q_vector: pointer to q_vector 4119 * @ring_container: ring info to update the itr for 4120 * 4121 * Stores a new ITR value based on packets and byte 4122 * counts during the last interrupt. The advantage of per interrupt 4123 * computation is faster updates and more accurate ITR for the current 4124 * traffic pattern. Constants in this function were computed 4125 * based on theoretical maximum wire speed and thresholds were set based 4126 * on testing data as well as attempting to minimize response time 4127 * while increasing bulk throughput. 4128 * NOTE: These calculations are only valid when operating in a single- 4129 * queue environment. 4130 */ 4131 static void igc_update_itr(struct igc_q_vector *q_vector, 4132 struct igc_ring_container *ring_container) 4133 { 4134 unsigned int packets = ring_container->total_packets; 4135 unsigned int bytes = ring_container->total_bytes; 4136 u8 itrval = ring_container->itr; 4137 4138 /* no packets, exit with status unchanged */ 4139 if (packets == 0) 4140 return; 4141 4142 switch (itrval) { 4143 case lowest_latency: 4144 /* handle TSO and jumbo frames */ 4145 if (bytes / packets > 8000) 4146 itrval = bulk_latency; 4147 else if ((packets < 5) && (bytes > 512)) 4148 itrval = low_latency; 4149 break; 4150 case low_latency: /* 50 usec aka 20000 ints/s */ 4151 if (bytes > 10000) { 4152 /* this if handles the TSO accounting */ 4153 if (bytes / packets > 8000) 4154 itrval = bulk_latency; 4155 else if ((packets < 10) || ((bytes / packets) > 1200)) 4156 itrval = bulk_latency; 4157 else if ((packets > 35)) 4158 itrval = lowest_latency; 4159 } else if (bytes / packets > 2000) { 4160 itrval = bulk_latency; 4161 } else if (packets <= 2 && bytes < 512) { 4162 itrval = lowest_latency; 4163 } 4164 break; 4165 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4166 if (bytes > 25000) { 4167 if (packets > 35) 4168 itrval = low_latency; 4169 } else if (bytes < 1500) { 4170 itrval = low_latency; 4171 } 4172 break; 4173 } 4174 4175 /* clear work counters since we have the values we need */ 4176 ring_container->total_bytes = 0; 4177 ring_container->total_packets = 0; 4178 4179 /* write updated itr to ring container */ 4180 ring_container->itr = itrval; 4181 } 4182 4183 static void igc_set_itr(struct igc_q_vector *q_vector) 4184 { 4185 struct igc_adapter *adapter = q_vector->adapter; 4186 u32 new_itr = q_vector->itr_val; 4187 u8 current_itr = 0; 4188 4189 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4190 switch (adapter->link_speed) { 4191 case SPEED_10: 4192 case SPEED_100: 4193 current_itr = 0; 4194 new_itr = IGC_4K_ITR; 4195 goto set_itr_now; 4196 default: 4197 break; 4198 } 4199 4200 igc_update_itr(q_vector, &q_vector->tx); 4201 igc_update_itr(q_vector, &q_vector->rx); 4202 4203 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4204 4205 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4206 if (current_itr == lowest_latency && 4207 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4208 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4209 current_itr = low_latency; 4210 4211 switch (current_itr) { 4212 /* counts and packets in update_itr are dependent on these numbers */ 4213 case lowest_latency: 4214 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4215 break; 4216 case low_latency: 4217 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4218 break; 4219 case bulk_latency: 4220 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4221 break; 4222 default: 4223 break; 4224 } 4225 4226 set_itr_now: 4227 if (new_itr != q_vector->itr_val) { 4228 /* this attempts to bias the interrupt rate towards Bulk 4229 * by adding intermediate steps when interrupt rate is 4230 * increasing 4231 */ 4232 new_itr = new_itr > q_vector->itr_val ? 4233 max((new_itr * q_vector->itr_val) / 4234 (new_itr + (q_vector->itr_val >> 2)), 4235 new_itr) : new_itr; 4236 /* Don't write the value here; it resets the adapter's 4237 * internal timer, and causes us to delay far longer than 4238 * we should between interrupts. Instead, we write the ITR 4239 * value at the beginning of the next interrupt so the timing 4240 * ends up being correct. 4241 */ 4242 q_vector->itr_val = new_itr; 4243 q_vector->set_itr = 1; 4244 } 4245 } 4246 4247 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4248 { 4249 int v_idx = adapter->num_q_vectors; 4250 4251 if (adapter->msix_entries) { 4252 pci_disable_msix(adapter->pdev); 4253 kfree(adapter->msix_entries); 4254 adapter->msix_entries = NULL; 4255 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4256 pci_disable_msi(adapter->pdev); 4257 } 4258 4259 while (v_idx--) 4260 igc_reset_q_vector(adapter, v_idx); 4261 } 4262 4263 /** 4264 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4265 * @adapter: Pointer to adapter structure 4266 * @msix: boolean value for MSI-X capability 4267 * 4268 * Attempt to configure interrupts using the best available 4269 * capabilities of the hardware and kernel. 4270 */ 4271 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4272 bool msix) 4273 { 4274 int numvecs, i; 4275 int err; 4276 4277 if (!msix) 4278 goto msi_only; 4279 adapter->flags |= IGC_FLAG_HAS_MSIX; 4280 4281 /* Number of supported queues. */ 4282 adapter->num_rx_queues = adapter->rss_queues; 4283 4284 adapter->num_tx_queues = adapter->rss_queues; 4285 4286 /* start with one vector for every Rx queue */ 4287 numvecs = adapter->num_rx_queues; 4288 4289 /* if Tx handler is separate add 1 for every Tx queue */ 4290 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4291 numvecs += adapter->num_tx_queues; 4292 4293 /* store the number of vectors reserved for queues */ 4294 adapter->num_q_vectors = numvecs; 4295 4296 /* add 1 vector for link status interrupts */ 4297 numvecs++; 4298 4299 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4300 GFP_KERNEL); 4301 4302 if (!adapter->msix_entries) 4303 return; 4304 4305 /* populate entry values */ 4306 for (i = 0; i < numvecs; i++) 4307 adapter->msix_entries[i].entry = i; 4308 4309 err = pci_enable_msix_range(adapter->pdev, 4310 adapter->msix_entries, 4311 numvecs, 4312 numvecs); 4313 if (err > 0) 4314 return; 4315 4316 kfree(adapter->msix_entries); 4317 adapter->msix_entries = NULL; 4318 4319 igc_reset_interrupt_capability(adapter); 4320 4321 msi_only: 4322 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4323 4324 adapter->rss_queues = 1; 4325 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4326 adapter->num_rx_queues = 1; 4327 adapter->num_tx_queues = 1; 4328 adapter->num_q_vectors = 1; 4329 if (!pci_enable_msi(adapter->pdev)) 4330 adapter->flags |= IGC_FLAG_HAS_MSI; 4331 } 4332 4333 /** 4334 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4335 * @q_vector: pointer to q_vector 4336 * 4337 * Stores a new ITR value based on strictly on packet size. This 4338 * algorithm is less sophisticated than that used in igc_update_itr, 4339 * due to the difficulty of synchronizing statistics across multiple 4340 * receive rings. The divisors and thresholds used by this function 4341 * were determined based on theoretical maximum wire speed and testing 4342 * data, in order to minimize response time while increasing bulk 4343 * throughput. 4344 * NOTE: This function is called only when operating in a multiqueue 4345 * receive environment. 4346 */ 4347 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4348 { 4349 struct igc_adapter *adapter = q_vector->adapter; 4350 int new_val = q_vector->itr_val; 4351 int avg_wire_size = 0; 4352 unsigned int packets; 4353 4354 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4355 * ints/sec - ITR timer value of 120 ticks. 4356 */ 4357 switch (adapter->link_speed) { 4358 case SPEED_10: 4359 case SPEED_100: 4360 new_val = IGC_4K_ITR; 4361 goto set_itr_val; 4362 default: 4363 break; 4364 } 4365 4366 packets = q_vector->rx.total_packets; 4367 if (packets) 4368 avg_wire_size = q_vector->rx.total_bytes / packets; 4369 4370 packets = q_vector->tx.total_packets; 4371 if (packets) 4372 avg_wire_size = max_t(u32, avg_wire_size, 4373 q_vector->tx.total_bytes / packets); 4374 4375 /* if avg_wire_size isn't set no work was done */ 4376 if (!avg_wire_size) 4377 goto clear_counts; 4378 4379 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4380 avg_wire_size += 24; 4381 4382 /* Don't starve jumbo frames */ 4383 avg_wire_size = min(avg_wire_size, 3000); 4384 4385 /* Give a little boost to mid-size frames */ 4386 if (avg_wire_size > 300 && avg_wire_size < 1200) 4387 new_val = avg_wire_size / 3; 4388 else 4389 new_val = avg_wire_size / 2; 4390 4391 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4392 if (new_val < IGC_20K_ITR && 4393 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4394 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4395 new_val = IGC_20K_ITR; 4396 4397 set_itr_val: 4398 if (new_val != q_vector->itr_val) { 4399 q_vector->itr_val = new_val; 4400 q_vector->set_itr = 1; 4401 } 4402 clear_counts: 4403 q_vector->rx.total_bytes = 0; 4404 q_vector->rx.total_packets = 0; 4405 q_vector->tx.total_bytes = 0; 4406 q_vector->tx.total_packets = 0; 4407 } 4408 4409 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4410 { 4411 struct igc_adapter *adapter = q_vector->adapter; 4412 struct igc_hw *hw = &adapter->hw; 4413 4414 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4415 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4416 if (adapter->num_q_vectors == 1) 4417 igc_set_itr(q_vector); 4418 else 4419 igc_update_ring_itr(q_vector); 4420 } 4421 4422 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4423 if (adapter->msix_entries) 4424 wr32(IGC_EIMS, q_vector->eims_value); 4425 else 4426 igc_irq_enable(adapter); 4427 } 4428 } 4429 4430 static void igc_add_ring(struct igc_ring *ring, 4431 struct igc_ring_container *head) 4432 { 4433 head->ring = ring; 4434 head->count++; 4435 } 4436 4437 /** 4438 * igc_cache_ring_register - Descriptor ring to register mapping 4439 * @adapter: board private structure to initialize 4440 * 4441 * Once we know the feature-set enabled for the device, we'll cache 4442 * the register offset the descriptor ring is assigned to. 4443 */ 4444 static void igc_cache_ring_register(struct igc_adapter *adapter) 4445 { 4446 int i = 0, j = 0; 4447 4448 switch (adapter->hw.mac.type) { 4449 case igc_i225: 4450 default: 4451 for (; i < adapter->num_rx_queues; i++) 4452 adapter->rx_ring[i]->reg_idx = i; 4453 for (; j < adapter->num_tx_queues; j++) 4454 adapter->tx_ring[j]->reg_idx = j; 4455 break; 4456 } 4457 } 4458 4459 /** 4460 * igc_poll - NAPI Rx polling callback 4461 * @napi: napi polling structure 4462 * @budget: count of how many packets we should handle 4463 */ 4464 static int igc_poll(struct napi_struct *napi, int budget) 4465 { 4466 struct igc_q_vector *q_vector = container_of(napi, 4467 struct igc_q_vector, 4468 napi); 4469 struct igc_ring *rx_ring = q_vector->rx.ring; 4470 bool clean_complete = true; 4471 int work_done = 0; 4472 4473 if (q_vector->tx.ring) 4474 clean_complete = igc_clean_tx_irq(q_vector, budget); 4475 4476 if (rx_ring) { 4477 int cleaned = rx_ring->xsk_pool ? 