xref: /openbmc/linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 4d016ae42efb214d4b441b0654771ddf34c72891)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 
16 #include <net/ipv6.h>
17 
18 #include "igc.h"
19 #include "igc_hw.h"
20 #include "igc_tsn.h"
21 #include "igc_xdp.h"
22 
23 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
24 
25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26 
27 #define IGC_XDP_PASS		0
28 #define IGC_XDP_CONSUMED	BIT(0)
29 #define IGC_XDP_TX		BIT(1)
30 #define IGC_XDP_REDIRECT	BIT(2)
31 
32 static int debug = -1;
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 	u8 idx = ring->reg_idx;
323 	u32 txdctl;
324 
325 	txdctl = rd32(IGC_TXDCTL(idx));
326 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 	txdctl |= IGC_TXDCTL_SWFLUSH;
328 	wr32(IGC_TXDCTL(idx), txdctl);
329 }
330 
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 	int i;
338 
339 	for (i = 0; i < adapter->num_tx_queues; i++) {
340 		struct igc_ring *tx_ring = adapter->tx_ring[i];
341 
342 		igc_disable_tx_ring_hw(tx_ring);
343 	}
344 }
345 
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 	struct net_device *ndev = tx_ring->netdev;
355 	struct device *dev = tx_ring->dev;
356 	int size = 0;
357 
358 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 	tx_ring->tx_buffer_info = vzalloc(size);
360 	if (!tx_ring->tx_buffer_info)
361 		goto err;
362 
363 	/* round up to nearest 4K */
364 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 	tx_ring->size = ALIGN(tx_ring->size, 4096);
366 
367 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 					   &tx_ring->dma, GFP_KERNEL);
369 
370 	if (!tx_ring->desc)
371 		goto err;
372 
373 	tx_ring->next_to_use = 0;
374 	tx_ring->next_to_clean = 0;
375 
376 	return 0;
377 
378 err:
379 	vfree(tx_ring->tx_buffer_info);
380 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 	return -ENOMEM;
382 }
383 
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 	struct net_device *dev = adapter->netdev;
393 	int i, err = 0;
394 
395 	for (i = 0; i < adapter->num_tx_queues; i++) {
396 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 		if (err) {
398 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 			for (i--; i >= 0; i--)
400 				igc_free_tx_resources(adapter->tx_ring[i]);
401 			break;
402 		}
403 	}
404 
405 	return err;
406 }
407 
408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 	u16 i = rx_ring->next_to_clean;
411 
412 	dev_kfree_skb(rx_ring->skb);
413 	rx_ring->skb = NULL;
414 
415 	/* Free all the Rx ring sk_buffs */
416 	while (i != rx_ring->next_to_alloc) {
417 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418 
419 		/* Invalidate cache lines that may have been written to by
420 		 * device so that we avoid corrupting memory.
421 		 */
422 		dma_sync_single_range_for_cpu(rx_ring->dev,
423 					      buffer_info->dma,
424 					      buffer_info->page_offset,
425 					      igc_rx_bufsz(rx_ring),
426 					      DMA_FROM_DEVICE);
427 
428 		/* free resources associated with mapping */
429 		dma_unmap_page_attrs(rx_ring->dev,
430 				     buffer_info->dma,
431 				     igc_rx_pg_size(rx_ring),
432 				     DMA_FROM_DEVICE,
433 				     IGC_RX_DMA_ATTR);
434 		__page_frag_cache_drain(buffer_info->page,
435 					buffer_info->pagecnt_bias);
436 
437 		i++;
438 		if (i == rx_ring->count)
439 			i = 0;
440 	}
441 }
442 
443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 	struct igc_rx_buffer *bi;
446 	u16 i;
447 
448 	for (i = 0; i < ring->count; i++) {
449 		bi = &ring->rx_buffer_info[i];
450 		if (!bi->xdp)
451 			continue;
452 
453 		xsk_buff_free(bi->xdp);
454 		bi->xdp = NULL;
455 	}
456 }
457 
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 	if (ring->xsk_pool)
465 		igc_clean_rx_ring_xsk_pool(ring);
466 	else
467 		igc_clean_rx_ring_page_shared(ring);
468 
469 	clear_ring_uses_large_buffer(ring);
470 
471 	ring->next_to_alloc = 0;
472 	ring->next_to_clean = 0;
473 	ring->next_to_use = 0;
474 }
475 
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 	int i;
483 
484 	for (i = 0; i < adapter->num_rx_queues; i++)
485 		if (adapter->rx_ring[i])
486 			igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 	igc_clean_rx_ring(rx_ring);
498 
499 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500 
501 	vfree(rx_ring->rx_buffer_info);
502 	rx_ring->rx_buffer_info = NULL;
503 
504 	/* if not set, then don't free */
505 	if (!rx_ring->desc)
506 		return;
507 
508 	dma_free_coherent(rx_ring->dev, rx_ring->size,
509 			  rx_ring->desc, rx_ring->dma);
510 
511 	rx_ring->desc = NULL;
512 }
513 
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 	int i;
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++)
525 		igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527 
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 	struct net_device *ndev = rx_ring->netdev;
537 	struct device *dev = rx_ring->dev;
538 	u8 index = rx_ring->queue_index;
539 	int size, desc_len, res;
540 
541 	/* XDP RX-queue info */
542 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 			       rx_ring->q_vector->napi.napi_id);
546 	if (res < 0) {
547 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 			   index);
549 		return res;
550 	}
551 
552 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 	rx_ring->rx_buffer_info = vzalloc(size);
554 	if (!rx_ring->rx_buffer_info)
555 		goto err;
556 
557 	desc_len = sizeof(union igc_adv_rx_desc);
558 
559 	/* Round up to nearest 4K */
560 	rx_ring->size = rx_ring->count * desc_len;
561 	rx_ring->size = ALIGN(rx_ring->size, 4096);
562 
563 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 					   &rx_ring->dma, GFP_KERNEL);
565 
566 	if (!rx_ring->desc)
567 		goto err;
568 
569 	rx_ring->next_to_alloc = 0;
570 	rx_ring->next_to_clean = 0;
571 	rx_ring->next_to_use = 0;
572 
573 	return 0;
574 
575 err:
576 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 	vfree(rx_ring->rx_buffer_info);
578 	rx_ring->rx_buffer_info = NULL;
579 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 	return -ENOMEM;
581 }
582 
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 	struct net_device *dev = adapter->netdev;
593 	int i, err = 0;
594 
595 	for (i = 0; i < adapter->num_rx_queues; i++) {
596 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 		if (err) {
598 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 			for (i--; i >= 0; i--)
600 				igc_free_rx_resources(adapter->rx_ring[i]);
601 			break;
602 		}
603 	}
604 
605 	return err;
606 }
607 
608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 					      struct igc_ring *ring)
610 {
611 	if (!igc_xdp_is_enabled(adapter) ||
612 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 		return NULL;
614 
615 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617 
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 				  struct igc_ring *ring)
627 {
628 	struct igc_hw *hw = &adapter->hw;
629 	union igc_adv_rx_desc *rx_desc;
630 	int reg_idx = ring->reg_idx;
631 	u32 srrctl = 0, rxdctl = 0;
632 	u64 rdba = ring->dma;
633 	u32 buf_size;
634 
635 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 	if (ring->xsk_pool) {
638 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 						   MEM_TYPE_XSK_BUFF_POOL,
640 						   NULL));
641 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 	} else {
643 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 						   MEM_TYPE_PAGE_SHARED,
645 						   NULL));
646 	}
647 
648 	if (igc_xdp_is_enabled(adapter))
649 		set_ring_uses_large_buffer(ring);
650 
651 	/* disable the queue */
652 	wr32(IGC_RXDCTL(reg_idx), 0);
653 
654 	/* Set DMA base address registers */
655 	wr32(IGC_RDBAL(reg_idx),
656 	     rdba & 0x00000000ffffffffULL);
657 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 	wr32(IGC_RDLEN(reg_idx),
659 	     ring->count * sizeof(union igc_adv_rx_desc));
660 
661 	/* initialize head and tail */
662 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 	wr32(IGC_RDH(reg_idx), 0);
664 	writel(0, ring->tail);
665 
666 	/* reset next-to- use/clean to place SW in sync with hardware */
667 	ring->next_to_clean = 0;
668 	ring->next_to_use = 0;
669 
670 	if (ring->xsk_pool)
671 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 	else if (ring_uses_large_buffer(ring))
673 		buf_size = IGC_RXBUFFER_3072;
674 	else
675 		buf_size = IGC_RXBUFFER_2048;
676 
677 	srrctl = rd32(IGC_SRRCTL(reg_idx));
678 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 		    IGC_SRRCTL_DESCTYPE_MASK);
680 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683 
684 	wr32(IGC_SRRCTL(reg_idx), srrctl);
685 
686 	rxdctl |= IGC_RX_PTHRESH;
687 	rxdctl |= IGC_RX_HTHRESH << 8;
688 	rxdctl |= IGC_RX_WTHRESH << 16;
689 
690 	/* initialize rx_buffer_info */
691 	memset(ring->rx_buffer_info, 0,
692 	       sizeof(struct igc_rx_buffer) * ring->count);
693 
694 	/* initialize Rx descriptor 0 */
695 	rx_desc = IGC_RX_DESC(ring, 0);
696 	rx_desc->wb.upper.length = 0;
697 
698 	/* enable receive descriptor fetching */
699 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700 
701 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703 
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 	int i;
713 
714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715 	 * the Base and Length of the Rx Descriptor Ring
716 	 */
717 	for (i = 0; i < adapter->num_rx_queues; i++)
718 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720 
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 				  struct igc_ring *ring)
730 {
731 	struct igc_hw *hw = &adapter->hw;
732 	int reg_idx = ring->reg_idx;
733 	u64 tdba = ring->dma;
734 	u32 txdctl = 0;
735 
736 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737 
738 	/* disable the queue */
739 	wr32(IGC_TXDCTL(reg_idx), 0);
740 	wrfl();
741 
742 	wr32(IGC_TDLEN(reg_idx),
743 	     ring->count * sizeof(union igc_adv_tx_desc));
744 	wr32(IGC_TDBAL(reg_idx),
745 	     tdba & 0x00000000ffffffffULL);
746 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747 
748 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 	wr32(IGC_TDH(reg_idx), 0);
750 	writel(0, ring->tail);
751 
752 	txdctl |= IGC_TX_PTHRESH;
753 	txdctl |= IGC_TX_HTHRESH << 8;
754 	txdctl |= IGC_TX_WTHRESH << 16;
755 
756 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 	wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759 
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 	int i;
769 
770 	for (i = 0; i < adapter->num_tx_queues; i++)
771 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773 
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 j, num_rx_queues;
782 	u32 mrqc, rxcsum;
783 	u32 rss_key[10];
784 
785 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 	for (j = 0; j < 10; j++)
787 		wr32(IGC_RSSRK(j), rss_key[j]);
788 
789 	num_rx_queues = adapter->rss_queues;
790 
791 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 		for (j = 0; j < IGC_RETA_SIZE; j++)
793 			adapter->rss_indir_tbl[j] =
794 			(j * num_rx_queues) / IGC_RETA_SIZE;
795 		adapter->rss_indir_tbl_init = num_rx_queues;
796 	}
797 	igc_write_rss_indir_tbl(adapter);
798 
799 	/* Disable raw packet checksumming so that RSS hash is placed in
800 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801 	 * offloads as they are enabled by default
802 	 */
803 	rxcsum = rd32(IGC_RXCSUM);
804 	rxcsum |= IGC_RXCSUM_PCSD;
805 
806 	/* Enable Receive Checksum Offload for SCTP */
807 	rxcsum |= IGC_RXCSUM_CRCOFL;
808 
809 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
810 	wr32(IGC_RXCSUM, rxcsum);
811 
812 	/* Generate RSS hash based on packet types, TCP/UDP
813 	 * port numbers and/or IPv4/v6 src and dst addresses
814 	 */
815 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 	       IGC_MRQC_RSS_FIELD_IPV6 |
818 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820 
821 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825 
826 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827 
828 	wr32(IGC_MRQC, mrqc);
829 }
830 
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 	struct igc_hw *hw = &adapter->hw;
838 	u32 rctl;
839 
840 	rctl = rd32(IGC_RCTL);
841 
842 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844 
845 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847 
848 	/* enable stripping of CRC. Newer features require
849 	 * that the HW strips the CRC.
850 	 */
851 	rctl |= IGC_RCTL_SECRC;
852 
853 	/* disable store bad packets and clear size bits. */
854 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855 
856 	/* enable LPE to allow for reception of jumbo frames */
857 	rctl |= IGC_RCTL_LPE;
858 
859 	/* disable queue 0 to prevent tail write w/o re-config */
860 	wr32(IGC_RXDCTL(0), 0);
861 
862 	/* This is useful for sniffing bad packets. */
863 	if (adapter->netdev->features & NETIF_F_RXALL) {
864 		/* UPE and MPE will be handled by normal PROMISC logic
865 		 * in set_rx_mode
866 		 */
867 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870 
871 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 	}
874 
875 	wr32(IGC_RCTL, rctl);
876 }
877 
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 	struct igc_hw *hw = &adapter->hw;
885 	u32 tctl;
886 
887 	/* disable queue 0 which icould be enabled by default */
888 	wr32(IGC_TXDCTL(0), 0);
889 
890 	/* Program the Transmit Control Register */
891 	tctl = rd32(IGC_TCTL);
892 	tctl &= ~IGC_TCTL_CT;
893 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895 
896 	/* Enable transmits */
897 	tctl |= IGC_TCTL_EN;
898 
899 	wr32(IGC_TCTL, tctl);
900 }
901 
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 				  enum igc_mac_filter_type type,
914 				  const u8 *addr, int queue)
915 {
916 	struct net_device *dev = adapter->netdev;
917 	struct igc_hw *hw = &adapter->hw;
918 	u32 ral, rah;
919 
920 	if (WARN_ON(index >= hw->mac.rar_entry_count))
921 		return;
922 
923 	ral = le32_to_cpup((__le32 *)(addr));
924 	rah = le16_to_cpup((__le16 *)(addr + 4));
925 
926 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 		rah &= ~IGC_RAH_ASEL_MASK;
928 		rah |= IGC_RAH_ASEL_SRC_ADDR;
929 	}
930 
931 	if (queue >= 0) {
932 		rah &= ~IGC_RAH_QSEL_MASK;
933 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 		rah |= IGC_RAH_QSEL_ENABLE;
935 	}
936 
937 	rah |= IGC_RAH_AV;
938 
939 	wr32(IGC_RAL(index), ral);
940 	wr32(IGC_RAH(index), rah);
941 
942 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944 
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 	struct net_device *dev = adapter->netdev;
953 	struct igc_hw *hw = &adapter->hw;
954 
955 	if (WARN_ON(index >= hw->mac.rar_entry_count))
956 		return;
957 
958 	wr32(IGC_RAL(index), 0);
959 	wr32(IGC_RAH(index), 0);
960 
961 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963 
964 /* Set default MAC address for the PF in the first RAR entry */
965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 	struct net_device *dev = adapter->netdev;
968 	u8 *addr = adapter->hw.mac.addr;
969 
970 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971 
972 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974 
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 	struct igc_adapter *adapter = netdev_priv(netdev);
985 	struct igc_hw *hw = &adapter->hw;
986 	struct sockaddr *addr = p;
987 
988 	if (!is_valid_ether_addr(addr->sa_data))
989 		return -EADDRNOTAVAIL;
990 
991 	eth_hw_addr_set(netdev, addr->sa_data);
992 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993 
994 	/* set the correct pool for the new PF MAC address in entry 0 */
995 	igc_set_default_mac_filter(adapter);
996 
997 	return 0;
998 }
999 
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 	struct igc_adapter *adapter = netdev_priv(netdev);
1012 	struct igc_hw *hw = &adapter->hw;
1013 	struct netdev_hw_addr *ha;
1014 	u8  *mta_list;
1015 	int i;
1016 
1017 	if (netdev_mc_empty(netdev)) {
1018 		/* nothing to program, so clear mc list */
1019 		igc_update_mc_addr_list(hw, NULL, 0);
1020 		return 0;
1021 	}
1022 
1023 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 	if (!mta_list)
1025 		return -ENOMEM;
1026 
1027 	/* The shared function expects a packed array of only addresses. */
1028 	i = 0;
1029 	netdev_for_each_mc_addr(ha, netdev)
1030 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031 
1032 	igc_update_mc_addr_list(hw, mta_list, i);
1033 	kfree(mta_list);
1034 
1035 	return netdev_mc_count(netdev);
1036 }
1037 
1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 				bool *first_flag, bool *insert_empty)
1040 {
1041 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 	ktime_t cycle_time = adapter->cycle_time;
1043 	ktime_t base_time = adapter->base_time;
1044 	ktime_t now = ktime_get_clocktai();
1045 	ktime_t baset_est, end_of_cycle;
1046 	s32 launchtime;
1047 	s64 n;
1048 
1049 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050 
1051 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053 
1054 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 		if (baset_est != ring->last_ff_cycle) {
1056 			*first_flag = true;
1057 			ring->last_ff_cycle = baset_est;
1058 
1059 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 				*insert_empty = true;
1061 		}
1062 	}
1063 
1064 	/* Introducing a window at end of cycle on which packets
1065 	 * potentially not honor launchtime. Window of 5us chosen
1066 	 * considering software update the tail pointer and packets
1067 	 * are dma'ed to packet buffer.
1068 	 */
1069 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 			    txtime);
1072 
1073 	ring->last_tx_cycle = end_of_cycle;
1074 
1075 	launchtime = ktime_sub_ns(txtime, baset_est);
1076 	if (launchtime > 0)
1077 		div_s64_rem(launchtime, cycle_time, &launchtime);
1078 	else
1079 		launchtime = 0;
1080 
1081 	return cpu_to_le32(launchtime);
1082 }
1083 
1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 				struct igc_tx_buffer *buffer,
1086 				struct sk_buff *skb)
1087 {
1088 	unsigned int size;
1089 	dma_addr_t dma;
1090 
1091 	size = skb_headlen(skb);
1092 
1093 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 	if (dma_mapping_error(ring->dev, dma)) {
1095 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 		return -ENOMEM;
1097 	}
1098 
1099 	buffer->skb = skb;
1100 	buffer->protocol = 0;
1101 	buffer->bytecount = skb->len;
1102 	buffer->gso_segs = 1;
1103 	buffer->time_stamp = jiffies;
1104 	dma_unmap_len_set(buffer, len, skb->len);
1105 	dma_unmap_addr_set(buffer, dma, dma);
1106 
1107 	return 0;
1108 }
1109 
1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111 					struct sk_buff *skb,
1112 					struct igc_tx_buffer *first)
1113 {
1114 	union igc_adv_tx_desc *desc;
1115 	u32 cmd_type, olinfo_status;
1116 	int err;
1117 
1118 	if (!igc_desc_unused(ring))
1119 		return -EBUSY;
1120 
1121 	err = igc_init_empty_frame(ring, first, skb);
1122 	if (err)
1123 		return err;
1124 
1125 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127 		   first->bytecount;
1128 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129 
1130 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1131 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134 
1135 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136 
1137 	first->next_to_watch = desc;
1138 
1139 	ring->next_to_use++;
1140 	if (ring->next_to_use == ring->count)
1141 		ring->next_to_use = 0;
1142 
1143 	return 0;
1144 }
1145 
1146 #define IGC_EMPTY_FRAME_SIZE 60
1147 
1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149 			    __le32 launch_time, bool first_flag,
1150 			    u32 vlan_macip_lens, u32 type_tucmd,
1151 			    u32 mss_l4len_idx)
1152 {
1153 	struct igc_adv_tx_context_desc *context_desc;
1154 	u16 i = tx_ring->next_to_use;
1155 
1156 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157 
1158 	i++;
1159 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160 
1161 	/* set bits to identify this as an advanced context descriptor */
1162 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163 
1164 	/* For i225, context index must be unique per ring. */
1165 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1167 
1168 	if (first_flag)
1169 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170 
1171 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1172 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1173 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1174 	context_desc->launch_time	= launch_time;
1175 }
1176 
1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178 			__le32 launch_time, bool first_flag)
1179 {
1180 	struct sk_buff *skb = first->skb;
1181 	u32 vlan_macip_lens = 0;
1182 	u32 type_tucmd = 0;
1183 
1184 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185 csum_failed:
1186 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187 		    !tx_ring->launchtime_enable)
1188 			return;
1189 		goto no_csum;
1190 	}
1191 
1192 	switch (skb->csum_offset) {
1193 	case offsetof(struct tcphdr, check):
1194 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195 		fallthrough;
1196 	case offsetof(struct udphdr, check):
1197 		break;
1198 	case offsetof(struct sctphdr, checksum):
1199 		/* validate that this is actually an SCTP request */
1200 		if (skb_csum_is_sctp(skb)) {
1201 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202 			break;
1203 		}
1204 		fallthrough;
1205 	default:
1206 		skb_checksum_help(skb);
1207 		goto csum_failed;
1208 	}
1209 
1210 	/* update TX checksum flag */
1211 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1213 			  skb_network_offset(skb);
1214 no_csum:
1215 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217 
1218 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219 			vlan_macip_lens, type_tucmd, 0);
1220 }
1221 
1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223 {
1224 	struct net_device *netdev = tx_ring->netdev;
1225 
1226 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1227 
1228 	/* memory barriier comment */
1229 	smp_mb();
1230 
1231 	/* We need to check again in a case another CPU has just
1232 	 * made room available.
1233 	 */
1234 	if (igc_desc_unused(tx_ring) < size)
1235 		return -EBUSY;
1236 
1237 	/* A reprieve! */
1238 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1239 
1240 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1241 	tx_ring->tx_stats.restart_queue2++;
1242 	u64_stats_update_end(&tx_ring->tx_syncp2);
1243 
1244 	return 0;
1245 }
1246 
1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248 {
1249 	if (igc_desc_unused(tx_ring) >= size)
1250 		return 0;
1251 	return __igc_maybe_stop_tx(tx_ring, size);
1252 }
1253 
1254 #define IGC_SET_FLAG(_input, _flag, _result) \
1255 	(((_flag) <= (_result)) ?				\
1256 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1257 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258 
1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260 {
1261 	/* set type for advanced descriptor with frame checksum insertion */
1262 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263 		       IGC_ADVTXD_DCMD_DEXT |
1264 		       IGC_ADVTXD_DCMD_IFCS;
1265 
1266 	/* set HW vlan bit if vlan is present */
1267 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268 				 IGC_ADVTXD_DCMD_VLE);
1269 
1270 	/* set segmentation bits for TSO */
1271 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272 				 (IGC_ADVTXD_DCMD_TSE));
1273 
1274 	/* set timestamp bit if present */
1275 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1276 				 (IGC_ADVTXD_MAC_TSTAMP));
1277 
1278 	/* insert frame checksum */
1279 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1280 
1281 	return cmd_type;
1282 }
1283 
1284 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1285 				 union igc_adv_tx_desc *tx_desc,
1286 				 u32 tx_flags, unsigned int paylen)
1287 {
1288 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1289 
1290 	/* insert L4 checksum */
1291 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1292 			  ((IGC_TXD_POPTS_TXSM << 8) /
1293 			  IGC_TX_FLAGS_CSUM);
1294 
1295 	/* insert IPv4 checksum */
1296 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1297 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1298 			  IGC_TX_FLAGS_IPV4);
1299 
1300 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1301 }
1302 
1303 static int igc_tx_map(struct igc_ring *tx_ring,
1304 		      struct igc_tx_buffer *first,
1305 		      const u8 hdr_len)
1306 {
1307 	struct sk_buff *skb = first->skb;
1308 	struct igc_tx_buffer *tx_buffer;
1309 	union igc_adv_tx_desc *tx_desc;
1310 	u32 tx_flags = first->tx_flags;
1311 	skb_frag_t *frag;
1312 	u16 i = tx_ring->next_to_use;
1313 	unsigned int data_len, size;
1314 	dma_addr_t dma;
1315 	u32 cmd_type;
1316 
1317 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1318 	tx_desc = IGC_TX_DESC(tx_ring, i);
1319 
1320 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1321 
1322 	size = skb_headlen(skb);
1323 	data_len = skb->data_len;
1324 
1325 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1326 
1327 	tx_buffer = first;
1328 
1329 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1330 		if (dma_mapping_error(tx_ring->dev, dma))
1331 			goto dma_error;
1332 
1333 		/* record length, and DMA address */
1334 		dma_unmap_len_set(tx_buffer, len, size);
1335 		dma_unmap_addr_set(tx_buffer, dma, dma);
1336 
1337 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1338 
1339 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1340 			tx_desc->read.cmd_type_len =
1341 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1342 
1343 			i++;
1344 			tx_desc++;
1345 			if (i == tx_ring->count) {
1346 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1347 				i = 0;
1348 			}
1349 			tx_desc->read.olinfo_status = 0;
1350 
1351 			dma += IGC_MAX_DATA_PER_TXD;
1352 			size -= IGC_MAX_DATA_PER_TXD;
1353 
1354 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1355 		}
1356 
1357 		if (likely(!data_len))
1358 			break;
1359 
1360 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1361 
1362 		i++;
1363 		tx_desc++;
1364 		if (i == tx_ring->count) {
1365 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1366 			i = 0;
1367 		}
1368 		tx_desc->read.olinfo_status = 0;
1369 
1370 		size = skb_frag_size(frag);
1371 		data_len -= size;
1372 
1373 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1374 				       size, DMA_TO_DEVICE);
1375 
1376 		tx_buffer = &tx_ring->tx_buffer_info[i];
1377 	}
1378 
1379 	/* write last descriptor with RS and EOP bits */
1380 	cmd_type |= size | IGC_TXD_DCMD;
1381 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1382 
1383 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1384 
1385 	/* set the timestamp */
1386 	first->time_stamp = jiffies;
1387 
1388 	skb_tx_timestamp(skb);
1389 
1390 	/* Force memory writes to complete before letting h/w know there
1391 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1392 	 * memory model archs, such as IA-64).
1393 	 *
1394 	 * We also need this memory barrier to make certain all of the
1395 	 * status bits have been updated before next_to_watch is written.
