1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 
15 #include <net/ipv6.h>
16 
17 #include "igc.h"
18 #include "igc_hw.h"
19 #include "igc_tsn.h"
20 #include "igc_xdp.h"
21 
22 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
23 
24 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
25 
26 #define IGC_XDP_PASS		0
27 #define IGC_XDP_CONSUMED	BIT(0)
28 #define IGC_XDP_TX		BIT(1)
29 #define IGC_XDP_REDIRECT	BIT(2)
30 
31 static int debug = -1;
32 
33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34 MODULE_DESCRIPTION(DRV_SUMMARY);
35 MODULE_LICENSE("GPL v2");
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38 
39 char igc_driver_name[] = "igc";
40 static const char igc_driver_string[] = DRV_SUMMARY;
41 static const char igc_copyright[] =
42 	"Copyright(c) 2018 Intel Corporation.";
43 
44 static const struct igc_info *igc_info_tbl[] = {
45 	[board_base] = &igc_base_info,
46 };
47 
48 static const struct pci_device_id igc_pci_tbl[] = {
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
64 	/* required last entry */
65 	{0, }
66 };
67 
68 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
69 
70 enum latency_range {
71 	lowest_latency = 0,
72 	low_latency = 1,
73 	bulk_latency = 2,
74 	latency_invalid = 255
75 };
76 
77 void igc_reset(struct igc_adapter *adapter)
78 {
79 	struct net_device *dev = adapter->netdev;
80 	struct igc_hw *hw = &adapter->hw;
81 	struct igc_fc_info *fc = &hw->fc;
82 	u32 pba, hwm;
83 
84 	/* Repartition PBA for greater than 9k MTU if required */
85 	pba = IGC_PBA_34K;
86 
87 	/* flow control settings
88 	 * The high water mark must be low enough to fit one full frame
89 	 * after transmitting the pause frame.  As such we must have enough
90 	 * space to allow for us to complete our current transmit and then
91 	 * receive the frame that is in progress from the link partner.
92 	 * Set it to:
93 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94 	 */
95 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96 
97 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
98 	fc->low_water = fc->high_water - 16;
99 	fc->pause_time = 0xFFFF;
100 	fc->send_xon = 1;
101 	fc->current_mode = fc->requested_mode;
102 
103 	hw->mac.ops.reset_hw(hw);
104 
105 	if (hw->mac.ops.init_hw(hw))
106 		netdev_err(dev, "Error on hardware initialization\n");
107 
108 	/* Re-establish EEE setting */
109 	igc_set_eee_i225(hw, true, true, true);
110 
111 	if (!netif_running(adapter->netdev))
112 		igc_power_down_phy_copper_base(&adapter->hw);
113 
114 	/* Re-enable PTP, where applicable. */
115 	igc_ptp_reset(adapter);
116 
117 	/* Re-enable TSN offloading, where applicable. */
118 	igc_tsn_offload_apply(adapter);
119 
120 	igc_get_phy_info(hw);
121 }
122 
123 /**
124  * igc_power_up_link - Power up the phy link
125  * @adapter: address of board private structure
126  */
127 static void igc_power_up_link(struct igc_adapter *adapter)
128 {
129 	igc_reset_phy(&adapter->hw);
130 
131 	igc_power_up_phy_copper(&adapter->hw);
132 
133 	igc_setup_link(&adapter->hw);
134 }
135 
136 /**
137  * igc_release_hw_control - release control of the h/w to f/w
138  * @adapter: address of board private structure
139  *
140  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
141  * For ASF and Pass Through versions of f/w this means that the
142  * driver is no longer loaded.
143  */
144 static void igc_release_hw_control(struct igc_adapter *adapter)
145 {
146 	struct igc_hw *hw = &adapter->hw;
147 	u32 ctrl_ext;
148 
149 	/* Let firmware take over control of h/w */
150 	ctrl_ext = rd32(IGC_CTRL_EXT);
151 	wr32(IGC_CTRL_EXT,
152 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
153 }
154 
155 /**
156  * igc_get_hw_control - get control of the h/w from f/w
157  * @adapter: address of board private structure
158  *
159  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
160  * For ASF and Pass Through versions of f/w this means that
161  * the driver is loaded.
162  */
163 static void igc_get_hw_control(struct igc_adapter *adapter)
164 {
165 	struct igc_hw *hw = &adapter->hw;
166 	u32 ctrl_ext;
167 
168 	/* Let firmware know the driver has taken over */
169 	ctrl_ext = rd32(IGC_CTRL_EXT);
170 	wr32(IGC_CTRL_EXT,
171 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
172 }
173 
174 /**
175  * igc_clean_tx_ring - Free Tx Buffers
176  * @tx_ring: ring to be cleaned
177  */
178 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
179 {
180 	u16 i = tx_ring->next_to_clean;
181 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
182 
183 	while (i != tx_ring->next_to_use) {
184 		union igc_adv_tx_desc *eop_desc, *tx_desc;
185 
186 		if (tx_buffer->tx_flags & IGC_TX_FLAGS_XDP)
187 			xdp_return_frame(tx_buffer->xdpf);
188 		else
189 			dev_kfree_skb_any(tx_buffer->skb);
190 
191 		/* unmap skb header data */
192 		dma_unmap_single(tx_ring->dev,
193 				 dma_unmap_addr(tx_buffer, dma),
194 				 dma_unmap_len(tx_buffer, len),
195 				 DMA_TO_DEVICE);
196 
197 		/* check for eop_desc to determine the end of the packet */
198 		eop_desc = tx_buffer->next_to_watch;
199 		tx_desc = IGC_TX_DESC(tx_ring, i);
200 
201 		/* unmap remaining buffers */
202 		while (tx_desc != eop_desc) {
203 			tx_buffer++;
204 			tx_desc++;
205 			i++;
206 			if (unlikely(i == tx_ring->count)) {
207 				i = 0;
208 				tx_buffer = tx_ring->tx_buffer_info;
209 				tx_desc = IGC_TX_DESC(tx_ring, 0);
210 			}
211 
212 			/* unmap any remaining paged data */
213 			if (dma_unmap_len(tx_buffer, len))
214 				dma_unmap_page(tx_ring->dev,
215 					       dma_unmap_addr(tx_buffer, dma),
216 					       dma_unmap_len(tx_buffer, len),
217 					       DMA_TO_DEVICE);
218 		}
219 
220 		/* move us one more past the eop_desc for start of next pkt */
221 		tx_buffer++;
222 		i++;
223 		if (unlikely(i == tx_ring->count)) {
224 			i = 0;
225 			tx_buffer = tx_ring->tx_buffer_info;
226 		}
227 	}
228 
229 	/* reset BQL for queue */
230 	netdev_tx_reset_queue(txring_txq(tx_ring));
231 
232 	/* reset next_to_use and next_to_clean */
233 	tx_ring->next_to_use = 0;
234 	tx_ring->next_to_clean = 0;
235 }
236 
237 /**
238  * igc_free_tx_resources - Free Tx Resources per Queue
239  * @tx_ring: Tx descriptor ring for a specific queue
240  *
241  * Free all transmit software resources
242  */
243 void igc_free_tx_resources(struct igc_ring *tx_ring)
244 {
245 	igc_clean_tx_ring(tx_ring);
246 
247 	vfree(tx_ring->tx_buffer_info);
248 	tx_ring->tx_buffer_info = NULL;
249 
250 	/* if not set, then don't free */
251 	if (!tx_ring->desc)
252 		return;
253 
254 	dma_free_coherent(tx_ring->dev, tx_ring->size,
255 			  tx_ring->desc, tx_ring->dma);
256 
257 	tx_ring->desc = NULL;
258 }
259 
260 /**
261  * igc_free_all_tx_resources - Free Tx Resources for All Queues
262  * @adapter: board private structure
263  *
264  * Free all transmit software resources
265  */
266 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
267 {
268 	int i;
269 
270 	for (i = 0; i < adapter->num_tx_queues; i++)
271 		igc_free_tx_resources(adapter->tx_ring[i]);
272 }
273 
274 /**
275  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
276  * @adapter: board private structure
277  */
278 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
279 {
280 	int i;
281 
282 	for (i = 0; i < adapter->num_tx_queues; i++)
283 		if (adapter->tx_ring[i])
284 			igc_clean_tx_ring(adapter->tx_ring[i]);
285 }
286 
287 /**
288  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
289  * @tx_ring: tx descriptor ring (for a specific queue) to setup
290  *
291  * Return 0 on success, negative on failure
292  */
293 int igc_setup_tx_resources(struct igc_ring *tx_ring)
294 {
295 	struct net_device *ndev = tx_ring->netdev;
296 	struct device *dev = tx_ring->dev;
297 	int size = 0;
298 
299 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
300 	tx_ring->tx_buffer_info = vzalloc(size);
301 	if (!tx_ring->tx_buffer_info)
302 		goto err;
303 
304 	/* round up to nearest 4K */
305 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
306 	tx_ring->size = ALIGN(tx_ring->size, 4096);
307 
308 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
309 					   &tx_ring->dma, GFP_KERNEL);
310 
311 	if (!tx_ring->desc)
312 		goto err;
313 
314 	tx_ring->next_to_use = 0;
315 	tx_ring->next_to_clean = 0;
316 
317 	return 0;
318 
319 err:
320 	vfree(tx_ring->tx_buffer_info);
321 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
322 	return -ENOMEM;
323 }
324 
325 /**
326  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
327  * @adapter: board private structure
328  *
329  * Return 0 on success, negative on failure
330  */
331 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
332 {
333 	struct net_device *dev = adapter->netdev;
334 	int i, err = 0;
335 
336 	for (i = 0; i < adapter->num_tx_queues; i++) {
337 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
338 		if (err) {
339 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
340 			for (i--; i >= 0; i--)
341 				igc_free_tx_resources(adapter->tx_ring[i]);
342 			break;
343 		}
344 	}
345 
346 	return err;
347 }
348 
349 /**
350  * igc_clean_rx_ring - Free Rx Buffers per Queue
351  * @rx_ring: ring to free buffers from
352  */
353 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
354 {
355 	u16 i = rx_ring->next_to_clean;
356 
357 	dev_kfree_skb(rx_ring->skb);
358 	rx_ring->skb = NULL;
359 
360 	/* Free all the Rx ring sk_buffs */
361 	while (i != rx_ring->next_to_alloc) {
362 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
363 
364 		/* Invalidate cache lines that may have been written to by
365 		 * device so that we avoid corrupting memory.
366 		 */
367 		dma_sync_single_range_for_cpu(rx_ring->dev,
368 					      buffer_info->dma,
369 					      buffer_info->page_offset,
370 					      igc_rx_bufsz(rx_ring),
371 					      DMA_FROM_DEVICE);
372 
373 		/* free resources associated with mapping */
374 		dma_unmap_page_attrs(rx_ring->dev,
375 				     buffer_info->dma,
376 				     igc_rx_pg_size(rx_ring),
377 				     DMA_FROM_DEVICE,
378 				     IGC_RX_DMA_ATTR);
379 		__page_frag_cache_drain(buffer_info->page,
380 					buffer_info->pagecnt_bias);
381 
382 		i++;
383 		if (i == rx_ring->count)
384 			i = 0;
385 	}
386 
387 	clear_ring_uses_large_buffer(rx_ring);
388 
389 	rx_ring->next_to_alloc = 0;
390 	rx_ring->next_to_clean = 0;
391 	rx_ring->next_to_use = 0;
392 }
393 
394 /**
395  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
396  * @adapter: board private structure
397  */
398 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
399 {
400 	int i;
401 
402 	for (i = 0; i < adapter->num_rx_queues; i++)
403 		if (adapter->rx_ring[i])
404 			igc_clean_rx_ring(adapter->rx_ring[i]);
405 }
406 
407 /**
408  * igc_free_rx_resources - Free Rx Resources
409  * @rx_ring: ring to clean the resources from
410  *
411  * Free all receive software resources
412  */
413 void igc_free_rx_resources(struct igc_ring *rx_ring)
414 {
415 	igc_clean_rx_ring(rx_ring);
416 
417 	igc_xdp_unregister_rxq_info(rx_ring);
418 
419 	vfree(rx_ring->rx_buffer_info);
420 	rx_ring->rx_buffer_info = NULL;
421 
422 	/* if not set, then don't free */
423 	if (!rx_ring->desc)
424 		return;
425 
426 	dma_free_coherent(rx_ring->dev, rx_ring->size,
427 			  rx_ring->desc, rx_ring->dma);
428 
429 	rx_ring->desc = NULL;
430 }
431 
432 /**
433  * igc_free_all_rx_resources - Free Rx Resources for All Queues
434  * @adapter: board private structure
435  *
436  * Free all receive software resources
437  */
438 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
439 {
440 	int i;
441 
442 	for (i = 0; i < adapter->num_rx_queues; i++)
443 		igc_free_rx_resources(adapter->rx_ring[i]);
444 }
445 
446 /**
447  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
448  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
449  *
450  * Returns 0 on success, negative on failure
451  */
452 int igc_setup_rx_resources(struct igc_ring *rx_ring)
453 {
454 	struct net_device *ndev = rx_ring->netdev;
455 	struct device *dev = rx_ring->dev;
456 	int size, desc_len, res;
457 
458 	res = igc_xdp_register_rxq_info(rx_ring);
459 	if (res < 0)
460 		return res;
461 
462 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
463 	rx_ring->rx_buffer_info = vzalloc(size);
464 	if (!rx_ring->rx_buffer_info)
465 		goto err;
466 
467 	desc_len = sizeof(union igc_adv_rx_desc);
468 
469 	/* Round up to nearest 4K */
470 	rx_ring->size = rx_ring->count * desc_len;
471 	rx_ring->size = ALIGN(rx_ring->size, 4096);
472 
473 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
474 					   &rx_ring->dma, GFP_KERNEL);
475 
476 	if (!rx_ring->desc)
477 		goto err;
478 
479 	rx_ring->next_to_alloc = 0;
480 	rx_ring->next_to_clean = 0;
481 	rx_ring->next_to_use = 0;
482 
483 	return 0;
484 
485 err:
486 	igc_xdp_unregister_rxq_info(rx_ring);
487 	vfree(rx_ring->rx_buffer_info);
488 	rx_ring->rx_buffer_info = NULL;
489 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
490 	return -ENOMEM;
491 }
492 
493 /**
494  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
495  *                                (Descriptors) for all queues
496  * @adapter: board private structure
497  *
498  * Return 0 on success, negative on failure
499  */
500 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
501 {
502 	struct net_device *dev = adapter->netdev;
503 	int i, err = 0;
504 
505 	for (i = 0; i < adapter->num_rx_queues; i++) {
506 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
507 		if (err) {
508 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
509 			for (i--; i >= 0; i--)
510 				igc_free_rx_resources(adapter->rx_ring[i]);
511 			break;
512 		}
513 	}
514 
515 	return err;
516 }
517 
518 static bool igc_xdp_is_enabled(struct igc_adapter *adapter)
519 {
520 	return !!adapter->xdp_prog;
521 }
522 
523 /**
524  * igc_configure_rx_ring - Configure a receive ring after Reset
525  * @adapter: board private structure
526  * @ring: receive ring to be configured
527  *
528  * Configure the Rx unit of the MAC after a reset.