4478 igc_clean_rx_irq_zc(q_vector, budget) : 4479 igc_clean_rx_irq(q_vector, budget); 4480 4481 work_done += cleaned; 4482 if (cleaned >= budget) 4483 clean_complete = false; 4484 } 4485 4486 /* If all work not completed, return budget and keep polling */ 4487 if (!clean_complete) 4488 return budget; 4489 4490 /* Exit the polling mode, but don't re-enable interrupts if stack might 4491 * poll us due to busy-polling 4492 */ 4493 if (likely(napi_complete_done(napi, work_done))) 4494 igc_ring_irq_enable(q_vector); 4495 4496 return min(work_done, budget - 1); 4497 } 4498 4499 /** 4500 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4501 * @adapter: board private structure to initialize 4502 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4503 * @v_idx: index of vector in adapter struct 4504 * @txr_count: total number of Tx rings to allocate 4505 * @txr_idx: index of first Tx ring to allocate 4506 * @rxr_count: total number of Rx rings to allocate 4507 * @rxr_idx: index of first Rx ring to allocate 4508 * 4509 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4510 */ 4511 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4512 unsigned int v_count, unsigned int v_idx, 4513 unsigned int txr_count, unsigned int txr_idx, 4514 unsigned int rxr_count, unsigned int rxr_idx) 4515 { 4516 struct igc_q_vector *q_vector; 4517 struct igc_ring *ring; 4518 int ring_count; 4519 4520 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4521 if (txr_count > 1 || rxr_count > 1) 4522 return -ENOMEM; 4523 4524 ring_count = txr_count + rxr_count; 4525 4526 /* allocate q_vector and rings */ 4527 q_vector = adapter->q_vector[v_idx]; 4528 if (!q_vector) 4529 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4530 GFP_KERNEL); 4531 else 4532 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4533 if (!q_vector) 4534 return -ENOMEM; 4535 4536 /* initialize NAPI */ 4537 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); 4538 4539 /* tie q_vector and adapter together */ 4540 adapter->q_vector[v_idx] = q_vector; 4541 q_vector->adapter = adapter; 4542 4543 /* initialize work limits */ 4544 q_vector->tx.work_limit = adapter->tx_work_limit; 4545 4546 /* initialize ITR configuration */ 4547 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4548 q_vector->itr_val = IGC_START_ITR; 4549 4550 /* initialize pointer to rings */ 4551 ring = q_vector->ring; 4552 4553 /* initialize ITR */ 4554 if (rxr_count) { 4555 /* rx or rx/tx vector */ 4556 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4557 q_vector->itr_val = adapter->rx_itr_setting; 4558 } else { 4559 /* tx only vector */ 4560 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4561 q_vector->itr_val = adapter->tx_itr_setting; 4562 } 4563 4564 if (txr_count) { 4565 /* assign generic ring traits */ 4566 ring->dev = &adapter->pdev->dev; 4567 ring->netdev = adapter->netdev; 4568 4569 /* configure backlink on ring */ 4570 ring->q_vector = q_vector; 4571 4572 /* update q_vector Tx values */ 4573 igc_add_ring(ring, &q_vector->tx); 4574 4575 /* apply Tx specific ring traits */ 4576 ring->count = adapter->tx_ring_count; 4577 ring->queue_index = txr_idx; 4578 4579 /* assign ring to adapter */ 4580 adapter->tx_ring[txr_idx] = ring; 4581 4582 /* push pointer to next ring */ 4583 ring++; 4584 } 4585 4586 if (rxr_count) { 4587 /* assign generic ring traits */ 4588 ring->dev = &adapter->pdev->dev; 4589 ring->netdev = adapter->netdev; 4590 4591 /* configure backlink on ring */ 4592 ring->q_vector = q_vector; 4593 4594 /* update q_vector Rx values */ 4595 igc_add_ring(ring, &q_vector->rx); 4596 4597 /* apply Rx specific ring traits */ 4598 ring->count = adapter->rx_ring_count; 4599 ring->queue_index = rxr_idx; 4600 4601 /* assign ring to adapter */ 4602 adapter->rx_ring[rxr_idx] = ring; 4603 } 4604 4605 return 0; 4606 } 4607 4608 /** 4609 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4610 * @adapter: board private structure to initialize 4611 * 4612 * We allocate one q_vector per queue interrupt. If allocation fails we 4613 * return -ENOMEM. 4614 */ 4615 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4616 { 4617 int rxr_remaining = adapter->num_rx_queues; 4618 int txr_remaining = adapter->num_tx_queues; 4619 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4620 int q_vectors = adapter->num_q_vectors; 4621 int err; 4622 4623 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4624 for (; rxr_remaining; v_idx++) { 4625 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4626 0, 0, 1, rxr_idx); 4627 4628 if (err) 4629 goto err_out; 4630 4631 /* update counts and index */ 4632 rxr_remaining--; 4633 rxr_idx++; 4634 } 4635 } 4636 4637 for (; v_idx < q_vectors; v_idx++) { 4638 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4639 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4640 4641 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4642 tqpv, txr_idx, rqpv, rxr_idx); 4643 4644 if (err) 4645 goto err_out; 4646 4647 /* update counts and index */ 4648 rxr_remaining -= rqpv; 4649 txr_remaining -= tqpv; 4650 rxr_idx++; 4651 txr_idx++; 4652 } 4653 4654 return 0; 4655 4656 err_out: 4657 adapter->num_tx_queues = 0; 4658 adapter->num_rx_queues = 0; 4659 adapter->num_q_vectors = 0; 4660 4661 while (v_idx--) 4662 igc_free_q_vector(adapter, v_idx); 4663 4664 return -ENOMEM; 4665 } 4666 4667 /** 4668 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4669 * @adapter: Pointer to adapter structure 4670 * @msix: boolean for MSI-X capability 4671 * 4672 * This function initializes the interrupts and allocates all of the queues. 4673 */ 4674 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4675 { 4676 struct net_device *dev = adapter->netdev; 4677 int err = 0; 4678 4679 igc_set_interrupt_capability(adapter, msix); 4680 4681 err = igc_alloc_q_vectors(adapter); 4682 if (err) { 4683 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4684 goto err_alloc_q_vectors; 4685 } 4686 4687 igc_cache_ring_register(adapter); 4688 4689 return 0; 4690 4691 err_alloc_q_vectors: 4692 igc_reset_interrupt_capability(adapter); 4693 return err; 4694 } 4695 4696 /** 4697 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4698 * @adapter: board private structure to initialize 4699 * 4700 * igc_sw_init initializes the Adapter private data structure. 4701 * Fields are initialized based on PCI device information and 4702 * OS network device settings (MTU size). 4703 */ 4704 static int igc_sw_init(struct igc_adapter *adapter) 4705 { 4706 struct net_device *netdev = adapter->netdev; 4707 struct pci_dev *pdev = adapter->pdev; 4708 struct igc_hw *hw = &adapter->hw; 4709 4710 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4711 4712 /* set default ring sizes */ 4713 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4714 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4715 4716 /* set default ITR values */ 4717 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4718 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4719 4720 /* set default work limits */ 4721 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4722 4723 /* adjust max frame to be at least the size of a standard frame */ 4724 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4725 VLAN_HLEN; 4726 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4727 4728 mutex_init(&adapter->nfc_rule_lock); 4729 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4730 adapter->nfc_rule_count = 0; 4731 4732 spin_lock_init(&adapter->stats64_lock); 4733 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4734 adapter->flags |= IGC_FLAG_HAS_MSIX; 4735 4736 igc_init_queue_configuration(adapter); 4737 4738 /* This call may decrease the number of queues */ 4739 if (igc_init_interrupt_scheme(adapter, true)) { 4740 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4741 return -ENOMEM; 4742 } 4743 4744 /* Explicitly disable IRQ since the NIC can be in any state. */ 4745 igc_irq_disable(adapter); 4746 4747 set_bit(__IGC_DOWN, &adapter->state); 4748 4749 return 0; 4750 } 4751 4752 /** 4753 * igc_up - Open the interface and prepare it to handle traffic 4754 * @adapter: board private structure 4755 */ 4756 void igc_up(struct igc_adapter *adapter) 4757 { 4758 struct igc_hw *hw = &adapter->hw; 4759 int i = 0; 4760 4761 /* hardware has been reset, we need to reload some things */ 4762 igc_configure(adapter); 4763 4764 clear_bit(__IGC_DOWN, &adapter->state); 4765 4766 for (i = 0; i < adapter->num_q_vectors; i++) 4767 napi_enable(&adapter->q_vector[i]->napi); 4768 4769 if (adapter->msix_entries) 4770 igc_configure_msix(adapter); 4771 else 4772 igc_assign_vector(adapter->q_vector[0], 0); 4773 4774 /* Clear any pending interrupts. */ 4775 rd32(IGC_ICR); 4776 igc_irq_enable(adapter); 4777 4778 netif_tx_start_all_queues(adapter->netdev); 4779 4780 /* start the watchdog. */ 4781 hw->mac.get_link_status = true; 4782 schedule_work(&adapter->watchdog_task); 4783 } 4784 4785 /** 4786 * igc_update_stats - Update the board statistics counters 4787 * @adapter: board private structure 4788 */ 4789 void igc_update_stats(struct igc_adapter *adapter) 4790 { 4791 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4792 struct pci_dev *pdev = adapter->pdev; 4793 struct igc_hw *hw = &adapter->hw; 4794 u64 _bytes, _packets; 4795 u64 bytes, packets; 4796 unsigned int start; 4797 u32 mpc; 4798 int i; 4799 4800 /* Prevent stats update while adapter is being reset, or if the pci 4801 * connection is down. 4802 */ 4803 if (adapter->link_speed == 0) 4804 return; 4805 if (pci_channel_offline(pdev)) 4806 return; 4807 4808 packets = 0; 4809 bytes = 0; 4810 4811 rcu_read_lock(); 4812 for (i = 0; i < adapter->num_rx_queues; i++) { 4813 struct igc_ring *ring = adapter->rx_ring[i]; 4814 u32 rqdpc = rd32(IGC_RQDPC(i)); 4815 4816 if (hw->mac.type >= igc_i225) 4817 wr32(IGC_RQDPC(i), 0); 4818 4819 if (rqdpc) { 4820 ring->rx_stats.drops += rqdpc; 4821 net_stats->rx_fifo_errors += rqdpc; 4822 } 4823 4824 do { 4825 start = u64_stats_fetch_begin(&ring->rx_syncp); 4826 _bytes = ring->rx_stats.bytes; 4827 _packets = ring->rx_stats.packets; 4828 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 4829 bytes += _bytes; 4830 packets += _packets; 4831 } 4832 4833 net_stats->rx_bytes = bytes; 4834 net_stats->rx_packets = packets; 4835 4836 packets = 0; 4837 bytes = 0; 4838 for (i = 0; i < adapter->num_tx_queues; i++) { 4839 struct igc_ring *ring = adapter->tx_ring[i]; 4840 4841 do { 4842 start = u64_stats_fetch_begin(&ring->tx_syncp); 4843 _bytes = ring->tx_stats.bytes; 4844 _packets = ring->tx_stats.packets; 4845 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 4846 bytes += _bytes; 4847 packets += _packets; 4848 } 4849 net_stats->tx_bytes = bytes; 4850 net_stats->tx_packets = packets; 4851 rcu_read_unlock(); 4852 4853 /* read stats registers */ 4854 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 4855 adapter->stats.gprc += rd32(IGC_GPRC); 4856 adapter->stats.gorc += rd32(IGC_GORCL); 4857 rd32(IGC_GORCH); /* clear GORCL */ 4858 adapter->stats.bprc += rd32(IGC_BPRC); 4859 adapter->stats.mprc += rd32(IGC_MPRC); 4860 adapter->stats.roc += rd32(IGC_ROC); 4861 4862 adapter->stats.prc64 += rd32(IGC_PRC64); 4863 adapter->stats.prc127 += rd32(IGC_PRC127); 4864 adapter->stats.prc255 += rd32(IGC_PRC255); 4865 adapter->stats.prc511 += rd32(IGC_PRC511); 