1396 	 */
1397 	wmb();
1398 
1399 	/* set next_to_watch value indicating a packet is present */
1400 	first->next_to_watch = tx_desc;
1401 
1402 	i++;
1403 	if (i == tx_ring->count)
1404 		i = 0;
1405 
1406 	tx_ring->next_to_use = i;
1407 
1408 	/* Make sure there is space in the ring for the next send. */
1409 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1410 
1411 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1412 		writel(i, tx_ring->tail);
1413 	}
1414 
1415 	return 0;
1416 dma_error:
1417 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1418 	tx_buffer = &tx_ring->tx_buffer_info[i];
1419 
1420 	/* clear dma mappings for failed tx_buffer_info map */
1421 	while (tx_buffer != first) {
1422 		if (dma_unmap_len(tx_buffer, len))
1423 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1424 
1425 		if (i-- == 0)
1426 			i += tx_ring->count;
1427 		tx_buffer = &tx_ring->tx_buffer_info[i];
1428 	}
1429 
1430 	if (dma_unmap_len(tx_buffer, len))
1431 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1432 
1433 	dev_kfree_skb_any(tx_buffer->skb);
1434 	tx_buffer->skb = NULL;
1435 
1436 	tx_ring->next_to_use = i;
1437 
1438 	return -1;
1439 }
1440 
1441 static int igc_tso(struct igc_ring *tx_ring,
1442 		   struct igc_tx_buffer *first,
1443 		   __le32 launch_time, bool first_flag,
1444 		   u8 *hdr_len)
1445 {
1446 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1447 	struct sk_buff *skb = first->skb;
1448 	union {
1449 		struct iphdr *v4;
1450 		struct ipv6hdr *v6;
1451 		unsigned char *hdr;
1452 	} ip;
1453 	union {
1454 		struct tcphdr *tcp;
1455 		struct udphdr *udp;
1456 		unsigned char *hdr;
1457 	} l4;
1458 	u32 paylen, l4_offset;
1459 	int err;
1460 
1461 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1462 		return 0;
1463 
1464 	if (!skb_is_gso(skb))
1465 		return 0;
1466 
1467 	err = skb_cow_head(skb, 0);
1468 	if (err < 0)
1469 		return err;
1470 
1471 	ip.hdr = skb_network_header(skb);
1472 	l4.hdr = skb_checksum_start(skb);
1473 
1474 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1475 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1476 
1477 	/* initialize outer IP header fields */
1478 	if (ip.v4->version == 4) {
1479 		unsigned char *csum_start = skb_checksum_start(skb);
1480 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1481 
1482 		/* IP header will have to cancel out any data that
1483 		 * is not a part of the outer IP header
1484 		 */
1485 		ip.v4->check = csum_fold(csum_partial(trans_start,
1486 						      csum_start - trans_start,
1487 						      0));
1488 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1489 
1490 		ip.v4->tot_len = 0;
1491 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1492 				   IGC_TX_FLAGS_CSUM |
1493 				   IGC_TX_FLAGS_IPV4;
1494 	} else {
1495 		ip.v6->payload_len = 0;
1496 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1497 				   IGC_TX_FLAGS_CSUM;
1498 	}
1499 
1500 	/* determine offset of inner transport header */
1501 	l4_offset = l4.hdr - skb->data;
1502 
1503 	/* remove payload length from inner checksum */
1504 	paylen = skb->len - l4_offset;
1505 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1506 		/* compute length of segmentation header */
1507 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1508 		csum_replace_by_diff(&l4.tcp->check,
1509 				     (__force __wsum)htonl(paylen));
1510 	} else {
1511 		/* compute length of segmentation header */
1512 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1513 		csum_replace_by_diff(&l4.udp->check,
1514 				     (__force __wsum)htonl(paylen));
1515 	}
1516 
1517 	/* update gso size and bytecount with header size */
1518 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1519 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1520 
1521 	/* MSS L4LEN IDX */
1522 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1523 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1524 
1525 	/* VLAN MACLEN IPLEN */
1526 	vlan_macip_lens = l4.hdr - ip.hdr;
1527 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1528 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1529 
1530 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1531 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1532 
1533 	return 1;
1534 }
1535 
1536 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1537 				       struct igc_ring *tx_ring)
1538 {
1539 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1540 	bool first_flag = false, insert_empty = false;
1541 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1542 	__be16 protocol = vlan_get_protocol(skb);
1543 	struct igc_tx_buffer *first;
1544 	__le32 launch_time = 0;
1545 	u32 tx_flags = 0;
1546 	unsigned short f;
1547 	ktime_t txtime;
1548 	u8 hdr_len = 0;
1549 	int tso = 0;
1550 
1551 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1552 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1553 	 *	+ 2 desc gap to keep tail from touching head,
1554 	 *	+ 1 desc for context descriptor,
1555 	 * otherwise try next time
1556 	 */
1557 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1558 		count += TXD_USE_COUNT(skb_frag_size(
1559 						&skb_shinfo(skb)->frags[f]));
1560 
1561 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1562 		/* this is a hard error */
1563 		return NETDEV_TX_BUSY;
1564 	}
1565 
1566 	if (!tx_ring->launchtime_enable)
1567 		goto done;
1568 
1569 	txtime = skb->tstamp;
1570 	skb->tstamp = ktime_set(0, 0);
1571 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1572 
1573 	if (insert_empty) {
1574 		struct igc_tx_buffer *empty_info;
1575 		struct sk_buff *empty;
1576 		void *data;
1577 
1578 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1579 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1580 		if (!empty)
1581 			goto done;
1582 
1583 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1584 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1585 
1586 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1587 
1588 		if (igc_init_tx_empty_descriptor(tx_ring,
1589 						 empty,
1590 						 empty_info) < 0)
1591 			dev_kfree_skb_any(empty);
1592 	}
1593 
1594 done:
1595 	/* record the location of the first descriptor for this packet */
1596 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1597 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1598 	first->skb = skb;
1599 	first->bytecount = skb->len;
1600 	first->gso_segs = 1;
1601 
1602 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1603 		goto out_drop;
1604 
1605 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1606 		adapter->stats.txdrop++;
1607 		goto out_drop;
1608 	}
1609 
1610 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1611 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1612 		/* FIXME: add support for retrieving timestamps from
1613 		 * the other timer registers before skipping the
1614 		 * timestamping request.
1615 		 */
1616 		unsigned long flags;
1617 
1618 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1619 		if (!adapter->ptp_tx_skb) {
1620 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1621 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1622 
1623 			adapter->ptp_tx_skb = skb_get(skb);
1624 			adapter->ptp_tx_start = jiffies;
1625 		} else {
1626 			adapter->tx_hwtstamp_skipped++;
1627 		}
1628 
1629 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1630 	}
1631 
1632 	if (skb_vlan_tag_present(skb)) {
1633 		tx_flags |= IGC_TX_FLAGS_VLAN;
1634 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1635 	}
1636 
1637 	/* record initial flags and protocol */
1638 	first->tx_flags = tx_flags;
1639 	first->protocol = protocol;
1640 
1641 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1642 	if (tso < 0)
1643 		goto out_drop;
1644 	else if (!tso)
1645 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1646 
1647 	igc_tx_map(tx_ring, first, hdr_len);
1648 
1649 	return NETDEV_TX_OK;
1650 
1651 out_drop:
1652 	dev_kfree_skb_any(first->skb);
1653 	first->skb = NULL;
1654 
1655 	return NETDEV_TX_OK;
1656 }
1657 
1658 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1659 						    struct sk_buff *skb)
1660 {
1661 	unsigned int r_idx = skb->queue_mapping;
1662 
1663 	if (r_idx >= adapter->num_tx_queues)
1664 		r_idx = r_idx % adapter->num_tx_queues;
1665 
1666 	return adapter->tx_ring[r_idx];
1667 }
1668 
1669 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1670 				  struct net_device *netdev)
1671 {
1672 	struct igc_adapter *adapter = netdev_priv(netdev);
1673 
1674 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1675 	 * in order to meet this minimum size requirement.
1676 	 */
1677 	if (skb->len < 17) {
1678 		if (skb_padto(skb, 17))
1679 			return NETDEV_TX_OK;
1680 		skb->len = 17;
1681 	}
1682 
1683 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1684 }
1685 
1686 static void igc_rx_checksum(struct igc_ring *ring,
1687 			    union igc_adv_rx_desc *rx_desc,
1688 			    struct sk_buff *skb)
1689 {
1690 	skb_checksum_none_assert(skb);
1691 
1692 	/* Ignore Checksum bit is set */
1693 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1694 		return;
1695 
1696 	/* Rx checksum disabled via ethtool */
1697 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1698 		return;
1699 
1700 	/* TCP/UDP checksum error bit is set */
1701 	if (igc_test_staterr(rx_desc,
1702 			     IGC_RXDEXT_STATERR_L4E |
1703 			     IGC_RXDEXT_STATERR_IPE)) {
1704 		/* work around errata with sctp packets where the TCPE aka
1705 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1706 		 * packets (aka let the stack check the crc32c)
1707 		 */
1708 		if (!(skb->len == 60 &&
1709 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1710 			u64_stats_update_begin(&ring->rx_syncp);
1711 			ring->rx_stats.csum_err++;
1712 			u64_stats_update_end(&ring->rx_syncp);
1713 		}
1714 		/* let the stack verify checksum errors */
1715 		return;
1716 	}
1717 	/* It must be a TCP or UDP packet with a valid checksum */
1718 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1719 				      IGC_RXD_STAT_UDPCS))
1720 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1721 
1722 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1723 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1724 }
1725 
1726 /* Mapping HW RSS Type to enum pkt_hash_types */
1727 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1728 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1729 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1730 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1731 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1732 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1733 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1734 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1735 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1736 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1737 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1738 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1739 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1740 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1741 	[13] = PKT_HASH_TYPE_NONE,
1742 	[14] = PKT_HASH_TYPE_NONE,
1743 	[15] = PKT_HASH_TYPE_NONE,
1744 };
1745 
1746 static inline void igc_rx_hash(struct igc_ring *ring,
1747 			       union igc_adv_rx_desc *rx_desc,
1748 			       struct sk_buff *skb)
1749 {
1750 	if (ring->netdev->features & NETIF_F_RXHASH) {
1751 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1752 		u32 rss_type = igc_rss_type(rx_desc);
1753 
1754 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1755 	}
1756 }
1757 
1758 static void igc_rx_vlan(struct igc_ring *rx_ring,
1759 			union igc_adv_rx_desc *rx_desc,
1760 			struct sk_buff *skb)
1761 {
1762 	struct net_device *dev = rx_ring->netdev;
1763 	u16 vid;
1764 
1765 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1766 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1767 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1768 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1769 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1770 		else
1771 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1772 
1773 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1774 	}
1775 }
1776 
1777 /**
1778  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1779  * @rx_ring: rx descriptor ring packet is being transacted on
1780  * @rx_desc: pointer to the EOP Rx descriptor
1781  * @skb: pointer to current skb being populated
1782  *
1783  * This function checks the ring, descriptor, and packet information in order
1784  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1785  * skb.
1786  */
1787 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1788 				   union igc_adv_rx_desc *rx_desc,
1789 				   struct sk_buff *skb)
1790 {
1791 	igc_rx_hash(rx_ring, rx_desc, skb);
1792 
1793 	igc_rx_checksum(rx_ring, rx_desc, skb);
1794 
1795 	igc_rx_vlan(rx_ring, rx_desc, skb);
1796 
1797 	skb_record_rx_queue(skb, rx_ring->queue_index);
1798 
1799 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1800 }
1801 
1802 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1803 {
1804 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1805 	struct igc_adapter *adapter = netdev_priv(netdev);
1806 	struct igc_hw *hw = &adapter->hw;
1807 	u32 ctrl;
1808 
1809 	ctrl = rd32(IGC_CTRL);
1810 
1811 	if (enable) {
1812 		/* enable VLAN tag insert/strip */
1813 		ctrl |= IGC_CTRL_VME;
1814 	} else {
1815 		/* disable VLAN tag insert/strip */
1816 		ctrl &= ~IGC_CTRL_VME;
1817 	}
1818 	wr32(IGC_CTRL, ctrl);
1819 }
1820 
1821 static void igc_restore_vlan(struct igc_adapter *adapter)
1822 {
1823 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1824 }
1825 
1826 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1827 					       const unsigned int size,
1828 					       int *rx_buffer_pgcnt)
1829 {
1830 	struct igc_rx_buffer *rx_buffer;
1831 
1832 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1833 	*rx_buffer_pgcnt =
1834 #if (PAGE_SIZE < 8192)
1835 		page_count(rx_buffer->page);
1836 #else
1837 		0;
1838 #endif
1839 	prefetchw(rx_buffer->page);
1840 
1841 	/* we are reusing so sync this buffer for CPU use */
1842 	dma_sync_single_range_for_cpu(rx_ring->dev,
1843 				      rx_buffer->dma,
1844 				      rx_buffer->page_offset,
1845 				      size,
1846 				      DMA_FROM_DEVICE);
1847 
1848 	rx_buffer->pagecnt_bias--;
1849 
1850 	return rx_buffer;
1851 }
1852 
1853 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1854 			       unsigned int truesize)
1855 {
1856 #if (PAGE_SIZE < 8192)
1857 	buffer->page_offset ^= truesize;
1858 #else
1859 	buffer->page_offset += truesize;
1860 #endif
1861 }
1862 
1863 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1864 					      unsigned int size)
1865 {
1866 	unsigned int truesize;
1867 
1868 #if (PAGE_SIZE < 8192)
1869 	truesize = igc_rx_pg_size(ring) / 2;
1870 #else
1871 	truesize = ring_uses_build_skb(ring) ?
1872 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1873 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1874 		   SKB_DATA_ALIGN(size);
1875 #endif
1876 	return truesize;
1877 }
1878 
1879 /**
1880  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1881  * @rx_ring: rx descriptor ring to transact packets on
1882  * @rx_buffer: buffer containing page to add
1883  * @skb: sk_buff to place the data into
1884  * @size: size of buffer to be added
1885  *
1886  * This function will add the data contained in rx_buffer->page to the skb.
1887  */
1888 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1889 			    struct igc_rx_buffer *rx_buffer,
1890 			    struct sk_buff *skb,
1891 			    unsigned int size)
1892 {
1893 	unsigned int truesize;
1894 
1895 #if (PAGE_SIZE < 8192)
1896 	truesize = igc_rx_pg_size(rx_ring) / 2;
1897 #else
1898 	truesize = ring_uses_build_skb(rx_ring) ?
1899 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1900 		   SKB_DATA_ALIGN(size);
1901 #endif
1902 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1903 			rx_buffer->page_offset, size, truesize);
1904 
1905 	igc_rx_buffer_flip(rx_buffer, truesize);
1906 }
1907 
1908 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1909 				     struct igc_rx_buffer *rx_buffer,
1910 				     struct xdp_buff *xdp)
1911 {
1912 	unsigned int size = xdp->data_end - xdp->data;
1913 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1914 	unsigned int metasize = xdp->data - xdp->data_meta;
1915 	struct sk_buff *skb;
1916 
1917 	/* prefetch first cache line of first page */
1918 	net_prefetch(xdp->data_meta);
1919 
1920 	/* build an skb around the page buffer */
1921 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1922 	if (unlikely(!skb))
1923 		return NULL;
1924 
1925 	/* update pointers within the skb to store the data */
1926 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1927 	__skb_put(skb, size);
1928 	if (metasize)
1929 		skb_metadata_set(skb, metasize);
1930 
1931 	igc_rx_buffer_flip(rx_buffer, truesize);
1932 	return skb;
1933 }
1934 
1935 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1936 					 struct igc_rx_buffer *rx_buffer,
1937 					 struct xdp_buff *xdp,
1938 					 ktime_t timestamp)
1939 {
1940 	unsigned int metasize = xdp->data - xdp->data_meta;
1941 	unsigned int size = xdp->data_end - xdp->data;
1942 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1943 	void *va = xdp->data;
1944 	unsigned int headlen;
1945 	struct sk_buff *skb;
1946 
1947 	/* prefetch first cache line of first page */
1948 	net_prefetch(xdp->data_meta);
1949 
1950 	/* allocate a skb to store the frags */
1951 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1952 			     IGC_RX_HDR_LEN + metasize);
1953 	if (unlikely(!skb))
1954 		return NULL;
1955 
1956 	if (timestamp)
1957 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1958 
1959 	/* Determine available headroom for copy */
1960 	headlen = size;
1961 	if (headlen > IGC_RX_HDR_LEN)
1962 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1963 
1964 	/* align pull length to size of long to optimize memcpy performance */
1965 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1966 	       ALIGN(headlen + metasize, sizeof(long)));
1967 
1968 	if (metasize) {
1969 		skb_metadata_set(skb, metasize);
1970 		__skb_pull(skb, metasize);
1971 	}
1972 
1973 	/* update all of the pointers */
1974 	size -= headlen;
1975 	if (size) {
1976 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1977 				(va + headlen) - page_address(rx_buffer->page),
1978 				size, truesize);
1979 		igc_rx_buffer_flip(rx_buffer, truesize);
1980 	} else {
1981 		rx_buffer->pagecnt_bias++;
1982 	}
1983 
1984 	return skb;
1985 }
1986 
1987 /**
1988  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1989  * @rx_ring: rx descriptor ring to store buffers on
1990  * @old_buff: donor buffer to have page reused
1991  *
1992  * Synchronizes page for reuse by the adapter
1993  */
1994 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1995 			      struct igc_rx_buffer *old_buff)
1996 {
1997 	u16 nta = rx_ring->next_to_alloc;
1998 	struct igc_rx_buffer *new_buff;
1999 
2000 	new_buff = &rx_ring->rx_buffer_info[nta];
2001 
2002 	/* update, and store next to alloc */
2003 	nta++;
2004 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2005 
2006 	/* Transfer page from old buffer to new buffer.
2007 	 * Move each member individually to avoid possible store
2008 	 * forwarding stalls.
2009 	 */
2010 	new_buff->dma		= old_buff->dma;
2011 	new_buff->page		= old_buff->page;
2012 	new_buff->page_offset	= old_buff->page_offset;
2013 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2014 }
2015 
2016 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2017 				  int rx_buffer_pgcnt)
2018 {
2019 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2020 	struct page *page = rx_buffer->page;
2021 
2022 	/* avoid re-using remote and pfmemalloc pages */
2023 	if (!dev_page_is_reusable(page))
2024 		return false;
2025 
2026 #if (PAGE_SIZE < 8192)
2027 	/* if we are only owner of page we can reuse it */
2028 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2029 		return false;
2030 #else
2031 #define IGC_LAST_OFFSET \
2032 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2033 
2034 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2035 		return false;
2036 #endif
2037 
2038 	/* If we have drained the page fragment pool we need to update
2039 	 * the pagecnt_bias and page count so that we fully restock the
2040 	 * number of references the driver holds.
2041 	 */
2042 	if (unlikely(pagecnt_bias == 1)) {
2043 		page_ref_add(page, USHRT_MAX - 1);
2044 		rx_buffer->pagecnt_bias = USHRT_MAX;
2045 	}
2046 
2047 	return true;
2048 }
2049 
2050 /**
2051  * igc_is_non_eop - process handling of non-EOP buffers
2052  * @rx_ring: Rx ring being processed
2053  * @rx_desc: Rx descriptor for current buffer
2054  *
2055  * This function updates next to clean.  If the buffer is an EOP buffer
2056  * this function exits returning false, otherwise it will place the
2057  * sk_buff in the next buffer to be chained and return true indicating
2058  * that this is in fact a non-EOP buffer.
2059  */
2060 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2061 			   union igc_adv_rx_desc *rx_desc)
2062 {
2063 	u32 ntc = rx_ring->next_to_clean + 1;
2064 
2065 	/* fetch, update, and store next to clean */
2066 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2067 	rx_ring->next_to_clean = ntc;
2068 
2069 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2070 
2071 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2072 		return false;
2073 
2074 	return true;
2075 }
2076 
2077 /**
2078  * igc_cleanup_headers - Correct corrupted or empty headers
2079  * @rx_ring: rx descriptor ring packet is being transacted on
2080  * @rx_desc: pointer to the EOP Rx descriptor
2081  * @skb: pointer to current skb being fixed
2082  *
2083  * Address the case where we are pulling data in on pages only
2084  * and as such no data is present in the skb header.
2085  *
2086  * In addition if skb is not at least 60 bytes we need to pad it so that
2087  * it is large enough to qualify as a valid Ethernet frame.
2088  *
2089  * Returns true if an error was encountered and skb was freed.
2090  */
2091 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2092 				union igc_adv_rx_desc *rx_desc,
2093 				struct sk_buff *skb)
2094 {
2095 	/* XDP packets use error pointer so abort at this point */
2096 	if (IS_ERR(skb))
2097 		return true;
2098 
2099 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2100 		struct net_device *netdev = rx_ring->netdev;
2101 
2102 		if (!(netdev->features & NETIF_F_RXALL)) {
2103 			dev_kfree_skb_any(skb);
2104 			return true;
2105 		}
2106 	}
2107 
2108 	/* if eth_skb_pad returns an error the skb was freed */
2109 	if (eth_skb_pad(skb))
2110 		return true;
2111 
2112 	return false;
2113 }
2114 
2115 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2116 			      struct igc_rx_buffer *rx_buffer,
2117 			      int rx_buffer_pgcnt)
2118 {
2119 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2120 		/* hand second half of page back to the ring */
2121 		igc_reuse_rx_page(rx_ring, rx_buffer);
2122 	} else {
2123 		/* We are not reusing the buffer so unmap it and free
2124 		 * any references we are holding to it
2125 		 */
2126 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2127 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2128 				     IGC_RX_DMA_ATTR);
2129 		__page_frag_cache_drain(rx_buffer->page,
2130 					rx_buffer->pagecnt_bias);
2131 	}
2132 
2133 	/* clear contents of rx_buffer */
2134 	rx_buffer->page = NULL;
2135 }
2136 
2137 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2138 {
2139 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2140 
2141 	if (ring_uses_build_skb(rx_ring))
2142 		return IGC_SKB_PAD;
2143 	if (igc_xdp_is_enabled(adapter))
2144 		return XDP_PACKET_HEADROOM;
2145 
2146 	return 0;
2147 }
2148 
2149 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2150 				  struct igc_rx_buffer *bi)
2151 {
2152 	struct page *page = bi->page;
2153 	dma_addr_t dma;
2154 
2155 	/* since we are recycling buffers we should seldom need to alloc */
2156 	if (likely(page))
2157 		return true;
2158 
2159 	/* alloc new page for storage */
2160 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2161 	if (unlikely(!page)) {
2162 		rx_ring->rx_stats.alloc_failed++;
2163 		return false;
2164 	}
2165 
2166 	/* map page for use */
2167 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2168 				 igc_rx_pg_size(rx_ring),
2169 				 DMA_FROM_DEVICE,
2170 				 IGC_RX_DMA_ATTR);
2171 
2172 	/* if mapping failed free memory back to system since
2173 	 * there isn't much point in holding memory we can't use
2174 	 */
2175 	if (dma_mapping_error(rx_ring->dev, dma)) {
2176 		__free_page(page);
2177 
2178 		rx_ring->rx_stats.alloc_failed++;
2179 		return false;
2180 	}
2181 
2182 	bi->dma = dma;
2183 	bi->page = page;
2184 	bi->page_offset = igc_rx_offset(rx_ring);
2185 	page_ref_add(page, USHRT_MAX - 1);
2186 	bi->pagecnt_bias = USHRT_MAX;
2187 
2188 	return true;
2189 }
2190 
2191 /**
2192  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2193  * @rx_ring: rx descriptor ring
2194  * @cleaned_count: number of buffers to clean
2195  */
2196 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2197 {
2198 	union igc_adv_rx_desc *rx_desc;
2199 	u16 i = rx_ring->next_to_use;
2200 	struct igc_rx_buffer *bi;
2201 	u16 bufsz;
2202 
2203 	/* nothing to do */
2204 	if (!cleaned_count)
2205 		return;
2206 
2207 	rx_desc = IGC_RX_DESC(rx_ring, i);
2208 	bi = &rx_ring->rx_buffer_info[i];
2209 	i -= rx_ring->count;
2210 
2211 	bufsz = igc_rx_bufsz(rx_ring);
2212 
2213 	do {
2214 		if (!igc_alloc_mapped_page(rx_ring, bi))
2215 			break;
2216 
2217 		/* sync the buffer for use by the device */
2218 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2219 						 bi->page_offset, bufsz,
2220 						 DMA_FROM_DEVICE);
2221 
2222 		/* Refresh the desc even if buffer_addrs didn't change
2223 		 * because each write-back erases this info.
2224 		 */
2225 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2226 
2227 		rx_desc++;
2228 		bi++;
2229 		i++;
2230 		if (unlikely(!i)) {
2231 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2232 			bi = rx_ring->rx_buffer_info;
2233 			i -= rx_ring->count;
2234 		}
2235 
2236 		/* clear the length for the next_to_use descriptor */
2237 		rx_desc->wb.upper.length = 0;
2238 
2239 		cleaned_count--;
2240 	} while (cleaned_count);
2241 
2242 	i += rx_ring->count;
2243 
2244 	if (rx_ring->next_to_use != i) {
2245 		/* record the next descriptor to use */
2246 		rx_ring->next_to_use = i;
2247 
2248 		/* update next to alloc since we have filled the ring */
2249 		rx_ring->next_to_alloc = i;
2250 
2251 		/* Force memory writes to complete before letting h/w
2252 		 * know there are new descriptors to fetch.  (Only
2253 		 * applicable for weak-ordered memory model archs,
2254 		 * such as IA-64).
2255 		 */
2256 		wmb();
2257 		writel(i, rx_ring->tail);
2258 	}
2259 }
2260 
2261 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2262 {
2263 	union igc_adv_rx_desc *desc;
2264 	u16 i = ring->next_to_use;
2265 	struct igc_rx_buffer *bi;
2266 	dma_addr_t dma;
2267 	bool ok = true;
2268 
2269 	if (!count)
2270 		return ok;
2271 
2272 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2273 
2274 	desc = IGC_RX_DESC(ring, i);
2275 	bi = &ring->rx_buffer_info[i];
2276 	i -= ring->count;
2277 
2278 	do {
2279 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2280 		if (!bi->xdp) {
2281 			ok = false;
2282 			break;
2283 		}
2284 
2285 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2286 		desc->read.pkt_addr = cpu_to_le64(dma);
2287 
2288 		desc++;
2289 		bi++;
2290 		i++;
2291 		if (unlikely(!i)) {
2292 			desc = IGC_RX_DESC(ring, 0);
2293 			bi = ring->rx_buffer_info;
2294 			i -= ring->count;
2295 		}
2296 
2297 		/* Clear the length for the next_to_use descriptor. */
2298 		desc->wb.upper.length = 0;
2299 
2300 		count--;
2301 	} while (count);
2302 
2303 	i += ring->count;
2304 
2305 	if (ring->next_to_use != i) {
2306 		ring->next_to_use = i;
2307 
2308 		/* Force memory writes to complete before letting h/w
2309 		 * know there are new descriptors to fetch.  (Only
2310 		 * applicable for weak-ordered memory model archs,
2311 		 * such as IA-64).
