xref: /openbmc/linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 
14 #include <net/ipv6.h>
15 
16 #include "igc.h"
17 #include "igc_hw.h"
18 #include "igc_tsn.h"
19 
20 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
21 
22 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
23 
24 static int debug = -1;
25 
26 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
27 MODULE_DESCRIPTION(DRV_SUMMARY);
28 MODULE_LICENSE("GPL v2");
29 module_param(debug, int, 0);
30 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
31 
32 char igc_driver_name[] = "igc";
33 static const char igc_driver_string[] = DRV_SUMMARY;
34 static const char igc_copyright[] =
35 	"Copyright(c) 2018 Intel Corporation.";
36 
37 static const struct igc_info *igc_info_tbl[] = {
38 	[board_base] = &igc_base_info,
39 };
40 
41 static const struct pci_device_id igc_pci_tbl[] = {
42 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
48 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
57 	/* required last entry */
58 	{0, }
59 };
60 
61 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
62 
63 enum latency_range {
64 	lowest_latency = 0,
65 	low_latency = 1,
66 	bulk_latency = 2,
67 	latency_invalid = 255
68 };
69 
70 void igc_reset(struct igc_adapter *adapter)
71 {
72 	struct net_device *dev = adapter->netdev;
73 	struct igc_hw *hw = &adapter->hw;
74 	struct igc_fc_info *fc = &hw->fc;
75 	u32 pba, hwm;
76 
77 	/* Repartition PBA for greater than 9k MTU if required */
78 	pba = IGC_PBA_34K;
79 
80 	/* flow control settings
81 	 * The high water mark must be low enough to fit one full frame
82 	 * after transmitting the pause frame.  As such we must have enough
83 	 * space to allow for us to complete our current transmit and then
84 	 * receive the frame that is in progress from the link partner.
85 	 * Set it to:
86 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
87 	 */
88 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
89 
90 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
91 	fc->low_water = fc->high_water - 16;
92 	fc->pause_time = 0xFFFF;
93 	fc->send_xon = 1;
94 	fc->current_mode = fc->requested_mode;
95 
96 	hw->mac.ops.reset_hw(hw);
97 
98 	if (hw->mac.ops.init_hw(hw))
99 		netdev_err(dev, "Error on hardware initialization\n");
100 
101 	/* Re-establish EEE setting */
102 	igc_set_eee_i225(hw, true, true, true);
103 
104 	if (!netif_running(adapter->netdev))
105 		igc_power_down_phy_copper_base(&adapter->hw);
106 
107 	/* Re-enable PTP, where applicable. */
108 	igc_ptp_reset(adapter);
109 
110 	/* Re-enable TSN offloading, where applicable. */
111 	igc_tsn_offload_apply(adapter);
112 
113 	igc_get_phy_info(hw);
114 }
115 
116 /**
117  * igc_power_up_link - Power up the phy link
118  * @adapter: address of board private structure
119  */
120 static void igc_power_up_link(struct igc_adapter *adapter)
121 {
122 	igc_reset_phy(&adapter->hw);
123 
124 	igc_power_up_phy_copper(&adapter->hw);
125 
126 	igc_setup_link(&adapter->hw);
127 }
128 
129 /**
130  * igc_release_hw_control - release control of the h/w to f/w
131  * @adapter: address of board private structure
132  *
133  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
134  * For ASF and Pass Through versions of f/w this means that the
135  * driver is no longer loaded.
136  */
137 static void igc_release_hw_control(struct igc_adapter *adapter)
138 {
139 	struct igc_hw *hw = &adapter->hw;
140 	u32 ctrl_ext;
141 
142 	/* Let firmware take over control of h/w */
143 	ctrl_ext = rd32(IGC_CTRL_EXT);
144 	wr32(IGC_CTRL_EXT,
145 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
146 }
147 
148 /**
149  * igc_get_hw_control - get control of the h/w from f/w
150  * @adapter: address of board private structure
151  *
152  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
153  * For ASF and Pass Through versions of f/w this means that
154  * the driver is loaded.
155  */
156 static void igc_get_hw_control(struct igc_adapter *adapter)
157 {
158 	struct igc_hw *hw = &adapter->hw;
159 	u32 ctrl_ext;
160 
161 	/* Let firmware know the driver has taken over */
162 	ctrl_ext = rd32(IGC_CTRL_EXT);
163 	wr32(IGC_CTRL_EXT,
164 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
165 }
166 
167 /**
168  * igc_clean_tx_ring - Free Tx Buffers
169  * @tx_ring: ring to be cleaned
170  */
171 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
172 {
173 	u16 i = tx_ring->next_to_clean;
174 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
175 
176 	while (i != tx_ring->next_to_use) {
177 		union igc_adv_tx_desc *eop_desc, *tx_desc;
178 
179 		/* Free all the Tx ring sk_buffs */
180 		dev_kfree_skb_any(tx_buffer->skb);
181 
182 		/* unmap skb header data */
183 		dma_unmap_single(tx_ring->dev,
184 				 dma_unmap_addr(tx_buffer, dma),
185 				 dma_unmap_len(tx_buffer, len),
186 				 DMA_TO_DEVICE);
187 
188 		/* check for eop_desc to determine the end of the packet */
189 		eop_desc = tx_buffer->next_to_watch;
190 		tx_desc = IGC_TX_DESC(tx_ring, i);
191 
192 		/* unmap remaining buffers */
193 		while (tx_desc != eop_desc) {
194 			tx_buffer++;
195 			tx_desc++;
196 			i++;
197 			if (unlikely(i == tx_ring->count)) {
198 				i = 0;
199 				tx_buffer = tx_ring->tx_buffer_info;
200 				tx_desc = IGC_TX_DESC(tx_ring, 0);
201 			}
202 
203 			/* unmap any remaining paged data */
204 			if (dma_unmap_len(tx_buffer, len))
205 				dma_unmap_page(tx_ring->dev,
206 					       dma_unmap_addr(tx_buffer, dma),
207 					       dma_unmap_len(tx_buffer, len),
208 					       DMA_TO_DEVICE);
209 		}
210 
211 		/* move us one more past the eop_desc for start of next pkt */
212 		tx_buffer++;
213 		i++;
214 		if (unlikely(i == tx_ring->count)) {
215 			i = 0;
216 			tx_buffer = tx_ring->tx_buffer_info;
217 		}
218 	}
219 
220 	/* reset BQL for queue */
221 	netdev_tx_reset_queue(txring_txq(tx_ring));
222 
223 	/* reset next_to_use and next_to_clean */
224 	tx_ring->next_to_use = 0;
225 	tx_ring->next_to_clean = 0;
226 }
227 
228 /**
229  * igc_free_tx_resources - Free Tx Resources per Queue
230  * @tx_ring: Tx descriptor ring for a specific queue
231  *
232  * Free all transmit software resources
233  */
234 void igc_free_tx_resources(struct igc_ring *tx_ring)
235 {
236 	igc_clean_tx_ring(tx_ring);
237 
238 	vfree(tx_ring->tx_buffer_info);
239 	tx_ring->tx_buffer_info = NULL;
240 
241 	/* if not set, then don't free */
242 	if (!tx_ring->desc)
243 		return;
244 
245 	dma_free_coherent(tx_ring->dev, tx_ring->size,
246 			  tx_ring->desc, tx_ring->dma);
247 
248 	tx_ring->desc = NULL;
249 }
250 
251 /**
252  * igc_free_all_tx_resources - Free Tx Resources for All Queues
253  * @adapter: board private structure
254  *
255  * Free all transmit software resources
256  */
257 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
258 {
259 	int i;
260 
261 	for (i = 0; i < adapter->num_tx_queues; i++)
262 		igc_free_tx_resources(adapter->tx_ring[i]);
263 }
264 
265 /**
266  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
267  * @adapter: board private structure
268  */
269 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
270 {
271 	int i;
272 
273 	for (i = 0; i < adapter->num_tx_queues; i++)
274 		if (adapter->tx_ring[i])
275 			igc_clean_tx_ring(adapter->tx_ring[i]);
276 }
277 
278 /**
279  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
280  * @tx_ring: tx descriptor ring (for a specific queue) to setup
281  *
282  * Return 0 on success, negative on failure
283  */
284 int igc_setup_tx_resources(struct igc_ring *tx_ring)
285 {
286 	struct net_device *ndev = tx_ring->netdev;
287 	struct device *dev = tx_ring->dev;
288 	int size = 0;
289 
290 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
291 	tx_ring->tx_buffer_info = vzalloc(size);
292 	if (!tx_ring->tx_buffer_info)
293 		goto err;
294 
295 	/* round up to nearest 4K */
296 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
297 	tx_ring->size = ALIGN(tx_ring->size, 4096);
298 
299 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
300 					   &tx_ring->dma, GFP_KERNEL);
301 
302 	if (!tx_ring->desc)
303 		goto err;
304 
305 	tx_ring->next_to_use = 0;
306 	tx_ring->next_to_clean = 0;
307 
308 	return 0;
309 
310 err:
311 	vfree(tx_ring->tx_buffer_info);
312 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
313 	return -ENOMEM;
314 }
315 
316 /**
317  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
318  * @adapter: board private structure
319  *
320  * Return 0 on success, negative on failure
321  */
322 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
323 {
324 	struct net_device *dev = adapter->netdev;
325 	int i, err = 0;
326 
327 	for (i = 0; i < adapter->num_tx_queues; i++) {
328 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
329 		if (err) {
330 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
331 			for (i--; i >= 0; i--)
332 				igc_free_tx_resources(adapter->tx_ring[i]);
333 			break;
334 		}
335 	}
336 
337 	return err;
338 }
339 
340 /**
341  * igc_clean_rx_ring - Free Rx Buffers per Queue
342  * @rx_ring: ring to free buffers from
343  */
344 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
345 {
346 	u16 i = rx_ring->next_to_clean;
347 
348 	dev_kfree_skb(rx_ring->skb);
349 	rx_ring->skb = NULL;
350 
351 	/* Free all the Rx ring sk_buffs */
352 	while (i != rx_ring->next_to_alloc) {
353 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
354 
355 		/* Invalidate cache lines that may have been written to by
356 		 * device so that we avoid corrupting memory.
357 		 */
358 		dma_sync_single_range_for_cpu(rx_ring->dev,
359 					      buffer_info->dma,
360 					      buffer_info->page_offset,
361 					      igc_rx_bufsz(rx_ring),
362 					      DMA_FROM_DEVICE);
363 
364 		/* free resources associated with mapping */
365 		dma_unmap_page_attrs(rx_ring->dev,
366 				     buffer_info->dma,
367 				     igc_rx_pg_size(rx_ring),
368 				     DMA_FROM_DEVICE,
369 				     IGC_RX_DMA_ATTR);
370 		__page_frag_cache_drain(buffer_info->page,
371 					buffer_info->pagecnt_bias);
372 
373 		i++;
374 		if (i == rx_ring->count)
375 			i = 0;
376 	}
377 
378 	rx_ring->next_to_alloc = 0;
379 	rx_ring->next_to_clean = 0;
380 	rx_ring->next_to_use = 0;
381 }
382 
383 /**
384  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
385  * @adapter: board private structure
386  */
387 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
388 {
389 	int i;
390 
391 	for (i = 0; i < adapter->num_rx_queues; i++)
392 		if (adapter->rx_ring[i])
393 			igc_clean_rx_ring(adapter->rx_ring[i]);
394 }
395 
396 /**
397  * igc_free_rx_resources - Free Rx Resources
398  * @rx_ring: ring to clean the resources from
399  *
400  * Free all receive software resources
401  */
402 void igc_free_rx_resources(struct igc_ring *rx_ring)
403 {
404 	igc_clean_rx_ring(rx_ring);
405 
406 	vfree(rx_ring->rx_buffer_info);
407 	rx_ring->rx_buffer_info = NULL;
408 
409 	/* if not set, then don't free */
410 	if (!rx_ring->desc)
411 		return;
412 
413 	dma_free_coherent(rx_ring->dev, rx_ring->size,
414 			  rx_ring->desc, rx_ring->dma);
415 
416 	rx_ring->desc = NULL;
417 }
418 
419 /**
420  * igc_free_all_rx_resources - Free Rx Resources for All Queues
421  * @adapter: board private structure
422  *
423  * Free all receive software resources
424  */
425 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
426 {
427 	int i;
428 
429 	for (i = 0; i < adapter->num_rx_queues; i++)
430 		igc_free_rx_resources(adapter->rx_ring[i]);
431 }
432 
433 /**
434  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
435  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
436  *
437  * Returns 0 on success, negative on failure
438  */
439 int igc_setup_rx_resources(struct igc_ring *rx_ring)
440 {
441 	struct net_device *ndev = rx_ring->netdev;
442 	struct device *dev = rx_ring->dev;
443 	int size, desc_len;
444 
445 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
446 	rx_ring->rx_buffer_info = vzalloc(size);
447 	if (!rx_ring->rx_buffer_info)
448 		goto err;
449 
450 	desc_len = sizeof(union igc_adv_rx_desc);
451 
452 	/* Round up to nearest 4K */
453 	rx_ring->size = rx_ring->count * desc_len;
454 	rx_ring->size = ALIGN(rx_ring->size, 4096);
455 
456 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
457 					   &rx_ring->dma, GFP_KERNEL);
458 
459 	if (!rx_ring->desc)
460 		goto err;
461 
462 	rx_ring->next_to_alloc = 0;
463 	rx_ring->next_to_clean = 0;
464 	rx_ring->next_to_use = 0;
465 
466 	return 0;
467 
468 err:
469 	vfree(rx_ring->rx_buffer_info);
470 	rx_ring->rx_buffer_info = NULL;
471 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
472 	return -ENOMEM;
473 }
474 
475 /**
476  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
477  *                                (Descriptors) for all queues
478  * @adapter: board private structure
479  *
480  * Return 0 on success, negative on failure
481  */
482 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
483 {
484 	struct net_device *dev = adapter->netdev;
485 	int i, err = 0;
486 
487 	for (i = 0; i < adapter->num_rx_queues; i++) {
488 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
489 		if (err) {
490 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
491 			for (i--; i >= 0; i--)
492 				igc_free_rx_resources(adapter->rx_ring[i]);
493 			break;
494 		}
495 	}
496 
497 	return err;
498 }
499 
500 /**
501  * igc_configure_rx_ring - Configure a receive ring after Reset
502  * @adapter: board private structure
503  * @ring: receive ring to be configured
504  *
505  * Configure the Rx unit of the MAC after a reset.
506  */
507 static void igc_configure_rx_ring(struct igc_adapter *adapter,
508 				  struct igc_ring *ring)
509 {
510 	struct igc_hw *hw = &adapter->hw;
511 	union igc_adv_rx_desc *rx_desc;
512 	int reg_idx = ring->reg_idx;
513 	u32 srrctl = 0, rxdctl = 0;
514 	u64 rdba = ring->dma;
515 
516 	/* disable the queue */
517 	wr32(IGC_RXDCTL(reg_idx), 0);
518 
519 	/* Set DMA base address registers */
520 	wr32(IGC_RDBAL(reg_idx),
521 	     rdba & 0x00000000ffffffffULL);
522 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
523 	wr32(IGC_RDLEN(reg_idx),
524 	     ring->count * sizeof(union igc_adv_rx_desc));
525 
526 	/* initialize head and tail */
527 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
528 	wr32(IGC_RDH(reg_idx), 0);
529 	writel(0, ring->tail);
530 
531 	/* reset next-to- use/clean to place SW in sync with hardware */
532 	ring->next_to_clean = 0;
533 	ring->next_to_use = 0;
534 
535 	/* set descriptor configuration */
536 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
537 	if (ring_uses_large_buffer(ring))
538 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
539 	else
540 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
541 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
542 
543 	wr32(IGC_SRRCTL(reg_idx), srrctl);
544 
545 	rxdctl |= IGC_RX_PTHRESH;
546 	rxdctl |= IGC_RX_HTHRESH << 8;
547 	rxdctl |= IGC_RX_WTHRESH << 16;
548 
549 	/* initialize rx_buffer_info */
550 	memset(ring->rx_buffer_info, 0,
551 	       sizeof(struct igc_rx_buffer) * ring->count);
552 
553 	/* initialize Rx descriptor 0 */
554 	rx_desc = IGC_RX_DESC(ring, 0);
555 	rx_desc->wb.upper.length = 0;
556 
557 	/* enable receive descriptor fetching */
558 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
559 
560 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
561 }
562 
563 /**
564  * igc_configure_rx - Configure receive Unit after Reset
565  * @adapter: board private structure
566  *
567  * Configure the Rx unit of the MAC after a reset.
568  */
569 static void igc_configure_rx(struct igc_adapter *adapter)
570 {
571 	int i;
572 
573 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
574 	 * the Base and Length of the Rx Descriptor Ring
575 	 */
576 	for (i = 0; i < adapter->num_rx_queues; i++)
577 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
578 }
579 
580 /**
581  * igc_configure_tx_ring - Configure transmit ring after Reset
582  * @adapter: board private structure
583  * @ring: tx ring to configure
584  *
585  * Configure a transmit ring after a reset.
586  */
587 static void igc_configure_tx_ring(struct igc_adapter *adapter,
588 				  struct igc_ring *ring)
589 {
590 	struct igc_hw *hw = &adapter->hw;
591 	int reg_idx = ring->reg_idx;
592 	u64 tdba = ring->dma;
593 	u32 txdctl = 0;
594 
595 	/* disable the queue */
596 	wr32(IGC_TXDCTL(reg_idx), 0);
597 	wrfl();
598 	mdelay(10);
599 
600 	wr32(IGC_TDLEN(reg_idx),
601 	     ring->count * sizeof(union igc_adv_tx_desc));
602 	wr32(IGC_TDBAL(reg_idx),
603 	     tdba & 0x00000000ffffffffULL);
604 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
605 
606 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
607 	wr32(IGC_TDH(reg_idx), 0);
608 	writel(0, ring->tail);
609 
610 	txdctl |= IGC_TX_PTHRESH;
611 	txdctl |= IGC_TX_HTHRESH << 8;
612 	txdctl |= IGC_TX_WTHRESH << 16;
613 
614 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
615 	wr32(IGC_TXDCTL(reg_idx), txdctl);
616 }
617 
618 /**
619  * igc_configure_tx - Configure transmit Unit after Reset
620  * @adapter: board private structure
621  *
622  * Configure the Tx unit of the MAC after a reset.
623  */
624 static void igc_configure_tx(struct igc_adapter *adapter)
625 {
626 	int i;
627 
628 	for (i = 0; i < adapter->num_tx_queues; i++)
629 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
630 }
631 
632 /**
633  * igc_setup_mrqc - configure the multiple receive queue control registers
634  * @adapter: Board private structure
635  */
636 static void igc_setup_mrqc(struct igc_adapter *adapter)
637 {
638 	struct igc_hw *hw = &adapter->hw;
639 	u32 j, num_rx_queues;
640 	u32 mrqc, rxcsum;
641 	u32 rss_key[10];
642 
643 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
644 	for (j = 0; j < 10; j++)
645 		wr32(IGC_RSSRK(j), rss_key[j]);
646 
647 	num_rx_queues = adapter->rss_queues;
648 
649 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
650 		for (j = 0; j < IGC_RETA_SIZE; j++)
651 			adapter->rss_indir_tbl[j] =
652 			(j * num_rx_queues) / IGC_RETA_SIZE;
653 		adapter->rss_indir_tbl_init = num_rx_queues;
654 	}
655 	igc_write_rss_indir_tbl(adapter);
656 
657 	/* Disable raw packet checksumming so that RSS hash is placed in
658 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
659 	 * offloads as they are enabled by default
660 	 */
661 	rxcsum = rd32(IGC_RXCSUM);
662 	rxcsum |= IGC_RXCSUM_PCSD;
663 
664 	/* Enable Receive Checksum Offload for SCTP */
665 	rxcsum |= IGC_RXCSUM_CRCOFL;
666 
667 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
668 	wr32(IGC_RXCSUM, rxcsum);
669 
670 	/* Generate RSS hash based on packet types, TCP/UDP
671 	 * port numbers and/or IPv4/v6 src and dst addresses
672 	 */
673 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
674 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
675 	       IGC_MRQC_RSS_FIELD_IPV6 |
676 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
677 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
678 
679 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
680 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
681 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
682 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
683 
684 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
685 
686 	wr32(IGC_MRQC, mrqc);
687 }
688 
689 /**
690  * igc_setup_rctl - configure the receive control registers
691  * @adapter: Board private structure
692  */
693 static void igc_setup_rctl(struct igc_adapter *adapter)
694 {
695 	struct igc_hw *hw = &adapter->hw;
696 	u32 rctl;
697 
698 	rctl = rd32(IGC_RCTL);
699 
700 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
701 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
702 
703 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
704 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
705 
706 	/* enable stripping of CRC. Newer features require
707 	 * that the HW strips the CRC.
708 	 */
709 	rctl |= IGC_RCTL_SECRC;
710 
711 	/* disable store bad packets and clear size bits. */
712 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
713 
714 	/* enable LPE to allow for reception of jumbo frames */
715 	rctl |= IGC_RCTL_LPE;
716 
717 	/* disable queue 0 to prevent tail write w/o re-config */
718 	wr32(IGC_RXDCTL(0), 0);
719 
720 	/* This is useful for sniffing bad packets. */
721 	if (adapter->netdev->features & NETIF_F_RXALL) {
722 		/* UPE and MPE will be handled by normal PROMISC logic
723 		 * in set_rx_mode
724 		 */
725 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
726 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
727 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
728 
729 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
730 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
731 	}
732 
733 	wr32(IGC_RCTL, rctl);
734 }
735 
736 /**
737  * igc_setup_tctl - configure the transmit control registers
738  * @adapter: Board private structure
739  */
740 static void igc_setup_tctl(struct igc_adapter *adapter)
741 {
742 	struct igc_hw *hw = &adapter->hw;
743 	u32 tctl;
744 
745 	/* disable queue 0 which icould be enabled by default */
746 	wr32(IGC_TXDCTL(0), 0);
747 
748 	/* Program the Transmit Control Register */
749 	tctl = rd32(IGC_TCTL);
750 	tctl &= ~IGC_TCTL_CT;
751 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
752 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
753 
754 	/* Enable transmits */
755 	tctl |= IGC_TCTL_EN;
756 
757 	wr32(IGC_TCTL, tctl);
758 }
759 
760 /**
761  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
762  * @adapter: Pointer to adapter where the filter should be set
763  * @index: Filter index
764  * @type: MAC address filter type (source or destination)
765  * @addr: MAC address
766  * @queue: If non-negative, queue assignment feature is enabled and frames
767  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
768  *         assignment is disabled.
