1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 
14 #include <net/ipv6.h>
15 
16 #include "igc.h"
17 #include "igc_hw.h"
18 #include "igc_tsn.h"
19 
20 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
21 
22 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
23 
24 static int debug = -1;
25 
26 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
27 MODULE_DESCRIPTION(DRV_SUMMARY);
28 MODULE_LICENSE("GPL v2");
29 module_param(debug, int, 0);
30 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
31 
32 char igc_driver_name[] = "igc";
33 static const char igc_driver_string[] = DRV_SUMMARY;
34 static const char igc_copyright[] =
35 	"Copyright(c) 2018 Intel Corporation.";
36 
37 static const struct igc_info *igc_info_tbl[] = {
38 	[board_base] = &igc_base_info,
39 };
40 
41 static const struct pci_device_id igc_pci_tbl[] = {
42 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
48 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
51 	/* required last entry */
52 	{0, }
53 };
54 
55 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
56 
57 enum latency_range {
58 	lowest_latency = 0,
59 	low_latency = 1,
60 	bulk_latency = 2,
61 	latency_invalid = 255
62 };
63 
64 void igc_reset(struct igc_adapter *adapter)
65 {
66 	struct net_device *dev = adapter->netdev;
67 	struct igc_hw *hw = &adapter->hw;
68 	struct igc_fc_info *fc = &hw->fc;
69 	u32 pba, hwm;
70 
71 	/* Repartition PBA for greater than 9k MTU if required */
72 	pba = IGC_PBA_34K;
73 
74 	/* flow control settings
75 	 * The high water mark must be low enough to fit one full frame
76 	 * after transmitting the pause frame.  As such we must have enough
77 	 * space to allow for us to complete our current transmit and then
78 	 * receive the frame that is in progress from the link partner.
79 	 * Set it to:
80 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
81 	 */
82 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
83 
84 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
85 	fc->low_water = fc->high_water - 16;
86 	fc->pause_time = 0xFFFF;
87 	fc->send_xon = 1;
88 	fc->current_mode = fc->requested_mode;
89 
90 	hw->mac.ops.reset_hw(hw);
91 
92 	if (hw->mac.ops.init_hw(hw))
93 		netdev_err(dev, "Error on hardware initialization\n");
94 
95 	/* Re-establish EEE setting */
96 	igc_set_eee_i225(hw, true, true, true);
97 
98 	if (!netif_running(adapter->netdev))
99 		igc_power_down_phy_copper_base(&adapter->hw);
100 
101 	/* Re-enable PTP, where applicable. */
102 	igc_ptp_reset(adapter);
103 
104 	/* Re-enable TSN offloading, where applicable. */
105 	igc_tsn_offload_apply(adapter);
106 
107 	igc_get_phy_info(hw);
108 }
109 
110 /**
111  * igc_power_up_link - Power up the phy link
112  * @adapter: address of board private structure
113  */
114 static void igc_power_up_link(struct igc_adapter *adapter)
115 {
116 	igc_reset_phy(&adapter->hw);
117 
118 	igc_power_up_phy_copper(&adapter->hw);
119 
120 	igc_setup_link(&adapter->hw);
121 }
122 
123 /**
124  * igc_release_hw_control - release control of the h/w to f/w
125  * @adapter: address of board private structure
126  *
127  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
128  * For ASF and Pass Through versions of f/w this means that the
129  * driver is no longer loaded.
130  */
131 static void igc_release_hw_control(struct igc_adapter *adapter)
132 {
133 	struct igc_hw *hw = &adapter->hw;
134 	u32 ctrl_ext;
135 
136 	/* Let firmware take over control of h/w */
137 	ctrl_ext = rd32(IGC_CTRL_EXT);
138 	wr32(IGC_CTRL_EXT,
139 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
140 }
141 
142 /**
143  * igc_get_hw_control - get control of the h/w from f/w
144  * @adapter: address of board private structure
145  *
146  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
147  * For ASF and Pass Through versions of f/w this means that
148  * the driver is loaded.
149  */
150 static void igc_get_hw_control(struct igc_adapter *adapter)
151 {
152 	struct igc_hw *hw = &adapter->hw;
153 	u32 ctrl_ext;
154 
155 	/* Let firmware know the driver has taken over */
156 	ctrl_ext = rd32(IGC_CTRL_EXT);
157 	wr32(IGC_CTRL_EXT,
158 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
159 }
160 
161 /**
162  * igc_clean_tx_ring - Free Tx Buffers
163  * @tx_ring: ring to be cleaned
164  */
165 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
166 {
167 	u16 i = tx_ring->next_to_clean;
168 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
169 
170 	while (i != tx_ring->next_to_use) {
171 		union igc_adv_tx_desc *eop_desc, *tx_desc;
172 
173 		/* Free all the Tx ring sk_buffs */
174 		dev_kfree_skb_any(tx_buffer->skb);
175 
176 		/* unmap skb header data */
177 		dma_unmap_single(tx_ring->dev,
178 				 dma_unmap_addr(tx_buffer, dma),
179 				 dma_unmap_len(tx_buffer, len),
180 				 DMA_TO_DEVICE);
181 
182 		/* check for eop_desc to determine the end of the packet */
183 		eop_desc = tx_buffer->next_to_watch;
184 		tx_desc = IGC_TX_DESC(tx_ring, i);
185 
186 		/* unmap remaining buffers */
187 		while (tx_desc != eop_desc) {
188 			tx_buffer++;
189 			tx_desc++;
190 			i++;
191 			if (unlikely(i == tx_ring->count)) {
192 				i = 0;
193 				tx_buffer = tx_ring->tx_buffer_info;
194 				tx_desc = IGC_TX_DESC(tx_ring, 0);
195 			}
196 
197 			/* unmap any remaining paged data */
198 			if (dma_unmap_len(tx_buffer, len))
199 				dma_unmap_page(tx_ring->dev,
200 					       dma_unmap_addr(tx_buffer, dma),
201 					       dma_unmap_len(tx_buffer, len),
202 					       DMA_TO_DEVICE);
203 		}
204 
205 		/* move us one more past the eop_desc for start of next pkt */
206 		tx_buffer++;
207 		i++;
208 		if (unlikely(i == tx_ring->count)) {
209 			i = 0;
210 			tx_buffer = tx_ring->tx_buffer_info;
211 		}
212 	}
213 
214 	/* reset BQL for queue */
215 	netdev_tx_reset_queue(txring_txq(tx_ring));
216 
217 	/* reset next_to_use and next_to_clean */
218 	tx_ring->next_to_use = 0;
219 	tx_ring->next_to_clean = 0;
220 }
221 
222 /**
223  * igc_free_tx_resources - Free Tx Resources per Queue
224  * @tx_ring: Tx descriptor ring for a specific queue
225  *
226  * Free all transmit software resources
227  */
228 void igc_free_tx_resources(struct igc_ring *tx_ring)
229 {
230 	igc_clean_tx_ring(tx_ring);
231 
232 	vfree(tx_ring->tx_buffer_info);
233 	tx_ring->tx_buffer_info = NULL;
234 
235 	/* if not set, then don't free */
236 	if (!tx_ring->desc)
237 		return;
238 
239 	dma_free_coherent(tx_ring->dev, tx_ring->size,
240 			  tx_ring->desc, tx_ring->dma);
241 
242 	tx_ring->desc = NULL;
243 }
244 
245 /**
246  * igc_free_all_tx_resources - Free Tx Resources for All Queues
247  * @adapter: board private structure
248  *
249  * Free all transmit software resources
250  */
251 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
252 {
253 	int i;
254 
255 	for (i = 0; i < adapter->num_tx_queues; i++)
256 		igc_free_tx_resources(adapter->tx_ring[i]);
257 }
258 
259 /**
260  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
261  * @adapter: board private structure
262  */
263 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
264 {
265 	int i;
266 
267 	for (i = 0; i < adapter->num_tx_queues; i++)
268 		if (adapter->tx_ring[i])
269 			igc_clean_tx_ring(adapter->tx_ring[i]);
270 }
271 
272 /**
273  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
274  * @tx_ring: tx descriptor ring (for a specific queue) to setup
275  *
276  * Return 0 on success, negative on failure
277  */
278 int igc_setup_tx_resources(struct igc_ring *tx_ring)
279 {
280 	struct net_device *ndev = tx_ring->netdev;
281 	struct device *dev = tx_ring->dev;
282 	int size = 0;
283 
284 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
285 	tx_ring->tx_buffer_info = vzalloc(size);
286 	if (!tx_ring->tx_buffer_info)
287 		goto err;
288 
289 	/* round up to nearest 4K */
290 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
291 	tx_ring->size = ALIGN(tx_ring->size, 4096);
292 
293 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
294 					   &tx_ring->dma, GFP_KERNEL);
295 
296 	if (!tx_ring->desc)
297 		goto err;
298 
299 	tx_ring->next_to_use = 0;
300 	tx_ring->next_to_clean = 0;
301 
302 	return 0;
303 
304 err:
305 	vfree(tx_ring->tx_buffer_info);
306 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
307 	return -ENOMEM;
308 }
309 
310 /**
311  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
312  * @adapter: board private structure
313  *
314  * Return 0 on success, negative on failure
315  */
316 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
317 {
318 	struct net_device *dev = adapter->netdev;
319 	int i, err = 0;
320 
321 	for (i = 0; i < adapter->num_tx_queues; i++) {
322 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
323 		if (err) {
324 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
325 			for (i--; i >= 0; i--)
326 				igc_free_tx_resources(adapter->tx_ring[i]);
327 			break;
328 		}
329 	}
330 
331 	return err;
332 }
333 
334 /**
335  * igc_clean_rx_ring - Free Rx Buffers per Queue
336  * @rx_ring: ring to free buffers from
337  */
338 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
339 {
340 	u16 i = rx_ring->next_to_clean;
341 
342 	dev_kfree_skb(rx_ring->skb);
343 	rx_ring->skb = NULL;
344 
345 	/* Free all the Rx ring sk_buffs */
346 	while (i != rx_ring->next_to_alloc) {
347 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
348 
349 		/* Invalidate cache lines that may have been written to by
350 		 * device so that we avoid corrupting memory.
351 		 */
352 		dma_sync_single_range_for_cpu(rx_ring->dev,
353 					      buffer_info->dma,
354 					      buffer_info->page_offset,
355 					      igc_rx_bufsz(rx_ring),
356 					      DMA_FROM_DEVICE);
357 
358 		/* free resources associated with mapping */
359 		dma_unmap_page_attrs(rx_ring->dev,
360 				     buffer_info->dma,
361 				     igc_rx_pg_size(rx_ring),
362 				     DMA_FROM_DEVICE,
363 				     IGC_RX_DMA_ATTR);
364 		__page_frag_cache_drain(buffer_info->page,
365 					buffer_info->pagecnt_bias);
366 
367 		i++;
368 		if (i == rx_ring->count)
369 			i = 0;
370 	}
371 
372 	rx_ring->next_to_alloc = 0;
373 	rx_ring->next_to_clean = 0;
374 	rx_ring->next_to_use = 0;
375 }
376 
377 /**
378  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
379  * @adapter: board private structure
380  */
381 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
382 {
383 	int i;
384 
385 	for (i = 0; i < adapter->num_rx_queues; i++)
386 		if (adapter->rx_ring[i])
387 			igc_clean_rx_ring(adapter->rx_ring[i]);
388 }
389 
390 /**
391  * igc_free_rx_resources - Free Rx Resources
392  * @rx_ring: ring to clean the resources from
393  *
394  * Free all receive software resources
395  */
396 void igc_free_rx_resources(struct igc_ring *rx_ring)
397 {
398 	igc_clean_rx_ring(rx_ring);
399 
400 	vfree(rx_ring->rx_buffer_info);
401 	rx_ring->rx_buffer_info = NULL;
402 
403 	/* if not set, then don't free */
404 	if (!rx_ring->desc)
405 		return;
406 
407 	dma_free_coherent(rx_ring->dev, rx_ring->size,
408 			  rx_ring->desc, rx_ring->dma);
409 
410 	rx_ring->desc = NULL;
411 }
412 
413 /**
414  * igc_free_all_rx_resources - Free Rx Resources for All Queues
415  * @adapter: board private structure
416  *
417  * Free all receive software resources
418  */
419 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
420 {
421 	int i;
422 
423 	for (i = 0; i < adapter->num_rx_queues; i++)
424 		igc_free_rx_resources(adapter->rx_ring[i]);
425 }
426 
427 /**
428  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
429  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
430  *
431  * Returns 0 on success, negative on failure
432  */
433 int igc_setup_rx_resources(struct igc_ring *rx_ring)
434 {
435 	struct net_device *ndev = rx_ring->netdev;
436 	struct device *dev = rx_ring->dev;
437 	int size, desc_len;
438 
439 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
440 	rx_ring->rx_buffer_info = vzalloc(size);
441 	if (!rx_ring->rx_buffer_info)
442 		goto err;
443 
444 	desc_len = sizeof(union igc_adv_rx_desc);
445 
446 	/* Round up to nearest 4K */
447 	rx_ring->size = rx_ring->count * desc_len;
448 	rx_ring->size = ALIGN(rx_ring->size, 4096);
449 
450 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
451 					   &rx_ring->dma, GFP_KERNEL);
452 
453 	if (!rx_ring->desc)
454 		goto err;
455 
456 	rx_ring->next_to_alloc = 0;
457 	rx_ring->next_to_clean = 0;
458 	rx_ring->next_to_use = 0;
459 
460 	return 0;
461 
462 err:
463 	vfree(rx_ring->rx_buffer_info);
464 	rx_ring->rx_buffer_info = NULL;
465 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
466 	return -ENOMEM;
467 }
468 
469 /**
470  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
471  *                                (Descriptors) for all queues
472  * @adapter: board private structure
473  *
474  * Return 0 on success, negative on failure
475  */
476 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
477 {
478 	struct net_device *dev = adapter->netdev;
479 	int i, err = 0;
480 
481 	for (i = 0; i < adapter->num_rx_queues; i++) {
482 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
483 		if (err) {
484 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
485 			for (i--; i >= 0; i--)
486 				igc_free_rx_resources(adapter->rx_ring[i]);
487 			break;
488 		}
489 	}
490 
491 	return err;
492 }
493 
494 /**
495  * igc_configure_rx_ring - Configure a receive ring after Reset
496  * @adapter: board private structure
497  * @ring: receive ring to be configured
498  *
499  * Configure the Rx unit of the MAC after a reset.
500  */
501 static void igc_configure_rx_ring(struct igc_adapter *adapter,
502 				  struct igc_ring *ring)
503 {
504 	struct igc_hw *hw = &adapter->hw;
505 	union igc_adv_rx_desc *rx_desc;
506 	int reg_idx = ring->reg_idx;
507 	u32 srrctl = 0, rxdctl = 0;
508 	u64 rdba = ring->dma;
509 
510 	/* disable the queue */
511 	wr32(IGC_RXDCTL(reg_idx), 0);
512 
513 	/* Set DMA base address registers */
514 	wr32(IGC_RDBAL(reg_idx),
515 	     rdba & 0x00000000ffffffffULL);
516 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
517 	wr32(IGC_RDLEN(reg_idx),
518 	     ring->count * sizeof(union igc_adv_rx_desc));
519 
520 	/* initialize head and tail */
521 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
522 	wr32(IGC_RDH(reg_idx), 0);
523 	writel(0, ring->tail);
524 
525 	/* reset next-to- use/clean to place SW in sync with hardware */
526 	ring->next_to_clean = 0;
527 	ring->next_to_use = 0;
528 
529 	/* set descriptor configuration */
530 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
531 	if (ring_uses_large_buffer(ring))
532 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
533 	else
534 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
535 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
536 
537 	wr32(IGC_SRRCTL(reg_idx), srrctl);
538 
539 	rxdctl |= IGC_RX_PTHRESH;
540 	rxdctl |= IGC_RX_HTHRESH << 8;
541 	rxdctl |= IGC_RX_WTHRESH << 16;
542 
543 	/* initialize rx_buffer_info */
544 	memset(ring->rx_buffer_info, 0,
545 	       sizeof(struct igc_rx_buffer) * ring->count);
546 
547 	/* initialize Rx descriptor 0 */
548 	rx_desc = IGC_RX_DESC(ring, 0);
549 	rx_desc->wb.upper.length = 0;
550 
551 	/* enable receive descriptor fetching */
552 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
553 
554 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
555 }
556 
557 /**
558  * igc_configure_rx - Configure receive Unit after Reset
559  * @adapter: board private structure
560  *
561  * Configure the Rx unit of the MAC after a reset.
562  */
563 static void igc_configure_rx(struct igc_adapter *adapter)
564 {
565 	int i;
566 
567 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
568 	 * the Base and Length of the Rx Descriptor Ring
569 	 */
570 	for (i = 0; i < adapter->num_rx_queues; i++)
571 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
572 }
573 
574 /**
575  * igc_configure_tx_ring - Configure transmit ring after Reset
576  * @adapter: board private structure
577  * @ring: tx ring to configure
578  *
579  * Configure a transmit ring after a reset.
580  */
581 static void igc_configure_tx_ring(struct igc_adapter *adapter,
582 				  struct igc_ring *ring)
583 {
584 	struct igc_hw *hw = &adapter->hw;
585 	int reg_idx = ring->reg_idx;
586 	u64 tdba = ring->dma;
587 	u32 txdctl = 0;
588 
589 	/* disable the queue */
590 	wr32(IGC_TXDCTL(reg_idx), 0);
591 	wrfl();
592 	mdelay(10);
593 
594 	wr32(IGC_TDLEN(reg_idx),
595 	     ring->count * sizeof(union igc_adv_tx_desc));
596 	wr32(IGC_TDBAL(reg_idx),
597 	     tdba & 0x00000000ffffffffULL);
598 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
599 
600 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
601 	wr32(IGC_TDH(reg_idx), 0);
602 	writel(0, ring->tail);
603 
604 	txdctl |= IGC_TX_PTHRESH;
605 	txdctl |= IGC_TX_HTHRESH << 8;
606 	txdctl |= IGC_TX_WTHRESH << 16;
607 
608 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
609 	wr32(IGC_TXDCTL(reg_idx), txdctl);
610 }
611 
612 /**
613  * igc_configure_tx - Configure transmit Unit after Reset
614  * @adapter: board private structure
615  *
616  * Configure the Tx unit of the MAC after a reset.
617  */
618 static void igc_configure_tx(struct igc_adapter *adapter)
619 {
620 	int i;
621 
622 	for (i = 0; i < adapter->num_tx_queues; i++)
623 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
624 }
625 
626 /**
627  * igc_setup_mrqc - configure the multiple receive queue control registers
628  * @adapter: Board private structure
629  */
630 static void igc_setup_mrqc(struct igc_adapter *adapter)
631 {
632 	struct igc_hw *hw = &adapter->hw;
633 	u32 j, num_rx_queues;
634 	u32 mrqc, rxcsum;
635 	u32 rss_key[10];
636 
637 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
638 	for (j = 0; j < 10; j++)
639 		wr32(IGC_RSSRK(j), rss_key[j]);
640 
641 	num_rx_queues = adapter->rss_queues;
642 
643 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
644 		for (j = 0; j < IGC_RETA_SIZE; j++)
645 			adapter->rss_indir_tbl[j] =
646 			(j * num_rx_queues) / IGC_RETA_SIZE;
647 		adapter->rss_indir_tbl_init = num_rx_queues;
648 	}
649 	igc_write_rss_indir_tbl(adapter);
650 
651 	/* Disable raw packet checksumming so that RSS hash is placed in
652 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
653 	 * offloads as they are enabled by default
654 	 */
655 	rxcsum = rd32(IGC_RXCSUM);
656 	rxcsum |= IGC_RXCSUM_PCSD;
657 
658 	/* Enable Receive Checksum Offload for SCTP */
659 	rxcsum |= IGC_RXCSUM_CRCOFL;
660 
661 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
662 	wr32(IGC_RXCSUM, rxcsum);
663 
664 	/* Generate RSS hash based on packet types, TCP/UDP
665 	 * port numbers and/or IPv4/v6 src and dst addresses
666 	 */
667 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
668 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
669 	       IGC_MRQC_RSS_FIELD_IPV6 |
670 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
671 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
672 
673 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
674 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
675 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
676 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
677 
678 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
679 
680 	wr32(IGC_MRQC, mrqc);
681 }
682 
683 /**
684  * igc_setup_rctl - configure the receive control registers
685  * @adapter: Board private structure
686  */
687 static void igc_setup_rctl(struct igc_adapter *adapter)
688 {
689 	struct igc_hw *hw = &adapter->hw;
690 	u32 rctl;
691 
692 	rctl = rd32(IGC_RCTL);
693 
694 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
695 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
696 
697 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
698 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
699 
700 	/* enable stripping of CRC. Newer features require
701 	 * that the HW strips the CRC.
702 	 */
703 	rctl |= IGC_RCTL_SECRC;
704 
705 	/* disable store bad packets and clear size bits. */
706 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
707 
708 	/* enable LPE to allow for reception of jumbo frames */
709 	rctl |= IGC_RCTL_LPE;
710 
711 	/* disable queue 0 to prevent tail write w/o re-config */
712 	wr32(IGC_RXDCTL(0), 0);
713 
714 	/* This is useful for sniffing bad packets. */
715 	if (adapter->netdev->features & NETIF_F_RXALL) {
716 		/* UPE and MPE will be handled by normal PROMISC logic
717 		 * in set_rx_mode
718 		 */
719 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
720 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
721 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
722 
723 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
724 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
725 	}
726 
727 	wr32(IGC_RCTL, rctl);
728 }
729 
730 /**
731  * igc_setup_tctl - configure the transmit control registers
732  * @adapter: Board private structure
733  */
734 static void igc_setup_tctl(struct igc_adapter *adapter)
735 {
736 	struct igc_hw *hw = &adapter->hw;
737 	u32 tctl;
738 
739 	/* disable queue 0 which icould be enabled by default */
740 	wr32(IGC_TXDCTL(0), 0);
741 
742 	/* Program the Transmit Control Register */
743 	tctl = rd32(IGC_TCTL);
744 	tctl &= ~IGC_TCTL_CT;
745 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
746 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
747 
748 	/* Enable transmits */
749 	tctl |= IGC_TCTL_EN;
750 
751 	wr32(IGC_TCTL, tctl);
752 }
753 
754 /**
755  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
756  * @adapter: Pointer to adapter where the filter should be set
757  * @index: Filter index
758  * @type: MAC address filter type (source or destination)
759  * @addr: MAC address
760  * @queue: If non-negative, queue assignment feature is enabled and frames
761  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
762  *         assignment is disabled.