4866 adapter->stats.prc1023 += rd32(IGC_PRC1023); 4867 adapter->stats.prc1522 += rd32(IGC_PRC1522); 4868 adapter->stats.tlpic += rd32(IGC_TLPIC); 4869 adapter->stats.rlpic += rd32(IGC_RLPIC); 4870 adapter->stats.hgptc += rd32(IGC_HGPTC); 4871 4872 mpc = rd32(IGC_MPC); 4873 adapter->stats.mpc += mpc; 4874 net_stats->rx_fifo_errors += mpc; 4875 adapter->stats.scc += rd32(IGC_SCC); 4876 adapter->stats.ecol += rd32(IGC_ECOL); 4877 adapter->stats.mcc += rd32(IGC_MCC); 4878 adapter->stats.latecol += rd32(IGC_LATECOL); 4879 adapter->stats.dc += rd32(IGC_DC); 4880 adapter->stats.rlec += rd32(IGC_RLEC); 4881 adapter->stats.xonrxc += rd32(IGC_XONRXC); 4882 adapter->stats.xontxc += rd32(IGC_XONTXC); 4883 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 4884 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 4885 adapter->stats.fcruc += rd32(IGC_FCRUC); 4886 adapter->stats.gptc += rd32(IGC_GPTC); 4887 adapter->stats.gotc += rd32(IGC_GOTCL); 4888 rd32(IGC_GOTCH); /* clear GOTCL */ 4889 adapter->stats.rnbc += rd32(IGC_RNBC); 4890 adapter->stats.ruc += rd32(IGC_RUC); 4891 adapter->stats.rfc += rd32(IGC_RFC); 4892 adapter->stats.rjc += rd32(IGC_RJC); 4893 adapter->stats.tor += rd32(IGC_TORH); 4894 adapter->stats.tot += rd32(IGC_TOTH); 4895 adapter->stats.tpr += rd32(IGC_TPR); 4896 4897 adapter->stats.ptc64 += rd32(IGC_PTC64); 4898 adapter->stats.ptc127 += rd32(IGC_PTC127); 4899 adapter->stats.ptc255 += rd32(IGC_PTC255); 4900 adapter->stats.ptc511 += rd32(IGC_PTC511); 4901 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 4902 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 4903 4904 adapter->stats.mptc += rd32(IGC_MPTC); 4905 adapter->stats.bptc += rd32(IGC_BPTC); 4906 4907 adapter->stats.tpt += rd32(IGC_TPT); 4908 adapter->stats.colc += rd32(IGC_COLC); 4909 adapter->stats.colc += rd32(IGC_RERC); 4910 4911 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 4912 4913 adapter->stats.tsctc += rd32(IGC_TSCTC); 4914 4915 adapter->stats.iac += rd32(IGC_IAC); 4916 4917 /* Fill out the OS statistics structure */ 4918 net_stats->multicast = adapter->stats.mprc; 4919 net_stats->collisions = adapter->stats.colc; 4920 4921 /* Rx Errors */ 4922 4923 /* RLEC on some newer hardware can be incorrect so build 4924 * our own version based on RUC and ROC 4925 */ 4926 net_stats->rx_errors = adapter->stats.rxerrc + 4927 adapter->stats.crcerrs + adapter->stats.algnerrc + 4928 adapter->stats.ruc + adapter->stats.roc + 4929 adapter->stats.cexterr; 4930 net_stats->rx_length_errors = adapter->stats.ruc + 4931 adapter->stats.roc; 4932 net_stats->rx_crc_errors = adapter->stats.crcerrs; 4933 net_stats->rx_frame_errors = adapter->stats.algnerrc; 4934 net_stats->rx_missed_errors = adapter->stats.mpc; 4935 4936 /* Tx Errors */ 4937 net_stats->tx_errors = adapter->stats.ecol + 4938 adapter->stats.latecol; 4939 net_stats->tx_aborted_errors = adapter->stats.ecol; 4940 net_stats->tx_window_errors = adapter->stats.latecol; 4941 net_stats->tx_carrier_errors = adapter->stats.tncrs; 4942 4943 /* Tx Dropped */ 4944 net_stats->tx_dropped = adapter->stats.txdrop; 4945 4946 /* Management Stats */ 4947 adapter->stats.mgptc += rd32(IGC_MGTPTC); 4948 adapter->stats.mgprc += rd32(IGC_MGTPRC); 4949 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 4950 } 4951 4952 /** 4953 * igc_down - Close the interface 4954 * @adapter: board private structure 4955 */ 4956 void igc_down(struct igc_adapter *adapter) 4957 { 4958 struct net_device *netdev = adapter->netdev; 4959 struct igc_hw *hw = &adapter->hw; 4960 u32 tctl, rctl; 4961 int i = 0; 4962 4963 set_bit(__IGC_DOWN, &adapter->state); 4964 4965 igc_ptp_suspend(adapter); 4966 4967 if (pci_device_is_present(adapter->pdev)) { 4968 /* disable receives in the hardware */ 4969 rctl = rd32(IGC_RCTL); 4970 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 4971 /* flush and sleep below */ 4972 } 4973 /* set trans_start so we don't get spurious watchdogs during reset */ 4974 netif_trans_update(netdev); 4975 4976 netif_carrier_off(netdev); 4977 netif_tx_stop_all_queues(netdev); 4978 4979 if (pci_device_is_present(adapter->pdev)) { 4980 /* disable transmits in the hardware */ 4981 tctl = rd32(IGC_TCTL); 4982 tctl &= ~IGC_TCTL_EN; 4983 wr32(IGC_TCTL, tctl); 4984 /* flush both disables and wait for them to finish */ 4985 wrfl(); 4986 usleep_range(10000, 20000); 4987 4988 igc_irq_disable(adapter); 4989 } 4990 4991 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 4992 4993 for (i = 0; i < adapter->num_q_vectors; i++) { 4994 if (adapter->q_vector[i]) { 4995 napi_synchronize(&adapter->q_vector[i]->napi); 4996 napi_disable(&adapter->q_vector[i]->napi); 4997 } 4998 } 4999 5000 del_timer_sync(&adapter->watchdog_timer); 5001 del_timer_sync(&adapter->phy_info_timer); 5002 5003 /* record the stats before reset*/ 5004 spin_lock(&adapter->stats64_lock); 5005 igc_update_stats(adapter); 5006 spin_unlock(&adapter->stats64_lock); 5007 5008 adapter->link_speed = 0; 5009 adapter->link_duplex = 0; 5010 5011 if (!pci_channel_offline(adapter->pdev)) 5012 igc_reset(adapter); 5013 5014 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 5015 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 5016 5017 igc_clean_all_tx_rings(adapter); 5018 igc_clean_all_rx_rings(adapter); 5019 } 5020 5021 void igc_reinit_locked(struct igc_adapter *adapter) 5022 { 5023 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5024 usleep_range(1000, 2000); 5025 igc_down(adapter); 5026 igc_up(adapter); 5027 clear_bit(__IGC_RESETTING, &adapter->state); 5028 } 5029 5030 static void igc_reset_task(struct work_struct *work) 5031 { 5032 struct igc_adapter *adapter; 5033 5034 adapter = container_of(work, struct igc_adapter, reset_task); 5035 5036 rtnl_lock(); 5037 /* If we're already down or resetting, just bail */ 5038 if (test_bit(__IGC_DOWN, &adapter->state) || 5039 test_bit(__IGC_RESETTING, &adapter->state)) { 5040 rtnl_unlock(); 5041 return; 5042 } 5043 5044 igc_rings_dump(adapter); 5045 igc_regs_dump(adapter); 5046 netdev_err(adapter->netdev, "Reset adapter\n"); 5047 igc_reinit_locked(adapter); 5048 rtnl_unlock(); 5049 } 5050 5051 /** 5052 * igc_change_mtu - Change the Maximum Transfer Unit 5053 * @netdev: network interface device structure 5054 * @new_mtu: new value for maximum frame size 5055 * 5056 * Returns 0 on success, negative on failure 5057 */ 5058 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 5059 { 5060 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5061 struct igc_adapter *adapter = netdev_priv(netdev); 5062 5063 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 5064 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 5065 return -EINVAL; 5066 } 5067 5068 /* adjust max frame to be at least the size of a standard frame */ 5069 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5070 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5071 5072 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5073 usleep_range(1000, 2000); 5074 5075 /* igc_down has a dependency on max_frame_size */ 5076 adapter->max_frame_size = max_frame; 5077 5078 if (netif_running(netdev)) 5079 igc_down(adapter); 5080 5081 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5082 netdev->mtu = new_mtu; 5083 5084 if (netif_running(netdev)) 5085 igc_up(adapter); 5086 else 5087 igc_reset(adapter); 5088 5089 clear_bit(__IGC_RESETTING, &adapter->state); 5090 5091 return 0; 5092 } 5093 5094 /** 5095 * igc_tx_timeout - Respond to a Tx Hang 5096 * @netdev: network interface device structure 5097 * @txqueue: queue number that timed out 5098 **/ 5099 static void igc_tx_timeout(struct net_device *netdev, 5100 unsigned int __always_unused txqueue) 5101 { 5102 struct igc_adapter *adapter = netdev_priv(netdev); 5103 struct igc_hw *hw = &adapter->hw; 5104 5105 /* Do the reset outside of interrupt context */ 5106 adapter->tx_timeout_count++; 5107 schedule_work(&adapter->reset_task); 5108 wr32(IGC_EICS, 5109 (adapter->eims_enable_mask & ~adapter->eims_other)); 5110 } 5111 5112 /** 5113 * igc_get_stats64 - Get System Network Statistics 5114 * @netdev: network interface device structure 5115 * @stats: rtnl_link_stats64 pointer 5116 * 5117 * Returns the address of the device statistics structure. 5118 * The statistics are updated here and also from the timer callback. 5119 */ 5120 static void igc_get_stats64(struct net_device *netdev, 5121 struct rtnl_link_stats64 *stats) 5122 { 5123 struct igc_adapter *adapter = netdev_priv(netdev); 5124 5125 spin_lock(&adapter->stats64_lock); 5126 if (!test_bit(__IGC_RESETTING, &adapter->state)) 5127 igc_update_stats(adapter); 5128 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5129 spin_unlock(&adapter->stats64_lock); 5130 } 5131 5132 static netdev_features_t igc_fix_features(struct net_device *netdev, 5133 netdev_features_t features) 5134 { 5135 /* Since there is no support for separate Rx/Tx vlan accel 5136 * enable/disable make sure Tx flag is always in same state as Rx. 5137 */ 5138 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5139 features |= NETIF_F_HW_VLAN_CTAG_TX; 5140 else 5141 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5142 5143 return features; 5144 } 5145 5146 static int igc_set_features(struct net_device *netdev, 5147 netdev_features_t features) 5148 { 5149 netdev_features_t changed = netdev->features ^ features; 5150 struct igc_adapter *adapter = netdev_priv(netdev); 5151 5152 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 5153 igc_vlan_mode(netdev, features); 5154 5155 /* Add VLAN support */ 5156 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 5157 return 0; 5158 5159 if (!