769  */
770 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
771 				  enum igc_mac_filter_type type,
772 				  const u8 *addr, int queue)
773 {
774 	struct net_device *dev = adapter->netdev;
775 	struct igc_hw *hw = &adapter->hw;
776 	u32 ral, rah;
777 
778 	if (WARN_ON(index >= hw->mac.rar_entry_count))
779 		return;
780 
781 	ral = le32_to_cpup((__le32 *)(addr));
782 	rah = le16_to_cpup((__le16 *)(addr + 4));
783 
784 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
785 		rah &= ~IGC_RAH_ASEL_MASK;
786 		rah |= IGC_RAH_ASEL_SRC_ADDR;
787 	}
788 
789 	if (queue >= 0) {
790 		rah &= ~IGC_RAH_QSEL_MASK;
791 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
792 		rah |= IGC_RAH_QSEL_ENABLE;
793 	}
794 
795 	rah |= IGC_RAH_AV;
796 
797 	wr32(IGC_RAL(index), ral);
798 	wr32(IGC_RAH(index), rah);
799 
800 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
801 }
802 
803 /**
804  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
805  * @adapter: Pointer to adapter where the filter should be cleared
806  * @index: Filter index
807  */
808 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
809 {
810 	struct net_device *dev = adapter->netdev;
811 	struct igc_hw *hw = &adapter->hw;
812 
813 	if (WARN_ON(index >= hw->mac.rar_entry_count))
814 		return;
815 
816 	wr32(IGC_RAL(index), 0);
817 	wr32(IGC_RAH(index), 0);
818 
819 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
820 }
821 
822 /* Set default MAC address for the PF in the first RAR entry */
823 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
824 {
825 	struct net_device *dev = adapter->netdev;
826 	u8 *addr = adapter->hw.mac.addr;
827 
828 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
829 
830 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
831 }
832 
833 /**
834  * igc_set_mac - Change the Ethernet Address of the NIC
835  * @netdev: network interface device structure
836  * @p: pointer to an address structure
837  *
838  * Returns 0 on success, negative on failure
839  */
840 static int igc_set_mac(struct net_device *netdev, void *p)
841 {
842 	struct igc_adapter *adapter = netdev_priv(netdev);
843 	struct igc_hw *hw = &adapter->hw;
844 	struct sockaddr *addr = p;
845 
846 	if (!is_valid_ether_addr(addr->sa_data))
847 		return -EADDRNOTAVAIL;
848 
849 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
850 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
851 
852 	/* set the correct pool for the new PF MAC address in entry 0 */
853 	igc_set_default_mac_filter(adapter);
854 
855 	return 0;
856 }
857 
858 /**
859  *  igc_write_mc_addr_list - write multicast addresses to MTA
860  *  @netdev: network interface device structure
861  *
862  *  Writes multicast address list to the MTA hash table.
863  *  Returns: -ENOMEM on failure
864  *           0 on no addresses written
865  *           X on writing X addresses to MTA
866  **/
867 static int igc_write_mc_addr_list(struct net_device *netdev)
868 {
869 	struct igc_adapter *adapter = netdev_priv(netdev);
870 	struct igc_hw *hw = &adapter->hw;
871 	struct netdev_hw_addr *ha;
872 	u8  *mta_list;
873 	int i;
874 
875 	if (netdev_mc_empty(netdev)) {
876 		/* nothing to program, so clear mc list */
877 		igc_update_mc_addr_list(hw, NULL, 0);
878 		return 0;
879 	}
880 
881 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
882 	if (!mta_list)
883 		return -ENOMEM;
884 
885 	/* The shared function expects a packed array of only addresses. */
886 	i = 0;
887 	netdev_for_each_mc_addr(ha, netdev)
888 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
889 
890 	igc_update_mc_addr_list(hw, mta_list, i);
891 	kfree(mta_list);
892 
893 	return netdev_mc_count(netdev);
894 }
895 
896 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
897 {
898 	ktime_t cycle_time = adapter->cycle_time;
899 	ktime_t base_time = adapter->base_time;
900 	u32 launchtime;
901 
902 	/* FIXME: when using ETF together with taprio, we may have a
903 	 * case where 'delta' is larger than the cycle_time, this may
904 	 * cause problems if we don't read the current value of
905 	 * IGC_BASET, as the value writen into the launchtime
906 	 * descriptor field may be misinterpreted.
907 	 */
908 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
909 
910 	return cpu_to_le32(launchtime);
911 }
912 
913 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
914 			    struct igc_tx_buffer *first,
915 			    u32 vlan_macip_lens, u32 type_tucmd,
916 			    u32 mss_l4len_idx)
917 {
918 	struct igc_adv_tx_context_desc *context_desc;
919 	u16 i = tx_ring->next_to_use;
920 
921 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
922 
923 	i++;
924 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
925 
926 	/* set bits to identify this as an advanced context descriptor */
927 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
928 
929 	/* For i225, context index must be unique per ring. */
930 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
931 		mss_l4len_idx |= tx_ring->reg_idx << 4;
932 
933 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
934 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
935 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
936 
937 	/* We assume there is always a valid Tx time available. Invalid times
938 	 * should have been handled by the upper layers.
939 	 */
940 	if (tx_ring->launchtime_enable) {
941 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
942 		ktime_t txtime = first->skb->tstamp;
943 
944 		first->skb->tstamp = ktime_set(0, 0);
945 		context_desc->launch_time = igc_tx_launchtime(adapter,
946 							      txtime);
947 	} else {
948 		context_desc->launch_time = 0;
949 	}
950 }
951 
952 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
953 {
954 	unsigned int offset = 0;
955 
956 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
957 
958 	return offset == skb_checksum_start_offset(skb);
959 }
960 
961 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
962 {
963 	struct sk_buff *skb = first->skb;
964 	u32 vlan_macip_lens = 0;
965 	u32 type_tucmd = 0;
966 
967 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
968 csum_failed:
969 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
970 		    !tx_ring->launchtime_enable)
971 			return;
972 		goto no_csum;
973 	}
974 
975 	switch (skb->csum_offset) {
976 	case offsetof(struct tcphdr, check):
977 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
978 		fallthrough;
979 	case offsetof(struct udphdr, check):
980 		break;
981 	case offsetof(struct sctphdr, checksum):
982 		/* validate that this is actually an SCTP request */
983 		if ((first->protocol == htons(ETH_P_IP) &&
984 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
985 		    (first->protocol == htons(ETH_P_IPV6) &&
986 		     igc_ipv6_csum_is_sctp(skb))) {
987 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
988 			break;
989 		}
990 		fallthrough;
991 	default:
992 		skb_checksum_help(skb);
993 		goto csum_failed;
994 	}
995 
996 	/* update TX checksum flag */
997 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
998 	vlan_macip_lens = skb_checksum_start_offset(skb) -
999 			  skb_network_offset(skb);
1000 no_csum:
1001 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1002 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1003 
1004 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1005 }
1006 
1007 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1008 {
1009 	struct net_device *netdev = tx_ring->netdev;
1010 
1011 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1012 
1013 	/* memory barriier comment */
1014 	smp_mb();
1015 
1016 	/* We need to check again in a case another CPU has just
1017 	 * made room available.
1018 	 */
1019 	if (igc_desc_unused(tx_ring) < size)
1020 		return -EBUSY;
1021 
1022 	/* A reprieve! */
1023 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1024 
1025 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1026 	tx_ring->tx_stats.restart_queue2++;
1027 	u64_stats_update_end(&tx_ring->tx_syncp2);
1028 
1029 	return 0;
1030 }
1031 
1032 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1033 {
1034 	if (igc_desc_unused(tx_ring) >= size)
1035 		return 0;
1036 	return __igc_maybe_stop_tx(tx_ring, size);
1037 }
1038 
1039 #define IGC_SET_FLAG(_input, _flag, _result) \
1040 	(((_flag) <= (_result)) ?				\
1041 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1042 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1043 
1044 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1045 {
1046 	/* set type for advanced descriptor with frame checksum insertion */
1047 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1048 		       IGC_ADVTXD_DCMD_DEXT |
1049 		       IGC_ADVTXD_DCMD_IFCS;
1050 
1051 	/* set segmentation bits for TSO */
1052 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1053 				 (IGC_ADVTXD_DCMD_TSE));
1054 
1055 	/* set timestamp bit if present */
1056 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1057 				 (IGC_ADVTXD_MAC_TSTAMP));
1058 
1059 	return cmd_type;
1060 }
1061 
1062 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1063 				 union igc_adv_tx_desc *tx_desc,
1064 				 u32 tx_flags, unsigned int paylen)
1065 {
1066 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1067 
1068 	/* insert L4 checksum */
1069 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1070 			  ((IGC_TXD_POPTS_TXSM << 8) /
1071 			  IGC_TX_FLAGS_CSUM);
1072 
1073 	/* insert IPv4 checksum */
1074 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1075 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1076 			  IGC_TX_FLAGS_IPV4);
1077 
1078 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1079 }
1080 
1081 static int igc_tx_map(struct igc_ring *tx_ring,
1082 		      struct igc_tx_buffer *first,
1083 		      const u8 hdr_len)
1084 {
1085 	struct sk_buff *skb = first->skb;
1086 	struct igc_tx_buffer *tx_buffer;
1087 	union igc_adv_tx_desc *tx_desc;
1088 	u32 tx_flags = first->tx_flags;
1089 	skb_frag_t *frag;
1090 	u16 i = tx_ring->next_to_use;
1091 	unsigned int data_len, size;
1092 	dma_addr_t dma;
1093 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1094 
1095 	tx_desc = IGC_TX_DESC(tx_ring, i);
1096 
1097 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1098 
1099 	size = skb_headlen(skb);
1100 	data_len = skb->data_len;
1101 
1102 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1103 
1104 	tx_buffer = first;
1105 
1106 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1107 		if (dma_mapping_error(tx_ring->dev, dma))
1108 			goto dma_error;
1109 
1110 		/* record length, and DMA address */
1111 		dma_unmap_len_set(tx_buffer, len, size);
1112 		dma_unmap_addr_set(tx_buffer, dma, dma);
1113 
1114 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1115 
1116 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1117 			tx_desc->read.cmd_type_len =
1118 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1119 
1120 			i++;
1121 			tx_desc++;
1122 			if (i == tx_ring->count) {
1123 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1124 				i = 0;
1125 			}
1126 			tx_desc->read.olinfo_status = 0;
1127 
1128 			dma += IGC_MAX_DATA_PER_TXD;
1129 			size -= IGC_MAX_DATA_PER_TXD;
1130 
1131 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1132 		}
1133 
1134 		if (likely(!data_len))
1135 			break;
1136 
1137 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1138 
1139 		i++;
1140 		tx_desc++;
1141 		if (i == tx_ring->count) {
1142 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1143 			i = 0;
1144 		}
1145 		tx_desc->read.olinfo_status = 0;
1146 
1147 		size = skb_frag_size(frag);
1148 		data_len -= size;
1149 
1150 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1151 				       size, DMA_TO_DEVICE);
1152 
1153 		tx_buffer = &tx_ring->tx_buffer_info[i];
1154 	}
1155 
1156 	/* write last descriptor with RS and EOP bits */
1157 	cmd_type |= size | IGC_TXD_DCMD;
1158 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1159 
1160 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1161 
1162 	/* set the timestamp */
1163 	first->time_stamp = jiffies;
1164 
1165 	skb_tx_timestamp(skb);
1166 
1167 	/* Force memory writes to complete before letting h/w know there
1168 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1169 	 * memory model archs, such as IA-64).
1170 	 *
1171 	 * We also need this memory barrier to make certain all of the
1172 	 * status bits have been updated before next_to_watch is written.
1173 	 */
1174 	wmb();
1175 
1176 	/* set next_to_watch value indicating a packet is present */
1177 	first->next_to_watch = tx_desc;
1178 
1179 	i++;
1180 	if (i == tx_ring->count)
1181 		i = 0;
1182 
1183 	tx_ring->next_to_use = i;
1184 
1185 	/* Make sure there is space in the ring for the next send. */
1186 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1187 
1188 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1189 		writel(i, tx_ring->tail);
1190 	}
1191 
1192 	return 0;
1193 dma_error:
1194 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1195 	tx_buffer = &tx_ring->tx_buffer_info[i];
1196 
1197 	/* clear dma mappings for failed tx_buffer_info map */
1198 	while (tx_buffer != first) {
1199 		if (dma_unmap_len(tx_buffer, len))
1200 			dma_unmap_page(tx_ring->dev,
1201 				       dma_unmap_addr(tx_buffer, dma),
1202 				       dma_unmap_len(tx_buffer, len),
1203 				       DMA_TO_DEVICE);
1204 		dma_unmap_len_set(tx_buffer, len, 0);
1205 
1206 		if (i-- == 0)
1207 			i += tx_ring->count;
1208 		tx_buffer = &tx_ring->tx_buffer_info[i];
1209 	}
1210 
1211 	if (dma_unmap_len(tx_buffer, len))
1212 		dma_unmap_single(tx_ring->dev,
1213 				 dma_unmap_addr(tx_buffer, dma),
1214 				 dma_unmap_len(tx_buffer, len),
1215 				 DMA_TO_DEVICE);
1216 	dma_unmap_len_set(tx_buffer, len, 0);
1217 
1218 	dev_kfree_skb_any(tx_buffer->skb);
1219 	tx_buffer->skb = NULL;
1220 
1221 	tx_ring->next_to_use = i;
1222 
1223 	return -1;
1224 }
1225 
1226 static int igc_tso(struct igc_ring *tx_ring,
1227 		   struct igc_tx_buffer *first,
1228 		   u8 *hdr_len)
1229 {
1230 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1231 	struct sk_buff *skb = first->skb;
1232 	union {
1233 		struct iphdr *v4;
1234 		struct ipv6hdr *v6;
1235 		unsigned char *hdr;
1236 	} ip;
1237 	union {
1238 		struct tcphdr *tcp;
1239 		struct udphdr *udp;
1240 		unsigned char *hdr;
1241 	} l4;
1242 	u32 paylen, l4_offset;
1243 	int err;
1244 
1245 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1246 		return 0;
1247 
1248 	if (!skb_is_gso(skb))
1249 		return 0;
1250 
1251 	err = skb_cow_head(skb, 0);
1252 	if (err < 0)
1253 		return err;
1254 
1255 	ip.hdr = skb_network_header(skb);
1256 	l4.hdr = skb_checksum_start(skb);
1257 
1258 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1259 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1260 
1261 	/* initialize outer IP header fields */
1262 	if (ip.v4->version == 4) {
1263 		unsigned char *csum_start = skb_checksum_start(skb);
1264 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1265 
1266 		/* IP header will have to cancel out any data that
1267 		 * is not a part of the outer IP header
1268 		 */
1269 		ip.v4->check = csum_fold(csum_partial(trans_start,
1270 						      csum_start - trans_start,
1271 						      0));
1272 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1273 
1274 		ip.v4->tot_len = 0;
1275 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1276 				   IGC_TX_FLAGS_CSUM |
1277 				   IGC_TX_FLAGS_IPV4;
1278 	} else {
1279 		ip.v6->payload_len = 0;
1280 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1281 				   IGC_TX_FLAGS_CSUM;
1282 	}
1283 
1284 	/* determine offset of inner transport header */
1285 	l4_offset = l4.hdr - skb->data;
1286 
1287 	/* remove payload length from inner checksum */
1288 	paylen = skb->len - l4_offset;
1289 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1290 		/* compute length of segmentation header */
1291 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1292 		csum_replace_by_diff(&l4.tcp->check,
1293 				     (__force __wsum)htonl(paylen));
1294 	} else {
1295 		/* compute length of segmentation header */
1296 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1297 		csum_replace_by_diff(&l4.udp->check,
1298 				     (__force __wsum)htonl(paylen));
1299 	}
1300 
1301 	/* update gso size and bytecount with header size */
1302 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1303 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1304 
1305 	/* MSS L4LEN IDX */
1306 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1307 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1308 
1309 	/* VLAN MACLEN IPLEN */
1310 	vlan_macip_lens = l4.hdr - ip.hdr;
1311 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1312 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1313 
1314 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1315 			type_tucmd, mss_l4len_idx);
1316 
1317 	return 1;
1318 }
1319 
1320 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1321 				       struct igc_ring *tx_ring)
1322 {
1323 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1324 	__be16 protocol = vlan_get_protocol(skb);
1325 	struct igc_tx_buffer *first;
1326 	u32 tx_flags = 0;
1327 	unsigned short f;
1328 	u8 hdr_len = 0;
1329 	int tso = 0;
1330 
1331 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1332 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1333 	 *	+ 2 desc gap to keep tail from touching head,
1334 	 *	+ 1 desc for context descriptor,
1335 	 * otherwise try next time
1336 	 */
1337 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1338 		count += TXD_USE_COUNT(skb_frag_size(
1339 						&skb_shinfo(skb)->frags[f]));
1340 
1341 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1342 		/* this is a hard error */
1343 		return NETDEV_TX_BUSY;
1344 	}
1345 
1346 	/* record the location of the first descriptor for this packet */
1347 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1348 	first->skb = skb;
1349 	first->bytecount = skb->len;
1350 	first->gso_segs = 1;
1351 
1352 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1353 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1354 
1355 		/* FIXME: add support for retrieving timestamps from
1356 		 * the other timer registers before skipping the
1357 		 * timestamping request.
1358 		 */
1359 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1360 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1361 					   &adapter->state)) {
1362 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1363 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1364 
1365 			adapter->ptp_tx_skb = skb_get(skb);
1366 			adapter->ptp_tx_start = jiffies;
1367 		} else {
1368 			adapter->tx_hwtstamp_skipped++;
1369 		}
1370 	}
1371 
1372 	/* record initial flags and protocol */
1373 	first->tx_flags = tx_flags;
1374 	first->protocol = protocol;
1375 
1376 	tso = igc_tso(tx_ring, first, &hdr_len);
1377 	if (tso < 0)
1378 		goto out_drop;
1379 	else if (!tso)
1380 		igc_tx_csum(tx_ring, first);
1381 
1382 	igc_tx_map(tx_ring, first, hdr_len);
1383 
1384 	return NETDEV_TX_OK;
1385 
1386 out_drop:
1387 	dev_kfree_skb_any(first->skb);
1388 	first->skb = NULL;
1389 
1390 	return NETDEV_TX_OK;
1391 }
1392 
1393 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1394 						    struct sk_buff *skb)
1395 {
1396 	unsigned int r_idx = skb->queue_mapping;
1397 
1398 	if (r_idx >= adapter->num_tx_queues)
1399 		r_idx = r_idx % adapter->num_tx_queues;
1400 
1401 	return adapter->tx_ring[r_idx];
1402 }
1403 
1404 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1405 				  struct net_device *netdev)
1406 {
1407 	struct igc_adapter *adapter = netdev_priv(netdev);
1408 
1409 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1410 	 * in order to meet this minimum size requirement.
1411 	 */
1412 	if (skb->len < 17) {
1413 		if (skb_padto(skb, 17))
1414 			return NETDEV_TX_OK;
1415 		skb->len = 17;
1416 	}
1417 
1418 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1419 }
1420 
1421 static void igc_rx_checksum(struct igc_ring *ring,
1422 			    union igc_adv_rx_desc *rx_desc,
1423 			    struct sk_buff *skb)
1424 {
1425 	skb_checksum_none_assert(skb);
1426 
1427 	/* Ignore Checksum bit is set */
1428 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1429 		return;
1430 
1431 	/* Rx checksum disabled via ethtool */
1432 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1433 		return;
1434 
1435 	/* TCP/UDP checksum error bit is set */
1436 	if (igc_test_staterr(rx_desc,
1437 			     IGC_RXDEXT_STATERR_L4E |
1438 			     IGC_RXDEXT_STATERR_IPE)) {
1439 		/* work around errata with sctp packets where the TCPE aka
1440 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1441 		 * packets (aka let the stack check the crc32c)
1442 		 */
1443 		if (!(skb->len == 60 &&
1444 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1445 			u64_stats_update_begin(&ring->rx_syncp);
1446 			ring->rx_stats.csum_err++;
1447 			u64_stats_update_end(&ring->rx_syncp);
1448 		}
1449 		/* let the stack verify checksum errors */
1450 		return;
1451 	}
1452 	/* It must be a TCP or UDP packet with a valid checksum */
1453 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1454 				      IGC_RXD_STAT_UDPCS))
1455 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1456 
1457 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1458 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1459 }
1460 
1461 static inline void igc_rx_hash(struct igc_ring *ring,
1462 			       union igc_adv_rx_desc *rx_desc,
1463 			       struct sk_buff *skb)
1464 {
1465 	if (ring->netdev->features & NETIF_F_RXHASH)
1466 		skb_set_hash(skb,
1467 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1468 			     PKT_HASH_TYPE_L3);
1469 }
1470 
1471 /**
1472  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1473  * @rx_ring: rx descriptor ring packet is being transacted on
1474  * @rx_desc: pointer to the EOP Rx descriptor
1475  * @skb: pointer to current skb being populated
1476  *
1477  * This function checks the ring, descriptor, and packet information in order
1478  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1479  * skb.
1480  */
1481 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1482 				   union igc_adv_rx_desc *rx_desc,
1483 				   struct sk_buff *skb)
1484 {
1485 	igc_rx_hash(rx_ring, rx_desc, skb);
1486 
1487 	igc_rx_checksum(rx_ring, rx_desc, skb);
1488 
1489 	skb_record_rx_queue(skb, rx_ring->queue_index);
1490 
1491 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1492 }
1493 
1494 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1495 					       const unsigned int size)
1496 {
1497 	struct igc_rx_buffer *rx_buffer;
1498 
1499 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1500 	prefetchw(rx_buffer->page);
1501 
1502 	/* we are reusing so sync this buffer for CPU use */
1503 	dma_sync_single_range_for_cpu(rx_ring->dev,
1504 				      rx_buffer->dma,
1505 				      rx_buffer->page_offset,
1506 				      size,
1507 				      DMA_FROM_DEVICE);
1508 
1509 	rx_buffer->pagecnt_bias--;
1510 
1511 	return rx_buffer;
1512 }
1513 
1514 /**
1515  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1516  * @rx_ring: rx descriptor ring to transact packets on
1517  * @rx_buffer: buffer containing page to add
1518  * @skb: sk_buff to place the data into
1519  * @size: size of buffer to be added
1520  *
1521  * This function will add the data contained in rx_buffer->page to the skb.