763  */
764 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
765 				  enum igc_mac_filter_type type,
766 				  const u8 *addr, int queue)
767 {
768 	struct net_device *dev = adapter->netdev;
769 	struct igc_hw *hw = &adapter->hw;
770 	u32 ral, rah;
771 
772 	if (WARN_ON(index >= hw->mac.rar_entry_count))
773 		return;
774 
775 	ral = le32_to_cpup((__le32 *)(addr));
776 	rah = le16_to_cpup((__le16 *)(addr + 4));
777 
778 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
779 		rah &= ~IGC_RAH_ASEL_MASK;
780 		rah |= IGC_RAH_ASEL_SRC_ADDR;
781 	}
782 
783 	if (queue >= 0) {
784 		rah &= ~IGC_RAH_QSEL_MASK;
785 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
786 		rah |= IGC_RAH_QSEL_ENABLE;
787 	}
788 
789 	rah |= IGC_RAH_AV;
790 
791 	wr32(IGC_RAL(index), ral);
792 	wr32(IGC_RAH(index), rah);
793 
794 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
795 }
796 
797 /**
798  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
799  * @adapter: Pointer to adapter where the filter should be cleared
800  * @index: Filter index
801  */
802 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
803 {
804 	struct net_device *dev = adapter->netdev;
805 	struct igc_hw *hw = &adapter->hw;
806 
807 	if (WARN_ON(index >= hw->mac.rar_entry_count))
808 		return;
809 
810 	wr32(IGC_RAL(index), 0);
811 	wr32(IGC_RAH(index), 0);
812 
813 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
814 }
815 
816 /* Set default MAC address for the PF in the first RAR entry */
817 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
818 {
819 	struct net_device *dev = adapter->netdev;
820 	u8 *addr = adapter->hw.mac.addr;
821 
822 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
823 
824 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
825 }
826 
827 /**
828  * igc_set_mac - Change the Ethernet Address of the NIC
829  * @netdev: network interface device structure
830  * @p: pointer to an address structure
831  *
832  * Returns 0 on success, negative on failure
833  */
834 static int igc_set_mac(struct net_device *netdev, void *p)
835 {
836 	struct igc_adapter *adapter = netdev_priv(netdev);
837 	struct igc_hw *hw = &adapter->hw;
838 	struct sockaddr *addr = p;
839 
840 	if (!is_valid_ether_addr(addr->sa_data))
841 		return -EADDRNOTAVAIL;
842 
843 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
844 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
845 
846 	/* set the correct pool for the new PF MAC address in entry 0 */
847 	igc_set_default_mac_filter(adapter);
848 
849 	return 0;
850 }
851 
852 /**
853  *  igc_write_mc_addr_list - write multicast addresses to MTA
854  *  @netdev: network interface device structure
855  *
856  *  Writes multicast address list to the MTA hash table.
857  *  Returns: -ENOMEM on failure
858  *           0 on no addresses written
859  *           X on writing X addresses to MTA
860  **/
861 static int igc_write_mc_addr_list(struct net_device *netdev)
862 {
863 	struct igc_adapter *adapter = netdev_priv(netdev);
864 	struct igc_hw *hw = &adapter->hw;
865 	struct netdev_hw_addr *ha;
866 	u8  *mta_list;
867 	int i;
868 
869 	if (netdev_mc_empty(netdev)) {
870 		/* nothing to program, so clear mc list */
871 		igc_update_mc_addr_list(hw, NULL, 0);
872 		return 0;
873 	}
874 
875 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
876 	if (!mta_list)
877 		return -ENOMEM;
878 
879 	/* The shared function expects a packed array of only addresses. */
880 	i = 0;
881 	netdev_for_each_mc_addr(ha, netdev)
882 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
883 
884 	igc_update_mc_addr_list(hw, mta_list, i);
885 	kfree(mta_list);
886 
887 	return netdev_mc_count(netdev);
888 }
889 
890 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
891 {
892 	ktime_t cycle_time = adapter->cycle_time;
893 	ktime_t base_time = adapter->base_time;
894 	u32 launchtime;
895 
896 	/* FIXME: when using ETF together with taprio, we may have a
897 	 * case where 'delta' is larger than the cycle_time, this may
898 	 * cause problems if we don't read the current value of
899 	 * IGC_BASET, as the value writen into the launchtime
900 	 * descriptor field may be misinterpreted.
901 	 */
902 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
903 
904 	return cpu_to_le32(launchtime);
905 }
906 
907 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
908 			    struct igc_tx_buffer *first,
909 			    u32 vlan_macip_lens, u32 type_tucmd,
910 			    u32 mss_l4len_idx)
911 {
912 	struct igc_adv_tx_context_desc *context_desc;
913 	u16 i = tx_ring->next_to_use;
914 
915 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
916 
917 	i++;
918 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
919 
920 	/* set bits to identify this as an advanced context descriptor */
921 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
922 
923 	/* For i225, context index must be unique per ring. */
924 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
925 		mss_l4len_idx |= tx_ring->reg_idx << 4;
926 
927 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
928 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
929 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
930 
931 	/* We assume there is always a valid Tx time available. Invalid times
932 	 * should have been handled by the upper layers.
933 	 */
934 	if (tx_ring->launchtime_enable) {
935 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
936 		ktime_t txtime = first->skb->tstamp;
937 
938 		first->skb->tstamp = ktime_set(0, 0);
939 		context_desc->launch_time = igc_tx_launchtime(adapter,
940 							      txtime);
941 	} else {
942 		context_desc->launch_time = 0;
943 	}
944 }
945 
946 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
947 {
948 	unsigned int offset = 0;
949 
950 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
951 
952 	return offset == skb_checksum_start_offset(skb);
953 }
954 
955 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
956 {
957 	struct sk_buff *skb = first->skb;
958 	u32 vlan_macip_lens = 0;
959 	u32 type_tucmd = 0;
960 
961 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
962 csum_failed:
963 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
964 		    !tx_ring->launchtime_enable)
965 			return;
966 		goto no_csum;
967 	}
968 
969 	switch (skb->csum_offset) {
970 	case offsetof(struct tcphdr, check):
971 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
972 		fallthrough;
973 	case offsetof(struct udphdr, check):
974 		break;
975 	case offsetof(struct sctphdr, checksum):
976 		/* validate that this is actually an SCTP request */
977 		if ((first->protocol == htons(ETH_P_IP) &&
978 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
979 		    (first->protocol == htons(ETH_P_IPV6) &&
980 		     igc_ipv6_csum_is_sctp(skb))) {
981 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
982 			break;
983 		}
984 		fallthrough;
985 	default:
986 		skb_checksum_help(skb);
987 		goto csum_failed;
988 	}
989 
990 	/* update TX checksum flag */
991 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
992 	vlan_macip_lens = skb_checksum_start_offset(skb) -
993 			  skb_network_offset(skb);
994 no_csum:
995 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
996 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
997 
998 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
999 }
1000 
1001 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1002 {
1003 	struct net_device *netdev = tx_ring->netdev;
1004 
1005 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1006 
1007 	/* memory barriier comment */
1008 	smp_mb();
1009 
1010 	/* We need to check again in a case another CPU has just
1011 	 * made room available.
1012 	 */
1013 	if (igc_desc_unused(tx_ring) < size)
1014 		return -EBUSY;
1015 
1016 	/* A reprieve! */
1017 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1018 
1019 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1020 	tx_ring->tx_stats.restart_queue2++;
1021 	u64_stats_update_end(&tx_ring->tx_syncp2);
1022 
1023 	return 0;
1024 }
1025 
1026 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1027 {
1028 	if (igc_desc_unused(tx_ring) >= size)
1029 		return 0;
1030 	return __igc_maybe_stop_tx(tx_ring, size);
1031 }
1032 
1033 #define IGC_SET_FLAG(_input, _flag, _result) \
1034 	(((_flag) <= (_result)) ?				\
1035 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1036 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1037 
1038 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1039 {
1040 	/* set type for advanced descriptor with frame checksum insertion */
1041 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1042 		       IGC_ADVTXD_DCMD_DEXT |
1043 		       IGC_ADVTXD_DCMD_IFCS;
1044 
1045 	/* set segmentation bits for TSO */
1046 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1047 				 (IGC_ADVTXD_DCMD_TSE));
1048 
1049 	/* set timestamp bit if present */
1050 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1051 				 (IGC_ADVTXD_MAC_TSTAMP));
1052 
1053 	return cmd_type;
1054 }
1055 
1056 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1057 				 union igc_adv_tx_desc *tx_desc,
1058 				 u32 tx_flags, unsigned int paylen)
1059 {
1060 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1061 
1062 	/* insert L4 checksum */
1063 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1064 			  ((IGC_TXD_POPTS_TXSM << 8) /
1065 			  IGC_TX_FLAGS_CSUM);
1066 
1067 	/* insert IPv4 checksum */
1068 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1069 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1070 			  IGC_TX_FLAGS_IPV4);
1071 
1072 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1073 }
1074 
1075 static int igc_tx_map(struct igc_ring *tx_ring,
1076 		      struct igc_tx_buffer *first,
1077 		      const u8 hdr_len)
1078 {
1079 	struct sk_buff *skb = first->skb;
1080 	struct igc_tx_buffer *tx_buffer;
1081 	union igc_adv_tx_desc *tx_desc;
1082 	u32 tx_flags = first->tx_flags;
1083 	skb_frag_t *frag;
1084 	u16 i = tx_ring->next_to_use;
1085 	unsigned int data_len, size;
1086 	dma_addr_t dma;
1087 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1088 
1089 	tx_desc = IGC_TX_DESC(tx_ring, i);
1090 
1091 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1092 
1093 	size = skb_headlen(skb);
1094 	data_len = skb->data_len;
1095 
1096 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1097 
1098 	tx_buffer = first;
1099 
1100 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1101 		if (dma_mapping_error(tx_ring->dev, dma))
1102 			goto dma_error;
1103 
1104 		/* record length, and DMA address */
1105 		dma_unmap_len_set(tx_buffer, len, size);
1106 		dma_unmap_addr_set(tx_buffer, dma, dma);
1107 
1108 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1109 
1110 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1111 			tx_desc->read.cmd_type_len =
1112 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1113 
1114 			i++;
1115 			tx_desc++;
1116 			if (i == tx_ring->count) {
1117 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1118 				i = 0;
1119 			}
1120 			tx_desc->read.olinfo_status = 0;
1121 
1122 			dma += IGC_MAX_DATA_PER_TXD;
1123 			size -= IGC_MAX_DATA_PER_TXD;
1124 
1125 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1126 		}
1127 
1128 		if (likely(!data_len))
1129 			break;
1130 
1131 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1132 
1133 		i++;
1134 		tx_desc++;
1135 		if (i == tx_ring->count) {
1136 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1137 			i = 0;
1138 		}
1139 		tx_desc->read.olinfo_status = 0;
1140 
1141 		size = skb_frag_size(frag);
1142 		data_len -= size;
1143 
1144 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1145 				       size, DMA_TO_DEVICE);
1146 
1147 		tx_buffer = &tx_ring->tx_buffer_info[i];
1148 	}
1149 
1150 	/* write last descriptor with RS and EOP bits */
1151 	cmd_type |= size | IGC_TXD_DCMD;
1152 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1153 
1154 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1155 
1156 	/* set the timestamp */
1157 	first->time_stamp = jiffies;
1158 
1159 	skb_tx_timestamp(skb);
1160 
1161 	/* Force memory writes to complete before letting h/w know there
1162 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1163 	 * memory model archs, such as IA-64).
1164 	 *
1165 	 * We also need this memory barrier to make certain all of the
1166 	 * status bits have been updated before next_to_watch is written.
1167 	 */
1168 	wmb();
1169 
1170 	/* set next_to_watch value indicating a packet is present */
1171 	first->next_to_watch = tx_desc;
1172 
1173 	i++;
1174 	if (i == tx_ring->count)
1175 		i = 0;
1176 
1177 	tx_ring->next_to_use = i;
1178 
1179 	/* Make sure there is space in the ring for the next send. */
1180 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1181 
1182 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1183 		writel(i, tx_ring->tail);
1184 	}
1185 
1186 	return 0;
1187 dma_error:
1188 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1189 	tx_buffer = &tx_ring->tx_buffer_info[i];
1190 
1191 	/* clear dma mappings for failed tx_buffer_info map */
1192 	while (tx_buffer != first) {
1193 		if (dma_unmap_len(tx_buffer, len))
1194 			dma_unmap_page(tx_ring->dev,
1195 				       dma_unmap_addr(tx_buffer, dma),
1196 				       dma_unmap_len(tx_buffer, len),
1197 				       DMA_TO_DEVICE);
1198 		dma_unmap_len_set(tx_buffer, len, 0);
1199 
1200 		if (i-- == 0)
1201 			i += tx_ring->count;
1202 		tx_buffer = &tx_ring->tx_buffer_info[i];
1203 	}
1204 
1205 	if (dma_unmap_len(tx_buffer, len))
1206 		dma_unmap_single(tx_ring->dev,
1207 				 dma_unmap_addr(tx_buffer, dma),
1208 				 dma_unmap_len(tx_buffer, len),
1209 				 DMA_TO_DEVICE);
1210 	dma_unmap_len_set(tx_buffer, len, 0);
1211 
1212 	dev_kfree_skb_any(tx_buffer->skb);
1213 	tx_buffer->skb = NULL;
1214 
1215 	tx_ring->next_to_use = i;
1216 
1217 	return -1;
1218 }
1219 
1220 static int igc_tso(struct igc_ring *tx_ring,
1221 		   struct igc_tx_buffer *first,
1222 		   u8 *hdr_len)
1223 {
1224 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1225 	struct sk_buff *skb = first->skb;
1226 	union {
1227 		struct iphdr *v4;
1228 		struct ipv6hdr *v6;
1229 		unsigned char *hdr;
1230 	} ip;
1231 	union {
1232 		struct tcphdr *tcp;
1233 		struct udphdr *udp;
1234 		unsigned char *hdr;
1235 	} l4;
1236 	u32 paylen, l4_offset;
1237 	int err;
1238 
1239 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1240 		return 0;
1241 
1242 	if (!skb_is_gso(skb))
1243 		return 0;
1244 
1245 	err = skb_cow_head(skb, 0);
1246 	if (err < 0)
1247 		return err;
1248 
1249 	ip.hdr = skb_network_header(skb);
1250 	l4.hdr = skb_checksum_start(skb);
1251 
1252 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1253 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1254 
1255 	/* initialize outer IP header fields */
1256 	if (ip.v4->version == 4) {
1257 		unsigned char *csum_start = skb_checksum_start(skb);
1258 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1259 
1260 		/* IP header will have to cancel out any data that
1261 		 * is not a part of the outer IP header
1262 		 */
1263 		ip.v4->check = csum_fold(csum_partial(trans_start,
1264 						      csum_start - trans_start,
1265 						      0));
1266 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1267 
1268 		ip.v4->tot_len = 0;
1269 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1270 				   IGC_TX_FLAGS_CSUM |
1271 				   IGC_TX_FLAGS_IPV4;
1272 	} else {
1273 		ip.v6->payload_len = 0;
1274 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1275 				   IGC_TX_FLAGS_CSUM;
1276 	}
1277 
1278 	/* determine offset of inner transport header */
1279 	l4_offset = l4.hdr - skb->data;
1280 
1281 	/* remove payload length from inner checksum */
1282 	paylen = skb->len - l4_offset;
1283 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1284 		/* compute length of segmentation header */
1285 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1286 		csum_replace_by_diff(&l4.tcp->check,
1287 				     (__force __wsum)htonl(paylen));
1288 	} else {
1289 		/* compute length of segmentation header */
1290 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1291 		csum_replace_by_diff(&l4.udp->check,
1292 				     (__force __wsum)htonl(paylen));
1293 	}
1294 
1295 	/* update gso size and bytecount with header size */
1296 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1297 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1298 
1299 	/* MSS L4LEN IDX */
1300 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1301 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1302 
1303 	/* VLAN MACLEN IPLEN */
1304 	vlan_macip_lens = l4.hdr - ip.hdr;
1305 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1306 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1307 
1308 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1309 			type_tucmd, mss_l4len_idx);
1310 
1311 	return 1;
1312 }
1313 
1314 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1315 				       struct igc_ring *tx_ring)
1316 {
1317 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1318 	__be16 protocol = vlan_get_protocol(skb);
1319 	struct igc_tx_buffer *first;
1320 	u32 tx_flags = 0;
1321 	unsigned short f;
1322 	u8 hdr_len = 0;
1323 	int tso = 0;
1324 
1325 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1326 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1327 	 *	+ 2 desc gap to keep tail from touching head,
1328 	 *	+ 1 desc for context descriptor,
1329 	 * otherwise try next time
1330 	 */
1331 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1332 		count += TXD_USE_COUNT(skb_frag_size(
1333 						&skb_shinfo(skb)->frags[f]));
1334 
1335 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1336 		/* this is a hard error */
1337 		return NETDEV_TX_BUSY;
1338 	}
1339 
1340 	/* record the location of the first descriptor for this packet */
1341 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1342 	first->skb = skb;
1343 	first->bytecount = skb->len;
1344 	first->gso_segs = 1;
1345 
1346 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1347 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1348 
1349 		/* FIXME: add support for retrieving timestamps from
1350 		 * the other timer registers before skipping the
1351 		 * timestamping request.
1352 		 */
1353 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1354 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1355 					   &adapter->state)) {
1356 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1357 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1358 
1359 			adapter->ptp_tx_skb = skb_get(skb);
1360 			adapter->ptp_tx_start = jiffies;
1361 		} else {
1362 			adapter->tx_hwtstamp_skipped++;
1363 		}
1364 	}
1365 
1366 	/* record initial flags and protocol */
1367 	first->tx_flags = tx_flags;
1368 	first->protocol = protocol;
1369 
1370 	tso = igc_tso(tx_ring, first, &hdr_len);
1371 	if (tso < 0)
1372 		goto out_drop;
1373 	else if (!tso)
1374 		igc_tx_csum(tx_ring, first);
1375 
1376 	igc_tx_map(tx_ring, first, hdr_len);
1377 
1378 	return NETDEV_TX_OK;
1379 
1380 out_drop:
1381 	dev_kfree_skb_any(first->skb);
1382 	first->skb = NULL;
1383 
1384 	return NETDEV_TX_OK;
1385 }
1386 
1387 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1388 						    struct sk_buff *skb)
1389 {
1390 	unsigned int r_idx = skb->queue_mapping;
1391 
1392 	if (r_idx >= adapter->num_tx_queues)
1393 		r_idx = r_idx % adapter->num_tx_queues;
1394 
1395 	return adapter->tx_ring[r_idx];
1396 }
1397 
1398 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1399 				  struct net_device *netdev)
1400 {
1401 	struct igc_adapter *adapter = netdev_priv(netdev);
1402 
1403 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1404 	 * in order to meet this minimum size requirement.
1405 	 */
1406 	if (skb->len < 17) {
1407 		if (skb_padto(skb, 17))
1408 			return NETDEV_TX_OK;
1409 		skb->len = 17;
1410 	}
1411 
1412 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1413 }
1414 
1415 static void igc_rx_checksum(struct igc_ring *ring,
1416 			    union igc_adv_rx_desc *rx_desc,
1417 			    struct sk_buff *skb)
1418 {
1419 	skb_checksum_none_assert(skb);
1420 
1421 	/* Ignore Checksum bit is set */
1422 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1423 		return;
1424 
1425 	/* Rx checksum disabled via ethtool */
1426 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1427 		return;
1428 
1429 	/* TCP/UDP checksum error bit is set */
1430 	if (igc_test_staterr(rx_desc,
1431 			     IGC_RXDEXT_STATERR_TCPE |
1432 			     IGC_RXDEXT_STATERR_IPE)) {
1433 		/* work around errata with sctp packets where the TCPE aka
1434 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1435 		 * packets (aka let the stack check the crc32c)
1436 		 */
1437 		if (!(skb->len == 60 &&
1438 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1439 			u64_stats_update_begin(&ring->rx_syncp);
1440 			ring->rx_stats.csum_err++;
1441 			u64_stats_update_end(&ring->rx_syncp);
1442 		}
1443 		/* let the stack verify checksum errors */
1444 		return;
1445 	}
1446 	/* It must be a TCP or UDP packet with a valid checksum */
1447 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1448 				      IGC_RXD_STAT_UDPCS))
1449 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1450 
1451 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1452 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1453 }
1454 
1455 static inline void igc_rx_hash(struct igc_ring *ring,
1456 			       union igc_adv_rx_desc *rx_desc,
1457 			       struct sk_buff *skb)
1458 {
1459 	if (ring->netdev->features & NETIF_F_RXHASH)
1460 		skb_set_hash(skb,
1461 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1462 			     PKT_HASH_TYPE_L3);
1463 }
1464 
1465 /**
1466  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1467  * @rx_ring: rx descriptor ring packet is being transacted on
1468  * @rx_desc: pointer to the EOP Rx descriptor
1469  * @skb: pointer to current skb being populated
1470  *
1471  * This function checks the ring, descriptor, and packet information in order
1472  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1473  * skb.