(features & NETIF_F_NTUPLE)) 5160 igc_flush_nfc_rules(adapter); 5161 5162 netdev->features = features; 5163 5164 if (netif_running(netdev)) 5165 igc_reinit_locked(adapter); 5166 else 5167 igc_reset(adapter); 5168 5169 return 1; 5170 } 5171 5172 static netdev_features_t 5173 igc_features_check(struct sk_buff *skb, struct net_device *dev, 5174 netdev_features_t features) 5175 { 5176 unsigned int network_hdr_len, mac_hdr_len; 5177 5178 /* Make certain the headers can be described by a context descriptor */ 5179 mac_hdr_len = skb_network_header(skb) - skb->data; 5180 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 5181 return features & ~(NETIF_F_HW_CSUM | 5182 NETIF_F_SCTP_CRC | 5183 NETIF_F_HW_VLAN_CTAG_TX | 5184 NETIF_F_TSO | 5185 NETIF_F_TSO6); 5186 5187 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 5188 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 5189 return features & ~(NETIF_F_HW_CSUM | 5190 NETIF_F_SCTP_CRC | 5191 NETIF_F_TSO | 5192 NETIF_F_TSO6); 5193 5194 /* We can only support IPv4 TSO in tunnels if we can mangle the 5195 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5196 */ 5197 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5198 features &= ~NETIF_F_TSO; 5199 5200 return features; 5201 } 5202 5203 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5204 { 5205 u32 ack, tsauxc, sec, nsec, tsicr; 5206 struct igc_hw *hw = &adapter->hw; 5207 struct ptp_clock_event event; 5208 struct timespec64 ts; 5209 5210 tsicr = rd32(IGC_TSICR); 5211 ack = 0; 5212 5213 if (tsicr & IGC_TSICR_SYS_WRAP) { 5214 event.type = PTP_CLOCK_PPS; 5215 if (adapter->ptp_caps.pps) 5216 ptp_clock_event(adapter->ptp_clock, &event); 5217 ack |= IGC_TSICR_SYS_WRAP; 5218 } 5219 5220 if (tsicr & IGC_TSICR_TXTS) { 5221 /* retrieve hardware timestamp */ 5222 schedule_work(&adapter->ptp_tx_work); 5223 ack |= IGC_TSICR_TXTS; 5224 } 5225 5226 if (tsicr & IGC_TSICR_TT0) { 5227 spin_lock(&adapter->tmreg_lock); 5228 ts = timespec64_add(adapter->perout[0].start, 5229 adapter->perout[0].period); 5230 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5231 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5232 tsauxc = rd32(IGC_TSAUXC); 5233 tsauxc |= IGC_TSAUXC_EN_TT0; 5234 wr32(IGC_TSAUXC, tsauxc); 5235 adapter->perout[0].start = ts; 5236 spin_unlock(&adapter->tmreg_lock); 5237 ack |= IGC_TSICR_TT0; 5238 } 5239 5240 if (tsicr & IGC_TSICR_TT1) { 5241 spin_lock(&adapter->tmreg_lock); 5242 ts = timespec64_add(adapter->perout[1].start, 5243 adapter->perout[1].period); 5244 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5245 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5246 tsauxc = rd32(IGC_TSAUXC); 5247 tsauxc |= IGC_TSAUXC_EN_TT1; 5248 wr32(IGC_TSAUXC, tsauxc); 5249 adapter->perout[1].start = ts; 5250 spin_unlock(&adapter->tmreg_lock); 5251 ack |= IGC_TSICR_TT1; 5252 } 5253 5254 if (tsicr & IGC_TSICR_AUTT0) { 5255 nsec = rd32(IGC_AUXSTMPL0); 5256 sec = rd32(IGC_AUXSTMPH0); 5257 event.type = PTP_CLOCK_EXTTS; 5258 event.index = 0; 5259 event.timestamp = sec * NSEC_PER_SEC + nsec; 5260 ptp_clock_event(adapter->ptp_clock, &event); 5261 ack |= IGC_TSICR_AUTT0; 5262 } 5263 5264 if (tsicr & IGC_TSICR_AUTT1) { 5265 nsec = rd32(IGC_AUXSTMPL1); 5266 sec = rd32(IGC_AUXSTMPH1); 5267 event.type = PTP_CLOCK_EXTTS; 5268 event.index = 1; 5269 event.timestamp = sec * NSEC_PER_SEC + nsec; 5270 ptp_clock_event(adapter->ptp_clock, &event); 5271 ack |= IGC_TSICR_AUTT1; 5272 } 5273 5274 /* acknowledge the interrupts */ 5275 wr32(IGC_TSICR, ack); 5276 } 5277 5278 /** 5279 * igc_msix_other - msix other interrupt handler 5280 * @irq: interrupt number 5281 * @data: pointer to a q_vector 5282 */ 5283 static irqreturn_t igc_msix_other(int irq, void *data) 5284 { 5285 struct igc_adapter *adapter = data; 5286 struct igc_hw *hw = &adapter->hw; 5287 u32 icr = rd32(IGC_ICR); 5288 5289 /* reading ICR causes bit 31 of EICR to be cleared */ 5290 if (icr & IGC_ICR_DRSTA) 5291 schedule_work(&adapter->reset_task); 5292 5293 if (icr & IGC_ICR_DOUTSYNC) { 5294 /* HW is reporting DMA is out of sync */ 5295 adapter->stats.doosync++; 5296 } 5297 5298 if (icr & IGC_ICR_LSC) { 5299 hw->mac.get_link_status = true; 5300 /* guard against interrupt when we're going down */ 5301 if (!test_bit(__IGC_DOWN, &adapter->state)) 5302 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5303 } 5304 5305 if (icr & IGC_ICR_TS) 5306 igc_tsync_interrupt(adapter); 5307 5308 wr32(IGC_EIMS, adapter->eims_other); 5309 5310 return IRQ_HANDLED; 5311 } 5312 5313 static void igc_write_itr(struct igc_q_vector *q_vector) 5314 { 5315 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5316 5317 if (!q_vector->set_itr) 5318 return; 5319 5320 if (!itr_val) 5321 itr_val = IGC_ITR_VAL_MASK; 5322 5323 itr_val |= IGC_EITR_CNT_IGNR; 5324 5325 writel(itr_val, q_vector->itr_register); 5326 q_vector->set_itr = 0; 5327 } 5328 5329 static irqreturn_t igc_msix_ring(int irq, void *data) 5330 { 5331 struct igc_q_vector *q_vector = data; 5332 5333 /* Write the ITR value calculated from the previous interrupt. */ 5334 igc_write_itr(q_vector); 5335 5336 napi_schedule(&q_vector->napi); 5337 5338 return IRQ_HANDLED; 5339 } 5340 5341 /** 5342 * igc_request_msix - Initialize MSI-X interrupts 5343 * @adapter: Pointer to adapter structure 5344 * 5345 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5346 * kernel. 5347 */ 5348 static int igc_request_msix(struct igc_adapter *adapter) 5349 { 5350 unsigned int num_q_vectors = adapter->num_q_vectors; 5351 int i = 0, err = 0, vector = 0, free_vector = 0; 5352 struct net_device *netdev = adapter->netdev; 5353 5354 err = request_irq(adapter->msix_entries[vector].vector, 5355 &igc_msix_other, 0, netdev->name, adapter); 5356 if (err) 5357 goto err_out; 5358 5359 if (num_q_vectors > MAX_Q_VECTORS) { 5360 num_q_vectors = MAX_Q_VECTORS; 5361 dev_warn(&adapter->pdev->dev, 5362 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5363 adapter->num_q_vectors, MAX_Q_VECTORS); 5364 } 5365 for (i = 0; i < num_q_vectors; i++) { 5366 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5367 5368 vector++; 5369 5370 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5371 5372 if (q_vector->rx.ring && q_vector->tx.ring) 5373 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5374 q_vector->rx.ring->queue_index); 5375 else if (q_vector->tx.ring) 5376 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5377 q_vector->tx.ring->queue_index); 5378 else if (q_vector->rx.ring) 5379 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5380 q_vector->rx.ring->queue_index); 5381 else 5382 sprintf(q_vector->name, "%s-unused", netdev->name); 5383 5384 err = request_irq(adapter->msix_entries[vector].vector, 5385 igc_msix_ring, 0, q_vector->name, 5386 q_vector); 5387 if (err) 5388 goto err_free; 5389 } 5390 5391 igc_configure_msix(adapter); 5392 return 0; 5393 5394 err_free: 5395 /* free already assigned IRQs */ 5396 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5397 5398 vector--; 5399 for (i = 0; i < vector; i++) { 5400 free_irq(adapter->msix_entries[free_vector++].vector, 5401 adapter->q_vector[i]); 5402 } 5403 err_out: 5404 return err; 5405 } 5406 5407 /** 5408 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5409 * @adapter: Pointer to adapter structure 5410 * 5411 * This function resets the device so that it has 0 rx queues, tx queues, and 5412 * MSI-X interrupts allocated. 5413 */ 5414 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5415 { 5416 igc_free_q_vectors(adapter); 5417 igc_reset_interrupt_capability(adapter); 5418 } 5419 5420 /* Need to wait a few seconds after link up to get diagnostic information from 5421 * the phy 5422 */ 5423 static void igc_update_phy_info(struct timer_list *t) 5424 { 5425 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5426 5427 igc_get_phy_info(&adapter->hw); 5428 } 5429 5430 /** 5431 * igc_has_link - check shared code for link and determine up/down 5432 * @adapter: pointer to driver private info 5433 */ 5434 bool igc_has_link(struct igc_adapter *adapter) 5435 { 5436 struct igc_hw *hw = &adapter->hw; 5437 bool link_active = false; 5438 5439 /* get_link_status is set on LSC (link status) interrupt or 5440 * rx sequence error interrupt. get_link_status will stay 5441 * false until the igc_check_for_link establishes link 5442 * for copper adapters ONLY 5443 */ 5444 if (!hw->mac.get_link_status) 5445 return true; 5446 hw->mac.ops.check_for_link(hw); 5447 link_active = !hw->mac.get_link_status; 5448 5449 if (hw->mac.type == igc_i225) { 5450 if (!netif_carrier_ok(adapter->netdev)) { 5451 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5452 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5453 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5454 adapter->link_check_timeout = jiffies; 5455 } 5456 } 5457 5458 return link_active; 5459 } 5460 5461 /** 5462 * igc_watchdog - Timer Call-back 5463 * @t: timer for the watchdog 5464 */ 5465 static void igc_watchdog(struct timer_list *t) 5466 { 5467 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5468 /* Do the rest outside of interrupt context */ 5469 schedule_work(&adapter->watchdog_task); 5470 } 5471 5472 static void igc_watchdog_task(struct work_struct *work) 5473 { 5474 struct igc_adapter *adapter = container_of(work, 5475 struct igc_adapter, 5476 watchdog_task); 5477 struct net_device *netdev = adapter->netdev; 5478 struct igc_hw *hw = &adapter->hw; 5479 struct igc_phy_info *phy = &hw->phy; 5480 u16 phy_data, retry_count = 20; 5481 u32 link; 5482 int i; 5483 5484 link = igc_has_link(adapter); 5485 5486 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5487 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5488 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5489 else 5490 link = false; 5491 } 5492 5493 if (link) { 5494 /* Cancel scheduled suspend requests. */ 5495 pm_runtime_resume(netdev->dev.parent); 5496 5497 if (!netif_carrier_ok(netdev)) { 5498 u32 ctrl; 5499 5500 hw->mac.ops.get_speed_and_duplex(hw, 5501 &adapter->link_speed, 5502 &adapter->link_duplex); 5503 5504 ctrl = rd32(IGC_CTRL); 5505 /* Link status message must follow this format */ 5506 netdev_info(netdev, 5507 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5508 adapter->link_speed, 5509 adapter->link_duplex == FULL_DUPLEX ? 5510 "Full" : "Half", 5511 (ctrl & IGC_CTRL_TFCE) && 5512 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5513 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5514 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5515 5516 /* disable EEE if enabled */ 5517 if ((adapter->flags & IGC_FLAG_EEE) && 5518 adapter->link_duplex == HALF_DUPLEX) { 5519 netdev_info(netdev, 5520 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5521 adapter->hw.dev_spec._base.eee_enable = false; 5522 adapter->flags &= ~IGC_FLAG_EEE; 5523 } 5524 5525 /* check if SmartSpeed worked */ 5526 igc_check_downshift(hw); 5527 if (phy->speed_downgraded) 5528 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5529 5530 /* adjust timeout factor according to speed/duplex */ 5531 adapter->tx_timeout_factor = 1; 5532 switch (adapter->link_speed) { 5533 case SPEED_10: 5534 adapter->tx_timeout_factor = 14; 5535 break; 5536 case SPEED_100: 5537 case SPEED_1000: 5538 case SPEED_2500: 5539 adapter->tx_timeout_factor = 1; 5540 break; 5541 } 5542 5543 /* Once the launch time has been set on the wire, there 5544 * is a delay before the link speed can be determined 5545 * based on link-up activity. Write into the register 5546 * as soon as we know the correct link speed. 5547 */ 5548 igc_tsn_adjust_txtime_offset(adapter); 5549 5550 if (adapter->link_speed != SPEED_1000) 5551 goto no_wait; 5552 5553 /* wait for Remote receiver status OK */ 5554 retry_read_status: 5555 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5556 &phy_data)) { 5557 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5558 retry_count) { 5559 msleep(100); 5560 retry_count--; 5561 goto retry_read_status; 5562 } else if (!retry_count) { 5563 netdev_err(netdev, "exceed max 2 second\n"); 5564 } 5565 } else { 5566 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5567 } 5568 no_wait: 5569 netif_carrier_on(netdev); 5570 5571 /* link state has changed, schedule phy info update */ 5572 if (!test_bit(__IGC_DOWN, &adapter->state)) 5573 mod_timer(&adapter->phy_info_timer, 5574 round_jiffies(jiffies + 2 * HZ)); 5575 } 5576 } else { 5577 if (netif_carrier_ok(netdev)) { 5578 adapter->link_speed = 0; 5579 adapter->link_duplex = 0; 5580 5581 /* Links status message must follow this format */ 5582 netdev_info(netdev, "NIC Link is Down\n"); 5583 netif_carrier_off(netdev); 5584 5585 /* link state has changed, schedule phy info update */ 5586 if (!test_bit(__IGC_DOWN, &adapter->state)) 5587 mod_timer(&adapter->phy_info_timer, 5588 round_jiffies(jiffies + 2 * HZ)); 5589 5590 pm_schedule_suspend(netdev->dev.parent, 5591 MSEC_PER_SEC * 5); 5592 } 5593 } 5594 5595 spin_lock(&adapter->stats64_lock); 5596 igc_update_stats(adapter); 5597 spin_unlock(&adapter->stats64_lock); 5598 5599 for (i = 0; i < adapter->num_tx_queues; i++) { 5600 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5601 5602 if (!netif_carrier_ok(netdev)) { 5603 /* We've lost link, so the controller stops DMA, 5604 * but we've got queued Tx work that's never going 5605 * to get done, so reset controller to flush Tx. 5606 * (Do the reset outside of interrupt context). 