2312 		 */
2313 		wmb();
2314 		writel(i, ring->tail);
2315 	}
2316 
2317 	return ok;
2318 }
2319 
2320 /* This function requires __netif_tx_lock is held by the caller. */
2321 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2322 				      struct xdp_frame *xdpf)
2323 {
2324 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2325 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2326 	u16 count, index = ring->next_to_use;
2327 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2328 	struct igc_tx_buffer *buffer = head;
2329 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2330 	u32 olinfo_status, len = xdpf->len, cmd_type;
2331 	void *data = xdpf->data;
2332 	u16 i;
2333 
2334 	count = TXD_USE_COUNT(len);
2335 	for (i = 0; i < nr_frags; i++)
2336 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2337 
2338 	if (igc_maybe_stop_tx(ring, count + 3)) {
2339 		/* this is a hard error */
2340 		return -EBUSY;
2341 	}
2342 
2343 	i = 0;
2344 	head->bytecount = xdp_get_frame_len(xdpf);
2345 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2346 	head->gso_segs = 1;
2347 	head->xdpf = xdpf;
2348 
2349 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2350 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2351 
2352 	for (;;) {
2353 		dma_addr_t dma;
2354 
2355 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2356 		if (dma_mapping_error(ring->dev, dma)) {
2357 			netdev_err_once(ring->netdev,
2358 					"Failed to map DMA for TX\n");
2359 			goto unmap;
2360 		}
2361 
2362 		dma_unmap_len_set(buffer, len, len);
2363 		dma_unmap_addr_set(buffer, dma, dma);
2364 
2365 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2366 			   IGC_ADVTXD_DCMD_IFCS | len;
2367 
2368 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2369 		desc->read.buffer_addr = cpu_to_le64(dma);
2370 
2371 		buffer->protocol = 0;
2372 
2373 		if (++index == ring->count)
2374 			index = 0;
2375 
2376 		if (i == nr_frags)
2377 			break;
2378 
2379 		buffer = &ring->tx_buffer_info[index];
2380 		desc = IGC_TX_DESC(ring, index);
2381 		desc->read.olinfo_status = 0;
2382 
2383 		data = skb_frag_address(&sinfo->frags[i]);
2384 		len = skb_frag_size(&sinfo->frags[i]);
2385 		i++;
2386 	}
2387 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2388 
2389 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2390 	/* set the timestamp */
2391 	head->time_stamp = jiffies;
2392 	/* set next_to_watch value indicating a packet is present */
2393 	head->next_to_watch = desc;
2394 	ring->next_to_use = index;
2395 
2396 	return 0;
2397 
2398 unmap:
2399 	for (;;) {
2400 		buffer = &ring->tx_buffer_info[index];
2401 		if (dma_unmap_len(buffer, len))
2402 			dma_unmap_page(ring->dev,
2403 				       dma_unmap_addr(buffer, dma),
2404 				       dma_unmap_len(buffer, len),
2405 				       DMA_TO_DEVICE);
2406 		dma_unmap_len_set(buffer, len, 0);
2407 		if (buffer == head)
2408 			break;
2409 
2410 		if (!index)
2411 			index += ring->count;
2412 		index--;
2413 	}
2414 
2415 	return -ENOMEM;
2416 }
2417 
2418 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2419 					    int cpu)
2420 {
2421 	int index = cpu;
2422 
2423 	if (unlikely(index < 0))
2424 		index = 0;
2425 
2426 	while (index >= adapter->num_tx_queues)
2427 		index -= adapter->num_tx_queues;
2428 
2429 	return adapter->tx_ring[index];
2430 }
2431 
2432 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2433 {
2434 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2435 	int cpu = smp_processor_id();
2436 	struct netdev_queue *nq;
2437 	struct igc_ring *ring;
2438 	int res;
2439 
2440 	if (unlikely(!xdpf))
2441 		return -EFAULT;
2442 
2443 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2444 	nq = txring_txq(ring);
2445 
2446 	__netif_tx_lock(nq, cpu);
2447 	/* Avoid transmit queue timeout since we share it with the slow path */
2448 	txq_trans_cond_update(nq);
2449 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2450 	__netif_tx_unlock(nq);
2451 	return res;
2452 }
2453 
2454 /* This function assumes rcu_read_lock() is held by the caller. */
2455 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2456 			      struct bpf_prog *prog,
2457 			      struct xdp_buff *xdp)
2458 {
2459 	u32 act = bpf_prog_run_xdp(prog, xdp);
2460 
2461 	switch (act) {
2462 	case XDP_PASS:
2463 		return IGC_XDP_PASS;
2464 	case XDP_TX:
2465 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2466 			goto out_failure;
2467 		return IGC_XDP_TX;
2468 	case XDP_REDIRECT:
2469 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2470 			goto out_failure;
2471 		return IGC_XDP_REDIRECT;
2472 		break;
2473 	default:
2474 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2475 		fallthrough;
2476 	case XDP_ABORTED:
2477 out_failure:
2478 		trace_xdp_exception(adapter->netdev, prog, act);
2479 		fallthrough;
2480 	case XDP_DROP:
2481 		return IGC_XDP_CONSUMED;
2482 	}
2483 }
2484 
2485 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2486 					struct xdp_buff *xdp)
2487 {
2488 	struct bpf_prog *prog;
2489 	int res;
2490 
2491 	prog = READ_ONCE(adapter->xdp_prog);
2492 	if (!prog) {
2493 		res = IGC_XDP_PASS;
2494 		goto out;
2495 	}
2496 
2497 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2498 
2499 out:
2500 	return ERR_PTR(-res);
2501 }
2502 
2503 /* This function assumes __netif_tx_lock is held by the caller. */
2504 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2505 {
2506 	/* Once tail pointer is updated, hardware can fetch the descriptors
2507 	 * any time so we issue a write membar here to ensure all memory
2508 	 * writes are complete before the tail pointer is updated.
2509 	 */
2510 	wmb();
2511 	writel(ring->next_to_use, ring->tail);
2512 }
2513 
2514 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2515 {
2516 	int cpu = smp_processor_id();
2517 	struct netdev_queue *nq;
2518 	struct igc_ring *ring;
2519 
2520 	if (status & IGC_XDP_TX) {
2521 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2522 		nq = txring_txq(ring);
2523 
2524 		__netif_tx_lock(nq, cpu);
2525 		igc_flush_tx_descriptors(ring);
2526 		__netif_tx_unlock(nq);
2527 	}
2528 
2529 	if (status & IGC_XDP_REDIRECT)
2530 		xdp_do_flush();
2531 }
2532 
2533 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2534 				unsigned int packets, unsigned int bytes)
2535 {
2536 	struct igc_ring *ring = q_vector->rx.ring;
2537 
2538 	u64_stats_update_begin(&ring->rx_syncp);
2539 	ring->rx_stats.packets += packets;
2540 	ring->rx_stats.bytes += bytes;
2541 	u64_stats_update_end(&ring->rx_syncp);
2542 
2543 	q_vector->rx.total_packets += packets;
2544 	q_vector->rx.total_bytes += bytes;
2545 }
2546 
2547 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2548 {
2549 	unsigned int total_bytes = 0, total_packets = 0;
2550 	struct igc_adapter *adapter = q_vector->adapter;
2551 	struct igc_ring *rx_ring = q_vector->rx.ring;
2552 	struct sk_buff *skb = rx_ring->skb;
2553 	u16 cleaned_count = igc_desc_unused(rx_ring);
2554 	int xdp_status = 0, rx_buffer_pgcnt;
2555 
2556 	while (likely(total_packets < budget)) {
2557 		union igc_adv_rx_desc *rx_desc;
2558 		struct igc_rx_buffer *rx_buffer;
2559 		unsigned int size, truesize;
2560 		struct igc_xdp_buff ctx;
2561 		ktime_t timestamp = 0;
2562 		int pkt_offset = 0;
2563 		void *pktbuf;
2564 
2565 		/* return some buffers to hardware, one at a time is too slow */
2566 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2567 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2568 			cleaned_count = 0;
2569 		}
2570 
2571 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2572 		size = le16_to_cpu(rx_desc->wb.upper.length);
2573 		if (!size)
2574 			break;
2575 
2576 		/* This memory barrier is needed to keep us from reading
2577 		 * any other fields out of the rx_desc until we know the
2578 		 * descriptor has been written back
2579 		 */
2580 		dma_rmb();
2581 
2582 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2583 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2584 
2585 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2586 
2587 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2588 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2589 							pktbuf);
2590 			ctx.rx_ts = timestamp;
2591 			pkt_offset = IGC_TS_HDR_LEN;
2592 			size -= IGC_TS_HDR_LEN;
2593 		}
2594 
2595 		if (!skb) {
2596 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2597 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2598 					 igc_rx_offset(rx_ring) + pkt_offset,
2599 					 size, true);
2600 			xdp_buff_clear_frags_flag(&ctx.xdp);
2601 			ctx.rx_desc = rx_desc;
2602 
2603 			skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2604 		}
2605 
2606 		if (IS_ERR(skb)) {
2607 			unsigned int xdp_res = -PTR_ERR(skb);
2608 
2609 			switch (xdp_res) {
2610 			case IGC_XDP_CONSUMED:
2611 				rx_buffer->pagecnt_bias++;
2612 				break;
2613 			case IGC_XDP_TX:
2614 			case IGC_XDP_REDIRECT:
2615 				igc_rx_buffer_flip(rx_buffer, truesize);
2616 				xdp_status |= xdp_res;
2617 				break;
2618 			}
2619 
2620 			total_packets++;
2621 			total_bytes += size;
2622 		} else if (skb)
2623 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2624 		else if (ring_uses_build_skb(rx_ring))
2625 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2626 		else
2627 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx.xdp,
2628 						timestamp);
2629 
2630 		/* exit if we failed to retrieve a buffer */
2631 		if (!skb) {
2632 			rx_ring->rx_stats.alloc_failed++;
2633 			rx_buffer->pagecnt_bias++;
2634 			break;
2635 		}
2636 
2637 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2638 		cleaned_count++;
2639 
2640 		/* fetch next buffer in frame if non-eop */
2641 		if (igc_is_non_eop(rx_ring, rx_desc))
2642 			continue;
2643 
2644 		/* verify the packet layout is correct */
2645 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2646 			skb = NULL;
2647 			continue;
2648 		}
2649 
2650 		/* probably a little skewed due to removing CRC */
2651 		total_bytes += skb->len;
2652 
2653 		/* populate checksum, VLAN, and protocol */
2654 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2655 
2656 		napi_gro_receive(&q_vector->napi, skb);
2657 
2658 		/* reset skb pointer */
2659 		skb = NULL;
2660 
2661 		/* update budget accounting */
2662 		total_packets++;
2663 	}
2664 
2665 	if (xdp_status)
2666 		igc_finalize_xdp(adapter, xdp_status);
2667 
2668 	/* place incomplete frames back on ring for completion */
2669 	rx_ring->skb = skb;
2670 
2671 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2672 
2673 	if (cleaned_count)
2674 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2675 
2676 	return total_packets;
2677 }
2678 
2679 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2680 					    struct xdp_buff *xdp)
2681 {
2682 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2683 	unsigned int metasize = xdp->data - xdp->data_meta;
2684 	struct sk_buff *skb;
2685 
2686 	net_prefetch(xdp->data_meta);
2687 
2688 	skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2689 			       GFP_ATOMIC | __GFP_NOWARN);
2690 	if (unlikely(!skb))
2691 		return NULL;
2692 
2693 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2694 	       ALIGN(totalsize, sizeof(long)));
2695 
2696 	if (metasize) {
2697 		skb_metadata_set(skb, metasize);
2698 		__skb_pull(skb, metasize);
2699 	}
2700 
2701 	return skb;
2702 }
2703 
2704 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2705 				union igc_adv_rx_desc *desc,
2706 				struct xdp_buff *xdp,
2707 				ktime_t timestamp)
2708 {
2709 	struct igc_ring *ring = q_vector->rx.ring;
2710 	struct sk_buff *skb;
2711 
2712 	skb = igc_construct_skb_zc(ring, xdp);
2713 	if (!skb) {
2714 		ring->rx_stats.alloc_failed++;
2715 		return;
2716 	}
2717 
2718 	if (timestamp)
2719 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2720 
2721 	if (igc_cleanup_headers(ring, desc, skb))
2722 		return;
2723 
2724 	igc_process_skb_fields(ring, desc, skb);
2725 	napi_gro_receive(&q_vector->napi, skb);
2726 }
2727 
2728 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2729 {
2730 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2731 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2732 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2733 	 */
2734        return (struct igc_xdp_buff *)xdp;
2735 }
2736 
2737 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2738 {
2739 	struct igc_adapter *adapter = q_vector->adapter;
2740 	struct igc_ring *ring = q_vector->rx.ring;
2741 	u16 cleaned_count = igc_desc_unused(ring);
2742 	int total_bytes = 0, total_packets = 0;
2743 	u16 ntc = ring->next_to_clean;
2744 	struct bpf_prog *prog;
2745 	bool failure = false;
2746 	int xdp_status = 0;
2747 
2748 	rcu_read_lock();
2749 
2750 	prog = READ_ONCE(adapter->xdp_prog);
2751 
2752 	while (likely(total_packets < budget)) {
2753 		union igc_adv_rx_desc *desc;
2754 		struct igc_rx_buffer *bi;
2755 		struct igc_xdp_buff *ctx;
2756 		ktime_t timestamp = 0;
2757 		unsigned int size;
2758 		int res;
2759 
2760 		desc = IGC_RX_DESC(ring, ntc);
2761 		size = le16_to_cpu(desc->wb.upper.length);
2762 		if (!size)
2763 			break;
2764 
2765 		/* This memory barrier is needed to keep us from reading
2766 		 * any other fields out of the rx_desc until we know the
2767 		 * descriptor has been written back
2768 		 */
2769 		dma_rmb();
2770 
2771 		bi = &ring->rx_buffer_info[ntc];
2772 
2773 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2774 		ctx->rx_desc = desc;
2775 
2776 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2777 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2778 							bi->xdp->data);
2779 			ctx->rx_ts = timestamp;
2780 
2781 			bi->xdp->data += IGC_TS_HDR_LEN;
2782 
2783 			/* HW timestamp has been copied into local variable. Metadata
2784 			 * length when XDP program is called should be 0.
2785 			 */
2786 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2787 			size -= IGC_TS_HDR_LEN;
2788 		}
2789 
2790 		bi->xdp->data_end = bi->xdp->data + size;
2791 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2792 
2793 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2794 		switch (res) {
2795 		case IGC_XDP_PASS:
2796 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2797 			fallthrough;
2798 		case IGC_XDP_CONSUMED:
2799 			xsk_buff_free(bi->xdp);
2800 			break;
2801 		case IGC_XDP_TX:
2802 		case IGC_XDP_REDIRECT:
2803 			xdp_status |= res;
2804 			break;
2805 		}
2806 
2807 		bi->xdp = NULL;
2808 		total_bytes += size;
2809 		total_packets++;
2810 		cleaned_count++;
2811 		ntc++;
2812 		if (ntc == ring->count)
2813 			ntc = 0;
2814 	}
2815 
2816 	ring->next_to_clean = ntc;
2817 	rcu_read_unlock();
2818 
2819 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2820 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2821 
2822 	if (xdp_status)
2823 		igc_finalize_xdp(adapter, xdp_status);
2824 
2825 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2826 
2827 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2828 		if (failure || ring->next_to_clean == ring->next_to_use)
2829 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2830 		else
2831 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2832 		return total_packets;
2833 	}
2834 
2835 	return failure ? budget : total_packets;
2836 }
2837 
2838 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2839 				unsigned int packets, unsigned int bytes)
2840 {
2841 	struct igc_ring *ring = q_vector->tx.ring;
2842 
2843 	u64_stats_update_begin(&ring->tx_syncp);
2844 	ring->tx_stats.bytes += bytes;
2845 	ring->tx_stats.packets += packets;
2846 	u64_stats_update_end(&ring->tx_syncp);
2847 
2848 	q_vector->tx.total_bytes += bytes;
2849 	q_vector->tx.total_packets += packets;
2850 }
2851 
2852 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2853 {
2854 	struct xsk_buff_pool *pool = ring->xsk_pool;
2855 	struct netdev_queue *nq = txring_txq(ring);
2856 	union igc_adv_tx_desc *tx_desc = NULL;
2857 	int cpu = smp_processor_id();
2858 	struct xdp_desc xdp_desc;
2859 	u16 budget, ntu;
2860 
2861 	if (!netif_carrier_ok(ring->netdev))
2862 		return;
2863 
2864 	__netif_tx_lock(nq, cpu);
2865 
2866 	/* Avoid transmit queue timeout since we share it with the slow path */
2867 	txq_trans_cond_update(nq);
2868 
2869 	ntu = ring->next_to_use;
2870 	budget = igc_desc_unused(ring);
2871 
2872 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2873 		u32 cmd_type, olinfo_status;
2874 		struct igc_tx_buffer *bi;
2875 		dma_addr_t dma;
2876 
2877 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2878 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2879 			   xdp_desc.len;
2880 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2881 
2882 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2883 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2884 
2885 		tx_desc = IGC_TX_DESC(ring, ntu);
2886 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2887 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2888 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2889 
2890 		bi = &ring->tx_buffer_info[ntu];
2891 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2892 		bi->protocol = 0;
2893 		bi->bytecount = xdp_desc.len;
2894 		bi->gso_segs = 1;
2895 		bi->time_stamp = jiffies;
2896 		bi->next_to_watch = tx_desc;
2897 
2898 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2899 
2900 		ntu++;
2901 		if (ntu == ring->count)
2902 			ntu = 0;
2903 	}
2904 
2905 	ring->next_to_use = ntu;
2906 	if (tx_desc) {
2907 		igc_flush_tx_descriptors(ring);
2908 		xsk_tx_release(pool);
2909 	}
2910 
2911 	__netif_tx_unlock(nq);
2912 }
2913 
2914 /**
2915  * igc_clean_tx_irq - Reclaim resources after transmit completes
2916  * @q_vector: pointer to q_vector containing needed info
2917  * @napi_budget: Used to determine if we are in netpoll
2918  *
2919  * returns true if ring is completely cleaned
2920  */
2921 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2922 {
2923 	struct igc_adapter *adapter = q_vector->adapter;
2924 	unsigned int total_bytes = 0, total_packets = 0;
2925 	unsigned int budget = q_vector->tx.work_limit;
2926 	struct igc_ring *tx_ring = q_vector->tx.ring;
2927 	unsigned int i = tx_ring->next_to_clean;
2928 	struct igc_tx_buffer *tx_buffer;
2929 	union igc_adv_tx_desc *tx_desc;
2930 	u32 xsk_frames = 0;
2931 
2932 	if (test_bit(__IGC_DOWN, &adapter->state))
2933 		return true;
2934 
2935 	tx_buffer = &tx_ring->tx_buffer_info[i];
2936 	tx_desc = IGC_TX_DESC(tx_ring, i);
2937 	i -= tx_ring->count;
2938 
2939 	do {
2940 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2941 
2942 		/* if next_to_watch is not set then there is no work pending */
2943 		if (!eop_desc)
2944 			break;
2945 
2946 		/* prevent any other reads prior to eop_desc */
2947 		smp_rmb();
2948 
2949 		/* if DD is not set pending work has not been completed */
2950 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2951 			break;
2952 
2953 		/* clear next_to_watch to prevent false hangs */
2954 		tx_buffer->next_to_watch = NULL;
2955 
2956 		/* update the statistics for this packet */
2957 		total_bytes += tx_buffer->bytecount;
2958 		total_packets += tx_buffer->gso_segs;
2959 
2960 		switch (tx_buffer->type) {
2961 		case IGC_TX_BUFFER_TYPE_XSK:
2962 			xsk_frames++;
2963 			break;
2964 		case IGC_TX_BUFFER_TYPE_XDP:
2965 			xdp_return_frame(tx_buffer->xdpf);
2966 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2967 			break;
2968 		case IGC_TX_BUFFER_TYPE_SKB:
2969 			napi_consume_skb(tx_buffer->skb, napi_budget);
2970 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2971 			break;
2972 		default:
2973 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2974 			break;
2975 		}
2976 
2977 		/* clear last DMA location and unmap remaining buffers */
2978 		while (tx_desc != eop_desc) {
2979 			tx_buffer++;
2980 			tx_desc++;
2981 			i++;
2982 			if (unlikely(!i)) {
2983 				i -= tx_ring->count;
2984 				tx_buffer = tx_ring->tx_buffer_info;
2985 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2986 			}
2987 
2988 			/* unmap any remaining paged data */
2989 			if (dma_unmap_len(tx_buffer, len))
2990 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2991 		}
2992 
2993 		/* move us one more past the eop_desc for start of next pkt */
2994 		tx_buffer++;
2995 		tx_desc++;
2996 		i++;
2997 		if (unlikely(!i)) {
2998 			i -= tx_ring->count;
2999 			tx_buffer = tx_ring->tx_buffer_info;
3000 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3001 		}
3002 
3003 		/* issue prefetch for next Tx descriptor */
3004 		prefetch(tx_desc);
3005 
3006 		/* update budget accounting */
3007 		budget--;
3008 	} while (likely(budget));
3009 
3010 	netdev_tx_completed_queue(txring_txq(tx_ring),
3011 				  total_packets, total_bytes);
3012 
3013 	i += tx_ring->count;
3014 	tx_ring->next_to_clean = i;
3015 
3016 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3017 
3018 	if (tx_ring->xsk_pool) {
3019 		if (xsk_frames)
3020 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3021 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3022 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3023 		igc_xdp_xmit_zc(tx_ring);
3024 	}
3025 
3026 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3027 		struct igc_hw *hw = &adapter->hw;
3028 
3029 		/* Detect a transmit hang in hardware, this serializes the
3030 		 * check with the clearing of time_stamp and movement of i
3031 		 */
3032 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3033 		if (tx_buffer->next_to_watch &&
3034 		    time_after(jiffies, tx_buffer->time_stamp +
3035 		    (adapter->tx_timeout_factor * HZ)) &&
3036 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3037 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3038 		    !tx_ring->oper_gate_closed) {
3039 			/* detected Tx unit hang */
3040 			netdev_err(tx_ring->netdev,
3041 				   "Detected Tx Unit Hang\n"
3042 				   "  Tx Queue             <%d>\n"
3043 				   "  TDH                  <%x>\n"
3044 				   "  TDT                  <%x>\n"
3045 				   "  next_to_use          <%x>\n"
3046 				   "  next_to_clean        <%x>\n"
3047 				   "buffer_info[next_to_clean]\n"
3048 				   "  time_stamp           <%lx>\n"
3049 				   "  next_to_watch        <%p>\n"
3050 				   "  jiffies              <%lx>\n"
3051 				   "  desc.status          <%x>\n",
3052 				   tx_ring->queue_index,
3053 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3054 				   readl(tx_ring->tail),
3055 				   tx_ring->next_to_use,
3056 				   tx_ring->next_to_clean,
3057 				   tx_buffer->time_stamp,
3058 				   tx_buffer->next_to_watch,
3059 				   jiffies,
3060 				   tx_buffer->next_to_watch->wb.status);
3061 			netif_stop_subqueue(tx_ring->netdev,
3062 					    tx_ring->queue_index);
3063 
3064 			/* we are about to reset, no point in enabling stuff */
3065 			return true;
3066 		}
3067 	}
3068 
3069 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3070 	if (unlikely(total_packets &&
3071 		     netif_carrier_ok(tx_ring->netdev) &&
3072 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3073 		/* Make sure that anybody stopping the queue after this
3074 		 * sees the new next_to_clean.
3075 		 */
3076 		smp_mb();
3077 		if (__netif_subqueue_stopped(tx_ring->netdev,
3078 					     tx_ring->queue_index) &&
3079 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3080 			netif_wake_subqueue(tx_ring->netdev,
3081 					    tx_ring->queue_index);
3082 
3083 			u64_stats_update_begin(&tx_ring->tx_syncp);
3084 			tx_ring->tx_stats.restart_queue++;
3085 			u64_stats_update_end(&tx_ring->tx_syncp);
3086 		}
3087 	}
3088 
3089 	return !!budget;
3090 }
3091 
3092 static int igc_find_mac_filter(struct igc_adapter *adapter,
3093 			       enum igc_mac_filter_type type, const u8 *addr)
3094 {
3095 	struct igc_hw *hw = &adapter->hw;
3096 	int max_entries = hw->mac.rar_entry_count;
3097 	u32 ral, rah;
3098 	int i;
3099 
3100 	for (i = 0; i < max_entries; i++) {
3101 		ral = rd32(IGC_RAL(i));
3102 		rah = rd32(IGC_RAH(i));
3103 
3104 		if (!(rah & IGC_RAH_AV))
3105 			continue;
3106 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3107 			continue;
3108 		if ((rah & IGC_RAH_RAH_MASK) !=
3109 		    le16_to_cpup((__le16 *)(addr + 4)))
3110 			continue;
3111 		if (ral != le32_to_cpup((__le32 *)(addr)))
3112 			continue;
3113 
3114 		return i;
3115 	}
3116 
3117 	return -1;
3118 }
3119 
3120 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3121 {
3122 	struct igc_hw *hw = &adapter->hw;
3123 	int max_entries = hw->mac.rar_entry_count;
3124 	u32 rah;
3125 	int i;
3126 
3127 	for (i = 0; i < max_entries; i++) {
3128 		rah = rd32(IGC_RAH(i));
3129 
3130 		if (!(rah & IGC_RAH_AV))
3131 			return i;
3132 	}
3133 
3134 	return -1;
3135 }
3136 
3137 /**
3138  * igc_add_mac_filter() - Add MAC address filter
3139  * @adapter: Pointer to adapter where the filter should be added
3140  * @type: MAC address filter type (source or destination)
3141  * @addr: MAC address
3142  * @queue: If non-negative, queue assignment feature is enabled and frames
3143  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3144  *         assignment is disabled.
3145  *
3146  * Return: 0 in case of success, negative errno code otherwise.
3147  */
3148 static int igc_add_mac_filter(struct igc_adapter *adapter,
3149 			      enum igc_mac_filter_type type, const u8 *addr,
3150 			      int queue)
3151 {
3152 	struct net_device *dev = adapter->netdev;
3153 	int index;
3154 
3155 	index = igc_find_mac_filter(adapter, type, addr);
3156 	if (index >= 0)
3157 		goto update_filter;
3158 
3159 	index = igc_get_avail_mac_filter_slot(adapter);
3160 	if (index < 0)
3161 		return -ENOSPC;
3162 
3163 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3164 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3165 		   addr, queue);
3166 
3167 update_filter:
3168 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3169 	return 0;
3170 }
3171 
3172 /**
3173  * igc_del_mac_filter() - Delete MAC address filter
3174  * @adapter: Pointer to adapter where the filter should be deleted from
3175  * @type: MAC address filter type (source or destination)
3176  * @addr: MAC address
3177  */
3178 static void igc_del_mac_filter(struct igc_adapter *adapter,
3179 			       enum igc_mac_filter_type type, const u8 *addr)
3180 {
3181 	struct net_device *dev = adapter->netdev;
3182 	int index;
3183 
3184 	index = igc_find_mac_filter(adapter, type, addr);
3185 	if (index < 0)
3186 		return;
3187 
3188 	if (index == 0) {
3189 		/* If this is the default filter, we don't actually delete it.