529  */
530 static void igc_configure_rx_ring(struct igc_adapter *adapter,
531 				  struct igc_ring *ring)
532 {
533 	struct igc_hw *hw = &adapter->hw;
534 	union igc_adv_rx_desc *rx_desc;
535 	int reg_idx = ring->reg_idx;
536 	u32 srrctl = 0, rxdctl = 0;
537 	u64 rdba = ring->dma;
538 
539 	if (igc_xdp_is_enabled(adapter))
540 		set_ring_uses_large_buffer(ring);
541 
542 	/* disable the queue */
543 	wr32(IGC_RXDCTL(reg_idx), 0);
544 
545 	/* Set DMA base address registers */
546 	wr32(IGC_RDBAL(reg_idx),
547 	     rdba & 0x00000000ffffffffULL);
548 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
549 	wr32(IGC_RDLEN(reg_idx),
550 	     ring->count * sizeof(union igc_adv_rx_desc));
551 
552 	/* initialize head and tail */
553 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
554 	wr32(IGC_RDH(reg_idx), 0);
555 	writel(0, ring->tail);
556 
557 	/* reset next-to- use/clean to place SW in sync with hardware */
558 	ring->next_to_clean = 0;
559 	ring->next_to_use = 0;
560 
561 	/* set descriptor configuration */
562 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
563 	if (ring_uses_large_buffer(ring))
564 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
565 	else
566 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
567 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
568 
569 	wr32(IGC_SRRCTL(reg_idx), srrctl);
570 
571 	rxdctl |= IGC_RX_PTHRESH;
572 	rxdctl |= IGC_RX_HTHRESH << 8;
573 	rxdctl |= IGC_RX_WTHRESH << 16;
574 
575 	/* initialize rx_buffer_info */
576 	memset(ring->rx_buffer_info, 0,
577 	       sizeof(struct igc_rx_buffer) * ring->count);
578 
579 	/* initialize Rx descriptor 0 */
580 	rx_desc = IGC_RX_DESC(ring, 0);
581 	rx_desc->wb.upper.length = 0;
582 
583 	/* enable receive descriptor fetching */
584 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
585 
586 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
587 }
588 
589 /**
590  * igc_configure_rx - Configure receive Unit after Reset
591  * @adapter: board private structure
592  *
593  * Configure the Rx unit of the MAC after a reset.
594  */
595 static void igc_configure_rx(struct igc_adapter *adapter)
596 {
597 	int i;
598 
599 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
600 	 * the Base and Length of the Rx Descriptor Ring
601 	 */
602 	for (i = 0; i < adapter->num_rx_queues; i++)
603 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
604 }
605 
606 /**
607  * igc_configure_tx_ring - Configure transmit ring after Reset
608  * @adapter: board private structure
609  * @ring: tx ring to configure
610  *
611  * Configure a transmit ring after a reset.
612  */
613 static void igc_configure_tx_ring(struct igc_adapter *adapter,
614 				  struct igc_ring *ring)
615 {
616 	struct igc_hw *hw = &adapter->hw;
617 	int reg_idx = ring->reg_idx;
618 	u64 tdba = ring->dma;
619 	u32 txdctl = 0;
620 
621 	/* disable the queue */
622 	wr32(IGC_TXDCTL(reg_idx), 0);
623 	wrfl();
624 	mdelay(10);
625 
626 	wr32(IGC_TDLEN(reg_idx),
627 	     ring->count * sizeof(union igc_adv_tx_desc));
628 	wr32(IGC_TDBAL(reg_idx),
629 	     tdba & 0x00000000ffffffffULL);
630 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
631 
632 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
633 	wr32(IGC_TDH(reg_idx), 0);
634 	writel(0, ring->tail);
635 
636 	txdctl |= IGC_TX_PTHRESH;
637 	txdctl |= IGC_TX_HTHRESH << 8;
638 	txdctl |= IGC_TX_WTHRESH << 16;
639 
640 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
641 	wr32(IGC_TXDCTL(reg_idx), txdctl);
642 }
643 
644 /**
645  * igc_configure_tx - Configure transmit Unit after Reset
646  * @adapter: board private structure
647  *
648  * Configure the Tx unit of the MAC after a reset.
649  */
650 static void igc_configure_tx(struct igc_adapter *adapter)
651 {
652 	int i;
653 
654 	for (i = 0; i < adapter->num_tx_queues; i++)
655 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
656 }
657 
658 /**
659  * igc_setup_mrqc - configure the multiple receive queue control registers
660  * @adapter: Board private structure
661  */
662 static void igc_setup_mrqc(struct igc_adapter *adapter)
663 {
664 	struct igc_hw *hw = &adapter->hw;
665 	u32 j, num_rx_queues;
666 	u32 mrqc, rxcsum;
667 	u32 rss_key[10];
668 
669 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
670 	for (j = 0; j < 10; j++)
671 		wr32(IGC_RSSRK(j), rss_key[j]);
672 
673 	num_rx_queues = adapter->rss_queues;
674 
675 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
676 		for (j = 0; j < IGC_RETA_SIZE; j++)
677 			adapter->rss_indir_tbl[j] =
678 			(j * num_rx_queues) / IGC_RETA_SIZE;
679 		adapter->rss_indir_tbl_init = num_rx_queues;
680 	}
681 	igc_write_rss_indir_tbl(adapter);
682 
683 	/* Disable raw packet checksumming so that RSS hash is placed in
684 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
685 	 * offloads as they are enabled by default
686 	 */
687 	rxcsum = rd32(IGC_RXCSUM);
688 	rxcsum |= IGC_RXCSUM_PCSD;
689 
690 	/* Enable Receive Checksum Offload for SCTP */
691 	rxcsum |= IGC_RXCSUM_CRCOFL;
692 
693 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
694 	wr32(IGC_RXCSUM, rxcsum);
695 
696 	/* Generate RSS hash based on packet types, TCP/UDP
697 	 * port numbers and/or IPv4/v6 src and dst addresses
698 	 */
699 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
700 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
701 	       IGC_MRQC_RSS_FIELD_IPV6 |
702 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
703 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
704 
705 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
706 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
707 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
708 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
709 
710 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
711 
712 	wr32(IGC_MRQC, mrqc);
713 }
714 
715 /**
716  * igc_setup_rctl - configure the receive control registers
717  * @adapter: Board private structure
718  */
719 static void igc_setup_rctl(struct igc_adapter *adapter)
720 {
721 	struct igc_hw *hw = &adapter->hw;
722 	u32 rctl;
723 
724 	rctl = rd32(IGC_RCTL);
725 
726 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
727 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
728 
729 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
730 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
731 
732 	/* enable stripping of CRC. Newer features require
733 	 * that the HW strips the CRC.
734 	 */
735 	rctl |= IGC_RCTL_SECRC;
736 
737 	/* disable store bad packets and clear size bits. */
738 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
739 
740 	/* enable LPE to allow for reception of jumbo frames */
741 	rctl |= IGC_RCTL_LPE;
742 
743 	/* disable queue 0 to prevent tail write w/o re-config */
744 	wr32(IGC_RXDCTL(0), 0);
745 
746 	/* This is useful for sniffing bad packets. */
747 	if (adapter->netdev->features & NETIF_F_RXALL) {
748 		/* UPE and MPE will be handled by normal PROMISC logic
749 		 * in set_rx_mode
750 		 */
751 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
752 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
753 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
754 
755 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
756 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
757 	}
758 
759 	wr32(IGC_RCTL, rctl);
760 }
761 
762 /**
763  * igc_setup_tctl - configure the transmit control registers
764  * @adapter: Board private structure
765  */
766 static void igc_setup_tctl(struct igc_adapter *adapter)
767 {
768 	struct igc_hw *hw = &adapter->hw;
769 	u32 tctl;
770 
771 	/* disable queue 0 which icould be enabled by default */
772 	wr32(IGC_TXDCTL(0), 0);
773 
774 	/* Program the Transmit Control Register */
775 	tctl = rd32(IGC_TCTL);
776 	tctl &= ~IGC_TCTL_CT;
777 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
778 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
779 
780 	/* Enable transmits */
781 	tctl |= IGC_TCTL_EN;
782 
783 	wr32(IGC_TCTL, tctl);
784 }
785 
786 /**
787  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
788  * @adapter: Pointer to adapter where the filter should be set
789  * @index: Filter index
790  * @type: MAC address filter type (source or destination)
791  * @addr: MAC address
792  * @queue: If non-negative, queue assignment feature is enabled and frames
793  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
794  *         assignment is disabled.
795  */
796 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
797 				  enum igc_mac_filter_type type,
798 				  const u8 *addr, int queue)
799 {
800 	struct net_device *dev = adapter->netdev;
801 	struct igc_hw *hw = &adapter->hw;
802 	u32 ral, rah;
803 
804 	if (WARN_ON(index >= hw->mac.rar_entry_count))
805 		return;
806 
807 	ral = le32_to_cpup((__le32 *)(addr));
808 	rah = le16_to_cpup((__le16 *)(addr + 4));
809 
810 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
811 		rah &= ~IGC_RAH_ASEL_MASK;
812 		rah |= IGC_RAH_ASEL_SRC_ADDR;
813 	}
814 
815 	if (queue >= 0) {
816 		rah &= ~IGC_RAH_QSEL_MASK;
817 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
818 		rah |= IGC_RAH_QSEL_ENABLE;
819 	}
820 
821 	rah |= IGC_RAH_AV;
822 
823 	wr32(IGC_RAL(index), ral);
824 	wr32(IGC_RAH(index), rah);
825 
826 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
827 }
828 
829 /**
830  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
831  * @adapter: Pointer to adapter where the filter should be cleared
832  * @index: Filter index
833  */
834 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
835 {
836 	struct net_device *dev = adapter->netdev;
837 	struct igc_hw *hw = &adapter->hw;
838 
839 	if (WARN_ON(index >= hw->mac.rar_entry_count))
840 		return;
841 
842 	wr32(IGC_RAL(index), 0);
843 	wr32(IGC_RAH(index), 0);
844 
845 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
846 }
847 
848 /* Set default MAC address for the PF in the first RAR entry */
849 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
850 {
851 	struct net_device *dev = adapter->netdev;
852 	u8 *addr = adapter->hw.mac.addr;
853 
854 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
855 
856 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
857 }
858 
859 /**
860  * igc_set_mac - Change the Ethernet Address of the NIC
861  * @netdev: network interface device structure
862  * @p: pointer to an address structure
863  *
864  * Returns 0 on success, negative on failure
865  */
866 static int igc_set_mac(struct net_device *netdev, void *p)
867 {
868 	struct igc_adapter *adapter = netdev_priv(netdev);
869 	struct igc_hw *hw = &adapter->hw;
870 	struct sockaddr *addr = p;
871 
872 	if (!is_valid_ether_addr(addr->sa_data))
873 		return -EADDRNOTAVAIL;
874 
875 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
876 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
877 
878 	/* set the correct pool for the new PF MAC address in entry 0 */
879 	igc_set_default_mac_filter(adapter);
880 
881 	return 0;
882 }
883 
884 /**
885  *  igc_write_mc_addr_list - write multicast addresses to MTA
886  *  @netdev: network interface device structure
887  *
888  *  Writes multicast address list to the MTA hash table.