5607 */ 5608 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5609 adapter->tx_timeout_count++; 5610 schedule_work(&adapter->reset_task); 5611 /* return immediately since reset is imminent */ 5612 return; 5613 } 5614 } 5615 5616 /* Force detection of hung controller every watchdog period */ 5617 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5618 } 5619 5620 /* Cause software interrupt to ensure Rx ring is cleaned */ 5621 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5622 u32 eics = 0; 5623 5624 for (i = 0; i < adapter->num_q_vectors; i++) 5625 eics |= adapter->q_vector[i]->eims_value; 5626 wr32(IGC_EICS, eics); 5627 } else { 5628 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5629 } 5630 5631 igc_ptp_tx_hang(adapter); 5632 5633 /* Reset the timer */ 5634 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5635 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5636 mod_timer(&adapter->watchdog_timer, 5637 round_jiffies(jiffies + HZ)); 5638 else 5639 mod_timer(&adapter->watchdog_timer, 5640 round_jiffies(jiffies + 2 * HZ)); 5641 } 5642 } 5643 5644 /** 5645 * igc_intr_msi - Interrupt Handler 5646 * @irq: interrupt number 5647 * @data: pointer to a network interface device structure 5648 */ 5649 static irqreturn_t igc_intr_msi(int irq, void *data) 5650 { 5651 struct igc_adapter *adapter = data; 5652 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5653 struct igc_hw *hw = &adapter->hw; 5654 /* read ICR disables interrupts using IAM */ 5655 u32 icr = rd32(IGC_ICR); 5656 5657 igc_write_itr(q_vector); 5658 5659 if (icr & IGC_ICR_DRSTA) 5660 schedule_work(&adapter->reset_task); 5661 5662 if (icr & IGC_ICR_DOUTSYNC) { 5663 /* HW is reporting DMA is out of sync */ 5664 adapter->stats.doosync++; 5665 } 5666 5667 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5668 hw->mac.get_link_status = true; 5669 if (!test_bit(__IGC_DOWN, &adapter->state)) 5670 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5671 } 5672 5673 if (icr & IGC_ICR_TS) 5674 igc_tsync_interrupt(adapter); 5675 5676 napi_schedule(&q_vector->napi); 5677 5678 return IRQ_HANDLED; 5679 } 5680 5681 /** 5682 * igc_intr - Legacy Interrupt Handler 5683 * @irq: interrupt number 5684 * @data: pointer to a network interface device structure 5685 */ 5686 static irqreturn_t igc_intr(int irq, void *data) 5687 { 5688 struct igc_adapter *adapter = data; 5689 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5690 struct igc_hw *hw = &adapter->hw; 5691 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5692 * need for the IMC write 5693 */ 5694 u32 icr = rd32(IGC_ICR); 5695 5696 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5697 * not set, then the adapter didn't send an interrupt 5698 */ 5699 if (!(icr & IGC_ICR_INT_ASSERTED)) 5700 return IRQ_NONE; 5701 5702 igc_write_itr(q_vector); 5703 5704 if (icr & IGC_ICR_DRSTA) 5705 schedule_work(&adapter->reset_task); 5706 5707 if (icr & IGC_ICR_DOUTSYNC) { 5708 /* HW is reporting DMA is out of sync */ 5709 adapter->stats.doosync++; 5710 } 5711 5712 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5713 hw->mac.get_link_status = true; 5714 /* guard against interrupt when we're going down */ 5715 if (!test_bit(__IGC_DOWN, &adapter->state)) 5716 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5717 } 5718 5719 if (icr & IGC_ICR_TS) 5720 igc_tsync_interrupt(adapter); 5721 5722 napi_schedule(&q_vector->napi); 5723 5724 return IRQ_HANDLED; 5725 } 5726 5727 static void igc_free_irq(struct igc_adapter *adapter) 5728 { 5729 if (adapter->msix_entries) { 5730 int vector = 0, i; 5731 5732 free_irq(adapter->msix_entries[vector++].vector, adapter); 5733 5734 for (i = 0; i < adapter->num_q_vectors; i++) 5735 free_irq(adapter->msix_entries[vector++].vector, 5736 adapter->q_vector[i]); 5737 } else { 5738 free_irq(adapter->pdev->irq, adapter); 5739 } 5740 } 5741 5742 /** 5743 * igc_request_irq - initialize interrupts 5744 * @adapter: Pointer to adapter structure 5745 * 5746 * Attempts to configure interrupts using the best available 5747 * capabilities of the hardware and kernel. 5748 */ 5749 static int igc_request_irq(struct igc_adapter *adapter) 5750 { 5751 struct net_device *netdev = adapter->netdev; 5752 struct pci_dev *pdev = adapter->pdev; 5753 int err = 0; 5754 5755 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5756 err = igc_request_msix(adapter); 5757 if (!err) 5758 goto request_done; 5759 /* fall back to MSI */ 5760 igc_free_all_tx_resources(adapter); 5761 igc_free_all_rx_resources(adapter); 5762 5763 igc_clear_interrupt_scheme(adapter); 5764 err = igc_init_interrupt_scheme(adapter, false); 5765 if (err) 5766 goto request_done; 5767 igc_setup_all_tx_resources(adapter); 5768 igc_setup_all_rx_resources(adapter); 5769 igc_configure(adapter); 5770 } 5771 5772 igc_assign_vector(adapter->q_vector[0], 0); 5773 5774 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5775 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5776 netdev->name, adapter); 5777 if (!err) 5778 goto request_done; 5779 5780 /* fall back to legacy interrupts */ 5781 igc_reset_interrupt_capability(adapter); 5782 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5783 } 5784 5785 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5786 netdev->name, adapter); 5787 5788 if (err) 5789 netdev_err(netdev, "Error %d getting interrupt\n", err); 5790 5791 request_done: 5792 return err; 5793 } 5794 5795 /** 5796 * __igc_open - Called when a network interface is made active 5797 * @netdev: network interface device structure 5798 * @resuming: boolean indicating if the device is resuming 5799 * 5800 * Returns 0 on success, negative value on failure 5801 * 5802 * The open entry point is called when a network interface is made 5803 * active by the system (IFF_UP). At this point all resources needed 5804 * for transmit and receive operations are allocated, the interrupt 5805 * handler is registered with the OS, the watchdog timer is started, 5806 * and the stack is notified that the interface is ready. 5807 */ 5808 static int __igc_open(struct net_device *netdev, bool resuming) 5809 { 5810 struct igc_adapter *adapter = netdev_priv(netdev); 5811 struct pci_dev *pdev = adapter->pdev; 5812 struct igc_hw *hw = &adapter->hw; 5813 int err = 0; 5814 int i = 0; 5815 5816 /* disallow open during test */ 5817 5818 if (test_bit(__IGC_TESTING, &adapter->state)) { 5819 WARN_ON(resuming); 5820 return -EBUSY; 5821 } 5822 5823 if (!resuming) 5824 pm_runtime_get_sync(&pdev->dev); 5825 5826 netif_carrier_off(netdev); 5827 5828 /* allocate transmit descriptors */ 5829 err = igc_setup_all_tx_resources(adapter); 5830 if (err) 5831 goto err_setup_tx; 5832 5833 /* allocate receive descriptors */ 5834 err = igc_setup_all_rx_resources(adapter); 5835 if (err) 5836 goto err_setup_rx; 5837 5838 igc_power_up_link(adapter); 5839 5840 igc_configure(adapter); 5841 5842 err = igc_request_irq(adapter); 5843 if (err) 5844 goto err_req_irq; 5845 5846 /* Notify the stack of the actual queue counts. */ 5847 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 5848 if (err) 5849 goto err_set_queues; 5850 5851 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 5852 if (err) 5853 goto err_set_queues; 5854 5855 clear_bit(__IGC_DOWN, &adapter->state); 5856 5857 for (i = 0; i < adapter->num_q_vectors; i++) 5858 napi_enable(&adapter->q_vector[i]->napi); 5859 5860 /* Clear any pending interrupts. */ 5861 rd32(IGC_ICR); 5862 igc_irq_enable(adapter); 5863 5864 if (!resuming) 5865 pm_runtime_put(&pdev->dev); 5866 5867 netif_tx_start_all_queues(netdev); 5868 5869 /* start the watchdog. */ 5870 hw->mac.get_link_status = true; 5871 schedule_work(&adapter->watchdog_task); 5872 5873 return IGC_SUCCESS; 5874 5875 err_set_queues: 5876 igc_free_irq(adapter); 5877 err_req_irq: 5878 igc_release_hw_control(adapter); 5879 igc_power_down_phy_copper_base(&adapter->hw); 5880 igc_free_all_rx_resources(adapter); 5881 err_setup_rx: 5882 igc_free_all_tx_resources(adapter); 5883 err_setup_tx: 5884 igc_reset(adapter); 5885 if (!resuming) 5886 pm_runtime_put(&pdev->dev); 5887 5888 return err; 5889 } 5890 5891 int igc_open(struct net_device *netdev) 5892 { 5893 return __igc_open(netdev, false); 5894 } 5895 5896 /** 5897 * __igc_close - Disables a network interface 5898 * @netdev: network interface device structure 5899 * @suspending: boolean indicating the device is suspending 5900 * 5901 * Returns 0, this is not allowed to fail 5902 * 5903 * The close entry point is called when an interface is de-activated 5904 * by the OS. The hardware is still under the driver's control, but 5905 * needs to be disabled. A global MAC reset is issued to stop the 5906 * hardware, and all transmit and receive resources are freed. 5907 */ 5908 static int __igc_close(struct net_device *netdev, bool suspending) 5909 { 5910 struct igc_adapter *adapter = netdev_priv(netdev); 5911 struct pci_dev *pdev = adapter->pdev; 5912 5913 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 5914 5915 if (!suspending) 5916 pm_runtime_get_sync(&pdev->dev); 5917 5918 igc_down(adapter); 5919 5920 igc_release_hw_control(adapter); 5921 5922 igc_free_irq(adapter); 5923 5924 igc_free_all_tx_resources(adapter); 5925 igc_free_all_rx_resources(adapter); 5926 5927 if (!suspending) 5928 pm_runtime_put_sync(&pdev->dev); 5929 5930 return 0; 5931 } 5932 5933 int igc_close(struct net_device *netdev) 5934 { 5935 if (netif_device_present(netdev) || netdev->dismantle) 5936 return __igc_close(netdev, false); 5937 return 0; 5938 } 5939 5940 /** 5941 * igc_ioctl - Access the hwtstamp interface 5942 * @netdev: network interface device structure 5943 * @ifr: interface request data 5944 * @cmd: ioctl command 5945 **/ 5946 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5947 { 5948 switch (cmd) { 5949 case SIOCGHWTSTAMP: 5950 return igc_ptp_get_ts_config(netdev, ifr); 5951 case SIOCSHWTSTAMP: 5952 return igc_ptp_set_ts_config(netdev, ifr); 5953 default: 5954 return -EOPNOTSUPP; 5955 } 5956 } 5957 5958 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 5959 bool enable) 5960 { 5961 struct igc_ring *ring; 5962 5963 if (queue < 0 || queue >= adapter->num_tx_queues) 5964 return -EINVAL; 5965 5966 ring = adapter->tx_ring[queue]; 5967 ring->launchtime_enable = enable; 5968 5969 return 0; 5970 } 5971 5972 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 5973 { 5974 struct timespec64 b; 5975 5976 b = ktime_to_timespec64(base_time); 5977 5978 return timespec64_compare(now, &b) > 0; 5979 } 5980 5981 static bool validate_schedule(struct igc_adapter *adapter, 5982 const struct tc_taprio_qopt_offload *qopt) 5983 { 5984 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 5985 struct igc_hw *hw = &adapter->hw; 5986 struct timespec64 now; 5987 size_t n; 5988 5989 if (qopt->cycle_time_extension) 5990 return false; 5991 5992 igc_ptp_read(adapter, &now); 5993 5994 /* If we program the controller's BASET registers with a time 5995 * in the future, it will hold all the packets until that 5996 * time, causing a lot of TX Hangs, so to avoid that, we 5997 * reject schedules that would start in the future. 