3190 		 * We just reset to its default value i.e. disable queue
3191 		 * assignment.
3192 		 */
3193 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3194 
3195 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3196 	} else {
3197 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3198 			   index,
3199 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3200 			   addr);
3201 
3202 		igc_clear_mac_filter_hw(adapter, index);
3203 	}
3204 }
3205 
3206 /**
3207  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3208  * @adapter: Pointer to adapter where the filter should be added
3209  * @prio: VLAN priority value
3210  * @queue: Queue number which matching frames are assigned to
3211  *
3212  * Return: 0 in case of success, negative errno code otherwise.
3213  */
3214 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3215 				    int queue)
3216 {
3217 	struct net_device *dev = adapter->netdev;
3218 	struct igc_hw *hw = &adapter->hw;
3219 	u32 vlanpqf;
3220 
3221 	vlanpqf = rd32(IGC_VLANPQF);
3222 
3223 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3224 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3225 		return -EEXIST;
3226 	}
3227 
3228 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3229 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3230 
3231 	wr32(IGC_VLANPQF, vlanpqf);
3232 
3233 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3234 		   prio, queue);
3235 	return 0;
3236 }
3237 
3238 /**
3239  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3240  * @adapter: Pointer to adapter where the filter should be deleted from
3241  * @prio: VLAN priority value
3242  */
3243 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3244 {
3245 	struct igc_hw *hw = &adapter->hw;
3246 	u32 vlanpqf;
3247 
3248 	vlanpqf = rd32(IGC_VLANPQF);
3249 
3250 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3251 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3252 
3253 	wr32(IGC_VLANPQF, vlanpqf);
3254 
3255 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3256 		   prio);
3257 }
3258 
3259 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3260 {
3261 	struct igc_hw *hw = &adapter->hw;
3262 	int i;
3263 
3264 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3265 		u32 etqf = rd32(IGC_ETQF(i));
3266 
3267 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3268 			return i;
3269 	}
3270 
3271 	return -1;
3272 }
3273 
3274 /**
3275  * igc_add_etype_filter() - Add ethertype filter
3276  * @adapter: Pointer to adapter where the filter should be added
3277  * @etype: Ethertype value
3278  * @queue: If non-negative, queue assignment feature is enabled and frames
3279  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3280  *         assignment is disabled.
3281  *
3282  * Return: 0 in case of success, negative errno code otherwise.
3283  */
3284 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3285 				int queue)
3286 {
3287 	struct igc_hw *hw = &adapter->hw;
3288 	int index;
3289 	u32 etqf;
3290 
3291 	index = igc_get_avail_etype_filter_slot(adapter);
3292 	if (index < 0)
3293 		return -ENOSPC;
3294 
3295 	etqf = rd32(IGC_ETQF(index));
3296 
3297 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3298 	etqf |= etype;
3299 
3300 	if (queue >= 0) {
3301 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3302 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3303 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3304 	}
3305 
3306 	etqf |= IGC_ETQF_FILTER_ENABLE;
3307 
3308 	wr32(IGC_ETQF(index), etqf);
3309 
3310 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3311 		   etype, queue);
3312 	return 0;
3313 }
3314 
3315 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3316 {
3317 	struct igc_hw *hw = &adapter->hw;
3318 	int i;
3319 
3320 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3321 		u32 etqf = rd32(IGC_ETQF(i));
3322 
3323 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3324 			return i;
3325 	}
3326 
3327 	return -1;
3328 }
3329 
3330 /**
3331  * igc_del_etype_filter() - Delete ethertype filter
3332  * @adapter: Pointer to adapter where the filter should be deleted from
3333  * @etype: Ethertype value
3334  */
3335 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3336 {
3337 	struct igc_hw *hw = &adapter->hw;
3338 	int index;
3339 
3340 	index = igc_find_etype_filter(adapter, etype);
3341 	if (index < 0)
3342 		return;
3343 
3344 	wr32(IGC_ETQF(index), 0);
3345 
3346 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3347 		   etype);
3348 }
3349 
3350 static int igc_flex_filter_select(struct igc_adapter *adapter,
3351 				  struct igc_flex_filter *input,
3352 				  u32 *fhft)
3353 {
3354 	struct igc_hw *hw = &adapter->hw;
3355 	u8 fhft_index;
3356 	u32 fhftsl;
3357 
3358 	if (input->index >= MAX_FLEX_FILTER) {
3359 		dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3360 		return -EINVAL;
3361 	}
3362 
3363 	/* Indirect table select register */
3364 	fhftsl = rd32(IGC_FHFTSL);
3365 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3366 	switch (input->index) {
3367 	case 0 ... 7:
3368 		fhftsl |= 0x00;
3369 		break;
3370 	case 8 ... 15:
3371 		fhftsl |= 0x01;
3372 		break;
3373 	case 16 ... 23:
3374 		fhftsl |= 0x02;
3375 		break;
3376 	case 24 ... 31:
3377 		fhftsl |= 0x03;
3378 		break;
3379 	}
3380 	wr32(IGC_FHFTSL, fhftsl);
3381 
3382 	/* Normalize index down to host table register */
3383 	fhft_index = input->index % 8;
3384 
3385 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3386 		IGC_FHFT_EXT(fhft_index - 4);
3387 
3388 	return 0;
3389 }
3390 
3391 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3392 				    struct igc_flex_filter *input)
3393 {
3394 	struct device *dev = &adapter->pdev->dev;
3395 	struct igc_hw *hw = &adapter->hw;
3396 	u8 *data = input->data;
3397 	u8 *mask = input->mask;
3398 	u32 queuing;
3399 	u32 fhft;
3400 	u32 wufc;
3401 	int ret;
3402 	int i;
3403 
3404 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3405 	 * out early to avoid surprises later.
3406 	 */
3407 	if (input->length % 8 != 0) {
3408 		dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3409 		return -EINVAL;
3410 	}
3411 
3412 	/* Select corresponding flex filter register and get base for host table. */
3413 	ret = igc_flex_filter_select(adapter, input, &fhft);
3414 	if (ret)
3415 		return ret;
3416 
3417 	/* When adding a filter globally disable flex filter feature. That is
3418 	 * recommended within the datasheet.
3419 	 */
3420 	wufc = rd32(IGC_WUFC);
3421 	wufc &= ~IGC_WUFC_FLEX_HQ;
3422 	wr32(IGC_WUFC, wufc);
3423 
3424 	/* Configure filter */
3425 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3426 	queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3427 	queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3428 
3429 	if (input->immediate_irq)
3430 		queuing |= IGC_FHFT_IMM_INT;
3431 
3432 	if (input->drop)
3433 		queuing |= IGC_FHFT_DROP;
3434 
3435 	wr32(fhft + 0xFC, queuing);
3436 
3437 	/* Write data (128 byte) and mask (128 bit) */
3438 	for (i = 0; i < 16; ++i) {
3439 		const size_t data_idx = i * 8;
3440 		const size_t row_idx = i * 16;
3441 		u32 dw0 =
3442 			(data[data_idx + 0] << 0) |
3443 			(data[data_idx + 1] << 8) |
3444 			(data[data_idx + 2] << 16) |
3445 			(data[data_idx + 3] << 24);
3446 		u32 dw1 =
3447 			(data[data_idx + 4] << 0) |
3448 			(data[data_idx + 5] << 8) |
3449 			(data[data_idx + 6] << 16) |
3450 			(data[data_idx + 7] << 24);
3451 		u32 tmp;
3452 
3453 		/* Write row: dw0, dw1 and mask */
3454 		wr32(fhft + row_idx, dw0);
3455 		wr32(fhft + row_idx + 4, dw1);
3456 
3457 		/* mask is only valid for MASK(7, 0) */
3458 		tmp = rd32(fhft + row_idx + 8);
3459 		tmp &= ~GENMASK(7, 0);
3460 		tmp |= mask[i];
3461 		wr32(fhft + row_idx + 8, tmp);
3462 	}
3463 
3464 	/* Enable filter. */
3465 	wufc |= IGC_WUFC_FLEX_HQ;
3466 	if (input->index > 8) {
3467 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3468 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3469 
3470 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3471 
3472 		wr32(IGC_WUFC_EXT, wufc_ext);
3473 	} else {
3474 		wufc |= (IGC_WUFC_FLX0 << input->index);
3475 	}
3476 	wr32(IGC_WUFC, wufc);
3477 
3478 	dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3479 		input->index);
3480 
3481 	return 0;
3482 }
3483 
3484 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3485 				      const void *src, unsigned int offset,
3486 				      size_t len, const void *mask)
3487 {
3488 	int i;
3489 
3490 	/* data */
3491 	memcpy(&flex->data[offset], src, len);
3492 
3493 	/* mask */
3494 	for (i = 0; i < len; ++i) {
3495 		const unsigned int idx = i + offset;
3496 		const u8 *ptr = mask;
3497 
3498 		if (mask) {
3499 			if (ptr[i] & 0xff)
3500 				flex->mask[idx / 8] |= BIT(idx % 8);
3501 
3502 			continue;
3503 		}
3504 
3505 		flex->mask[idx / 8] |= BIT(idx % 8);
3506 	}
3507 }
3508 
3509 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3510 {
3511 	struct igc_hw *hw = &adapter->hw;
3512 	u32 wufc, wufc_ext;
3513 	int i;
3514 
3515 	wufc = rd32(IGC_WUFC);
3516 	wufc_ext = rd32(IGC_WUFC_EXT);
3517 
3518 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3519 		if (i < 8) {
3520 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3521 				return i;
3522 		} else {
3523 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3524 				return i;
3525 		}
3526 	}
3527 
3528 	return -ENOSPC;
3529 }
3530 
3531 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3532 {
3533 	struct igc_hw *hw = &adapter->hw;
3534 	u32 wufc, wufc_ext;
3535 
3536 	wufc = rd32(IGC_WUFC);
3537 	wufc_ext = rd32(IGC_WUFC_EXT);
3538 
3539 	if (wufc & IGC_WUFC_FILTER_MASK)
3540 		return true;
3541 
3542 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3543 		return true;
3544 
3545 	return false;
3546 }
3547 
3548 static int igc_add_flex_filter(struct igc_adapter *adapter,
3549 			       struct igc_nfc_rule *rule)
3550 {
3551 	struct igc_flex_filter flex = { };
3552 	struct igc_nfc_filter *filter = &rule->filter;
3553 	unsigned int eth_offset, user_offset;
3554 	int ret, index;
3555 	bool vlan;
3556 
3557 	index = igc_find_avail_flex_filter_slot(adapter);
3558 	if (index < 0)
3559 		return -ENOSPC;
3560 
3561 	/* Construct the flex filter:
3562 	 *  -> dest_mac [6]
3563 	 *  -> src_mac [6]
3564 	 *  -> tpid [2]
3565 	 *  -> vlan tci [2]
3566 	 *  -> ether type [2]
3567 	 *  -> user data [8]
3568 	 *  -> = 26 bytes => 32 length
3569 	 */
3570 	flex.index    = index;
3571 	flex.length   = 32;
3572 	flex.rx_queue = rule->action;
3573 
3574 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3575 	eth_offset = vlan ? 16 : 12;
3576 	user_offset = vlan ? 18 : 14;
3577 
3578 	/* Add destination MAC  */
3579 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3580 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3581 					  ETH_ALEN, NULL);
3582 
3583 	/* Add source MAC */
3584 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3585 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3586 					  ETH_ALEN, NULL);
3587 
3588 	/* Add VLAN etype */
3589 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3590 		igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3591 					  sizeof(filter->vlan_etype),
3592 					  NULL);
3593 
3594 	/* Add VLAN TCI */
3595 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3596 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3597 					  sizeof(filter->vlan_tci), NULL);
3598 
3599 	/* Add Ether type */
3600 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3601 		__be16 etype = cpu_to_be16(filter->etype);
3602 
3603 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3604 					  sizeof(etype), NULL);
3605 	}
3606 
3607 	/* Add user data */
3608 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3609 		igc_flex_filter_add_field(&flex, &filter->user_data,
3610 					  user_offset,
3611 					  sizeof(filter->user_data),
3612 					  filter->user_mask);
3613 
3614 	/* Add it down to the hardware and enable it. */
3615 	ret = igc_write_flex_filter_ll(adapter, &flex);
3616 	if (ret)
3617 		return ret;
3618 
3619 	filter->flex_index = index;
3620 
3621 	return 0;
3622 }
3623 
3624 static void igc_del_flex_filter(struct igc_adapter *adapter,
3625 				u16 reg_index)
3626 {
3627 	struct igc_hw *hw = &adapter->hw;
3628 	u32 wufc;
3629 
3630 	/* Just disable the filter. The filter table itself is kept
3631 	 * intact. Another flex_filter_add() should override the "old" data
3632 	 * then.
3633 	 */
3634 	if (reg_index > 8) {
3635 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3636 
3637 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3638 		wr32(IGC_WUFC_EXT, wufc_ext);
3639 	} else {
3640 		wufc = rd32(IGC_WUFC);
3641 
3642 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3643 		wr32(IGC_WUFC, wufc);
3644 	}
3645 
3646 	if (igc_flex_filter_in_use(adapter))
3647 		return;
3648 
3649 	/* No filters are in use, we may disable flex filters */
3650 	wufc = rd32(IGC_WUFC);
3651 	wufc &= ~IGC_WUFC_FLEX_HQ;
3652 	wr32(IGC_WUFC, wufc);
3653 }
3654 
3655 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3656 			       struct igc_nfc_rule *rule)
3657 {
3658 	int err;
3659 
3660 	if (rule->flex) {
3661 		return igc_add_flex_filter(adapter, rule);
3662 	}
3663 
3664 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3665 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3666 					   rule->action);
3667 		if (err)
3668 			return err;
3669 	}
3670 
3671 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3672 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3673 					 rule->filter.src_addr, rule->action);
3674 		if (err)
3675 			return err;
3676 	}
3677 
3678 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3679 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3680 					 rule->filter.dst_addr, rule->action);
3681 		if (err)
3682 			return err;
3683 	}
3684 
3685 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3686 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3687 			   VLAN_PRIO_SHIFT;
3688 
3689 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3690 		if (err)
3691 			return err;
3692 	}
3693 
3694 	return 0;
3695 }
3696 
3697 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3698 				 const struct igc_nfc_rule *rule)
3699 {
3700 	if (rule->flex) {
3701 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3702 		return;
3703 	}
3704 
3705 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3706 		igc_del_etype_filter(adapter, rule->filter.etype);
3707 
3708 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3709 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3710 			   VLAN_PRIO_SHIFT;
3711 
3712 		igc_del_vlan_prio_filter(adapter, prio);
3713 	}
3714 
3715 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3716 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3717 				   rule->filter.src_addr);
3718 
3719 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3720 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3721 				   rule->filter.dst_addr);
3722 }
3723 
3724 /**
3725  * igc_get_nfc_rule() - Get NFC rule
3726  * @adapter: Pointer to adapter
3727  * @location: Rule location
3728  *
3729  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3730  *
3731  * Return: Pointer to NFC rule at @location. If not found, NULL.
3732  */
3733 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3734 				      u32 location)
3735 {
3736 	struct igc_nfc_rule *rule;
3737 
3738 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3739 		if (rule->location == location)
3740 			return rule;
3741 		if (rule->location > location)
3742 			break;
3743 	}
3744 
3745 	return NULL;
3746 }
3747 
3748 /**
3749  * igc_del_nfc_rule() - Delete NFC rule
3750  * @adapter: Pointer to adapter
3751  * @rule: Pointer to rule to be deleted
3752  *
3753  * Disable NFC rule in hardware and delete it from adapter.
3754  *
3755  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3756  */
3757 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3758 {
3759 	igc_disable_nfc_rule(adapter, rule);
3760 
3761 	list_del(&rule->list);
3762 	adapter->nfc_rule_count--;
3763 
3764 	kfree(rule);
3765 }
3766 
3767 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3768 {
3769 	struct igc_nfc_rule *rule, *tmp;
3770 
3771 	mutex_lock(&adapter->nfc_rule_lock);
3772 
3773 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3774 		igc_del_nfc_rule(adapter, rule);
3775 
3776 	mutex_unlock(&adapter->nfc_rule_lock);
3777 }
3778 
3779 /**
3780  * igc_add_nfc_rule() - Add NFC rule
3781  * @adapter: Pointer to adapter
3782  * @rule: Pointer to rule to be added
3783  *
3784  * Enable NFC rule in hardware and add it to adapter.
3785  *
3786  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3787  *
3788  * Return: 0 on success, negative errno on failure.
3789  */
3790 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3791 {
3792 	struct igc_nfc_rule *pred, *cur;
3793 	int err;
3794 
3795 	err = igc_enable_nfc_rule(adapter, rule);
3796 	if (err)
3797 		return err;
3798 
3799 	pred = NULL;
3800 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3801 		if (cur->location >= rule->location)
3802 			break;
3803 		pred = cur;
3804 	}
3805 
3806 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3807 	adapter->nfc_rule_count++;
3808 	return 0;
3809 }
3810 
3811 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3812 {
3813 	struct igc_nfc_rule *rule;
3814 
3815 	mutex_lock(&adapter->nfc_rule_lock);
3816 
3817 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3818 		igc_enable_nfc_rule(adapter, rule);
3819 
3820 	mutex_unlock(&adapter->nfc_rule_lock);
3821 }
3822 
3823 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3824 {
3825 	struct igc_adapter *adapter = netdev_priv(netdev);
3826 
3827 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3828 }
3829 
3830 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3831 {
3832 	struct igc_adapter *adapter = netdev_priv(netdev);
3833 
3834 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3835 	return 0;
3836 }
3837 
3838 /**
3839  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3840  * @netdev: network interface device structure
3841  *
3842  * The set_rx_mode entry point is called whenever the unicast or multicast
3843  * address lists or the network interface flags are updated.  This routine is
3844  * responsible for configuring the hardware for proper unicast, multicast,
3845  * promiscuous mode, and all-multi behavior.
3846  */
3847 static void igc_set_rx_mode(struct net_device *netdev)
3848 {
3849 	struct igc_adapter *adapter = netdev_priv(netdev);
3850 	struct igc_hw *hw = &adapter->hw;
3851 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3852 	int count;
3853 
3854 	/* Check for Promiscuous and All Multicast modes */
3855 	if (netdev->flags & IFF_PROMISC) {
3856 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3857 	} else {
3858 		if (netdev->flags & IFF_ALLMULTI) {
3859 			rctl |= IGC_RCTL_MPE;
3860 		} else {
3861 			/* Write addresses to the MTA, if the attempt fails
3862 			 * then we should just turn on promiscuous mode so
3863 			 * that we can at least receive multicast traffic
3864 			 */
3865 			count = igc_write_mc_addr_list(netdev);
3866 			if (count < 0)
3867 				rctl |= IGC_RCTL_MPE;
3868 		}
3869 	}
3870 
3871 	/* Write addresses to available RAR registers, if there is not
3872 	 * sufficient space to store all the addresses then enable
3873 	 * unicast promiscuous mode
3874 	 */
3875 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3876 		rctl |= IGC_RCTL_UPE;
3877 
3878 	/* update state of unicast and multicast */
3879 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3880 	wr32(IGC_RCTL, rctl);
3881 
3882 #if (PAGE_SIZE < 8192)
3883 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3884 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3885 #endif
3886 	wr32(IGC_RLPML, rlpml);
3887 }
3888 
3889 /**
3890  * igc_configure - configure the hardware for RX and TX
3891  * @adapter: private board structure
3892  */
3893 static void igc_configure(struct igc_adapter *adapter)
3894 {
3895 	struct net_device *netdev = adapter->netdev;
3896 	int i = 0;
3897 
3898 	igc_get_hw_control(adapter);
3899 	igc_set_rx_mode(netdev);
3900 
3901 	igc_restore_vlan(adapter);
3902 
3903 	igc_setup_tctl(adapter);
3904 	igc_setup_mrqc(adapter);
3905 	igc_setup_rctl(adapter);
3906 
3907 	igc_set_default_mac_filter(adapter);
3908 	igc_restore_nfc_rules(adapter);
3909 
3910 	igc_configure_tx(adapter);
3911 	igc_configure_rx(adapter);
3912 
3913 	igc_rx_fifo_flush_base(&adapter->hw);
3914 
3915 	/* call igc_desc_unused which always leaves
3916 	 * at least 1 descriptor unused to make sure
3917 	 * next_to_use != next_to_clean
3918 	 */
3919 	for (i = 0; i < adapter->num_rx_queues; i++) {
3920 		struct igc_ring *ring = adapter->rx_ring[i];
3921 
3922 		if (ring->xsk_pool)
3923 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3924 		else
3925 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3926 	}
3927 }
3928 
3929 /**
3930  * igc_write_ivar - configure ivar for given MSI-X vector
3931  * @hw: pointer to the HW structure
3932  * @msix_vector: vector number we are allocating to a given ring
3933  * @index: row index of IVAR register to write within IVAR table
3934  * @offset: column offset of in IVAR, should be multiple of 8
3935  *
3936  * The IVAR table consists of 2 columns,
3937  * each containing an cause allocation for an Rx and Tx ring, and a
3938  * variable number of rows depending on the number of queues supported.
3939  */
3940 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3941 			   int index, int offset)
3942 {
3943 	u32 ivar = array_rd32(IGC_IVAR0, index);
3944 
3945 	/* clear any bits that are currently set */
3946 	ivar &= ~((u32)0xFF << offset);
3947 
3948 	/* write vector and valid bit */
3949 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3950 
3951 	array_wr32(IGC_IVAR0, index, ivar);
3952 }
3953 
3954 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3955 {
3956 	struct igc_adapter *adapter = q_vector->adapter;
3957 	struct igc_hw *hw = &adapter->hw;
3958 	int rx_queue = IGC_N0_QUEUE;
3959 	int tx_queue = IGC_N0_QUEUE;
3960 
3961 	if (q_vector->rx.ring)
3962 		rx_queue = q_vector->rx.ring->reg_idx;
3963 	if (q_vector->tx.ring)
3964 		tx_queue = q_vector->tx.ring->reg_idx;
3965 
3966 	switch (hw->mac.type) {
3967 	case igc_i225:
3968 		if (rx_queue > IGC_N0_QUEUE)
3969 			igc_write_ivar(hw, msix_vector,
3970 				       rx_queue >> 1,
3971 				       (rx_queue & 0x1) << 4);
3972 		if (tx_queue > IGC_N0_QUEUE)
3973 			igc_write_ivar(hw, msix_vector,
3974 				       tx_queue >> 1,
3975 				       ((tx_queue & 0x1) << 4) + 8);
3976 		q_vector->eims_value = BIT(msix_vector);
3977 		break;
3978 	default:
3979 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3980 		break;
3981 	}
3982 
3983 	/* add q_vector eims value to global eims_enable_mask */
3984 	adapter->eims_enable_mask |= q_vector->eims_value;
3985 
3986 	/* configure q_vector to set itr on first interrupt */
3987 	q_vector->set_itr = 1;
3988 }
3989 
3990 /**
3991  * igc_configure_msix - Configure MSI-X hardware
3992  * @adapter: Pointer to adapter structure
3993  *
3994  * igc_configure_msix sets up the hardware to properly
3995  * generate MSI-X interrupts.
3996  */
3997 static void igc_configure_msix(struct igc_adapter *adapter)
3998 {
3999 	struct igc_hw *hw = &adapter->hw;
4000 	int i, vector = 0;
4001 	u32 tmp;
4002 
4003 	adapter->eims_enable_mask = 0;
4004 
4005 	/* set vector for other causes, i.e. link changes */
4006 	switch (hw->mac.type) {
4007 	case igc_i225:
4008 		/* Turn on MSI-X capability first, or our settings
4009 		 * won't stick.  And it will take days to debug.
4010 		 */
4011 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4012 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4013 		     IGC_GPIE_NSICR);
4014 
4015 		/* enable msix_other interrupt */
4016 		adapter->eims_other = BIT(vector);
4017 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4018 
4019 		wr32(IGC_IVAR_MISC, tmp);
4020 		break;
4021 	default:
4022 		/* do nothing, since nothing else supports MSI-X */
4023 		break;
4024 	} /* switch (hw->mac.type) */
4025 
4026 	adapter->eims_enable_mask |= adapter->eims_other;
4027 
4028 	for (i = 0; i < adapter->num_q_vectors; i++)
4029 		igc_assign_vector(adapter->q_vector[i], vector++);
4030 
4031 	wrfl();
4032 }
4033 
4034 /**
4035  * igc_irq_enable - Enable default interrupt generation settings
4036  * @adapter: board private structure
4037  */
4038 static void igc_irq_enable(struct igc_adapter *adapter)
4039 {
4040 	struct igc_hw *hw = &adapter->hw;
4041 
4042 	if (adapter->msix_entries) {
4043 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4044 		u32 regval = rd32(IGC_EIAC);
4045 
4046 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4047 		regval = rd32(IGC_EIAM);
4048 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4049 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4050 		wr32(IGC_IMS, ims);
4051 	} else {
4052 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4053 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4054 	}
4055 }
4056 
4057 /**
4058  * igc_irq_disable - Mask off interrupt generation on the NIC
4059  * @adapter: board private structure
4060  */
4061 static void igc_irq_disable(struct igc_adapter *adapter)
4062 {
4063 	struct igc_hw *hw = &adapter->hw;
4064 
4065 	if (adapter->msix_entries) {
4066 		u32 regval = rd32(IGC_EIAM);
4067 
4068 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4069 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4070 		regval = rd32(IGC_EIAC);
4071 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4072 	}
4073 
4074 	wr32(IGC_IAM, 0);
4075 	wr32(IGC_IMC, ~0);
4076 	wrfl();
4077 
4078 	if (adapter->msix_entries) {
4079 		int vector = 0, i;
4080 
4081 		synchronize_irq(adapter->msix_entries[vector++].vector);
4082 
4083 		for (i = 0; i < adapter->num_q_vectors; i++)
4084 			synchronize_irq(adapter->msix_entries[vector++].vector);
4085 	} else {
4086 		synchronize_irq(adapter->pdev->irq);
4087 	}
4088 }
4089 
4090 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4091 			      const u32 max_rss_queues)
4092 {
4093 	/* Determine if we need to pair queues. */
4094 	/* If rss_queues > half of max_rss_queues, pair the queues in
4095 	 * order to conserve interrupts due to limited supply.