889  *  Returns: -ENOMEM on failure
890  *           0 on no addresses written
891  *           X on writing X addresses to MTA
892  **/
893 static int igc_write_mc_addr_list(struct net_device *netdev)
894 {
895 	struct igc_adapter *adapter = netdev_priv(netdev);
896 	struct igc_hw *hw = &adapter->hw;
897 	struct netdev_hw_addr *ha;
898 	u8  *mta_list;
899 	int i;
900 
901 	if (netdev_mc_empty(netdev)) {
902 		/* nothing to program, so clear mc list */
903 		igc_update_mc_addr_list(hw, NULL, 0);
904 		return 0;
905 	}
906 
907 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
908 	if (!mta_list)
909 		return -ENOMEM;
910 
911 	/* The shared function expects a packed array of only addresses. */
912 	i = 0;
913 	netdev_for_each_mc_addr(ha, netdev)
914 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
915 
916 	igc_update_mc_addr_list(hw, mta_list, i);
917 	kfree(mta_list);
918 
919 	return netdev_mc_count(netdev);
920 }
921 
922 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
923 {
924 	ktime_t cycle_time = adapter->cycle_time;
925 	ktime_t base_time = adapter->base_time;
926 	u32 launchtime;
927 
928 	/* FIXME: when using ETF together with taprio, we may have a
929 	 * case where 'delta' is larger than the cycle_time, this may
930 	 * cause problems if we don't read the current value of
931 	 * IGC_BASET, as the value writen into the launchtime
932 	 * descriptor field may be misinterpreted.
933 	 */
934 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
935 
936 	return cpu_to_le32(launchtime);
937 }
938 
939 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
940 			    struct igc_tx_buffer *first,
941 			    u32 vlan_macip_lens, u32 type_tucmd,
942 			    u32 mss_l4len_idx)
943 {
944 	struct igc_adv_tx_context_desc *context_desc;
945 	u16 i = tx_ring->next_to_use;
946 
947 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
948 
949 	i++;
950 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
951 
952 	/* set bits to identify this as an advanced context descriptor */
953 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
954 
955 	/* For i225, context index must be unique per ring. */
956 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
957 		mss_l4len_idx |= tx_ring->reg_idx << 4;
958 
959 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
960 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
961 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
962 
963 	/* We assume there is always a valid Tx time available. Invalid times
964 	 * should have been handled by the upper layers.
965 	 */
966 	if (tx_ring->launchtime_enable) {
967 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
968 		ktime_t txtime = first->skb->tstamp;
969 
970 		skb_txtime_consumed(first->skb);
971 		context_desc->launch_time = igc_tx_launchtime(adapter,
972 							      txtime);
973 	} else {
974 		context_desc->launch_time = 0;
975 	}
976 }
977 
978 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
979 {
980 	struct sk_buff *skb = first->skb;
981 	u32 vlan_macip_lens = 0;
982 	u32 type_tucmd = 0;
983 
984 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
985 csum_failed:
986 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
987 		    !tx_ring->launchtime_enable)
988 			return;
989 		goto no_csum;
990 	}
991 
992 	switch (skb->csum_offset) {
993 	case offsetof(struct tcphdr, check):
994 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
995 		fallthrough;
996 	case offsetof(struct udphdr, check):
997 		break;
998 	case offsetof(struct sctphdr, checksum):
999 		/* validate that this is actually an SCTP request */
1000 		if (skb_csum_is_sctp(skb)) {
1001 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1002 			break;
1003 		}
1004 		fallthrough;
1005 	default:
1006 		skb_checksum_help(skb);
1007 		goto csum_failed;
1008 	}
1009 
1010 	/* update TX checksum flag */
1011 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1012 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1013 			  skb_network_offset(skb);
1014 no_csum:
1015 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1016 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1017 
1018 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1019 }
1020 
1021 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1022 {
1023 	struct net_device *netdev = tx_ring->netdev;
1024 
1025 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1026 
1027 	/* memory barriier comment */
1028 	smp_mb();
1029 
1030 	/* We need to check again in a case another CPU has just
1031 	 * made room available.
1032 	 */
1033 	if (igc_desc_unused(tx_ring) < size)
1034 		return -EBUSY;
1035 
1036 	/* A reprieve! */
1037 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1038 
1039 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1040 	tx_ring->tx_stats.restart_queue2++;
1041 	u64_stats_update_end(&tx_ring->tx_syncp2);
1042 
1043 	return 0;
1044 }
1045 
1046 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1047 {
1048 	if (igc_desc_unused(tx_ring) >= size)
1049 		return 0;
1050 	return __igc_maybe_stop_tx(tx_ring, size);
1051 }
1052 
1053 #define IGC_SET_FLAG(_input, _flag, _result) \
1054 	(((_flag) <= (_result)) ?				\
1055 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1056 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1057 
1058 static u32 igc_tx_cmd_type(u32 tx_flags)
1059 {
1060 	/* set type for advanced descriptor with frame checksum insertion */
1061 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1062 		       IGC_ADVTXD_DCMD_DEXT |
1063 		       IGC_ADVTXD_DCMD_IFCS;
1064 
1065 	/* set segmentation bits for TSO */
1066 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1067 				 (IGC_ADVTXD_DCMD_TSE));
1068 
1069 	/* set timestamp bit if present */
1070 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1071 				 (IGC_ADVTXD_MAC_TSTAMP));
1072 
1073 	return cmd_type;
1074 }
1075 
1076 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1077 				 union igc_adv_tx_desc *tx_desc,
1078 				 u32 tx_flags, unsigned int paylen)
1079 {
1080 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1081 
1082 	/* insert L4 checksum */
1083 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1084 			  ((IGC_TXD_POPTS_TXSM << 8) /
1085 			  IGC_TX_FLAGS_CSUM);
1086 
1087 	/* insert IPv4 checksum */
1088 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1089 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1090 			  IGC_TX_FLAGS_IPV4);
1091 
1092 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1093 }
1094 
1095 static int igc_tx_map(struct igc_ring *tx_ring,
1096 		      struct igc_tx_buffer *first,
1097 		      const u8 hdr_len)
1098 {
1099 	struct sk_buff *skb = first->skb;
1100 	struct igc_tx_buffer *tx_buffer;
1101 	union igc_adv_tx_desc *tx_desc;
1102 	u32 tx_flags = first->tx_flags;
1103 	skb_frag_t *frag;
1104 	u16 i = tx_ring->next_to_use;
1105 	unsigned int data_len, size;
1106 	dma_addr_t dma;
1107 	u32 cmd_type = igc_tx_cmd_type(tx_flags);
1108 
1109 	tx_desc = IGC_TX_DESC(tx_ring, i);
1110 
1111 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1112 
1113 	size = skb_headlen(skb);
1114 	data_len = skb->data_len;
1115 
1116 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1117 
1118 	tx_buffer = first;
1119 
1120 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1121 		if (dma_mapping_error(tx_ring->dev, dma))
1122 			goto dma_error;
1123 
1124 		/* record length, and DMA address */
1125 		dma_unmap_len_set(tx_buffer, len, size);
1126 		dma_unmap_addr_set(tx_buffer, dma, dma);
1127 
1128 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1129 
1130 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1131 			tx_desc->read.cmd_type_len =
1132 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1133 
1134 			i++;
1135 			tx_desc++;
1136 			if (i == tx_ring->count) {
1137 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1138 				i = 0;
1139 			}
1140 			tx_desc->read.olinfo_status = 0;
1141 
1142 			dma += IGC_MAX_DATA_PER_TXD;
1143 			size -= IGC_MAX_DATA_PER_TXD;
1144 
1145 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1146 		}
1147 
1148 		if (likely(!data_len))
1149 			break;
1150 
1151 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1152 
1153 		i++;
1154 		tx_desc++;
1155 		if (i == tx_ring->count) {
1156 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1157 			i = 0;
1158 		}
1159 		tx_desc->read.olinfo_status = 0;
1160 
1161 		size = skb_frag_size(frag);
1162 		data_len -= size;
1163 
1164 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1165 				       size, DMA_TO_DEVICE);
1166 
1167 		tx_buffer = &tx_ring->tx_buffer_info[i];
1168 	}
1169 
1170 	/* write last descriptor with RS and EOP bits */
1171 	cmd_type |= size | IGC_TXD_DCMD;
1172 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1173 
1174 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1175 
1176 	/* set the timestamp */
1177 	first->time_stamp = jiffies;
1178 
1179 	skb_tx_timestamp(skb);
1180 
1181 	/* Force memory writes to complete before letting h/w know there
1182 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1183 	 * memory model archs, such as IA-64).
1184 	 *
1185 	 * We also need this memory barrier to make certain all of the
1186 	 * status bits have been updated before next_to_watch is written.
1187 	 */
1188 	wmb();
1189 
1190 	/* set next_to_watch value indicating a packet is present */
1191 	first->next_to_watch = tx_desc;
1192 
1193 	i++;
1194 	if (i == tx_ring->count)
1195 		i = 0;
1196 
1197 	tx_ring->next_to_use = i;
1198 
1199 	/* Make sure there is space in the ring for the next send. */
1200 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1201 
1202 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1203 		writel(i, tx_ring->tail);
1204 	}
1205 
1206 	return 0;
1207 dma_error:
1208 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1209 	tx_buffer = &tx_ring->tx_buffer_info[i];
1210 
1211 	/* clear dma mappings for failed tx_buffer_info map */
1212 	while (tx_buffer != first) {
1213 		if (dma_unmap_len(tx_buffer, len))
1214 			dma_unmap_page(tx_ring->dev,
1215 				       dma_unmap_addr(tx_buffer, dma),
1216 				       dma_unmap_len(tx_buffer, len),
1217 				       DMA_TO_DEVICE);
1218 		dma_unmap_len_set(tx_buffer, len, 0);
1219 
1220 		if (i-- == 0)
1221 			i += tx_ring->count;
1222 		tx_buffer = &tx_ring->tx_buffer_info[i];
1223 	}
1224 
1225 	if (dma_unmap_len(tx_buffer, len))
1226 		dma_unmap_single(tx_ring->dev,
1227 				 dma_unmap_addr(tx_buffer, dma),
1228 				 dma_unmap_len(tx_buffer, len),
1229 				 DMA_TO_DEVICE);
1230 	dma_unmap_len_set(tx_buffer, len, 0);
1231 
1232 	dev_kfree_skb_any(tx_buffer->skb);
1233 	tx_buffer->skb = NULL;
1234 
1235 	tx_ring->next_to_use = i;
1236 
1237 	return -1;
1238 }
1239 
1240 static int igc_tso(struct igc_ring *tx_ring,
1241 		   struct igc_tx_buffer *first,
1242 		   u8 *hdr_len)
1243 {
1244 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1245 	struct sk_buff *skb = first->skb;
1246 	union {
1247 		struct iphdr *v4;
1248 		struct ipv6hdr *v6;
1249 		unsigned char *hdr;
1250 	} ip;
1251 	union {
1252 		struct tcphdr *tcp;
1253 		struct udphdr *udp;
1254 		unsigned char *hdr;
1255 	} l4;
1256 	u32 paylen, l4_offset;
1257 	int err;
1258 
1259 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1260 		return 0;
1261 
1262 	if (!skb_is_gso(skb))
1263 		return 0;
1264 
1265 	err = skb_cow_head(skb, 0);
1266 	if (err < 0)
1267 		return err;
1268 
1269 	ip.hdr = skb_network_header(skb);
1270 	l4.hdr = skb_checksum_start(skb);
1271 
1272 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1273 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1274 
1275 	/* initialize outer IP header fields */
1276 	if (ip.v4->version == 4) {
1277 		unsigned char *csum_start = skb_checksum_start(skb);
1278 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1279 
1280 		/* IP header will have to cancel out any data that
1281 		 * is not a part of the outer IP header
1282 		 */
1283 		ip.v4->check = csum_fold(csum_partial(trans_start,
1284 						      csum_start - trans_start,
1285 						      0));
1286 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1287 
1288 		ip.v4->tot_len = 0;
1289 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1290 				   IGC_TX_FLAGS_CSUM |
1291 				   IGC_TX_FLAGS_IPV4;
1292 	} else {
1293 		ip.v6->payload_len = 0;
1294 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1295 				   IGC_TX_FLAGS_CSUM;
1296 	}
1297 
1298 	/* determine offset of inner transport header */
1299 	l4_offset = l4.hdr - skb->data;
1300 
1301 	/* remove payload length from inner checksum */
1302 	paylen = skb->len - l4_offset;
1303 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1304 		/* compute length of segmentation header */
1305 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1306 		csum_replace_by_diff(&l4.tcp->check,
1307 				     (__force __wsum)htonl(paylen));
1308 	} else {
1309 		/* compute length of segmentation header */
1310 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1311 		csum_replace_by_diff(&l4.udp->check,
1312 				     (__force __wsum)htonl(paylen));
1313 	}
1314 
1315 	/* update gso size and bytecount with header size */
1316 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1317 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1318 
1319 	/* MSS L4LEN IDX */
1320 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1321 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1322 
1323 	/* VLAN MACLEN IPLEN */
1324 	vlan_macip_lens = l4.hdr - ip.hdr;
1325 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1326 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1327 
1328 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1329 			type_tucmd, mss_l4len_idx);
1330 
1331 	return 1;
1332 }
1333 
1334 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1335 				       struct igc_ring *tx_ring)
1336 {
1337 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1338 	__be16 protocol = vlan_get_protocol(skb);
1339 	struct igc_tx_buffer *first;
1340 	u32 tx_flags = 0;
1341 	unsigned short f;
1342 	u8 hdr_len = 0;
1343 	int tso = 0;
1344 
1345 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1346 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1347 	 *	+ 2 desc gap to keep tail from touching head,
1348 	 *	+ 1 desc for context descriptor,
1349 	 * otherwise try next time
1350 	 */
1351 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1352 		count += TXD_USE_COUNT(skb_frag_size(
1353 						&skb_shinfo(skb)->frags[f]));
1354 
1355 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1356 		/* this is a hard error */
1357 		return NETDEV_TX_BUSY;
1358 	}
1359 
1360 	/* record the location of the first descriptor for this packet */
1361 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1362 	first->skb = skb;
1363 	first->bytecount = skb->len;
1364 	first->gso_segs = 1;
1365 
1366 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1367 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1368 
1369 		/* FIXME: add support for retrieving timestamps from
1370 		 * the other timer registers before skipping the
1371 		 * timestamping request.