5998 * Note: Limitation above is no longer in i226. 5999 */ 6000 if (!is_base_time_past(qopt->base_time, &now) && 6001 igc_is_device_id_i225(hw)) 6002 return false; 6003 6004 for (n = 0; n < qopt->num_entries; n++) { 6005 const struct tc_taprio_sched_entry *e, *prev; 6006 int i; 6007 6008 prev = n ? &qopt->entries[n - 1] : NULL; 6009 e = &qopt->entries[n]; 6010 6011 /* i225 only supports "global" frame preemption 6012 * settings. 6013 */ 6014 if (e->command != TC_TAPRIO_CMD_SET_GATES) 6015 return false; 6016 6017 for (i = 0; i < adapter->num_tx_queues; i++) 6018 if (e->gate_mask & BIT(i)) { 6019 queue_uses[i]++; 6020 6021 /* There are limitations: A single queue cannot 6022 * be opened and closed multiple times per cycle 6023 * unless the gate stays open. Check for it. 6024 */ 6025 if (queue_uses[i] > 1 && 6026 !(prev->gate_mask & BIT(i))) 6027 return false; 6028 } 6029 } 6030 6031 return true; 6032 } 6033 6034 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 6035 struct tc_etf_qopt_offload *qopt) 6036 { 6037 struct igc_hw *hw = &adapter->hw; 6038 int err; 6039 6040 if (hw->mac.type != igc_i225) 6041 return -EOPNOTSUPP; 6042 6043 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 6044 if (err) 6045 return err; 6046 6047 return igc_tsn_offload_apply(adapter); 6048 } 6049 6050 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 6051 { 6052 int i; 6053 6054 adapter->base_time = 0; 6055 adapter->cycle_time = NSEC_PER_SEC; 6056 adapter->qbv_config_change_errors = 0; 6057 6058 for (i = 0; i < adapter->num_tx_queues; i++) { 6059 struct igc_ring *ring = adapter->tx_ring[i]; 6060 6061 ring->start_time = 0; 6062 ring->end_time = NSEC_PER_SEC; 6063 ring->max_sdu = 0; 6064 } 6065 6066 return 0; 6067 } 6068 6069 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 6070 struct tc_taprio_qopt_offload *qopt) 6071 { 6072 bool queue_configured[IGC_MAX_TX_QUEUES] = { }; 6073 struct igc_hw *hw = &adapter->hw; 6074 u32 start_time = 0, end_time = 0; 6075 size_t n; 6076 int i; 6077 6078 adapter->qbv_enable = qopt->enable; 6079 6080 if (!qopt->enable) 6081 return igc_tsn_clear_schedule(adapter); 6082 6083 if (qopt->base_time < 0) 6084 return -ERANGE; 6085 6086 if (igc_is_device_id_i225(hw) && adapter->base_time) 6087 return -EALREADY; 6088 6089 if (!validate_schedule(adapter, qopt)) 6090 return -EINVAL; 6091 6092 adapter->cycle_time = qopt->cycle_time; 6093 adapter->base_time = qopt->base_time; 6094 6095 for (n = 0; n < qopt->num_entries; n++) { 6096 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 6097 6098 end_time += e->interval; 6099 6100 /* If any of the conditions below are true, we need to manually 6101 * control the end time of the cycle. 6102 * 1. Qbv users can specify a cycle time that is not equal 6103 * to the total GCL intervals. Hence, recalculation is 6104 * necessary here to exclude the time interval that 6105 * exceeds the cycle time. 6106 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2, 6107 * once the end of the list is reached, it will switch 6108 * to the END_OF_CYCLE state and leave the gates in the 6109 * same state until the next cycle is started. 6110 */ 6111 if (end_time > adapter->cycle_time || 6112 n + 1 == qopt->num_entries) 6113 end_time = adapter->cycle_time; 6114 6115 for (i = 0; i < adapter->num_tx_queues; i++) { 6116 struct igc_ring *ring = adapter->tx_ring[i]; 6117 6118 if (!(e->gate_mask & BIT(i))) 6119 continue; 6120 6121 /* Check whether a queue stays open for more than one 6122 * entry. If so, keep the start and advance the end 6123 * time. 6124 */ 6125 if (!queue_configured[i]) 6126 ring->start_time = start_time; 6127 ring->end_time = end_time; 6128 6129 queue_configured[i] = true; 6130 } 6131 6132 start_time += e->interval; 6133 } 6134 6135 /* Check whether a queue gets configured. 6136 * If not, set the start and end time to be end time. 6137 */ 6138 for (i = 0; i < adapter->num_tx_queues; i++) { 6139 if (!queue_configured[i]) { 6140 struct igc_ring *ring = adapter->tx_ring[i]; 6141 6142 ring->start_time = end_time; 6143 ring->end_time = end_time; 6144 } 6145 } 6146 6147 for (i = 0; i < adapter->num_tx_queues; i++) { 6148 struct igc_ring *ring = adapter->tx_ring[i]; 6149 struct net_device *dev = adapter->netdev; 6150 6151 if (qopt->max_sdu[i]) 6152 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len; 6153 else 6154 ring->max_sdu = 0; 6155 } 6156 6157 return 0; 6158 } 6159 6160 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 6161 struct tc_taprio_qopt_offload *qopt) 6162 { 6163 struct igc_hw *hw = &adapter->hw; 6164 int err; 6165 6166 if (hw->mac.type != igc_i225) 6167 return -EOPNOTSUPP; 6168 6169 err = igc_save_qbv_schedule(adapter, qopt); 6170 if (err) 6171 return err; 6172 6173 return igc_tsn_offload_apply(adapter); 6174 } 6175 6176 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 6177 bool enable, int idleslope, int sendslope, 6178 int hicredit, int locredit) 6179 { 6180 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 6181 struct net_device *netdev = adapter->netdev; 6182 struct igc_ring *ring; 6183 int i; 6184 6185 /* i225 has two sets of credit-based shaper logic. 6186 * Supporting it only on the top two priority queues 6187 */ 6188 if (queue < 0 || queue > 1) 6189 return -EINVAL; 6190 6191 ring = adapter->tx_ring[queue]; 6192 6193 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 6194 if (adapter->tx_ring[i]) 6195 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 6196 6197 /* CBS should be enabled on the highest priority queue first in order 6198 * for the CBS algorithm to operate as intended. 6199 */ 6200 if (enable) { 6201 if (queue == 1 && !cbs_status[0]) { 6202 netdev_err(netdev, 6203 "Enabling CBS on queue1 before queue0\n"); 6204 return -EINVAL; 6205 } 6206 } else { 6207 if (queue == 0 && cbs_status[1]) { 6208 netdev_err(netdev, 6209 "Disabling CBS on queue0 before queue1\n"); 6210 return -EINVAL; 6211 } 6212 } 6213 6214 ring->cbs_enable = enable; 6215 ring->idleslope = idleslope; 6216 ring->sendslope = sendslope; 6217 ring->hicredit = hicredit; 6218 ring->locredit = locredit; 6219 6220 return 0; 6221 } 6222 6223 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 6224 struct tc_cbs_qopt_offload *qopt) 6225 { 6226 struct igc_hw *hw = &adapter->hw; 6227 int err; 6228 6229 if (hw->mac.type != igc_i225) 6230 return -EOPNOTSUPP; 6231 6232 if (qopt->queue < 0 || qopt->queue > 1) 6233 return -EINVAL; 6234 6235 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 6236 qopt->idleslope, qopt->sendslope, 6237 qopt->hicredit, qopt->locredit); 6238 if (err) 6239 return err; 6240 6241 return igc_tsn_offload_apply(adapter); 6242 } 6243 6244 static int igc_tc_query_caps(struct igc_adapter *adapter, 6245 struct tc_query_caps_base *base) 6246 { 6247 struct igc_hw *hw = &adapter->hw; 6248 6249 switch (base->type) { 6250 case TC_SETUP_QDISC_TAPRIO: { 6251 struct tc_taprio_caps *caps = base->caps; 6252 6253 caps->broken_mqprio = true; 6254 6255 if (hw->mac.type == igc_i225) { 6256 caps->supports_queue_max_sdu = true; 6257 caps->gate_mask_per_txq = true; 6258 } 6259 6260 return 0; 6261 } 6262 default: 6263 return -EOPNOTSUPP; 6264 } 6265 } 6266 6267 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6268 void *type_data) 6269 { 6270 struct igc_adapter *adapter = netdev_priv(dev); 6271 6272 switch (type) { 6273 case TC_QUERY_CAPS: 6274 return igc_tc_query_caps(adapter, type_data); 6275 case TC_SETUP_QDISC_TAPRIO: 6276 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6277 6278 case TC_SETUP_QDISC_ETF: 6279 return igc_tsn_enable_launchtime(adapter, type_data); 6280 6281 case TC_SETUP_QDISC_CBS: 6282 return igc_tsn_enable_cbs(adapter, type_data); 6283 6284 default: 6285 return -EOPNOTSUPP; 6286 } 6287 } 6288 6289 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6290 { 6291 struct igc_adapter *adapter = netdev_priv(dev); 6292 6293 switch (bpf->command) { 6294 case XDP_SETUP_PROG: 6295 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6296 case XDP_SETUP_XSK_POOL: 6297 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6298 bpf->xsk.queue_id); 6299 default: 6300 return -EOPNOTSUPP; 6301 } 6302 } 6303 6304 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6305 struct xdp_frame **frames, u32 flags) 6306 { 6307 struct igc_adapter *adapter = netdev_priv(dev); 6308 int cpu = smp_processor_id(); 6309 struct netdev_queue *nq; 6310 struct igc_ring *ring; 6311 int i, drops; 6312 6313 if (unlikely(test_bit(__IGC_DOWN, &adapter->state))) 6314 return -ENETDOWN; 6315 6316 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6317 return -EINVAL; 6318 6319 ring = igc_xdp_get_tx_ring(adapter, cpu); 6320 nq = txring_txq(ring); 6321 6322 __netif_tx_lock(nq, cpu); 6323 6324 drops = 0; 6325 for (i = 0; i < num_frames; i++) { 6326 int err; 6327 struct xdp_frame *xdpf = frames[i]; 6328 6329 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6330 if (err) { 6331 xdp_return_frame_rx_napi(xdpf); 6332 drops++; 6333 } 6334 } 6335 6336 if (flags & XDP_XMIT_FLUSH) 6337 igc_flush_tx_descriptors(ring); 6338 6339 __netif_tx_unlock(nq); 6340 6341 return num_frames - drops; 6342 } 6343 6344 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6345 struct igc_q_vector *q_vector) 6346 { 6347 struct igc_hw *hw = &adapter->hw; 6348 u32 eics = 0; 6349 6350 eics |= q_vector->eims_value; 6351 wr32(IGC_EICS, eics); 6352 } 6353 6354 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6355 { 6356 struct igc_adapter *adapter = netdev_priv(dev); 6357 struct igc_q_vector *q_vector; 6358 struct igc_ring *ring; 6359 6360 if (test_bit(__IGC_DOWN, &adapter->state)) 6361 return -ENETDOWN; 6362 6363 if (!igc_xdp_is_enabled(adapter)) 6364 return -ENXIO; 6365 6366 if (queue_id >= adapter->num_rx_queues) 6367 return -EINVAL; 6368 6369 ring = adapter->rx_ring[queue_id]; 6370 6371 if (!ring->xsk_pool) 6372 return -ENXIO; 6373 6374 q_vector = adapter->q_vector[queue_id]; 6375 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6376 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6377 6378 return 0; 6379 } 6380 6381 static const struct net_device_ops igc_netdev_ops = { 6382 .ndo_open = igc_open, 6383 .ndo_stop = igc_close, 6384 .ndo_start_xmit = igc_xmit_frame, 6385 .ndo_set_rx_mode = igc_set_rx_mode, 6386 .ndo_set_mac_address = igc_set_mac, 6387 .ndo_change_mtu = igc_change_mtu, 6388 .ndo_tx_timeout = igc_tx_timeout, 6389 .ndo_get_stats64 = igc_get_stats64, 6390 .ndo_fix_features = igc_fix_features, 6391 .ndo_set_features = igc_set_features, 6392 .ndo_features_check = igc_features_check, 6393 .ndo_eth_ioctl = igc_ioctl, 6394 .ndo_setup_tc = igc_setup_tc, 6395 .ndo_bpf = igc_bpf, 6396 .ndo_xdp_xmit = igc_xdp_xmit, 6397 .ndo_xsk_wakeup = igc_xsk_wakeup, 6398 }; 6399 6400 /* PCIe configuration access */ 6401 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6402 { 6403 struct igc_adapter *adapter = hw->back; 6404 6405 pci_read_config_word(adapter->pdev, reg, value); 6406 } 6407 6408 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6409 { 6410 struct igc_adapter *adapter = hw->back; 6411 6412 pci_write_config_word(adapter->pdev, reg, *value); 6413 } 6414 6415 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6416 { 6417 struct igc_adapter *adapter = hw->back; 6418 6419 if (!pci_is_pcie(adapter->pdev)) 6420 return -IGC_ERR_CONFIG; 6421 6422 pcie_capability_read_word(adapter->pdev, reg, value); 6423 6424 return IGC_SUCCESS; 6425 } 6426 6427 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6428 { 6429 struct igc_adapter *adapter = hw->back; 6430 6431 if (!pci_is_pcie(adapter->pdev)) 6432 return -IGC_ERR_CONFIG; 6433 6434 pcie_capability_write_word(adapter->pdev, reg, *value); 6435 6436 return IGC_SUCCESS; 6437 } 6438 6439 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6440 { 6441 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6442 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6443 u32 value = 0; 6444 6445 if (IGC_REMOVED(hw_addr)) 6446 return ~value; 6447 6448 value = readl(&hw_addr[reg]); 6449 6450 /* reads should not return all F's */ 6451 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6452 struct net_device *netdev = igc->netdev; 6453 6454 hw->hw_addr = NULL; 6455 netif_device_detach(netdev); 6456 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6457 WARN(pci_device_is_present(igc->pdev), 6458 "igc: Failed to read reg 0x%x!