1474  */
1475 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1476 				   union igc_adv_rx_desc *rx_desc,
1477 				   struct sk_buff *skb)
1478 {
1479 	igc_rx_hash(rx_ring, rx_desc, skb);
1480 
1481 	igc_rx_checksum(rx_ring, rx_desc, skb);
1482 
1483 	skb_record_rx_queue(skb, rx_ring->queue_index);
1484 
1485 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1486 }
1487 
1488 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1489 					       const unsigned int size)
1490 {
1491 	struct igc_rx_buffer *rx_buffer;
1492 
1493 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1494 	prefetchw(rx_buffer->page);
1495 
1496 	/* we are reusing so sync this buffer for CPU use */
1497 	dma_sync_single_range_for_cpu(rx_ring->dev,
1498 				      rx_buffer->dma,
1499 				      rx_buffer->page_offset,
1500 				      size,
1501 				      DMA_FROM_DEVICE);
1502 
1503 	rx_buffer->pagecnt_bias--;
1504 
1505 	return rx_buffer;
1506 }
1507 
1508 /**
1509  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1510  * @rx_ring: rx descriptor ring to transact packets on
1511  * @rx_buffer: buffer containing page to add
1512  * @skb: sk_buff to place the data into
1513  * @size: size of buffer to be added
1514  *
1515  * This function will add the data contained in rx_buffer->page to the skb.
1516  */
1517 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1518 			    struct igc_rx_buffer *rx_buffer,
1519 			    struct sk_buff *skb,
1520 			    unsigned int size)
1521 {
1522 #if (PAGE_SIZE < 8192)
1523 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1524 
1525 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1526 			rx_buffer->page_offset, size, truesize);
1527 	rx_buffer->page_offset ^= truesize;
1528 #else
1529 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1530 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1531 				SKB_DATA_ALIGN(size);
1532 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1533 			rx_buffer->page_offset, size, truesize);
1534 	rx_buffer->page_offset += truesize;
1535 #endif
1536 }
1537 
1538 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1539 				     struct igc_rx_buffer *rx_buffer,
1540 				     union igc_adv_rx_desc *rx_desc,
1541 				     unsigned int size)
1542 {
1543 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1544 #if (PAGE_SIZE < 8192)
1545 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1546 #else
1547 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1548 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1549 #endif
1550 	struct sk_buff *skb;
1551 
1552 	/* prefetch first cache line of first page */
1553 	prefetch(va);
1554 #if L1_CACHE_BYTES < 128
1555 	prefetch(va + L1_CACHE_BYTES);
1556 #endif
1557 
1558 	/* build an skb around the page buffer */
1559 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1560 	if (unlikely(!skb))
1561 		return NULL;
1562 
1563 	/* update pointers within the skb to store the data */
1564 	skb_reserve(skb, IGC_SKB_PAD);
1565 	__skb_put(skb, size);
1566 
1567 	/* update buffer offset */
1568 #if (PAGE_SIZE < 8192)
1569 	rx_buffer->page_offset ^= truesize;
1570 #else
1571 	rx_buffer->page_offset += truesize;
1572 #endif
1573 
1574 	return skb;
1575 }
1576 
1577 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1578 					 struct igc_rx_buffer *rx_buffer,
1579 					 union igc_adv_rx_desc *rx_desc,
1580 					 unsigned int size)
1581 {
1582 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1583 #if (PAGE_SIZE < 8192)
1584 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1585 #else
1586 	unsigned int truesize = SKB_DATA_ALIGN(size);
1587 #endif
1588 	unsigned int headlen;
1589 	struct sk_buff *skb;
1590 
1591 	/* prefetch first cache line of first page */
1592 	prefetch(va);
1593 #if L1_CACHE_BYTES < 128
1594 	prefetch(va + L1_CACHE_BYTES);
1595 #endif
1596 
1597 	/* allocate a skb to store the frags */
1598 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1599 	if (unlikely(!skb))
1600 		return NULL;
1601 
1602 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1603 		igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1604 		va += IGC_TS_HDR_LEN;
1605 		size -= IGC_TS_HDR_LEN;
1606 	}
1607 
1608 	/* Determine available headroom for copy */
1609 	headlen = size;
1610 	if (headlen > IGC_RX_HDR_LEN)
1611 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1612 
1613 	/* align pull length to size of long to optimize memcpy performance */
1614 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1615 
1616 	/* update all of the pointers */
1617 	size -= headlen;
1618 	if (size) {
1619 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1620 				(va + headlen) - page_address(rx_buffer->page),
1621 				size, truesize);
1622 #if (PAGE_SIZE < 8192)
1623 		rx_buffer->page_offset ^= truesize;
1624 #else
1625 		rx_buffer->page_offset += truesize;
1626 #endif
1627 	} else {
1628 		rx_buffer->pagecnt_bias++;
1629 	}
1630 
1631 	return skb;
1632 }
1633 
1634 /**
1635  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1636  * @rx_ring: rx descriptor ring to store buffers on
1637  * @old_buff: donor buffer to have page reused
1638  *
1639  * Synchronizes page for reuse by the adapter
1640  */
1641 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1642 			      struct igc_rx_buffer *old_buff)
1643 {
1644 	u16 nta = rx_ring->next_to_alloc;
1645 	struct igc_rx_buffer *new_buff;
1646 
1647 	new_buff = &rx_ring->rx_buffer_info[nta];
1648 
1649 	/* update, and store next to alloc */
1650 	nta++;
1651 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1652 
1653 	/* Transfer page from old buffer to new buffer.
1654 	 * Move each member individually to avoid possible store
1655 	 * forwarding stalls.
1656 	 */
1657 	new_buff->dma		= old_buff->dma;
1658 	new_buff->page		= old_buff->page;
1659 	new_buff->page_offset	= old_buff->page_offset;
1660 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1661 }
1662 
1663 static inline bool igc_page_is_reserved(struct page *page)
1664 {
1665 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1666 }
1667 
1668 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1669 {
1670 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1671 	struct page *page = rx_buffer->page;
1672 
1673 	/* avoid re-using remote pages */
1674 	if (unlikely(igc_page_is_reserved(page)))
1675 		return false;
1676 
1677 #if (PAGE_SIZE < 8192)
1678 	/* if we are only owner of page we can reuse it */
1679 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1680 		return false;
1681 #else
1682 #define IGC_LAST_OFFSET \
1683 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1684 
1685 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1686 		return false;
1687 #endif
1688 
1689 	/* If we have drained the page fragment pool we need to update
1690 	 * the pagecnt_bias and page count so that we fully restock the
1691 	 * number of references the driver holds.
1692 	 */
1693 	if (unlikely(!pagecnt_bias)) {
1694 		page_ref_add(page, USHRT_MAX);
1695 		rx_buffer->pagecnt_bias = USHRT_MAX;
1696 	}
1697 
1698 	return true;
1699 }
1700 
1701 /**
1702  * igc_is_non_eop - process handling of non-EOP buffers
1703  * @rx_ring: Rx ring being processed
1704  * @rx_desc: Rx descriptor for current buffer
1705  *
1706  * This function updates next to clean.  If the buffer is an EOP buffer
1707  * this function exits returning false, otherwise it will place the
1708  * sk_buff in the next buffer to be chained and return true indicating
1709  * that this is in fact a non-EOP buffer.
1710  */
1711 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1712 			   union igc_adv_rx_desc *rx_desc)
1713 {
1714 	u32 ntc = rx_ring->next_to_clean + 1;
1715 
1716 	/* fetch, update, and store next to clean */
1717 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1718 	rx_ring->next_to_clean = ntc;
1719 
1720 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1721 
1722 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1723 		return false;
1724 
1725 	return true;
1726 }
1727 
1728 /**
1729  * igc_cleanup_headers - Correct corrupted or empty headers
1730  * @rx_ring: rx descriptor ring packet is being transacted on
1731  * @rx_desc: pointer to the EOP Rx descriptor
1732  * @skb: pointer to current skb being fixed
1733  *
1734  * Address the case where we are pulling data in on pages only
1735  * and as such no data is present in the skb header.
1736  *
1737  * In addition if skb is not at least 60 bytes we need to pad it so that
1738  * it is large enough to qualify as a valid Ethernet frame.
1739  *
1740  * Returns true if an error was encountered and skb was freed.
1741  */
1742 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1743 				union igc_adv_rx_desc *rx_desc,
1744 				struct sk_buff *skb)
1745 {
1746 	if (unlikely((igc_test_staterr(rx_desc,
1747 				       IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1748 		struct net_device *netdev = rx_ring->netdev;
1749 
1750 		if (!(netdev->features & NETIF_F_RXALL)) {
1751 			dev_kfree_skb_any(skb);
1752 			return true;
1753 		}
1754 	}
1755 
1756 	/* if eth_skb_pad returns an error the skb was freed */
1757 	if (eth_skb_pad(skb))
1758 		return true;
1759 
1760 	return false;
1761 }
1762 
1763 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1764 			      struct igc_rx_buffer *rx_buffer)
1765 {
1766 	if (igc_can_reuse_rx_page(rx_buffer)) {
1767 		/* hand second half of page back to the ring */
1768 		igc_reuse_rx_page(rx_ring, rx_buffer);
1769 	} else {
1770 		/* We are not reusing the buffer so unmap it and free
1771 		 * any references we are holding to it
1772 		 */
1773 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1774 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1775 				     IGC_RX_DMA_ATTR);
1776 		__page_frag_cache_drain(rx_buffer->page,
1777 					rx_buffer->pagecnt_bias);
1778 	}
1779 
1780 	/* clear contents of rx_buffer */
1781 	rx_buffer->page = NULL;
1782 }
1783 
1784 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1785 {
1786 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1787 }
1788 
1789 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1790 				  struct igc_rx_buffer *bi)
1791 {
1792 	struct page *page = bi->page;
1793 	dma_addr_t dma;
1794 
1795 	/* since we are recycling buffers we should seldom need to alloc */
1796 	if (likely(page))
1797 		return true;
1798 
1799 	/* alloc new page for storage */
1800 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1801 	if (unlikely(!page)) {
1802 		rx_ring->rx_stats.alloc_failed++;
1803 		return false;
1804 	}
1805 
1806 	/* map page for use */
1807 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1808 				 igc_rx_pg_size(rx_ring),
1809 				 DMA_FROM_DEVICE,
1810 				 IGC_RX_DMA_ATTR);
1811 
1812 	/* if mapping failed free memory back to system since
1813 	 * there isn't much point in holding memory we can't use
1814 	 */
1815 	if (dma_mapping_error(rx_ring->dev, dma)) {
1816 		__free_page(page);
1817 
1818 		rx_ring->rx_stats.alloc_failed++;
1819 		return false;
1820 	}
1821 
1822 	bi->dma = dma;
1823 	bi->page = page;
1824 	bi->page_offset = igc_rx_offset(rx_ring);
1825 	bi->pagecnt_bias = 1;
1826 
1827 	return true;
1828 }
1829 
1830 /**
1831  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1832  * @rx_ring: rx descriptor ring
1833  * @cleaned_count: number of buffers to clean
1834  */
1835 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1836 {
1837 	union igc_adv_rx_desc *rx_desc;
1838 	u16 i = rx_ring->next_to_use;
1839 	struct igc_rx_buffer *bi;
1840 	u16 bufsz;
1841 
1842 	/* nothing to do */
1843 	if (!cleaned_count)
1844 		return;
1845 
1846 	rx_desc = IGC_RX_DESC(rx_ring, i);
1847 	bi = &rx_ring->rx_buffer_info[i];
1848 	i -= rx_ring->count;
1849 
1850 	bufsz = igc_rx_bufsz(rx_ring);
1851 
1852 	do {
1853 		if (!igc_alloc_mapped_page(rx_ring, bi))
1854 			break;
1855 
1856 		/* sync the buffer for use by the device */
1857 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1858 						 bi->page_offset, bufsz,
1859 						 DMA_FROM_DEVICE);
1860 
1861 		/* Refresh the desc even if buffer_addrs didn't change
1862 		 * because each write-back erases this info.
1863 		 */
1864 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1865 
1866 		rx_desc++;
1867 		bi++;
1868 		i++;
1869 		if (unlikely(!i)) {
1870 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1871 			bi = rx_ring->rx_buffer_info;
1872 			i -= rx_ring->count;
1873 		}
1874 
1875 		/* clear the length for the next_to_use descriptor */
1876 		rx_desc->wb.upper.length = 0;
1877 
1878 		cleaned_count--;
1879 	} while (cleaned_count);
1880 
1881 	i += rx_ring->count;
1882 
1883 	if (rx_ring->next_to_use != i) {
1884 		/* record the next descriptor to use */
1885 		rx_ring->next_to_use = i;
1886 
1887 		/* update next to alloc since we have filled the ring */
1888 		rx_ring->next_to_alloc = i;
1889 
1890 		/* Force memory writes to complete before letting h/w
1891 		 * know there are new descriptors to fetch.  (Only
1892 		 * applicable for weak-ordered memory model archs,
1893 		 * such as IA-64).
1894 		 */
1895 		wmb();
1896 		writel(i, rx_ring->tail);
1897 	}
1898 }
1899 
1900 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1901 {
1902 	unsigned int total_bytes = 0, total_packets = 0;
1903 	struct igc_ring *rx_ring = q_vector->rx.ring;
1904 	struct sk_buff *skb = rx_ring->skb;
1905 	u16 cleaned_count = igc_desc_unused(rx_ring);
1906 
1907 	while (likely(total_packets < budget)) {
1908 		union igc_adv_rx_desc *rx_desc;
1909 		struct igc_rx_buffer *rx_buffer;
1910 		unsigned int size;
1911 
1912 		/* return some buffers to hardware, one at a time is too slow */
1913 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1914 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
1915 			cleaned_count = 0;
1916 		}
1917 
1918 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1919 		size = le16_to_cpu(rx_desc->wb.upper.length);
1920 		if (!size)
1921 			break;
1922 
1923 		/* This memory barrier is needed to keep us from reading
1924 		 * any other fields out of the rx_desc until we know the
1925 		 * descriptor has been written back
1926 		 */
1927 		dma_rmb();
1928 
1929 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
1930 
1931 		/* retrieve a buffer from the ring */
1932 		if (skb)
1933 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1934 		else if (ring_uses_build_skb(rx_ring))
1935 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1936 		else
1937 			skb = igc_construct_skb(rx_ring, rx_buffer,
1938 						rx_desc, size);
1939 
1940 		/* exit if we failed to retrieve a buffer */
1941 		if (!skb) {
1942 			rx_ring->rx_stats.alloc_failed++;
1943 			rx_buffer->pagecnt_bias++;
1944 			break;
1945 		}
1946 
1947 		igc_put_rx_buffer(rx_ring, rx_buffer);
1948 		cleaned_count++;
1949 
1950 		/* fetch next buffer in frame if non-eop */
1951 		if (igc_is_non_eop(rx_ring, rx_desc))
1952 			continue;
1953 
1954 		/* verify the packet layout is correct */
1955 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1956 			skb = NULL;
1957 			continue;
1958 		}
1959 
1960 		/* probably a little skewed due to removing CRC */
1961 		total_bytes += skb->len;
1962 
1963 		/* populate checksum, VLAN, and protocol */
1964 		igc_process_skb_fields(rx_ring, rx_desc, skb);
1965 
1966 		napi_gro_receive(&q_vector->napi, skb);
1967 
1968 		/* reset skb pointer */
1969 		skb = NULL;
1970 
1971 		/* update budget accounting */
1972 		total_packets++;
1973 	}
1974 
1975 	/* place incomplete frames back on ring for completion */
1976 	rx_ring->skb = skb;
1977 
1978 	u64_stats_update_begin(&rx_ring->rx_syncp);
1979 	rx_ring->rx_stats.packets += total_packets;
1980 	rx_ring->rx_stats.bytes += total_bytes;
1981 	u64_stats_update_end(&rx_ring->rx_syncp);
1982 	q_vector->rx.total_packets += total_packets;
1983 	q_vector->rx.total_bytes += total_bytes;
1984 
1985 	if (cleaned_count)
1986 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
1987 
1988 	return total_packets;
1989 }
1990 
1991 /**
1992  * igc_clean_tx_irq - Reclaim resources after transmit completes
1993  * @q_vector: pointer to q_vector containing needed info
1994  * @napi_budget: Used to determine if we are in netpoll
1995  *
1996  * returns true if ring is completely cleaned
1997  */
1998 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1999 {
2000 	struct igc_adapter *adapter = q_vector->adapter;
2001 	unsigned int total_bytes = 0, total_packets = 0;
2002 	unsigned int budget = q_vector->tx.work_limit;
2003 	struct igc_ring *tx_ring = q_vector->tx.ring;
2004 	unsigned int i = tx_ring->next_to_clean;
2005 	struct igc_tx_buffer *tx_buffer;
2006 	union igc_adv_tx_desc *tx_desc;
2007 
2008 	if (test_bit(__IGC_DOWN, &adapter->state))
2009 		return true;
2010 
2011 	tx_buffer = &tx_ring->tx_buffer_info[i];
2012 	tx_desc = IGC_TX_DESC(tx_ring, i);
2013 	i -= tx_ring->count;
2014 
2015 	do {
2016 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2017 
2018 		/* if next_to_watch is not set then there is no work pending */
2019 		if (!eop_desc)
2020 			break;
2021 
2022 		/* prevent any other reads prior to eop_desc */
2023 		smp_rmb();
2024 
2025 		/* if DD is not set pending work has not been completed */
2026 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2027 			break;
2028 
2029 		/* clear next_to_watch to prevent false hangs */
2030 		tx_buffer->next_to_watch = NULL;
2031 
2032 		/* update the statistics for this packet */
2033 		total_bytes += tx_buffer->bytecount;
2034 		total_packets += tx_buffer->gso_segs;
2035 
2036 		/* free the skb */
2037 		napi_consume_skb(tx_buffer->skb, napi_budget);
2038 
2039 		/* unmap skb header data */
2040 		dma_unmap_single(tx_ring->dev,
2041 				 dma_unmap_addr(tx_buffer, dma),
2042 				 dma_unmap_len(tx_buffer, len),
2043 				 DMA_TO_DEVICE);
2044 
2045 		/* clear tx_buffer data */
2046 		dma_unmap_len_set(tx_buffer, len, 0);
2047 
2048 		/* clear last DMA location and unmap remaining buffers */
2049 		while (tx_desc != eop_desc) {
2050 			tx_buffer++;
2051 			tx_desc++;
2052 			i++;
2053 			if (unlikely(!i)) {
2054 				i -= tx_ring->count;
2055 				tx_buffer = tx_ring->tx_buffer_info;
2056 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2057 			}
2058 
2059 			/* unmap any remaining paged data */
2060 			if (dma_unmap_len(tx_buffer, len)) {
2061 				dma_unmap_page(tx_ring->dev,
2062 					       dma_unmap_addr(tx_buffer, dma),
2063 					       dma_unmap_len(tx_buffer, len),
2064 					       DMA_TO_DEVICE);
2065 				dma_unmap_len_set(tx_buffer, len, 0);
2066 			}
2067 		}
2068 
2069 		/* move us one more past the eop_desc for start of next pkt */
2070 		tx_buffer++;
2071 		tx_desc++;
2072 		i++;
2073 		if (unlikely(!i)) {
2074 			i -= tx_ring->count;
2075 			tx_buffer = tx_ring->tx_buffer_info;
2076 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2077 		}
2078 
2079 		/* issue prefetch for next Tx descriptor */
2080 		prefetch(tx_desc);
2081 
2082 		/* update budget accounting */
2083 		budget--;
2084 	} while (likely(budget));
2085 
2086 	netdev_tx_completed_queue(txring_txq(tx_ring),
2087 				  total_packets, total_bytes);
2088 
2089 	i += tx_ring->count;
2090 	tx_ring->next_to_clean = i;
2091 	u64_stats_update_begin(&tx_ring->tx_syncp);
2092 	tx_ring->tx_stats.bytes += total_bytes;
2093 	tx_ring->tx_stats.packets += total_packets;
2094 	u64_stats_update_end(&tx_ring->tx_syncp);
2095 	q_vector->tx.total_bytes += total_bytes;
2096 	q_vector->tx.total_packets += total_packets;
2097 
2098 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2099 		struct igc_hw *hw = &adapter->hw;
2100 
2101 		/* Detect a transmit hang in hardware, this serializes the
2102 		 * check with the clearing of time_stamp and movement of i
2103 		 */
2104 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2105 		if (tx_buffer->next_to_watch &&
2106 		    time_after(jiffies, tx_buffer->time_stamp +
2107 		    (adapter->tx_timeout_factor * HZ)) &&
2108 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2109 			/* detected Tx unit hang */
2110 			netdev_err(tx_ring->netdev,
2111 				   "Detected Tx Unit Hang\n"
2112 				   "  Tx Queue             <%d>\n"
2113 				   "  TDH                  <%x>\n"
2114 				   "  TDT                  <%x>\n"
2115 				   "  next_to_use          <%x>\n"
2116 				   "  next_to_clean        <%x>\n"
2117 				   "buffer_info[next_to_clean]\n"
2118 				   "  time_stamp           <%lx>\n"
2119 				   "  next_to_watch        <%p>\n"
2120 				   "  jiffies              <%lx>\n"
2121 				   "  desc.status          <%x>\n",
2122 				   tx_ring->queue_index,
2123 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2124 				   readl(tx_ring->tail),
2125 				   tx_ring->next_to_use,
2126 				   tx_ring->next_to_clean,
2127 				   tx_buffer->time_stamp,
2128 				   tx_buffer->next_to_watch,
2129 				   jiffies,
2130 				   tx_buffer->next_to_watch->wb.status);
2131 			netif_stop_subqueue(tx_ring->netdev,
2132 					    tx_ring->queue_index);
2133 
2134 			/* we are about to reset, no point in enabling stuff */
2135 			return true;
2136 		}
2137 	}
2138 
2139 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2140 	if (unlikely(total_packets &&
2141 		     netif_carrier_ok(tx_ring->netdev) &&
2142 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2143 		/* Make sure that anybody stopping the queue after this
2144 		 * sees the new next_to_clean.