4096 	 */
4097 	if (adapter->rss_queues > (max_rss_queues / 2))
4098 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4099 	else
4100 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4101 }
4102 
4103 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4104 {
4105 	return IGC_MAX_RX_QUEUES;
4106 }
4107 
4108 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4109 {
4110 	u32 max_rss_queues;
4111 
4112 	max_rss_queues = igc_get_max_rss_queues(adapter);
4113 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4114 
4115 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4116 }
4117 
4118 /**
4119  * igc_reset_q_vector - Reset config for interrupt vector
4120  * @adapter: board private structure to initialize
4121  * @v_idx: Index of vector to be reset
4122  *
4123  * If NAPI is enabled it will delete any references to the
4124  * NAPI struct. This is preparation for igc_free_q_vector.
4125  */
4126 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4127 {
4128 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4129 
4130 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4131 	 * not yet allocated
4132 	 */
4133 	if (!q_vector)
4134 		return;
4135 
4136 	if (q_vector->tx.ring)
4137 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4138 
4139 	if (q_vector->rx.ring)
4140 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4141 
4142 	netif_napi_del(&q_vector->napi);
4143 }
4144 
4145 /**
4146  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4147  * @adapter: board private structure to initialize
4148  * @v_idx: Index of vector to be freed
4149  *
4150  * This function frees the memory allocated to the q_vector.
4151  */
4152 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4153 {
4154 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4155 
4156 	adapter->q_vector[v_idx] = NULL;
4157 
4158 	/* igc_get_stats64() might access the rings on this vector,
4159 	 * we must wait a grace period before freeing it.
4160 	 */
4161 	if (q_vector)
4162 		kfree_rcu(q_vector, rcu);
4163 }
4164 
4165 /**
4166  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4167  * @adapter: board private structure to initialize
4168  *
4169  * This function frees the memory allocated to the q_vectors.  In addition if
4170  * NAPI is enabled it will delete any references to the NAPI struct prior
4171  * to freeing the q_vector.
4172  */
4173 static void igc_free_q_vectors(struct igc_adapter *adapter)
4174 {
4175 	int v_idx = adapter->num_q_vectors;
4176 
4177 	adapter->num_tx_queues = 0;
4178 	adapter->num_rx_queues = 0;
4179 	adapter->num_q_vectors = 0;
4180 
4181 	while (v_idx--) {
4182 		igc_reset_q_vector(adapter, v_idx);
4183 		igc_free_q_vector(adapter, v_idx);
4184 	}
4185 }
4186 
4187 /**
4188  * igc_update_itr - update the dynamic ITR value based on statistics
4189  * @q_vector: pointer to q_vector
4190  * @ring_container: ring info to update the itr for
4191  *
4192  * Stores a new ITR value based on packets and byte
4193  * counts during the last interrupt.  The advantage of per interrupt
4194  * computation is faster updates and more accurate ITR for the current
4195  * traffic pattern.  Constants in this function were computed
4196  * based on theoretical maximum wire speed and thresholds were set based
4197  * on testing data as well as attempting to minimize response time
4198  * while increasing bulk throughput.
4199  * NOTE: These calculations are only valid when operating in a single-
4200  * queue environment.
4201  */
4202 static void igc_update_itr(struct igc_q_vector *q_vector,
4203 			   struct igc_ring_container *ring_container)
4204 {
4205 	unsigned int packets = ring_container->total_packets;
4206 	unsigned int bytes = ring_container->total_bytes;
4207 	u8 itrval = ring_container->itr;
4208 
4209 	/* no packets, exit with status unchanged */
4210 	if (packets == 0)
4211 		return;
4212 
4213 	switch (itrval) {
4214 	case lowest_latency:
4215 		/* handle TSO and jumbo frames */
4216 		if (bytes / packets > 8000)
4217 			itrval = bulk_latency;
4218 		else if ((packets < 5) && (bytes > 512))
4219 			itrval = low_latency;
4220 		break;
4221 	case low_latency:  /* 50 usec aka 20000 ints/s */
4222 		if (bytes > 10000) {
4223 			/* this if handles the TSO accounting */
4224 			if (bytes / packets > 8000)
4225 				itrval = bulk_latency;
4226 			else if ((packets < 10) || ((bytes / packets) > 1200))
4227 				itrval = bulk_latency;
4228 			else if ((packets > 35))
4229 				itrval = lowest_latency;
4230 		} else if (bytes / packets > 2000) {
4231 			itrval = bulk_latency;
4232 		} else if (packets <= 2 && bytes < 512) {
4233 			itrval = lowest_latency;
4234 		}
4235 		break;
4236 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4237 		if (bytes > 25000) {
4238 			if (packets > 35)
4239 				itrval = low_latency;
4240 		} else if (bytes < 1500) {
4241 			itrval = low_latency;
4242 		}
4243 		break;
4244 	}
4245 
4246 	/* clear work counters since we have the values we need */
4247 	ring_container->total_bytes = 0;
4248 	ring_container->total_packets = 0;
4249 
4250 	/* write updated itr to ring container */
4251 	ring_container->itr = itrval;
4252 }
4253 
4254 static void igc_set_itr(struct igc_q_vector *q_vector)
4255 {
4256 	struct igc_adapter *adapter = q_vector->adapter;
4257 	u32 new_itr = q_vector->itr_val;
4258 	u8 current_itr = 0;
4259 
4260 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4261 	switch (adapter->link_speed) {
4262 	case SPEED_10:
4263 	case SPEED_100:
4264 		current_itr = 0;
4265 		new_itr = IGC_4K_ITR;
4266 		goto set_itr_now;
4267 	default:
4268 		break;
4269 	}
4270 
4271 	igc_update_itr(q_vector, &q_vector->tx);
4272 	igc_update_itr(q_vector, &q_vector->rx);
4273 
4274 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4275 
4276 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4277 	if (current_itr == lowest_latency &&
4278 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4279 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4280 		current_itr = low_latency;
4281 
4282 	switch (current_itr) {
4283 	/* counts and packets in update_itr are dependent on these numbers */
4284 	case lowest_latency:
4285 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4286 		break;
4287 	case low_latency:
4288 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4289 		break;
4290 	case bulk_latency:
4291 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4292 		break;
4293 	default:
4294 		break;
4295 	}
4296 
4297 set_itr_now:
4298 	if (new_itr != q_vector->itr_val) {
4299 		/* this attempts to bias the interrupt rate towards Bulk
4300 		 * by adding intermediate steps when interrupt rate is
4301 		 * increasing
4302 		 */
4303 		new_itr = new_itr > q_vector->itr_val ?
4304 			  max((new_itr * q_vector->itr_val) /
4305 			  (new_itr + (q_vector->itr_val >> 2)),
4306 			  new_itr) : new_itr;
4307 		/* Don't write the value here; it resets the adapter's
4308 		 * internal timer, and causes us to delay far longer than
4309 		 * we should between interrupts.  Instead, we write the ITR
4310 		 * value at the beginning of the next interrupt so the timing
4311 		 * ends up being correct.
4312 		 */
4313 		q_vector->itr_val = new_itr;
4314 		q_vector->set_itr = 1;
4315 	}
4316 }
4317 
4318 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4319 {
4320 	int v_idx = adapter->num_q_vectors;
4321 
4322 	if (adapter->msix_entries) {
4323 		pci_disable_msix(adapter->pdev);
4324 		kfree(adapter->msix_entries);
4325 		adapter->msix_entries = NULL;
4326 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4327 		pci_disable_msi(adapter->pdev);
4328 	}
4329 
4330 	while (v_idx--)
4331 		igc_reset_q_vector(adapter, v_idx);
4332 }
4333 
4334 /**
4335  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4336  * @adapter: Pointer to adapter structure
4337  * @msix: boolean value for MSI-X capability
4338  *
4339  * Attempt to configure interrupts using the best available
4340  * capabilities of the hardware and kernel.
4341  */
4342 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4343 					 bool msix)
4344 {
4345 	int numvecs, i;
4346 	int err;
4347 
4348 	if (!msix)
4349 		goto msi_only;
4350 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4351 
4352 	/* Number of supported queues. */
4353 	adapter->num_rx_queues = adapter->rss_queues;
4354 
4355 	adapter->num_tx_queues = adapter->rss_queues;
4356 
4357 	/* start with one vector for every Rx queue */
4358 	numvecs = adapter->num_rx_queues;
4359 
4360 	/* if Tx handler is separate add 1 for every Tx queue */
4361 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4362 		numvecs += adapter->num_tx_queues;
4363 
4364 	/* store the number of vectors reserved for queues */
4365 	adapter->num_q_vectors = numvecs;
4366 
4367 	/* add 1 vector for link status interrupts */
4368 	numvecs++;
4369 
4370 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4371 					GFP_KERNEL);
4372 
4373 	if (!adapter->msix_entries)
4374 		return;
4375 
4376 	/* populate entry values */
4377 	for (i = 0; i < numvecs; i++)
4378 		adapter->msix_entries[i].entry = i;
4379 
4380 	err = pci_enable_msix_range(adapter->pdev,
4381 				    adapter->msix_entries,
4382 				    numvecs,
4383 				    numvecs);
4384 	if (err > 0)
4385 		return;
4386 
4387 	kfree(adapter->msix_entries);
4388 	adapter->msix_entries = NULL;
4389 
4390 	igc_reset_interrupt_capability(adapter);
4391 
4392 msi_only:
4393 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4394 
4395 	adapter->rss_queues = 1;
4396 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4397 	adapter->num_rx_queues = 1;
4398 	adapter->num_tx_queues = 1;
4399 	adapter->num_q_vectors = 1;
4400 	if (!pci_enable_msi(adapter->pdev))
4401 		adapter->flags |= IGC_FLAG_HAS_MSI;
4402 }
4403 
4404 /**
4405  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4406  * @q_vector: pointer to q_vector
4407  *
4408  * Stores a new ITR value based on strictly on packet size.  This
4409  * algorithm is less sophisticated than that used in igc_update_itr,
4410  * due to the difficulty of synchronizing statistics across multiple
4411  * receive rings.  The divisors and thresholds used by this function
4412  * were determined based on theoretical maximum wire speed and testing
4413  * data, in order to minimize response time while increasing bulk
4414  * throughput.
4415  * NOTE: This function is called only when operating in a multiqueue
4416  * receive environment.
4417  */
4418 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4419 {
4420 	struct igc_adapter *adapter = q_vector->adapter;
4421 	int new_val = q_vector->itr_val;
4422 	int avg_wire_size = 0;
4423 	unsigned int packets;
4424 
4425 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4426 	 * ints/sec - ITR timer value of 120 ticks.
4427 	 */
4428 	switch (adapter->link_speed) {
4429 	case SPEED_10:
4430 	case SPEED_100:
4431 		new_val = IGC_4K_ITR;
4432 		goto set_itr_val;
4433 	default:
4434 		break;
4435 	}
4436 
4437 	packets = q_vector->rx.total_packets;
4438 	if (packets)
4439 		avg_wire_size = q_vector->rx.total_bytes / packets;
4440 
4441 	packets = q_vector->tx.total_packets;
4442 	if (packets)
4443 		avg_wire_size = max_t(u32, avg_wire_size,
4444 				      q_vector->tx.total_bytes / packets);
4445 
4446 	/* if avg_wire_size isn't set no work was done */
4447 	if (!avg_wire_size)
4448 		goto clear_counts;
4449 
4450 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4451 	avg_wire_size += 24;
4452 
4453 	/* Don't starve jumbo frames */
4454 	avg_wire_size = min(avg_wire_size, 3000);
4455 
4456 	/* Give a little boost to mid-size frames */
4457 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4458 		new_val = avg_wire_size / 3;
4459 	else
4460 		new_val = avg_wire_size / 2;
4461 
4462 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4463 	if (new_val < IGC_20K_ITR &&
4464 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4465 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4466 		new_val = IGC_20K_ITR;
4467 
4468 set_itr_val:
4469 	if (new_val != q_vector->itr_val) {
4470 		q_vector->itr_val = new_val;
4471 		q_vector->set_itr = 1;
4472 	}
4473 clear_counts:
4474 	q_vector->rx.total_bytes = 0;
4475 	q_vector->rx.total_packets = 0;
4476 	q_vector->tx.total_bytes = 0;
4477 	q_vector->tx.total_packets = 0;
4478 }
4479 
4480 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4481 {
4482 	struct igc_adapter *adapter = q_vector->adapter;
4483 	struct igc_hw *hw = &adapter->hw;
4484 
4485 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4486 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4487 		if (adapter->num_q_vectors == 1)
4488 			igc_set_itr(q_vector);
4489 		else
4490 			igc_update_ring_itr(q_vector);
4491 	}
4492 
4493 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4494 		if (adapter->msix_entries)
4495 			wr32(IGC_EIMS, q_vector->eims_value);
4496 		else
4497 			igc_irq_enable(adapter);
4498 	}
4499 }
4500 
4501 static void igc_add_ring(struct igc_ring *ring,
4502 			 struct igc_ring_container *head)
4503 {
4504 	head->ring = ring;
4505 	head->count++;
4506 }
4507 
4508 /**
4509  * igc_cache_ring_register - Descriptor ring to register mapping
4510  * @adapter: board private structure to initialize
4511  *
4512  * Once we know the feature-set enabled for the device, we'll cache
4513  * the register offset the descriptor ring is assigned to.
4514  */
4515 static void igc_cache_ring_register(struct igc_adapter *adapter)
4516 {
4517 	int i = 0, j = 0;
4518 
4519 	switch (adapter->hw.mac.type) {
4520 	case igc_i225:
4521 	default:
4522 		for (; i < adapter->num_rx_queues; i++)
4523 			adapter->rx_ring[i]->reg_idx = i;
4524 		for (; j < adapter->num_tx_queues; j++)
4525 			adapter->tx_ring[j]->reg_idx = j;
4526 		break;
4527 	}
4528 }
4529 
4530 /**
4531  * igc_poll - NAPI Rx polling callback
4532  * @napi: napi polling structure
4533  * @budget: count of how many packets we should handle
4534  */
4535 static int igc_poll(struct napi_struct *napi, int budget)
4536 {
4537 	struct igc_q_vector *q_vector = container_of(napi,
4538 						     struct igc_q_vector,
4539 						     napi);
4540 	struct igc_ring *rx_ring = q_vector->rx.ring;
4541 	bool clean_complete = true;
4542 	int work_done = 0;
4543 
4544 	if (q_vector->tx.ring)
4545 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4546 
4547 	if (rx_ring) {
4548 		int cleaned = rx_ring->xsk_pool ?
4549 			      igc_clean_rx_irq_zc(q_vector, budget) :
4550 			      igc_clean_rx_irq(q_vector, budget);
4551 
4552 		work_done += cleaned;
4553 		if (cleaned >= budget)
4554 			clean_complete = false;
4555 	}
4556 
4557 	/* If all work not completed, return budget and keep polling */
4558 	if (!clean_complete)
4559 		return budget;
4560 
4561 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4562 	 * poll us due to busy-polling
4563 	 */
4564 	if (likely(napi_complete_done(napi, work_done)))
4565 		igc_ring_irq_enable(q_vector);
4566 
4567 	return min(work_done, budget - 1);
4568 }
4569 
4570 /**
4571  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4572  * @adapter: board private structure to initialize
4573  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4574  * @v_idx: index of vector in adapter struct
4575  * @txr_count: total number of Tx rings to allocate
4576  * @txr_idx: index of first Tx ring to allocate
4577  * @rxr_count: total number of Rx rings to allocate
4578  * @rxr_idx: index of first Rx ring to allocate
4579  *
4580  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4581  */
4582 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4583 			      unsigned int v_count, unsigned int v_idx,
4584 			      unsigned int txr_count, unsigned int txr_idx,
4585 			      unsigned int rxr_count, unsigned int rxr_idx)
4586 {
4587 	struct igc_q_vector *q_vector;
4588 	struct igc_ring *ring;
4589 	int ring_count;
4590 
4591 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4592 	if (txr_count > 1 || rxr_count > 1)
4593 		return -ENOMEM;
4594 
4595 	ring_count = txr_count + rxr_count;
4596 
4597 	/* allocate q_vector and rings */
4598 	q_vector = adapter->q_vector[v_idx];
4599 	if (!q_vector)
4600 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4601 				   GFP_KERNEL);
4602 	else
4603 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4604 	if (!q_vector)
4605 		return -ENOMEM;
4606 
4607 	/* initialize NAPI */
4608 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4609 
4610 	/* tie q_vector and adapter together */
4611 	adapter->q_vector[v_idx] = q_vector;
4612 	q_vector->adapter = adapter;
4613 
4614 	/* initialize work limits */
4615 	q_vector->tx.work_limit = adapter->tx_work_limit;
4616 
4617 	/* initialize ITR configuration */
4618 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4619 	q_vector->itr_val = IGC_START_ITR;
4620 
4621 	/* initialize pointer to rings */
4622 	ring = q_vector->ring;
4623 
4624 	/* initialize ITR */
4625 	if (rxr_count) {
4626 		/* rx or rx/tx vector */
4627 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4628 			q_vector->itr_val = adapter->rx_itr_setting;
4629 	} else {
4630 		/* tx only vector */
4631 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4632 			q_vector->itr_val = adapter->tx_itr_setting;
4633 	}
4634 
4635 	if (txr_count) {
4636 		/* assign generic ring traits */
4637 		ring->dev = &adapter->pdev->dev;
4638 		ring->netdev = adapter->netdev;
4639 
4640 		/* configure backlink on ring */
4641 		ring->q_vector = q_vector;
4642 
4643 		/* update q_vector Tx values */
4644 		igc_add_ring(ring, &q_vector->tx);
4645 
4646 		/* apply Tx specific ring traits */
4647 		ring->count = adapter->tx_ring_count;
4648 		ring->queue_index = txr_idx;
4649 
4650 		/* assign ring to adapter */
4651 		adapter->tx_ring[txr_idx] = ring;
4652 
4653 		/* push pointer to next ring */
4654 		ring++;
4655 	}
4656 
4657 	if (rxr_count) {
4658 		/* assign generic ring traits */
4659 		ring->dev = &adapter->pdev->dev;
4660 		ring->netdev = adapter->netdev;
4661 
4662 		/* configure backlink on ring */
4663 		ring->q_vector = q_vector;
4664 
4665 		/* update q_vector Rx values */
4666 		igc_add_ring(ring, &q_vector->rx);
4667 
4668 		/* apply Rx specific ring traits */
4669 		ring->count = adapter->rx_ring_count;
4670 		ring->queue_index = rxr_idx;
4671 
4672 		/* assign ring to adapter */
4673 		adapter->rx_ring[rxr_idx] = ring;
4674 	}
4675 
4676 	return 0;
4677 }
4678 
4679 /**
4680  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4681  * @adapter: board private structure to initialize
4682  *
4683  * We allocate one q_vector per queue interrupt.  If allocation fails we
4684  * return -ENOMEM.
4685  */
4686 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4687 {
4688 	int rxr_remaining = adapter->num_rx_queues;
4689 	int txr_remaining = adapter->num_tx_queues;
4690 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4691 	int q_vectors = adapter->num_q_vectors;
4692 	int err;
4693 
4694 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4695 		for (; rxr_remaining; v_idx++) {
4696 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4697 						 0, 0, 1, rxr_idx);
4698 
4699 			if (err)
4700 				goto err_out;
4701 
4702 			/* update counts and index */
4703 			rxr_remaining--;
4704 			rxr_idx++;
4705 		}
4706 	}
4707 
4708 	for (; v_idx < q_vectors; v_idx++) {
4709 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4710 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4711 
4712 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4713 					 tqpv, txr_idx, rqpv, rxr_idx);
4714 
4715 		if (err)
4716 			goto err_out;
4717 
4718 		/* update counts and index */
4719 		rxr_remaining -= rqpv;
4720 		txr_remaining -= tqpv;
4721 		rxr_idx++;
4722 		txr_idx++;
4723 	}
4724 
4725 	return 0;
4726 
4727 err_out:
4728 	adapter->num_tx_queues = 0;
4729 	adapter->num_rx_queues = 0;
4730 	adapter->num_q_vectors = 0;
4731 
4732 	while (v_idx--)
4733 		igc_free_q_vector(adapter, v_idx);
4734 
4735 	return -ENOMEM;
4736 }
4737 
4738 /**
4739  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4740  * @adapter: Pointer to adapter structure
4741  * @msix: boolean for MSI-X capability
4742  *
4743  * This function initializes the interrupts and allocates all of the queues.
4744  */
4745 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4746 {
4747 	struct net_device *dev = adapter->netdev;
4748 	int err = 0;
4749 
4750 	igc_set_interrupt_capability(adapter, msix);
4751 
4752 	err = igc_alloc_q_vectors(adapter);
4753 	if (err) {
4754 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4755 		goto err_alloc_q_vectors;
4756 	}
4757 
4758 	igc_cache_ring_register(adapter);
4759 
4760 	return 0;
4761 
4762 err_alloc_q_vectors:
4763 	igc_reset_interrupt_capability(adapter);
4764 	return err;
4765 }
4766 
4767 /**
4768  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4769  * @adapter: board private structure to initialize
4770  *
4771  * igc_sw_init initializes the Adapter private data structure.
4772  * Fields are initialized based on PCI device information and
4773  * OS network device settings (MTU size).
4774  */
4775 static int igc_sw_init(struct igc_adapter *adapter)
4776 {
4777 	struct net_device *netdev = adapter->netdev;
4778 	struct pci_dev *pdev = adapter->pdev;
4779 	struct igc_hw *hw = &adapter->hw;
4780 
4781 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4782 
4783 	/* set default ring sizes */
4784 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4785 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4786 
4787 	/* set default ITR values */
4788 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4789 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4790 
4791 	/* set default work limits */
4792 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4793 
4794 	/* adjust max frame to be at least the size of a standard frame */
4795 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4796 				VLAN_HLEN;
4797 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4798 
4799 	mutex_init(&adapter->nfc_rule_lock);
4800 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4801 	adapter->nfc_rule_count = 0;
4802 
4803 	spin_lock_init(&adapter->stats64_lock);
4804 	spin_lock_init(&adapter->qbv_tx_lock);
4805 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4806 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4807 
4808 	igc_init_queue_configuration(adapter);
4809 
4810 	/* This call may decrease the number of queues */
4811 	if (igc_init_interrupt_scheme(adapter, true)) {
4812 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4813 		return -ENOMEM;
4814 	}
4815 
4816 	/* Explicitly disable IRQ since the NIC can be in any state. */
4817 	igc_irq_disable(adapter);
4818 
4819 	set_bit(__IGC_DOWN, &adapter->state);
4820 
4821 	return 0;
4822 }
4823 
4824 /**
4825  * igc_up - Open the interface and prepare it to handle traffic
4826  * @adapter: board private structure
4827  */
4828 void igc_up(struct igc_adapter *adapter)
4829 {
4830 	struct igc_hw *hw = &adapter->hw;
4831 	int i = 0;
4832 
4833 	/* hardware has been reset, we need to reload some things */
4834 	igc_configure(adapter);
4835 
4836 	clear_bit(__IGC_DOWN, &adapter->state);
4837 
4838 	for (i = 0; i < adapter->num_q_vectors; i++)
4839 		napi_enable(&adapter->q_vector[i]->napi);
4840 
4841 	if (adapter->msix_entries)
4842 		igc_configure_msix(adapter);
4843 	else
4844 		igc_assign_vector(adapter->q_vector[0], 0);
4845 
4846 	/* Clear any pending interrupts. */
4847 	rd32(IGC_ICR);
4848 	igc_irq_enable(adapter);
4849 
4850 	netif_tx_start_all_queues(adapter->netdev);
4851 
4852 	/* start the watchdog. */
4853 	hw->mac.get_link_status = true;
4854 	schedule_work(&adapter->watchdog_task);
4855 }
4856 
4857 /**
4858  * igc_update_stats - Update the board statistics counters
4859  * @adapter: board private structure
4860  */
4861 void igc_update_stats(struct igc_adapter *adapter)
4862 {
4863 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4864 	struct pci_dev *pdev = adapter->pdev;
4865 	struct igc_hw *hw = &adapter->hw;
4866 	u64 _bytes, _packets;
4867 	u64 bytes, packets;
4868 	unsigned int start;
4869 	u32 mpc;
4870 	int i;
4871 
4872 	/* Prevent stats update while adapter is being reset, or if the pci
4873 	 * connection is down.