\n", reg); 6459 } 6460 6461 return value; 6462 } 6463 6464 /** 6465 * igc_probe - Device Initialization Routine 6466 * @pdev: PCI device information struct 6467 * @ent: entry in igc_pci_tbl 6468 * 6469 * Returns 0 on success, negative on failure 6470 * 6471 * igc_probe initializes an adapter identified by a pci_dev structure. 6472 * The OS initialization, configuring the adapter private structure, 6473 * and a hardware reset occur. 6474 */ 6475 static int igc_probe(struct pci_dev *pdev, 6476 const struct pci_device_id *ent) 6477 { 6478 struct igc_adapter *adapter; 6479 struct net_device *netdev; 6480 struct igc_hw *hw; 6481 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6482 int err; 6483 6484 err = pci_enable_device_mem(pdev); 6485 if (err) 6486 return err; 6487 6488 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6489 if (err) { 6490 dev_err(&pdev->dev, 6491 "No usable DMA configuration, aborting\n"); 6492 goto err_dma; 6493 } 6494 6495 err = pci_request_mem_regions(pdev, igc_driver_name); 6496 if (err) 6497 goto err_pci_reg; 6498 6499 err = pci_enable_ptm(pdev, NULL); 6500 if (err < 0) 6501 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6502 6503 pci_set_master(pdev); 6504 6505 err = -ENOMEM; 6506 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6507 IGC_MAX_TX_QUEUES); 6508 6509 if (!netdev) 6510 goto err_alloc_etherdev; 6511 6512 SET_NETDEV_DEV(netdev, &pdev->dev); 6513 6514 pci_set_drvdata(pdev, netdev); 6515 adapter = netdev_priv(netdev); 6516 adapter->netdev = netdev; 6517 adapter->pdev = pdev; 6518 hw = &adapter->hw; 6519 hw->back = adapter; 6520 adapter->port_num = hw->bus.func; 6521 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6522 6523 err = pci_save_state(pdev); 6524 if (err) 6525 goto err_ioremap; 6526 6527 err = -EIO; 6528 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6529 pci_resource_len(pdev, 0)); 6530 if (!adapter->io_addr) 6531 goto err_ioremap; 6532 6533 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6534 hw->hw_addr = adapter->io_addr; 6535 6536 netdev->netdev_ops = &igc_netdev_ops; 6537 igc_ethtool_set_ops(netdev); 6538 netdev->watchdog_timeo = 5 * HZ; 6539 6540 netdev->mem_start = pci_resource_start(pdev, 0); 6541 netdev->mem_end = pci_resource_end(pdev, 0); 6542 6543 /* PCI config space info */ 6544 hw->vendor_id = pdev->vendor; 6545 hw->device_id = pdev->device; 6546 hw->revision_id = pdev->revision; 6547 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6548 hw->subsystem_device_id = pdev->subsystem_device; 6549 6550 /* Copy the default MAC and PHY function pointers */ 6551 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6552 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6553 6554 /* Initialize skew-specific constants */ 6555 err = ei->get_invariants(hw); 6556 if (err) 6557 goto err_sw_init; 6558 6559 /* Add supported features to the features list*/ 6560 netdev->features |= NETIF_F_SG; 6561 netdev->features |= NETIF_F_TSO; 6562 netdev->features |= NETIF_F_TSO6; 6563 netdev->features |= NETIF_F_TSO_ECN; 6564 netdev->features |= NETIF_F_RXCSUM; 6565 netdev->features |= NETIF_F_HW_CSUM; 6566 netdev->features |= NETIF_F_SCTP_CRC; 6567 netdev->features |= NETIF_F_HW_TC; 6568 6569 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6570 NETIF_F_GSO_GRE_CSUM | \ 6571 NETIF_F_GSO_IPXIP4 | \ 6572 NETIF_F_GSO_IPXIP6 | \ 6573 NETIF_F_GSO_UDP_TUNNEL | \ 6574 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6575 6576 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6577 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6578 6579 /* setup the private structure */ 6580 err = igc_sw_init(adapter); 6581 if (err) 6582 goto err_sw_init; 6583 6584 /* copy netdev features into list of user selectable features */ 6585 netdev->hw_features |= NETIF_F_NTUPLE; 6586 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6587 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6588 netdev->hw_features |= netdev->features; 6589 6590 netdev->features |= NETIF_F_HIGHDMA; 6591 6592 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6593 netdev->mpls_features |= NETIF_F_HW_CSUM; 6594 netdev->hw_enc_features |= netdev->vlan_features; 6595 6596 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 6597 NETDEV_XDP_ACT_XSK_ZEROCOPY; 6598 6599 /* MTU range: 68 - 9216 */ 6600 netdev->min_mtu = ETH_MIN_MTU; 6601 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6602 6603 /* before reading the NVM, reset the controller to put the device in a 6604 * known good starting state 6605 */ 6606 hw->mac.ops.reset_hw(hw); 6607 6608 if (igc_get_flash_presence_i225(hw)) { 6609 if (hw->nvm.ops.validate(hw) < 0) { 6610 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6611 err = -EIO; 6612 goto err_eeprom; 6613 } 6614 } 6615 6616 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6617 /* copy the MAC address out of the NVM */ 6618 if (hw->mac.ops.read_mac_addr(hw)) 6619 dev_err(&pdev->dev, "NVM Read Error\n"); 6620 } 6621 6622 eth_hw_addr_set(netdev, hw->mac.addr); 6623 6624 if (!is_valid_ether_addr(netdev->dev_addr)) { 6625 dev_err(&pdev->dev, "Invalid MAC Address\n"); 6626 err = -EIO; 6627 goto err_eeprom; 6628 } 6629 6630 /* configure RXPBSIZE and TXPBSIZE */ 6631 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 6632 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 6633 6634 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 6635 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 6636 6637 INIT_WORK(&adapter->reset_task, igc_reset_task); 6638 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 6639 6640 /* Initialize link properties that are user-changeable */ 6641 adapter->fc_autoneg = true; 6642 hw->mac.autoneg = true; 6643 hw->phy.autoneg_advertised = 0xaf; 6644 6645 hw->fc.requested_mode = igc_fc_default; 6646 hw->fc.current_mode = igc_fc_default; 6647 6648 /* By default, support wake on port A */ 6649 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 6650 6651 /* initialize the wol settings based on the eeprom settings */ 6652 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 6653 adapter->wol |= IGC_WUFC_MAG; 6654 6655 device_set_wakeup_enable(&adapter->pdev->dev, 6656 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 6657 6658 igc_ptp_init(adapter); 6659 6660 igc_tsn_clear_schedule(adapter); 6661 6662 /* reset the hardware with the new settings */ 6663 igc_reset(adapter); 6664 6665 /* let the f/w know that the h/w is now under the control of the 6666 * driver. 6667 */ 6668 igc_get_hw_control(adapter); 6669 6670 strncpy(netdev->name, "eth%d", IFNAMSIZ); 6671 err = register_netdev(netdev); 6672 if (err) 6673 goto err_register; 6674 6675 /* carrier off reporting is important to ethtool even BEFORE open */ 6676 netif_carrier_off(netdev); 6677 6678 /* Check if Media Autosense is enabled */ 6679 adapter->ei = *ei; 6680 6681 /* print pcie link status and MAC address */ 6682 pcie_print_link_status(pdev); 6683 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 6684 6685 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 6686 /* Disable EEE for internal PHY devices */ 6687 hw->dev_spec._base.eee_enable = false; 6688 adapter->flags &= ~IGC_FLAG_EEE; 6689 igc_set_eee_i225(hw, false, false, false); 6690 6691 pm_runtime_put_noidle(&pdev->dev); 6692 6693 return 0; 6694 6695 err_register: 6696 igc_release_hw_control(adapter); 6697 err_eeprom: 6698 if (!igc_check_reset_block(hw)) 6699 igc_reset_phy(hw); 6700 err_sw_init: 6701 igc_clear_interrupt_scheme(adapter); 6702 iounmap(adapter->io_addr); 6703 err_ioremap: 6704 free_netdev(netdev); 6705 err_alloc_etherdev: 6706 pci_release_mem_regions(pdev); 6707 err_pci_reg: 6708 err_dma: 6709 pci_disable_device(pdev); 6710 return err; 6711 } 6712 6713 /** 6714 * igc_remove - Device Removal Routine 6715 * @pdev: PCI device information struct 6716 * 6717 * igc_remove is called by the PCI subsystem to alert the driver 6718 * that it should release a PCI device. This could be caused by a 6719 * Hot-Plug event, or because the driver is going to be removed from 6720 * memory. 6721 */ 6722 static void igc_remove(struct pci_dev *pdev) 6723 { 6724 struct net_device *netdev = pci_get_drvdata(pdev); 6725 struct igc_adapter *adapter = netdev_priv(netdev); 6726 6727 pm_runtime_get_noresume(&pdev->dev); 6728 6729 igc_flush_nfc_rules(adapter); 6730 6731 igc_ptp_stop(adapter); 6732 6733 pci_disable_ptm(pdev); 6734 pci_clear_master(pdev); 6735 6736 set_bit(__IGC_DOWN, &adapter->state); 6737 6738 del_timer_sync(&adapter->watchdog_timer); 6739 del_timer_sync(&adapter->phy_info_timer); 6740 6741 cancel_work_sync(&adapter->reset_task); 6742 cancel_work_sync(&adapter->watchdog_task); 6743 6744 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6745 * would have already happened in close and is redundant. 