2145 		 */
2146 		smp_mb();
2147 		if (__netif_subqueue_stopped(tx_ring->netdev,
2148 					     tx_ring->queue_index) &&
2149 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2150 			netif_wake_subqueue(tx_ring->netdev,
2151 					    tx_ring->queue_index);
2152 
2153 			u64_stats_update_begin(&tx_ring->tx_syncp);
2154 			tx_ring->tx_stats.restart_queue++;
2155 			u64_stats_update_end(&tx_ring->tx_syncp);
2156 		}
2157 	}
2158 
2159 	return !!budget;
2160 }
2161 
2162 static int igc_find_mac_filter(struct igc_adapter *adapter,
2163 			       enum igc_mac_filter_type type, const u8 *addr)
2164 {
2165 	struct igc_hw *hw = &adapter->hw;
2166 	int max_entries = hw->mac.rar_entry_count;
2167 	u32 ral, rah;
2168 	int i;
2169 
2170 	for (i = 0; i < max_entries; i++) {
2171 		ral = rd32(IGC_RAL(i));
2172 		rah = rd32(IGC_RAH(i));
2173 
2174 		if (!(rah & IGC_RAH_AV))
2175 			continue;
2176 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2177 			continue;
2178 		if ((rah & IGC_RAH_RAH_MASK) !=
2179 		    le16_to_cpup((__le16 *)(addr + 4)))
2180 			continue;
2181 		if (ral != le32_to_cpup((__le32 *)(addr)))
2182 			continue;
2183 
2184 		return i;
2185 	}
2186 
2187 	return -1;
2188 }
2189 
2190 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2191 {
2192 	struct igc_hw *hw = &adapter->hw;
2193 	int max_entries = hw->mac.rar_entry_count;
2194 	u32 rah;
2195 	int i;
2196 
2197 	for (i = 0; i < max_entries; i++) {
2198 		rah = rd32(IGC_RAH(i));
2199 
2200 		if (!(rah & IGC_RAH_AV))
2201 			return i;
2202 	}
2203 
2204 	return -1;
2205 }
2206 
2207 /**
2208  * igc_add_mac_filter() - Add MAC address filter
2209  * @adapter: Pointer to adapter where the filter should be added
2210  * @type: MAC address filter type (source or destination)
2211  * @addr: MAC address
2212  * @queue: If non-negative, queue assignment feature is enabled and frames
2213  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2214  *         assignment is disabled.
2215  *
2216  * Return: 0 in case of success, negative errno code otherwise.
2217  */
2218 static int igc_add_mac_filter(struct igc_adapter *adapter,
2219 			      enum igc_mac_filter_type type, const u8 *addr,
2220 			      int queue)
2221 {
2222 	struct net_device *dev = adapter->netdev;
2223 	int index;
2224 
2225 	index = igc_find_mac_filter(adapter, type, addr);
2226 	if (index >= 0)
2227 		goto update_filter;
2228 
2229 	index = igc_get_avail_mac_filter_slot(adapter);
2230 	if (index < 0)
2231 		return -ENOSPC;
2232 
2233 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2234 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2235 		   addr, queue);
2236 
2237 update_filter:
2238 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2239 	return 0;
2240 }
2241 
2242 /**
2243  * igc_del_mac_filter() - Delete MAC address filter
2244  * @adapter: Pointer to adapter where the filter should be deleted from
2245  * @type: MAC address filter type (source or destination)
2246  * @addr: MAC address
2247  */
2248 static void igc_del_mac_filter(struct igc_adapter *adapter,
2249 			       enum igc_mac_filter_type type, const u8 *addr)
2250 {
2251 	struct net_device *dev = adapter->netdev;
2252 	int index;
2253 
2254 	index = igc_find_mac_filter(adapter, type, addr);
2255 	if (index < 0)
2256 		return;
2257 
2258 	if (index == 0) {
2259 		/* If this is the default filter, we don't actually delete it.
2260 		 * We just reset to its default value i.e. disable queue
2261 		 * assignment.
2262 		 */
2263 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2264 
2265 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2266 	} else {
2267 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2268 			   index,
2269 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2270 			   addr);
2271 
2272 		igc_clear_mac_filter_hw(adapter, index);
2273 	}
2274 }
2275 
2276 /**
2277  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2278  * @adapter: Pointer to adapter where the filter should be added
2279  * @prio: VLAN priority value
2280  * @queue: Queue number which matching frames are assigned to
2281  *
2282  * Return: 0 in case of success, negative errno code otherwise.
2283  */
2284 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2285 				    int queue)
2286 {
2287 	struct net_device *dev = adapter->netdev;
2288 	struct igc_hw *hw = &adapter->hw;
2289 	u32 vlanpqf;
2290 
2291 	vlanpqf = rd32(IGC_VLANPQF);
2292 
2293 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2294 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2295 		return -EEXIST;
2296 	}
2297 
2298 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2299 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2300 
2301 	wr32(IGC_VLANPQF, vlanpqf);
2302 
2303 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2304 		   prio, queue);
2305 	return 0;
2306 }
2307 
2308 /**
2309  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2310  * @adapter: Pointer to adapter where the filter should be deleted from
2311  * @prio: VLAN priority value
2312  */
2313 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2314 {
2315 	struct igc_hw *hw = &adapter->hw;
2316 	u32 vlanpqf;
2317 
2318 	vlanpqf = rd32(IGC_VLANPQF);
2319 
2320 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2321 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2322 
2323 	wr32(IGC_VLANPQF, vlanpqf);
2324 
2325 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2326 		   prio);
2327 }
2328 
2329 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2330 {
2331 	struct igc_hw *hw = &adapter->hw;
2332 	int i;
2333 
2334 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2335 		u32 etqf = rd32(IGC_ETQF(i));
2336 
2337 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2338 			return i;
2339 	}
2340 
2341 	return -1;
2342 }
2343 
2344 /**
2345  * igc_add_etype_filter() - Add ethertype filter
2346  * @adapter: Pointer to adapter where the filter should be added
2347  * @etype: Ethertype value
2348  * @queue: If non-negative, queue assignment feature is enabled and frames
2349  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2350  *         assignment is disabled.
2351  *
2352  * Return: 0 in case of success, negative errno code otherwise.
2353  */
2354 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2355 				int queue)
2356 {
2357 	struct igc_hw *hw = &adapter->hw;
2358 	int index;
2359 	u32 etqf;
2360 
2361 	index = igc_get_avail_etype_filter_slot(adapter);
2362 	if (index < 0)
2363 		return -ENOSPC;
2364 
2365 	etqf = rd32(IGC_ETQF(index));
2366 
2367 	etqf &= ~IGC_ETQF_ETYPE_MASK;
2368 	etqf |= etype;
2369 
2370 	if (queue >= 0) {
2371 		etqf &= ~IGC_ETQF_QUEUE_MASK;
2372 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2373 		etqf |= IGC_ETQF_QUEUE_ENABLE;
2374 	}
2375 
2376 	etqf |= IGC_ETQF_FILTER_ENABLE;
2377 
2378 	wr32(IGC_ETQF(index), etqf);
2379 
2380 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2381 		   etype, queue);
2382 	return 0;
2383 }
2384 
2385 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2386 {
2387 	struct igc_hw *hw = &adapter->hw;
2388 	int i;
2389 
2390 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2391 		u32 etqf = rd32(IGC_ETQF(i));
2392 
2393 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2394 			return i;
2395 	}
2396 
2397 	return -1;
2398 }
2399 
2400 /**
2401  * igc_del_etype_filter() - Delete ethertype filter
2402  * @adapter: Pointer to adapter where the filter should be deleted from
2403  * @etype: Ethertype value
2404  */
2405 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2406 {
2407 	struct igc_hw *hw = &adapter->hw;
2408 	int index;
2409 
2410 	index = igc_find_etype_filter(adapter, etype);
2411 	if (index < 0)
2412 		return;
2413 
2414 	wr32(IGC_ETQF(index), 0);
2415 
2416 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2417 		   etype);
2418 }
2419 
2420 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2421 			       const struct igc_nfc_rule *rule)
2422 {
2423 	int err;
2424 
2425 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2426 		err = igc_add_etype_filter(adapter, rule->filter.etype,
2427 					   rule->action);
2428 		if (err)
2429 			return err;
2430 	}
2431 
2432 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2433 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2434 					 rule->filter.src_addr, rule->action);
2435 		if (err)
2436 			return err;
2437 	}
2438 
2439 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2440 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2441 					 rule->filter.dst_addr, rule->action);
2442 		if (err)
2443 			return err;
2444 	}
2445 
2446 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2447 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2448 			   VLAN_PRIO_SHIFT;
2449 
2450 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2451 		if (err)
2452 			return err;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2459 				 const struct igc_nfc_rule *rule)
2460 {
2461 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2462 		igc_del_etype_filter(adapter, rule->filter.etype);
2463 
2464 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2465 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2466 			   VLAN_PRIO_SHIFT;
2467 
2468 		igc_del_vlan_prio_filter(adapter, prio);
2469 	}
2470 
2471 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2472 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2473 				   rule->filter.src_addr);
2474 
2475 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2476 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2477 				   rule->filter.dst_addr);
2478 }
2479 
2480 /**
2481  * igc_get_nfc_rule() - Get NFC rule
2482  * @adapter: Pointer to adapter
2483  * @location: Rule location
2484  *
2485  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2486  *
2487  * Return: Pointer to NFC rule at @location. If not found, NULL.
2488  */
2489 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2490 				      u32 location)
2491 {
2492 	struct igc_nfc_rule *rule;
2493 
2494 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2495 		if (rule->location == location)
2496 			return rule;
2497 		if (rule->location > location)
2498 			break;
2499 	}
2500 
2501 	return NULL;
2502 }
2503 
2504 /**
2505  * igc_del_nfc_rule() - Delete NFC rule
2506  * @adapter: Pointer to adapter
2507  * @rule: Pointer to rule to be deleted
2508  *
2509  * Disable NFC rule in hardware and delete it from adapter.
2510  *
2511  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2512  */
2513 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2514 {
2515 	igc_disable_nfc_rule(adapter, rule);
2516 
2517 	list_del(&rule->list);
2518 	adapter->nfc_rule_count--;
2519 
2520 	kfree(rule);
2521 }
2522 
2523 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2524 {
2525 	struct igc_nfc_rule *rule, *tmp;
2526 
2527 	mutex_lock(&adapter->nfc_rule_lock);
2528 
2529 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2530 		igc_del_nfc_rule(adapter, rule);
2531 
2532 	mutex_unlock(&adapter->nfc_rule_lock);
2533 }
2534 
2535 /**
2536  * igc_add_nfc_rule() - Add NFC rule
2537  * @adapter: Pointer to adapter
2538  * @rule: Pointer to rule to be added
2539  *
2540  * Enable NFC rule in hardware and add it to adapter.
2541  *
2542  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2543  *
2544  * Return: 0 on success, negative errno on failure.
2545  */
2546 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2547 {
2548 	struct igc_nfc_rule *pred, *cur;
2549 	int err;
2550 
2551 	err = igc_enable_nfc_rule(adapter, rule);
2552 	if (err)
2553 		return err;
2554 
2555 	pred = NULL;
2556 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2557 		if (cur->location >= rule->location)
2558 			break;
2559 		pred = cur;
2560 	}
2561 
2562 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2563 	adapter->nfc_rule_count++;
2564 	return 0;
2565 }
2566 
2567 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2568 {
2569 	struct igc_nfc_rule *rule;
2570 
2571 	mutex_lock(&adapter->nfc_rule_lock);
2572 
2573 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2574 		igc_enable_nfc_rule(adapter, rule);
2575 
2576 	mutex_unlock(&adapter->nfc_rule_lock);
2577 }
2578 
2579 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2580 {
2581 	struct igc_adapter *adapter = netdev_priv(netdev);
2582 
2583 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2584 }
2585 
2586 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2587 {
2588 	struct igc_adapter *adapter = netdev_priv(netdev);
2589 
2590 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2591 	return 0;
2592 }
2593 
2594 /**
2595  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2596  * @netdev: network interface device structure
2597  *
2598  * The set_rx_mode entry point is called whenever the unicast or multicast
2599  * address lists or the network interface flags are updated.  This routine is
2600  * responsible for configuring the hardware for proper unicast, multicast,
2601  * promiscuous mode, and all-multi behavior.
2602  */
2603 static void igc_set_rx_mode(struct net_device *netdev)
2604 {
2605 	struct igc_adapter *adapter = netdev_priv(netdev);
2606 	struct igc_hw *hw = &adapter->hw;
2607 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2608 	int count;
2609 
2610 	/* Check for Promiscuous and All Multicast modes */
2611 	if (netdev->flags & IFF_PROMISC) {
2612 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2613 	} else {
2614 		if (netdev->flags & IFF_ALLMULTI) {
2615 			rctl |= IGC_RCTL_MPE;
2616 		} else {
2617 			/* Write addresses to the MTA, if the attempt fails
2618 			 * then we should just turn on promiscuous mode so
2619 			 * that we can at least receive multicast traffic
2620 			 */
2621 			count = igc_write_mc_addr_list(netdev);
2622 			if (count < 0)
2623 				rctl |= IGC_RCTL_MPE;
2624 		}
2625 	}
2626 
2627 	/* Write addresses to available RAR registers, if there is not
2628 	 * sufficient space to store all the addresses then enable
2629 	 * unicast promiscuous mode
2630 	 */
2631 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2632 		rctl |= IGC_RCTL_UPE;
2633 
2634 	/* update state of unicast and multicast */
2635 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2636 	wr32(IGC_RCTL, rctl);
2637 
2638 #if (PAGE_SIZE < 8192)
2639 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2640 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
2641 #endif
2642 	wr32(IGC_RLPML, rlpml);
2643 }
2644 
2645 /**
2646  * igc_configure - configure the hardware for RX and TX
2647  * @adapter: private board structure
2648  */
2649 static void igc_configure(struct igc_adapter *adapter)
2650 {
2651 	struct net_device *netdev = adapter->netdev;
2652 	int i = 0;
2653 
2654 	igc_get_hw_control(adapter);
2655 	igc_set_rx_mode(netdev);
2656 
2657 	igc_setup_tctl(adapter);
2658 	igc_setup_mrqc(adapter);
2659 	igc_setup_rctl(adapter);
2660 
2661 	igc_set_default_mac_filter(adapter);
2662 	igc_restore_nfc_rules(adapter);
2663 
2664 	igc_configure_tx(adapter);
2665 	igc_configure_rx(adapter);
2666 
2667 	igc_rx_fifo_flush_base(&adapter->hw);
2668 
2669 	/* call igc_desc_unused which always leaves
2670 	 * at least 1 descriptor unused to make sure
2671 	 * next_to_use != next_to_clean
2672 	 */
2673 	for (i = 0; i < adapter->num_rx_queues; i++) {
2674 		struct igc_ring *ring = adapter->rx_ring[i];
2675 
2676 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2677 	}
2678 }
2679 
2680 /**
2681  * igc_write_ivar - configure ivar for given MSI-X vector
2682  * @hw: pointer to the HW structure
2683  * @msix_vector: vector number we are allocating to a given ring
2684  * @index: row index of IVAR register to write within IVAR table
2685  * @offset: column offset of in IVAR, should be multiple of 8
2686  *
2687  * The IVAR table consists of 2 columns,
2688  * each containing an cause allocation for an Rx and Tx ring, and a
2689  * variable number of rows depending on the number of queues supported.
2690  */
2691 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2692 			   int index, int offset)
2693 {
2694 	u32 ivar = array_rd32(IGC_IVAR0, index);
2695 
2696 	/* clear any bits that are currently set */
2697 	ivar &= ~((u32)0xFF << offset);
2698 
2699 	/* write vector and valid bit */
2700 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2701 
2702 	array_wr32(IGC_IVAR0, index, ivar);
2703 }
2704 
2705 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2706 {
2707 	struct igc_adapter *adapter = q_vector->adapter;
2708 	struct igc_hw *hw = &adapter->hw;
2709 	int rx_queue = IGC_N0_QUEUE;
2710 	int tx_queue = IGC_N0_QUEUE;
2711 
2712 	if (q_vector->rx.ring)
2713 		rx_queue = q_vector->rx.ring->reg_idx;
2714 	if (q_vector->tx.ring)
2715 		tx_queue = q_vector->tx.ring->reg_idx;
2716 
2717 	switch (hw->mac.type) {
2718 	case igc_i225:
2719 		if (rx_queue > IGC_N0_QUEUE)
2720 			igc_write_ivar(hw, msix_vector,
2721 				       rx_queue >> 1,
2722 				       (rx_queue & 0x1) << 4);
2723 		if (tx_queue > IGC_N0_QUEUE)
2724 			igc_write_ivar(hw, msix_vector,
2725 				       tx_queue >> 1,
2726 				       ((tx_queue & 0x1) << 4) + 8);
2727 		q_vector->eims_value = BIT(msix_vector);
2728 		break;
2729 	default:
2730 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2731 		break;
2732 	}
2733 
2734 	/* add q_vector eims value to global eims_enable_mask */
2735 	adapter->eims_enable_mask |= q_vector->eims_value;
2736 
2737 	/* configure q_vector to set itr on first interrupt */
2738 	q_vector->set_itr = 1;
2739 }
2740 
2741 /**
2742  * igc_configure_msix - Configure MSI-X hardware
2743  * @adapter: Pointer to adapter structure
2744  *
2745  * igc_configure_msix sets up the hardware to properly
2746  * generate MSI-X interrupts.
2747  */
2748 static void igc_configure_msix(struct igc_adapter *adapter)
2749 {
2750 	struct igc_hw *hw = &adapter->hw;
2751 	int i, vector = 0;
2752 	u32 tmp;
2753 
2754 	adapter->eims_enable_mask = 0;
2755 
2756 	/* set vector for other causes, i.e. link changes */
2757 	switch (hw->mac.type) {
2758 	case igc_i225:
2759 		/* Turn on MSI-X capability first, or our settings
2760 		 * won't stick.  And it will take days to debug.
2761 		 */
2762 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2763 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2764 		     IGC_GPIE_NSICR);
2765 
2766 		/* enable msix_other interrupt */
2767 		adapter->eims_other = BIT(vector);
2768 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2769 
2770 		wr32(IGC_IVAR_MISC, tmp);
2771 		break;
2772 	default:
2773 		/* do nothing, since nothing else supports MSI-X */
2774 		break;
2775 	} /* switch (hw->mac.type) */
2776 
2777 	adapter->eims_enable_mask |= adapter->eims_other;
2778 
2779 	for (i = 0; i < adapter->num_q_vectors; i++)
2780 		igc_assign_vector(adapter->q_vector[i], vector++);
2781 
2782 	wrfl();
2783 }
2784 
2785 /**
2786  * igc_irq_enable - Enable default interrupt generation settings
2787  * @adapter: board private structure
2788  */
2789 static void igc_irq_enable(struct igc_adapter *adapter)
2790 {
2791 	struct igc_hw *hw = &adapter->hw;
2792 
2793 	if (adapter->msix_entries) {
2794 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2795 		u32 regval = rd32(IGC_EIAC);
2796 
2797 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2798 		regval = rd32(IGC_EIAM);
2799 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2800 		wr32(IGC_EIMS, adapter->eims_enable_mask);
2801 		wr32(IGC_IMS, ims);
2802 	} else {
2803 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2804 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2805 	}
2806 }
2807 
2808 /**
2809  * igc_irq_disable - Mask off interrupt generation on the NIC
2810  * @adapter: board private structure
2811  */
2812 static void igc_irq_disable(struct igc_adapter *adapter)
2813 {
2814 	struct igc_hw *hw = &adapter->hw;
2815 
2816 	if (adapter->msix_entries) {
2817 		u32 regval = rd32(IGC_EIAM);
2818 
2819 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2820 		wr32(IGC_EIMC, adapter->eims_enable_mask);
2821 		regval = rd32(IGC_EIAC);
2822 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2823 	}
2824 
2825 	wr32(IGC_IAM, 0);
2826 	wr32(IGC_IMC, ~0);
2827 	wrfl();
2828 
2829 	if (adapter->msix_entries) {
2830 		int vector = 0, i;
2831 
2832 		synchronize_irq(adapter->msix_entries[vector++].vector);
2833 
2834 		for (i = 0; i < adapter->num_q_vectors; i++)
2835 			synchronize_irq(adapter->msix_entries[vector++].vector);
2836 	} else {
2837 		synchronize_irq(adapter->pdev->irq);
2838 	}
2839 }
2840 
2841 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2842 			      const u32 max_rss_queues)
2843 {
2844 	/* Determine if we need to pair queues. */
2845 	/* If rss_queues > half of max_rss_queues, pair the queues in
2846 	 * order to conserve interrupts due to limited supply.
2847 	 */
2848 	if (adapter->rss_queues > (max_rss_queues / 2))
2849 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2850 	else
2851 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2852 }
2853 
2854 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2855 {
2856 	return IGC_MAX_RX_QUEUES;
2857 }
2858 
2859 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2860 {
2861 	u32 max_rss_queues;
2862 
2863 	max_rss_queues = igc_get_max_rss_queues(adapter);
2864 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2865 
2866 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
2867 }
2868 
2869 /**
2870  * igc_reset_q_vector - Reset config for interrupt vector
2871  * @adapter: board private structure to initialize
2872  * @v_idx: Index of vector to be reset
2873  *
2874  * If NAPI is enabled it will delete any references to the
2875  * NAPI struct. This is preparation for igc_free_q_vector.
2876  */
2877 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2878 {
2879 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2880 
2881 	/* if we're coming from igc_set_interrupt_capability, the vectors are
2882 	 * not yet allocated
2883 	 */
2884 	if (!q_vector)
2885 		return;
2886 
2887 	if (q_vector->tx.ring)
2888 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2889 
2890 	if (q_vector->rx.ring)
2891 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2892 
2893 	netif_napi_del(&q_vector->napi);
2894 }
2895 
2896 /**
2897  * igc_free_q_vector - Free memory allocated for specific interrupt vector
2898  * @adapter: board private structure to initialize
2899  * @v_idx: Index of vector to be freed
2900  *
2901  * This function frees the memory allocated to the q_vector.
2902  */
2903 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2904 {
2905 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2906 
2907 	adapter->q_vector[v_idx] = NULL;
2908 
2909 	/* igc_get_stats64() might access the rings on this vector,
2910 	 * we must wait a grace period before freeing it.
2911 	 */
2912 	if (q_vector)
2913 		kfree_rcu(q_vector, rcu);
2914 }
2915 
2916 /**
2917  * igc_free_q_vectors - Free memory allocated for interrupt vectors
2918  * @adapter: board private structure to initialize
2919  *
2920  * This function frees the memory allocated to the q_vectors.  In addition if
2921  * NAPI is enabled it will delete any references to the NAPI struct prior
2922  * to freeing the q_vector.