4874 	 */
4875 	if (adapter->link_speed == 0)
4876 		return;
4877 	if (pci_channel_offline(pdev))
4878 		return;
4879 
4880 	packets = 0;
4881 	bytes = 0;
4882 
4883 	rcu_read_lock();
4884 	for (i = 0; i < adapter->num_rx_queues; i++) {
4885 		struct igc_ring *ring = adapter->rx_ring[i];
4886 		u32 rqdpc = rd32(IGC_RQDPC(i));
4887 
4888 		if (hw->mac.type >= igc_i225)
4889 			wr32(IGC_RQDPC(i), 0);
4890 
4891 		if (rqdpc) {
4892 			ring->rx_stats.drops += rqdpc;
4893 			net_stats->rx_fifo_errors += rqdpc;
4894 		}
4895 
4896 		do {
4897 			start = u64_stats_fetch_begin(&ring->rx_syncp);
4898 			_bytes = ring->rx_stats.bytes;
4899 			_packets = ring->rx_stats.packets;
4900 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4901 		bytes += _bytes;
4902 		packets += _packets;
4903 	}
4904 
4905 	net_stats->rx_bytes = bytes;
4906 	net_stats->rx_packets = packets;
4907 
4908 	packets = 0;
4909 	bytes = 0;
4910 	for (i = 0; i < adapter->num_tx_queues; i++) {
4911 		struct igc_ring *ring = adapter->tx_ring[i];
4912 
4913 		do {
4914 			start = u64_stats_fetch_begin(&ring->tx_syncp);
4915 			_bytes = ring->tx_stats.bytes;
4916 			_packets = ring->tx_stats.packets;
4917 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4918 		bytes += _bytes;
4919 		packets += _packets;
4920 	}
4921 	net_stats->tx_bytes = bytes;
4922 	net_stats->tx_packets = packets;
4923 	rcu_read_unlock();
4924 
4925 	/* read stats registers */
4926 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4927 	adapter->stats.gprc += rd32(IGC_GPRC);
4928 	adapter->stats.gorc += rd32(IGC_GORCL);
4929 	rd32(IGC_GORCH); /* clear GORCL */
4930 	adapter->stats.bprc += rd32(IGC_BPRC);
4931 	adapter->stats.mprc += rd32(IGC_MPRC);
4932 	adapter->stats.roc += rd32(IGC_ROC);
4933 
4934 	adapter->stats.prc64 += rd32(IGC_PRC64);
4935 	adapter->stats.prc127 += rd32(IGC_PRC127);
4936 	adapter->stats.prc255 += rd32(IGC_PRC255);
4937 	adapter->stats.prc511 += rd32(IGC_PRC511);
4938 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4939 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4940 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4941 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4942 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4943 
4944 	mpc = rd32(IGC_MPC);
4945 	adapter->stats.mpc += mpc;
4946 	net_stats->rx_fifo_errors += mpc;
4947 	adapter->stats.scc += rd32(IGC_SCC);
4948 	adapter->stats.ecol += rd32(IGC_ECOL);
4949 	adapter->stats.mcc += rd32(IGC_MCC);
4950 	adapter->stats.latecol += rd32(IGC_LATECOL);
4951 	adapter->stats.dc += rd32(IGC_DC);
4952 	adapter->stats.rlec += rd32(IGC_RLEC);
4953 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4954 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4955 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4956 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4957 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4958 	adapter->stats.gptc += rd32(IGC_GPTC);
4959 	adapter->stats.gotc += rd32(IGC_GOTCL);
4960 	rd32(IGC_GOTCH); /* clear GOTCL */
4961 	adapter->stats.rnbc += rd32(IGC_RNBC);
4962 	adapter->stats.ruc += rd32(IGC_RUC);
4963 	adapter->stats.rfc += rd32(IGC_RFC);
4964 	adapter->stats.rjc += rd32(IGC_RJC);
4965 	adapter->stats.tor += rd32(IGC_TORH);
4966 	adapter->stats.tot += rd32(IGC_TOTH);
4967 	adapter->stats.tpr += rd32(IGC_TPR);
4968 
4969 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4970 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4971 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4972 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4973 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4974 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4975 
4976 	adapter->stats.mptc += rd32(IGC_MPTC);
4977 	adapter->stats.bptc += rd32(IGC_BPTC);
4978 
4979 	adapter->stats.tpt += rd32(IGC_TPT);
4980 	adapter->stats.colc += rd32(IGC_COLC);
4981 	adapter->stats.colc += rd32(IGC_RERC);
4982 
4983 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4984 
4985 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4986 
4987 	adapter->stats.iac += rd32(IGC_IAC);
4988 
4989 	/* Fill out the OS statistics structure */
4990 	net_stats->multicast = adapter->stats.mprc;
4991 	net_stats->collisions = adapter->stats.colc;
4992 
4993 	/* Rx Errors */
4994 
4995 	/* RLEC on some newer hardware can be incorrect so build
4996 	 * our own version based on RUC and ROC
4997 	 */
4998 	net_stats->rx_errors = adapter->stats.rxerrc +
4999 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5000 		adapter->stats.ruc + adapter->stats.roc +
5001 		adapter->stats.cexterr;
5002 	net_stats->rx_length_errors = adapter->stats.ruc +
5003 				      adapter->stats.roc;
5004 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5005 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5006 	net_stats->rx_missed_errors = adapter->stats.mpc;
5007 
5008 	/* Tx Errors */
5009 	net_stats->tx_errors = adapter->stats.ecol +
5010 			       adapter->stats.latecol;
5011 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5012 	net_stats->tx_window_errors = adapter->stats.latecol;
5013 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5014 
5015 	/* Tx Dropped */
5016 	net_stats->tx_dropped = adapter->stats.txdrop;
5017 
5018 	/* Management Stats */
5019 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5020 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5021 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5022 }
5023 
5024 /**
5025  * igc_down - Close the interface
5026  * @adapter: board private structure
5027  */
5028 void igc_down(struct igc_adapter *adapter)
5029 {
5030 	struct net_device *netdev = adapter->netdev;
5031 	struct igc_hw *hw = &adapter->hw;
5032 	u32 tctl, rctl;
5033 	int i = 0;
5034 
5035 	set_bit(__IGC_DOWN, &adapter->state);
5036 
5037 	igc_ptp_suspend(adapter);
5038 
5039 	if (pci_device_is_present(adapter->pdev)) {
5040 		/* disable receives in the hardware */
5041 		rctl = rd32(IGC_RCTL);
5042 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5043 		/* flush and sleep below */
5044 	}
5045 	/* set trans_start so we don't get spurious watchdogs during reset */
5046 	netif_trans_update(netdev);
5047 
5048 	netif_carrier_off(netdev);
5049 	netif_tx_stop_all_queues(netdev);
5050 
5051 	if (pci_device_is_present(adapter->pdev)) {
5052 		/* disable transmits in the hardware */
5053 		tctl = rd32(IGC_TCTL);
5054 		tctl &= ~IGC_TCTL_EN;
5055 		wr32(IGC_TCTL, tctl);
5056 		/* flush both disables and wait for them to finish */
5057 		wrfl();
5058 		usleep_range(10000, 20000);
5059 
5060 		igc_irq_disable(adapter);
5061 	}
5062 
5063 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5064 
5065 	for (i = 0; i < adapter->num_q_vectors; i++) {
5066 		if (adapter->q_vector[i]) {
5067 			napi_synchronize(&adapter->q_vector[i]->napi);
5068 			napi_disable(&adapter->q_vector[i]->napi);
5069 		}
5070 	}
5071 
5072 	del_timer_sync(&adapter->watchdog_timer);
5073 	del_timer_sync(&adapter->phy_info_timer);
5074 
5075 	/* record the stats before reset*/
5076 	spin_lock(&adapter->stats64_lock);
5077 	igc_update_stats(adapter);
5078 	spin_unlock(&adapter->stats64_lock);
5079 
5080 	adapter->link_speed = 0;
5081 	adapter->link_duplex = 0;
5082 
5083 	if (!pci_channel_offline(adapter->pdev))
5084 		igc_reset(adapter);
5085 
5086 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5087 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5088 
5089 	igc_disable_all_tx_rings_hw(adapter);
5090 	igc_clean_all_tx_rings(adapter);
5091 	igc_clean_all_rx_rings(adapter);
5092 }
5093 
5094 void igc_reinit_locked(struct igc_adapter *adapter)
5095 {
5096 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5097 		usleep_range(1000, 2000);
5098 	igc_down(adapter);
5099 	igc_up(adapter);
5100 	clear_bit(__IGC_RESETTING, &adapter->state);
5101 }
5102 
5103 static void igc_reset_task(struct work_struct *work)
5104 {
5105 	struct igc_adapter *adapter;
5106 
5107 	adapter = container_of(work, struct igc_adapter, reset_task);
5108 
5109 	rtnl_lock();
5110 	/* If we're already down or resetting, just bail */
5111 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5112 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5113 		rtnl_unlock();
5114 		return;
5115 	}
5116 
5117 	igc_rings_dump(adapter);
5118 	igc_regs_dump(adapter);
5119 	netdev_err(adapter->netdev, "Reset adapter\n");
5120 	igc_reinit_locked(adapter);
5121 	rtnl_unlock();
5122 }
5123 
5124 /**
5125  * igc_change_mtu - Change the Maximum Transfer Unit
5126  * @netdev: network interface device structure
5127  * @new_mtu: new value for maximum frame size
5128  *
5129  * Returns 0 on success, negative on failure
5130  */
5131 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5132 {
5133 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5134 	struct igc_adapter *adapter = netdev_priv(netdev);
5135 
5136 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5137 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5138 		return -EINVAL;
5139 	}
5140 
5141 	/* adjust max frame to be at least the size of a standard frame */
5142 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5143 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5144 
5145 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5146 		usleep_range(1000, 2000);
5147 
5148 	/* igc_down has a dependency on max_frame_size */
5149 	adapter->max_frame_size = max_frame;
5150 
5151 	if (netif_running(netdev))
5152 		igc_down(adapter);
5153 
5154 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5155 	netdev->mtu = new_mtu;
5156 
5157 	if (netif_running(netdev))
5158 		igc_up(adapter);
5159 	else
5160 		igc_reset(adapter);
5161 
5162 	clear_bit(__IGC_RESETTING, &adapter->state);
5163 
5164 	return 0;
5165 }
5166 
5167 /**
5168  * igc_tx_timeout - Respond to a Tx Hang
5169  * @netdev: network interface device structure
5170  * @txqueue: queue number that timed out
5171  **/
5172 static void igc_tx_timeout(struct net_device *netdev,
5173 			   unsigned int __always_unused txqueue)
5174 {
5175 	struct igc_adapter *adapter = netdev_priv(netdev);
5176 	struct igc_hw *hw = &adapter->hw;
5177 
5178 	/* Do the reset outside of interrupt context */
5179 	adapter->tx_timeout_count++;
5180 	schedule_work(&adapter->reset_task);
5181 	wr32(IGC_EICS,
5182 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5183 }
5184 
5185 /**
5186  * igc_get_stats64 - Get System Network Statistics
5187  * @netdev: network interface device structure
5188  * @stats: rtnl_link_stats64 pointer
5189  *
5190  * Returns the address of the device statistics structure.
5191  * The statistics are updated here and also from the timer callback.
5192  */
5193 static void igc_get_stats64(struct net_device *netdev,
5194 			    struct rtnl_link_stats64 *stats)
5195 {
5196 	struct igc_adapter *adapter = netdev_priv(netdev);
5197 
5198 	spin_lock(&adapter->stats64_lock);
5199 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5200 		igc_update_stats(adapter);
5201 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5202 	spin_unlock(&adapter->stats64_lock);
5203 }
5204 
5205 static netdev_features_t igc_fix_features(struct net_device *netdev,
5206 					  netdev_features_t features)
5207 {
5208 	/* Since there is no support for separate Rx/Tx vlan accel
5209 	 * enable/disable make sure Tx flag is always in same state as Rx.
5210 	 */
5211 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5212 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5213 	else
5214 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5215 
5216 	return features;
5217 }
5218 
5219 static int igc_set_features(struct net_device *netdev,
5220 			    netdev_features_t features)
5221 {
5222 	netdev_features_t changed = netdev->features ^ features;
5223 	struct igc_adapter *adapter = netdev_priv(netdev);
5224 
5225 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5226 		igc_vlan_mode(netdev, features);
5227 
5228 	/* Add VLAN support */
5229 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5230 		return 0;
5231 
5232 	if (!(features & NETIF_F_NTUPLE))
5233 		igc_flush_nfc_rules(adapter);
5234 
5235 	netdev->features = features;
5236 
5237 	if (netif_running(netdev))
5238 		igc_reinit_locked(adapter);
5239 	else
5240 		igc_reset(adapter);
5241 
5242 	return 1;
5243 }
5244 
5245 static netdev_features_t
5246 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5247 		   netdev_features_t features)
5248 {
5249 	unsigned int network_hdr_len, mac_hdr_len;
5250 
5251 	/* Make certain the headers can be described by a context descriptor */
5252 	mac_hdr_len = skb_network_header(skb) - skb->data;
5253 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5254 		return features & ~(NETIF_F_HW_CSUM |
5255 				    NETIF_F_SCTP_CRC |
5256 				    NETIF_F_HW_VLAN_CTAG_TX |
5257 				    NETIF_F_TSO |
5258 				    NETIF_F_TSO6);
5259 
5260 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5261 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5262 		return features & ~(NETIF_F_HW_CSUM |
5263 				    NETIF_F_SCTP_CRC |
5264 				    NETIF_F_TSO |
5265 				    NETIF_F_TSO6);
5266 
5267 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5268 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5269 	 */
5270 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5271 		features &= ~NETIF_F_TSO;
5272 
5273 	return features;
5274 }
5275 
5276 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5277 {
5278 	u32 ack, tsauxc, sec, nsec, tsicr;
5279 	struct igc_hw *hw = &adapter->hw;
5280 	struct ptp_clock_event event;
5281 	struct timespec64 ts;
5282 
5283 	tsicr = rd32(IGC_TSICR);
5284 	ack = 0;
5285 
5286 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5287 		event.type = PTP_CLOCK_PPS;
5288 		if (adapter->ptp_caps.pps)
5289 			ptp_clock_event(adapter->ptp_clock, &event);
5290 		ack |= IGC_TSICR_SYS_WRAP;
5291 	}
5292 
5293 	if (tsicr & IGC_TSICR_TXTS) {
5294 		/* retrieve hardware timestamp */
5295 		igc_ptp_tx_tstamp_event(adapter);
5296 		ack |= IGC_TSICR_TXTS;
5297 	}
5298 
5299 	if (tsicr & IGC_TSICR_TT0) {
5300 		spin_lock(&adapter->tmreg_lock);
5301 		ts = timespec64_add(adapter->perout[0].start,
5302 				    adapter->perout[0].period);
5303 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5304 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5305 		tsauxc = rd32(IGC_TSAUXC);
5306 		tsauxc |= IGC_TSAUXC_EN_TT0;
5307 		wr32(IGC_TSAUXC, tsauxc);
5308 		adapter->perout[0].start = ts;
5309 		spin_unlock(&adapter->tmreg_lock);
5310 		ack |= IGC_TSICR_TT0;
5311 	}
5312 
5313 	if (tsicr & IGC_TSICR_TT1) {
5314 		spin_lock(&adapter->tmreg_lock);
5315 		ts = timespec64_add(adapter->perout[1].start,
5316 				    adapter->perout[1].period);
5317 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5318 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5319 		tsauxc = rd32(IGC_TSAUXC);
5320 		tsauxc |= IGC_TSAUXC_EN_TT1;
5321 		wr32(IGC_TSAUXC, tsauxc);
5322 		adapter->perout[1].start = ts;
5323 		spin_unlock(&adapter->tmreg_lock);
5324 		ack |= IGC_TSICR_TT1;
5325 	}
5326 
5327 	if (tsicr & IGC_TSICR_AUTT0) {
5328 		nsec = rd32(IGC_AUXSTMPL0);
5329 		sec  = rd32(IGC_AUXSTMPH0);
5330 		event.type = PTP_CLOCK_EXTTS;
5331 		event.index = 0;
5332 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5333 		ptp_clock_event(adapter->ptp_clock, &event);
5334 		ack |= IGC_TSICR_AUTT0;
5335 	}
5336 
5337 	if (tsicr & IGC_TSICR_AUTT1) {
5338 		nsec = rd32(IGC_AUXSTMPL1);
5339 		sec  = rd32(IGC_AUXSTMPH1);
5340 		event.type = PTP_CLOCK_EXTTS;
5341 		event.index = 1;
5342 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5343 		ptp_clock_event(adapter->ptp_clock, &event);
5344 		ack |= IGC_TSICR_AUTT1;
5345 	}
5346 
5347 	/* acknowledge the interrupts */
5348 	wr32(IGC_TSICR, ack);
5349 }
5350 
5351 /**
5352  * igc_msix_other - msix other interrupt handler
5353  * @irq: interrupt number
5354  * @data: pointer to a q_vector
5355  */
5356 static irqreturn_t igc_msix_other(int irq, void *data)
5357 {
5358 	struct igc_adapter *adapter = data;
5359 	struct igc_hw *hw = &adapter->hw;
5360 	u32 icr = rd32(IGC_ICR);
5361 
5362 	/* reading ICR causes bit 31 of EICR to be cleared */
5363 	if (icr & IGC_ICR_DRSTA)
5364 		schedule_work(&adapter->reset_task);
5365 
5366 	if (icr & IGC_ICR_DOUTSYNC) {
5367 		/* HW is reporting DMA is out of sync */
5368 		adapter->stats.doosync++;
5369 	}
5370 
5371 	if (icr & IGC_ICR_LSC) {
5372 		hw->mac.get_link_status = true;
5373 		/* guard against interrupt when we're going down */
5374 		if (!test_bit(__IGC_DOWN, &adapter->state))
5375 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5376 	}
5377 
5378 	if (icr & IGC_ICR_TS)
5379 		igc_tsync_interrupt(adapter);
5380 
5381 	wr32(IGC_EIMS, adapter->eims_other);
5382 
5383 	return IRQ_HANDLED;
5384 }
5385 
5386 static void igc_write_itr(struct igc_q_vector *q_vector)
5387 {
5388 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5389 
5390 	if (!q_vector->set_itr)
5391 		return;
5392 
5393 	if (!itr_val)
5394 		itr_val = IGC_ITR_VAL_MASK;
5395 
5396 	itr_val |= IGC_EITR_CNT_IGNR;
5397 
5398 	writel(itr_val, q_vector->itr_register);
5399 	q_vector->set_itr = 0;
5400 }
5401 
5402 static irqreturn_t igc_msix_ring(int irq, void *data)
5403 {
5404 	struct igc_q_vector *q_vector = data;
5405 
5406 	/* Write the ITR value calculated from the previous interrupt. */
5407 	igc_write_itr(q_vector);
5408 
5409 	napi_schedule(&q_vector->napi);
5410 
5411 	return IRQ_HANDLED;
5412 }
5413 
5414 /**
5415  * igc_request_msix - Initialize MSI-X interrupts
5416  * @adapter: Pointer to adapter structure
5417  *
5418  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5419  * kernel.
5420  */
5421 static int igc_request_msix(struct igc_adapter *adapter)
5422 {
5423 	unsigned int num_q_vectors = adapter->num_q_vectors;
5424 	int i = 0, err = 0, vector = 0, free_vector = 0;
5425 	struct net_device *netdev = adapter->netdev;
5426 
5427 	err = request_irq(adapter->msix_entries[vector].vector,
5428 			  &igc_msix_other, 0, netdev->name, adapter);
5429 	if (err)
5430 		goto err_out;
5431 
5432 	if (num_q_vectors > MAX_Q_VECTORS) {
5433 		num_q_vectors = MAX_Q_VECTORS;
5434 		dev_warn(&adapter->pdev->dev,
5435 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5436 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5437 	}
5438 	for (i = 0; i < num_q_vectors; i++) {
5439 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5440 
5441 		vector++;
5442 
5443 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5444 
5445 		if (q_vector->rx.ring && q_vector->tx.ring)
5446 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5447 				q_vector->rx.ring->queue_index);
5448 		else if (q_vector->tx.ring)
5449 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5450 				q_vector->tx.ring->queue_index);
5451 		else if (q_vector->rx.ring)
5452 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5453 				q_vector->rx.ring->queue_index);
5454 		else
5455 			sprintf(q_vector->name, "%s-unused", netdev->name);
5456 
5457 		err = request_irq(adapter->msix_entries[vector].vector,
5458 				  igc_msix_ring, 0, q_vector->name,
5459 				  q_vector);
5460 		if (err)
5461 			goto err_free;
5462 	}
5463 
5464 	igc_configure_msix(adapter);
5465 	return 0;
5466 
5467 err_free:
5468 	/* free already assigned IRQs */
5469 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5470 
5471 	vector--;
5472 	for (i = 0; i < vector; i++) {
5473 		free_irq(adapter->msix_entries[free_vector++].vector,
5474 			 adapter->q_vector[i]);
5475 	}
5476 err_out:
5477 	return err;
5478 }
5479 
5480 /**
5481  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5482  * @adapter: Pointer to adapter structure
5483  *
5484  * This function resets the device so that it has 0 rx queues, tx queues, and
5485  * MSI-X interrupts allocated.
5486  */
5487 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5488 {
5489 	igc_free_q_vectors(adapter);
5490 	igc_reset_interrupt_capability(adapter);
5491 }
5492 
5493 /* Need to wait a few seconds after link up to get diagnostic information from
5494  * the phy
5495  */
5496 static void igc_update_phy_info(struct timer_list *t)
5497 {
5498 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5499 
5500 	igc_get_phy_info(&adapter->hw);
5501 }
5502 
5503 /**
5504  * igc_has_link - check shared code for link and determine up/down
5505  * @adapter: pointer to driver private info
5506  */
5507 bool igc_has_link(struct igc_adapter *adapter)
5508 {
5509 	struct igc_hw *hw = &adapter->hw;
5510 	bool link_active = false;
5511 
5512 	/* get_link_status is set on LSC (link status) interrupt or
5513 	 * rx sequence error interrupt.  get_link_status will stay
5514 	 * false until the igc_check_for_link establishes link
5515 	 * for copper adapters ONLY
5516 	 */
5517 	if (!hw->mac.get_link_status)
5518 		return true;
5519 	hw->mac.ops.check_for_link(hw);
5520 	link_active = !hw->mac.get_link_status;
5521 
5522 	if (hw->mac.type == igc_i225) {
5523 		if (!netif_carrier_ok(adapter->netdev)) {
5524 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5525 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5526 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5527 			adapter->link_check_timeout = jiffies;
5528 		}
5529 	}
5530 
5531 	return link_active;
5532 }
5533 
5534 /**
5535  * igc_watchdog - Timer Call-back
5536  * @t: timer for the watchdog
5537  */
5538 static void igc_watchdog(struct timer_list *t)
5539 {
5540 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5541 	/* Do the rest outside of interrupt context */
5542 	schedule_work(&adapter->watchdog_task);
5543 }
5544 
5545 static void igc_watchdog_task(struct work_struct *work)
5546 {
5547 	struct igc_adapter *adapter = container_of(work,
5548 						   struct igc_adapter,
5549 						   watchdog_task);
5550 	struct net_device *netdev = adapter->netdev;
5551 	struct igc_hw *hw = &adapter->hw;
5552 	struct igc_phy_info *phy = &hw->phy;
5553 	u16 phy_data, retry_count = 20;
5554 	u32 link;
5555 	int i;
5556 
5557 	link = igc_has_link(adapter);
5558 
5559 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5560 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5561 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5562 		else
5563 			link = false;
5564 	}
5565 
5566 	if (link) {
5567 		/* Cancel scheduled suspend requests. */
5568 		pm_runtime_resume(netdev->dev.parent);
5569 
5570 		if (!netif_carrier_ok(netdev)) {
5571 			u32 ctrl;
5572 
5573 			hw->mac.ops.get_speed_and_duplex(hw,
5574 							 &adapter->link_speed,
5575 							 &adapter->link_duplex);
5576 
5577 			ctrl = rd32(IGC_CTRL);
5578 			/* Link status message must follow this format */
5579 			netdev_info(netdev,
5580 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5581 				    adapter->link_speed,
5582 				    adapter->link_duplex == FULL_DUPLEX ?
5583 				    "Full" : "Half",
5584 				    (ctrl & IGC_CTRL_TFCE) &&
5585 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5586 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5587 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5588 
5589 			/* disable EEE if enabled */
5590 			if ((adapter->flags & IGC_FLAG_EEE) &&
5591 			    adapter->link_duplex == HALF_DUPLEX) {
5592 				netdev_info(netdev,
5593 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5594 				adapter->hw.dev_spec._base.eee_enable = false;
5595 				adapter->flags &= ~IGC_FLAG_EEE;
5596 			}
5597 
5598 			/* check if SmartSpeed worked */
5599 			igc_check_downshift(hw);
5600 			if (phy->speed_downgraded)
5601 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5602 
5603 			/* adjust timeout factor according to speed/duplex */
5604 			adapter->tx_timeout_factor = 1;
5605 			switch (adapter->link_speed) {
5606 			case SPEED_10:
5607 				adapter->tx_timeout_factor = 14;
5608 				break;
5609 			case SPEED_100:
5610 			case SPEED_1000:
5611 			case SPEED_2500:
5612 				adapter->tx_timeout_factor = 1;
5613 				break;
5614 			}
5615 
5616 			/* Once the launch time has been set on the wire, there
5617 			 * is a delay before the link speed can be determined
5618 			 * based on link-up activity. Write into the register
5619 			 * as soon as we know the correct link speed.
5620 			 */
5621 			igc_tsn_adjust_txtime_offset(adapter);
5622 
5623 			if (adapter->link_speed != SPEED_1000)
5624 				goto no_wait;
5625 
5626 			/* wait for Remote receiver status OK */
5627 retry_read_status:
5628 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5629 					      &phy_data)) {
5630 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5631 				    retry_count) {
5632 					msleep(100);
5633 					retry_count--;
5634 					goto retry_read_status;
5635 				} else if (!retry_count) {
5636 					netdev_err(netdev, "exceed max 2 second\n");
5637 				}
5638 			} else {
5639 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5640 			}
5641 no_wait:
5642 			netif_carrier_on(netdev);
5643 
5644 			/* link state has changed, schedule phy info update */
5645 			if (!test_bit(__IGC_DOWN, &adapter->state))
5646 				mod_timer(&adapter->phy_info_timer,
5647 					  round_jiffies(jiffies + 2 * HZ));
5648 		}
5649 	} else {
5650 		if (netif_carrier_ok(netdev)) {
5651 			adapter->link_speed = 0;
5652 			adapter->link_duplex = 0;
5653 
5654 			/* Links status message must follow this format */
5655 			netdev_info(netdev, "NIC Link is Down\n");
5656 			netif_carrier_off(netdev);
5657 
5658 			/* link state has changed, schedule phy info update */
5659 			if (!test_bit(__IGC_DOWN, &adapter->state))
5660 				mod_timer(&adapter->phy_info_timer,
5661 					  round_jiffies(jiffies + 2 * HZ));
5662 
5663 			pm_schedule_suspend(netdev->dev.parent,
5664 					    MSEC_PER_SEC * 5);
5665 		}
5666 	}
5667 
5668 	spin_lock(&adapter->stats64_lock);
5669 	igc_update_stats(adapter);
5670 	spin_unlock(&adapter->stats64_lock);
5671 
5672 	for (i = 0; i < adapter->num_tx_queues; i++) {
5673 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5674 
5675 		if (!netif_carrier_ok(netdev)) {
5676 			/* We've lost link, so the controller stops DMA,
5677 			 * but we've got queued Tx work that's never going
5678 			 * to get done, so reset controller to flush Tx.
5679 			 * (Do the reset outside of interrupt context).