1522  */
1523 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1524 			    struct igc_rx_buffer *rx_buffer,
1525 			    struct sk_buff *skb,
1526 			    unsigned int size)
1527 {
1528 #if (PAGE_SIZE < 8192)
1529 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1530 
1531 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1532 			rx_buffer->page_offset, size, truesize);
1533 	rx_buffer->page_offset ^= truesize;
1534 #else
1535 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1536 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1537 				SKB_DATA_ALIGN(size);
1538 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1539 			rx_buffer->page_offset, size, truesize);
1540 	rx_buffer->page_offset += truesize;
1541 #endif
1542 }
1543 
1544 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1545 				     struct igc_rx_buffer *rx_buffer,
1546 				     union igc_adv_rx_desc *rx_desc,
1547 				     unsigned int size)
1548 {
1549 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1550 #if (PAGE_SIZE < 8192)
1551 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1552 #else
1553 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1554 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1555 #endif
1556 	struct sk_buff *skb;
1557 
1558 	/* prefetch first cache line of first page */
1559 	net_prefetch(va);
1560 
1561 	/* build an skb around the page buffer */
1562 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1563 	if (unlikely(!skb))
1564 		return NULL;
1565 
1566 	/* update pointers within the skb to store the data */
1567 	skb_reserve(skb, IGC_SKB_PAD);
1568 	__skb_put(skb, size);
1569 
1570 	/* update buffer offset */
1571 #if (PAGE_SIZE < 8192)
1572 	rx_buffer->page_offset ^= truesize;
1573 #else
1574 	rx_buffer->page_offset += truesize;
1575 #endif
1576 
1577 	return skb;
1578 }
1579 
1580 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1581 					 struct igc_rx_buffer *rx_buffer,
1582 					 union igc_adv_rx_desc *rx_desc,
1583 					 unsigned int size)
1584 {
1585 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1586 #if (PAGE_SIZE < 8192)
1587 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1588 #else
1589 	unsigned int truesize = SKB_DATA_ALIGN(size);
1590 #endif
1591 	unsigned int headlen;
1592 	struct sk_buff *skb;
1593 
1594 	/* prefetch first cache line of first page */
1595 	net_prefetch(va);
1596 
1597 	/* allocate a skb to store the frags */
1598 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1599 	if (unlikely(!skb))
1600 		return NULL;
1601 
1602 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1603 		igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1604 		va += IGC_TS_HDR_LEN;
1605 		size -= IGC_TS_HDR_LEN;
1606 	}
1607 
1608 	/* Determine available headroom for copy */
1609 	headlen = size;
1610 	if (headlen > IGC_RX_HDR_LEN)
1611 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1612 
1613 	/* align pull length to size of long to optimize memcpy performance */
1614 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1615 
1616 	/* update all of the pointers */
1617 	size -= headlen;
1618 	if (size) {
1619 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1620 				(va + headlen) - page_address(rx_buffer->page),
1621 				size, truesize);
1622 #if (PAGE_SIZE < 8192)
1623 		rx_buffer->page_offset ^= truesize;
1624 #else
1625 		rx_buffer->page_offset += truesize;
1626 #endif
1627 	} else {
1628 		rx_buffer->pagecnt_bias++;
1629 	}
1630 
1631 	return skb;
1632 }
1633 
1634 /**
1635  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1636  * @rx_ring: rx descriptor ring to store buffers on
1637  * @old_buff: donor buffer to have page reused
1638  *
1639  * Synchronizes page for reuse by the adapter
1640  */
1641 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1642 			      struct igc_rx_buffer *old_buff)
1643 {
1644 	u16 nta = rx_ring->next_to_alloc;
1645 	struct igc_rx_buffer *new_buff;
1646 
1647 	new_buff = &rx_ring->rx_buffer_info[nta];
1648 
1649 	/* update, and store next to alloc */
1650 	nta++;
1651 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1652 
1653 	/* Transfer page from old buffer to new buffer.
1654 	 * Move each member individually to avoid possible store
1655 	 * forwarding stalls.
1656 	 */
1657 	new_buff->dma		= old_buff->dma;
1658 	new_buff->page		= old_buff->page;
1659 	new_buff->page_offset	= old_buff->page_offset;
1660 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1661 }
1662 
1663 static inline bool igc_page_is_reserved(struct page *page)
1664 {
1665 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1666 }
1667 
1668 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1669 {
1670 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1671 	struct page *page = rx_buffer->page;
1672 
1673 	/* avoid re-using remote pages */
1674 	if (unlikely(igc_page_is_reserved(page)))
1675 		return false;
1676 
1677 #if (PAGE_SIZE < 8192)
1678 	/* if we are only owner of page we can reuse it */
1679 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1680 		return false;
1681 #else
1682 #define IGC_LAST_OFFSET \
1683 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1684 
1685 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1686 		return false;
1687 #endif
1688 
1689 	/* If we have drained the page fragment pool we need to update
1690 	 * the pagecnt_bias and page count so that we fully restock the
1691 	 * number of references the driver holds.
1692 	 */
1693 	if (unlikely(!pagecnt_bias)) {
1694 		page_ref_add(page, USHRT_MAX);
1695 		rx_buffer->pagecnt_bias = USHRT_MAX;
1696 	}
1697 
1698 	return true;
1699 }
1700 
1701 /**
1702  * igc_is_non_eop - process handling of non-EOP buffers
1703  * @rx_ring: Rx ring being processed
1704  * @rx_desc: Rx descriptor for current buffer
1705  *
1706  * This function updates next to clean.  If the buffer is an EOP buffer
1707  * this function exits returning false, otherwise it will place the
1708  * sk_buff in the next buffer to be chained and return true indicating
1709  * that this is in fact a non-EOP buffer.
1710  */
1711 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1712 			   union igc_adv_rx_desc *rx_desc)
1713 {
1714 	u32 ntc = rx_ring->next_to_clean + 1;
1715 
1716 	/* fetch, update, and store next to clean */
1717 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1718 	rx_ring->next_to_clean = ntc;
1719 
1720 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1721 
1722 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1723 		return false;
1724 
1725 	return true;
1726 }
1727 
1728 /**
1729  * igc_cleanup_headers - Correct corrupted or empty headers
1730  * @rx_ring: rx descriptor ring packet is being transacted on
1731  * @rx_desc: pointer to the EOP Rx descriptor
1732  * @skb: pointer to current skb being fixed
1733  *
1734  * Address the case where we are pulling data in on pages only
1735  * and as such no data is present in the skb header.
1736  *
1737  * In addition if skb is not at least 60 bytes we need to pad it so that
1738  * it is large enough to qualify as a valid Ethernet frame.
1739  *
1740  * Returns true if an error was encountered and skb was freed.
1741  */
1742 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1743 				union igc_adv_rx_desc *rx_desc,
1744 				struct sk_buff *skb)
1745 {
1746 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1747 		struct net_device *netdev = rx_ring->netdev;
1748 
1749 		if (!(netdev->features & NETIF_F_RXALL)) {
1750 			dev_kfree_skb_any(skb);
1751 			return true;
1752 		}
1753 	}
1754 
1755 	/* if eth_skb_pad returns an error the skb was freed */
1756 	if (eth_skb_pad(skb))
1757 		return true;
1758 
1759 	return false;
1760 }
1761 
1762 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1763 			      struct igc_rx_buffer *rx_buffer)
1764 {
1765 	if (igc_can_reuse_rx_page(rx_buffer)) {
1766 		/* hand second half of page back to the ring */
1767 		igc_reuse_rx_page(rx_ring, rx_buffer);
1768 	} else {
1769 		/* We are not reusing the buffer so unmap it and free
1770 		 * any references we are holding to it
1771 		 */
1772 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1773 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1774 				     IGC_RX_DMA_ATTR);
1775 		__page_frag_cache_drain(rx_buffer->page,
1776 					rx_buffer->pagecnt_bias);
1777 	}
1778 
1779 	/* clear contents of rx_buffer */
1780 	rx_buffer->page = NULL;
1781 }
1782 
1783 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1784 {
1785 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1786 }
1787 
1788 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1789 				  struct igc_rx_buffer *bi)
1790 {
1791 	struct page *page = bi->page;
1792 	dma_addr_t dma;
1793 
1794 	/* since we are recycling buffers we should seldom need to alloc */
1795 	if (likely(page))
1796 		return true;
1797 
1798 	/* alloc new page for storage */
1799 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1800 	if (unlikely(!page)) {
1801 		rx_ring->rx_stats.alloc_failed++;
1802 		return false;
1803 	}
1804 
1805 	/* map page for use */
1806 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1807 				 igc_rx_pg_size(rx_ring),
1808 				 DMA_FROM_DEVICE,
1809 				 IGC_RX_DMA_ATTR);
1810 
1811 	/* if mapping failed free memory back to system since
1812 	 * there isn't much point in holding memory we can't use
1813 	 */
1814 	if (dma_mapping_error(rx_ring->dev, dma)) {
1815 		__free_page(page);
1816 
1817 		rx_ring->rx_stats.alloc_failed++;
1818 		return false;
1819 	}
1820 
1821 	bi->dma = dma;
1822 	bi->page = page;
1823 	bi->page_offset = igc_rx_offset(rx_ring);
1824 	bi->pagecnt_bias = 1;
1825 
1826 	return true;
1827 }
1828 
1829 /**
1830  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1831  * @rx_ring: rx descriptor ring
1832  * @cleaned_count: number of buffers to clean
1833  */
1834 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1835 {
1836 	union igc_adv_rx_desc *rx_desc;
1837 	u16 i = rx_ring->next_to_use;
1838 	struct igc_rx_buffer *bi;
1839 	u16 bufsz;
1840 
1841 	/* nothing to do */
1842 	if (!cleaned_count)
1843 		return;
1844 
1845 	rx_desc = IGC_RX_DESC(rx_ring, i);
1846 	bi = &rx_ring->rx_buffer_info[i];
1847 	i -= rx_ring->count;
1848 
1849 	bufsz = igc_rx_bufsz(rx_ring);
1850 
1851 	do {
1852 		if (!igc_alloc_mapped_page(rx_ring, bi))
1853 			break;
1854 
1855 		/* sync the buffer for use by the device */
1856 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1857 						 bi->page_offset, bufsz,
1858 						 DMA_FROM_DEVICE);
1859 
1860 		/* Refresh the desc even if buffer_addrs didn't change
1861 		 * because each write-back erases this info.
1862 		 */
1863 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1864 
1865 		rx_desc++;
1866 		bi++;
1867 		i++;
1868 		if (unlikely(!i)) {
1869 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1870 			bi = rx_ring->rx_buffer_info;
1871 			i -= rx_ring->count;
1872 		}
1873 
1874 		/* clear the length for the next_to_use descriptor */
1875 		rx_desc->wb.upper.length = 0;
1876 
1877 		cleaned_count--;
1878 	} while (cleaned_count);
1879 
1880 	i += rx_ring->count;
1881 
1882 	if (rx_ring->next_to_use != i) {
1883 		/* record the next descriptor to use */
1884 		rx_ring->next_to_use = i;
1885 
1886 		/* update next to alloc since we have filled the ring */
1887 		rx_ring->next_to_alloc = i;
1888 
1889 		/* Force memory writes to complete before letting h/w
1890 		 * know there are new descriptors to fetch.  (Only
1891 		 * applicable for weak-ordered memory model archs,
1892 		 * such as IA-64).
1893 		 */
1894 		wmb();
1895 		writel(i, rx_ring->tail);
1896 	}
1897 }
1898 
1899 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1900 {
1901 	unsigned int total_bytes = 0, total_packets = 0;
1902 	struct igc_ring *rx_ring = q_vector->rx.ring;
1903 	struct sk_buff *skb = rx_ring->skb;
1904 	u16 cleaned_count = igc_desc_unused(rx_ring);
1905 
1906 	while (likely(total_packets < budget)) {
1907 		union igc_adv_rx_desc *rx_desc;
1908 		struct igc_rx_buffer *rx_buffer;
1909 		unsigned int size;
1910 
1911 		/* return some buffers to hardware, one at a time is too slow */
1912 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1913 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
1914 			cleaned_count = 0;
1915 		}
1916 
1917 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1918 		size = le16_to_cpu(rx_desc->wb.upper.length);
1919 		if (!size)
1920 			break;
1921 
1922 		/* This memory barrier is needed to keep us from reading
1923 		 * any other fields out of the rx_desc until we know the
1924 		 * descriptor has been written back
1925 		 */
1926 		dma_rmb();
1927 
1928 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
1929 
1930 		/* retrieve a buffer from the ring */
1931 		if (skb)
1932 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1933 		else if (ring_uses_build_skb(rx_ring))
1934 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1935 		else
1936 			skb = igc_construct_skb(rx_ring, rx_buffer,
1937 						rx_desc, size);
1938 
1939 		/* exit if we failed to retrieve a buffer */
1940 		if (!skb) {
1941 			rx_ring->rx_stats.alloc_failed++;
1942 			rx_buffer->pagecnt_bias++;
1943 			break;
1944 		}
1945 
1946 		igc_put_rx_buffer(rx_ring, rx_buffer);
1947 		cleaned_count++;
1948 
1949 		/* fetch next buffer in frame if non-eop */
1950 		if (igc_is_non_eop(rx_ring, rx_desc))
1951 			continue;
1952 
1953 		/* verify the packet layout is correct */
1954 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1955 			skb = NULL;
1956 			continue;
1957 		}
1958 
1959 		/* probably a little skewed due to removing CRC */
1960 		total_bytes += skb->len;
1961 
1962 		/* populate checksum, VLAN, and protocol */
1963 		igc_process_skb_fields(rx_ring, rx_desc, skb);
1964 
1965 		napi_gro_receive(&q_vector->napi, skb);
1966 
1967 		/* reset skb pointer */
1968 		skb = NULL;
1969 
1970 		/* update budget accounting */
1971 		total_packets++;
1972 	}
1973 
1974 	/* place incomplete frames back on ring for completion */
1975 	rx_ring->skb = skb;
1976 
1977 	u64_stats_update_begin(&rx_ring->rx_syncp);
1978 	rx_ring->rx_stats.packets += total_packets;
1979 	rx_ring->rx_stats.bytes += total_bytes;
1980 	u64_stats_update_end(&rx_ring->rx_syncp);
1981 	q_vector->rx.total_packets += total_packets;
1982 	q_vector->rx.total_bytes += total_bytes;
1983 
1984 	if (cleaned_count)
1985 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
1986 
1987 	return total_packets;
1988 }
1989 
1990 /**
1991  * igc_clean_tx_irq - Reclaim resources after transmit completes
1992  * @q_vector: pointer to q_vector containing needed info
1993  * @napi_budget: Used to determine if we are in netpoll
1994  *
1995  * returns true if ring is completely cleaned
1996  */
1997 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1998 {
1999 	struct igc_adapter *adapter = q_vector->adapter;
2000 	unsigned int total_bytes = 0, total_packets = 0;
2001 	unsigned int budget = q_vector->tx.work_limit;
2002 	struct igc_ring *tx_ring = q_vector->tx.ring;
2003 	unsigned int i = tx_ring->next_to_clean;
2004 	struct igc_tx_buffer *tx_buffer;
2005 	union igc_adv_tx_desc *tx_desc;
2006 
2007 	if (test_bit(__IGC_DOWN, &adapter->state))
2008 		return true;
2009 
2010 	tx_buffer = &tx_ring->tx_buffer_info[i];
2011 	tx_desc = IGC_TX_DESC(tx_ring, i);
2012 	i -= tx_ring->count;
2013 
2014 	do {
2015 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2016 
2017 		/* if next_to_watch is not set then there is no work pending */
2018 		if (!eop_desc)
2019 			break;
2020 
2021 		/* prevent any other reads prior to eop_desc */
2022 		smp_rmb();
2023 
2024 		/* if DD is not set pending work has not been completed */
2025 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2026 			break;
2027 
2028 		/* clear next_to_watch to prevent false hangs */
2029 		tx_buffer->next_to_watch = NULL;
2030 
2031 		/* update the statistics for this packet */
2032 		total_bytes += tx_buffer->bytecount;
2033 		total_packets += tx_buffer->gso_segs;
2034 
2035 		/* free the skb */
2036 		napi_consume_skb(tx_buffer->skb, napi_budget);
2037 
2038 		/* unmap skb header data */
2039 		dma_unmap_single(tx_ring->dev,
2040 				 dma_unmap_addr(tx_buffer, dma),
2041 				 dma_unmap_len(tx_buffer, len),
2042 				 DMA_TO_DEVICE);
2043 
2044 		/* clear tx_buffer data */
2045 		dma_unmap_len_set(tx_buffer, len, 0);
2046 
2047 		/* clear last DMA location and unmap remaining buffers */
2048 		while (tx_desc != eop_desc) {
2049 			tx_buffer++;
2050 			tx_desc++;
2051 			i++;
2052 			if (unlikely(!i)) {
2053 				i -= tx_ring->count;
2054 				tx_buffer = tx_ring->tx_buffer_info;
2055 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2056 			}
2057 
2058 			/* unmap any remaining paged data */
2059 			if (dma_unmap_len(tx_buffer, len)) {
2060 				dma_unmap_page(tx_ring->dev,
2061 					       dma_unmap_addr(tx_buffer, dma),
2062 					       dma_unmap_len(tx_buffer, len),
2063 					       DMA_TO_DEVICE);
2064 				dma_unmap_len_set(tx_buffer, len, 0);
2065 			}
2066 		}
2067 
2068 		/* move us one more past the eop_desc for start of next pkt */
2069 		tx_buffer++;
2070 		tx_desc++;
2071 		i++;
2072 		if (unlikely(!i)) {
2073 			i -= tx_ring->count;
2074 			tx_buffer = tx_ring->tx_buffer_info;
2075 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2076 		}
2077 
2078 		/* issue prefetch for next Tx descriptor */
2079 		prefetch(tx_desc);
2080 
2081 		/* update budget accounting */
2082 		budget--;
2083 	} while (likely(budget));
2084 
2085 	netdev_tx_completed_queue(txring_txq(tx_ring),
2086 				  total_packets, total_bytes);
2087 
2088 	i += tx_ring->count;
2089 	tx_ring->next_to_clean = i;
2090 	u64_stats_update_begin(&tx_ring->tx_syncp);
2091 	tx_ring->tx_stats.bytes += total_bytes;
2092 	tx_ring->tx_stats.packets += total_packets;
2093 	u64_stats_update_end(&tx_ring->tx_syncp);
2094 	q_vector->tx.total_bytes += total_bytes;
2095 	q_vector->tx.total_packets += total_packets;
2096 
2097 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2098 		struct igc_hw *hw = &adapter->hw;
2099 
2100 		/* Detect a transmit hang in hardware, this serializes the
2101 		 * check with the clearing of time_stamp and movement of i
2102 		 */
2103 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2104 		if (tx_buffer->next_to_watch &&
2105 		    time_after(jiffies, tx_buffer->time_stamp +
2106 		    (adapter->tx_timeout_factor * HZ)) &&
2107 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2108 			/* detected Tx unit hang */
2109 			netdev_err(tx_ring->netdev,
2110 				   "Detected Tx Unit Hang\n"
2111 				   "  Tx Queue             <%d>\n"
2112 				   "  TDH                  <%x>\n"
2113 				   "  TDT                  <%x>\n"
2114 				   "  next_to_use          <%x>\n"
2115 				   "  next_to_clean        <%x>\n"
2116 				   "buffer_info[next_to_clean]\n"
2117 				   "  time_stamp           <%lx>\n"
2118 				   "  next_to_watch        <%p>\n"
2119 				   "  jiffies              <%lx>\n"
2120 				   "  desc.status          <%x>\n",
2121 				   tx_ring->queue_index,
2122 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2123 				   readl(tx_ring->tail),
2124 				   tx_ring->next_to_use,
2125 				   tx_ring->next_to_clean,
2126 				   tx_buffer->time_stamp,
2127 				   tx_buffer->next_to_watch,
2128 				   jiffies,
2129 				   tx_buffer->next_to_watch->wb.status);
2130 			netif_stop_subqueue(tx_ring->netdev,
2131 					    tx_ring->queue_index);
2132 
2133 			/* we are about to reset, no point in enabling stuff */
2134 			return true;
2135 		}
2136 	}
2137 
2138 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2139 	if (unlikely(total_packets &&
2140 		     netif_carrier_ok(tx_ring->netdev) &&
2141 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2142 		/* Make sure that anybody stopping the queue after this
2143 		 * sees the new next_to_clean.
2144 		 */
2145 		smp_mb();
2146 		if (__netif_subqueue_stopped(tx_ring->netdev,
2147 					     tx_ring->queue_index) &&
2148 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2149 			netif_wake_subqueue(tx_ring->netdev,
2150 					    tx_ring->queue_index);
2151 
2152 			u64_stats_update_begin(&tx_ring->tx_syncp);
2153 			tx_ring->tx_stats.restart_queue++;
2154 			u64_stats_update_end(&tx_ring->tx_syncp);
2155 		}
2156 	}
2157 
2158 	return !!budget;
2159 }
2160 
2161 static int igc_find_mac_filter(struct igc_adapter *adapter,
2162 			       enum igc_mac_filter_type type, const u8 *addr)
2163 {
2164 	struct igc_hw *hw = &adapter->hw;
2165 	int max_entries = hw->mac.rar_entry_count;
2166 	u32 ral, rah;
2167 	int i;
2168 
2169 	for (i = 0; i < max_entries; i++) {
2170 		ral = rd32(IGC_RAL(i));
2171 		rah = rd32(IGC_RAH(i));
2172 
2173 		if (!(rah & IGC_RAH_AV))
2174 			continue;
2175 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2176 			continue;
2177 		if ((rah & IGC_RAH_RAH_MASK) !=
2178 		    le16_to_cpup((__le16 *)(addr + 4)))
2179 			continue;
2180 		if (ral != le32_to_cpup((__le32 *)(addr)))
2181 			continue;
2182 
2183 		return i;
2184 	}
2185 
2186 	return -1;
2187 }
2188 
2189 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2190 {
2191 	struct igc_hw *hw = &adapter->hw;
2192 	int max_entries = hw->mac.rar_entry_count;
2193 	u32 rah;
2194 	int i;
2195 
2196 	for (i = 0; i < max_entries; i++) {
2197 		rah = rd32(IGC_RAH(i));
2198 
2199 		if (!(rah & IGC_RAH_AV))
2200 			return i;
2201 	}
2202 
2203 	return -1;
2204 }
2205 
2206 /**
2207  * igc_add_mac_filter() - Add MAC address filter
2208  * @adapter: Pointer to adapter where the filter should be added
2209  * @type: MAC address filter type (source or destination)
2210  * @addr: MAC address
2211  * @queue: If non-negative, queue assignment feature is enabled and frames
2212  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2213  *         assignment is disabled.