2923  */
2924 static void igc_free_q_vectors(struct igc_adapter *adapter)
2925 {
2926 	int v_idx = adapter->num_q_vectors;
2927 
2928 	adapter->num_tx_queues = 0;
2929 	adapter->num_rx_queues = 0;
2930 	adapter->num_q_vectors = 0;
2931 
2932 	while (v_idx--) {
2933 		igc_reset_q_vector(adapter, v_idx);
2934 		igc_free_q_vector(adapter, v_idx);
2935 	}
2936 }
2937 
2938 /**
2939  * igc_update_itr - update the dynamic ITR value based on statistics
2940  * @q_vector: pointer to q_vector
2941  * @ring_container: ring info to update the itr for
2942  *
2943  * Stores a new ITR value based on packets and byte
2944  * counts during the last interrupt.  The advantage of per interrupt
2945  * computation is faster updates and more accurate ITR for the current
2946  * traffic pattern.  Constants in this function were computed
2947  * based on theoretical maximum wire speed and thresholds were set based
2948  * on testing data as well as attempting to minimize response time
2949  * while increasing bulk throughput.
2950  * NOTE: These calculations are only valid when operating in a single-
2951  * queue environment.
2952  */
2953 static void igc_update_itr(struct igc_q_vector *q_vector,
2954 			   struct igc_ring_container *ring_container)
2955 {
2956 	unsigned int packets = ring_container->total_packets;
2957 	unsigned int bytes = ring_container->total_bytes;
2958 	u8 itrval = ring_container->itr;
2959 
2960 	/* no packets, exit with status unchanged */
2961 	if (packets == 0)
2962 		return;
2963 
2964 	switch (itrval) {
2965 	case lowest_latency:
2966 		/* handle TSO and jumbo frames */
2967 		if (bytes / packets > 8000)
2968 			itrval = bulk_latency;
2969 		else if ((packets < 5) && (bytes > 512))
2970 			itrval = low_latency;
2971 		break;
2972 	case low_latency:  /* 50 usec aka 20000 ints/s */
2973 		if (bytes > 10000) {
2974 			/* this if handles the TSO accounting */
2975 			if (bytes / packets > 8000)
2976 				itrval = bulk_latency;
2977 			else if ((packets < 10) || ((bytes / packets) > 1200))
2978 				itrval = bulk_latency;
2979 			else if ((packets > 35))
2980 				itrval = lowest_latency;
2981 		} else if (bytes / packets > 2000) {
2982 			itrval = bulk_latency;
2983 		} else if (packets <= 2 && bytes < 512) {
2984 			itrval = lowest_latency;
2985 		}
2986 		break;
2987 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2988 		if (bytes > 25000) {
2989 			if (packets > 35)
2990 				itrval = low_latency;
2991 		} else if (bytes < 1500) {
2992 			itrval = low_latency;
2993 		}
2994 		break;
2995 	}
2996 
2997 	/* clear work counters since we have the values we need */
2998 	ring_container->total_bytes = 0;
2999 	ring_container->total_packets = 0;
3000 
3001 	/* write updated itr to ring container */
3002 	ring_container->itr = itrval;
3003 }
3004 
3005 static void igc_set_itr(struct igc_q_vector *q_vector)
3006 {
3007 	struct igc_adapter *adapter = q_vector->adapter;
3008 	u32 new_itr = q_vector->itr_val;
3009 	u8 current_itr = 0;
3010 
3011 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3012 	switch (adapter->link_speed) {
3013 	case SPEED_10:
3014 	case SPEED_100:
3015 		current_itr = 0;
3016 		new_itr = IGC_4K_ITR;
3017 		goto set_itr_now;
3018 	default:
3019 		break;
3020 	}
3021 
3022 	igc_update_itr(q_vector, &q_vector->tx);
3023 	igc_update_itr(q_vector, &q_vector->rx);
3024 
3025 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3026 
3027 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3028 	if (current_itr == lowest_latency &&
3029 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3030 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3031 		current_itr = low_latency;
3032 
3033 	switch (current_itr) {
3034 	/* counts and packets in update_itr are dependent on these numbers */
3035 	case lowest_latency:
3036 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3037 		break;
3038 	case low_latency:
3039 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3040 		break;
3041 	case bulk_latency:
3042 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3043 		break;
3044 	default:
3045 		break;
3046 	}
3047 
3048 set_itr_now:
3049 	if (new_itr != q_vector->itr_val) {
3050 		/* this attempts to bias the interrupt rate towards Bulk
3051 		 * by adding intermediate steps when interrupt rate is
3052 		 * increasing
3053 		 */
3054 		new_itr = new_itr > q_vector->itr_val ?
3055 			  max((new_itr * q_vector->itr_val) /
3056 			  (new_itr + (q_vector->itr_val >> 2)),
3057 			  new_itr) : new_itr;
3058 		/* Don't write the value here; it resets the adapter's
3059 		 * internal timer, and causes us to delay far longer than
3060 		 * we should between interrupts.  Instead, we write the ITR
3061 		 * value at the beginning of the next interrupt so the timing
3062 		 * ends up being correct.
3063 		 */
3064 		q_vector->itr_val = new_itr;
3065 		q_vector->set_itr = 1;
3066 	}
3067 }
3068 
3069 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3070 {
3071 	int v_idx = adapter->num_q_vectors;
3072 
3073 	if (adapter->msix_entries) {
3074 		pci_disable_msix(adapter->pdev);
3075 		kfree(adapter->msix_entries);
3076 		adapter->msix_entries = NULL;
3077 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3078 		pci_disable_msi(adapter->pdev);
3079 	}
3080 
3081 	while (v_idx--)
3082 		igc_reset_q_vector(adapter, v_idx);
3083 }
3084 
3085 /**
3086  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3087  * @adapter: Pointer to adapter structure
3088  * @msix: boolean value for MSI-X capability
3089  *
3090  * Attempt to configure interrupts using the best available
3091  * capabilities of the hardware and kernel.
3092  */
3093 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3094 					 bool msix)
3095 {
3096 	int numvecs, i;
3097 	int err;
3098 
3099 	if (!msix)
3100 		goto msi_only;
3101 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3102 
3103 	/* Number of supported queues. */
3104 	adapter->num_rx_queues = adapter->rss_queues;
3105 
3106 	adapter->num_tx_queues = adapter->rss_queues;
3107 
3108 	/* start with one vector for every Rx queue */
3109 	numvecs = adapter->num_rx_queues;
3110 
3111 	/* if Tx handler is separate add 1 for every Tx queue */
3112 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3113 		numvecs += adapter->num_tx_queues;
3114 
3115 	/* store the number of vectors reserved for queues */
3116 	adapter->num_q_vectors = numvecs;
3117 
3118 	/* add 1 vector for link status interrupts */
3119 	numvecs++;
3120 
3121 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3122 					GFP_KERNEL);
3123 
3124 	if (!adapter->msix_entries)
3125 		return;
3126 
3127 	/* populate entry values */
3128 	for (i = 0; i < numvecs; i++)
3129 		adapter->msix_entries[i].entry = i;
3130 
3131 	err = pci_enable_msix_range(adapter->pdev,
3132 				    adapter->msix_entries,
3133 				    numvecs,
3134 				    numvecs);
3135 	if (err > 0)
3136 		return;
3137 
3138 	kfree(adapter->msix_entries);
3139 	adapter->msix_entries = NULL;
3140 
3141 	igc_reset_interrupt_capability(adapter);
3142 
3143 msi_only:
3144 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3145 
3146 	adapter->rss_queues = 1;
3147 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3148 	adapter->num_rx_queues = 1;
3149 	adapter->num_tx_queues = 1;
3150 	adapter->num_q_vectors = 1;
3151 	if (!pci_enable_msi(adapter->pdev))
3152 		adapter->flags |= IGC_FLAG_HAS_MSI;
3153 }
3154 
3155 /**
3156  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3157  * @q_vector: pointer to q_vector
3158  *
3159  * Stores a new ITR value based on strictly on packet size.  This
3160  * algorithm is less sophisticated than that used in igc_update_itr,
3161  * due to the difficulty of synchronizing statistics across multiple
3162  * receive rings.  The divisors and thresholds used by this function
3163  * were determined based on theoretical maximum wire speed and testing
3164  * data, in order to minimize response time while increasing bulk
3165  * throughput.
3166  * NOTE: This function is called only when operating in a multiqueue
3167  * receive environment.
3168  */
3169 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3170 {
3171 	struct igc_adapter *adapter = q_vector->adapter;
3172 	int new_val = q_vector->itr_val;
3173 	int avg_wire_size = 0;
3174 	unsigned int packets;
3175 
3176 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3177 	 * ints/sec - ITR timer value of 120 ticks.
3178 	 */
3179 	switch (adapter->link_speed) {
3180 	case SPEED_10:
3181 	case SPEED_100:
3182 		new_val = IGC_4K_ITR;
3183 		goto set_itr_val;
3184 	default:
3185 		break;
3186 	}
3187 
3188 	packets = q_vector->rx.total_packets;
3189 	if (packets)
3190 		avg_wire_size = q_vector->rx.total_bytes / packets;
3191 
3192 	packets = q_vector->tx.total_packets;
3193 	if (packets)
3194 		avg_wire_size = max_t(u32, avg_wire_size,
3195 				      q_vector->tx.total_bytes / packets);
3196 
3197 	/* if avg_wire_size isn't set no work was done */
3198 	if (!avg_wire_size)
3199 		goto clear_counts;
3200 
3201 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3202 	avg_wire_size += 24;
3203 
3204 	/* Don't starve jumbo frames */
3205 	avg_wire_size = min(avg_wire_size, 3000);
3206 
3207 	/* Give a little boost to mid-size frames */
3208 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3209 		new_val = avg_wire_size / 3;
3210 	else
3211 		new_val = avg_wire_size / 2;
3212 
3213 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3214 	if (new_val < IGC_20K_ITR &&
3215 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3216 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3217 		new_val = IGC_20K_ITR;
3218 
3219 set_itr_val:
3220 	if (new_val != q_vector->itr_val) {
3221 		q_vector->itr_val = new_val;
3222 		q_vector->set_itr = 1;
3223 	}
3224 clear_counts:
3225 	q_vector->rx.total_bytes = 0;
3226 	q_vector->rx.total_packets = 0;
3227 	q_vector->tx.total_bytes = 0;
3228 	q_vector->tx.total_packets = 0;
3229 }
3230 
3231 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3232 {
3233 	struct igc_adapter *adapter = q_vector->adapter;
3234 	struct igc_hw *hw = &adapter->hw;
3235 
3236 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3237 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3238 		if (adapter->num_q_vectors == 1)
3239 			igc_set_itr(q_vector);
3240 		else
3241 			igc_update_ring_itr(q_vector);
3242 	}
3243 
3244 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3245 		if (adapter->msix_entries)
3246 			wr32(IGC_EIMS, q_vector->eims_value);
3247 		else
3248 			igc_irq_enable(adapter);
3249 	}
3250 }
3251 
3252 static void igc_add_ring(struct igc_ring *ring,
3253 			 struct igc_ring_container *head)
3254 {
3255 	head->ring = ring;
3256 	head->count++;
3257 }
3258 
3259 /**
3260  * igc_cache_ring_register - Descriptor ring to register mapping
3261  * @adapter: board private structure to initialize
3262  *
3263  * Once we know the feature-set enabled for the device, we'll cache
3264  * the register offset the descriptor ring is assigned to.
3265  */
3266 static void igc_cache_ring_register(struct igc_adapter *adapter)
3267 {
3268 	int i = 0, j = 0;
3269 
3270 	switch (adapter->hw.mac.type) {
3271 	case igc_i225:
3272 	default:
3273 		for (; i < adapter->num_rx_queues; i++)
3274 			adapter->rx_ring[i]->reg_idx = i;
3275 		for (; j < adapter->num_tx_queues; j++)
3276 			adapter->tx_ring[j]->reg_idx = j;
3277 		break;
3278 	}
3279 }
3280 
3281 /**
3282  * igc_poll - NAPI Rx polling callback
3283  * @napi: napi polling structure
3284  * @budget: count of how many packets we should handle
3285  */
3286 static int igc_poll(struct napi_struct *napi, int budget)
3287 {
3288 	struct igc_q_vector *q_vector = container_of(napi,
3289 						     struct igc_q_vector,
3290 						     napi);
3291 	bool clean_complete = true;
3292 	int work_done = 0;
3293 
3294 	if (q_vector->tx.ring)
3295 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3296 
3297 	if (q_vector->rx.ring) {
3298 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3299 
3300 		work_done += cleaned;
3301 		if (cleaned >= budget)
3302 			clean_complete = false;
3303 	}
3304 
3305 	/* If all work not completed, return budget and keep polling */
3306 	if (!clean_complete)
3307 		return budget;
3308 
3309 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3310 	 * poll us due to busy-polling
3311 	 */
3312 	if (likely(napi_complete_done(napi, work_done)))
3313 		igc_ring_irq_enable(q_vector);
3314 
3315 	return min(work_done, budget - 1);
3316 }
3317 
3318 /**
3319  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3320  * @adapter: board private structure to initialize
3321  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3322  * @v_idx: index of vector in adapter struct
3323  * @txr_count: total number of Tx rings to allocate
3324  * @txr_idx: index of first Tx ring to allocate
3325  * @rxr_count: total number of Rx rings to allocate
3326  * @rxr_idx: index of first Rx ring to allocate
3327  *
3328  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3329  */
3330 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3331 			      unsigned int v_count, unsigned int v_idx,
3332 			      unsigned int txr_count, unsigned int txr_idx,
3333 			      unsigned int rxr_count, unsigned int rxr_idx)
3334 {
3335 	struct igc_q_vector *q_vector;
3336 	struct igc_ring *ring;
3337 	int ring_count;
3338 
3339 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3340 	if (txr_count > 1 || rxr_count > 1)
3341 		return -ENOMEM;
3342 
3343 	ring_count = txr_count + rxr_count;
3344 
3345 	/* allocate q_vector and rings */
3346 	q_vector = adapter->q_vector[v_idx];
3347 	if (!q_vector)
3348 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3349 				   GFP_KERNEL);
3350 	else
3351 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3352 	if (!q_vector)
3353 		return -ENOMEM;
3354 
3355 	/* initialize NAPI */
3356 	netif_napi_add(adapter->netdev, &q_vector->napi,
3357 		       igc_poll, 64);
3358 
3359 	/* tie q_vector and adapter together */
3360 	adapter->q_vector[v_idx] = q_vector;
3361 	q_vector->adapter = adapter;
3362 
3363 	/* initialize work limits */
3364 	q_vector->tx.work_limit = adapter->tx_work_limit;
3365 
3366 	/* initialize ITR configuration */
3367 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3368 	q_vector->itr_val = IGC_START_ITR;
3369 
3370 	/* initialize pointer to rings */
3371 	ring = q_vector->ring;
3372 
3373 	/* initialize ITR */
3374 	if (rxr_count) {
3375 		/* rx or rx/tx vector */
3376 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3377 			q_vector->itr_val = adapter->rx_itr_setting;
3378 	} else {
3379 		/* tx only vector */
3380 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3381 			q_vector->itr_val = adapter->tx_itr_setting;
3382 	}
3383 
3384 	if (txr_count) {
3385 		/* assign generic ring traits */
3386 		ring->dev = &adapter->pdev->dev;
3387 		ring->netdev = adapter->netdev;
3388 
3389 		/* configure backlink on ring */
3390 		ring->q_vector = q_vector;
3391 
3392 		/* update q_vector Tx values */
3393 		igc_add_ring(ring, &q_vector->tx);
3394 
3395 		/* apply Tx specific ring traits */
3396 		ring->count = adapter->tx_ring_count;
3397 		ring->queue_index = txr_idx;
3398 
3399 		/* assign ring to adapter */
3400 		adapter->tx_ring[txr_idx] = ring;
3401 
3402 		/* push pointer to next ring */
3403 		ring++;
3404 	}
3405 
3406 	if (rxr_count) {
3407 		/* assign generic ring traits */
3408 		ring->dev = &adapter->pdev->dev;
3409 		ring->netdev = adapter->netdev;
3410 
3411 		/* configure backlink on ring */
3412 		ring->q_vector = q_vector;
3413 
3414 		/* update q_vector Rx values */
3415 		igc_add_ring(ring, &q_vector->rx);
3416 
3417 		/* apply Rx specific ring traits */
3418 		ring->count = adapter->rx_ring_count;
3419 		ring->queue_index = rxr_idx;
3420 
3421 		/* assign ring to adapter */
3422 		adapter->rx_ring[rxr_idx] = ring;
3423 	}
3424 
3425 	return 0;
3426 }
3427 
3428 /**
3429  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3430  * @adapter: board private structure to initialize
3431  *
3432  * We allocate one q_vector per queue interrupt.  If allocation fails we
3433  * return -ENOMEM.
3434  */
3435 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3436 {
3437 	int rxr_remaining = adapter->num_rx_queues;
3438 	int txr_remaining = adapter->num_tx_queues;
3439 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3440 	int q_vectors = adapter->num_q_vectors;
3441 	int err;
3442 
3443 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3444 		for (; rxr_remaining; v_idx++) {
3445 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3446 						 0, 0, 1, rxr_idx);
3447 
3448 			if (err)
3449 				goto err_out;
3450 
3451 			/* update counts and index */
3452 			rxr_remaining--;
3453 			rxr_idx++;
3454 		}
3455 	}
3456 
3457 	for (; v_idx < q_vectors; v_idx++) {
3458 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3459 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3460 
3461 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3462 					 tqpv, txr_idx, rqpv, rxr_idx);
3463 
3464 		if (err)
3465 			goto err_out;
3466 
3467 		/* update counts and index */
3468 		rxr_remaining -= rqpv;
3469 		txr_remaining -= tqpv;
3470 		rxr_idx++;
3471 		txr_idx++;
3472 	}
3473 
3474 	return 0;
3475 
3476 err_out:
3477 	adapter->num_tx_queues = 0;
3478 	adapter->num_rx_queues = 0;
3479 	adapter->num_q_vectors = 0;
3480 
3481 	while (v_idx--)
3482 		igc_free_q_vector(adapter, v_idx);
3483 
3484 	return -ENOMEM;
3485 }
3486 
3487 /**
3488  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3489  * @adapter: Pointer to adapter structure
3490  * @msix: boolean for MSI-X capability
3491  *
3492  * This function initializes the interrupts and allocates all of the queues.
3493  */
3494 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3495 {
3496 	struct net_device *dev = adapter->netdev;
3497 	int err = 0;
3498 
3499 	igc_set_interrupt_capability(adapter, msix);
3500 
3501 	err = igc_alloc_q_vectors(adapter);
3502 	if (err) {
3503 		netdev_err(dev, "Unable to allocate memory for vectors\n");
3504 		goto err_alloc_q_vectors;
3505 	}
3506 
3507 	igc_cache_ring_register(adapter);
3508 
3509 	return 0;
3510 
3511 err_alloc_q_vectors:
3512 	igc_reset_interrupt_capability(adapter);
3513 	return err;
3514 }
3515 
3516 /**
3517  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3518  * @adapter: board private structure to initialize
3519  *
3520  * igc_sw_init initializes the Adapter private data structure.
3521  * Fields are initialized based on PCI device information and
3522  * OS network device settings (MTU size).
3523  */
3524 static int igc_sw_init(struct igc_adapter *adapter)
3525 {
3526 	struct net_device *netdev = adapter->netdev;
3527 	struct pci_dev *pdev = adapter->pdev;
3528 	struct igc_hw *hw = &adapter->hw;
3529 
3530 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3531 
3532 	/* set default ring sizes */
3533 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
3534 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
3535 
3536 	/* set default ITR values */
3537 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3538 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3539 
3540 	/* set default work limits */
3541 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3542 
3543 	/* adjust max frame to be at least the size of a standard frame */
3544 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3545 				VLAN_HLEN;
3546 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3547 
3548 	mutex_init(&adapter->nfc_rule_lock);
3549 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
3550 	adapter->nfc_rule_count = 0;
3551 
3552 	spin_lock_init(&adapter->stats64_lock);
3553 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3554 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3555 
3556 	igc_init_queue_configuration(adapter);
3557 
3558 	/* This call may decrease the number of queues */
3559 	if (igc_init_interrupt_scheme(adapter, true)) {
3560 		netdev_err(netdev, "Unable to allocate memory for queues\n");
3561 		return -ENOMEM;
3562 	}
3563 
3564 	/* Explicitly disable IRQ since the NIC can be in any state. */
3565 	igc_irq_disable(adapter);
3566 
3567 	set_bit(__IGC_DOWN, &adapter->state);
3568 
3569 	return 0;
3570 }
3571 
3572 /**
3573  * igc_up - Open the interface and prepare it to handle traffic
3574  * @adapter: board private structure
3575  */
3576 void igc_up(struct igc_adapter *adapter)
3577 {
3578 	struct igc_hw *hw = &adapter->hw;
3579 	int i = 0;
3580 
3581 	/* hardware has been reset, we need to reload some things */
3582 	igc_configure(adapter);
3583 
3584 	clear_bit(__IGC_DOWN, &adapter->state);
3585 
3586 	for (i = 0; i < adapter->num_q_vectors; i++)
3587 		napi_enable(&adapter->q_vector[i]->napi);
3588 
3589 	if (adapter->msix_entries)
3590 		igc_configure_msix(adapter);
3591 	else
3592 		igc_assign_vector(adapter->q_vector[0], 0);
3593 
3594 	/* Clear any pending interrupts. */
3595 	rd32(IGC_ICR);
3596 	igc_irq_enable(adapter);
3597 
3598 	netif_tx_start_all_queues(adapter->netdev);
3599 
3600 	/* start the watchdog. */
3601 	hw->mac.get_link_status = 1;
3602 	schedule_work(&adapter->watchdog_task);
3603 }
3604 
3605 /**
3606  * igc_update_stats - Update the board statistics counters
3607  * @adapter: board private structure
3608  */
3609 void igc_update_stats(struct igc_adapter *adapter)
3610 {
3611 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3612 	struct pci_dev *pdev = adapter->pdev;
3613 	struct igc_hw *hw = &adapter->hw;
3614 	u64 _bytes, _packets;
3615 	u64 bytes, packets;
3616 	unsigned int start;
3617 	u32 mpc;
3618 	int i;
3619 
3620 	/* Prevent stats update while adapter is being reset, or if the pci
3621 	 * connection is down.