1372 		 */
1373 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1374 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1375 					   &adapter->state)) {
1376 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1377 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1378 
1379 			adapter->ptp_tx_skb = skb_get(skb);
1380 			adapter->ptp_tx_start = jiffies;
1381 		} else {
1382 			adapter->tx_hwtstamp_skipped++;
1383 		}
1384 	}
1385 
1386 	/* record initial flags and protocol */
1387 	first->tx_flags = tx_flags;
1388 	first->protocol = protocol;
1389 
1390 	tso = igc_tso(tx_ring, first, &hdr_len);
1391 	if (tso < 0)
1392 		goto out_drop;
1393 	else if (!tso)
1394 		igc_tx_csum(tx_ring, first);
1395 
1396 	igc_tx_map(tx_ring, first, hdr_len);
1397 
1398 	return NETDEV_TX_OK;
1399 
1400 out_drop:
1401 	dev_kfree_skb_any(first->skb);
1402 	first->skb = NULL;
1403 
1404 	return NETDEV_TX_OK;
1405 }
1406 
1407 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1408 						    struct sk_buff *skb)
1409 {
1410 	unsigned int r_idx = skb->queue_mapping;
1411 
1412 	if (r_idx >= adapter->num_tx_queues)
1413 		r_idx = r_idx % adapter->num_tx_queues;
1414 
1415 	return adapter->tx_ring[r_idx];
1416 }
1417 
1418 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1419 				  struct net_device *netdev)
1420 {
1421 	struct igc_adapter *adapter = netdev_priv(netdev);
1422 
1423 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1424 	 * in order to meet this minimum size requirement.
1425 	 */
1426 	if (skb->len < 17) {
1427 		if (skb_padto(skb, 17))
1428 			return NETDEV_TX_OK;
1429 		skb->len = 17;
1430 	}
1431 
1432 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1433 }
1434 
1435 static void igc_rx_checksum(struct igc_ring *ring,
1436 			    union igc_adv_rx_desc *rx_desc,
1437 			    struct sk_buff *skb)
1438 {
1439 	skb_checksum_none_assert(skb);
1440 
1441 	/* Ignore Checksum bit is set */
1442 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1443 		return;
1444 
1445 	/* Rx checksum disabled via ethtool */
1446 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1447 		return;
1448 
1449 	/* TCP/UDP checksum error bit is set */
1450 	if (igc_test_staterr(rx_desc,
1451 			     IGC_RXDEXT_STATERR_L4E |
1452 			     IGC_RXDEXT_STATERR_IPE)) {
1453 		/* work around errata with sctp packets where the TCPE aka
1454 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1455 		 * packets (aka let the stack check the crc32c)
1456 		 */
1457 		if (!(skb->len == 60 &&
1458 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1459 			u64_stats_update_begin(&ring->rx_syncp);
1460 			ring->rx_stats.csum_err++;
1461 			u64_stats_update_end(&ring->rx_syncp);
1462 		}
1463 		/* let the stack verify checksum errors */
1464 		return;
1465 	}
1466 	/* It must be a TCP or UDP packet with a valid checksum */
1467 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1468 				      IGC_RXD_STAT_UDPCS))
1469 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1470 
1471 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1472 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1473 }
1474 
1475 static inline void igc_rx_hash(struct igc_ring *ring,
1476 			       union igc_adv_rx_desc *rx_desc,
1477 			       struct sk_buff *skb)
1478 {
1479 	if (ring->netdev->features & NETIF_F_RXHASH)
1480 		skb_set_hash(skb,
1481 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1482 			     PKT_HASH_TYPE_L3);
1483 }
1484 
1485 /**
1486  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1487  * @rx_ring: rx descriptor ring packet is being transacted on
1488  * @rx_desc: pointer to the EOP Rx descriptor
1489  * @skb: pointer to current skb being populated
1490  *
1491  * This function checks the ring, descriptor, and packet information in order
1492  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1493  * skb.
1494  */
1495 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1496 				   union igc_adv_rx_desc *rx_desc,
1497 				   struct sk_buff *skb)
1498 {
1499 	igc_rx_hash(rx_ring, rx_desc, skb);
1500 
1501 	igc_rx_checksum(rx_ring, rx_desc, skb);
1502 
1503 	skb_record_rx_queue(skb, rx_ring->queue_index);
1504 
1505 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1506 }
1507 
1508 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1509 					       const unsigned int size,
1510 					       int *rx_buffer_pgcnt)
1511 {
1512 	struct igc_rx_buffer *rx_buffer;
1513 
1514 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1515 	*rx_buffer_pgcnt =
1516 #if (PAGE_SIZE < 8192)
1517 		page_count(rx_buffer->page);
1518 #else
1519 		0;
1520 #endif
1521 	prefetchw(rx_buffer->page);
1522 
1523 	/* we are reusing so sync this buffer for CPU use */
1524 	dma_sync_single_range_for_cpu(rx_ring->dev,
1525 				      rx_buffer->dma,
1526 				      rx_buffer->page_offset,
1527 				      size,
1528 				      DMA_FROM_DEVICE);
1529 
1530 	rx_buffer->pagecnt_bias--;
1531 
1532 	return rx_buffer;
1533 }
1534 
1535 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1536 			       unsigned int truesize)
1537 {
1538 #if (PAGE_SIZE < 8192)
1539 	buffer->page_offset ^= truesize;
1540 #else
1541 	buffer->page_offset += truesize;
1542 #endif
1543 }
1544 
1545 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1546 					      unsigned int size)
1547 {
1548 	unsigned int truesize;
1549 
1550 #if (PAGE_SIZE < 8192)
1551 	truesize = igc_rx_pg_size(ring) / 2;
1552 #else
1553 	truesize = ring_uses_build_skb(ring) ?
1554 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1555 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1556 		   SKB_DATA_ALIGN(size);
1557 #endif
1558 	return truesize;
1559 }
1560 
1561 /**
1562  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1563  * @rx_ring: rx descriptor ring to transact packets on
1564  * @rx_buffer: buffer containing page to add
1565  * @skb: sk_buff to place the data into
1566  * @size: size of buffer to be added
1567  *
1568  * This function will add the data contained in rx_buffer->page to the skb.
1569  */
1570 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1571 			    struct igc_rx_buffer *rx_buffer,
1572 			    struct sk_buff *skb,
1573 			    unsigned int size)
1574 {
1575 	unsigned int truesize;
1576 
1577 #if (PAGE_SIZE < 8192)
1578 	truesize = igc_rx_pg_size(rx_ring) / 2;
1579 #else
1580 	truesize = ring_uses_build_skb(rx_ring) ?
1581 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1582 		   SKB_DATA_ALIGN(size);
1583 #endif
1584 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1585 			rx_buffer->page_offset, size, truesize);
1586 
1587 	igc_rx_buffer_flip(rx_buffer, truesize);
1588 }
1589 
1590 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1591 				     struct igc_rx_buffer *rx_buffer,
1592 				     union igc_adv_rx_desc *rx_desc,
1593 				     unsigned int size)
1594 {
1595 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1596 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1597 	struct sk_buff *skb;
1598 
1599 	/* prefetch first cache line of first page */
1600 	net_prefetch(va);
1601 
1602 	/* build an skb around the page buffer */
1603 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1604 	if (unlikely(!skb))
1605 		return NULL;
1606 
1607 	/* update pointers within the skb to store the data */
1608 	skb_reserve(skb, IGC_SKB_PAD);
1609 	__skb_put(skb, size);
1610 
1611 	igc_rx_buffer_flip(rx_buffer, truesize);
1612 	return skb;
1613 }
1614 
1615 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1616 					 struct igc_rx_buffer *rx_buffer,
1617 					 struct xdp_buff *xdp,
1618 					 ktime_t timestamp)
1619 {
1620 	unsigned int size = xdp->data_end - xdp->data;
1621 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1622 	void *va = xdp->data;
1623 	unsigned int headlen;
1624 	struct sk_buff *skb;
1625 
1626 	/* prefetch first cache line of first page */
1627 	net_prefetch(va);
1628 
1629 	/* allocate a skb to store the frags */
1630 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1631 	if (unlikely(!skb))
1632 		return NULL;
1633 
1634 	if (timestamp)
1635 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1636 
1637 	/* Determine available headroom for copy */
1638 	headlen = size;
1639 	if (headlen > IGC_RX_HDR_LEN)
1640 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1641 
1642 	/* align pull length to size of long to optimize memcpy performance */
1643 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1644 
1645 	/* update all of the pointers */
1646 	size -= headlen;
1647 	if (size) {
1648 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1649 				(va + headlen) - page_address(rx_buffer->page),
1650 				size, truesize);
1651 		igc_rx_buffer_flip(rx_buffer, truesize);
1652 	} else {
1653 		rx_buffer->pagecnt_bias++;
1654 	}
1655 
1656 	return skb;
1657 }
1658 
1659 /**
1660  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1661  * @rx_ring: rx descriptor ring to store buffers on
1662  * @old_buff: donor buffer to have page reused
1663  *
1664  * Synchronizes page for reuse by the adapter
1665  */
1666 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1667 			      struct igc_rx_buffer *old_buff)
1668 {
1669 	u16 nta = rx_ring->next_to_alloc;
1670 	struct igc_rx_buffer *new_buff;
1671 
1672 	new_buff = &rx_ring->rx_buffer_info[nta];
1673 
1674 	/* update, and store next to alloc */
1675 	nta++;
1676 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1677 
1678 	/* Transfer page from old buffer to new buffer.
1679 	 * Move each member individually to avoid possible store
1680 	 * forwarding stalls.
1681 	 */
1682 	new_buff->dma		= old_buff->dma;
1683 	new_buff->page		= old_buff->page;
1684 	new_buff->page_offset	= old_buff->page_offset;
1685 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1686 }
1687 
1688 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1689 				  int rx_buffer_pgcnt)
1690 {
1691 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1692 	struct page *page = rx_buffer->page;
1693 
1694 	/* avoid re-using remote and pfmemalloc pages */
1695 	if (!dev_page_is_reusable(page))
1696 		return false;
1697 
1698 #if (PAGE_SIZE < 8192)
1699 	/* if we are only owner of page we can reuse it */
1700 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1701 		return false;
1702 #else
1703 #define IGC_LAST_OFFSET \
1704 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1705 
1706 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1707 		return false;
1708 #endif
1709 
1710 	/* If we have drained the page fragment pool we need to update
1711 	 * the pagecnt_bias and page count so that we fully restock the
1712 	 * number of references the driver holds.
1713 	 */
1714 	if (unlikely(pagecnt_bias == 1)) {
1715 		page_ref_add(page, USHRT_MAX - 1);
1716 		rx_buffer->pagecnt_bias = USHRT_MAX;
1717 	}
1718 
1719 	return true;
1720 }
1721 
1722 /**
1723  * igc_is_non_eop - process handling of non-EOP buffers
1724  * @rx_ring: Rx ring being processed
1725  * @rx_desc: Rx descriptor for current buffer
1726  *
1727  * This function updates next to clean.  If the buffer is an EOP buffer
1728  * this function exits returning false, otherwise it will place the
1729  * sk_buff in the next buffer to be chained and return true indicating
1730  * that this is in fact a non-EOP buffer.