2214  *
2215  * Return: 0 in case of success, negative errno code otherwise.
2216  */
2217 static int igc_add_mac_filter(struct igc_adapter *adapter,
2218 			      enum igc_mac_filter_type type, const u8 *addr,
2219 			      int queue)
2220 {
2221 	struct net_device *dev = adapter->netdev;
2222 	int index;
2223 
2224 	index = igc_find_mac_filter(adapter, type, addr);
2225 	if (index >= 0)
2226 		goto update_filter;
2227 
2228 	index = igc_get_avail_mac_filter_slot(adapter);
2229 	if (index < 0)
2230 		return -ENOSPC;
2231 
2232 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2233 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2234 		   addr, queue);
2235 
2236 update_filter:
2237 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2238 	return 0;
2239 }
2240 
2241 /**
2242  * igc_del_mac_filter() - Delete MAC address filter
2243  * @adapter: Pointer to adapter where the filter should be deleted from
2244  * @type: MAC address filter type (source or destination)
2245  * @addr: MAC address
2246  */
2247 static void igc_del_mac_filter(struct igc_adapter *adapter,
2248 			       enum igc_mac_filter_type type, const u8 *addr)
2249 {
2250 	struct net_device *dev = adapter->netdev;
2251 	int index;
2252 
2253 	index = igc_find_mac_filter(adapter, type, addr);
2254 	if (index < 0)
2255 		return;
2256 
2257 	if (index == 0) {
2258 		/* If this is the default filter, we don't actually delete it.
2259 		 * We just reset to its default value i.e. disable queue
2260 		 * assignment.
2261 		 */
2262 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2263 
2264 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2265 	} else {
2266 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2267 			   index,
2268 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2269 			   addr);
2270 
2271 		igc_clear_mac_filter_hw(adapter, index);
2272 	}
2273 }
2274 
2275 /**
2276  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2277  * @adapter: Pointer to adapter where the filter should be added
2278  * @prio: VLAN priority value
2279  * @queue: Queue number which matching frames are assigned to
2280  *
2281  * Return: 0 in case of success, negative errno code otherwise.
2282  */
2283 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2284 				    int queue)
2285 {
2286 	struct net_device *dev = adapter->netdev;
2287 	struct igc_hw *hw = &adapter->hw;
2288 	u32 vlanpqf;
2289 
2290 	vlanpqf = rd32(IGC_VLANPQF);
2291 
2292 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2293 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2294 		return -EEXIST;
2295 	}
2296 
2297 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2298 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2299 
2300 	wr32(IGC_VLANPQF, vlanpqf);
2301 
2302 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2303 		   prio, queue);
2304 	return 0;
2305 }
2306 
2307 /**
2308  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2309  * @adapter: Pointer to adapter where the filter should be deleted from
2310  * @prio: VLAN priority value
2311  */
2312 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2313 {
2314 	struct igc_hw *hw = &adapter->hw;
2315 	u32 vlanpqf;
2316 
2317 	vlanpqf = rd32(IGC_VLANPQF);
2318 
2319 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2320 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2321 
2322 	wr32(IGC_VLANPQF, vlanpqf);
2323 
2324 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2325 		   prio);
2326 }
2327 
2328 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2329 {
2330 	struct igc_hw *hw = &adapter->hw;
2331 	int i;
2332 
2333 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2334 		u32 etqf = rd32(IGC_ETQF(i));
2335 
2336 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2337 			return i;
2338 	}
2339 
2340 	return -1;
2341 }
2342 
2343 /**
2344  * igc_add_etype_filter() - Add ethertype filter
2345  * @adapter: Pointer to adapter where the filter should be added
2346  * @etype: Ethertype value
2347  * @queue: If non-negative, queue assignment feature is enabled and frames
2348  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2349  *         assignment is disabled.
2350  *
2351  * Return: 0 in case of success, negative errno code otherwise.
2352  */
2353 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2354 				int queue)
2355 {
2356 	struct igc_hw *hw = &adapter->hw;
2357 	int index;
2358 	u32 etqf;
2359 
2360 	index = igc_get_avail_etype_filter_slot(adapter);
2361 	if (index < 0)
2362 		return -ENOSPC;
2363 
2364 	etqf = rd32(IGC_ETQF(index));
2365 
2366 	etqf &= ~IGC_ETQF_ETYPE_MASK;
2367 	etqf |= etype;
2368 
2369 	if (queue >= 0) {
2370 		etqf &= ~IGC_ETQF_QUEUE_MASK;
2371 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2372 		etqf |= IGC_ETQF_QUEUE_ENABLE;
2373 	}
2374 
2375 	etqf |= IGC_ETQF_FILTER_ENABLE;
2376 
2377 	wr32(IGC_ETQF(index), etqf);
2378 
2379 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2380 		   etype, queue);
2381 	return 0;
2382 }
2383 
2384 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2385 {
2386 	struct igc_hw *hw = &adapter->hw;
2387 	int i;
2388 
2389 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2390 		u32 etqf = rd32(IGC_ETQF(i));
2391 
2392 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2393 			return i;
2394 	}
2395 
2396 	return -1;
2397 }
2398 
2399 /**
2400  * igc_del_etype_filter() - Delete ethertype filter
2401  * @adapter: Pointer to adapter where the filter should be deleted from
2402  * @etype: Ethertype value
2403  */
2404 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2405 {
2406 	struct igc_hw *hw = &adapter->hw;
2407 	int index;
2408 
2409 	index = igc_find_etype_filter(adapter, etype);
2410 	if (index < 0)
2411 		return;
2412 
2413 	wr32(IGC_ETQF(index), 0);
2414 
2415 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2416 		   etype);
2417 }
2418 
2419 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2420 			       const struct igc_nfc_rule *rule)
2421 {
2422 	int err;
2423 
2424 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2425 		err = igc_add_etype_filter(adapter, rule->filter.etype,
2426 					   rule->action);
2427 		if (err)
2428 			return err;
2429 	}
2430 
2431 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2432 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2433 					 rule->filter.src_addr, rule->action);
2434 		if (err)
2435 			return err;
2436 	}
2437 
2438 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2439 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2440 					 rule->filter.dst_addr, rule->action);
2441 		if (err)
2442 			return err;
2443 	}
2444 
2445 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2446 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2447 			   VLAN_PRIO_SHIFT;
2448 
2449 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2450 		if (err)
2451 			return err;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2458 				 const struct igc_nfc_rule *rule)
2459 {
2460 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2461 		igc_del_etype_filter(adapter, rule->filter.etype);
2462 
2463 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2464 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2465 			   VLAN_PRIO_SHIFT;
2466 
2467 		igc_del_vlan_prio_filter(adapter, prio);
2468 	}
2469 
2470 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2471 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2472 				   rule->filter.src_addr);
2473 
2474 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2475 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2476 				   rule->filter.dst_addr);
2477 }
2478 
2479 /**
2480  * igc_get_nfc_rule() - Get NFC rule
2481  * @adapter: Pointer to adapter
2482  * @location: Rule location
2483  *
2484  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2485  *
2486  * Return: Pointer to NFC rule at @location. If not found, NULL.
2487  */
2488 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2489 				      u32 location)
2490 {
2491 	struct igc_nfc_rule *rule;
2492 
2493 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2494 		if (rule->location == location)
2495 			return rule;
2496 		if (rule->location > location)
2497 			break;
2498 	}
2499 
2500 	return NULL;
2501 }
2502 
2503 /**
2504  * igc_del_nfc_rule() - Delete NFC rule
2505  * @adapter: Pointer to adapter
2506  * @rule: Pointer to rule to be deleted
2507  *
2508  * Disable NFC rule in hardware and delete it from adapter.
2509  *
2510  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2511  */
2512 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2513 {
2514 	igc_disable_nfc_rule(adapter, rule);
2515 
2516 	list_del(&rule->list);
2517 	adapter->nfc_rule_count--;
2518 
2519 	kfree(rule);
2520 }
2521 
2522 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2523 {
2524 	struct igc_nfc_rule *rule, *tmp;
2525 
2526 	mutex_lock(&adapter->nfc_rule_lock);
2527 
2528 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2529 		igc_del_nfc_rule(adapter, rule);
2530 
2531 	mutex_unlock(&adapter->nfc_rule_lock);
2532 }
2533 
2534 /**
2535  * igc_add_nfc_rule() - Add NFC rule
2536  * @adapter: Pointer to adapter
2537  * @rule: Pointer to rule to be added
2538  *
2539  * Enable NFC rule in hardware and add it to adapter.
2540  *
2541  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2542  *
2543  * Return: 0 on success, negative errno on failure.
2544  */
2545 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2546 {
2547 	struct igc_nfc_rule *pred, *cur;
2548 	int err;
2549 
2550 	err = igc_enable_nfc_rule(adapter, rule);
2551 	if (err)
2552 		return err;
2553 
2554 	pred = NULL;
2555 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2556 		if (cur->location >= rule->location)
2557 			break;
2558 		pred = cur;
2559 	}
2560 
2561 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2562 	adapter->nfc_rule_count++;
2563 	return 0;
2564 }
2565 
2566 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2567 {
2568 	struct igc_nfc_rule *rule;
2569 
2570 	mutex_lock(&adapter->nfc_rule_lock);
2571 
2572 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2573 		igc_enable_nfc_rule(adapter, rule);
2574 
2575 	mutex_unlock(&adapter->nfc_rule_lock);
2576 }
2577 
2578 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2579 {
2580 	struct igc_adapter *adapter = netdev_priv(netdev);
2581 
2582 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2583 }
2584 
2585 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2586 {
2587 	struct igc_adapter *adapter = netdev_priv(netdev);
2588 
2589 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2590 	return 0;
2591 }
2592 
2593 /**
2594  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2595  * @netdev: network interface device structure
2596  *
2597  * The set_rx_mode entry point is called whenever the unicast or multicast
2598  * address lists or the network interface flags are updated.  This routine is
2599  * responsible for configuring the hardware for proper unicast, multicast,
2600  * promiscuous mode, and all-multi behavior.
2601  */
2602 static void igc_set_rx_mode(struct net_device *netdev)
2603 {
2604 	struct igc_adapter *adapter = netdev_priv(netdev);
2605 	struct igc_hw *hw = &adapter->hw;
2606 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2607 	int count;
2608 
2609 	/* Check for Promiscuous and All Multicast modes */
2610 	if (netdev->flags & IFF_PROMISC) {
2611 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2612 	} else {
2613 		if (netdev->flags & IFF_ALLMULTI) {
2614 			rctl |= IGC_RCTL_MPE;
2615 		} else {
2616 			/* Write addresses to the MTA, if the attempt fails
2617 			 * then we should just turn on promiscuous mode so
2618 			 * that we can at least receive multicast traffic
2619 			 */
2620 			count = igc_write_mc_addr_list(netdev);
2621 			if (count < 0)
2622 				rctl |= IGC_RCTL_MPE;
2623 		}
2624 	}
2625 
2626 	/* Write addresses to available RAR registers, if there is not
2627 	 * sufficient space to store all the addresses then enable
2628 	 * unicast promiscuous mode
2629 	 */
2630 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2631 		rctl |= IGC_RCTL_UPE;
2632 
2633 	/* update state of unicast and multicast */
2634 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2635 	wr32(IGC_RCTL, rctl);
2636 
2637 #if (PAGE_SIZE < 8192)
2638 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2639 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
2640 #endif
2641 	wr32(IGC_RLPML, rlpml);
2642 }
2643 
2644 /**
2645  * igc_configure - configure the hardware for RX and TX
2646  * @adapter: private board structure
2647  */
2648 static void igc_configure(struct igc_adapter *adapter)
2649 {
2650 	struct net_device *netdev = adapter->netdev;
2651 	int i = 0;
2652 
2653 	igc_get_hw_control(adapter);
2654 	igc_set_rx_mode(netdev);
2655 
2656 	igc_setup_tctl(adapter);
2657 	igc_setup_mrqc(adapter);
2658 	igc_setup_rctl(adapter);
2659 
2660 	igc_set_default_mac_filter(adapter);
2661 	igc_restore_nfc_rules(adapter);
2662 
2663 	igc_configure_tx(adapter);
2664 	igc_configure_rx(adapter);
2665 
2666 	igc_rx_fifo_flush_base(&adapter->hw);
2667 
2668 	/* call igc_desc_unused which always leaves
2669 	 * at least 1 descriptor unused to make sure
2670 	 * next_to_use != next_to_clean
2671 	 */
2672 	for (i = 0; i < adapter->num_rx_queues; i++) {
2673 		struct igc_ring *ring = adapter->rx_ring[i];
2674 
2675 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2676 	}
2677 }
2678 
2679 /**
2680  * igc_write_ivar - configure ivar for given MSI-X vector
2681  * @hw: pointer to the HW structure
2682  * @msix_vector: vector number we are allocating to a given ring
2683  * @index: row index of IVAR register to write within IVAR table
2684  * @offset: column offset of in IVAR, should be multiple of 8
2685  *
2686  * The IVAR table consists of 2 columns,
2687  * each containing an cause allocation for an Rx and Tx ring, and a
2688  * variable number of rows depending on the number of queues supported.
2689  */
2690 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2691 			   int index, int offset)
2692 {
2693 	u32 ivar = array_rd32(IGC_IVAR0, index);
2694 
2695 	/* clear any bits that are currently set */
2696 	ivar &= ~((u32)0xFF << offset);
2697 
2698 	/* write vector and valid bit */
2699 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2700 
2701 	array_wr32(IGC_IVAR0, index, ivar);
2702 }
2703 
2704 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2705 {
2706 	struct igc_adapter *adapter = q_vector->adapter;
2707 	struct igc_hw *hw = &adapter->hw;
2708 	int rx_queue = IGC_N0_QUEUE;
2709 	int tx_queue = IGC_N0_QUEUE;
2710 
2711 	if (q_vector->rx.ring)
2712 		rx_queue = q_vector->rx.ring->reg_idx;
2713 	if (q_vector->tx.ring)
2714 		tx_queue = q_vector->tx.ring->reg_idx;
2715 
2716 	switch (hw->mac.type) {
2717 	case igc_i225:
2718 		if (rx_queue > IGC_N0_QUEUE)
2719 			igc_write_ivar(hw, msix_vector,
2720 				       rx_queue >> 1,
2721 				       (rx_queue & 0x1) << 4);
2722 		if (tx_queue > IGC_N0_QUEUE)
2723 			igc_write_ivar(hw, msix_vector,
2724 				       tx_queue >> 1,
2725 				       ((tx_queue & 0x1) << 4) + 8);
2726 		q_vector->eims_value = BIT(msix_vector);
2727 		break;
2728 	default:
2729 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2730 		break;
2731 	}
2732 
2733 	/* add q_vector eims value to global eims_enable_mask */
2734 	adapter->eims_enable_mask |= q_vector->eims_value;
2735 
2736 	/* configure q_vector to set itr on first interrupt */
2737 	q_vector->set_itr = 1;
2738 }
2739 
2740 /**
2741  * igc_configure_msix - Configure MSI-X hardware
2742  * @adapter: Pointer to adapter structure
2743  *
2744  * igc_configure_msix sets up the hardware to properly
2745  * generate MSI-X interrupts.
2746  */
2747 static void igc_configure_msix(struct igc_adapter *adapter)
2748 {
2749 	struct igc_hw *hw = &adapter->hw;
2750 	int i, vector = 0;
2751 	u32 tmp;
2752 
2753 	adapter->eims_enable_mask = 0;
2754 
2755 	/* set vector for other causes, i.e. link changes */
2756 	switch (hw->mac.type) {
2757 	case igc_i225:
2758 		/* Turn on MSI-X capability first, or our settings
2759 		 * won't stick.  And it will take days to debug.
2760 		 */
2761 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2762 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2763 		     IGC_GPIE_NSICR);
2764 
2765 		/* enable msix_other interrupt */
2766 		adapter->eims_other = BIT(vector);
2767 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2768 
2769 		wr32(IGC_IVAR_MISC, tmp);
2770 		break;
2771 	default:
2772 		/* do nothing, since nothing else supports MSI-X */
2773 		break;
2774 	} /* switch (hw->mac.type) */
2775 
2776 	adapter->eims_enable_mask |= adapter->eims_other;
2777 
2778 	for (i = 0; i < adapter->num_q_vectors; i++)
2779 		igc_assign_vector(adapter->q_vector[i], vector++);
2780 
2781 	wrfl();
2782 }
2783 
2784 /**
2785  * igc_irq_enable - Enable default interrupt generation settings
2786  * @adapter: board private structure
2787  */
2788 static void igc_irq_enable(struct igc_adapter *adapter)
2789 {
2790 	struct igc_hw *hw = &adapter->hw;
2791 
2792 	if (adapter->msix_entries) {
2793 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2794 		u32 regval = rd32(IGC_EIAC);
2795 
2796 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2797 		regval = rd32(IGC_EIAM);
2798 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2799 		wr32(IGC_EIMS, adapter->eims_enable_mask);
2800 		wr32(IGC_IMS, ims);
2801 	} else {
2802 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2803 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2804 	}
2805 }
2806 
2807 /**
2808  * igc_irq_disable - Mask off interrupt generation on the NIC
2809  * @adapter: board private structure
2810  */
2811 static void igc_irq_disable(struct igc_adapter *adapter)
2812 {
2813 	struct igc_hw *hw = &adapter->hw;
2814 
2815 	if (adapter->msix_entries) {
2816 		u32 regval = rd32(IGC_EIAM);
2817 
2818 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2819 		wr32(IGC_EIMC, adapter->eims_enable_mask);
2820 		regval = rd32(IGC_EIAC);
2821 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2822 	}
2823 
2824 	wr32(IGC_IAM, 0);
2825 	wr32(IGC_IMC, ~0);
2826 	wrfl();
2827 
2828 	if (adapter->msix_entries) {
2829 		int vector = 0, i;
2830 
2831 		synchronize_irq(adapter->msix_entries[vector++].vector);
2832 
2833 		for (i = 0; i < adapter->num_q_vectors; i++)
2834 			synchronize_irq(adapter->msix_entries[vector++].vector);
2835 	} else {
2836 		synchronize_irq(adapter->pdev->irq);
2837 	}
2838 }
2839 
2840 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2841 			      const u32 max_rss_queues)
2842 {
2843 	/* Determine if we need to pair queues. */
2844 	/* If rss_queues > half of max_rss_queues, pair the queues in
2845 	 * order to conserve interrupts due to limited supply.
2846 	 */
2847 	if (adapter->rss_queues > (max_rss_queues / 2))
2848 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2849 	else
2850 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2851 }
2852 
2853 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2854 {
2855 	return IGC_MAX_RX_QUEUES;
2856 }
2857 
2858 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2859 {
2860 	u32 max_rss_queues;
2861 
2862 	max_rss_queues = igc_get_max_rss_queues(adapter);
2863 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2864 
2865 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
2866 }
2867 
2868 /**
2869  * igc_reset_q_vector - Reset config for interrupt vector
2870  * @adapter: board private structure to initialize
2871  * @v_idx: Index of vector to be reset
2872  *
2873  * If NAPI is enabled it will delete any references to the
2874  * NAPI struct. This is preparation for igc_free_q_vector.
2875  */
2876 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2877 {
2878 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2879 
2880 	/* if we're coming from igc_set_interrupt_capability, the vectors are
2881 	 * not yet allocated
2882 	 */
2883 	if (!q_vector)
2884 		return;
2885 
2886 	if (q_vector->tx.ring)
2887 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2888 
2889 	if (q_vector->rx.ring)
2890 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2891 
2892 	netif_napi_del(&q_vector->napi);
2893 }
2894 
2895 /**
2896  * igc_free_q_vector - Free memory allocated for specific interrupt vector
2897  * @adapter: board private structure to initialize
2898  * @v_idx: Index of vector to be freed
2899  *
2900  * This function frees the memory allocated to the q_vector.
2901  */
2902 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2903 {
2904 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2905 
2906 	adapter->q_vector[v_idx] = NULL;
2907 
2908 	/* igc_get_stats64() might access the rings on this vector,
2909 	 * we must wait a grace period before freeing it.
2910 	 */
2911 	if (q_vector)
2912 		kfree_rcu(q_vector, rcu);
2913 }
2914 
2915 /**
2916  * igc_free_q_vectors - Free memory allocated for interrupt vectors
2917  * @adapter: board private structure to initialize
2918  *
2919  * This function frees the memory allocated to the q_vectors.  In addition if
2920  * NAPI is enabled it will delete any references to the NAPI struct prior
2921  * to freeing the q_vector.
2922  */
2923 static void igc_free_q_vectors(struct igc_adapter *adapter)
2924 {
2925 	int v_idx = adapter->num_q_vectors;
2926 
2927 	adapter->num_tx_queues = 0;
2928 	adapter->num_rx_queues = 0;
2929 	adapter->num_q_vectors = 0;
2930 
2931 	while (v_idx--) {
2932 		igc_reset_q_vector(adapter, v_idx);
2933 		igc_free_q_vector(adapter, v_idx);
2934 	}
2935 }
2936 
2937 /**
2938  * igc_update_itr - update the dynamic ITR value based on statistics
2939  * @q_vector: pointer to q_vector
2940  * @ring_container: ring info to update the itr for
2941  *
2942  * Stores a new ITR value based on packets and byte
2943  * counts during the last interrupt.  The advantage of per interrupt
2944  * computation is faster updates and more accurate ITR for the current
2945  * traffic pattern.  Constants in this function were computed
2946  * based on theoretical maximum wire speed and thresholds were set based
2947  * on testing data as well as attempting to minimize response time
2948  * while increasing bulk throughput.