3622 	 */
3623 	if (adapter->link_speed == 0)
3624 		return;
3625 	if (pci_channel_offline(pdev))
3626 		return;
3627 
3628 	packets = 0;
3629 	bytes = 0;
3630 
3631 	rcu_read_lock();
3632 	for (i = 0; i < adapter->num_rx_queues; i++) {
3633 		struct igc_ring *ring = adapter->rx_ring[i];
3634 		u32 rqdpc = rd32(IGC_RQDPC(i));
3635 
3636 		if (hw->mac.type >= igc_i225)
3637 			wr32(IGC_RQDPC(i), 0);
3638 
3639 		if (rqdpc) {
3640 			ring->rx_stats.drops += rqdpc;
3641 			net_stats->rx_fifo_errors += rqdpc;
3642 		}
3643 
3644 		do {
3645 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3646 			_bytes = ring->rx_stats.bytes;
3647 			_packets = ring->rx_stats.packets;
3648 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3649 		bytes += _bytes;
3650 		packets += _packets;
3651 	}
3652 
3653 	net_stats->rx_bytes = bytes;
3654 	net_stats->rx_packets = packets;
3655 
3656 	packets = 0;
3657 	bytes = 0;
3658 	for (i = 0; i < adapter->num_tx_queues; i++) {
3659 		struct igc_ring *ring = adapter->tx_ring[i];
3660 
3661 		do {
3662 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3663 			_bytes = ring->tx_stats.bytes;
3664 			_packets = ring->tx_stats.packets;
3665 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3666 		bytes += _bytes;
3667 		packets += _packets;
3668 	}
3669 	net_stats->tx_bytes = bytes;
3670 	net_stats->tx_packets = packets;
3671 	rcu_read_unlock();
3672 
3673 	/* read stats registers */
3674 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3675 	adapter->stats.gprc += rd32(IGC_GPRC);
3676 	adapter->stats.gorc += rd32(IGC_GORCL);
3677 	rd32(IGC_GORCH); /* clear GORCL */
3678 	adapter->stats.bprc += rd32(IGC_BPRC);
3679 	adapter->stats.mprc += rd32(IGC_MPRC);
3680 	adapter->stats.roc += rd32(IGC_ROC);
3681 
3682 	adapter->stats.prc64 += rd32(IGC_PRC64);
3683 	adapter->stats.prc127 += rd32(IGC_PRC127);
3684 	adapter->stats.prc255 += rd32(IGC_PRC255);
3685 	adapter->stats.prc511 += rd32(IGC_PRC511);
3686 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
3687 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
3688 
3689 	mpc = rd32(IGC_MPC);
3690 	adapter->stats.mpc += mpc;
3691 	net_stats->rx_fifo_errors += mpc;
3692 	adapter->stats.scc += rd32(IGC_SCC);
3693 	adapter->stats.ecol += rd32(IGC_ECOL);
3694 	adapter->stats.mcc += rd32(IGC_MCC);
3695 	adapter->stats.latecol += rd32(IGC_LATECOL);
3696 	adapter->stats.dc += rd32(IGC_DC);
3697 	adapter->stats.rlec += rd32(IGC_RLEC);
3698 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
3699 	adapter->stats.xontxc += rd32(IGC_XONTXC);
3700 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3701 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3702 	adapter->stats.fcruc += rd32(IGC_FCRUC);
3703 	adapter->stats.gptc += rd32(IGC_GPTC);
3704 	adapter->stats.gotc += rd32(IGC_GOTCL);
3705 	rd32(IGC_GOTCH); /* clear GOTCL */
3706 	adapter->stats.rnbc += rd32(IGC_RNBC);
3707 	adapter->stats.ruc += rd32(IGC_RUC);
3708 	adapter->stats.rfc += rd32(IGC_RFC);
3709 	adapter->stats.rjc += rd32(IGC_RJC);
3710 	adapter->stats.tor += rd32(IGC_TORH);
3711 	adapter->stats.tot += rd32(IGC_TOTH);
3712 	adapter->stats.tpr += rd32(IGC_TPR);
3713 
3714 	adapter->stats.ptc64 += rd32(IGC_PTC64);
3715 	adapter->stats.ptc127 += rd32(IGC_PTC127);
3716 	adapter->stats.ptc255 += rd32(IGC_PTC255);
3717 	adapter->stats.ptc511 += rd32(IGC_PTC511);
3718 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3719 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3720 
3721 	adapter->stats.mptc += rd32(IGC_MPTC);
3722 	adapter->stats.bptc += rd32(IGC_BPTC);
3723 
3724 	adapter->stats.tpt += rd32(IGC_TPT);
3725 	adapter->stats.colc += rd32(IGC_COLC);
3726 	adapter->stats.colc += rd32(IGC_RERC);
3727 
3728 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3729 
3730 	adapter->stats.tsctc += rd32(IGC_TSCTC);
3731 
3732 	adapter->stats.iac += rd32(IGC_IAC);
3733 
3734 	/* Fill out the OS statistics structure */
3735 	net_stats->multicast = adapter->stats.mprc;
3736 	net_stats->collisions = adapter->stats.colc;
3737 
3738 	/* Rx Errors */
3739 
3740 	/* RLEC on some newer hardware can be incorrect so build
3741 	 * our own version based on RUC and ROC
3742 	 */
3743 	net_stats->rx_errors = adapter->stats.rxerrc +
3744 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3745 		adapter->stats.ruc + adapter->stats.roc +
3746 		adapter->stats.cexterr;
3747 	net_stats->rx_length_errors = adapter->stats.ruc +
3748 				      adapter->stats.roc;
3749 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
3750 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
3751 	net_stats->rx_missed_errors = adapter->stats.mpc;
3752 
3753 	/* Tx Errors */
3754 	net_stats->tx_errors = adapter->stats.ecol +
3755 			       adapter->stats.latecol;
3756 	net_stats->tx_aborted_errors = adapter->stats.ecol;
3757 	net_stats->tx_window_errors = adapter->stats.latecol;
3758 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
3759 
3760 	/* Tx Dropped needs to be maintained elsewhere */
3761 
3762 	/* Management Stats */
3763 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
3764 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
3765 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3766 }
3767 
3768 /**
3769  * igc_down - Close the interface
3770  * @adapter: board private structure
3771  */
3772 void igc_down(struct igc_adapter *adapter)
3773 {
3774 	struct net_device *netdev = adapter->netdev;
3775 	struct igc_hw *hw = &adapter->hw;
3776 	u32 tctl, rctl;
3777 	int i = 0;
3778 
3779 	set_bit(__IGC_DOWN, &adapter->state);
3780 
3781 	/* disable receives in the hardware */
3782 	rctl = rd32(IGC_RCTL);
3783 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3784 	/* flush and sleep below */
3785 
3786 	/* set trans_start so we don't get spurious watchdogs during reset */
3787 	netif_trans_update(netdev);
3788 
3789 	netif_carrier_off(netdev);
3790 	netif_tx_stop_all_queues(netdev);
3791 
3792 	/* disable transmits in the hardware */
3793 	tctl = rd32(IGC_TCTL);
3794 	tctl &= ~IGC_TCTL_EN;
3795 	wr32(IGC_TCTL, tctl);
3796 	/* flush both disables and wait for them to finish */
3797 	wrfl();
3798 	usleep_range(10000, 20000);
3799 
3800 	igc_irq_disable(adapter);
3801 
3802 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3803 
3804 	for (i = 0; i < adapter->num_q_vectors; i++) {
3805 		if (adapter->q_vector[i]) {
3806 			napi_synchronize(&adapter->q_vector[i]->napi);
3807 			napi_disable(&adapter->q_vector[i]->napi);
3808 		}
3809 	}
3810 
3811 	del_timer_sync(&adapter->watchdog_timer);
3812 	del_timer_sync(&adapter->phy_info_timer);
3813 
3814 	/* record the stats before reset*/
3815 	spin_lock(&adapter->stats64_lock);
3816 	igc_update_stats(adapter);
3817 	spin_unlock(&adapter->stats64_lock);
3818 
3819 	adapter->link_speed = 0;
3820 	adapter->link_duplex = 0;
3821 
3822 	if (!pci_channel_offline(adapter->pdev))
3823 		igc_reset(adapter);
3824 
3825 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
3826 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3827 
3828 	igc_clean_all_tx_rings(adapter);
3829 	igc_clean_all_rx_rings(adapter);
3830 }
3831 
3832 void igc_reinit_locked(struct igc_adapter *adapter)
3833 {
3834 	WARN_ON(in_interrupt());
3835 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3836 		usleep_range(1000, 2000);
3837 	igc_down(adapter);
3838 	igc_up(adapter);
3839 	clear_bit(__IGC_RESETTING, &adapter->state);
3840 }
3841 
3842 static void igc_reset_task(struct work_struct *work)
3843 {
3844 	struct igc_adapter *adapter;
3845 
3846 	adapter = container_of(work, struct igc_adapter, reset_task);
3847 
3848 	igc_rings_dump(adapter);
3849 	igc_regs_dump(adapter);
3850 	netdev_err(adapter->netdev, "Reset adapter\n");
3851 	igc_reinit_locked(adapter);
3852 }
3853 
3854 /**
3855  * igc_change_mtu - Change the Maximum Transfer Unit
3856  * @netdev: network interface device structure
3857  * @new_mtu: new value for maximum frame size
3858  *
3859  * Returns 0 on success, negative on failure
3860  */
3861 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3862 {
3863 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3864 	struct igc_adapter *adapter = netdev_priv(netdev);
3865 
3866 	/* adjust max frame to be at least the size of a standard frame */
3867 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3868 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3869 
3870 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3871 		usleep_range(1000, 2000);
3872 
3873 	/* igc_down has a dependency on max_frame_size */
3874 	adapter->max_frame_size = max_frame;
3875 
3876 	if (netif_running(netdev))
3877 		igc_down(adapter);
3878 
3879 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3880 	netdev->mtu = new_mtu;
3881 
3882 	if (netif_running(netdev))
3883 		igc_up(adapter);
3884 	else
3885 		igc_reset(adapter);
3886 
3887 	clear_bit(__IGC_RESETTING, &adapter->state);
3888 
3889 	return 0;
3890 }
3891 
3892 /**
3893  * igc_get_stats - Get System Network Statistics
3894  * @netdev: network interface device structure
3895  *
3896  * Returns the address of the device statistics structure.
3897  * The statistics are updated here and also from the timer callback.
3898  */
3899 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
3900 {
3901 	struct igc_adapter *adapter = netdev_priv(netdev);
3902 
3903 	if (!test_bit(__IGC_RESETTING, &adapter->state))
3904 		igc_update_stats(adapter);
3905 
3906 	/* only return the current stats */
3907 	return &netdev->stats;
3908 }
3909 
3910 static netdev_features_t igc_fix_features(struct net_device *netdev,
3911 					  netdev_features_t features)
3912 {
3913 	/* Since there is no support for separate Rx/Tx vlan accel
3914 	 * enable/disable make sure Tx flag is always in same state as Rx.
3915 	 */
3916 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
3917 		features |= NETIF_F_HW_VLAN_CTAG_TX;
3918 	else
3919 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3920 
3921 	return features;
3922 }
3923 
3924 static int igc_set_features(struct net_device *netdev,
3925 			    netdev_features_t features)
3926 {
3927 	netdev_features_t changed = netdev->features ^ features;
3928 	struct igc_adapter *adapter = netdev_priv(netdev);
3929 
3930 	/* Add VLAN support */
3931 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3932 		return 0;
3933 
3934 	if (!(features & NETIF_F_NTUPLE))
3935 		igc_flush_nfc_rules(adapter);
3936 
3937 	netdev->features = features;
3938 
3939 	if (netif_running(netdev))
3940 		igc_reinit_locked(adapter);
3941 	else
3942 		igc_reset(adapter);
3943 
3944 	return 1;
3945 }
3946 
3947 static netdev_features_t
3948 igc_features_check(struct sk_buff *skb, struct net_device *dev,
3949 		   netdev_features_t features)
3950 {
3951 	unsigned int network_hdr_len, mac_hdr_len;
3952 
3953 	/* Make certain the headers can be described by a context descriptor */
3954 	mac_hdr_len = skb_network_header(skb) - skb->data;
3955 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3956 		return features & ~(NETIF_F_HW_CSUM |
3957 				    NETIF_F_SCTP_CRC |
3958 				    NETIF_F_HW_VLAN_CTAG_TX |
3959 				    NETIF_F_TSO |
3960 				    NETIF_F_TSO6);
3961 
3962 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3963 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
3964 		return features & ~(NETIF_F_HW_CSUM |
3965 				    NETIF_F_SCTP_CRC |
3966 				    NETIF_F_TSO |
3967 				    NETIF_F_TSO6);
3968 
3969 	/* We can only support IPv4 TSO in tunnels if we can mangle the
3970 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3971 	 */
3972 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3973 		features &= ~NETIF_F_TSO;
3974 
3975 	return features;
3976 }
3977 
3978 static void igc_tsync_interrupt(struct igc_adapter *adapter)
3979 {
3980 	struct igc_hw *hw = &adapter->hw;
3981 	u32 tsicr = rd32(IGC_TSICR);
3982 	u32 ack = 0;
3983 
3984 	if (tsicr & IGC_TSICR_TXTS) {
3985 		/* retrieve hardware timestamp */
3986 		schedule_work(&adapter->ptp_tx_work);
3987 		ack |= IGC_TSICR_TXTS;
3988 	}
3989 
3990 	/* acknowledge the interrupts */
3991 	wr32(IGC_TSICR, ack);
3992 }
3993 
3994 /**
3995  * igc_msix_other - msix other interrupt handler
3996  * @irq: interrupt number
3997  * @data: pointer to a q_vector
3998  */
3999 static irqreturn_t igc_msix_other(int irq, void *data)
4000 {
4001 	struct igc_adapter *adapter = data;
4002 	struct igc_hw *hw = &adapter->hw;
4003 	u32 icr = rd32(IGC_ICR);
4004 
4005 	/* reading ICR causes bit 31 of EICR to be cleared */
4006 	if (icr & IGC_ICR_DRSTA)
4007 		schedule_work(&adapter->reset_task);
4008 
4009 	if (icr & IGC_ICR_DOUTSYNC) {
4010 		/* HW is reporting DMA is out of sync */
4011 		adapter->stats.doosync++;
4012 	}
4013 
4014 	if (icr & IGC_ICR_LSC) {
4015 		hw->mac.get_link_status = 1;
4016 		/* guard against interrupt when we're going down */
4017 		if (!test_bit(__IGC_DOWN, &adapter->state))
4018 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4019 	}
4020 
4021 	if (icr & IGC_ICR_TS)
4022 		igc_tsync_interrupt(adapter);
4023 
4024 	wr32(IGC_EIMS, adapter->eims_other);
4025 
4026 	return IRQ_HANDLED;
4027 }
4028 
4029 static void igc_write_itr(struct igc_q_vector *q_vector)
4030 {
4031 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4032 
4033 	if (!q_vector->set_itr)
4034 		return;
4035 
4036 	if (!itr_val)
4037 		itr_val = IGC_ITR_VAL_MASK;
4038 
4039 	itr_val |= IGC_EITR_CNT_IGNR;
4040 
4041 	writel(itr_val, q_vector->itr_register);
4042 	q_vector->set_itr = 0;
4043 }
4044 
4045 static irqreturn_t igc_msix_ring(int irq, void *data)
4046 {
4047 	struct igc_q_vector *q_vector = data;
4048 
4049 	/* Write the ITR value calculated from the previous interrupt. */
4050 	igc_write_itr(q_vector);
4051 
4052 	napi_schedule(&q_vector->napi);
4053 
4054 	return IRQ_HANDLED;
4055 }
4056 
4057 /**
4058  * igc_request_msix - Initialize MSI-X interrupts
4059  * @adapter: Pointer to adapter structure
4060  *
4061  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4062  * kernel.
4063  */
4064 static int igc_request_msix(struct igc_adapter *adapter)
4065 {
4066 	int i = 0, err = 0, vector = 0, free_vector = 0;
4067 	struct net_device *netdev = adapter->netdev;
4068 
4069 	err = request_irq(adapter->msix_entries[vector].vector,
4070 			  &igc_msix_other, 0, netdev->name, adapter);
4071 	if (err)
4072 		goto err_out;
4073 
4074 	for (i = 0; i < adapter->num_q_vectors; i++) {
4075 		struct igc_q_vector *q_vector = adapter->q_vector[i];
4076 
4077 		vector++;
4078 
4079 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4080 
4081 		if (q_vector->rx.ring && q_vector->tx.ring)
4082 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4083 				q_vector->rx.ring->queue_index);
4084 		else if (q_vector->tx.ring)
4085 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4086 				q_vector->tx.ring->queue_index);
4087 		else if (q_vector->rx.ring)
4088 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4089 				q_vector->rx.ring->queue_index);
4090 		else
4091 			sprintf(q_vector->name, "%s-unused", netdev->name);
4092 
4093 		err = request_irq(adapter->msix_entries[vector].vector,
4094 				  igc_msix_ring, 0, q_vector->name,
4095 				  q_vector);
4096 		if (err)
4097 			goto err_free;
4098 	}
4099 
4100 	igc_configure_msix(adapter);
4101 	return 0;
4102 
4103 err_free:
4104 	/* free already assigned IRQs */
4105 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4106 
4107 	vector--;
4108 	for (i = 0; i < vector; i++) {
4109 		free_irq(adapter->msix_entries[free_vector++].vector,
4110 			 adapter->q_vector[i]);
4111 	}
4112 err_out:
4113 	return err;
4114 }
4115 
4116 /**
4117  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4118  * @adapter: Pointer to adapter structure
4119  *
4120  * This function resets the device so that it has 0 rx queues, tx queues, and
4121  * MSI-X interrupts allocated.
4122  */
4123 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4124 {
4125 	igc_free_q_vectors(adapter);
4126 	igc_reset_interrupt_capability(adapter);
4127 }
4128 
4129 /* Need to wait a few seconds after link up to get diagnostic information from
4130  * the phy
4131  */
4132 static void igc_update_phy_info(struct timer_list *t)
4133 {
4134 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4135 
4136 	igc_get_phy_info(&adapter->hw);
4137 }
4138 
4139 /**
4140  * igc_has_link - check shared code for link and determine up/down
4141  * @adapter: pointer to driver private info
4142  */
4143 bool igc_has_link(struct igc_adapter *adapter)
4144 {
4145 	struct igc_hw *hw = &adapter->hw;
4146 	bool link_active = false;
4147 
4148 	/* get_link_status is set on LSC (link status) interrupt or
4149 	 * rx sequence error interrupt.  get_link_status will stay
4150 	 * false until the igc_check_for_link establishes link
4151 	 * for copper adapters ONLY
4152 	 */
4153 	switch (hw->phy.media_type) {
4154 	case igc_media_type_copper:
4155 		if (!hw->mac.get_link_status)
4156 			return true;
4157 		hw->mac.ops.check_for_link(hw);
4158 		link_active = !hw->mac.get_link_status;
4159 		break;
4160 	default:
4161 	case igc_media_type_unknown:
4162 		break;
4163 	}
4164 
4165 	if (hw->mac.type == igc_i225 &&
4166 	    hw->phy.id == I225_I_PHY_ID) {
4167 		if (!netif_carrier_ok(adapter->netdev)) {
4168 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4169 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4170 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4171 			adapter->link_check_timeout = jiffies;
4172 		}
4173 	}
4174 
4175 	return link_active;
4176 }
4177 
4178 /**
4179  * igc_watchdog - Timer Call-back
4180  * @t: timer for the watchdog
4181  */
4182 static void igc_watchdog(struct timer_list *t)
4183 {
4184 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4185 	/* Do the rest outside of interrupt context */
4186 	schedule_work(&adapter->watchdog_task);
4187 }
4188 
4189 static void igc_watchdog_task(struct work_struct *work)
4190 {
4191 	struct igc_adapter *adapter = container_of(work,
4192 						   struct igc_adapter,
4193 						   watchdog_task);
4194 	struct net_device *netdev = adapter->netdev;
4195 	struct igc_hw *hw = &adapter->hw;
4196 	struct igc_phy_info *phy = &hw->phy;
4197 	u16 phy_data, retry_count = 20;
4198 	u32 link;
4199 	int i;
4200 
4201 	link = igc_has_link(adapter);
4202 
4203 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4204 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4205 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4206 		else
4207 			link = false;
4208 	}
4209 
4210 	if (link) {
4211 		/* Cancel scheduled suspend requests. */
4212 		pm_runtime_resume(netdev->dev.parent);
4213 
4214 		if (!netif_carrier_ok(netdev)) {
4215 			u32 ctrl;
4216 
4217 			hw->mac.ops.get_speed_and_duplex(hw,
4218 							 &adapter->link_speed,
4219 							 &adapter->link_duplex);
4220 
4221 			ctrl = rd32(IGC_CTRL);
4222 			/* Link status message must follow this format */
4223 			netdev_info(netdev,
4224 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4225 				    adapter->link_speed,
4226 				    adapter->link_duplex == FULL_DUPLEX ?