1731  */
1732 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1733 			   union igc_adv_rx_desc *rx_desc)
1734 {
1735 	u32 ntc = rx_ring->next_to_clean + 1;
1736 
1737 	/* fetch, update, and store next to clean */
1738 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1739 	rx_ring->next_to_clean = ntc;
1740 
1741 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1742 
1743 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1744 		return false;
1745 
1746 	return true;
1747 }
1748 
1749 /**
1750  * igc_cleanup_headers - Correct corrupted or empty headers
1751  * @rx_ring: rx descriptor ring packet is being transacted on
1752  * @rx_desc: pointer to the EOP Rx descriptor
1753  * @skb: pointer to current skb being fixed
1754  *
1755  * Address the case where we are pulling data in on pages only
1756  * and as such no data is present in the skb header.
1757  *
1758  * In addition if skb is not at least 60 bytes we need to pad it so that
1759  * it is large enough to qualify as a valid Ethernet frame.
1760  *
1761  * Returns true if an error was encountered and skb was freed.
1762  */
1763 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1764 				union igc_adv_rx_desc *rx_desc,
1765 				struct sk_buff *skb)
1766 {
1767 	/* XDP packets use error pointer so abort at this point */
1768 	if (IS_ERR(skb))
1769 		return true;
1770 
1771 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1772 		struct net_device *netdev = rx_ring->netdev;
1773 
1774 		if (!(netdev->features & NETIF_F_RXALL)) {
1775 			dev_kfree_skb_any(skb);
1776 			return true;
1777 		}
1778 	}
1779 
1780 	/* if eth_skb_pad returns an error the skb was freed */
1781 	if (eth_skb_pad(skb))
1782 		return true;
1783 
1784 	return false;
1785 }
1786 
1787 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1788 			      struct igc_rx_buffer *rx_buffer,
1789 			      int rx_buffer_pgcnt)
1790 {
1791 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1792 		/* hand second half of page back to the ring */
1793 		igc_reuse_rx_page(rx_ring, rx_buffer);
1794 	} else {
1795 		/* We are not reusing the buffer so unmap it and free
1796 		 * any references we are holding to it
1797 		 */
1798 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1799 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1800 				     IGC_RX_DMA_ATTR);
1801 		__page_frag_cache_drain(rx_buffer->page,
1802 					rx_buffer->pagecnt_bias);
1803 	}
1804 
1805 	/* clear contents of rx_buffer */
1806 	rx_buffer->page = NULL;
1807 }
1808 
1809 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1810 {
1811 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1812 
1813 	if (ring_uses_build_skb(rx_ring))
1814 		return IGC_SKB_PAD;
1815 	if (igc_xdp_is_enabled(adapter))
1816 		return XDP_PACKET_HEADROOM;
1817 
1818 	return 0;
1819 }
1820 
1821 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1822 				  struct igc_rx_buffer *bi)
1823 {
1824 	struct page *page = bi->page;
1825 	dma_addr_t dma;
1826 
1827 	/* since we are recycling buffers we should seldom need to alloc */
1828 	if (likely(page))
1829 		return true;
1830 
1831 	/* alloc new page for storage */
1832 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1833 	if (unlikely(!page)) {
1834 		rx_ring->rx_stats.alloc_failed++;
1835 		return false;
1836 	}
1837 
1838 	/* map page for use */
1839 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1840 				 igc_rx_pg_size(rx_ring),
1841 				 DMA_FROM_DEVICE,
1842 				 IGC_RX_DMA_ATTR);
1843 
1844 	/* if mapping failed free memory back to system since
1845 	 * there isn't much point in holding memory we can't use
1846 	 */
1847 	if (dma_mapping_error(rx_ring->dev, dma)) {
1848 		__free_page(page);
1849 
1850 		rx_ring->rx_stats.alloc_failed++;
1851 		return false;
1852 	}
1853 
1854 	bi->dma = dma;
1855 	bi->page = page;
1856 	bi->page_offset = igc_rx_offset(rx_ring);
1857 	page_ref_add(page, USHRT_MAX - 1);
1858 	bi->pagecnt_bias = USHRT_MAX;
1859 
1860 	return true;
1861 }
1862 
1863 /**
1864  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1865  * @rx_ring: rx descriptor ring
1866  * @cleaned_count: number of buffers to clean
1867  */
1868 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1869 {
1870 	union igc_adv_rx_desc *rx_desc;
1871 	u16 i = rx_ring->next_to_use;
1872 	struct igc_rx_buffer *bi;
1873 	u16 bufsz;
1874 
1875 	/* nothing to do */
1876 	if (!cleaned_count)
1877 		return;
1878 
1879 	rx_desc = IGC_RX_DESC(rx_ring, i);
1880 	bi = &rx_ring->rx_buffer_info[i];
1881 	i -= rx_ring->count;
1882 
1883 	bufsz = igc_rx_bufsz(rx_ring);
1884 
1885 	do {
1886 		if (!igc_alloc_mapped_page(rx_ring, bi))
1887 			break;
1888 
1889 		/* sync the buffer for use by the device */
1890 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1891 						 bi->page_offset, bufsz,
1892 						 DMA_FROM_DEVICE);
1893 
1894 		/* Refresh the desc even if buffer_addrs didn't change
1895 		 * because each write-back erases this info.
1896 		 */
1897 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1898 
1899 		rx_desc++;
1900 		bi++;
1901 		i++;
1902 		if (unlikely(!i)) {
1903 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1904 			bi = rx_ring->rx_buffer_info;
1905 			i -= rx_ring->count;
1906 		}
1907 
1908 		/* clear the length for the next_to_use descriptor */
1909 		rx_desc->wb.upper.length = 0;
1910 
1911 		cleaned_count--;
1912 	} while (cleaned_count);
1913 
1914 	i += rx_ring->count;
1915 
1916 	if (rx_ring->next_to_use != i) {
1917 		/* record the next descriptor to use */
1918 		rx_ring->next_to_use = i;
1919 
1920 		/* update next to alloc since we have filled the ring */
1921 		rx_ring->next_to_alloc = i;
1922 
1923 		/* Force memory writes to complete before letting h/w
1924 		 * know there are new descriptors to fetch.  (Only
1925 		 * applicable for weak-ordered memory model archs,
1926 		 * such as IA-64).
1927 		 */
1928 		wmb();
1929 		writel(i, rx_ring->tail);
1930 	}
1931 }
1932 
1933 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
1934 				  struct xdp_frame *xdpf,
1935 				  struct igc_ring *ring)
1936 {
1937 	dma_addr_t dma;
1938 
1939 	dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
1940 	if (dma_mapping_error(ring->dev, dma)) {
1941 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1942 		return -ENOMEM;
1943 	}
1944 
1945 	buffer->xdpf = xdpf;
1946 	buffer->tx_flags = IGC_TX_FLAGS_XDP;
1947 	buffer->protocol = 0;
1948 	buffer->bytecount = xdpf->len;
1949 	buffer->gso_segs = 1;
1950 	buffer->time_stamp = jiffies;
1951 	dma_unmap_len_set(buffer, len, xdpf->len);
1952 	dma_unmap_addr_set(buffer, dma, dma);
1953 	return 0;
1954 }
1955 
1956 /* This function requires __netif_tx_lock is held by the caller. */
1957 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
1958 				      struct xdp_frame *xdpf)
1959 {
1960 	struct igc_tx_buffer *buffer;
1961 	union igc_adv_tx_desc *desc;
1962 	u32 cmd_type, olinfo_status;
1963 	int err;
1964 
1965 	if (!igc_desc_unused(ring))
1966 		return -EBUSY;
1967 
1968 	buffer = &ring->tx_buffer_info[ring->next_to_use];
1969 	err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
1970 	if (err)
1971 		return err;
1972 
1973 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1974 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1975 		   buffer->bytecount;
1976 	olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1977 
1978 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1979 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1980 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1981 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
1982 
1983 	netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
1984 
1985 	buffer->next_to_watch = desc;
1986 
1987 	ring->next_to_use++;
1988 	if (ring->next_to_use == ring->count)
1989 		ring->next_to_use = 0;
1990 
1991 	return 0;
1992 }
1993 
1994 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
1995 					    int cpu)
1996 {
1997 	int index = cpu;
1998 
1999 	if (unlikely(index < 0))
2000 		index = 0;
2001 
2002 	while (index >= adapter->num_tx_queues)
2003 		index -= adapter->num_tx_queues;
2004 
2005 	return adapter->tx_ring[index];
2006 }
2007 
2008 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2009 {
2010 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2011 	int cpu = smp_processor_id();
2012 	struct netdev_queue *nq;
2013 	struct igc_ring *ring;
2014 	int res;
2015 
2016 	if (unlikely(!xdpf))
2017 		return -EFAULT;
2018 
2019 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2020 	nq = txring_txq(ring);
2021 
2022 	__netif_tx_lock(nq, cpu);
2023 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2024 	__netif_tx_unlock(nq);
2025 	return res;
2026 }
2027 
2028 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2029 					struct xdp_buff *xdp)
2030 {
2031 	struct bpf_prog *prog;
2032 	int res;
2033 	u32 act;
2034 
2035 	rcu_read_lock();
2036 
2037 	prog = READ_ONCE(adapter->xdp_prog);
2038 	if (!prog) {
2039 		res = IGC_XDP_PASS;
2040 		goto unlock;
2041 	}
2042 
2043 	act = bpf_prog_run_xdp(prog, xdp);
2044 	switch (act) {
2045 	case XDP_PASS:
2046 		res = IGC_XDP_PASS;
2047 		break;
2048 	case XDP_TX:
2049 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2050 			res = IGC_XDP_CONSUMED;
2051 		else
2052 			res = IGC_XDP_TX;
2053 		break;
2054 	case XDP_REDIRECT:
2055 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2056 			res = IGC_XDP_CONSUMED;
2057 		else
2058 			res = IGC_XDP_REDIRECT;
2059 		break;
2060 	default:
2061 		bpf_warn_invalid_xdp_action(act);
2062 		fallthrough;
2063 	case XDP_ABORTED:
2064 		trace_xdp_exception(adapter->netdev, prog, act);
2065 		fallthrough;
2066 	case XDP_DROP:
2067 		res = IGC_XDP_CONSUMED;
2068 		break;
2069 	}
2070 
2071 unlock:
2072 	rcu_read_unlock();
2073 	return ERR_PTR(-res);
2074 }
2075 
2076 /* This function assumes __netif_tx_lock is held by the caller. */
2077 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2078 {
2079 	/* Once tail pointer is updated, hardware can fetch the descriptors
2080 	 * any time so we issue a write membar here to ensure all memory
2081 	 * writes are complete before the tail pointer is updated.