2949  * NOTE: These calculations are only valid when operating in a single-
2950  * queue environment.
2951  */
2952 static void igc_update_itr(struct igc_q_vector *q_vector,
2953 			   struct igc_ring_container *ring_container)
2954 {
2955 	unsigned int packets = ring_container->total_packets;
2956 	unsigned int bytes = ring_container->total_bytes;
2957 	u8 itrval = ring_container->itr;
2958 
2959 	/* no packets, exit with status unchanged */
2960 	if (packets == 0)
2961 		return;
2962 
2963 	switch (itrval) {
2964 	case lowest_latency:
2965 		/* handle TSO and jumbo frames */
2966 		if (bytes / packets > 8000)
2967 			itrval = bulk_latency;
2968 		else if ((packets < 5) && (bytes > 512))
2969 			itrval = low_latency;
2970 		break;
2971 	case low_latency:  /* 50 usec aka 20000 ints/s */
2972 		if (bytes > 10000) {
2973 			/* this if handles the TSO accounting */
2974 			if (bytes / packets > 8000)
2975 				itrval = bulk_latency;
2976 			else if ((packets < 10) || ((bytes / packets) > 1200))
2977 				itrval = bulk_latency;
2978 			else if ((packets > 35))
2979 				itrval = lowest_latency;
2980 		} else if (bytes / packets > 2000) {
2981 			itrval = bulk_latency;
2982 		} else if (packets <= 2 && bytes < 512) {
2983 			itrval = lowest_latency;
2984 		}
2985 		break;
2986 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2987 		if (bytes > 25000) {
2988 			if (packets > 35)
2989 				itrval = low_latency;
2990 		} else if (bytes < 1500) {
2991 			itrval = low_latency;
2992 		}
2993 		break;
2994 	}
2995 
2996 	/* clear work counters since we have the values we need */
2997 	ring_container->total_bytes = 0;
2998 	ring_container->total_packets = 0;
2999 
3000 	/* write updated itr to ring container */
3001 	ring_container->itr = itrval;
3002 }
3003 
3004 static void igc_set_itr(struct igc_q_vector *q_vector)
3005 {
3006 	struct igc_adapter *adapter = q_vector->adapter;
3007 	u32 new_itr = q_vector->itr_val;
3008 	u8 current_itr = 0;
3009 
3010 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3011 	switch (adapter->link_speed) {
3012 	case SPEED_10:
3013 	case SPEED_100:
3014 		current_itr = 0;
3015 		new_itr = IGC_4K_ITR;
3016 		goto set_itr_now;
3017 	default:
3018 		break;
3019 	}
3020 
3021 	igc_update_itr(q_vector, &q_vector->tx);
3022 	igc_update_itr(q_vector, &q_vector->rx);
3023 
3024 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3025 
3026 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3027 	if (current_itr == lowest_latency &&
3028 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3029 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3030 		current_itr = low_latency;
3031 
3032 	switch (current_itr) {
3033 	/* counts and packets in update_itr are dependent on these numbers */
3034 	case lowest_latency:
3035 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3036 		break;
3037 	case low_latency:
3038 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3039 		break;
3040 	case bulk_latency:
3041 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3042 		break;
3043 	default:
3044 		break;
3045 	}
3046 
3047 set_itr_now:
3048 	if (new_itr != q_vector->itr_val) {
3049 		/* this attempts to bias the interrupt rate towards Bulk
3050 		 * by adding intermediate steps when interrupt rate is
3051 		 * increasing
3052 		 */
3053 		new_itr = new_itr > q_vector->itr_val ?
3054 			  max((new_itr * q_vector->itr_val) /
3055 			  (new_itr + (q_vector->itr_val >> 2)),
3056 			  new_itr) : new_itr;
3057 		/* Don't write the value here; it resets the adapter's
3058 		 * internal timer, and causes us to delay far longer than
3059 		 * we should between interrupts.  Instead, we write the ITR
3060 		 * value at the beginning of the next interrupt so the timing
3061 		 * ends up being correct.
3062 		 */
3063 		q_vector->itr_val = new_itr;
3064 		q_vector->set_itr = 1;
3065 	}
3066 }
3067 
3068 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3069 {
3070 	int v_idx = adapter->num_q_vectors;
3071 
3072 	if (adapter->msix_entries) {
3073 		pci_disable_msix(adapter->pdev);
3074 		kfree(adapter->msix_entries);
3075 		adapter->msix_entries = NULL;
3076 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3077 		pci_disable_msi(adapter->pdev);
3078 	}
3079 
3080 	while (v_idx--)
3081 		igc_reset_q_vector(adapter, v_idx);
3082 }
3083 
3084 /**
3085  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3086  * @adapter: Pointer to adapter structure
3087  * @msix: boolean value for MSI-X capability
3088  *
3089  * Attempt to configure interrupts using the best available
3090  * capabilities of the hardware and kernel.
3091  */
3092 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3093 					 bool msix)
3094 {
3095 	int numvecs, i;
3096 	int err;
3097 
3098 	if (!msix)
3099 		goto msi_only;
3100 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3101 
3102 	/* Number of supported queues. */
3103 	adapter->num_rx_queues = adapter->rss_queues;
3104 
3105 	adapter->num_tx_queues = adapter->rss_queues;
3106 
3107 	/* start with one vector for every Rx queue */
3108 	numvecs = adapter->num_rx_queues;
3109 
3110 	/* if Tx handler is separate add 1 for every Tx queue */
3111 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3112 		numvecs += adapter->num_tx_queues;
3113 
3114 	/* store the number of vectors reserved for queues */
3115 	adapter->num_q_vectors = numvecs;
3116 
3117 	/* add 1 vector for link status interrupts */
3118 	numvecs++;
3119 
3120 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3121 					GFP_KERNEL);
3122 
3123 	if (!adapter->msix_entries)
3124 		return;
3125 
3126 	/* populate entry values */
3127 	for (i = 0; i < numvecs; i++)
3128 		adapter->msix_entries[i].entry = i;
3129 
3130 	err = pci_enable_msix_range(adapter->pdev,
3131 				    adapter->msix_entries,
3132 				    numvecs,
3133 				    numvecs);
3134 	if (err > 0)
3135 		return;
3136 
3137 	kfree(adapter->msix_entries);
3138 	adapter->msix_entries = NULL;
3139 
3140 	igc_reset_interrupt_capability(adapter);
3141 
3142 msi_only:
3143 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3144 
3145 	adapter->rss_queues = 1;
3146 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3147 	adapter->num_rx_queues = 1;
3148 	adapter->num_tx_queues = 1;
3149 	adapter->num_q_vectors = 1;
3150 	if (!pci_enable_msi(adapter->pdev))
3151 		adapter->flags |= IGC_FLAG_HAS_MSI;
3152 }
3153 
3154 /**
3155  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3156  * @q_vector: pointer to q_vector
3157  *
3158  * Stores a new ITR value based on strictly on packet size.  This
3159  * algorithm is less sophisticated than that used in igc_update_itr,
3160  * due to the difficulty of synchronizing statistics across multiple
3161  * receive rings.  The divisors and thresholds used by this function
3162  * were determined based on theoretical maximum wire speed and testing
3163  * data, in order to minimize response time while increasing bulk
3164  * throughput.
3165  * NOTE: This function is called only when operating in a multiqueue
3166  * receive environment.
3167  */
3168 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3169 {
3170 	struct igc_adapter *adapter = q_vector->adapter;
3171 	int new_val = q_vector->itr_val;
3172 	int avg_wire_size = 0;
3173 	unsigned int packets;
3174 
3175 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3176 	 * ints/sec - ITR timer value of 120 ticks.
3177 	 */
3178 	switch (adapter->link_speed) {
3179 	case SPEED_10:
3180 	case SPEED_100:
3181 		new_val = IGC_4K_ITR;
3182 		goto set_itr_val;
3183 	default:
3184 		break;
3185 	}
3186 
3187 	packets = q_vector->rx.total_packets;
3188 	if (packets)
3189 		avg_wire_size = q_vector->rx.total_bytes / packets;
3190 
3191 	packets = q_vector->tx.total_packets;
3192 	if (packets)
3193 		avg_wire_size = max_t(u32, avg_wire_size,
3194 				      q_vector->tx.total_bytes / packets);
3195 
3196 	/* if avg_wire_size isn't set no work was done */
3197 	if (!avg_wire_size)
3198 		goto clear_counts;
3199 
3200 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3201 	avg_wire_size += 24;
3202 
3203 	/* Don't starve jumbo frames */
3204 	avg_wire_size = min(avg_wire_size, 3000);
3205 
3206 	/* Give a little boost to mid-size frames */
3207 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3208 		new_val = avg_wire_size / 3;
3209 	else
3210 		new_val = avg_wire_size / 2;
3211 
3212 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3213 	if (new_val < IGC_20K_ITR &&
3214 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3215 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3216 		new_val = IGC_20K_ITR;
3217 
3218 set_itr_val:
3219 	if (new_val != q_vector->itr_val) {
3220 		q_vector->itr_val = new_val;
3221 		q_vector->set_itr = 1;
3222 	}
3223 clear_counts:
3224 	q_vector->rx.total_bytes = 0;
3225 	q_vector->rx.total_packets = 0;
3226 	q_vector->tx.total_bytes = 0;
3227 	q_vector->tx.total_packets = 0;
3228 }
3229 
3230 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3231 {
3232 	struct igc_adapter *adapter = q_vector->adapter;
3233 	struct igc_hw *hw = &adapter->hw;
3234 
3235 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3236 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3237 		if (adapter->num_q_vectors == 1)
3238 			igc_set_itr(q_vector);
3239 		else
3240 			igc_update_ring_itr(q_vector);
3241 	}
3242 
3243 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3244 		if (adapter->msix_entries)
3245 			wr32(IGC_EIMS, q_vector->eims_value);
3246 		else
3247 			igc_irq_enable(adapter);
3248 	}
3249 }
3250 
3251 static void igc_add_ring(struct igc_ring *ring,
3252 			 struct igc_ring_container *head)
3253 {
3254 	head->ring = ring;
3255 	head->count++;
3256 }
3257 
3258 /**
3259  * igc_cache_ring_register - Descriptor ring to register mapping
3260  * @adapter: board private structure to initialize
3261  *
3262  * Once we know the feature-set enabled for the device, we'll cache
3263  * the register offset the descriptor ring is assigned to.
3264  */
3265 static void igc_cache_ring_register(struct igc_adapter *adapter)
3266 {
3267 	int i = 0, j = 0;
3268 
3269 	switch (adapter->hw.mac.type) {
3270 	case igc_i225:
3271 	default:
3272 		for (; i < adapter->num_rx_queues; i++)
3273 			adapter->rx_ring[i]->reg_idx = i;
3274 		for (; j < adapter->num_tx_queues; j++)
3275 			adapter->tx_ring[j]->reg_idx = j;
3276 		break;
3277 	}
3278 }
3279 
3280 /**
3281  * igc_poll - NAPI Rx polling callback
3282  * @napi: napi polling structure
3283  * @budget: count of how many packets we should handle
3284  */
3285 static int igc_poll(struct napi_struct *napi, int budget)
3286 {
3287 	struct igc_q_vector *q_vector = container_of(napi,
3288 						     struct igc_q_vector,
3289 						     napi);
3290 	bool clean_complete = true;
3291 	int work_done = 0;
3292 
3293 	if (q_vector->tx.ring)
3294 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3295 
3296 	if (q_vector->rx.ring) {
3297 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3298 
3299 		work_done += cleaned;
3300 		if (cleaned >= budget)
3301 			clean_complete = false;
3302 	}
3303 
3304 	/* If all work not completed, return budget and keep polling */
3305 	if (!clean_complete)
3306 		return budget;
3307 
3308 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3309 	 * poll us due to busy-polling
3310 	 */
3311 	if (likely(napi_complete_done(napi, work_done)))
3312 		igc_ring_irq_enable(q_vector);
3313 
3314 	return min(work_done, budget - 1);
3315 }
3316 
3317 /**
3318  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3319  * @adapter: board private structure to initialize
3320  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3321  * @v_idx: index of vector in adapter struct
3322  * @txr_count: total number of Tx rings to allocate
3323  * @txr_idx: index of first Tx ring to allocate
3324  * @rxr_count: total number of Rx rings to allocate
3325  * @rxr_idx: index of first Rx ring to allocate
3326  *
3327  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3328  */
3329 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3330 			      unsigned int v_count, unsigned int v_idx,
3331 			      unsigned int txr_count, unsigned int txr_idx,
3332 			      unsigned int rxr_count, unsigned int rxr_idx)
3333 {
3334 	struct igc_q_vector *q_vector;
3335 	struct igc_ring *ring;
3336 	int ring_count;
3337 
3338 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3339 	if (txr_count > 1 || rxr_count > 1)
3340 		return -ENOMEM;
3341 
3342 	ring_count = txr_count + rxr_count;
3343 
3344 	/* allocate q_vector and rings */
3345 	q_vector = adapter->q_vector[v_idx];
3346 	if (!q_vector)
3347 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3348 				   GFP_KERNEL);
3349 	else
3350 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3351 	if (!q_vector)
3352 		return -ENOMEM;
3353 
3354 	/* initialize NAPI */
3355 	netif_napi_add(adapter->netdev, &q_vector->napi,
3356 		       igc_poll, 64);
3357 
3358 	/* tie q_vector and adapter together */
3359 	adapter->q_vector[v_idx] = q_vector;
3360 	q_vector->adapter = adapter;
3361 
3362 	/* initialize work limits */
3363 	q_vector->tx.work_limit = adapter->tx_work_limit;
3364 
3365 	/* initialize ITR configuration */
3366 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3367 	q_vector->itr_val = IGC_START_ITR;
3368 
3369 	/* initialize pointer to rings */
3370 	ring = q_vector->ring;
3371 
3372 	/* initialize ITR */
3373 	if (rxr_count) {
3374 		/* rx or rx/tx vector */
3375 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3376 			q_vector->itr_val = adapter->rx_itr_setting;
3377 	} else {
3378 		/* tx only vector */
3379 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3380 			q_vector->itr_val = adapter->tx_itr_setting;
3381 	}
3382 
3383 	if (txr_count) {
3384 		/* assign generic ring traits */
3385 		ring->dev = &adapter->pdev->dev;
3386 		ring->netdev = adapter->netdev;
3387 
3388 		/* configure backlink on ring */
3389 		ring->q_vector = q_vector;
3390 
3391 		/* update q_vector Tx values */
3392 		igc_add_ring(ring, &q_vector->tx);
3393 
3394 		/* apply Tx specific ring traits */
3395 		ring->count = adapter->tx_ring_count;
3396 		ring->queue_index = txr_idx;
3397 
3398 		/* assign ring to adapter */
3399 		adapter->tx_ring[txr_idx] = ring;
3400 
3401 		/* push pointer to next ring */
3402 		ring++;
3403 	}
3404 
3405 	if (rxr_count) {
3406 		/* assign generic ring traits */
3407 		ring->dev = &adapter->pdev->dev;
3408 		ring->netdev = adapter->netdev;
3409 
3410 		/* configure backlink on ring */
3411 		ring->q_vector = q_vector;
3412 
3413 		/* update q_vector Rx values */
3414 		igc_add_ring(ring, &q_vector->rx);
3415 
3416 		/* apply Rx specific ring traits */
3417 		ring->count = adapter->rx_ring_count;
3418 		ring->queue_index = rxr_idx;
3419 
3420 		/* assign ring to adapter */
3421 		adapter->rx_ring[rxr_idx] = ring;
3422 	}
3423 
3424 	return 0;
3425 }
3426 
3427 /**
3428  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3429  * @adapter: board private structure to initialize
3430  *
3431  * We allocate one q_vector per queue interrupt.  If allocation fails we
3432  * return -ENOMEM.
3433  */
3434 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3435 {
3436 	int rxr_remaining = adapter->num_rx_queues;
3437 	int txr_remaining = adapter->num_tx_queues;
3438 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3439 	int q_vectors = adapter->num_q_vectors;
3440 	int err;
3441 
3442 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3443 		for (; rxr_remaining; v_idx++) {
3444 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3445 						 0, 0, 1, rxr_idx);
3446 
3447 			if (err)
3448 				goto err_out;
3449 
3450 			/* update counts and index */
3451 			rxr_remaining--;
3452 			rxr_idx++;
3453 		}
3454 	}
3455 
3456 	for (; v_idx < q_vectors; v_idx++) {
3457 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3458 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3459 
3460 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3461 					 tqpv, txr_idx, rqpv, rxr_idx);
3462 
3463 		if (err)
3464 			goto err_out;
3465 
3466 		/* update counts and index */
3467 		rxr_remaining -= rqpv;
3468 		txr_remaining -= tqpv;
3469 		rxr_idx++;
3470 		txr_idx++;
3471 	}
3472 
3473 	return 0;
3474 
3475 err_out:
3476 	adapter->num_tx_queues = 0;
3477 	adapter->num_rx_queues = 0;
3478 	adapter->num_q_vectors = 0;
3479 
3480 	while (v_idx--)
3481 		igc_free_q_vector(adapter, v_idx);
3482 
3483 	return -ENOMEM;
3484 }
3485 
3486 /**
3487  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3488  * @adapter: Pointer to adapter structure
3489  * @msix: boolean for MSI-X capability
3490  *
3491  * This function initializes the interrupts and allocates all of the queues.
3492  */
3493 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3494 {
3495 	struct net_device *dev = adapter->netdev;
3496 	int err = 0;
3497 
3498 	igc_set_interrupt_capability(adapter, msix);
3499 
3500 	err = igc_alloc_q_vectors(adapter);
3501 	if (err) {
3502 		netdev_err(dev, "Unable to allocate memory for vectors\n");
3503 		goto err_alloc_q_vectors;
3504 	}
3505 
3506 	igc_cache_ring_register(adapter);
3507 
3508 	return 0;
3509 
3510 err_alloc_q_vectors:
3511 	igc_reset_interrupt_capability(adapter);
3512 	return err;
3513 }
3514 
3515 /**
3516  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3517  * @adapter: board private structure to initialize
3518  *
3519  * igc_sw_init initializes the Adapter private data structure.
3520  * Fields are initialized based on PCI device information and
3521  * OS network device settings (MTU size).
3522  */
3523 static int igc_sw_init(struct igc_adapter *adapter)
3524 {
3525 	struct net_device *netdev = adapter->netdev;
3526 	struct pci_dev *pdev = adapter->pdev;
3527 	struct igc_hw *hw = &adapter->hw;
3528 
3529 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3530 
3531 	/* set default ring sizes */
3532 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
3533 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
3534 
3535 	/* set default ITR values */
3536 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3537 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3538 
3539 	/* set default work limits */
3540 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3541 
3542 	/* adjust max frame to be at least the size of a standard frame */
3543 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3544 				VLAN_HLEN;
3545 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3546 
3547 	mutex_init(&adapter->nfc_rule_lock);
3548 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
3549 	adapter->nfc_rule_count = 0;
3550 
3551 	spin_lock_init(&adapter->stats64_lock);
3552 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3553 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3554 
3555 	igc_init_queue_configuration(adapter);
3556 
3557 	/* This call may decrease the number of queues */
3558 	if (igc_init_interrupt_scheme(adapter, true)) {
3559 		netdev_err(netdev, "Unable to allocate memory for queues\n");
3560 		return -ENOMEM;
3561 	}
3562 
3563 	/* Explicitly disable IRQ since the NIC can be in any state. */
3564 	igc_irq_disable(adapter);
3565 
3566 	set_bit(__IGC_DOWN, &adapter->state);
3567 
3568 	return 0;
3569 }
3570 
3571 /**
3572  * igc_up - Open the interface and prepare it to handle traffic
3573  * @adapter: board private structure
3574  */
3575 void igc_up(struct igc_adapter *adapter)
3576 {
3577 	struct igc_hw *hw = &adapter->hw;
3578 	int i = 0;
3579 
3580 	/* hardware has been reset, we need to reload some things */
3581 	igc_configure(adapter);
3582 
3583 	clear_bit(__IGC_DOWN, &adapter->state);
3584 
3585 	for (i = 0; i < adapter->num_q_vectors; i++)
3586 		napi_enable(&adapter->q_vector[i]->napi);
3587 
3588 	if (adapter->msix_entries)
3589 		igc_configure_msix(adapter);
3590 	else
3591 		igc_assign_vector(adapter->q_vector[0], 0);
3592 
3593 	/* Clear any pending interrupts. */
3594 	rd32(IGC_ICR);
3595 	igc_irq_enable(adapter);
3596 
3597 	netif_tx_start_all_queues(adapter->netdev);
3598 
3599 	/* start the watchdog. */
3600 	hw->mac.get_link_status = 1;
3601 	schedule_work(&adapter->watchdog_task);
3602 }
3603 
3604 /**
3605  * igc_update_stats - Update the board statistics counters
3606  * @adapter: board private structure
3607  */
3608 void igc_update_stats(struct igc_adapter *adapter)
3609 {
3610 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3611 	struct pci_dev *pdev = adapter->pdev;
3612 	struct igc_hw *hw = &adapter->hw;
3613 	u64 _bytes, _packets;
3614 	u64 bytes, packets;
3615 	unsigned int start;
3616 	u32 mpc;
3617 	int i;
3618 
3619 	/* Prevent stats update while adapter is being reset, or if the pci
3620 	 * connection is down.