4227 				    "Full" : "Half",
4228 				    (ctrl & IGC_CTRL_TFCE) &&
4229 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4230 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4231 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4232 
4233 			/* disable EEE if enabled */
4234 			if ((adapter->flags & IGC_FLAG_EEE) &&
4235 			    adapter->link_duplex == HALF_DUPLEX) {
4236 				netdev_info(netdev,
4237 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4238 				adapter->hw.dev_spec._base.eee_enable = false;
4239 				adapter->flags &= ~IGC_FLAG_EEE;
4240 			}
4241 
4242 			/* check if SmartSpeed worked */
4243 			igc_check_downshift(hw);
4244 			if (phy->speed_downgraded)
4245 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4246 
4247 			/* adjust timeout factor according to speed/duplex */
4248 			adapter->tx_timeout_factor = 1;
4249 			switch (adapter->link_speed) {
4250 			case SPEED_10:
4251 				adapter->tx_timeout_factor = 14;
4252 				break;
4253 			case SPEED_100:
4254 				/* maybe add some timeout factor ? */
4255 				break;
4256 			}
4257 
4258 			if (adapter->link_speed != SPEED_1000)
4259 				goto no_wait;
4260 
4261 			/* wait for Remote receiver status OK */
4262 retry_read_status:
4263 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4264 					      &phy_data)) {
4265 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4266 				    retry_count) {
4267 					msleep(100);
4268 					retry_count--;
4269 					goto retry_read_status;
4270 				} else if (!retry_count) {
4271 					netdev_err(netdev, "exceed max 2 second\n");
4272 				}
4273 			} else {
4274 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
4275 			}
4276 no_wait:
4277 			netif_carrier_on(netdev);
4278 
4279 			/* link state has changed, schedule phy info update */
4280 			if (!test_bit(__IGC_DOWN, &adapter->state))
4281 				mod_timer(&adapter->phy_info_timer,
4282 					  round_jiffies(jiffies + 2 * HZ));
4283 		}
4284 	} else {
4285 		if (netif_carrier_ok(netdev)) {
4286 			adapter->link_speed = 0;
4287 			adapter->link_duplex = 0;
4288 
4289 			/* Links status message must follow this format */
4290 			netdev_info(netdev, "NIC Link is Down\n");
4291 			netif_carrier_off(netdev);
4292 
4293 			/* link state has changed, schedule phy info update */
4294 			if (!test_bit(__IGC_DOWN, &adapter->state))
4295 				mod_timer(&adapter->phy_info_timer,
4296 					  round_jiffies(jiffies + 2 * HZ));
4297 
4298 			/* link is down, time to check for alternate media */
4299 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4300 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4301 					schedule_work(&adapter->reset_task);
4302 					/* return immediately */
4303 					return;
4304 				}
4305 			}
4306 			pm_schedule_suspend(netdev->dev.parent,
4307 					    MSEC_PER_SEC * 5);
4308 
4309 		/* also check for alternate media here */
4310 		} else if (!netif_carrier_ok(netdev) &&
4311 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4312 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4313 				schedule_work(&adapter->reset_task);
4314 				/* return immediately */
4315 				return;
4316 			}
4317 		}
4318 	}
4319 
4320 	spin_lock(&adapter->stats64_lock);
4321 	igc_update_stats(adapter);
4322 	spin_unlock(&adapter->stats64_lock);
4323 
4324 	for (i = 0; i < adapter->num_tx_queues; i++) {
4325 		struct igc_ring *tx_ring = adapter->tx_ring[i];
4326 
4327 		if (!netif_carrier_ok(netdev)) {
4328 			/* We've lost link, so the controller stops DMA,
4329 			 * but we've got queued Tx work that's never going
4330 			 * to get done, so reset controller to flush Tx.
4331 			 * (Do the reset outside of interrupt context).
4332 			 */
4333 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4334 				adapter->tx_timeout_count++;
4335 				schedule_work(&adapter->reset_task);
4336 				/* return immediately since reset is imminent */
4337 				return;
4338 			}
4339 		}
4340 
4341 		/* Force detection of hung controller every watchdog period */
4342 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4343 	}
4344 
4345 	/* Cause software interrupt to ensure Rx ring is cleaned */
4346 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4347 		u32 eics = 0;
4348 
4349 		for (i = 0; i < adapter->num_q_vectors; i++)
4350 			eics |= adapter->q_vector[i]->eims_value;
4351 		wr32(IGC_EICS, eics);
4352 	} else {
4353 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
4354 	}
4355 
4356 	igc_ptp_tx_hang(adapter);
4357 
4358 	/* Reset the timer */
4359 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4360 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4361 			mod_timer(&adapter->watchdog_timer,
4362 				  round_jiffies(jiffies +  HZ));
4363 		else
4364 			mod_timer(&adapter->watchdog_timer,
4365 				  round_jiffies(jiffies + 2 * HZ));
4366 	}
4367 }
4368 
4369 /**
4370  * igc_intr_msi - Interrupt Handler
4371  * @irq: interrupt number
4372  * @data: pointer to a network interface device structure
4373  */
4374 static irqreturn_t igc_intr_msi(int irq, void *data)
4375 {
4376 	struct igc_adapter *adapter = data;
4377 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4378 	struct igc_hw *hw = &adapter->hw;
4379 	/* read ICR disables interrupts using IAM */
4380 	u32 icr = rd32(IGC_ICR);
4381 
4382 	igc_write_itr(q_vector);
4383 
4384 	if (icr & IGC_ICR_DRSTA)
4385 		schedule_work(&adapter->reset_task);
4386 
4387 	if (icr & IGC_ICR_DOUTSYNC) {
4388 		/* HW is reporting DMA is out of sync */
4389 		adapter->stats.doosync++;
4390 	}
4391 
4392 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4393 		hw->mac.get_link_status = 1;
4394 		if (!test_bit(__IGC_DOWN, &adapter->state))
4395 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4396 	}
4397 
4398 	napi_schedule(&q_vector->napi);
4399 
4400 	return IRQ_HANDLED;
4401 }
4402 
4403 /**
4404  * igc_intr - Legacy Interrupt Handler
4405  * @irq: interrupt number
4406  * @data: pointer to a network interface device structure
4407  */
4408 static irqreturn_t igc_intr(int irq, void *data)
4409 {
4410 	struct igc_adapter *adapter = data;
4411 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4412 	struct igc_hw *hw = &adapter->hw;
4413 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4414 	 * need for the IMC write
4415 	 */
4416 	u32 icr = rd32(IGC_ICR);
4417 
4418 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4419 	 * not set, then the adapter didn't send an interrupt
4420 	 */
4421 	if (!(icr & IGC_ICR_INT_ASSERTED))
4422 		return IRQ_NONE;
4423 
4424 	igc_write_itr(q_vector);
4425 
4426 	if (icr & IGC_ICR_DRSTA)
4427 		schedule_work(&adapter->reset_task);
4428 
4429 	if (icr & IGC_ICR_DOUTSYNC) {
4430 		/* HW is reporting DMA is out of sync */
4431 		adapter->stats.doosync++;
4432 	}
4433 
4434 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4435 		hw->mac.get_link_status = 1;
4436 		/* guard against interrupt when we're going down */
4437 		if (!test_bit(__IGC_DOWN, &adapter->state))
4438 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4439 	}
4440 
4441 	napi_schedule(&q_vector->napi);
4442 
4443 	return IRQ_HANDLED;
4444 }
4445 
4446 static void igc_free_irq(struct igc_adapter *adapter)
4447 {
4448 	if (adapter->msix_entries) {
4449 		int vector = 0, i;
4450 
4451 		free_irq(adapter->msix_entries[vector++].vector, adapter);
4452 
4453 		for (i = 0; i < adapter->num_q_vectors; i++)
4454 			free_irq(adapter->msix_entries[vector++].vector,
4455 				 adapter->q_vector[i]);
4456 	} else {
4457 		free_irq(adapter->pdev->irq, adapter);
4458 	}
4459 }
4460 
4461 /**
4462  * igc_request_irq - initialize interrupts
4463  * @adapter: Pointer to adapter structure
4464  *
4465  * Attempts to configure interrupts using the best available
4466  * capabilities of the hardware and kernel.
4467  */
4468 static int igc_request_irq(struct igc_adapter *adapter)
4469 {
4470 	struct net_device *netdev = adapter->netdev;
4471 	struct pci_dev *pdev = adapter->pdev;
4472 	int err = 0;
4473 
4474 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4475 		err = igc_request_msix(adapter);
4476 		if (!err)
4477 			goto request_done;
4478 		/* fall back to MSI */
4479 		igc_free_all_tx_resources(adapter);
4480 		igc_free_all_rx_resources(adapter);
4481 
4482 		igc_clear_interrupt_scheme(adapter);
4483 		err = igc_init_interrupt_scheme(adapter, false);
4484 		if (err)
4485 			goto request_done;
4486 		igc_setup_all_tx_resources(adapter);
4487 		igc_setup_all_rx_resources(adapter);
4488 		igc_configure(adapter);
4489 	}
4490 
4491 	igc_assign_vector(adapter->q_vector[0], 0);
4492 
4493 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
4494 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
4495 				  netdev->name, adapter);
4496 		if (!err)
4497 			goto request_done;
4498 
4499 		/* fall back to legacy interrupts */
4500 		igc_reset_interrupt_capability(adapter);
4501 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
4502 	}
4503 
4504 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4505 			  netdev->name, adapter);
4506 
4507 	if (err)
4508 		netdev_err(netdev, "Error %d getting interrupt\n", err);
4509 
4510 request_done:
4511 	return err;
4512 }
4513 
4514 /**
4515  * __igc_open - Called when a network interface is made active
4516  * @netdev: network interface device structure
4517  * @resuming: boolean indicating if the device is resuming
4518  *
4519  * Returns 0 on success, negative value on failure
4520  *
4521  * The open entry point is called when a network interface is made
4522  * active by the system (IFF_UP).  At this point all resources needed
4523  * for transmit and receive operations are allocated, the interrupt
4524  * handler is registered with the OS, the watchdog timer is started,
4525  * and the stack is notified that the interface is ready.
4526  */
4527 static int __igc_open(struct net_device *netdev, bool resuming)
4528 {
4529 	struct igc_adapter *adapter = netdev_priv(netdev);
4530 	struct pci_dev *pdev = adapter->pdev;
4531 	struct igc_hw *hw = &adapter->hw;
4532 	int err = 0;
4533 	int i = 0;
4534 
4535 	/* disallow open during test */
4536 
4537 	if (test_bit(__IGC_TESTING, &adapter->state)) {
4538 		WARN_ON(resuming);
4539 		return -EBUSY;
4540 	}
4541 
4542 	if (!resuming)
4543 		pm_runtime_get_sync(&pdev->dev);
4544 
4545 	netif_carrier_off(netdev);
4546 
4547 	/* allocate transmit descriptors */
4548 	err = igc_setup_all_tx_resources(adapter);
4549 	if (err)
4550 		goto err_setup_tx;
4551 
4552 	/* allocate receive descriptors */
4553 	err = igc_setup_all_rx_resources(adapter);
4554 	if (err)
4555 		goto err_setup_rx;
4556 
4557 	igc_power_up_link(adapter);
4558 
4559 	igc_configure(adapter);
4560 
4561 	err = igc_request_irq(adapter);
4562 	if (err)
4563 		goto err_req_irq;
4564 
4565 	/* Notify the stack of the actual queue counts. */
4566 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4567 	if (err)
4568 		goto err_set_queues;
4569 
4570 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4571 	if (err)
4572 		goto err_set_queues;
4573 
4574 	clear_bit(__IGC_DOWN, &adapter->state);
4575 
4576 	for (i = 0; i < adapter->num_q_vectors; i++)
4577 		napi_enable(&adapter->q_vector[i]->napi);
4578 
4579 	/* Clear any pending interrupts. */
4580 	rd32(IGC_ICR);
4581 	igc_irq_enable(adapter);
4582 
4583 	if (!resuming)
4584 		pm_runtime_put(&pdev->dev);
4585 
4586 	netif_tx_start_all_queues(netdev);
4587 
4588 	/* start the watchdog. */
4589 	hw->mac.get_link_status = 1;
4590 	schedule_work(&adapter->watchdog_task);
4591 
4592 	return IGC_SUCCESS;
4593 
4594 err_set_queues:
4595 	igc_free_irq(adapter);
4596 err_req_irq:
4597 	igc_release_hw_control(adapter);
4598 	igc_power_down_phy_copper_base(&adapter->hw);
4599 	igc_free_all_rx_resources(adapter);
4600 err_setup_rx:
4601 	igc_free_all_tx_resources(adapter);
4602 err_setup_tx:
4603 	igc_reset(adapter);
4604 	if (!resuming)
4605 		pm_runtime_put(&pdev->dev);
4606 
4607 	return err;
4608 }
4609 
4610 int igc_open(struct net_device *netdev)
4611 {
4612 	return __igc_open(netdev, false);
4613 }
4614 
4615 /**
4616  * __igc_close - Disables a network interface
4617  * @netdev: network interface device structure
4618  * @suspending: boolean indicating the device is suspending
4619  *
4620  * Returns 0, this is not allowed to fail
4621  *
4622  * The close entry point is called when an interface is de-activated
4623  * by the OS.  The hardware is still under the driver's control, but
4624  * needs to be disabled.  A global MAC reset is issued to stop the
4625  * hardware, and all transmit and receive resources are freed.
4626  */
4627 static int __igc_close(struct net_device *netdev, bool suspending)
4628 {
4629 	struct igc_adapter *adapter = netdev_priv(netdev);
4630 	struct pci_dev *pdev = adapter->pdev;
4631 
4632 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4633 
4634 	if (!suspending)
4635 		pm_runtime_get_sync(&pdev->dev);
4636 
4637 	igc_down(adapter);
4638 
4639 	igc_release_hw_control(adapter);
4640 
4641 	igc_free_irq(adapter);
4642 
4643 	igc_free_all_tx_resources(adapter);
4644 	igc_free_all_rx_resources(adapter);
4645 
4646 	if (!suspending)
4647 		pm_runtime_put_sync(&pdev->dev);
4648 
4649 	return 0;
4650 }
4651 
4652 int igc_close(struct net_device *netdev)
4653 {
4654 	if (netif_device_present(netdev) || netdev->dismantle)
4655 		return __igc_close(netdev, false);
4656 	return 0;
4657 }
4658 
4659 /**
4660  * igc_ioctl - Access the hwtstamp interface
4661  * @netdev: network interface device structure
4662  * @ifreq: interface request data
4663  * @cmd: ioctl command
4664  **/
4665 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4666 {
4667 	switch (cmd) {
4668 	case SIOCGHWTSTAMP:
4669 		return igc_ptp_get_ts_config(netdev, ifr);
4670 	case SIOCSHWTSTAMP:
4671 		return igc_ptp_set_ts_config(netdev, ifr);
4672 	default:
4673 		return -EOPNOTSUPP;
4674 	}
4675 }
4676 
4677 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4678 				      bool enable)
4679 {
4680 	struct igc_ring *ring;
4681 	int i;
4682 
4683 	if (queue < 0 || queue >= adapter->num_tx_queues)
4684 		return -EINVAL;
4685 
4686 	ring = adapter->tx_ring[queue];
4687 	ring->launchtime_enable = enable;
4688 
4689 	if (adapter->base_time)
4690 		return 0;
4691 
4692 	adapter->cycle_time = NSEC_PER_SEC;
4693 
4694 	for (i = 0; i < adapter->num_tx_queues; i++) {
4695 		ring = adapter->tx_ring[i];
4696 		ring->start_time = 0;
4697 		ring->end_time = NSEC_PER_SEC;
4698 	}
4699 
4700 	return 0;
4701 }
4702 
4703 static bool validate_schedule(const struct tc_taprio_qopt_offload *qopt)
4704 {
4705 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
4706 	size_t n;
4707 
4708 	if (qopt->cycle_time_extension)
4709 		return false;
4710 
4711 	for (n = 0; n < qopt->num_entries; n++) {
4712 		const struct tc_taprio_sched_entry *e;
4713 		int i;
4714 
4715 		e = &qopt->entries[n];
4716 
4717 		/* i225 only supports "global" frame preemption
4718 		 * settings.
4719 		 */
4720 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
4721 			return false;
4722 
4723 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4724 			if (e->gate_mask & BIT(i))
4725 				queue_uses[i]++;
4726 
4727 			if (queue_uses[i] > 1)
4728 				return false;
4729 		}
4730 	}
4731 
4732 	return true;
4733 }
4734 
4735 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4736 				     struct tc_etf_qopt_offload *qopt)
4737 {
4738 	struct igc_hw *hw = &adapter->hw;
4739 	int err;
4740 
4741 	if (hw->mac.type != igc_i225)
4742 		return -EOPNOTSUPP;
4743 
4744 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4745 	if (err)
4746 		return err;
4747 
4748 	return igc_tsn_offload_apply(adapter);
4749 }
4750 
4751 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4752 				 struct tc_taprio_qopt_offload *qopt)
4753 {
4754 	u32 start_time = 0, end_time = 0;
4755 	size_t n;
4756 
4757 	if (!qopt->enable) {
4758 		adapter->base_time = 0;
4759 		return 0;
4760 	}
4761 
4762 	if (adapter->base_time)
4763 		return -EALREADY;
4764 
4765 	if (!validate_schedule(qopt))
4766 		return -EINVAL;
4767 
4768 	adapter->cycle_time = qopt->cycle_time;
4769 	adapter->base_time = qopt->base_time;
4770 
4771 	/* FIXME: be a little smarter about cases when the gate for a
4772 	 * queue stays open for more than one entry.
4773 	 */
4774 	for (n = 0; n < qopt->num_entries; n++) {
4775 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
4776 		int i;
4777 
4778 		end_time += e->interval;
4779 
4780 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4781 			struct igc_ring *ring = adapter->tx_ring[i];
4782 
4783 			if (!(e->gate_mask & BIT(i)))
4784 				continue;
4785 
4786 			ring->start_time = start_time;
4787 			ring->end_time = end_time;
4788 		}
4789 
4790 		start_time += e->interval;
4791 	}
4792 
4793 	return 0;
4794 }
4795 
4796 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4797 					 struct tc_taprio_qopt_offload *qopt)
4798 {
4799 	struct igc_hw *hw = &adapter->hw;
4800 	int err;
4801 
4802 	if (hw->mac.type != igc_i225)
4803 		return -EOPNOTSUPP;
4804 
4805 	err = igc_save_qbv_schedule(adapter, qopt);
4806 	if (err)
4807 		return err;
4808 
4809 	return igc_tsn_offload_apply(adapter);
4810 }
4811 
4812 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4813 			void *type_data)
4814 {
4815 	struct igc_adapter *adapter = netdev_priv(dev);
4816 
4817 	switch (type) {
4818 	case TC_SETUP_QDISC_TAPRIO:
4819 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4820 
4821 	case TC_SETUP_QDISC_ETF:
4822 		return igc_tsn_enable_launchtime(adapter, type_data);
4823 
4824 	default:
4825 		return -EOPNOTSUPP;
4826 	}
4827 }
4828 
4829 static const struct net_device_ops igc_netdev_ops = {
4830 	.ndo_open		= igc_open,
4831 	.ndo_stop		= igc_close,
4832 	.ndo_start_xmit		= igc_xmit_frame,
4833 	.ndo_set_rx_mode	= igc_set_rx_mode,
4834 	.ndo_set_mac_address	= igc_set_mac,
4835 	.ndo_change_mtu		= igc_change_mtu,
4836 	.ndo_get_stats		= igc_get_stats,
4837 	.ndo_fix_features	= igc_fix_features,
4838 	.ndo_set_features	= igc_set_features,
4839 	.ndo_features_check	= igc_features_check,
4840 	.ndo_do_ioctl		= igc_ioctl,
4841 	.ndo_setup_tc		= igc_setup_tc,
4842 };
4843 
4844 /* PCIe configuration access */
4845 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4846 {
4847 	struct igc_adapter *adapter = hw->back;
4848 
4849 	pci_read_config_word(adapter->pdev, reg, value);
4850 }
4851 
4852 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4853 {
4854 	struct igc_adapter *adapter = hw->back;
4855 
4856 	pci_write_config_word(adapter->pdev, reg, *value);
4857 }
4858 
4859 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4860 {
4861 	struct igc_adapter *adapter = hw->back;
4862 
4863 	if (!pci_is_pcie(adapter->pdev))
4864 		return -IGC_ERR_CONFIG;
4865 
4866 	pcie_capability_read_word(adapter->pdev, reg, value);
4867 
4868 	return IGC_SUCCESS;
4869 }
4870 
4871 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4872 {
4873 	struct igc_adapter *adapter = hw->back;
4874 
4875 	if (!pci_is_pcie(adapter->pdev))
4876 		return -IGC_ERR_CONFIG;
4877 
4878 	pcie_capability_write_word(adapter->pdev, reg, *value);
4879 
4880 	return IGC_SUCCESS;
4881 }
4882 
4883 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4884 {
4885 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4886 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4887 	u32 value = 0;
4888 
4889 	value = readl(&hw_addr[reg]);
4890 
4891 	/* reads should not return all F's */
4892 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4893 		struct net_device *netdev = igc->netdev;
4894 
4895 		hw->hw_addr = NULL;
4896 		netif_device_detach(netdev);
4897 		netdev_err(netdev, "PCIe link lost, device now detached\n");
4898 		WARN(pci_device_is_present(igc->pdev),
4899 		     "igc: Failed to read reg 0x%x!\n", reg);
4900 	}
4901 
4902 	return value;
4903 }
4904 
4905 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4906 {
4907 	struct igc_mac_info *mac = &adapter->hw.mac;
4908 
4909 	mac->autoneg = 0;
4910 
4911 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4912 	 * for the switch() below to work
4913 	 */
4914 	if ((spd & 1) || (dplx & ~1))
4915 		goto err_inval;
4916 
4917 	switch (spd + dplx) {
4918 	case SPEED_10 + DUPLEX_HALF:
4919 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4920 		break;
4921 	case SPEED_10 + DUPLEX_FULL:
4922 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4923 		break;
4924 	case SPEED_100 + DUPLEX_HALF:
4925 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4926 		break;
4927 	case SPEED_100 + DUPLEX_FULL:
4928 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4929 		break;
4930 	case SPEED_1000 + DUPLEX_FULL:
4931 		mac->autoneg = 1;
4932 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4933 		break;
4934 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4935 		goto err_inval;
4936 	case SPEED_2500 + DUPLEX_FULL:
4937 		mac->autoneg = 1;
4938 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4939 		break;
4940 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
4941 	default:
4942 		goto err_inval;
4943 	}
4944 
4945 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4946 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
4947 
4948 	return 0;
4949 
4950 err_inval:
4951 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
4952 	return -EINVAL;
4953 }
4954 
4955 /**
4956  * igc_probe - Device Initialization Routine
4957  * @pdev: PCI device information struct
4958  * @ent: entry in igc_pci_tbl
4959  *
4960  * Returns 0 on success, negative on failure
4961  *
4962  * igc_probe initializes an adapter identified by a pci_dev structure.