5680 			 */
5681 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5682 				adapter->tx_timeout_count++;
5683 				schedule_work(&adapter->reset_task);
5684 				/* return immediately since reset is imminent */
5685 				return;
5686 			}
5687 		}
5688 
5689 		/* Force detection of hung controller every watchdog period */
5690 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5691 	}
5692 
5693 	/* Cause software interrupt to ensure Rx ring is cleaned */
5694 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5695 		u32 eics = 0;
5696 
5697 		for (i = 0; i < adapter->num_q_vectors; i++)
5698 			eics |= adapter->q_vector[i]->eims_value;
5699 		wr32(IGC_EICS, eics);
5700 	} else {
5701 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5702 	}
5703 
5704 	igc_ptp_tx_hang(adapter);
5705 
5706 	/* Reset the timer */
5707 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5708 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5709 			mod_timer(&adapter->watchdog_timer,
5710 				  round_jiffies(jiffies +  HZ));
5711 		else
5712 			mod_timer(&adapter->watchdog_timer,
5713 				  round_jiffies(jiffies + 2 * HZ));
5714 	}
5715 }
5716 
5717 /**
5718  * igc_intr_msi - Interrupt Handler
5719  * @irq: interrupt number
5720  * @data: pointer to a network interface device structure
5721  */
5722 static irqreturn_t igc_intr_msi(int irq, void *data)
5723 {
5724 	struct igc_adapter *adapter = data;
5725 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5726 	struct igc_hw *hw = &adapter->hw;
5727 	/* read ICR disables interrupts using IAM */
5728 	u32 icr = rd32(IGC_ICR);
5729 
5730 	igc_write_itr(q_vector);
5731 
5732 	if (icr & IGC_ICR_DRSTA)
5733 		schedule_work(&adapter->reset_task);
5734 
5735 	if (icr & IGC_ICR_DOUTSYNC) {
5736 		/* HW is reporting DMA is out of sync */
5737 		adapter->stats.doosync++;
5738 	}
5739 
5740 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5741 		hw->mac.get_link_status = true;
5742 		if (!test_bit(__IGC_DOWN, &adapter->state))
5743 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5744 	}
5745 
5746 	if (icr & IGC_ICR_TS)
5747 		igc_tsync_interrupt(adapter);
5748 
5749 	napi_schedule(&q_vector->napi);
5750 
5751 	return IRQ_HANDLED;
5752 }
5753 
5754 /**
5755  * igc_intr - Legacy Interrupt Handler
5756  * @irq: interrupt number
5757  * @data: pointer to a network interface device structure
5758  */
5759 static irqreturn_t igc_intr(int irq, void *data)
5760 {
5761 	struct igc_adapter *adapter = data;
5762 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5763 	struct igc_hw *hw = &adapter->hw;
5764 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5765 	 * need for the IMC write
5766 	 */
5767 	u32 icr = rd32(IGC_ICR);
5768 
5769 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5770 	 * not set, then the adapter didn't send an interrupt
5771 	 */
5772 	if (!(icr & IGC_ICR_INT_ASSERTED))
5773 		return IRQ_NONE;
5774 
5775 	igc_write_itr(q_vector);
5776 
5777 	if (icr & IGC_ICR_DRSTA)
5778 		schedule_work(&adapter->reset_task);
5779 
5780 	if (icr & IGC_ICR_DOUTSYNC) {
5781 		/* HW is reporting DMA is out of sync */
5782 		adapter->stats.doosync++;
5783 	}
5784 
5785 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5786 		hw->mac.get_link_status = true;
5787 		/* guard against interrupt when we're going down */
5788 		if (!test_bit(__IGC_DOWN, &adapter->state))
5789 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5790 	}
5791 
5792 	if (icr & IGC_ICR_TS)
5793 		igc_tsync_interrupt(adapter);
5794 
5795 	napi_schedule(&q_vector->napi);
5796 
5797 	return IRQ_HANDLED;
5798 }
5799 
5800 static void igc_free_irq(struct igc_adapter *adapter)
5801 {
5802 	if (adapter->msix_entries) {
5803 		int vector = 0, i;
5804 
5805 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5806 
5807 		for (i = 0; i < adapter->num_q_vectors; i++)
5808 			free_irq(adapter->msix_entries[vector++].vector,
5809 				 adapter->q_vector[i]);
5810 	} else {
5811 		free_irq(adapter->pdev->irq, adapter);
5812 	}
5813 }
5814 
5815 /**
5816  * igc_request_irq - initialize interrupts
5817  * @adapter: Pointer to adapter structure
5818  *
5819  * Attempts to configure interrupts using the best available
5820  * capabilities of the hardware and kernel.
5821  */
5822 static int igc_request_irq(struct igc_adapter *adapter)
5823 {
5824 	struct net_device *netdev = adapter->netdev;
5825 	struct pci_dev *pdev = adapter->pdev;
5826 	int err = 0;
5827 
5828 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5829 		err = igc_request_msix(adapter);
5830 		if (!err)
5831 			goto request_done;
5832 		/* fall back to MSI */
5833 		igc_free_all_tx_resources(adapter);
5834 		igc_free_all_rx_resources(adapter);
5835 
5836 		igc_clear_interrupt_scheme(adapter);
5837 		err = igc_init_interrupt_scheme(adapter, false);
5838 		if (err)
5839 			goto request_done;
5840 		igc_setup_all_tx_resources(adapter);
5841 		igc_setup_all_rx_resources(adapter);
5842 		igc_configure(adapter);
5843 	}
5844 
5845 	igc_assign_vector(adapter->q_vector[0], 0);
5846 
5847 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5848 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5849 				  netdev->name, adapter);
5850 		if (!err)
5851 			goto request_done;
5852 
5853 		/* fall back to legacy interrupts */
5854 		igc_reset_interrupt_capability(adapter);
5855 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5856 	}
5857 
5858 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5859 			  netdev->name, adapter);
5860 
5861 	if (err)
5862 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5863 
5864 request_done:
5865 	return err;
5866 }
5867 
5868 /**
5869  * __igc_open - Called when a network interface is made active
5870  * @netdev: network interface device structure
5871  * @resuming: boolean indicating if the device is resuming
5872  *
5873  * Returns 0 on success, negative value on failure
5874  *
5875  * The open entry point is called when a network interface is made
5876  * active by the system (IFF_UP).  At this point all resources needed
5877  * for transmit and receive operations are allocated, the interrupt
5878  * handler is registered with the OS, the watchdog timer is started,
5879  * and the stack is notified that the interface is ready.
5880  */
5881 static int __igc_open(struct net_device *netdev, bool resuming)
5882 {
5883 	struct igc_adapter *adapter = netdev_priv(netdev);
5884 	struct pci_dev *pdev = adapter->pdev;
5885 	struct igc_hw *hw = &adapter->hw;
5886 	int err = 0;
5887 	int i = 0;
5888 
5889 	/* disallow open during test */
5890 
5891 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5892 		WARN_ON(resuming);
5893 		return -EBUSY;
5894 	}
5895 
5896 	if (!resuming)
5897 		pm_runtime_get_sync(&pdev->dev);
5898 
5899 	netif_carrier_off(netdev);
5900 
5901 	/* allocate transmit descriptors */
5902 	err = igc_setup_all_tx_resources(adapter);
5903 	if (err)
5904 		goto err_setup_tx;
5905 
5906 	/* allocate receive descriptors */
5907 	err = igc_setup_all_rx_resources(adapter);
5908 	if (err)
5909 		goto err_setup_rx;
5910 
5911 	igc_power_up_link(adapter);
5912 
5913 	igc_configure(adapter);
5914 
5915 	err = igc_request_irq(adapter);
5916 	if (err)
5917 		goto err_req_irq;
5918 
5919 	/* Notify the stack of the actual queue counts. */
5920 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5921 	if (err)
5922 		goto err_set_queues;
5923 
5924 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5925 	if (err)
5926 		goto err_set_queues;
5927 
5928 	clear_bit(__IGC_DOWN, &adapter->state);
5929 
5930 	for (i = 0; i < adapter->num_q_vectors; i++)
5931 		napi_enable(&adapter->q_vector[i]->napi);
5932 
5933 	/* Clear any pending interrupts. */
5934 	rd32(IGC_ICR);
5935 	igc_irq_enable(adapter);
5936 
5937 	if (!resuming)
5938 		pm_runtime_put(&pdev->dev);
5939 
5940 	netif_tx_start_all_queues(netdev);
5941 
5942 	/* start the watchdog. */
5943 	hw->mac.get_link_status = true;
5944 	schedule_work(&adapter->watchdog_task);
5945 
5946 	return IGC_SUCCESS;
5947 
5948 err_set_queues:
5949 	igc_free_irq(adapter);
5950 err_req_irq:
5951 	igc_release_hw_control(adapter);
5952 	igc_power_down_phy_copper_base(&adapter->hw);
5953 	igc_free_all_rx_resources(adapter);
5954 err_setup_rx:
5955 	igc_free_all_tx_resources(adapter);
5956 err_setup_tx:
5957 	igc_reset(adapter);
5958 	if (!resuming)
5959 		pm_runtime_put(&pdev->dev);
5960 
5961 	return err;
5962 }
5963 
5964 int igc_open(struct net_device *netdev)
5965 {
5966 	return __igc_open(netdev, false);
5967 }
5968 
5969 /**
5970  * __igc_close - Disables a network interface
5971  * @netdev: network interface device structure
5972  * @suspending: boolean indicating the device is suspending
5973  *
5974  * Returns 0, this is not allowed to fail
5975  *
5976  * The close entry point is called when an interface is de-activated
5977  * by the OS.  The hardware is still under the driver's control, but
5978  * needs to be disabled.  A global MAC reset is issued to stop the
5979  * hardware, and all transmit and receive resources are freed.
5980  */
5981 static int __igc_close(struct net_device *netdev, bool suspending)
5982 {
5983 	struct igc_adapter *adapter = netdev_priv(netdev);
5984 	struct pci_dev *pdev = adapter->pdev;
5985 
5986 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5987 
5988 	if (!suspending)
5989 		pm_runtime_get_sync(&pdev->dev);
5990 
5991 	igc_down(adapter);
5992 
5993 	igc_release_hw_control(adapter);
5994 
5995 	igc_free_irq(adapter);
5996 
5997 	igc_free_all_tx_resources(adapter);
5998 	igc_free_all_rx_resources(adapter);
5999 
6000 	if (!suspending)
6001 		pm_runtime_put_sync(&pdev->dev);
6002 
6003 	return 0;
6004 }
6005 
6006 int igc_close(struct net_device *netdev)
6007 {
6008 	if (netif_device_present(netdev) || netdev->dismantle)
6009 		return __igc_close(netdev, false);
6010 	return 0;
6011 }
6012 
6013 /**
6014  * igc_ioctl - Access the hwtstamp interface
6015  * @netdev: network interface device structure
6016  * @ifr: interface request data
6017  * @cmd: ioctl command
6018  **/
6019 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6020 {
6021 	switch (cmd) {
6022 	case SIOCGHWTSTAMP:
6023 		return igc_ptp_get_ts_config(netdev, ifr);
6024 	case SIOCSHWTSTAMP:
6025 		return igc_ptp_set_ts_config(netdev, ifr);
6026 	default:
6027 		return -EOPNOTSUPP;
6028 	}
6029 }
6030 
6031 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6032 				      bool enable)
6033 {
6034 	struct igc_ring *ring;
6035 
6036 	if (queue < 0 || queue >= adapter->num_tx_queues)
6037 		return -EINVAL;
6038 
6039 	ring = adapter->tx_ring[queue];
6040 	ring->launchtime_enable = enable;
6041 
6042 	return 0;
6043 }
6044 
6045 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6046 {
6047 	struct timespec64 b;
6048 
6049 	b = ktime_to_timespec64(base_time);
6050 
6051 	return timespec64_compare(now, &b) > 0;
6052 }
6053 
6054 static bool validate_schedule(struct igc_adapter *adapter,
6055 			      const struct tc_taprio_qopt_offload *qopt)
6056 {
6057 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6058 	struct igc_hw *hw = &adapter->hw;
6059 	struct timespec64 now;
6060 	size_t n;
6061 
6062 	if (qopt->cycle_time_extension)
6063 		return false;
6064 
6065 	igc_ptp_read(adapter, &now);
6066 
6067 	/* If we program the controller's BASET registers with a time
6068 	 * in the future, it will hold all the packets until that
6069 	 * time, causing a lot of TX Hangs, so to avoid that, we
6070 	 * reject schedules that would start in the future.
6071 	 * Note: Limitation above is no longer in i226.
6072 	 */
6073 	if (!is_base_time_past(qopt->base_time, &now) &&
6074 	    igc_is_device_id_i225(hw))
6075 		return false;
6076 
6077 	for (n = 0; n < qopt->num_entries; n++) {
6078 		const struct tc_taprio_sched_entry *e, *prev;
6079 		int i;
6080 
6081 		prev = n ? &qopt->entries[n - 1] : NULL;
6082 		e = &qopt->entries[n];
6083 
6084 		/* i225 only supports "global" frame preemption
6085 		 * settings.
6086 		 */
6087 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6088 			return false;
6089 
6090 		for (i = 0; i < adapter->num_tx_queues; i++)
6091 			if (e->gate_mask & BIT(i)) {
6092 				queue_uses[i]++;
6093 
6094 				/* There are limitations: A single queue cannot
6095 				 * be opened and closed multiple times per cycle
6096 				 * unless the gate stays open. Check for it.
6097 				 */
6098 				if (queue_uses[i] > 1 &&
6099 				    !(prev->gate_mask & BIT(i)))
6100 					return false;
6101 			}
6102 	}
6103 
6104 	return true;
6105 }
6106 
6107 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6108 				     struct tc_etf_qopt_offload *qopt)
6109 {
6110 	struct igc_hw *hw = &adapter->hw;
6111 	int err;
6112 
6113 	if (hw->mac.type != igc_i225)
6114 		return -EOPNOTSUPP;
6115 
6116 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6117 	if (err)
6118 		return err;
6119 
6120 	return igc_tsn_offload_apply(adapter);
6121 }
6122 
6123 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6124 {
6125 	unsigned long flags;
6126 	int i;
6127 
6128 	adapter->base_time = 0;
6129 	adapter->cycle_time = NSEC_PER_SEC;
6130 	adapter->taprio_offload_enable = false;
6131 	adapter->qbv_config_change_errors = 0;
6132 	adapter->qbv_count = 0;
6133 
6134 	for (i = 0; i < adapter->num_tx_queues; i++) {
6135 		struct igc_ring *ring = adapter->tx_ring[i];
6136 
6137 		ring->start_time = 0;
6138 		ring->end_time = NSEC_PER_SEC;
6139 		ring->max_sdu = 0;
6140 	}
6141 
6142 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6143 
6144 	adapter->qbv_transition = false;
6145 
6146 	for (i = 0; i < adapter->num_tx_queues; i++) {
6147 		struct igc_ring *ring = adapter->tx_ring[i];
6148 
6149 		ring->oper_gate_closed = false;
6150 		ring->admin_gate_closed = false;
6151 	}
6152 
6153 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6154 
6155 	return 0;
6156 }
6157 
6158 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6159 {
6160 	igc_qbv_clear_schedule(adapter);
6161 
6162 	return 0;
6163 }
6164 
6165 static void igc_taprio_stats(struct net_device *dev,
6166 			     struct tc_taprio_qopt_stats *stats)
6167 {
6168 	/* When Strict_End is enabled, the tx_overruns counter
6169 	 * will always be zero.
6170 	 */
6171 	stats->tx_overruns = 0;
6172 }
6173 
6174 static void igc_taprio_queue_stats(struct net_device *dev,
6175 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6176 {
6177 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6178 
6179 	/* When Strict_End is enabled, the tx_overruns counter
6180 	 * will always be zero.
6181 	 */
6182 	stats->tx_overruns = 0;
6183 }
6184 
6185 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6186 				 struct tc_taprio_qopt_offload *qopt)
6187 {
6188 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6189 	struct igc_hw *hw = &adapter->hw;
6190 	u32 start_time = 0, end_time = 0;
6191 	struct timespec64 now;
6192 	unsigned long flags;
6193 	size_t n;
6194 	int i;
6195 
6196 	switch (qopt->cmd) {
6197 	case TAPRIO_CMD_REPLACE:
6198 		break;
6199 	case TAPRIO_CMD_DESTROY:
6200 		return igc_tsn_clear_schedule(adapter);
6201 	case TAPRIO_CMD_STATS:
6202 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6203 		return 0;
6204 	case TAPRIO_CMD_QUEUE_STATS:
6205 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6206 		return 0;
6207 	default:
6208 		return -EOPNOTSUPP;
6209 	}
6210 
6211 	if (qopt->base_time < 0)
6212 		return -ERANGE;
6213 
6214 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6215 		return -EALREADY;
6216 
6217 	if (!validate_schedule(adapter, qopt))
6218 		return -EINVAL;
6219 
6220 	adapter->cycle_time = qopt->cycle_time;
6221 	adapter->base_time = qopt->base_time;
6222 	adapter->taprio_offload_enable = true;
6223 
6224 	igc_ptp_read(adapter, &now);
6225 
6226 	for (n = 0; n < qopt->num_entries; n++) {
6227 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6228 
6229 		end_time += e->interval;
6230 
6231 		/* If any of the conditions below are true, we need to manually
6232 		 * control the end time of the cycle.
6233 		 * 1. Qbv users can specify a cycle time that is not equal
6234 		 * to the total GCL intervals. Hence, recalculation is
6235 		 * necessary here to exclude the time interval that
6236 		 * exceeds the cycle time.
6237 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6238 		 * once the end of the list is reached, it will switch
6239 		 * to the END_OF_CYCLE state and leave the gates in the
6240 		 * same state until the next cycle is started.
6241 		 */
6242 		if (end_time > adapter->cycle_time ||
6243 		    n + 1 == qopt->num_entries)
6244 			end_time = adapter->cycle_time;
6245 
6246 		for (i = 0; i < adapter->num_tx_queues; i++) {
6247 			struct igc_ring *ring = adapter->tx_ring[i];
6248 
6249 			if (!(e->gate_mask & BIT(i)))
6250 				continue;
6251 
6252 			/* Check whether a queue stays open for more than one
6253 			 * entry. If so, keep the start and advance the end
6254 			 * time.
6255 			 */
6256 			if (!queue_configured[i])
6257 				ring->start_time = start_time;
6258 			ring->end_time = end_time;
6259 
6260 			if (ring->start_time >= adapter->cycle_time)
6261 				queue_configured[i] = false;
6262 			else
6263 				queue_configured[i] = true;
6264 		}
6265 
6266 		start_time += e->interval;
6267 	}
6268 
6269 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6270 
6271 	/* Check whether a queue gets configured.
6272 	 * If not, set the start and end time to be end time.
6273 	 */
6274 	for (i = 0; i < adapter->num_tx_queues; i++) {
6275 		struct igc_ring *ring = adapter->tx_ring[i];
6276 
6277 		if (!is_base_time_past(qopt->base_time, &now)) {
6278 			ring->admin_gate_closed = false;
6279 		} else {
6280 			ring->oper_gate_closed = false;
6281 			ring->admin_gate_closed = false;
6282 		}
6283 
6284 		if (!queue_configured[i]) {
6285 			if (!is_base_time_past(qopt->base_time, &now))
6286 				ring->admin_gate_closed = true;
6287 			else
6288 				ring->oper_gate_closed = true;
6289 
6290 			ring->start_time = end_time;
6291 			ring->end_time = end_time;
6292 		}
6293 	}
6294 
6295 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6296 
6297 	for (i = 0; i < adapter->num_tx_queues; i++) {
6298 		struct igc_ring *ring = adapter->tx_ring[i];
6299 		struct net_device *dev = adapter->netdev;
6300 
6301 		if (qopt->max_sdu[i])
6302 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6303 		else
6304 			ring->max_sdu = 0;
6305 	}
6306 
6307 	return 0;
6308 }
6309 
6310 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6311 					 struct tc_taprio_qopt_offload *qopt)
6312 {
6313 	struct igc_hw *hw = &adapter->hw;
6314 	int err;
6315 
6316 	if (hw->mac.type != igc_i225)
6317 		return -EOPNOTSUPP;
6318 
6319 	err = igc_save_qbv_schedule(adapter, qopt);
6320 	if (err)
6321 		return err;
6322 
6323 	return igc_tsn_offload_apply(adapter);
6324 }
6325 
6326 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6327 			       bool enable, int idleslope, int sendslope,
6328 			       int hicredit, int locredit)
6329 {
6330 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6331 	struct net_device *netdev = adapter->netdev;
6332 	struct igc_ring *ring;
6333 	int i;
6334 
6335 	/* i225 has two sets of credit-based shaper logic.
6336 	 * Supporting it only on the top two priority queues
6337 	 */
6338 	if (queue < 0 || queue > 1)
6339 		return -EINVAL;
6340 
6341 	ring = adapter->tx_ring[queue];
6342 
6343 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6344 		if (adapter->tx_ring[i])
6345 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6346 
6347 	/* CBS should be enabled on the highest priority queue first in order
6348 	 * for the CBS algorithm to operate as intended.
6349 	 */
6350 	if (enable) {
6351 		if (queue == 1 && !cbs_status[0]) {
6352 			netdev_err(netdev,
6353 				   "Enabling CBS on queue1 before queue0\n");
6354 			return -EINVAL;
6355 		}
6356 	} else {
6357 		if (queue == 0 && cbs_status[1]) {
6358 			netdev_err(netdev,
6359 				   "Disabling CBS on queue0 before queue1\n");
6360 			return -EINVAL;
6361 		}
6362 	}
6363 
6364 	ring->cbs_enable = enable;
6365 	ring->idleslope = idleslope;
6366 	ring->sendslope = sendslope;
6367 	ring->hicredit = hicredit;
6368 	ring->locredit = locredit;
6369 
6370 	return 0;
6371 }
6372 
6373 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6374 			      struct tc_cbs_qopt_offload *qopt)
6375 {
6376 	struct igc_hw *hw = &adapter->hw;
6377 	int err;
6378 
6379 	if (hw->mac.type != igc_i225)
6380 		return -EOPNOTSUPP;
6381 
6382 	if (qopt->queue < 0 || qopt->queue > 1)
6383 		return -EINVAL;
6384 
6385 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6386 				  qopt->idleslope, qopt->sendslope,
6387 				  qopt->hicredit, qopt->locredit);
6388 	if (err)
6389 		return err;
6390 
6391 	return igc_tsn_offload_apply(adapter);
6392 }
6393 
6394 static int igc_tc_query_caps(struct igc_adapter *adapter,
6395 			     struct tc_query_caps_base *base)
6396 {
6397 	struct igc_hw *hw = &adapter->hw;
6398 
6399 	switch (base->type) {
6400 	case TC_SETUP_QDISC_TAPRIO: {
6401 		struct tc_taprio_caps *caps = base->caps;
6402 
6403 		caps->broken_mqprio = true;
6404 
6405 		if (hw->mac.type == igc_i225) {
6406 			caps->supports_queue_max_sdu = true;
6407 			caps->gate_mask_per_txq = true;
6408 		}
6409 
6410 		return 0;
6411 	}
6412 	default:
6413 		return -EOPNOTSUPP;
6414 	}
6415 }
6416 
6417 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6418 			void *type_data)
6419 {
6420 	struct igc_adapter *adapter = netdev_priv(dev);
6421 
6422 	adapter->tc_setup_type = type;
6423 
6424 	switch (type) {
6425 	case TC_QUERY_CAPS:
6426 		return igc_tc_query_caps(adapter, type_data);
6427 	case TC_SETUP_QDISC_TAPRIO:
6428 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6429 
6430 	case TC_SETUP_QDISC_ETF:
6431 		return igc_tsn_enable_launchtime(adapter, type_data);
6432 
6433 	case TC_SETUP_QDISC_CBS:
6434 		return igc_tsn_enable_cbs(adapter, type_data);
6435 
6436 	default:
6437 		return -EOPNOTSUPP;
6438 	}
6439 }
6440 
6441 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6442 {
6443 	struct igc_adapter *adapter = netdev_priv(dev);
6444 
6445 	switch (bpf->command) {
6446 	case XDP_SETUP_PROG:
6447 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6448 	case XDP_SETUP_XSK_POOL:
6449 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6450 					  bpf->xsk.queue_id);
6451 	default:
6452 		return -EOPNOTSUPP;
6453 	}
6454 }
6455 
6456 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6457 			struct xdp_frame **frames, u32 flags)
6458 {
6459 	struct igc_adapter *adapter = netdev_priv(dev);
6460 	int cpu = smp_processor_id();
6461 	struct netdev_queue *nq;
6462 	struct igc_ring *ring;
6463 	int i, drops;
6464 
6465 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6466 		return -ENETDOWN;
6467 
6468 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6469 		return -EINVAL;
6470 
6471 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6472 	nq = txring_txq(ring);
6473 
6474 	__netif_tx_lock(nq, cpu);
6475 
6476 	/* Avoid transmit queue timeout since we share it with the slow path */
6477 	txq_trans_cond_update(nq);
6478 
6479 	drops = 0;
6480 	for (i = 0; i < num_frames; i++) {
6481 		int err;
6482 		struct xdp_frame *xdpf = frames[i];
6483 
6484 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6485 		if (err) {
6486 			xdp_return_frame_rx_napi(xdpf);
6487 			drops++;
6488 		}
6489 	}
6490 
6491 	if (flags & XDP_XMIT_FLUSH)
6492 		igc_flush_tx_descriptors(ring);
6493 
6494 	__netif_tx_unlock(nq);
6495 
6496 	return num_frames - drops;
6497 }
6498 
6499 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6500 					struct igc_q_vector *q_vector)
6501 {
6502 	struct igc_hw *hw = &adapter->hw;
6503 	u32 eics = 0;
6504 
6505 	eics |= q_vector->eims_value;
6506 	wr32(IGC_EICS, eics);
6507 }
6508 
6509 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6510 {
6511 	struct igc_adapter *adapter = netdev_priv(dev);
6512 	struct igc_q_vector *q_vector;
6513 	struct igc_ring *ring;
6514 
6515 	if (test_bit(__IGC_DOWN, &adapter->state))
6516 		return -ENETDOWN;
6517 
6518 	if (!igc_xdp_is_enabled(adapter))
6519 		return -ENXIO;
6520 
6521 	if (queue_id >= adapter->num_rx_queues)
6522 		return -EINVAL;
6523 
6524 	ring = adapter->rx_ring[queue_id];
6525 
6526 	if (!ring->xsk_pool)
6527 		return -ENXIO;
6528 
6529 	q_vector = adapter->q_vector[queue_id];
6530 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6531 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6532 
6533 	return 0;
6534 }
6535 
6536 static const struct net_device_ops igc_netdev_ops = {
6537 	.ndo_open		= igc_open,
6538 	.ndo_stop		= igc_close,
6539 	.ndo_start_xmit		= igc_xmit_frame,
6540 	.ndo_set_rx_mode	= igc_set_rx_mode,
6541 	.ndo_set_mac_address	= igc_set_mac,
6542 	.ndo_change_mtu		= igc_change_mtu,
6543 	.ndo_tx_timeout		= igc_tx_timeout,
6544 	.ndo_get_stats64	= igc_get_stats64,
6545 	.ndo_fix_features	= igc_fix_features,
6546 	.ndo_set_features	= igc_set_features,
6547 	.ndo_features_check	= igc_features_check,
6548 	.ndo_eth_ioctl		= igc_ioctl,
6549 	.ndo_setup_tc		= igc_setup_tc,
6550 	.ndo_bpf		= igc_bpf,
6551 	.ndo_xdp_xmit		= igc_xdp_xmit,
6552 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6553 };
6554 
6555 /* PCIe configuration access */
6556 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6557 {
6558 	struct igc_adapter *adapter = hw->back;
6559 
6560 	pci_read_config_word(adapter->pdev, reg, value);
6561 }
6562 
6563 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6564 {
6565 	struct igc_adapter *adapter = hw->back;
6566 
6567 	pci_write_config_word(adapter->pdev, reg, *value);
6568 }
6569 
6570 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6571 {
6572 	struct igc_adapter *adapter = hw->back;
6573 
6574 	if (!pci_is_pcie(adapter->pdev))
6575 		return -IGC_ERR_CONFIG;
6576 
6577 	pcie_capability_read_word(adapter->pdev, reg, value);
6578 
6579 	return IGC_SUCCESS;
6580 }
6581 
6582 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6583 {
6584 	struct igc_adapter *adapter = hw->back;
6585 
6586 	if (!pci_is_pcie(adapter->pdev))
6587 		return -IGC_ERR_CONFIG;
6588 
6589 	pcie_capability_write_word(adapter->pdev, reg, *value);
6590 
6591 	return IGC_SUCCESS;
6592 }
6593 
6594 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6595 {
6596 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6597 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6598 	u32 value = 0;
6599 
6600 	if (IGC_REMOVED(hw_addr))
6601 		return ~value;
6602 
6603 	value = readl(&hw_addr[reg]);
6604 
6605 	/* reads should not return all F's */
6606 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6607 		struct net_device *netdev = igc->netdev;
6608 
6609 		hw->hw_addr = NULL;
6610 		netif_device_detach(netdev);
6611 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6612 		WARN(pci_device_is_present(igc->pdev),
6613 		     "igc: Failed to read reg 0x%x!\n", reg);
6614 	}
6615 
6616 	return value;
6617 }
6618 
6619 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6620 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6621 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6622 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6623 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6624 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6625 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6626 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6627 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6628 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6629 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6630 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6631 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6632 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6633 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6634 	[13] = XDP_RSS_TYPE_NONE,
6635 	[14] = XDP_RSS_TYPE_NONE,
6636 	[15] = XDP_RSS_TYPE_NONE,
6637 };
6638 
6639 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6640 			   enum xdp_rss_hash_type *rss_type)
6641 {
6642 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6643 
6644 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6645 		return -ENODATA;
6646 
6647 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6648 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6649 
6650 	return 0;
6651 }
6652 
6653 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6654 {
6655 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6656 
6657 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6658 		*timestamp = ctx->rx_ts;
6659 
6660 		return 0;
6661 	}
6662 
6663 	return -ENODATA;
6664 }
6665 
6666 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6667 	.xmo_rx_hash			= igc_xdp_rx_hash,
6668 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6669 };
6670 
6671 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6672 {
6673 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6674 						   hrtimer);
6675 	unsigned long flags;
6676 	unsigned int i;
6677 
6678 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6679 
6680 	adapter->qbv_transition = true;
6681 	for (i = 0; i < adapter->num_tx_queues; i++) {
6682 		struct igc_ring *tx_ring = adapter->tx_ring[i];
6683 
6684 		if (tx_ring->admin_gate_closed) {
6685 			tx_ring->admin_gate_closed = false;
6686 			tx_ring->oper_gate_closed = true;
6687 		} else {
6688 			tx_ring->oper_gate_closed = false;
6689 		}
6690 	}
6691 	adapter->qbv_transition = false;
6692 
6693 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6694 
6695 	return HRTIMER_NORESTART;
6696 }
6697 
6698 /**
6699  * igc_probe - Device Initialization Routine
6700  * @pdev: PCI device information struct
6701  * @ent: entry in igc_pci_tbl
6702  *
6703  * Returns 0 on success, negative on failure
6704  *
6705  * igc_probe initializes an adapter identified by a pci_dev structure.