3621 	 */
3622 	if (adapter->link_speed == 0)
3623 		return;
3624 	if (pci_channel_offline(pdev))
3625 		return;
3626 
3627 	packets = 0;
3628 	bytes = 0;
3629 
3630 	rcu_read_lock();
3631 	for (i = 0; i < adapter->num_rx_queues; i++) {
3632 		struct igc_ring *ring = adapter->rx_ring[i];
3633 		u32 rqdpc = rd32(IGC_RQDPC(i));
3634 
3635 		if (hw->mac.type >= igc_i225)
3636 			wr32(IGC_RQDPC(i), 0);
3637 
3638 		if (rqdpc) {
3639 			ring->rx_stats.drops += rqdpc;
3640 			net_stats->rx_fifo_errors += rqdpc;
3641 		}
3642 
3643 		do {
3644 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3645 			_bytes = ring->rx_stats.bytes;
3646 			_packets = ring->rx_stats.packets;
3647 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3648 		bytes += _bytes;
3649 		packets += _packets;
3650 	}
3651 
3652 	net_stats->rx_bytes = bytes;
3653 	net_stats->rx_packets = packets;
3654 
3655 	packets = 0;
3656 	bytes = 0;
3657 	for (i = 0; i < adapter->num_tx_queues; i++) {
3658 		struct igc_ring *ring = adapter->tx_ring[i];
3659 
3660 		do {
3661 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3662 			_bytes = ring->tx_stats.bytes;
3663 			_packets = ring->tx_stats.packets;
3664 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3665 		bytes += _bytes;
3666 		packets += _packets;
3667 	}
3668 	net_stats->tx_bytes = bytes;
3669 	net_stats->tx_packets = packets;
3670 	rcu_read_unlock();
3671 
3672 	/* read stats registers */
3673 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3674 	adapter->stats.gprc += rd32(IGC_GPRC);
3675 	adapter->stats.gorc += rd32(IGC_GORCL);
3676 	rd32(IGC_GORCH); /* clear GORCL */
3677 	adapter->stats.bprc += rd32(IGC_BPRC);
3678 	adapter->stats.mprc += rd32(IGC_MPRC);
3679 	adapter->stats.roc += rd32(IGC_ROC);
3680 
3681 	adapter->stats.prc64 += rd32(IGC_PRC64);
3682 	adapter->stats.prc127 += rd32(IGC_PRC127);
3683 	adapter->stats.prc255 += rd32(IGC_PRC255);
3684 	adapter->stats.prc511 += rd32(IGC_PRC511);
3685 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
3686 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
3687 	adapter->stats.tlpic += rd32(IGC_TLPIC);
3688 	adapter->stats.rlpic += rd32(IGC_RLPIC);
3689 
3690 	mpc = rd32(IGC_MPC);
3691 	adapter->stats.mpc += mpc;
3692 	net_stats->rx_fifo_errors += mpc;
3693 	adapter->stats.scc += rd32(IGC_SCC);
3694 	adapter->stats.ecol += rd32(IGC_ECOL);
3695 	adapter->stats.mcc += rd32(IGC_MCC);
3696 	adapter->stats.latecol += rd32(IGC_LATECOL);
3697 	adapter->stats.dc += rd32(IGC_DC);
3698 	adapter->stats.rlec += rd32(IGC_RLEC);
3699 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
3700 	adapter->stats.xontxc += rd32(IGC_XONTXC);
3701 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3702 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3703 	adapter->stats.fcruc += rd32(IGC_FCRUC);
3704 	adapter->stats.gptc += rd32(IGC_GPTC);
3705 	adapter->stats.gotc += rd32(IGC_GOTCL);
3706 	rd32(IGC_GOTCH); /* clear GOTCL */
3707 	adapter->stats.rnbc += rd32(IGC_RNBC);
3708 	adapter->stats.ruc += rd32(IGC_RUC);
3709 	adapter->stats.rfc += rd32(IGC_RFC);
3710 	adapter->stats.rjc += rd32(IGC_RJC);
3711 	adapter->stats.tor += rd32(IGC_TORH);
3712 	adapter->stats.tot += rd32(IGC_TOTH);
3713 	adapter->stats.tpr += rd32(IGC_TPR);
3714 
3715 	adapter->stats.ptc64 += rd32(IGC_PTC64);
3716 	adapter->stats.ptc127 += rd32(IGC_PTC127);
3717 	adapter->stats.ptc255 += rd32(IGC_PTC255);
3718 	adapter->stats.ptc511 += rd32(IGC_PTC511);
3719 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3720 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3721 
3722 	adapter->stats.mptc += rd32(IGC_MPTC);
3723 	adapter->stats.bptc += rd32(IGC_BPTC);
3724 
3725 	adapter->stats.tpt += rd32(IGC_TPT);
3726 	adapter->stats.colc += rd32(IGC_COLC);
3727 	adapter->stats.colc += rd32(IGC_RERC);
3728 
3729 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3730 
3731 	adapter->stats.tsctc += rd32(IGC_TSCTC);
3732 
3733 	adapter->stats.iac += rd32(IGC_IAC);
3734 
3735 	/* Fill out the OS statistics structure */
3736 	net_stats->multicast = adapter->stats.mprc;
3737 	net_stats->collisions = adapter->stats.colc;
3738 
3739 	/* Rx Errors */
3740 
3741 	/* RLEC on some newer hardware can be incorrect so build
3742 	 * our own version based on RUC and ROC
3743 	 */
3744 	net_stats->rx_errors = adapter->stats.rxerrc +
3745 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3746 		adapter->stats.ruc + adapter->stats.roc +
3747 		adapter->stats.cexterr;
3748 	net_stats->rx_length_errors = adapter->stats.ruc +
3749 				      adapter->stats.roc;
3750 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
3751 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
3752 	net_stats->rx_missed_errors = adapter->stats.mpc;
3753 
3754 	/* Tx Errors */
3755 	net_stats->tx_errors = adapter->stats.ecol +
3756 			       adapter->stats.latecol;
3757 	net_stats->tx_aborted_errors = adapter->stats.ecol;
3758 	net_stats->tx_window_errors = adapter->stats.latecol;
3759 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
3760 
3761 	/* Tx Dropped needs to be maintained elsewhere */
3762 
3763 	/* Management Stats */
3764 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
3765 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
3766 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3767 }
3768 
3769 /**
3770  * igc_down - Close the interface
3771  * @adapter: board private structure
3772  */
3773 void igc_down(struct igc_adapter *adapter)
3774 {
3775 	struct net_device *netdev = adapter->netdev;
3776 	struct igc_hw *hw = &adapter->hw;
3777 	u32 tctl, rctl;
3778 	int i = 0;
3779 
3780 	set_bit(__IGC_DOWN, &adapter->state);
3781 
3782 	igc_ptp_suspend(adapter);
3783 
3784 	/* disable receives in the hardware */
3785 	rctl = rd32(IGC_RCTL);
3786 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3787 	/* flush and sleep below */
3788 
3789 	/* set trans_start so we don't get spurious watchdogs during reset */
3790 	netif_trans_update(netdev);
3791 
3792 	netif_carrier_off(netdev);
3793 	netif_tx_stop_all_queues(netdev);
3794 
3795 	/* disable transmits in the hardware */
3796 	tctl = rd32(IGC_TCTL);
3797 	tctl &= ~IGC_TCTL_EN;
3798 	wr32(IGC_TCTL, tctl);
3799 	/* flush both disables and wait for them to finish */
3800 	wrfl();
3801 	usleep_range(10000, 20000);
3802 
3803 	igc_irq_disable(adapter);
3804 
3805 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3806 
3807 	for (i = 0; i < adapter->num_q_vectors; i++) {
3808 		if (adapter->q_vector[i]) {
3809 			napi_synchronize(&adapter->q_vector[i]->napi);
3810 			napi_disable(&adapter->q_vector[i]->napi);
3811 		}
3812 	}
3813 
3814 	del_timer_sync(&adapter->watchdog_timer);
3815 	del_timer_sync(&adapter->phy_info_timer);
3816 
3817 	/* record the stats before reset*/
3818 	spin_lock(&adapter->stats64_lock);
3819 	igc_update_stats(adapter);
3820 	spin_unlock(&adapter->stats64_lock);
3821 
3822 	adapter->link_speed = 0;
3823 	adapter->link_duplex = 0;
3824 
3825 	if (!pci_channel_offline(adapter->pdev))
3826 		igc_reset(adapter);
3827 
3828 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
3829 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3830 
3831 	igc_clean_all_tx_rings(adapter);
3832 	igc_clean_all_rx_rings(adapter);
3833 }
3834 
3835 void igc_reinit_locked(struct igc_adapter *adapter)
3836 {
3837 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3838 		usleep_range(1000, 2000);
3839 	igc_down(adapter);
3840 	igc_up(adapter);
3841 	clear_bit(__IGC_RESETTING, &adapter->state);
3842 }
3843 
3844 static void igc_reset_task(struct work_struct *work)
3845 {
3846 	struct igc_adapter *adapter;
3847 
3848 	adapter = container_of(work, struct igc_adapter, reset_task);
3849 
3850 	igc_rings_dump(adapter);
3851 	igc_regs_dump(adapter);
3852 	netdev_err(adapter->netdev, "Reset adapter\n");
3853 	igc_reinit_locked(adapter);
3854 }
3855 
3856 /**
3857  * igc_change_mtu - Change the Maximum Transfer Unit
3858  * @netdev: network interface device structure
3859  * @new_mtu: new value for maximum frame size
3860  *
3861  * Returns 0 on success, negative on failure
3862  */
3863 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3864 {
3865 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3866 	struct igc_adapter *adapter = netdev_priv(netdev);
3867 
3868 	/* adjust max frame to be at least the size of a standard frame */
3869 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3870 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3871 
3872 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3873 		usleep_range(1000, 2000);
3874 
3875 	/* igc_down has a dependency on max_frame_size */
3876 	adapter->max_frame_size = max_frame;
3877 
3878 	if (netif_running(netdev))
3879 		igc_down(adapter);
3880 
3881 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3882 	netdev->mtu = new_mtu;
3883 
3884 	if (netif_running(netdev))
3885 		igc_up(adapter);
3886 	else
3887 		igc_reset(adapter);
3888 
3889 	clear_bit(__IGC_RESETTING, &adapter->state);
3890 
3891 	return 0;
3892 }
3893 
3894 /**
3895  * igc_get_stats64 - Get System Network Statistics
3896  * @netdev: network interface device structure
3897  * @stats: rtnl_link_stats64 pointer
3898  *
3899  * Returns the address of the device statistics structure.
3900  * The statistics are updated here and also from the timer callback.
3901  */
3902 static void igc_get_stats64(struct net_device *netdev,
3903 			    struct rtnl_link_stats64 *stats)
3904 {
3905 	struct igc_adapter *adapter = netdev_priv(netdev);
3906 
3907 	spin_lock(&adapter->stats64_lock);
3908 	if (!test_bit(__IGC_RESETTING, &adapter->state))
3909 		igc_update_stats(adapter);
3910 	memcpy(stats, &adapter->stats64, sizeof(*stats));
3911 	spin_unlock(&adapter->stats64_lock);
3912 }
3913 
3914 static netdev_features_t igc_fix_features(struct net_device *netdev,
3915 					  netdev_features_t features)
3916 {
3917 	/* Since there is no support for separate Rx/Tx vlan accel
3918 	 * enable/disable make sure Tx flag is always in same state as Rx.
3919 	 */
3920 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
3921 		features |= NETIF_F_HW_VLAN_CTAG_TX;
3922 	else
3923 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3924 
3925 	return features;
3926 }
3927 
3928 static int igc_set_features(struct net_device *netdev,
3929 			    netdev_features_t features)
3930 {
3931 	netdev_features_t changed = netdev->features ^ features;
3932 	struct igc_adapter *adapter = netdev_priv(netdev);
3933 
3934 	/* Add VLAN support */
3935 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3936 		return 0;
3937 
3938 	if (!(features & NETIF_F_NTUPLE))
3939 		igc_flush_nfc_rules(adapter);
3940 
3941 	netdev->features = features;
3942 
3943 	if (netif_running(netdev))
3944 		igc_reinit_locked(adapter);
3945 	else
3946 		igc_reset(adapter);
3947 
3948 	return 1;
3949 }
3950 
3951 static netdev_features_t
3952 igc_features_check(struct sk_buff *skb, struct net_device *dev,
3953 		   netdev_features_t features)
3954 {
3955 	unsigned int network_hdr_len, mac_hdr_len;
3956 
3957 	/* Make certain the headers can be described by a context descriptor */
3958 	mac_hdr_len = skb_network_header(skb) - skb->data;
3959 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3960 		return features & ~(NETIF_F_HW_CSUM |
3961 				    NETIF_F_SCTP_CRC |
3962 				    NETIF_F_HW_VLAN_CTAG_TX |
3963 				    NETIF_F_TSO |
3964 				    NETIF_F_TSO6);
3965 
3966 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3967 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
3968 		return features & ~(NETIF_F_HW_CSUM |
3969 				    NETIF_F_SCTP_CRC |
3970 				    NETIF_F_TSO |
3971 				    NETIF_F_TSO6);
3972 
3973 	/* We can only support IPv4 TSO in tunnels if we can mangle the
3974 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3975 	 */
3976 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3977 		features &= ~NETIF_F_TSO;
3978 
3979 	return features;
3980 }
3981 
3982 static void igc_tsync_interrupt(struct igc_adapter *adapter)
3983 {
3984 	struct igc_hw *hw = &adapter->hw;
3985 	u32 tsicr = rd32(IGC_TSICR);
3986 	u32 ack = 0;
3987 
3988 	if (tsicr & IGC_TSICR_TXTS) {
3989 		/* retrieve hardware timestamp */
3990 		schedule_work(&adapter->ptp_tx_work);
3991 		ack |= IGC_TSICR_TXTS;
3992 	}
3993 
3994 	/* acknowledge the interrupts */
3995 	wr32(IGC_TSICR, ack);
3996 }
3997 
3998 /**
3999  * igc_msix_other - msix other interrupt handler
4000  * @irq: interrupt number
4001  * @data: pointer to a q_vector
4002  */
4003 static irqreturn_t igc_msix_other(int irq, void *data)
4004 {
4005 	struct igc_adapter *adapter = data;
4006 	struct igc_hw *hw = &adapter->hw;
4007 	u32 icr = rd32(IGC_ICR);
4008 
4009 	/* reading ICR causes bit 31 of EICR to be cleared */
4010 	if (icr & IGC_ICR_DRSTA)
4011 		schedule_work(&adapter->reset_task);
4012 
4013 	if (icr & IGC_ICR_DOUTSYNC) {
4014 		/* HW is reporting DMA is out of sync */
4015 		adapter->stats.doosync++;
4016 	}
4017 
4018 	if (icr & IGC_ICR_LSC) {
4019 		hw->mac.get_link_status = 1;
4020 		/* guard against interrupt when we're going down */
4021 		if (!test_bit(__IGC_DOWN, &adapter->state))
4022 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4023 	}
4024 
4025 	if (icr & IGC_ICR_TS)
4026 		igc_tsync_interrupt(adapter);
4027 
4028 	wr32(IGC_EIMS, adapter->eims_other);
4029 
4030 	return IRQ_HANDLED;
4031 }
4032 
4033 static void igc_write_itr(struct igc_q_vector *q_vector)
4034 {
4035 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4036 
4037 	if (!q_vector->set_itr)
4038 		return;
4039 
4040 	if (!itr_val)
4041 		itr_val = IGC_ITR_VAL_MASK;
4042 
4043 	itr_val |= IGC_EITR_CNT_IGNR;
4044 
4045 	writel(itr_val, q_vector->itr_register);
4046 	q_vector->set_itr = 0;
4047 }
4048 
4049 static irqreturn_t igc_msix_ring(int irq, void *data)
4050 {
4051 	struct igc_q_vector *q_vector = data;
4052 
4053 	/* Write the ITR value calculated from the previous interrupt. */
4054 	igc_write_itr(q_vector);
4055 
4056 	napi_schedule(&q_vector->napi);
4057 
4058 	return IRQ_HANDLED;
4059 }
4060 
4061 /**
4062  * igc_request_msix - Initialize MSI-X interrupts
4063  * @adapter: Pointer to adapter structure
4064  *
4065  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4066  * kernel.
4067  */
4068 static int igc_request_msix(struct igc_adapter *adapter)
4069 {
4070 	int i = 0, err = 0, vector = 0, free_vector = 0;
4071 	struct net_device *netdev = adapter->netdev;
4072 
4073 	err = request_irq(adapter->msix_entries[vector].vector,
4074 			  &igc_msix_other, 0, netdev->name, adapter);
4075 	if (err)
4076 		goto err_out;
4077 
4078 	for (i = 0; i < adapter->num_q_vectors; i++) {
4079 		struct igc_q_vector *q_vector = adapter->q_vector[i];
4080 
4081 		vector++;
4082 
4083 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4084 
4085 		if (q_vector->rx.ring && q_vector->tx.ring)
4086 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4087 				q_vector->rx.ring->queue_index);
4088 		else if (q_vector->tx.ring)
4089 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4090 				q_vector->tx.ring->queue_index);
4091 		else if (q_vector->rx.ring)
4092 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4093 				q_vector->rx.ring->queue_index);
4094 		else
4095 			sprintf(q_vector->name, "%s-unused", netdev->name);
4096 
4097 		err = request_irq(adapter->msix_entries[vector].vector,
4098 				  igc_msix_ring, 0, q_vector->name,
4099 				  q_vector);
4100 		if (err)
4101 			goto err_free;
4102 	}
4103 
4104 	igc_configure_msix(adapter);
4105 	return 0;
4106 
4107 err_free:
4108 	/* free already assigned IRQs */
4109 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4110 
4111 	vector--;
4112 	for (i = 0; i < vector; i++) {
4113 		free_irq(adapter->msix_entries[free_vector++].vector,
4114 			 adapter->q_vector[i]);
4115 	}
4116 err_out:
4117 	return err;
4118 }
4119 
4120 /**
4121  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4122  * @adapter: Pointer to adapter structure
4123  *
4124  * This function resets the device so that it has 0 rx queues, tx queues, and
4125  * MSI-X interrupts allocated.
4126  */
4127 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4128 {
4129 	igc_free_q_vectors(adapter);
4130 	igc_reset_interrupt_capability(adapter);
4131 }
4132 
4133 /* Need to wait a few seconds after link up to get diagnostic information from
4134  * the phy
4135  */
4136 static void igc_update_phy_info(struct timer_list *t)
4137 {
4138 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4139 
4140 	igc_get_phy_info(&adapter->hw);
4141 }
4142 
4143 /**
4144  * igc_has_link - check shared code for link and determine up/down
4145  * @adapter: pointer to driver private info
4146  */
4147 bool igc_has_link(struct igc_adapter *adapter)
4148 {
4149 	struct igc_hw *hw = &adapter->hw;
4150 	bool link_active = false;
4151 
4152 	/* get_link_status is set on LSC (link status) interrupt or
4153 	 * rx sequence error interrupt.  get_link_status will stay
4154 	 * false until the igc_check_for_link establishes link
4155 	 * for copper adapters ONLY
4156 	 */
4157 	switch (hw->phy.media_type) {
4158 	case igc_media_type_copper:
4159 		if (!hw->mac.get_link_status)
4160 			return true;
4161 		hw->mac.ops.check_for_link(hw);
4162 		link_active = !hw->mac.get_link_status;
4163 		break;
4164 	default:
4165 	case igc_media_type_unknown:
4166 		break;
4167 	}
4168 
4169 	if (hw->mac.type == igc_i225 &&
4170 	    hw->phy.id == I225_I_PHY_ID) {
4171 		if (!netif_carrier_ok(adapter->netdev)) {
4172 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4173 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4174 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4175 			adapter->link_check_timeout = jiffies;
4176 		}
4177 	}
4178 
4179 	return link_active;
4180 }
4181 
4182 /**
4183  * igc_watchdog - Timer Call-back
4184  * @t: timer for the watchdog
4185  */
4186 static void igc_watchdog(struct timer_list *t)
4187 {
4188 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4189 	/* Do the rest outside of interrupt context */
4190 	schedule_work(&adapter->watchdog_task);
4191 }
4192 
4193 static void igc_watchdog_task(struct work_struct *work)
4194 {
4195 	struct igc_adapter *adapter = container_of(work,
4196 						   struct igc_adapter,
4197 						   watchdog_task);
4198 	struct net_device *netdev = adapter->netdev;
4199 	struct igc_hw *hw = &adapter->hw;
4200 	struct igc_phy_info *phy = &hw->phy;
4201 	u16 phy_data, retry_count = 20;
4202 	u32 link;
4203 	int i;
4204 
4205 	link = igc_has_link(adapter);
4206 
4207 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4208 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4209 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4210 		else
4211 			link = false;
4212 	}
4213 
4214 	if (link) {
4215 		/* Cancel scheduled suspend requests. */
4216 		pm_runtime_resume(netdev->dev.parent);
4217 
4218 		if (!netif_carrier_ok(netdev)) {
4219 			u32 ctrl;
4220 
4221 			hw->mac.ops.get_speed_and_duplex(hw,
4222 							 &adapter->link_speed,
4223 							 &adapter->link_duplex);
4224 
4225 			ctrl = rd32(IGC_CTRL);
4226 			/* Link status message must follow this format */
4227 			netdev_info(netdev,
4228 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4229 				    adapter->link_speed,
4230 				    adapter->link_duplex == FULL_DUPLEX ?