6746 */ 6747 igc_release_hw_control(adapter); 6748 unregister_netdev(netdev); 6749 6750 igc_clear_interrupt_scheme(adapter); 6751 pci_iounmap(pdev, adapter->io_addr); 6752 pci_release_mem_regions(pdev); 6753 6754 free_netdev(netdev); 6755 6756 pci_disable_device(pdev); 6757 } 6758 6759 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 6760 bool runtime) 6761 { 6762 struct net_device *netdev = pci_get_drvdata(pdev); 6763 struct igc_adapter *adapter = netdev_priv(netdev); 6764 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 6765 struct igc_hw *hw = &adapter->hw; 6766 u32 ctrl, rctl, status; 6767 bool wake; 6768 6769 rtnl_lock(); 6770 netif_device_detach(netdev); 6771 6772 if (netif_running(netdev)) 6773 __igc_close(netdev, true); 6774 6775 igc_ptp_suspend(adapter); 6776 6777 igc_clear_interrupt_scheme(adapter); 6778 rtnl_unlock(); 6779 6780 status = rd32(IGC_STATUS); 6781 if (status & IGC_STATUS_LU) 6782 wufc &= ~IGC_WUFC_LNKC; 6783 6784 if (wufc) { 6785 igc_setup_rctl(adapter); 6786 igc_set_rx_mode(netdev); 6787 6788 /* turn on all-multi mode if wake on multicast is enabled */ 6789 if (wufc & IGC_WUFC_MC) { 6790 rctl = rd32(IGC_RCTL); 6791 rctl |= IGC_RCTL_MPE; 6792 wr32(IGC_RCTL, rctl); 6793 } 6794 6795 ctrl = rd32(IGC_CTRL); 6796 ctrl |= IGC_CTRL_ADVD3WUC; 6797 wr32(IGC_CTRL, ctrl); 6798 6799 /* Allow time for pending master requests to run */ 6800 igc_disable_pcie_master(hw); 6801 6802 wr32(IGC_WUC, IGC_WUC_PME_EN); 6803 wr32(IGC_WUFC, wufc); 6804 } else { 6805 wr32(IGC_WUC, 0); 6806 wr32(IGC_WUFC, 0); 6807 } 6808 6809 wake = wufc || adapter->en_mng_pt; 6810 if (!wake) 6811 igc_power_down_phy_copper_base(&adapter->hw); 6812 else 6813 igc_power_up_link(adapter); 6814 6815 if (enable_wake) 6816 *enable_wake = wake; 6817 6818 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6819 * would have already happened in close and is redundant. 6820 */ 6821 igc_release_hw_control(adapter); 6822 6823 pci_disable_device(pdev); 6824 6825 return 0; 6826 } 6827 6828 #ifdef CONFIG_PM 6829 static int __maybe_unused igc_runtime_suspend(struct device *dev) 6830 { 6831 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 6832 } 6833 6834 static void igc_deliver_wake_packet(struct net_device *netdev) 6835 { 6836 struct igc_adapter *adapter = netdev_priv(netdev); 6837 struct igc_hw *hw = &adapter->hw; 6838 struct sk_buff *skb; 6839 u32 wupl; 6840 6841 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 6842 6843 /* WUPM stores only the first 128 bytes of the wake packet. 6844 * Read the packet only if we have the whole thing. 6845 */ 6846 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 6847 return; 6848 6849 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 6850 if (!skb) 6851 return; 6852 6853 skb_put(skb, wupl); 6854 6855 /* Ensure reads are 32-bit aligned */ 6856 wupl = roundup(wupl, 4); 6857 6858 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 6859 6860 skb->protocol = eth_type_trans(skb, netdev); 6861 netif_rx(skb); 6862 } 6863 6864 static int __maybe_unused igc_resume(struct device *dev) 6865 { 6866 struct pci_dev *pdev = to_pci_dev(dev); 6867 struct net_device *netdev = pci_get_drvdata(pdev); 6868 struct igc_adapter *adapter = netdev_priv(netdev); 6869 struct igc_hw *hw = &adapter->hw; 6870 u32 err, val; 6871 6872 pci_set_power_state(pdev, PCI_D0); 6873 pci_restore_state(pdev); 6874 pci_save_state(pdev); 6875 6876 if (!pci_device_is_present(pdev)) 6877 return -ENODEV; 6878 err = pci_enable_device_mem(pdev); 6879 if (err) { 6880 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 6881 return err; 6882 } 6883 pci_set_master(pdev); 6884 6885 pci_enable_wake(pdev, PCI_D3hot, 0); 6886 pci_enable_wake(pdev, PCI_D3cold, 0); 6887 6888 if (igc_init_interrupt_scheme(adapter, true)) { 6889 netdev_err(netdev, "Unable to allocate memory for queues\n"); 6890 return -ENOMEM; 6891 } 6892 6893 igc_reset(adapter); 6894 6895 /* let the f/w know that the h/w is now under the control of the 6896 * driver. 6897 */ 6898 igc_get_hw_control(adapter); 6899 6900 val = rd32(IGC_WUS); 6901 if (val & WAKE_PKT_WUS) 6902 igc_deliver_wake_packet(netdev); 6903 6904 wr32(IGC_WUS, ~0); 6905 6906 rtnl_lock(); 6907 if (!err && netif_running(netdev)) 6908 err = __igc_open(netdev, true); 6909 6910 if (!err) 6911 netif_device_attach(netdev); 6912 rtnl_unlock(); 6913 6914 return err; 6915 } 6916 6917 static int __maybe_unused igc_runtime_resume(struct device *dev) 6918 { 6919 return igc_resume(dev); 6920 } 6921 6922 static int __maybe_unused igc_suspend(struct device *dev) 6923 { 6924 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 6925 } 6926 6927 static int __maybe_unused igc_runtime_idle(struct device *dev) 6928 { 6929 struct net_device *netdev = dev_get_drvdata(dev); 6930 struct igc_adapter *adapter = netdev_priv(netdev); 6931 6932 if (!igc_has_link(adapter)) 6933 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 6934 6935 return -EBUSY; 6936 } 6937 #endif /* CONFIG_PM */ 6938 6939 static void igc_shutdown(struct pci_dev *pdev) 6940 { 6941 bool wake; 6942 6943 __igc_shutdown(pdev, &wake, 0); 6944 6945 if (system_state == SYSTEM_POWER_OFF) { 6946 pci_wake_from_d3(pdev, wake); 6947 pci_set_power_state(pdev, PCI_D3hot); 6948 } 6949 } 6950 6951 /** 6952 * igc_io_error_detected - called when PCI error is detected 6953 * @pdev: Pointer to PCI device 6954 * @state: The current PCI connection state 6955 * 6956 * This function is called after a PCI bus error affecting 6957 * this device has been detected. 6958 **/ 6959 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 6960 pci_channel_state_t state) 6961 { 6962 struct net_device *netdev = pci_get_drvdata(pdev); 6963 struct igc_adapter *adapter = netdev_priv(netdev); 6964 6965 netif_device_detach(netdev); 6966 6967 if (state == pci_channel_io_perm_failure) 6968 return PCI_ERS_RESULT_DISCONNECT; 6969 6970 if (netif_running(netdev)) 6971 igc_down(adapter); 6972 pci_disable_device(pdev); 6973 6974 /* Request a slot reset. */ 6975 return PCI_ERS_RESULT_NEED_RESET; 6976 } 6977 6978 /** 6979 * igc_io_slot_reset - called after the PCI bus has been reset. 6980 * @pdev: Pointer to PCI device 6981 * 6982 * Restart the card from scratch, as if from a cold-boot. Implementation 6983 * resembles the first-half of the igc_resume routine. 6984 **/ 6985 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 6986 { 6987 struct net_device *netdev = pci_get_drvdata(pdev); 6988 struct igc_adapter *adapter = netdev_priv(netdev); 6989 struct igc_hw *hw = &adapter->hw; 6990 pci_ers_result_t result; 6991 6992 if (pci_enable_device_mem(pdev)) { 6993 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 6994 result = PCI_ERS_RESULT_DISCONNECT; 6995 } else { 6996 pci_set_master(pdev); 6997 pci_restore_state(pdev); 6998 pci_save_state(pdev); 6999 7000 pci_enable_wake(pdev, PCI_D3hot, 0); 7001 pci_enable_wake(pdev, PCI_D3cold, 0); 7002 7003 /* In case of PCI error, adapter loses its HW address 7004 * so we should re-assign it here. 7005 */ 7006 hw->hw_addr = adapter->io_addr; 7007 7008 igc_reset(adapter); 7009 wr32(IGC_WUS, ~0); 7010 result = PCI_ERS_RESULT_RECOVERED; 7011 } 7012 7013 return result; 7014 } 7015 7016 /** 7017 * igc_io_resume - called when traffic can start to flow again. 7018 * @pdev: Pointer to PCI device 7019 * 7020 * This callback is called when the error recovery driver tells us that 7021 * its OK to resume normal operation. Implementation resembles the 7022 * second-half of the igc_resume routine. 7023 */ 7024 static void igc_io_resume(struct pci_dev *pdev) 7025 { 7026 struct net_device *netdev = pci_get_drvdata(pdev); 7027 struct igc_adapter *adapter = netdev_priv(netdev); 7028 7029 rtnl_lock(); 7030 if (netif_running(netdev)) { 7031 if (igc_open(netdev)) { 7032 netdev_err(netdev, "igc_open failed after reset\n"); 7033 return; 7034 } 7035 } 7036 7037 netif_device_attach(netdev); 7038 7039 /* let the f/w know that the h/w is now under the control of the 7040 * driver. 7041 */ 7042 igc_get_hw_control(adapter); 7043 rtnl_unlock(); 7044 } 7045 7046 static const struct pci_error_handlers igc_err_handler = { 7047 .error_detected = igc_io_error_detected, 7048 .slot_reset = igc_io_slot_reset, 7049 .resume = igc_io_resume, 7050 }; 7051 7052 #ifdef CONFIG_PM 7053 static const struct dev_pm_ops igc_pm_ops = { 7054 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 7055 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 7056 igc_runtime_idle) 7057 }; 7058 #endif 7059 7060 static struct pci_driver igc_driver = { 7061 .name = igc_driver_name, 7062 .id_table = igc_pci_tbl, 7063 .probe = igc_probe, 7064 .remove = igc_remove, 7065 #ifdef CONFIG_PM 7066 .driver.pm = &igc_pm_ops, 7067 #endif 7068 .shutdown = igc_shutdown, 7069 .err_handler = &igc_err_handler, 7070 }; 7071 7072 /** 7073 * igc_reinit_queues - return error 7074 * @adapter: pointer to adapter structure 7075 */ 7076 int igc_reinit_queues(struct igc_adapter *adapter) 7077 { 7078 struct net_device *netdev = adapter->netdev; 7079 int err = 0; 7080 7081 if (netif_running(netdev)) 7082 igc_close(netdev); 7083 7084 igc_reset_interrupt_capability(adapter); 7085 7086 if (igc_init_interrupt_scheme(adapter, true)) { 7087 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7088 return -ENOMEM; 7089 } 7090 7091 if (netif_running(netdev)) 7092 err = igc_open(netdev); 7093 7094 return err; 7095 } 7096 7097 /** 7098 * igc_get_hw_dev - return device 7099 * @hw: pointer to hardware structure 7100 * 7101 * used by hardware layer to print debugging information 7102 */ 7103 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 7104 { 7105 struct igc_adapter *adapter = hw->back; 7106 7107 return adapter->netdev; 7108 } 7109 7110 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 7111 { 7112 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7113 u8 idx = ring->reg_idx; 7114 u32 rxdctl; 7115 7116 rxdctl = rd32(IGC_RXDCTL(idx)); 7117 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 7118 rxdctl |= IGC_RXDCTL_SWFLUSH; 7119 wr32(IGC_RXDCTL(idx), rxdctl); 7120 } 7121 7122 void igc_disable_rx_ring(struct igc_ring *ring) 7123 { 7124 igc_disable_rx_ring_hw(ring); 7125 igc_clean_rx_ring(ring); 7126 } 7127 7128 void igc_enable_rx_ring(struct igc_ring *ring) 7129 { 7130 struct igc_adapter *adapter = ring->q_vector->adapter; 7131 7132 igc_configure_rx_ring(adapter, ring); 7133 7134 if (ring->xsk_pool) 7135 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 7136 else 7137 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 7138 } 7139 7140 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 7141 { 7142 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7143 u8 idx = ring->reg_idx; 7144 u32 txdctl; 7145 7146 txdctl = rd32(IGC_TXDCTL(idx)); 7147 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 7148 txdctl |= IGC_TXDCTL_SWFLUSH; 7149 wr32(IGC_TXDCTL(idx), txdctl); 7150 } 7151 7152 void igc_disable_tx_ring(struct igc_ring *ring) 7153 { 7154 igc_disable_tx_ring_hw(ring); 7155 igc_clean_tx_ring(ring); 7156 } 7157 7158 void igc_enable_tx_ring(struct igc_ring *ring) 7159 { 7160 struct igc_adapter *adapter = ring->q_vector->adapter; 7161 7162 igc_configure_tx_ring(adapter, ring); 7163 } 7164 7165 /** 7166 * igc_init_module - Driver Registration Routine 7167 * 7168 * igc_init_module is the first routine called when the driver is 7169 * loaded. All it does is register with the PCI subsystem. 7170 */ 7171 static int __init igc_init_module(void) 7172 { 7173 int ret; 7174 7175 pr_info("%s\n", igc_driver_string); 7176 pr_info("%s\n", igc_copyright); 7177 7178 ret = pci_register_driver(&igc_driver); 7179 return ret; 7180 } 7181 7182 module_init(igc_init_module); 7183 7184 /** 7185 * igc_exit_module - Driver Exit Cleanup Routine 7186 * 7187 * igc_exit_module is called just before the driver is removed 7188 * from memory. 7189 */ 7190 static void __exit igc_exit_module(void) 7191 { 7192 pci_unregister_driver(&igc_driver); 7193 } 7194 7195 module_exit(igc_exit_module); 7196 /* igc_main.c */ 7197