6706  * The OS initialization, configuring the adapter private structure,
6707  * and a hardware reset occur.
6708  */
6709 static int igc_probe(struct pci_dev *pdev,
6710 		     const struct pci_device_id *ent)
6711 {
6712 	struct igc_adapter *adapter;
6713 	struct net_device *netdev;
6714 	struct igc_hw *hw;
6715 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6716 	int err;
6717 
6718 	err = pci_enable_device_mem(pdev);
6719 	if (err)
6720 		return err;
6721 
6722 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6723 	if (err) {
6724 		dev_err(&pdev->dev,
6725 			"No usable DMA configuration, aborting\n");
6726 		goto err_dma;
6727 	}
6728 
6729 	err = pci_request_mem_regions(pdev, igc_driver_name);
6730 	if (err)
6731 		goto err_pci_reg;
6732 
6733 	err = pci_enable_ptm(pdev, NULL);
6734 	if (err < 0)
6735 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6736 
6737 	pci_set_master(pdev);
6738 
6739 	err = -ENOMEM;
6740 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6741 				   IGC_MAX_TX_QUEUES);
6742 
6743 	if (!netdev)
6744 		goto err_alloc_etherdev;
6745 
6746 	SET_NETDEV_DEV(netdev, &pdev->dev);
6747 
6748 	pci_set_drvdata(pdev, netdev);
6749 	adapter = netdev_priv(netdev);
6750 	adapter->netdev = netdev;
6751 	adapter->pdev = pdev;
6752 	hw = &adapter->hw;
6753 	hw->back = adapter;
6754 	adapter->port_num = hw->bus.func;
6755 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6756 
6757 	err = pci_save_state(pdev);
6758 	if (err)
6759 		goto err_ioremap;
6760 
6761 	err = -EIO;
6762 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6763 				   pci_resource_len(pdev, 0));
6764 	if (!adapter->io_addr)
6765 		goto err_ioremap;
6766 
6767 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6768 	hw->hw_addr = adapter->io_addr;
6769 
6770 	netdev->netdev_ops = &igc_netdev_ops;
6771 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6772 	igc_ethtool_set_ops(netdev);
6773 	netdev->watchdog_timeo = 5 * HZ;
6774 
6775 	netdev->mem_start = pci_resource_start(pdev, 0);
6776 	netdev->mem_end = pci_resource_end(pdev, 0);
6777 
6778 	/* PCI config space info */
6779 	hw->vendor_id = pdev->vendor;
6780 	hw->device_id = pdev->device;
6781 	hw->revision_id = pdev->revision;
6782 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6783 	hw->subsystem_device_id = pdev->subsystem_device;
6784 
6785 	/* Copy the default MAC and PHY function pointers */
6786 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6787 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6788 
6789 	/* Initialize skew-specific constants */
6790 	err = ei->get_invariants(hw);
6791 	if (err)
6792 		goto err_sw_init;
6793 
6794 	/* Add supported features to the features list*/
6795 	netdev->features |= NETIF_F_SG;
6796 	netdev->features |= NETIF_F_TSO;
6797 	netdev->features |= NETIF_F_TSO6;
6798 	netdev->features |= NETIF_F_TSO_ECN;
6799 	netdev->features |= NETIF_F_RXHASH;
6800 	netdev->features |= NETIF_F_RXCSUM;
6801 	netdev->features |= NETIF_F_HW_CSUM;
6802 	netdev->features |= NETIF_F_SCTP_CRC;
6803 	netdev->features |= NETIF_F_HW_TC;
6804 
6805 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6806 				  NETIF_F_GSO_GRE_CSUM | \
6807 				  NETIF_F_GSO_IPXIP4 | \
6808 				  NETIF_F_GSO_IPXIP6 | \
6809 				  NETIF_F_GSO_UDP_TUNNEL | \
6810 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6811 
6812 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6813 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6814 
6815 	/* setup the private structure */
6816 	err = igc_sw_init(adapter);
6817 	if (err)
6818 		goto err_sw_init;
6819 
6820 	/* copy netdev features into list of user selectable features */
6821 	netdev->hw_features |= NETIF_F_NTUPLE;
6822 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6823 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6824 	netdev->hw_features |= netdev->features;
6825 
6826 	netdev->features |= NETIF_F_HIGHDMA;
6827 
6828 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6829 	netdev->mpls_features |= NETIF_F_HW_CSUM;
6830 	netdev->hw_enc_features |= netdev->vlan_features;
6831 
6832 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6833 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
6834 
6835 	/* MTU range: 68 - 9216 */
6836 	netdev->min_mtu = ETH_MIN_MTU;
6837 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6838 
6839 	/* before reading the NVM, reset the controller to put the device in a
6840 	 * known good starting state
6841 	 */
6842 	hw->mac.ops.reset_hw(hw);
6843 
6844 	if (igc_get_flash_presence_i225(hw)) {
6845 		if (hw->nvm.ops.validate(hw) < 0) {
6846 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6847 			err = -EIO;
6848 			goto err_eeprom;
6849 		}
6850 	}
6851 
6852 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6853 		/* copy the MAC address out of the NVM */
6854 		if (hw->mac.ops.read_mac_addr(hw))
6855 			dev_err(&pdev->dev, "NVM Read Error\n");
6856 	}
6857 
6858 	eth_hw_addr_set(netdev, hw->mac.addr);
6859 
6860 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6861 		dev_err(&pdev->dev, "Invalid MAC Address\n");
6862 		err = -EIO;
6863 		goto err_eeprom;
6864 	}
6865 
6866 	/* configure RXPBSIZE and TXPBSIZE */
6867 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6868 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6869 
6870 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6871 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6872 
6873 	INIT_WORK(&adapter->reset_task, igc_reset_task);
6874 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6875 
6876 	hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6877 	adapter->hrtimer.function = &igc_qbv_scheduling_timer;
6878 
6879 	/* Initialize link properties that are user-changeable */
6880 	adapter->fc_autoneg = true;
6881 	hw->mac.autoneg = true;
6882 	hw->phy.autoneg_advertised = 0xaf;
6883 
6884 	hw->fc.requested_mode = igc_fc_default;
6885 	hw->fc.current_mode = igc_fc_default;
6886 
6887 	/* By default, support wake on port A */
6888 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6889 
6890 	/* initialize the wol settings based on the eeprom settings */
6891 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6892 		adapter->wol |= IGC_WUFC_MAG;
6893 
6894 	device_set_wakeup_enable(&adapter->pdev->dev,
6895 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6896 
6897 	igc_ptp_init(adapter);
6898 
6899 	igc_tsn_clear_schedule(adapter);
6900 
6901 	/* reset the hardware with the new settings */
6902 	igc_reset(adapter);
6903 
6904 	/* let the f/w know that the h/w is now under the control of the
6905 	 * driver.
6906 	 */
6907 	igc_get_hw_control(adapter);
6908 
6909 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6910 	err = register_netdev(netdev);
6911 	if (err)
6912 		goto err_register;
6913 
6914 	 /* carrier off reporting is important to ethtool even BEFORE open */
6915 	netif_carrier_off(netdev);
6916 
6917 	/* Check if Media Autosense is enabled */
6918 	adapter->ei = *ei;
6919 
6920 	/* print pcie link status and MAC address */
6921 	pcie_print_link_status(pdev);
6922 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6923 
6924 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6925 	/* Disable EEE for internal PHY devices */
6926 	hw->dev_spec._base.eee_enable = false;
6927 	adapter->flags &= ~IGC_FLAG_EEE;
6928 	igc_set_eee_i225(hw, false, false, false);
6929 
6930 	pm_runtime_put_noidle(&pdev->dev);
6931 
6932 	return 0;
6933 
6934 err_register:
6935 	igc_release_hw_control(adapter);
6936 err_eeprom:
6937 	if (!igc_check_reset_block(hw))
6938 		igc_reset_phy(hw);
6939 err_sw_init:
6940 	igc_clear_interrupt_scheme(adapter);
6941 	iounmap(adapter->io_addr);
6942 err_ioremap:
6943 	free_netdev(netdev);
6944 err_alloc_etherdev:
6945 	pci_release_mem_regions(pdev);
6946 err_pci_reg:
6947 err_dma:
6948 	pci_disable_device(pdev);
6949 	return err;
6950 }
6951 
6952 /**
6953  * igc_remove - Device Removal Routine
6954  * @pdev: PCI device information struct
6955  *
6956  * igc_remove is called by the PCI subsystem to alert the driver
6957  * that it should release a PCI device.  This could be caused by a
6958  * Hot-Plug event, or because the driver is going to be removed from
6959  * memory.
6960  */
6961 static void igc_remove(struct pci_dev *pdev)
6962 {
6963 	struct net_device *netdev = pci_get_drvdata(pdev);
6964 	struct igc_adapter *adapter = netdev_priv(netdev);
6965 
6966 	pm_runtime_get_noresume(&pdev->dev);
6967 
6968 	igc_flush_nfc_rules(adapter);
6969 
6970 	igc_ptp_stop(adapter);
6971 
6972 	pci_disable_ptm(pdev);
6973 	pci_clear_master(pdev);
6974 
6975 	set_bit(__IGC_DOWN, &adapter->state);
6976 
6977 	del_timer_sync(&adapter->watchdog_timer);
6978 	del_timer_sync(&adapter->phy_info_timer);
6979 
6980 	cancel_work_sync(&adapter->reset_task);
6981 	cancel_work_sync(&adapter->watchdog_task);
6982 	hrtimer_cancel(&adapter->hrtimer);
6983 
6984 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6985 	 * would have already happened in close and is redundant.
6986 	 */
6987 	igc_release_hw_control(adapter);
6988 	unregister_netdev(netdev);
6989 
6990 	igc_clear_interrupt_scheme(adapter);
6991 	pci_iounmap(pdev, adapter->io_addr);
6992 	pci_release_mem_regions(pdev);
6993 
6994 	free_netdev(netdev);
6995 
6996 	pci_disable_device(pdev);
6997 }
6998 
6999 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7000 			  bool runtime)
7001 {
7002 	struct net_device *netdev = pci_get_drvdata(pdev);
7003 	struct igc_adapter *adapter = netdev_priv(netdev);
7004 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7005 	struct igc_hw *hw = &adapter->hw;
7006 	u32 ctrl, rctl, status;
7007 	bool wake;
7008 
7009 	rtnl_lock();
7010 	netif_device_detach(netdev);
7011 
7012 	if (netif_running(netdev))
7013 		__igc_close(netdev, true);
7014 
7015 	igc_ptp_suspend(adapter);
7016 
7017 	igc_clear_interrupt_scheme(adapter);
7018 	rtnl_unlock();
7019 
7020 	status = rd32(IGC_STATUS);
7021 	if (status & IGC_STATUS_LU)
7022 		wufc &= ~IGC_WUFC_LNKC;
7023 
7024 	if (wufc) {
7025 		igc_setup_rctl(adapter);
7026 		igc_set_rx_mode(netdev);
7027 
7028 		/* turn on all-multi mode if wake on multicast is enabled */
7029 		if (wufc & IGC_WUFC_MC) {
7030 			rctl = rd32(IGC_RCTL);
7031 			rctl |= IGC_RCTL_MPE;
7032 			wr32(IGC_RCTL, rctl);
7033 		}
7034 
7035 		ctrl = rd32(IGC_CTRL);
7036 		ctrl |= IGC_CTRL_ADVD3WUC;
7037 		wr32(IGC_CTRL, ctrl);
7038 
7039 		/* Allow time for pending master requests to run */
7040 		igc_disable_pcie_master(hw);
7041 
7042 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7043 		wr32(IGC_WUFC, wufc);
7044 	} else {
7045 		wr32(IGC_WUC, 0);
7046 		wr32(IGC_WUFC, 0);
7047 	}
7048 
7049 	wake = wufc || adapter->en_mng_pt;
7050 	if (!wake)
7051 		igc_power_down_phy_copper_base(&adapter->hw);
7052 	else
7053 		igc_power_up_link(adapter);
7054 
7055 	if (enable_wake)
7056 		*enable_wake = wake;
7057 
7058 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7059 	 * would have already happened in close and is redundant.
7060 	 */
7061 	igc_release_hw_control(adapter);
7062 
7063 	pci_disable_device(pdev);
7064 
7065 	return 0;
7066 }
7067 
7068 #ifdef CONFIG_PM
7069 static int __maybe_unused igc_runtime_suspend(struct device *dev)
7070 {
7071 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7072 }
7073 
7074 static void igc_deliver_wake_packet(struct net_device *netdev)
7075 {
7076 	struct igc_adapter *adapter = netdev_priv(netdev);
7077 	struct igc_hw *hw = &adapter->hw;
7078 	struct sk_buff *skb;
7079 	u32 wupl;
7080 
7081 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7082 
7083 	/* WUPM stores only the first 128 bytes of the wake packet.
7084 	 * Read the packet only if we have the whole thing.
7085 	 */
7086 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7087 		return;
7088 
7089 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7090 	if (!skb)
7091 		return;
7092 
7093 	skb_put(skb, wupl);
7094 
7095 	/* Ensure reads are 32-bit aligned */
7096 	wupl = roundup(wupl, 4);
7097 
7098 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7099 
7100 	skb->protocol = eth_type_trans(skb, netdev);
7101 	netif_rx(skb);
7102 }
7103 
7104 static int __maybe_unused igc_resume(struct device *dev)
7105 {
7106 	struct pci_dev *pdev = to_pci_dev(dev);
7107 	struct net_device *netdev = pci_get_drvdata(pdev);
7108 	struct igc_adapter *adapter = netdev_priv(netdev);
7109 	struct igc_hw *hw = &adapter->hw;
7110 	u32 err, val;
7111 
7112 	pci_set_power_state(pdev, PCI_D0);
7113 	pci_restore_state(pdev);
7114 	pci_save_state(pdev);
7115 
7116 	if (!pci_device_is_present(pdev))
7117 		return -ENODEV;
7118 	err = pci_enable_device_mem(pdev);
7119 	if (err) {
7120 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7121 		return err;
7122 	}
7123 	pci_set_master(pdev);
7124 
7125 	pci_enable_wake(pdev, PCI_D3hot, 0);
7126 	pci_enable_wake(pdev, PCI_D3cold, 0);
7127 
7128 	if (igc_init_interrupt_scheme(adapter, true)) {
7129 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7130 		return -ENOMEM;
7131 	}
7132 
7133 	igc_reset(adapter);
7134 
7135 	/* let the f/w know that the h/w is now under the control of the
7136 	 * driver.
7137 	 */
7138 	igc_get_hw_control(adapter);
7139 
7140 	val = rd32(IGC_WUS);
7141 	if (val & WAKE_PKT_WUS)
7142 		igc_deliver_wake_packet(netdev);
7143 
7144 	wr32(IGC_WUS, ~0);
7145 
7146 	rtnl_lock();
7147 	if (!err && netif_running(netdev))
7148 		err = __igc_open(netdev, true);
7149 
7150 	if (!err)
7151 		netif_device_attach(netdev);
7152 	rtnl_unlock();
7153 
7154 	return err;
7155 }
7156 
7157 static int __maybe_unused igc_runtime_resume(struct device *dev)
7158 {
7159 	return igc_resume(dev);
7160 }
7161 
7162 static int __maybe_unused igc_suspend(struct device *dev)
7163 {
7164 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7165 }
7166 
7167 static int __maybe_unused igc_runtime_idle(struct device *dev)
7168 {
7169 	struct net_device *netdev = dev_get_drvdata(dev);
7170 	struct igc_adapter *adapter = netdev_priv(netdev);
7171 
7172 	if (!igc_has_link(adapter))
7173 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7174 
7175 	return -EBUSY;
7176 }
7177 #endif /* CONFIG_PM */
7178 
7179 static void igc_shutdown(struct pci_dev *pdev)
7180 {
7181 	bool wake;
7182 
7183 	__igc_shutdown(pdev, &wake, 0);
7184 
7185 	if (system_state == SYSTEM_POWER_OFF) {
7186 		pci_wake_from_d3(pdev, wake);
7187 		pci_set_power_state(pdev, PCI_D3hot);
7188 	}
7189 }
7190 
7191 /**
7192  *  igc_io_error_detected - called when PCI error is detected
7193  *  @pdev: Pointer to PCI device
7194  *  @state: The current PCI connection state
7195  *
7196  *  This function is called after a PCI bus error affecting
7197  *  this device has been detected.
7198  **/
7199 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7200 					      pci_channel_state_t state)
7201 {
7202 	struct net_device *netdev = pci_get_drvdata(pdev);
7203 	struct igc_adapter *adapter = netdev_priv(netdev);
7204 
7205 	netif_device_detach(netdev);
7206 
7207 	if (state == pci_channel_io_perm_failure)
7208 		return PCI_ERS_RESULT_DISCONNECT;
7209 
7210 	if (netif_running(netdev))
7211 		igc_down(adapter);
7212 	pci_disable_device(pdev);
7213 
7214 	/* Request a slot reset. */
7215 	return PCI_ERS_RESULT_NEED_RESET;
7216 }
7217 
7218 /**
7219  *  igc_io_slot_reset - called after the PCI bus has been reset.
7220  *  @pdev: Pointer to PCI device
7221  *
7222  *  Restart the card from scratch, as if from a cold-boot. Implementation
7223  *  resembles the first-half of the igc_resume routine.
7224  **/
7225 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7226 {
7227 	struct net_device *netdev = pci_get_drvdata(pdev);
7228 	struct igc_adapter *adapter = netdev_priv(netdev);
7229 	struct igc_hw *hw = &adapter->hw;
7230 	pci_ers_result_t result;
7231 
7232 	if (pci_enable_device_mem(pdev)) {
7233 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7234 		result = PCI_ERS_RESULT_DISCONNECT;
7235 	} else {
7236 		pci_set_master(pdev);
7237 		pci_restore_state(pdev);
7238 		pci_save_state(pdev);
7239 
7240 		pci_enable_wake(pdev, PCI_D3hot, 0);
7241 		pci_enable_wake(pdev, PCI_D3cold, 0);
7242 
7243 		/* In case of PCI error, adapter loses its HW address
7244 		 * so we should re-assign it here.
7245 		 */
7246 		hw->hw_addr = adapter->io_addr;
7247 
7248 		igc_reset(adapter);
7249 		wr32(IGC_WUS, ~0);
7250 		result = PCI_ERS_RESULT_RECOVERED;
7251 	}
7252 
7253 	return result;
7254 }
7255 
7256 /**
7257  *  igc_io_resume - called when traffic can start to flow again.
7258  *  @pdev: Pointer to PCI device
7259  *
7260  *  This callback is called when the error recovery driver tells us that
7261  *  its OK to resume normal operation. Implementation resembles the
7262  *  second-half of the igc_resume routine.
7263  */
7264 static void igc_io_resume(struct pci_dev *pdev)
7265 {
7266 	struct net_device *netdev = pci_get_drvdata(pdev);
7267 	struct igc_adapter *adapter = netdev_priv(netdev);
7268 
7269 	rtnl_lock();
7270 	if (netif_running(netdev)) {
7271 		if (igc_open(netdev)) {
7272 			netdev_err(netdev, "igc_open failed after reset\n");
7273 			return;
7274 		}
7275 	}
7276 
7277 	netif_device_attach(netdev);
7278 
7279 	/* let the f/w know that the h/w is now under the control of the
7280 	 * driver.
7281 	 */
7282 	igc_get_hw_control(adapter);
7283 	rtnl_unlock();
7284 }
7285 
7286 static const struct pci_error_handlers igc_err_handler = {
7287 	.error_detected = igc_io_error_detected,
7288 	.slot_reset = igc_io_slot_reset,
7289 	.resume = igc_io_resume,
7290 };
7291 
7292 #ifdef CONFIG_PM
7293 static const struct dev_pm_ops igc_pm_ops = {
7294 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7295 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7296 			   igc_runtime_idle)
7297 };
7298 #endif
7299 
7300 static struct pci_driver igc_driver = {
7301 	.name     = igc_driver_name,
7302 	.id_table = igc_pci_tbl,
7303 	.probe    = igc_probe,
7304 	.remove   = igc_remove,
7305 #ifdef CONFIG_PM
7306 	.driver.pm = &igc_pm_ops,
7307 #endif
7308 	.shutdown = igc_shutdown,
7309 	.err_handler = &igc_err_handler,
7310 };
7311 
7312 /**
7313  * igc_reinit_queues - return error
7314  * @adapter: pointer to adapter structure
7315  */
7316 int igc_reinit_queues(struct igc_adapter *adapter)
7317 {
7318 	struct net_device *netdev = adapter->netdev;
7319 	int err = 0;
7320 
7321 	if (netif_running(netdev))
7322 		igc_close(netdev);
7323 
7324 	igc_reset_interrupt_capability(adapter);
7325 
7326 	if (igc_init_interrupt_scheme(adapter, true)) {
7327 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7328 		return -ENOMEM;
7329 	}
7330 
7331 	if (netif_running(netdev))
7332 		err = igc_open(netdev);
7333 
7334 	return err;
7335 }
7336 
7337 /**
7338  * igc_get_hw_dev - return device
7339  * @hw: pointer to hardware structure
7340  *
7341  * used by hardware layer to print debugging information
7342  */
7343 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7344 {
7345 	struct igc_adapter *adapter = hw->back;
7346 
7347 	return adapter->netdev;
7348 }
7349 
7350 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7351 {
7352 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7353 	u8 idx = ring->reg_idx;
7354 	u32 rxdctl;
7355 
7356 	rxdctl = rd32(IGC_RXDCTL(idx));
7357 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7358 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7359 	wr32(IGC_RXDCTL(idx), rxdctl);
7360 }
7361 
7362 void igc_disable_rx_ring(struct igc_ring *ring)
7363 {
7364 	igc_disable_rx_ring_hw(ring);
7365 	igc_clean_rx_ring(ring);
7366 }
7367 
7368 void igc_enable_rx_ring(struct igc_ring *ring)
7369 {
7370 	struct igc_adapter *adapter = ring->q_vector->adapter;
7371 
7372 	igc_configure_rx_ring(adapter, ring);
7373 
7374 	if (ring->xsk_pool)
7375 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7376 	else
7377 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7378 }
7379 
7380 void igc_disable_tx_ring(struct igc_ring *ring)
7381 {
7382 	igc_disable_tx_ring_hw(ring);
7383 	igc_clean_tx_ring(ring);
7384 }
7385 
7386 void igc_enable_tx_ring(struct igc_ring *ring)
7387 {
7388 	struct igc_adapter *adapter = ring->q_vector->adapter;
7389 
7390 	igc_configure_tx_ring(adapter, ring);
7391 }
7392 
7393 /**
7394  * igc_init_module - Driver Registration Routine
7395  *
7396  * igc_init_module is the first routine called when the driver is
7397  * loaded. All it does is register with the PCI subsystem.
7398  */
7399 static int __init igc_init_module(void)
7400 {
7401 	int ret;
7402 
7403 	pr_info("%s\n", igc_driver_string);
7404 	pr_info("%s\n", igc_copyright);
7405 
7406 	ret = pci_register_driver(&igc_driver);
7407 	return ret;
7408 }
7409 
7410 module_init(igc_init_module);
7411 
7412 /**
7413  * igc_exit_module - Driver Exit Cleanup Routine
7414  *
7415  * igc_exit_module is called just before the driver is removed
7416  * from memory.
7417  */
7418 static void __exit igc_exit_module(void)
7419 {
7420 	pci_unregister_driver(&igc_driver);
7421 }
7422 
7423 module_exit(igc_exit_module);
7424 /* igc_main.c */
7425