4231 				    "Full" : "Half",
4232 				    (ctrl & IGC_CTRL_TFCE) &&
4233 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4234 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4235 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4236 
4237 			/* disable EEE if enabled */
4238 			if ((adapter->flags & IGC_FLAG_EEE) &&
4239 			    adapter->link_duplex == HALF_DUPLEX) {
4240 				netdev_info(netdev,
4241 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4242 				adapter->hw.dev_spec._base.eee_enable = false;
4243 				adapter->flags &= ~IGC_FLAG_EEE;
4244 			}
4245 
4246 			/* check if SmartSpeed worked */
4247 			igc_check_downshift(hw);
4248 			if (phy->speed_downgraded)
4249 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4250 
4251 			/* adjust timeout factor according to speed/duplex */
4252 			adapter->tx_timeout_factor = 1;
4253 			switch (adapter->link_speed) {
4254 			case SPEED_10:
4255 				adapter->tx_timeout_factor = 14;
4256 				break;
4257 			case SPEED_100:
4258 				/* maybe add some timeout factor ? */
4259 				break;
4260 			}
4261 
4262 			if (adapter->link_speed != SPEED_1000)
4263 				goto no_wait;
4264 
4265 			/* wait for Remote receiver status OK */
4266 retry_read_status:
4267 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4268 					      &phy_data)) {
4269 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4270 				    retry_count) {
4271 					msleep(100);
4272 					retry_count--;
4273 					goto retry_read_status;
4274 				} else if (!retry_count) {
4275 					netdev_err(netdev, "exceed max 2 second\n");
4276 				}
4277 			} else {
4278 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
4279 			}
4280 no_wait:
4281 			netif_carrier_on(netdev);
4282 
4283 			/* link state has changed, schedule phy info update */
4284 			if (!test_bit(__IGC_DOWN, &adapter->state))
4285 				mod_timer(&adapter->phy_info_timer,
4286 					  round_jiffies(jiffies + 2 * HZ));
4287 		}
4288 	} else {
4289 		if (netif_carrier_ok(netdev)) {
4290 			adapter->link_speed = 0;
4291 			adapter->link_duplex = 0;
4292 
4293 			/* Links status message must follow this format */
4294 			netdev_info(netdev, "NIC Link is Down\n");
4295 			netif_carrier_off(netdev);
4296 
4297 			/* link state has changed, schedule phy info update */
4298 			if (!test_bit(__IGC_DOWN, &adapter->state))
4299 				mod_timer(&adapter->phy_info_timer,
4300 					  round_jiffies(jiffies + 2 * HZ));
4301 
4302 			/* link is down, time to check for alternate media */
4303 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4304 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4305 					schedule_work(&adapter->reset_task);
4306 					/* return immediately */
4307 					return;
4308 				}
4309 			}
4310 			pm_schedule_suspend(netdev->dev.parent,
4311 					    MSEC_PER_SEC * 5);
4312 
4313 		/* also check for alternate media here */
4314 		} else if (!netif_carrier_ok(netdev) &&
4315 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4316 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4317 				schedule_work(&adapter->reset_task);
4318 				/* return immediately */
4319 				return;
4320 			}
4321 		}
4322 	}
4323 
4324 	spin_lock(&adapter->stats64_lock);
4325 	igc_update_stats(adapter);
4326 	spin_unlock(&adapter->stats64_lock);
4327 
4328 	for (i = 0; i < adapter->num_tx_queues; i++) {
4329 		struct igc_ring *tx_ring = adapter->tx_ring[i];
4330 
4331 		if (!netif_carrier_ok(netdev)) {
4332 			/* We've lost link, so the controller stops DMA,
4333 			 * but we've got queued Tx work that's never going
4334 			 * to get done, so reset controller to flush Tx.
4335 			 * (Do the reset outside of interrupt context).
4336 			 */
4337 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4338 				adapter->tx_timeout_count++;
4339 				schedule_work(&adapter->reset_task);
4340 				/* return immediately since reset is imminent */
4341 				return;
4342 			}
4343 		}
4344 
4345 		/* Force detection of hung controller every watchdog period */
4346 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4347 	}
4348 
4349 	/* Cause software interrupt to ensure Rx ring is cleaned */
4350 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4351 		u32 eics = 0;
4352 
4353 		for (i = 0; i < adapter->num_q_vectors; i++)
4354 			eics |= adapter->q_vector[i]->eims_value;
4355 		wr32(IGC_EICS, eics);
4356 	} else {
4357 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
4358 	}
4359 
4360 	igc_ptp_tx_hang(adapter);
4361 
4362 	/* Reset the timer */
4363 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4364 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4365 			mod_timer(&adapter->watchdog_timer,
4366 				  round_jiffies(jiffies +  HZ));
4367 		else
4368 			mod_timer(&adapter->watchdog_timer,
4369 				  round_jiffies(jiffies + 2 * HZ));
4370 	}
4371 }
4372 
4373 /**
4374  * igc_intr_msi - Interrupt Handler
4375  * @irq: interrupt number
4376  * @data: pointer to a network interface device structure
4377  */
4378 static irqreturn_t igc_intr_msi(int irq, void *data)
4379 {
4380 	struct igc_adapter *adapter = data;
4381 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4382 	struct igc_hw *hw = &adapter->hw;
4383 	/* read ICR disables interrupts using IAM */
4384 	u32 icr = rd32(IGC_ICR);
4385 
4386 	igc_write_itr(q_vector);
4387 
4388 	if (icr & IGC_ICR_DRSTA)
4389 		schedule_work(&adapter->reset_task);
4390 
4391 	if (icr & IGC_ICR_DOUTSYNC) {
4392 		/* HW is reporting DMA is out of sync */
4393 		adapter->stats.doosync++;
4394 	}
4395 
4396 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4397 		hw->mac.get_link_status = 1;
4398 		if (!test_bit(__IGC_DOWN, &adapter->state))
4399 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4400 	}
4401 
4402 	napi_schedule(&q_vector->napi);
4403 
4404 	return IRQ_HANDLED;
4405 }
4406 
4407 /**
4408  * igc_intr - Legacy Interrupt Handler
4409  * @irq: interrupt number
4410  * @data: pointer to a network interface device structure
4411  */
4412 static irqreturn_t igc_intr(int irq, void *data)
4413 {
4414 	struct igc_adapter *adapter = data;
4415 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4416 	struct igc_hw *hw = &adapter->hw;
4417 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4418 	 * need for the IMC write
4419 	 */
4420 	u32 icr = rd32(IGC_ICR);
4421 
4422 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4423 	 * not set, then the adapter didn't send an interrupt
4424 	 */
4425 	if (!(icr & IGC_ICR_INT_ASSERTED))
4426 		return IRQ_NONE;
4427 
4428 	igc_write_itr(q_vector);
4429 
4430 	if (icr & IGC_ICR_DRSTA)
4431 		schedule_work(&adapter->reset_task);
4432 
4433 	if (icr & IGC_ICR_DOUTSYNC) {
4434 		/* HW is reporting DMA is out of sync */
4435 		adapter->stats.doosync++;
4436 	}
4437 
4438 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4439 		hw->mac.get_link_status = 1;
4440 		/* guard against interrupt when we're going down */
4441 		if (!test_bit(__IGC_DOWN, &adapter->state))
4442 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4443 	}
4444 
4445 	napi_schedule(&q_vector->napi);
4446 
4447 	return IRQ_HANDLED;
4448 }
4449 
4450 static void igc_free_irq(struct igc_adapter *adapter)
4451 {
4452 	if (adapter->msix_entries) {
4453 		int vector = 0, i;
4454 
4455 		free_irq(adapter->msix_entries[vector++].vector, adapter);
4456 
4457 		for (i = 0; i < adapter->num_q_vectors; i++)
4458 			free_irq(adapter->msix_entries[vector++].vector,
4459 				 adapter->q_vector[i]);
4460 	} else {
4461 		free_irq(adapter->pdev->irq, adapter);
4462 	}
4463 }
4464 
4465 /**
4466  * igc_request_irq - initialize interrupts
4467  * @adapter: Pointer to adapter structure
4468  *
4469  * Attempts to configure interrupts using the best available
4470  * capabilities of the hardware and kernel.
4471  */
4472 static int igc_request_irq(struct igc_adapter *adapter)
4473 {
4474 	struct net_device *netdev = adapter->netdev;
4475 	struct pci_dev *pdev = adapter->pdev;
4476 	int err = 0;
4477 
4478 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4479 		err = igc_request_msix(adapter);
4480 		if (!err)
4481 			goto request_done;
4482 		/* fall back to MSI */
4483 		igc_free_all_tx_resources(adapter);
4484 		igc_free_all_rx_resources(adapter);
4485 
4486 		igc_clear_interrupt_scheme(adapter);
4487 		err = igc_init_interrupt_scheme(adapter, false);
4488 		if (err)
4489 			goto request_done;
4490 		igc_setup_all_tx_resources(adapter);
4491 		igc_setup_all_rx_resources(adapter);
4492 		igc_configure(adapter);
4493 	}
4494 
4495 	igc_assign_vector(adapter->q_vector[0], 0);
4496 
4497 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
4498 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
4499 				  netdev->name, adapter);
4500 		if (!err)
4501 			goto request_done;
4502 
4503 		/* fall back to legacy interrupts */
4504 		igc_reset_interrupt_capability(adapter);
4505 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
4506 	}
4507 
4508 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4509 			  netdev->name, adapter);
4510 
4511 	if (err)
4512 		netdev_err(netdev, "Error %d getting interrupt\n", err);
4513 
4514 request_done:
4515 	return err;
4516 }
4517 
4518 /**
4519  * __igc_open - Called when a network interface is made active
4520  * @netdev: network interface device structure
4521  * @resuming: boolean indicating if the device is resuming
4522  *
4523  * Returns 0 on success, negative value on failure
4524  *
4525  * The open entry point is called when a network interface is made
4526  * active by the system (IFF_UP).  At this point all resources needed
4527  * for transmit and receive operations are allocated, the interrupt
4528  * handler is registered with the OS, the watchdog timer is started,
4529  * and the stack is notified that the interface is ready.
4530  */
4531 static int __igc_open(struct net_device *netdev, bool resuming)
4532 {
4533 	struct igc_adapter *adapter = netdev_priv(netdev);
4534 	struct pci_dev *pdev = adapter->pdev;
4535 	struct igc_hw *hw = &adapter->hw;
4536 	int err = 0;
4537 	int i = 0;
4538 
4539 	/* disallow open during test */
4540 
4541 	if (test_bit(__IGC_TESTING, &adapter->state)) {
4542 		WARN_ON(resuming);
4543 		return -EBUSY;
4544 	}
4545 
4546 	if (!resuming)
4547 		pm_runtime_get_sync(&pdev->dev);
4548 
4549 	netif_carrier_off(netdev);
4550 
4551 	/* allocate transmit descriptors */
4552 	err = igc_setup_all_tx_resources(adapter);
4553 	if (err)
4554 		goto err_setup_tx;
4555 
4556 	/* allocate receive descriptors */
4557 	err = igc_setup_all_rx_resources(adapter);
4558 	if (err)
4559 		goto err_setup_rx;
4560 
4561 	igc_power_up_link(adapter);
4562 
4563 	igc_configure(adapter);
4564 
4565 	err = igc_request_irq(adapter);
4566 	if (err)
4567 		goto err_req_irq;
4568 
4569 	/* Notify the stack of the actual queue counts. */
4570 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4571 	if (err)
4572 		goto err_set_queues;
4573 
4574 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4575 	if (err)
4576 		goto err_set_queues;
4577 
4578 	clear_bit(__IGC_DOWN, &adapter->state);
4579 
4580 	for (i = 0; i < adapter->num_q_vectors; i++)
4581 		napi_enable(&adapter->q_vector[i]->napi);
4582 
4583 	/* Clear any pending interrupts. */
4584 	rd32(IGC_ICR);
4585 	igc_irq_enable(adapter);
4586 
4587 	if (!resuming)
4588 		pm_runtime_put(&pdev->dev);
4589 
4590 	netif_tx_start_all_queues(netdev);
4591 
4592 	/* start the watchdog. */
4593 	hw->mac.get_link_status = 1;
4594 	schedule_work(&adapter->watchdog_task);
4595 
4596 	return IGC_SUCCESS;
4597 
4598 err_set_queues:
4599 	igc_free_irq(adapter);
4600 err_req_irq:
4601 	igc_release_hw_control(adapter);
4602 	igc_power_down_phy_copper_base(&adapter->hw);
4603 	igc_free_all_rx_resources(adapter);
4604 err_setup_rx:
4605 	igc_free_all_tx_resources(adapter);
4606 err_setup_tx:
4607 	igc_reset(adapter);
4608 	if (!resuming)
4609 		pm_runtime_put(&pdev->dev);
4610 
4611 	return err;
4612 }
4613 
4614 int igc_open(struct net_device *netdev)
4615 {
4616 	return __igc_open(netdev, false);
4617 }
4618 
4619 /**
4620  * __igc_close - Disables a network interface
4621  * @netdev: network interface device structure
4622  * @suspending: boolean indicating the device is suspending
4623  *
4624  * Returns 0, this is not allowed to fail
4625  *
4626  * The close entry point is called when an interface is de-activated
4627  * by the OS.  The hardware is still under the driver's control, but
4628  * needs to be disabled.  A global MAC reset is issued to stop the
4629  * hardware, and all transmit and receive resources are freed.
4630  */
4631 static int __igc_close(struct net_device *netdev, bool suspending)
4632 {
4633 	struct igc_adapter *adapter = netdev_priv(netdev);
4634 	struct pci_dev *pdev = adapter->pdev;
4635 
4636 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4637 
4638 	if (!suspending)
4639 		pm_runtime_get_sync(&pdev->dev);
4640 
4641 	igc_down(adapter);
4642 
4643 	igc_release_hw_control(adapter);
4644 
4645 	igc_free_irq(adapter);
4646 
4647 	igc_free_all_tx_resources(adapter);
4648 	igc_free_all_rx_resources(adapter);
4649 
4650 	if (!suspending)
4651 		pm_runtime_put_sync(&pdev->dev);
4652 
4653 	return 0;
4654 }
4655 
4656 int igc_close(struct net_device *netdev)
4657 {
4658 	if (netif_device_present(netdev) || netdev->dismantle)
4659 		return __igc_close(netdev, false);
4660 	return 0;
4661 }
4662 
4663 /**
4664  * igc_ioctl - Access the hwtstamp interface
4665  * @netdev: network interface device structure
4666  * @ifr: interface request data
4667  * @cmd: ioctl command
4668  **/
4669 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4670 {
4671 	switch (cmd) {
4672 	case SIOCGHWTSTAMP:
4673 		return igc_ptp_get_ts_config(netdev, ifr);
4674 	case SIOCSHWTSTAMP:
4675 		return igc_ptp_set_ts_config(netdev, ifr);
4676 	default:
4677 		return -EOPNOTSUPP;
4678 	}
4679 }
4680 
4681 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4682 				      bool enable)
4683 {
4684 	struct igc_ring *ring;
4685 	int i;
4686 
4687 	if (queue < 0 || queue >= adapter->num_tx_queues)
4688 		return -EINVAL;
4689 
4690 	ring = adapter->tx_ring[queue];
4691 	ring->launchtime_enable = enable;
4692 
4693 	if (adapter->base_time)
4694 		return 0;
4695 
4696 	adapter->cycle_time = NSEC_PER_SEC;
4697 
4698 	for (i = 0; i < adapter->num_tx_queues; i++) {
4699 		ring = adapter->tx_ring[i];
4700 		ring->start_time = 0;
4701 		ring->end_time = NSEC_PER_SEC;
4702 	}
4703 
4704 	return 0;
4705 }
4706 
4707 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
4708 {
4709 	struct timespec64 b;
4710 
4711 	b = ktime_to_timespec64(base_time);
4712 
4713 	return timespec64_compare(now, &b) > 0;
4714 }
4715 
4716 static bool validate_schedule(struct igc_adapter *adapter,
4717 			      const struct tc_taprio_qopt_offload *qopt)
4718 {
4719 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
4720 	struct timespec64 now;
4721 	size_t n;
4722 
4723 	if (qopt->cycle_time_extension)
4724 		return false;
4725 
4726 	igc_ptp_read(adapter, &now);
4727 
4728 	/* If we program the controller's BASET registers with a time
4729 	 * in the future, it will hold all the packets until that
4730 	 * time, causing a lot of TX Hangs, so to avoid that, we
4731 	 * reject schedules that would start in the future.
4732 	 */
4733 	if (!is_base_time_past(qopt->base_time, &now))
4734 		return false;
4735 
4736 	for (n = 0; n < qopt->num_entries; n++) {
4737 		const struct tc_taprio_sched_entry *e;
4738 		int i;
4739 
4740 		e = &qopt->entries[n];
4741 
4742 		/* i225 only supports "global" frame preemption
4743 		 * settings.
4744 		 */
4745 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
4746 			return false;
4747 
4748 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4749 			if (e->gate_mask & BIT(i))
4750 				queue_uses[i]++;
4751 
4752 			if (queue_uses[i] > 1)
4753 				return false;
4754 		}
4755 	}
4756 
4757 	return true;
4758 }
4759 
4760 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4761 				     struct tc_etf_qopt_offload *qopt)
4762 {
4763 	struct igc_hw *hw = &adapter->hw;
4764 	int err;
4765 
4766 	if (hw->mac.type != igc_i225)
4767 		return -EOPNOTSUPP;
4768 
4769 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4770 	if (err)
4771 		return err;
4772 
4773 	return igc_tsn_offload_apply(adapter);
4774 }
4775 
4776 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4777 				 struct tc_taprio_qopt_offload *qopt)
4778 {
4779 	u32 start_time = 0, end_time = 0;
4780 	size_t n;
4781 
4782 	if (!qopt->enable) {
4783 		adapter->base_time = 0;
4784 		return 0;
4785 	}
4786 
4787 	if (adapter->base_time)
4788 		return -EALREADY;
4789 
4790 	if (!validate_schedule(adapter, qopt))
4791 		return -EINVAL;
4792 
4793 	adapter->cycle_time = qopt->cycle_time;
4794 	adapter->base_time = qopt->base_time;
4795 
4796 	/* FIXME: be a little smarter about cases when the gate for a
4797 	 * queue stays open for more than one entry.
4798 	 */
4799 	for (n = 0; n < qopt->num_entries; n++) {
4800 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
4801 		int i;
4802 
4803 		end_time += e->interval;
4804 
4805 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4806 			struct igc_ring *ring = adapter->tx_ring[i];
4807 
4808 			if (!(e->gate_mask & BIT(i)))
4809 				continue;
4810 
4811 			ring->start_time = start_time;
4812 			ring->end_time = end_time;
4813 		}
4814 
4815 		start_time += e->interval;
4816 	}
4817 
4818 	return 0;
4819 }
4820 
4821 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4822 					 struct tc_taprio_qopt_offload *qopt)
4823 {
4824 	struct igc_hw *hw = &adapter->hw;
4825 	int err;
4826 
4827 	if (hw->mac.type != igc_i225)
4828 		return -EOPNOTSUPP;
4829 
4830 	err = igc_save_qbv_schedule(adapter, qopt);
4831 	if (err)
4832 		return err;
4833 
4834 	return igc_tsn_offload_apply(adapter);
4835 }
4836 
4837 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4838 			void *type_data)
4839 {
4840 	struct igc_adapter *adapter = netdev_priv(dev);
4841 
4842 	switch (type) {
4843 	case TC_SETUP_QDISC_TAPRIO:
4844 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4845 
4846 	case TC_SETUP_QDISC_ETF:
4847 		return igc_tsn_enable_launchtime(adapter, type_data);
4848 
4849 	default:
4850 		return -EOPNOTSUPP;
4851 	}
4852 }
4853 
4854 static const struct net_device_ops igc_netdev_ops = {
4855 	.ndo_open		= igc_open,
4856 	.ndo_stop		= igc_close,
4857 	.ndo_start_xmit		= igc_xmit_frame,
4858 	.ndo_set_rx_mode	= igc_set_rx_mode,
4859 	.ndo_set_mac_address	= igc_set_mac,
4860 	.ndo_change_mtu		= igc_change_mtu,
4861 	.ndo_get_stats64	= igc_get_stats64,
4862 	.ndo_fix_features	= igc_fix_features,
4863 	.ndo_set_features	= igc_set_features,
4864 	.ndo_features_check	= igc_features_check,
4865 	.ndo_do_ioctl		= igc_ioctl,
4866 	.ndo_setup_tc		= igc_setup_tc,
4867 };
4868 
4869 /* PCIe configuration access */
4870 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4871 {
4872 	struct igc_adapter *adapter = hw->back;
4873 
4874 	pci_read_config_word(adapter->pdev, reg, value);
4875 }
4876 
4877 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4878 {
4879 	struct igc_adapter *adapter = hw->back;
4880 
4881 	pci_write_config_word(adapter->pdev, reg, *value);
4882 }
4883 
4884 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4885 {
4886 	struct igc_adapter *adapter = hw->back;
4887 
4888 	if (!pci_is_pcie(adapter->pdev))
4889 		return -IGC_ERR_CONFIG;
4890 
4891 	pcie_capability_read_word(adapter->pdev, reg, value);
4892 
4893 	return IGC_SUCCESS;
4894 }
4895 
4896 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4897 {
4898 	struct igc_adapter *adapter = hw->back;
4899 
4900 	if (!pci_is_pcie(adapter->pdev))
4901 		return -IGC_ERR_CONFIG;
4902 
4903 	pcie_capability_write_word(adapter->pdev, reg, *value);
4904 
4905 	return IGC_SUCCESS;
4906 }
4907 
4908 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4909 {
4910 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4911 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4912 	u32 value = 0;
4913 
4914 	value = readl(&hw_addr[reg]);
4915 
4916 	/* reads should not return all F's */
4917 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4918 		struct net_device *netdev = igc->netdev;
4919 
4920 		hw->hw_addr = NULL;
4921 		netif_device_detach(netdev);
4922 		netdev_err(netdev, "PCIe link lost, device now detached\n");
4923 		WARN(pci_device_is_present(igc->pdev),
4924 		     "igc: Failed to read reg 0x%x!\n", reg);
4925 	}
4926 
4927 	return value;
4928 }
4929 
4930 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4931 {
4932 	struct igc_mac_info *mac = &adapter->hw.mac;
4933 
4934 	mac->autoneg = 0;
4935 
4936 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4937 	 * for the switch() below to work
4938 	 */
4939 	if ((spd & 1) || (dplx & ~1))
4940 		goto err_inval;
4941 
4942 	switch (spd + dplx) {
4943 	case SPEED_10 + DUPLEX_HALF:
4944 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4945 		break;
4946 	case SPEED_10 + DUPLEX_FULL:
4947 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4948 		break;
4949 	case SPEED_100 + DUPLEX_HALF:
4950 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4951 		break;
4952 	case SPEED_100 + DUPLEX_FULL:
4953 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4954 		break;
4955 	case SPEED_1000 + DUPLEX_FULL:
4956 		mac->autoneg = 1;
4957 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4958 		break;
4959 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4960 		goto err_inval;
4961 	case SPEED_2500 + DUPLEX_FULL:
4962 		mac->autoneg = 1;
4963 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4964 		break;
4965 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
4966 	default:
4967 		goto err_inval;
4968 	}
4969 
4970 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4971 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
4972 
4973 	return 0;
4974 
4975 err_inval:
4976 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
4977 	return -EINVAL;
4978 }
4979 
4980 /**
4981  * igc_probe - Device Initialization Routine
4982  * @pdev: PCI device information struct
4983  * @ent: entry in igc_pci_tbl
4984  *
4985  * Returns 0 on success, negative on failure
4986  *
4987  * igc_probe initializes an adapter identified by a pci_dev structure.