2082 	 */
2083 	wmb();
2084 	writel(ring->next_to_use, ring->tail);
2085 }
2086 
2087 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2088 {
2089 	int cpu = smp_processor_id();
2090 	struct netdev_queue *nq;
2091 	struct igc_ring *ring;
2092 
2093 	if (status & IGC_XDP_TX) {
2094 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2095 		nq = txring_txq(ring);
2096 
2097 		__netif_tx_lock(nq, cpu);
2098 		igc_flush_tx_descriptors(ring);
2099 		__netif_tx_unlock(nq);
2100 	}
2101 
2102 	if (status & IGC_XDP_REDIRECT)
2103 		xdp_do_flush();
2104 }
2105 
2106 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2107 {
2108 	unsigned int total_bytes = 0, total_packets = 0;
2109 	struct igc_adapter *adapter = q_vector->adapter;
2110 	struct igc_ring *rx_ring = q_vector->rx.ring;
2111 	struct sk_buff *skb = rx_ring->skb;
2112 	u16 cleaned_count = igc_desc_unused(rx_ring);
2113 	int xdp_status = 0, rx_buffer_pgcnt;
2114 
2115 	while (likely(total_packets < budget)) {
2116 		union igc_adv_rx_desc *rx_desc;
2117 		struct igc_rx_buffer *rx_buffer;
2118 		unsigned int size, truesize;
2119 		ktime_t timestamp = 0;
2120 		struct xdp_buff xdp;
2121 		int pkt_offset = 0;
2122 		void *pktbuf;
2123 
2124 		/* return some buffers to hardware, one at a time is too slow */
2125 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2126 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2127 			cleaned_count = 0;
2128 		}
2129 
2130 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2131 		size = le16_to_cpu(rx_desc->wb.upper.length);
2132 		if (!size)
2133 			break;
2134 
2135 		/* This memory barrier is needed to keep us from reading
2136 		 * any other fields out of the rx_desc until we know the
2137 		 * descriptor has been written back
2138 		 */
2139 		dma_rmb();
2140 
2141 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2142 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2143 
2144 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2145 
2146 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2147 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2148 							pktbuf);
2149 			pkt_offset = IGC_TS_HDR_LEN;
2150 			size -= IGC_TS_HDR_LEN;
2151 		}
2152 
2153 		if (!skb) {
2154 			xdp.data = pktbuf + pkt_offset;
2155 			xdp.data_end = xdp.data + size;
2156 			xdp.data_hard_start = pktbuf - igc_rx_offset(rx_ring);
2157 			xdp_set_data_meta_invalid(&xdp);
2158 			xdp.frame_sz = truesize;
2159 			xdp.rxq = &rx_ring->xdp_rxq;
2160 
2161 			skb = igc_xdp_run_prog(adapter, &xdp);
2162 		}
2163 
2164 		if (IS_ERR(skb)) {
2165 			unsigned int xdp_res = -PTR_ERR(skb);
2166 
2167 			switch (xdp_res) {
2168 			case IGC_XDP_CONSUMED:
2169 				rx_buffer->pagecnt_bias++;
2170 				break;
2171 			case IGC_XDP_TX:
2172 			case IGC_XDP_REDIRECT:
2173 				igc_rx_buffer_flip(rx_buffer, truesize);
2174 				xdp_status |= xdp_res;
2175 				break;
2176 			}
2177 
2178 			total_packets++;
2179 			total_bytes += size;
2180 		} else if (skb)
2181 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2182 		else if (ring_uses_build_skb(rx_ring))
2183 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2184 		else
2185 			skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2186 						timestamp);
2187 
2188 		/* exit if we failed to retrieve a buffer */
2189 		if (!skb) {
2190 			rx_ring->rx_stats.alloc_failed++;
2191 			rx_buffer->pagecnt_bias++;
2192 			break;
2193 		}
2194 
2195 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2196 		cleaned_count++;
2197 
2198 		/* fetch next buffer in frame if non-eop */
2199 		if (igc_is_non_eop(rx_ring, rx_desc))
2200 			continue;
2201 
2202 		/* verify the packet layout is correct */
2203 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2204 			skb = NULL;
2205 			continue;
2206 		}
2207 
2208 		/* probably a little skewed due to removing CRC */
2209 		total_bytes += skb->len;
2210 
2211 		/* populate checksum, VLAN, and protocol */
2212 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2213 
2214 		napi_gro_receive(&q_vector->napi, skb);
2215 
2216 		/* reset skb pointer */
2217 		skb = NULL;
2218 
2219 		/* update budget accounting */
2220 		total_packets++;
2221 	}
2222 
2223 	if (xdp_status)
2224 		igc_finalize_xdp(adapter, xdp_status);
2225 
2226 	/* place incomplete frames back on ring for completion */
2227 	rx_ring->skb = skb;
2228 
2229 	u64_stats_update_begin(&rx_ring->rx_syncp);
2230 	rx_ring->rx_stats.packets += total_packets;
2231 	rx_ring->rx_stats.bytes += total_bytes;
2232 	u64_stats_update_end(&rx_ring->rx_syncp);
2233 	q_vector->rx.total_packets += total_packets;
2234 	q_vector->rx.total_bytes += total_bytes;
2235 
2236 	if (cleaned_count)
2237 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2238 
2239 	return total_packets;
2240 }
2241 
2242 /**
2243  * igc_clean_tx_irq - Reclaim resources after transmit completes
2244  * @q_vector: pointer to q_vector containing needed info
2245  * @napi_budget: Used to determine if we are in netpoll
2246  *
2247  * returns true if ring is completely cleaned
2248  */
2249 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2250 {
2251 	struct igc_adapter *adapter = q_vector->adapter;
2252 	unsigned int total_bytes = 0, total_packets = 0;
2253 	unsigned int budget = q_vector->tx.work_limit;
2254 	struct igc_ring *tx_ring = q_vector->tx.ring;
2255 	unsigned int i = tx_ring->next_to_clean;
2256 	struct igc_tx_buffer *tx_buffer;
2257 	union igc_adv_tx_desc *tx_desc;
2258 
2259 	if (test_bit(__IGC_DOWN, &adapter->state))
2260 		return true;
2261 
2262 	tx_buffer = &tx_ring->tx_buffer_info[i];
2263 	tx_desc = IGC_TX_DESC(tx_ring, i);
2264 	i -= tx_ring->count;
2265 
2266 	do {
2267 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2268 
2269 		/* if next_to_watch is not set then there is no work pending */
2270 		if (!eop_desc)
2271 			break;
2272 
2273 		/* prevent any other reads prior to eop_desc */
2274 		smp_rmb();
2275 
2276 		/* if DD is not set pending work has not been completed */
2277 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2278 			break;
2279 
2280 		/* clear next_to_watch to prevent false hangs */
2281 		tx_buffer->next_to_watch = NULL;
2282 
2283 		/* update the statistics for this packet */
2284 		total_bytes += tx_buffer->bytecount;
2285 		total_packets += tx_buffer->gso_segs;
2286 
2287 		if (tx_buffer->tx_flags & IGC_TX_FLAGS_XDP)
2288 			xdp_return_frame(tx_buffer->xdpf);
2289 		else
2290 			napi_consume_skb(tx_buffer->skb, napi_budget);
2291 
2292 		/* unmap skb header data */
2293 		dma_unmap_single(tx_ring->dev,
2294 				 dma_unmap_addr(tx_buffer, dma),
2295 				 dma_unmap_len(tx_buffer, len),
2296 				 DMA_TO_DEVICE);
2297 
2298 		/* clear tx_buffer data */
2299 		dma_unmap_len_set(tx_buffer, len, 0);
2300 
2301 		/* clear last DMA location and unmap remaining buffers */
2302 		while (tx_desc != eop_desc) {
2303 			tx_buffer++;
2304 			tx_desc++;
2305 			i++;
2306 			if (unlikely(!i)) {
2307 				i -= tx_ring->count;
2308 				tx_buffer = tx_ring->tx_buffer_info;
2309 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2310 			}
2311 
2312 			/* unmap any remaining paged data */
2313 			if (dma_unmap_len(tx_buffer, len)) {
2314 				dma_unmap_page(tx_ring->dev,
2315 					       dma_unmap_addr(tx_buffer, dma),
2316 					       dma_unmap_len(tx_buffer, len),
2317 					       DMA_TO_DEVICE);
2318 				dma_unmap_len_set(tx_buffer, len, 0);
2319 			}
2320 		}
2321 
2322 		/* move us one more past the eop_desc for start of next pkt */
2323 		tx_buffer++;
2324 		tx_desc++;
2325 		i++;
2326 		if (unlikely(!i)) {
2327 			i -= tx_ring->count;
2328 			tx_buffer = tx_ring->tx_buffer_info;
2329 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2330 		}
2331 
2332 		/* issue prefetch for next Tx descriptor */
2333 		prefetch(tx_desc);
2334 
2335 		/* update budget accounting */
2336 		budget--;
2337 	} while (likely(budget));
2338 
2339 	netdev_tx_completed_queue(txring_txq(tx_ring),
2340 				  total_packets, total_bytes);
2341 
2342 	i += tx_ring->count;
2343 	tx_ring->next_to_clean = i;
2344 	u64_stats_update_begin(&tx_ring->tx_syncp);
2345 	tx_ring->tx_stats.bytes += total_bytes;
2346 	tx_ring->tx_stats.packets += total_packets;
2347 	u64_stats_update_end(&tx_ring->tx_syncp);
2348 	q_vector->tx.total_bytes += total_bytes;
2349 	q_vector->tx.total_packets += total_packets;
2350 
2351 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2352 		struct igc_hw *hw = &adapter->hw;
2353 
2354 		/* Detect a transmit hang in hardware, this serializes the
2355 		 * check with the clearing of time_stamp and movement of i
2356 		 */
2357 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2358 		if (tx_buffer->next_to_watch &&
2359 		    time_after(jiffies, tx_buffer->time_stamp +
2360 		    (adapter->tx_timeout_factor * HZ)) &&
2361 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2362 			/* detected Tx unit hang */
2363 			netdev_err(tx_ring->netdev,
2364 				   "Detected Tx Unit Hang\n"
2365 				   "  Tx Queue             <%d>\n"
2366 				   "  TDH                  <%x>\n"
2367 				   "  TDT                  <%x>\n"
2368 				   "  next_to_use          <%x>\n"
2369 				   "  next_to_clean        <%x>\n"
2370 				   "buffer_info[next_to_clean]\n"
2371 				   "  time_stamp           <%lx>\n"
2372 				   "  next_to_watch        <%p>\n"
2373 				   "  jiffies              <%lx>\n"
2374 				   "  desc.status          <%x>\n",
2375 				   tx_ring->queue_index,
2376 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2377 				   readl(tx_ring->tail),
2378 				   tx_ring->next_to_use,
2379 				   tx_ring->next_to_clean,
2380 				   tx_buffer->time_stamp,
2381 				   tx_buffer->next_to_watch,
2382 				   jiffies,
2383 				   tx_buffer->next_to_watch->wb.status);
2384 			netif_stop_subqueue(tx_ring->netdev,
2385 					    tx_ring->queue_index);
2386 
2387 			/* we are about to reset, no point in enabling stuff */
2388 			return true;
2389 		}
2390 	}
2391 
2392 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2393 	if (unlikely(total_packets &&
2394 		     netif_carrier_ok(tx_ring->netdev) &&
2395 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2396 		/* Make sure that anybody stopping the queue after this
2397 		 * sees the new next_to_clean.
2398 		 */
2399 		smp_mb();
2400 		if (__netif_subqueue_stopped(tx_ring->netdev,
2401 					     tx_ring->queue_index) &&
2402 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2403 			netif_wake_subqueue(tx_ring->netdev,
2404 					    tx_ring->queue_index);
2405 
2406 			u64_stats_update_begin(&tx_ring->tx_syncp);
2407 			tx_ring->tx_stats.restart_queue++;
2408 			u64_stats_update_end(&tx_ring->tx_syncp);
2409 		}
2410 	}
2411 
2412 	return !!budget;
2413 }
2414 
2415 static int igc_find_mac_filter(struct igc_adapter *adapter,
2416 			       enum igc_mac_filter_type type, const u8 *addr)
2417 {
2418 	struct igc_hw *hw = &adapter->hw;
2419 	int max_entries = hw->mac.rar_entry_count;
2420 	u32 ral, rah;
2421 	int i;
2422 
2423 	for (i = 0; i < max_entries; i++) {
2424 		ral = rd32(IGC_RAL(i));
2425 		rah = rd32(IGC_RAH(i));
2426 
2427 		if (!(rah & IGC_RAH_AV))
2428 			continue;
2429 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2430 			continue;
2431 		if ((rah & IGC_RAH_RAH_MASK) !=
2432 		    le16_to_cpup((__le16 *)(addr + 4)))
2433 			continue;
2434 		if (ral != le32_to_cpup((__le32 *)(addr)))
2435 			continue;
2436 
2437 		return i;
2438 	}
2439 
2440 	return -1;
2441 }
2442 
2443 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2444 {
2445 	struct igc_hw *hw = &adapter->hw;
2446 	int max_entries = hw->mac.rar_entry_count;
2447 	u32 rah;
2448 	int i;
2449 
2450 	for (i = 0; i < max_entries; i++) {
2451 		rah = rd32(IGC_RAH(i));
2452 
2453 		if (!(rah & IGC_RAH_AV))
2454 			return i;
2455 	}
2456 
2457 	return -1;
2458 }
2459 
2460 /**
2461  * igc_add_mac_filter() - Add MAC address filter
2462  * @adapter: Pointer to adapter where the filter should be added
2463  * @type: MAC address filter type (source or destination)
2464  * @addr: MAC address
2465  * @queue: If non-negative, queue assignment feature is enabled and frames
2466  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2467  *         assignment is disabled.
2468  *
2469  * Return: 0 in case of success, negative errno code otherwise.
2470  */
2471 static int igc_add_mac_filter(struct igc_adapter *adapter,
2472 			      enum igc_mac_filter_type type, const u8 *addr,
2473 			      int queue)
2474 {
2475 	struct net_device *dev = adapter->netdev;
2476 	int index;
2477 
2478 	index = igc_find_mac_filter(adapter, type, addr);
2479 	if (index >= 0)
2480 		goto update_filter;
2481 
2482 	index = igc_get_avail_mac_filter_slot(adapter);
2483 	if (index < 0)
2484 		return -ENOSPC;
2485 
2486 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2487 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2488 		   addr, queue);
2489 
2490 update_filter:
2491 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2492 	return 0;
2493 }
2494 
2495 /**
2496  * igc_del_mac_filter() - Delete MAC address filter
2497  * @adapter: Pointer to adapter where the filter should be deleted from
2498  * @type: MAC address filter type (source or destination)
2499  * @addr: MAC address
2500  */
2501 static void igc_del_mac_filter(struct igc_adapter *adapter,
2502 			       enum igc_mac_filter_type type, const u8 *addr)
2503 {
2504 	struct net_device *dev = adapter->netdev;
2505 	int index;
2506 
2507 	index = igc_find_mac_filter(adapter, type, addr);
2508 	if (index < 0)
2509 		return;
2510 
2511 	if (index == 0) {
2512 		/* If this is the default filter, we don't actually delete it.
2513 		 * We just reset to its default value i.e. disable queue
2514 		 * assignment.