4963  * The OS initialization, configuring the adapter private structure,
4964  * and a hardware reset occur.
4965  */
4966 static int igc_probe(struct pci_dev *pdev,
4967 		     const struct pci_device_id *ent)
4968 {
4969 	struct igc_adapter *adapter;
4970 	struct net_device *netdev;
4971 	struct igc_hw *hw;
4972 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4973 	int err, pci_using_dac;
4974 
4975 	err = pci_enable_device_mem(pdev);
4976 	if (err)
4977 		return err;
4978 
4979 	pci_using_dac = 0;
4980 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4981 	if (!err) {
4982 		pci_using_dac = 1;
4983 	} else {
4984 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4985 		if (err) {
4986 			dev_err(&pdev->dev,
4987 				"No usable DMA configuration, aborting\n");
4988 			goto err_dma;
4989 		}
4990 	}
4991 
4992 	err = pci_request_mem_regions(pdev, igc_driver_name);
4993 	if (err)
4994 		goto err_pci_reg;
4995 
4996 	pci_enable_pcie_error_reporting(pdev);
4997 
4998 	pci_set_master(pdev);
4999 
5000 	err = -ENOMEM;
5001 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5002 				   IGC_MAX_TX_QUEUES);
5003 
5004 	if (!netdev)
5005 		goto err_alloc_etherdev;
5006 
5007 	SET_NETDEV_DEV(netdev, &pdev->dev);
5008 
5009 	pci_set_drvdata(pdev, netdev);
5010 	adapter = netdev_priv(netdev);
5011 	adapter->netdev = netdev;
5012 	adapter->pdev = pdev;
5013 	hw = &adapter->hw;
5014 	hw->back = adapter;
5015 	adapter->port_num = hw->bus.func;
5016 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5017 
5018 	err = pci_save_state(pdev);
5019 	if (err)
5020 		goto err_ioremap;
5021 
5022 	err = -EIO;
5023 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5024 				   pci_resource_len(pdev, 0));
5025 	if (!adapter->io_addr)
5026 		goto err_ioremap;
5027 
5028 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5029 	hw->hw_addr = adapter->io_addr;
5030 
5031 	netdev->netdev_ops = &igc_netdev_ops;
5032 	igc_ethtool_set_ops(netdev);
5033 	netdev->watchdog_timeo = 5 * HZ;
5034 
5035 	netdev->mem_start = pci_resource_start(pdev, 0);
5036 	netdev->mem_end = pci_resource_end(pdev, 0);
5037 
5038 	/* PCI config space info */
5039 	hw->vendor_id = pdev->vendor;
5040 	hw->device_id = pdev->device;
5041 	hw->revision_id = pdev->revision;
5042 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5043 	hw->subsystem_device_id = pdev->subsystem_device;
5044 
5045 	/* Copy the default MAC and PHY function pointers */
5046 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5047 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5048 
5049 	/* Initialize skew-specific constants */
5050 	err = ei->get_invariants(hw);
5051 	if (err)
5052 		goto err_sw_init;
5053 
5054 	/* Add supported features to the features list*/
5055 	netdev->features |= NETIF_F_SG;
5056 	netdev->features |= NETIF_F_TSO;
5057 	netdev->features |= NETIF_F_TSO6;
5058 	netdev->features |= NETIF_F_TSO_ECN;
5059 	netdev->features |= NETIF_F_RXCSUM;
5060 	netdev->features |= NETIF_F_HW_CSUM;
5061 	netdev->features |= NETIF_F_SCTP_CRC;
5062 	netdev->features |= NETIF_F_HW_TC;
5063 
5064 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5065 				  NETIF_F_GSO_GRE_CSUM | \
5066 				  NETIF_F_GSO_IPXIP4 | \
5067 				  NETIF_F_GSO_IPXIP6 | \
5068 				  NETIF_F_GSO_UDP_TUNNEL | \
5069 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5070 
5071 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5072 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5073 
5074 	/* setup the private structure */
5075 	err = igc_sw_init(adapter);
5076 	if (err)
5077 		goto err_sw_init;
5078 
5079 	/* copy netdev features into list of user selectable features */
5080 	netdev->hw_features |= NETIF_F_NTUPLE;
5081 	netdev->hw_features |= netdev->features;
5082 
5083 	if (pci_using_dac)
5084 		netdev->features |= NETIF_F_HIGHDMA;
5085 
5086 	/* MTU range: 68 - 9216 */
5087 	netdev->min_mtu = ETH_MIN_MTU;
5088 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5089 
5090 	/* before reading the NVM, reset the controller to put the device in a
5091 	 * known good starting state
5092 	 */
5093 	hw->mac.ops.reset_hw(hw);
5094 
5095 	if (igc_get_flash_presence_i225(hw)) {
5096 		if (hw->nvm.ops.validate(hw) < 0) {
5097 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5098 			err = -EIO;
5099 			goto err_eeprom;
5100 		}
5101 	}
5102 
5103 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5104 		/* copy the MAC address out of the NVM */
5105 		if (hw->mac.ops.read_mac_addr(hw))
5106 			dev_err(&pdev->dev, "NVM Read Error\n");
5107 	}
5108 
5109 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5110 
5111 	if (!is_valid_ether_addr(netdev->dev_addr)) {
5112 		dev_err(&pdev->dev, "Invalid MAC Address\n");
5113 		err = -EIO;
5114 		goto err_eeprom;
5115 	}
5116 
5117 	/* configure RXPBSIZE and TXPBSIZE */
5118 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5119 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5120 
5121 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5122 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5123 
5124 	INIT_WORK(&adapter->reset_task, igc_reset_task);
5125 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5126 
5127 	/* Initialize link properties that are user-changeable */
5128 	adapter->fc_autoneg = true;
5129 	hw->mac.autoneg = true;
5130 	hw->phy.autoneg_advertised = 0xaf;
5131 
5132 	hw->fc.requested_mode = igc_fc_default;
5133 	hw->fc.current_mode = igc_fc_default;
5134 
5135 	/* By default, support wake on port A */
5136 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5137 
5138 	/* initialize the wol settings based on the eeprom settings */
5139 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5140 		adapter->wol |= IGC_WUFC_MAG;
5141 
5142 	device_set_wakeup_enable(&adapter->pdev->dev,
5143 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5144 
5145 	/* reset the hardware with the new settings */
5146 	igc_reset(adapter);
5147 
5148 	/* let the f/w know that the h/w is now under the control of the
5149 	 * driver.
5150 	 */
5151 	igc_get_hw_control(adapter);
5152 
5153 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
5154 	err = register_netdev(netdev);
5155 	if (err)
5156 		goto err_register;
5157 
5158 	 /* carrier off reporting is important to ethtool even BEFORE open */
5159 	netif_carrier_off(netdev);
5160 
5161 	/* do hw tstamp init after resetting */
5162 	igc_ptp_init(adapter);
5163 
5164 	/* Check if Media Autosense is enabled */
5165 	adapter->ei = *ei;
5166 
5167 	/* print pcie link status and MAC address */
5168 	pcie_print_link_status(pdev);
5169 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5170 
5171 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5172 	/* Disable EEE for internal PHY devices */
5173 	hw->dev_spec._base.eee_enable = false;
5174 	adapter->flags &= ~IGC_FLAG_EEE;
5175 	igc_set_eee_i225(hw, false, false, false);
5176 
5177 	pm_runtime_put_noidle(&pdev->dev);
5178 
5179 	return 0;
5180 
5181 err_register:
5182 	igc_release_hw_control(adapter);
5183 err_eeprom:
5184 	if (!igc_check_reset_block(hw))
5185 		igc_reset_phy(hw);
5186 err_sw_init:
5187 	igc_clear_interrupt_scheme(adapter);
5188 	iounmap(adapter->io_addr);
5189 err_ioremap:
5190 	free_netdev(netdev);
5191 err_alloc_etherdev:
5192 	pci_release_mem_regions(pdev);
5193 err_pci_reg:
5194 err_dma:
5195 	pci_disable_device(pdev);
5196 	return err;
5197 }
5198 
5199 /**
5200  * igc_remove - Device Removal Routine
5201  * @pdev: PCI device information struct
5202  *
5203  * igc_remove is called by the PCI subsystem to alert the driver
5204  * that it should release a PCI device.  This could be caused by a
5205  * Hot-Plug event, or because the driver is going to be removed from
5206  * memory.
5207  */
5208 static void igc_remove(struct pci_dev *pdev)
5209 {
5210 	struct net_device *netdev = pci_get_drvdata(pdev);
5211 	struct igc_adapter *adapter = netdev_priv(netdev);
5212 
5213 	pm_runtime_get_noresume(&pdev->dev);
5214 
5215 	igc_flush_nfc_rules(adapter);
5216 
5217 	igc_ptp_stop(adapter);
5218 
5219 	set_bit(__IGC_DOWN, &adapter->state);
5220 
5221 	del_timer_sync(&adapter->watchdog_timer);
5222 	del_timer_sync(&adapter->phy_info_timer);
5223 
5224 	cancel_work_sync(&adapter->reset_task);
5225 	cancel_work_sync(&adapter->watchdog_task);
5226 
5227 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5228 	 * would have already happened in close and is redundant.
5229 	 */
5230 	igc_release_hw_control(adapter);
5231 	unregister_netdev(netdev);
5232 
5233 	igc_clear_interrupt_scheme(adapter);
5234 	pci_iounmap(pdev, adapter->io_addr);
5235 	pci_release_mem_regions(pdev);
5236 
5237 	free_netdev(netdev);
5238 
5239 	pci_disable_pcie_error_reporting(pdev);
5240 
5241 	pci_disable_device(pdev);
5242 }
5243 
5244 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5245 			  bool runtime)
5246 {
5247 	struct net_device *netdev = pci_get_drvdata(pdev);
5248 	struct igc_adapter *adapter = netdev_priv(netdev);
5249 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5250 	struct igc_hw *hw = &adapter->hw;
5251 	u32 ctrl, rctl, status;
5252 	bool wake;
5253 
5254 	rtnl_lock();
5255 	netif_device_detach(netdev);
5256 
5257 	if (netif_running(netdev))
5258 		__igc_close(netdev, true);
5259 
5260 	igc_ptp_suspend(adapter);
5261 
5262 	igc_clear_interrupt_scheme(adapter);
5263 	rtnl_unlock();
5264 
5265 	status = rd32(IGC_STATUS);
5266 	if (status & IGC_STATUS_LU)
5267 		wufc &= ~IGC_WUFC_LNKC;
5268 
5269 	if (wufc) {
5270 		igc_setup_rctl(adapter);
5271 		igc_set_rx_mode(netdev);
5272 
5273 		/* turn on all-multi mode if wake on multicast is enabled */
5274 		if (wufc & IGC_WUFC_MC) {
5275 			rctl = rd32(IGC_RCTL);
5276 			rctl |= IGC_RCTL_MPE;
5277 			wr32(IGC_RCTL, rctl);
5278 		}
5279 
5280 		ctrl = rd32(IGC_CTRL);
5281 		ctrl |= IGC_CTRL_ADVD3WUC;
5282 		wr32(IGC_CTRL, ctrl);
5283 
5284 		/* Allow time for pending master requests to run */
5285 		igc_disable_pcie_master(hw);
5286 
5287 		wr32(IGC_WUC, IGC_WUC_PME_EN);
5288 		wr32(IGC_WUFC, wufc);
5289 	} else {
5290 		wr32(IGC_WUC, 0);
5291 		wr32(IGC_WUFC, 0);
5292 	}
5293 
5294 	wake = wufc || adapter->en_mng_pt;
5295 	if (!wake)
5296 		igc_power_down_phy_copper_base(&adapter->hw);
5297 	else
5298 		igc_power_up_link(adapter);
5299 
5300 	if (enable_wake)
5301 		*enable_wake = wake;
5302 
5303 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5304 	 * would have already happened in close and is redundant.
5305 	 */
5306 	igc_release_hw_control(adapter);
5307 
5308 	pci_disable_device(pdev);
5309 
5310 	return 0;
5311 }
5312 
5313 #ifdef CONFIG_PM
5314 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5315 {
5316 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5317 }
5318 
5319 static void igc_deliver_wake_packet(struct net_device *netdev)
5320 {
5321 	struct igc_adapter *adapter = netdev_priv(netdev);
5322 	struct igc_hw *hw = &adapter->hw;
5323 	struct sk_buff *skb;
5324 	u32 wupl;
5325 
5326 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5327 
5328 	/* WUPM stores only the first 128 bytes of the wake packet.
5329 	 * Read the packet only if we have the whole thing.
5330 	 */
5331 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5332 		return;
5333 
5334 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5335 	if (!skb)
5336 		return;
5337 
5338 	skb_put(skb, wupl);
5339 
5340 	/* Ensure reads are 32-bit aligned */
5341 	wupl = roundup(wupl, 4);
5342 
5343 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5344 
5345 	skb->protocol = eth_type_trans(skb, netdev);
5346 	netif_rx(skb);
5347 }
5348 
5349 static int __maybe_unused igc_resume(struct device *dev)
5350 {
5351 	struct pci_dev *pdev = to_pci_dev(dev);
5352 	struct net_device *netdev = pci_get_drvdata(pdev);
5353 	struct igc_adapter *adapter = netdev_priv(netdev);
5354 	struct igc_hw *hw = &adapter->hw;
5355 	u32 err, val;
5356 
5357 	pci_set_power_state(pdev, PCI_D0);
5358 	pci_restore_state(pdev);
5359 	pci_save_state(pdev);
5360 
5361 	if (!pci_device_is_present(pdev))
5362 		return -ENODEV;
5363 	err = pci_enable_device_mem(pdev);
5364 	if (err) {
5365 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5366 		return err;
5367 	}
5368 	pci_set_master(pdev);
5369 
5370 	pci_enable_wake(pdev, PCI_D3hot, 0);
5371 	pci_enable_wake(pdev, PCI_D3cold, 0);
5372 
5373 	if (igc_init_interrupt_scheme(adapter, true)) {
5374 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5375 		return -ENOMEM;
5376 	}
5377 
5378 	igc_reset(adapter);
5379 
5380 	/* let the f/w know that the h/w is now under the control of the
5381 	 * driver.
5382 	 */
5383 	igc_get_hw_control(adapter);
5384 
5385 	val = rd32(IGC_WUS);
5386 	if (val & WAKE_PKT_WUS)
5387 		igc_deliver_wake_packet(netdev);
5388 
5389 	wr32(IGC_WUS, ~0);
5390 
5391 	rtnl_lock();
5392 	if (!err && netif_running(netdev))
5393 		err = __igc_open(netdev, true);
5394 
5395 	if (!err)
5396 		netif_device_attach(netdev);
5397 	rtnl_unlock();
5398 
5399 	return err;
5400 }
5401 
5402 static int __maybe_unused igc_runtime_resume(struct device *dev)
5403 {
5404 	return igc_resume(dev);
5405 }
5406 
5407 static int __maybe_unused igc_suspend(struct device *dev)
5408 {
5409 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5410 }
5411 
5412 static int __maybe_unused igc_runtime_idle(struct device *dev)
5413 {
5414 	struct net_device *netdev = dev_get_drvdata(dev);
5415 	struct igc_adapter *adapter = netdev_priv(netdev);
5416 
5417 	if (!igc_has_link(adapter))
5418 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5419 
5420 	return -EBUSY;
5421 }
5422 #endif /* CONFIG_PM */
5423 
5424 static void igc_shutdown(struct pci_dev *pdev)
5425 {
5426 	bool wake;
5427 
5428 	__igc_shutdown(pdev, &wake, 0);
5429 
5430 	if (system_state == SYSTEM_POWER_OFF) {
5431 		pci_wake_from_d3(pdev, wake);
5432 		pci_set_power_state(pdev, PCI_D3hot);
5433 	}
5434 }
5435 
5436 /**
5437  *  igc_io_error_detected - called when PCI error is detected
5438  *  @pdev: Pointer to PCI device
5439  *  @state: The current PCI connection state
5440  *
5441  *  This function is called after a PCI bus error affecting
5442  *  this device has been detected.
5443  **/
5444 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5445 					      pci_channel_state_t state)
5446 {
5447 	struct net_device *netdev = pci_get_drvdata(pdev);
5448 	struct igc_adapter *adapter = netdev_priv(netdev);
5449 
5450 	netif_device_detach(netdev);
5451 
5452 	if (state == pci_channel_io_perm_failure)
5453 		return PCI_ERS_RESULT_DISCONNECT;
5454 
5455 	if (netif_running(netdev))
5456 		igc_down(adapter);
5457 	pci_disable_device(pdev);
5458 
5459 	/* Request a slot reset. */
5460 	return PCI_ERS_RESULT_NEED_RESET;
5461 }
5462 
5463 /**
5464  *  igc_io_slot_reset - called after the PCI bus has been reset.
5465  *  @pdev: Pointer to PCI device
5466  *
5467  *  Restart the card from scratch, as if from a cold-boot. Implementation
5468  *  resembles the first-half of the igc_resume routine.
5469  **/
5470 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5471 {
5472 	struct net_device *netdev = pci_get_drvdata(pdev);
5473 	struct igc_adapter *adapter = netdev_priv(netdev);
5474 	struct igc_hw *hw = &adapter->hw;
5475 	pci_ers_result_t result;
5476 
5477 	if (pci_enable_device_mem(pdev)) {
5478 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5479 		result = PCI_ERS_RESULT_DISCONNECT;
5480 	} else {
5481 		pci_set_master(pdev);
5482 		pci_restore_state(pdev);
5483 		pci_save_state(pdev);
5484 
5485 		pci_enable_wake(pdev, PCI_D3hot, 0);
5486 		pci_enable_wake(pdev, PCI_D3cold, 0);
5487 
5488 		/* In case of PCI error, adapter loses its HW address
5489 		 * so we should re-assign it here.
5490 		 */
5491 		hw->hw_addr = adapter->io_addr;
5492 
5493 		igc_reset(adapter);
5494 		wr32(IGC_WUS, ~0);
5495 		result = PCI_ERS_RESULT_RECOVERED;
5496 	}
5497 
5498 	return result;
5499 }
5500 
5501 /**
5502  *  igc_io_resume - called when traffic can start to flow again.
5503  *  @pdev: Pointer to PCI device
5504  *
5505  *  This callback is called when the error recovery driver tells us that
5506  *  its OK to resume normal operation. Implementation resembles the
5507  *  second-half of the igc_resume routine.
5508  */
5509 static void igc_io_resume(struct pci_dev *pdev)
5510 {
5511 	struct net_device *netdev = pci_get_drvdata(pdev);
5512 	struct igc_adapter *adapter = netdev_priv(netdev);
5513 
5514 	rtnl_lock();
5515 	if (netif_running(netdev)) {
5516 		if (igc_open(netdev)) {
5517 			netdev_err(netdev, "igc_open failed after reset\n");
5518 			return;
5519 		}
5520 	}
5521 
5522 	netif_device_attach(netdev);
5523 
5524 	/* let the f/w know that the h/w is now under the control of the
5525 	 * driver.
5526 	 */
5527 	igc_get_hw_control(adapter);
5528 	rtnl_unlock();
5529 }
5530 
5531 static const struct pci_error_handlers igc_err_handler = {
5532 	.error_detected = igc_io_error_detected,
5533 	.slot_reset = igc_io_slot_reset,
5534 	.resume = igc_io_resume,
5535 };
5536 
5537 #ifdef CONFIG_PM
5538 static const struct dev_pm_ops igc_pm_ops = {
5539 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5540 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5541 			   igc_runtime_idle)
5542 };
5543 #endif
5544 
5545 static struct pci_driver igc_driver = {
5546 	.name     = igc_driver_name,
5547 	.id_table = igc_pci_tbl,
5548 	.probe    = igc_probe,
5549 	.remove   = igc_remove,
5550 #ifdef CONFIG_PM
5551 	.driver.pm = &igc_pm_ops,
5552 #endif
5553 	.shutdown = igc_shutdown,
5554 	.err_handler = &igc_err_handler,
5555 };
5556 
5557 /**
5558  * igc_reinit_queues - return error
5559  * @adapter: pointer to adapter structure
5560  */
5561 int igc_reinit_queues(struct igc_adapter *adapter)
5562 {
5563 	struct net_device *netdev = adapter->netdev;
5564 	int err = 0;
5565 
5566 	if (netif_running(netdev))
5567 		igc_close(netdev);
5568 
5569 	igc_reset_interrupt_capability(adapter);
5570 
5571 	if (igc_init_interrupt_scheme(adapter, true)) {
5572 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5573 		return -ENOMEM;
5574 	}
5575 
5576 	if (netif_running(netdev))
5577 		err = igc_open(netdev);
5578 
5579 	return err;
5580 }
5581 
5582 /**
5583  * igc_get_hw_dev - return device
5584  * @hw: pointer to hardware structure
5585  *
5586  * used by hardware layer to print debugging information
5587  */
5588 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5589 {
5590 	struct igc_adapter *adapter = hw->back;
5591 
5592 	return adapter->netdev;
5593 }
5594 
5595 /**
5596  * igc_init_module - Driver Registration Routine
5597  *
5598  * igc_init_module is the first routine called when the driver is
5599  * loaded. All it does is register with the PCI subsystem.
5600  */
5601 static int __init igc_init_module(void)
5602 {
5603 	int ret;
5604 
5605 	pr_info("%s\n", igc_driver_string);
5606 	pr_info("%s\n", igc_copyright);
5607 
5608 	ret = pci_register_driver(&igc_driver);
5609 	return ret;
5610 }
5611 
5612 module_init(igc_init_module);
5613 
5614 /**
5615  * igc_exit_module - Driver Exit Cleanup Routine
5616  *
5617  * igc_exit_module is called just before the driver is removed
5618  * from memory.
5619  */
5620 static void __exit igc_exit_module(void)
5621 {
5622 	pci_unregister_driver(&igc_driver);
5623 }
5624 
5625 module_exit(igc_exit_module);
5626 /* igc_main.c */
5627