4988  * The OS initialization, configuring the adapter private structure,
4989  * and a hardware reset occur.
4990  */
4991 static int igc_probe(struct pci_dev *pdev,
4992 		     const struct pci_device_id *ent)
4993 {
4994 	struct igc_adapter *adapter;
4995 	struct net_device *netdev;
4996 	struct igc_hw *hw;
4997 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4998 	int err, pci_using_dac;
4999 
5000 	err = pci_enable_device_mem(pdev);
5001 	if (err)
5002 		return err;
5003 
5004 	pci_using_dac = 0;
5005 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5006 	if (!err) {
5007 		pci_using_dac = 1;
5008 	} else {
5009 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5010 		if (err) {
5011 			dev_err(&pdev->dev,
5012 				"No usable DMA configuration, aborting\n");
5013 			goto err_dma;
5014 		}
5015 	}
5016 
5017 	err = pci_request_mem_regions(pdev, igc_driver_name);
5018 	if (err)
5019 		goto err_pci_reg;
5020 
5021 	pci_enable_pcie_error_reporting(pdev);
5022 
5023 	pci_set_master(pdev);
5024 
5025 	err = -ENOMEM;
5026 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5027 				   IGC_MAX_TX_QUEUES);
5028 
5029 	if (!netdev)
5030 		goto err_alloc_etherdev;
5031 
5032 	SET_NETDEV_DEV(netdev, &pdev->dev);
5033 
5034 	pci_set_drvdata(pdev, netdev);
5035 	adapter = netdev_priv(netdev);
5036 	adapter->netdev = netdev;
5037 	adapter->pdev = pdev;
5038 	hw = &adapter->hw;
5039 	hw->back = adapter;
5040 	adapter->port_num = hw->bus.func;
5041 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5042 
5043 	err = pci_save_state(pdev);
5044 	if (err)
5045 		goto err_ioremap;
5046 
5047 	err = -EIO;
5048 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5049 				   pci_resource_len(pdev, 0));
5050 	if (!adapter->io_addr)
5051 		goto err_ioremap;
5052 
5053 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5054 	hw->hw_addr = adapter->io_addr;
5055 
5056 	netdev->netdev_ops = &igc_netdev_ops;
5057 	igc_ethtool_set_ops(netdev);
5058 	netdev->watchdog_timeo = 5 * HZ;
5059 
5060 	netdev->mem_start = pci_resource_start(pdev, 0);
5061 	netdev->mem_end = pci_resource_end(pdev, 0);
5062 
5063 	/* PCI config space info */
5064 	hw->vendor_id = pdev->vendor;
5065 	hw->device_id = pdev->device;
5066 	hw->revision_id = pdev->revision;
5067 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5068 	hw->subsystem_device_id = pdev->subsystem_device;
5069 
5070 	/* Copy the default MAC and PHY function pointers */
5071 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5072 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5073 
5074 	/* Initialize skew-specific constants */
5075 	err = ei->get_invariants(hw);
5076 	if (err)
5077 		goto err_sw_init;
5078 
5079 	/* Add supported features to the features list*/
5080 	netdev->features |= NETIF_F_SG;
5081 	netdev->features |= NETIF_F_TSO;
5082 	netdev->features |= NETIF_F_TSO6;
5083 	netdev->features |= NETIF_F_TSO_ECN;
5084 	netdev->features |= NETIF_F_RXCSUM;
5085 	netdev->features |= NETIF_F_HW_CSUM;
5086 	netdev->features |= NETIF_F_SCTP_CRC;
5087 	netdev->features |= NETIF_F_HW_TC;
5088 
5089 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5090 				  NETIF_F_GSO_GRE_CSUM | \
5091 				  NETIF_F_GSO_IPXIP4 | \
5092 				  NETIF_F_GSO_IPXIP6 | \
5093 				  NETIF_F_GSO_UDP_TUNNEL | \
5094 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5095 
5096 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5097 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5098 
5099 	/* setup the private structure */
5100 	err = igc_sw_init(adapter);
5101 	if (err)
5102 		goto err_sw_init;
5103 
5104 	/* copy netdev features into list of user selectable features */
5105 	netdev->hw_features |= NETIF_F_NTUPLE;
5106 	netdev->hw_features |= netdev->features;
5107 
5108 	if (pci_using_dac)
5109 		netdev->features |= NETIF_F_HIGHDMA;
5110 
5111 	/* MTU range: 68 - 9216 */
5112 	netdev->min_mtu = ETH_MIN_MTU;
5113 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5114 
5115 	/* before reading the NVM, reset the controller to put the device in a
5116 	 * known good starting state
5117 	 */
5118 	hw->mac.ops.reset_hw(hw);
5119 
5120 	if (igc_get_flash_presence_i225(hw)) {
5121 		if (hw->nvm.ops.validate(hw) < 0) {
5122 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5123 			err = -EIO;
5124 			goto err_eeprom;
5125 		}
5126 	}
5127 
5128 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5129 		/* copy the MAC address out of the NVM */
5130 		if (hw->mac.ops.read_mac_addr(hw))
5131 			dev_err(&pdev->dev, "NVM Read Error\n");
5132 	}
5133 
5134 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5135 
5136 	if (!is_valid_ether_addr(netdev->dev_addr)) {
5137 		dev_err(&pdev->dev, "Invalid MAC Address\n");
5138 		err = -EIO;
5139 		goto err_eeprom;
5140 	}
5141 
5142 	/* configure RXPBSIZE and TXPBSIZE */
5143 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5144 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5145 
5146 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5147 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5148 
5149 	INIT_WORK(&adapter->reset_task, igc_reset_task);
5150 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5151 
5152 	/* Initialize link properties that are user-changeable */
5153 	adapter->fc_autoneg = true;
5154 	hw->mac.autoneg = true;
5155 	hw->phy.autoneg_advertised = 0xaf;
5156 
5157 	hw->fc.requested_mode = igc_fc_default;
5158 	hw->fc.current_mode = igc_fc_default;
5159 
5160 	/* By default, support wake on port A */
5161 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5162 
5163 	/* initialize the wol settings based on the eeprom settings */
5164 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5165 		adapter->wol |= IGC_WUFC_MAG;
5166 
5167 	device_set_wakeup_enable(&adapter->pdev->dev,
5168 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5169 
5170 	igc_ptp_init(adapter);
5171 
5172 	/* reset the hardware with the new settings */
5173 	igc_reset(adapter);
5174 
5175 	/* let the f/w know that the h/w is now under the control of the
5176 	 * driver.
5177 	 */
5178 	igc_get_hw_control(adapter);
5179 
5180 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
5181 	err = register_netdev(netdev);
5182 	if (err)
5183 		goto err_register;
5184 
5185 	 /* carrier off reporting is important to ethtool even BEFORE open */
5186 	netif_carrier_off(netdev);
5187 
5188 	/* Check if Media Autosense is enabled */
5189 	adapter->ei = *ei;
5190 
5191 	/* print pcie link status and MAC address */
5192 	pcie_print_link_status(pdev);
5193 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5194 
5195 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5196 	/* Disable EEE for internal PHY devices */
5197 	hw->dev_spec._base.eee_enable = false;
5198 	adapter->flags &= ~IGC_FLAG_EEE;
5199 	igc_set_eee_i225(hw, false, false, false);
5200 
5201 	pm_runtime_put_noidle(&pdev->dev);
5202 
5203 	return 0;
5204 
5205 err_register:
5206 	igc_release_hw_control(adapter);
5207 err_eeprom:
5208 	if (!igc_check_reset_block(hw))
5209 		igc_reset_phy(hw);
5210 err_sw_init:
5211 	igc_clear_interrupt_scheme(adapter);
5212 	iounmap(adapter->io_addr);
5213 err_ioremap:
5214 	free_netdev(netdev);
5215 err_alloc_etherdev:
5216 	pci_release_mem_regions(pdev);
5217 err_pci_reg:
5218 err_dma:
5219 	pci_disable_device(pdev);
5220 	return err;
5221 }
5222 
5223 /**
5224  * igc_remove - Device Removal Routine
5225  * @pdev: PCI device information struct
5226  *
5227  * igc_remove is called by the PCI subsystem to alert the driver
5228  * that it should release a PCI device.  This could be caused by a
5229  * Hot-Plug event, or because the driver is going to be removed from
5230  * memory.
5231  */
5232 static void igc_remove(struct pci_dev *pdev)
5233 {
5234 	struct net_device *netdev = pci_get_drvdata(pdev);
5235 	struct igc_adapter *adapter = netdev_priv(netdev);
5236 
5237 	pm_runtime_get_noresume(&pdev->dev);
5238 
5239 	igc_flush_nfc_rules(adapter);
5240 
5241 	igc_ptp_stop(adapter);
5242 
5243 	set_bit(__IGC_DOWN, &adapter->state);
5244 
5245 	del_timer_sync(&adapter->watchdog_timer);
5246 	del_timer_sync(&adapter->phy_info_timer);
5247 
5248 	cancel_work_sync(&adapter->reset_task);
5249 	cancel_work_sync(&adapter->watchdog_task);
5250 
5251 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5252 	 * would have already happened in close and is redundant.
5253 	 */
5254 	igc_release_hw_control(adapter);
5255 	unregister_netdev(netdev);
5256 
5257 	igc_clear_interrupt_scheme(adapter);
5258 	pci_iounmap(pdev, adapter->io_addr);
5259 	pci_release_mem_regions(pdev);
5260 
5261 	free_netdev(netdev);
5262 
5263 	pci_disable_pcie_error_reporting(pdev);
5264 
5265 	pci_disable_device(pdev);
5266 }
5267 
5268 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5269 			  bool runtime)
5270 {
5271 	struct net_device *netdev = pci_get_drvdata(pdev);
5272 	struct igc_adapter *adapter = netdev_priv(netdev);
5273 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5274 	struct igc_hw *hw = &adapter->hw;
5275 	u32 ctrl, rctl, status;
5276 	bool wake;
5277 
5278 	rtnl_lock();
5279 	netif_device_detach(netdev);
5280 
5281 	if (netif_running(netdev))
5282 		__igc_close(netdev, true);
5283 
5284 	igc_ptp_suspend(adapter);
5285 
5286 	igc_clear_interrupt_scheme(adapter);
5287 	rtnl_unlock();
5288 
5289 	status = rd32(IGC_STATUS);
5290 	if (status & IGC_STATUS_LU)
5291 		wufc &= ~IGC_WUFC_LNKC;
5292 
5293 	if (wufc) {
5294 		igc_setup_rctl(adapter);
5295 		igc_set_rx_mode(netdev);
5296 
5297 		/* turn on all-multi mode if wake on multicast is enabled */
5298 		if (wufc & IGC_WUFC_MC) {
5299 			rctl = rd32(IGC_RCTL);
5300 			rctl |= IGC_RCTL_MPE;
5301 			wr32(IGC_RCTL, rctl);
5302 		}
5303 
5304 		ctrl = rd32(IGC_CTRL);
5305 		ctrl |= IGC_CTRL_ADVD3WUC;
5306 		wr32(IGC_CTRL, ctrl);
5307 
5308 		/* Allow time for pending master requests to run */
5309 		igc_disable_pcie_master(hw);
5310 
5311 		wr32(IGC_WUC, IGC_WUC_PME_EN);
5312 		wr32(IGC_WUFC, wufc);
5313 	} else {
5314 		wr32(IGC_WUC, 0);
5315 		wr32(IGC_WUFC, 0);
5316 	}
5317 
5318 	wake = wufc || adapter->en_mng_pt;
5319 	if (!wake)
5320 		igc_power_down_phy_copper_base(&adapter->hw);
5321 	else
5322 		igc_power_up_link(adapter);
5323 
5324 	if (enable_wake)
5325 		*enable_wake = wake;
5326 
5327 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5328 	 * would have already happened in close and is redundant.
5329 	 */
5330 	igc_release_hw_control(adapter);
5331 
5332 	pci_disable_device(pdev);
5333 
5334 	return 0;
5335 }
5336 
5337 #ifdef CONFIG_PM
5338 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5339 {
5340 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5341 }
5342 
5343 static void igc_deliver_wake_packet(struct net_device *netdev)
5344 {
5345 	struct igc_adapter *adapter = netdev_priv(netdev);
5346 	struct igc_hw *hw = &adapter->hw;
5347 	struct sk_buff *skb;
5348 	u32 wupl;
5349 
5350 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5351 
5352 	/* WUPM stores only the first 128 bytes of the wake packet.
5353 	 * Read the packet only if we have the whole thing.
5354 	 */
5355 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5356 		return;
5357 
5358 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5359 	if (!skb)
5360 		return;
5361 
5362 	skb_put(skb, wupl);
5363 
5364 	/* Ensure reads are 32-bit aligned */
5365 	wupl = roundup(wupl, 4);
5366 
5367 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5368 
5369 	skb->protocol = eth_type_trans(skb, netdev);
5370 	netif_rx(skb);
5371 }
5372 
5373 static int __maybe_unused igc_resume(struct device *dev)
5374 {
5375 	struct pci_dev *pdev = to_pci_dev(dev);
5376 	struct net_device *netdev = pci_get_drvdata(pdev);
5377 	struct igc_adapter *adapter = netdev_priv(netdev);
5378 	struct igc_hw *hw = &adapter->hw;
5379 	u32 err, val;
5380 
5381 	pci_set_power_state(pdev, PCI_D0);
5382 	pci_restore_state(pdev);
5383 	pci_save_state(pdev);
5384 
5385 	if (!pci_device_is_present(pdev))
5386 		return -ENODEV;
5387 	err = pci_enable_device_mem(pdev);
5388 	if (err) {
5389 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5390 		return err;
5391 	}
5392 	pci_set_master(pdev);
5393 
5394 	pci_enable_wake(pdev, PCI_D3hot, 0);
5395 	pci_enable_wake(pdev, PCI_D3cold, 0);
5396 
5397 	if (igc_init_interrupt_scheme(adapter, true)) {
5398 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5399 		return -ENOMEM;
5400 	}
5401 
5402 	igc_reset(adapter);
5403 
5404 	/* let the f/w know that the h/w is now under the control of the
5405 	 * driver.
5406 	 */
5407 	igc_get_hw_control(adapter);
5408 
5409 	val = rd32(IGC_WUS);
5410 	if (val & WAKE_PKT_WUS)
5411 		igc_deliver_wake_packet(netdev);
5412 
5413 	wr32(IGC_WUS, ~0);
5414 
5415 	rtnl_lock();
5416 	if (!err && netif_running(netdev))
5417 		err = __igc_open(netdev, true);
5418 
5419 	if (!err)
5420 		netif_device_attach(netdev);
5421 	rtnl_unlock();
5422 
5423 	return err;
5424 }
5425 
5426 static int __maybe_unused igc_runtime_resume(struct device *dev)
5427 {
5428 	return igc_resume(dev);
5429 }
5430 
5431 static int __maybe_unused igc_suspend(struct device *dev)
5432 {
5433 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5434 }
5435 
5436 static int __maybe_unused igc_runtime_idle(struct device *dev)
5437 {
5438 	struct net_device *netdev = dev_get_drvdata(dev);
5439 	struct igc_adapter *adapter = netdev_priv(netdev);
5440 
5441 	if (!igc_has_link(adapter))
5442 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5443 
5444 	return -EBUSY;
5445 }
5446 #endif /* CONFIG_PM */
5447 
5448 static void igc_shutdown(struct pci_dev *pdev)
5449 {
5450 	bool wake;
5451 
5452 	__igc_shutdown(pdev, &wake, 0);
5453 
5454 	if (system_state == SYSTEM_POWER_OFF) {
5455 		pci_wake_from_d3(pdev, wake);
5456 		pci_set_power_state(pdev, PCI_D3hot);
5457 	}
5458 }
5459 
5460 /**
5461  *  igc_io_error_detected - called when PCI error is detected
5462  *  @pdev: Pointer to PCI device
5463  *  @state: The current PCI connection state
5464  *
5465  *  This function is called after a PCI bus error affecting
5466  *  this device has been detected.
5467  **/
5468 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5469 					      pci_channel_state_t state)
5470 {
5471 	struct net_device *netdev = pci_get_drvdata(pdev);
5472 	struct igc_adapter *adapter = netdev_priv(netdev);
5473 
5474 	netif_device_detach(netdev);
5475 
5476 	if (state == pci_channel_io_perm_failure)
5477 		return PCI_ERS_RESULT_DISCONNECT;
5478 
5479 	if (netif_running(netdev))
5480 		igc_down(adapter);
5481 	pci_disable_device(pdev);
5482 
5483 	/* Request a slot reset. */
5484 	return PCI_ERS_RESULT_NEED_RESET;
5485 }
5486 
5487 /**
5488  *  igc_io_slot_reset - called after the PCI bus has been reset.
5489  *  @pdev: Pointer to PCI device
5490  *
5491  *  Restart the card from scratch, as if from a cold-boot. Implementation
5492  *  resembles the first-half of the igc_resume routine.
5493  **/
5494 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5495 {
5496 	struct net_device *netdev = pci_get_drvdata(pdev);
5497 	struct igc_adapter *adapter = netdev_priv(netdev);
5498 	struct igc_hw *hw = &adapter->hw;
5499 	pci_ers_result_t result;
5500 
5501 	if (pci_enable_device_mem(pdev)) {
5502 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5503 		result = PCI_ERS_RESULT_DISCONNECT;
5504 	} else {
5505 		pci_set_master(pdev);
5506 		pci_restore_state(pdev);
5507 		pci_save_state(pdev);
5508 
5509 		pci_enable_wake(pdev, PCI_D3hot, 0);
5510 		pci_enable_wake(pdev, PCI_D3cold, 0);
5511 
5512 		/* In case of PCI error, adapter loses its HW address
5513 		 * so we should re-assign it here.
5514 		 */
5515 		hw->hw_addr = adapter->io_addr;
5516 
5517 		igc_reset(adapter);
5518 		wr32(IGC_WUS, ~0);
5519 		result = PCI_ERS_RESULT_RECOVERED;
5520 	}
5521 
5522 	return result;
5523 }
5524 
5525 /**
5526  *  igc_io_resume - called when traffic can start to flow again.
5527  *  @pdev: Pointer to PCI device
5528  *
5529  *  This callback is called when the error recovery driver tells us that
5530  *  its OK to resume normal operation. Implementation resembles the
5531  *  second-half of the igc_resume routine.
5532  */
5533 static void igc_io_resume(struct pci_dev *pdev)
5534 {
5535 	struct net_device *netdev = pci_get_drvdata(pdev);
5536 	struct igc_adapter *adapter = netdev_priv(netdev);
5537 
5538 	rtnl_lock();
5539 	if (netif_running(netdev)) {
5540 		if (igc_open(netdev)) {
5541 			netdev_err(netdev, "igc_open failed after reset\n");
5542 			return;
5543 		}
5544 	}
5545 
5546 	netif_device_attach(netdev);
5547 
5548 	/* let the f/w know that the h/w is now under the control of the
5549 	 * driver.
5550 	 */
5551 	igc_get_hw_control(adapter);
5552 	rtnl_unlock();
5553 }
5554 
5555 static const struct pci_error_handlers igc_err_handler = {
5556 	.error_detected = igc_io_error_detected,
5557 	.slot_reset = igc_io_slot_reset,
5558 	.resume = igc_io_resume,
5559 };
5560 
5561 #ifdef CONFIG_PM
5562 static const struct dev_pm_ops igc_pm_ops = {
5563 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5564 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5565 			   igc_runtime_idle)
5566 };
5567 #endif
5568 
5569 static struct pci_driver igc_driver = {
5570 	.name     = igc_driver_name,
5571 	.id_table = igc_pci_tbl,
5572 	.probe    = igc_probe,
5573 	.remove   = igc_remove,
5574 #ifdef CONFIG_PM
5575 	.driver.pm = &igc_pm_ops,
5576 #endif
5577 	.shutdown = igc_shutdown,
5578 	.err_handler = &igc_err_handler,
5579 };
5580 
5581 /**
5582  * igc_reinit_queues - return error
5583  * @adapter: pointer to adapter structure
5584  */
5585 int igc_reinit_queues(struct igc_adapter *adapter)
5586 {
5587 	struct net_device *netdev = adapter->netdev;
5588 	int err = 0;
5589 
5590 	if (netif_running(netdev))
5591 		igc_close(netdev);
5592 
5593 	igc_reset_interrupt_capability(adapter);
5594 
5595 	if (igc_init_interrupt_scheme(adapter, true)) {
5596 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5597 		return -ENOMEM;
5598 	}
5599 
5600 	if (netif_running(netdev))
5601 		err = igc_open(netdev);
5602 
5603 	return err;
5604 }
5605 
5606 /**
5607  * igc_get_hw_dev - return device
5608  * @hw: pointer to hardware structure
5609  *
5610  * used by hardware layer to print debugging information
5611  */
5612 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5613 {
5614 	struct igc_adapter *adapter = hw->back;
5615 
5616 	return adapter->netdev;
5617 }
5618 
5619 /**
5620  * igc_init_module - Driver Registration Routine
5621  *
5622  * igc_init_module is the first routine called when the driver is
5623  * loaded. All it does is register with the PCI subsystem.
5624  */
5625 static int __init igc_init_module(void)
5626 {
5627 	int ret;
5628 
5629 	pr_info("%s\n", igc_driver_string);
5630 	pr_info("%s\n", igc_copyright);
5631 
5632 	ret = pci_register_driver(&igc_driver);
5633 	return ret;
5634 }
5635 
5636 module_init(igc_init_module);
5637 
5638 /**
5639  * igc_exit_module - Driver Exit Cleanup Routine
5640  *
5641  * igc_exit_module is called just before the driver is removed
5642  * from memory.
5643  */
5644 static void __exit igc_exit_module(void)
5645 {
5646 	pci_unregister_driver(&igc_driver);
5647 }
5648 
5649 module_exit(igc_exit_module);
5650 /* igc_main.c */
5651