2515 		 */
2516 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2517 
2518 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2519 	} else {
2520 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2521 			   index,
2522 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2523 			   addr);
2524 
2525 		igc_clear_mac_filter_hw(adapter, index);
2526 	}
2527 }
2528 
2529 /**
2530  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2531  * @adapter: Pointer to adapter where the filter should be added
2532  * @prio: VLAN priority value
2533  * @queue: Queue number which matching frames are assigned to
2534  *
2535  * Return: 0 in case of success, negative errno code otherwise.
2536  */
2537 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2538 				    int queue)
2539 {
2540 	struct net_device *dev = adapter->netdev;
2541 	struct igc_hw *hw = &adapter->hw;
2542 	u32 vlanpqf;
2543 
2544 	vlanpqf = rd32(IGC_VLANPQF);
2545 
2546 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2547 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2548 		return -EEXIST;
2549 	}
2550 
2551 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2552 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2553 
2554 	wr32(IGC_VLANPQF, vlanpqf);
2555 
2556 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2557 		   prio, queue);
2558 	return 0;
2559 }
2560 
2561 /**
2562  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2563  * @adapter: Pointer to adapter where the filter should be deleted from
2564  * @prio: VLAN priority value
2565  */
2566 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2567 {
2568 	struct igc_hw *hw = &adapter->hw;
2569 	u32 vlanpqf;
2570 
2571 	vlanpqf = rd32(IGC_VLANPQF);
2572 
2573 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2574 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2575 
2576 	wr32(IGC_VLANPQF, vlanpqf);
2577 
2578 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2579 		   prio);
2580 }
2581 
2582 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2583 {
2584 	struct igc_hw *hw = &adapter->hw;
2585 	int i;
2586 
2587 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2588 		u32 etqf = rd32(IGC_ETQF(i));
2589 
2590 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2591 			return i;
2592 	}
2593 
2594 	return -1;
2595 }
2596 
2597 /**
2598  * igc_add_etype_filter() - Add ethertype filter
2599  * @adapter: Pointer to adapter where the filter should be added
2600  * @etype: Ethertype value
2601  * @queue: If non-negative, queue assignment feature is enabled and frames
2602  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2603  *         assignment is disabled.
2604  *
2605  * Return: 0 in case of success, negative errno code otherwise.
2606  */
2607 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2608 				int queue)
2609 {
2610 	struct igc_hw *hw = &adapter->hw;
2611 	int index;
2612 	u32 etqf;
2613 
2614 	index = igc_get_avail_etype_filter_slot(adapter);
2615 	if (index < 0)
2616 		return -ENOSPC;
2617 
2618 	etqf = rd32(IGC_ETQF(index));
2619 
2620 	etqf &= ~IGC_ETQF_ETYPE_MASK;
2621 	etqf |= etype;
2622 
2623 	if (queue >= 0) {
2624 		etqf &= ~IGC_ETQF_QUEUE_MASK;
2625 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2626 		etqf |= IGC_ETQF_QUEUE_ENABLE;
2627 	}
2628 
2629 	etqf |= IGC_ETQF_FILTER_ENABLE;
2630 
2631 	wr32(IGC_ETQF(index), etqf);
2632 
2633 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2634 		   etype, queue);
2635 	return 0;
2636 }
2637 
2638 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2639 {
2640 	struct igc_hw *hw = &adapter->hw;
2641 	int i;
2642 
2643 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2644 		u32 etqf = rd32(IGC_ETQF(i));
2645 
2646 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2647 			return i;
2648 	}
2649 
2650 	return -1;
2651 }
2652 
2653 /**
2654  * igc_del_etype_filter() - Delete ethertype filter
2655  * @adapter: Pointer to adapter where the filter should be deleted from
2656  * @etype: Ethertype value
2657  */
2658 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2659 {
2660 	struct igc_hw *hw = &adapter->hw;
2661 	int index;
2662 
2663 	index = igc_find_etype_filter(adapter, etype);
2664 	if (index < 0)
2665 		return;
2666 
2667 	wr32(IGC_ETQF(index), 0);
2668 
2669 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2670 		   etype);
2671 }
2672 
2673 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2674 			       const struct igc_nfc_rule *rule)
2675 {
2676 	int err;
2677 
2678 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2679 		err = igc_add_etype_filter(adapter, rule->filter.etype,
2680 					   rule->action);
2681 		if (err)
2682 			return err;
2683 	}
2684 
2685 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2686 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2687 					 rule->filter.src_addr, rule->action);
2688 		if (err)
2689 			return err;
2690 	}
2691 
2692 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2693 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2694 					 rule->filter.dst_addr, rule->action);
2695 		if (err)
2696 			return err;
2697 	}
2698 
2699 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2700 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2701 			   VLAN_PRIO_SHIFT;
2702 
2703 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2704 		if (err)
2705 			return err;
2706 	}
2707 
2708 	return 0;
2709 }
2710 
2711 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2712 				 const struct igc_nfc_rule *rule)
2713 {
2714 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2715 		igc_del_etype_filter(adapter, rule->filter.etype);
2716 
2717 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2718 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2719 			   VLAN_PRIO_SHIFT;
2720 
2721 		igc_del_vlan_prio_filter(adapter, prio);
2722 	}
2723 
2724 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2725 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2726 				   rule->filter.src_addr);
2727 
2728 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2729 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2730 				   rule->filter.dst_addr);
2731 }
2732 
2733 /**
2734  * igc_get_nfc_rule() - Get NFC rule
2735  * @adapter: Pointer to adapter
2736  * @location: Rule location
2737  *
2738  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2739  *
2740  * Return: Pointer to NFC rule at @location. If not found, NULL.
2741  */
2742 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2743 				      u32 location)
2744 {
2745 	struct igc_nfc_rule *rule;
2746 
2747 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2748 		if (rule->location == location)
2749 			return rule;
2750 		if (rule->location > location)
2751 			break;
2752 	}
2753 
2754 	return NULL;
2755 }
2756 
2757 /**
2758  * igc_del_nfc_rule() - Delete NFC rule
2759  * @adapter: Pointer to adapter
2760  * @rule: Pointer to rule to be deleted
2761  *
2762  * Disable NFC rule in hardware and delete it from adapter.
2763  *
2764  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2765  */
2766 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2767 {
2768 	igc_disable_nfc_rule(adapter, rule);
2769 
2770 	list_del(&rule->list);
2771 	adapter->nfc_rule_count--;
2772 
2773 	kfree(rule);
2774 }
2775 
2776 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2777 {
2778 	struct igc_nfc_rule *rule, *tmp;
2779 
2780 	mutex_lock(&adapter->nfc_rule_lock);
2781 
2782 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2783 		igc_del_nfc_rule(adapter, rule);
2784 
2785 	mutex_unlock(&adapter->nfc_rule_lock);
2786 }
2787 
2788 /**
2789  * igc_add_nfc_rule() - Add NFC rule
2790  * @adapter: Pointer to adapter
2791  * @rule: Pointer to rule to be added
2792  *
2793  * Enable NFC rule in hardware and add it to adapter.
2794  *
2795  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2796  *
2797  * Return: 0 on success, negative errno on failure.
2798  */
2799 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2800 {
2801 	struct igc_nfc_rule *pred, *cur;
2802 	int err;
2803 
2804 	err = igc_enable_nfc_rule(adapter, rule);
2805 	if (err)
2806 		return err;
2807 
2808 	pred = NULL;
2809 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2810 		if (cur->location >= rule->location)
2811 			break;
2812 		pred = cur;
2813 	}
2814 
2815 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2816 	adapter->nfc_rule_count++;
2817 	return 0;
2818 }
2819 
2820 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2821 {
2822 	struct igc_nfc_rule *rule;
2823 
2824 	mutex_lock(&adapter->nfc_rule_lock);
2825 
2826 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2827 		igc_enable_nfc_rule(adapter, rule);
2828 
2829 	mutex_unlock(&adapter->nfc_rule_lock);
2830 }
2831 
2832 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2833 {
2834 	struct igc_adapter *adapter = netdev_priv(netdev);
2835 
2836 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2837 }
2838 
2839 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2840 {
2841 	struct igc_adapter *adapter = netdev_priv(netdev);
2842 
2843 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2844 	return 0;
2845 }
2846 
2847 /**
2848  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2849  * @netdev: network interface device structure
2850  *
2851  * The set_rx_mode entry point is called whenever the unicast or multicast
2852  * address lists or the network interface flags are updated.  This routine is
2853  * responsible for configuring the hardware for proper unicast, multicast,
2854  * promiscuous mode, and all-multi behavior.
2855  */
2856 static void igc_set_rx_mode(struct net_device *netdev)
2857 {
2858 	struct igc_adapter *adapter = netdev_priv(netdev);
2859 	struct igc_hw *hw = &adapter->hw;
2860 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2861 	int count;
2862 
2863 	/* Check for Promiscuous and All Multicast modes */
2864 	if (netdev->flags & IFF_PROMISC) {
2865 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2866 	} else {
2867 		if (netdev->flags & IFF_ALLMULTI) {
2868 			rctl |= IGC_RCTL_MPE;
2869 		} else {
2870 			/* Write addresses to the MTA, if the attempt fails
2871 			 * then we should just turn on promiscuous mode so
2872 			 * that we can at least receive multicast traffic
2873 			 */
2874 			count = igc_write_mc_addr_list(netdev);
2875 			if (count < 0)
2876 				rctl |= IGC_RCTL_MPE;
2877 		}
2878 	}
2879 
2880 	/* Write addresses to available RAR registers, if there is not
2881 	 * sufficient space to store all the addresses then enable
2882 	 * unicast promiscuous mode
2883 	 */
2884 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2885 		rctl |= IGC_RCTL_UPE;
2886 
2887 	/* update state of unicast and multicast */
2888 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2889 	wr32(IGC_RCTL, rctl);
2890 
2891 #if (PAGE_SIZE < 8192)
2892 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2893 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
2894 #endif
2895 	wr32(IGC_RLPML, rlpml);
2896 }
2897 
2898 /**
2899  * igc_configure - configure the hardware for RX and TX
2900  * @adapter: private board structure
2901  */
2902 static void igc_configure(struct igc_adapter *adapter)
2903 {
2904 	struct net_device *netdev = adapter->netdev;
2905 	int i = 0;
2906 
2907 	igc_get_hw_control(adapter);
2908 	igc_set_rx_mode(netdev);
2909 
2910 	igc_setup_tctl(adapter);
2911 	igc_setup_mrqc(adapter);
2912 	igc_setup_rctl(adapter);
2913 
2914 	igc_set_default_mac_filter(adapter);
2915 	igc_restore_nfc_rules(adapter);
2916 
2917 	igc_configure_tx(adapter);
2918 	igc_configure_rx(adapter);
2919 
2920 	igc_rx_fifo_flush_base(&adapter->hw);
2921 
2922 	/* call igc_desc_unused which always leaves
2923 	 * at least 1 descriptor unused to make sure
2924 	 * next_to_use != next_to_clean
2925 	 */
2926 	for (i = 0; i < adapter->num_rx_queues; i++) {
2927 		struct igc_ring *ring = adapter->rx_ring[i];
2928 
2929 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2930 	}
2931 }
2932 
2933 /**
2934  * igc_write_ivar - configure ivar for given MSI-X vector
2935  * @hw: pointer to the HW structure
2936  * @msix_vector: vector number we are allocating to a given ring
2937  * @index: row index of IVAR register to write within IVAR table
2938  * @offset: column offset of in IVAR, should be multiple of 8
2939  *
2940  * The IVAR table consists of 2 columns,
2941  * each containing an cause allocation for an Rx and Tx ring, and a
2942  * variable number of rows depending on the number of queues supported.
2943  */
2944 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2945 			   int index, int offset)
2946 {
2947 	u32 ivar = array_rd32(IGC_IVAR0, index);
2948 
2949 	/* clear any bits that are currently set */
2950 	ivar &= ~((u32)0xFF << offset);
2951 
2952 	/* write vector and valid bit */
2953 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2954 
2955 	array_wr32(IGC_IVAR0, index, ivar);
2956 }
2957 
2958 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2959 {
2960 	struct igc_adapter *adapter = q_vector->adapter;
2961 	struct igc_hw *hw = &adapter->hw;
2962 	int rx_queue = IGC_N0_QUEUE;
2963 	int tx_queue = IGC_N0_QUEUE;
2964 
2965 	if (q_vector->rx.ring)
2966 		rx_queue = q_vector->rx.ring->reg_idx;
2967 	if (q_vector->tx.ring)
2968 		tx_queue = q_vector->tx.ring->reg_idx;
2969 
2970 	switch (hw->mac.type) {
2971 	case igc_i225:
2972 		if (rx_queue > IGC_N0_QUEUE)
2973 			igc_write_ivar(hw, msix_vector,
2974 				       rx_queue >> 1,
2975 				       (rx_queue & 0x1) << 4);
2976 		if (tx_queue > IGC_N0_QUEUE)
2977 			igc_write_ivar(hw, msix_vector,
2978 				       tx_queue >> 1,
2979 				       ((tx_queue & 0x1) << 4) + 8);
2980 		q_vector->eims_value = BIT(msix_vector);
2981 		break;
2982 	default:
2983 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2984 		break;
2985 	}
2986 
2987 	/* add q_vector eims value to global eims_enable_mask */
2988 	adapter->eims_enable_mask |= q_vector->eims_value;
2989 
2990 	/* configure q_vector to set itr on first interrupt */
2991 	q_vector->set_itr = 1;
2992 }
2993 
2994 /**
2995  * igc_configure_msix - Configure MSI-X hardware
2996  * @adapter: Pointer to adapter structure
2997  *
2998  * igc_configure_msix sets up the hardware to properly
2999  * generate MSI-X interrupts.
3000  */
3001 static void igc_configure_msix(struct igc_adapter *adapter)
3002 {
3003 	struct igc_hw *hw = &adapter->hw;
3004 	int i, vector = 0;
3005 	u32 tmp;
3006 
3007 	adapter->eims_enable_mask = 0;
3008 
3009 	/* set vector for other causes, i.e. link changes */
3010 	switch (hw->mac.type) {
3011 	case igc_i225:
3012 		/* Turn on MSI-X capability first, or our settings
3013 		 * won't stick.  And it will take days to debug.
3014 		 */
3015 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3016 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3017 		     IGC_GPIE_NSICR);
3018 
3019 		/* enable msix_other interrupt */
3020 		adapter->eims_other = BIT(vector);
3021 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3022 
3023 		wr32(IGC_IVAR_MISC, tmp);
3024 		break;
3025 	default:
3026 		/* do nothing, since nothing else supports MSI-X */
3027 		break;
3028 	} /* switch (hw->mac.type) */
3029 
3030 	adapter->eims_enable_mask |= adapter->eims_other;
3031 
3032 	for (i = 0; i < adapter->num_q_vectors; i++)
3033 		igc_assign_vector(adapter->q_vector[i], vector++);
3034 
3035 	wrfl();
3036 }
3037 
3038 /**
3039  * igc_irq_enable - Enable default interrupt generation settings
3040  * @adapter: board private structure
3041  */
3042 static void igc_irq_enable(struct igc_adapter *adapter)
3043 {
3044 	struct igc_hw *hw = &adapter->hw;
3045 
3046 	if (adapter->msix_entries) {
3047 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3048 		u32 regval = rd32(IGC_EIAC);
3049 
3050 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3051 		regval = rd32(IGC_EIAM);
3052 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3053 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3054 		wr32(IGC_IMS, ims);
3055 	} else {
3056 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3057 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3058 	}
3059 }
3060 
3061 /**
3062  * igc_irq_disable - Mask off interrupt generation on the NIC
3063  * @adapter: board private structure
3064  */
3065 static void igc_irq_disable(struct igc_adapter *adapter)
3066 {
3067 	struct igc_hw *hw = &adapter->hw;
3068 
3069 	if (adapter->msix_entries) {
3070 		u32 regval = rd32(IGC_EIAM);
3071 
3072 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3073 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3074 		regval = rd32(IGC_EIAC);
3075 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3076 	}
3077 
3078 	wr32(IGC_IAM, 0);
3079 	wr32(IGC_IMC, ~0);
3080 	wrfl();
3081 
3082 	if (adapter->msix_entries) {
3083 		int vector = 0, i;
3084 
3085 		synchronize_irq(adapter->msix_entries[vector++].vector);
3086 
3087 		for (i = 0; i < adapter->num_q_vectors; i++)
3088 			synchronize_irq(adapter->msix_entries[vector++].vector);
3089 	} else {
3090 		synchronize_irq(adapter->pdev->irq);
3091 	}
3092 }
3093 
3094 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3095 			      const u32 max_rss_queues)
3096 {
3097 	/* Determine if we need to pair queues. */
3098 	/* If rss_queues > half of max_rss_queues, pair the queues in
3099 	 * order to conserve interrupts due to limited supply.
3100 	 */
3101 	if (adapter->rss_queues > (max_rss_queues / 2))
3102 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3103 	else
3104 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3105 }
3106 
3107 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3108 {
3109 	return IGC_MAX_RX_QUEUES;
3110 }
3111 
3112 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3113 {
3114 	u32 max_rss_queues;
3115 
3116 	max_rss_queues = igc_get_max_rss_queues(adapter);
3117 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3118 
3119 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3120 }
3121 
3122 /**
3123  * igc_reset_q_vector - Reset config for interrupt vector
3124  * @adapter: board private structure to initialize
3125  * @v_idx: Index of vector to be reset
3126  *
3127  * If NAPI is enabled it will delete any references to the
3128  * NAPI struct. This is preparation for igc_free_q_vector.
3129  */
3130 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3131 {
3132 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3133 
3134 	/* if we're coming from igc_set_interrupt_capability, the vectors are
3135 	 * not yet allocated
3136 	 */
3137 	if (!q_vector)
3138 		return;
3139 
3140 	if (q_vector->tx.ring)
3141 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3142 
3143 	if (q_vector->rx.ring)
3144 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3145 
3146 	netif_napi_del(&q_vector->napi);
3147 }
3148 
3149 /**
3150  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3151  * @adapter: board private structure to initialize
3152  * @v_idx: Index of vector to be freed
3153  *
3154  * This function frees the memory allocated to the q_vector.
3155  */
3156 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3157 {
3158 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3159 
3160 	adapter->q_vector[v_idx] = NULL;
3161 
3162 	/* igc_get_stats64() might access the rings on this vector,
3163 	 * we must wait a grace period before freeing it.
3164 	 */
3165 	if (q_vector)
3166 		kfree_rcu(q_vector, rcu);
3167 }
3168 
3169 /**
3170  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3171  * @adapter: board private structure to initialize
3172  *
3173  * This function frees the memory allocated to the q_vectors.  In addition if
3174  * NAPI is enabled it will delete any references to the NAPI struct prior
3175  * to freeing the q_vector.
3176  */
3177 static void igc_free_q_vectors(struct igc_adapter *adapter)
3178 {
3179 	int v_idx = adapter->num_q_vectors;
3180 
3181 	adapter->num_tx_queues = 0;
3182 	adapter->num_rx_queues = 0;
3183 	adapter->num_q_vectors = 0;
3184 
3185 	while (v_idx--) {
3186 		igc_reset_q_vector(adapter, v_idx);
3187 		igc_free_q_vector(adapter, v_idx);
3188 	}
3189 }
3190 
3191 /**
3192  * igc_update_itr - update the dynamic ITR value based on statistics
3193  * @q_vector: pointer to q_vector
3194  * @ring_container: ring info to update the itr for
3195  *
3196  * Stores a new ITR value based on packets and byte
3197  * counts during the last interrupt.  The advantage of per interrupt
3198  * computation is faster updates and more accurate ITR for the current
3199  * traffic pattern.  Constants in this function were computed
3200  * based on theoretical maximum wire speed and thresholds were set based
3201  * on testing data as well as attempting to minimize response time
3202  * while increasing bulk throughput.
3203  * NOTE: These calculations are only valid when operating in a single-
3204  * queue environment.
3205  */
3206 static void igc_update_itr(struct igc_q_vector *q_vector,
3207 			   struct igc_ring_container *ring_container)
3208 {
3209 	unsigned int packets = ring_container->total_packets;
3210 	unsigned int bytes = ring_container->total_bytes;
3211 	u8 itrval = ring_container->itr;
3212 
3213 	/* no packets, exit with status unchanged */
3214 	if (packets == 0)
3215 		return;
3216 
3217 	switch (itrval) {
3218 	case lowest_latency:
3219 		/* handle TSO and jumbo frames */
3220 		if (bytes / packets > 8000)
3221 			itrval = bulk_latency;
3222 		else if ((packets < 5) && (bytes > 512))
3223 			itrval = low_latency;
3224 		break;
3225 	case low_latency:  /* 50 usec aka 20000 ints/s */
3226 		if (bytes > 10000) {
3227 			/* this if handles the TSO accounting */
3228 			if (bytes / packets > 8000)
3229 				itrval = bulk_latency;
3230 			else if ((packets < 10) || ((bytes / packets) > 1200))
3231 				itrval = bulk_latency;
3232 			else if ((packets > 35))
3233 				itrval = lowest_latency;
3234 		} else if (bytes / packets > 2000) {
3235 			itrval = bulk_latency;
3236 		} else if (packets <= 2 && bytes < 512) {
3237 			itrval = lowest_latency;
3238 		}
3239 		break;
3240 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3241 		if (bytes > 25000) {
3242 			if (packets > 35)
3243 				itrval = low_latency;
3244 		} else if (bytes < 1500) {
3245 			itrval = low_latency;
3246 		}
3247 		break;
3248 	}
3249 
3250 	/* clear work counters since we have the values we need */
3251 	ring_container->total_bytes = 0;
3252 	ring_container->total_packets = 0;
3253 
3254 	/* write updated itr to ring container */
3255 	ring_container->itr = itrval;
3256 }
3257 
3258 static void igc_set_itr(struct igc_q_vector *q_vector)
3259 {
3260 	struct igc_adapter *adapter = q_vector->adapter;
3261 	u32 new_itr = q_vector->itr_val;
3262 	u8 current_itr = 0;
3263 
3264 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3265 	switch (adapter->link_speed) {
3266 	case SPEED_10:
3267 	case SPEED_100:
3268 		current_itr = 0;
3269 		new_itr = IGC_4K_ITR;
3270 		goto set_itr_now;
3271 	default:
3272 		break;
3273 	}
3274 
3275 	igc_update_itr(q_vector, &q_vector->tx);
3276 	igc_update_itr(q_vector, &q_vector->rx);
3277 
3278 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3279 
3280 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3281 	if (current_itr == lowest_latency &&
3282 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3283 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3284 		current_itr = low_latency;
3285 
3286 	switch (current_itr) {
3287 	/* counts and packets in update_itr are dependent on these numbers */
3288 	case lowest_latency:
3289 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3290 		break;
3291 	case low_latency:
3292 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3293 		break;
3294 	case bulk_latency:
3295 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3296 		break;
3297 	default:
3298 		break;
3299 	}
3300 
3301 set_itr_now:
3302 	if (new_itr != q_vector->itr_val) {
3303 		/* this attempts to bias the interrupt rate towards Bulk
3304 		 * by adding intermediate steps when interrupt rate is
3305 		 * increasing
3306 		 */
3307 		new_itr = new_itr > q_vector->itr_val ?
3308 			  max((new_itr * q_vector->itr_val) /
3309 			  (new_itr + (q_vector->itr_val >> 2)),
3310 			  new_itr) : new_itr;
3311 		/* Don't write the value here; it resets the adapter's
3312 		 * internal timer, and causes us to delay far longer than
3313 		 * we should between interrupts.  Instead, we write the ITR
3314 		 * value at the beginning of the next interrupt so the timing
3315 		 * ends up being correct.
3316 		 */
3317 		q_vector->itr_val = new_itr;
3318 		q_vector->set_itr = 1;
3319 	}
3320 }
3321 
3322 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3323 {
3324 	int v_idx = adapter->num_q_vectors;
3325 
3326 	if (adapter->msix_entries) {
3327 		pci_disable_msix(adapter->pdev);
3328 		kfree(adapter->msix_entries);
3329 		adapter->msix_entries = NULL;
3330 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3331 		pci_disable_msi(adapter->pdev);
3332 	}
3333 
3334 	while (v_idx--)
3335 		igc_reset_q_vector(adapter, v_idx);
3336 }
3337 
3338 /**
3339  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3340  * @adapter: Pointer to adapter structure
3341  * @msix: boolean value for MSI-X capability
3342  *
3343  * Attempt to configure interrupts using the best available
3344  * capabilities of the hardware and kernel.
3345  */
3346 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3347 					 bool msix)
3348 {
3349 	int numvecs, i;
3350 	int err;
3351 
3352 	if (!msix)
3353 		goto msi_only;
3354 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3355 
3356 	/* Number of supported queues. */
3357 	adapter->num_rx_queues = adapter->rss_queues;
3358 
3359 	adapter->num_tx_queues = adapter->rss_queues;
3360 
3361 	/* start with one vector for every Rx queue */
3362 	numvecs = adapter->num_rx_queues;
3363 
3364 	/* if Tx handler is separate add 1 for every Tx queue */
3365 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3366 		numvecs += adapter->num_tx_queues;
3367 
3368 	/* store the number of vectors reserved for queues */
3369 	adapter->num_q_vectors = numvecs;
3370 
3371 	/* add 1 vector for link status interrupts */
3372 	numvecs++;
3373 
3374 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3375 					GFP_KERNEL);
3376 
3377 	if (!adapter->msix_entries)
3378 		return;
3379 
3380 	/* populate entry values */
3381 	for (i = 0; i < numvecs; i++)
3382 		adapter->msix_entries[i].entry = i;
3383 
3384 	err = pci_enable_msix_range(adapter->pdev,
3385 				    adapter->msix_entries,
3386 				    numvecs,
3387 				    numvecs);
3388 	if (err > 0)
3389 		return;
3390 
3391 	kfree(adapter->msix_entries);
3392 	adapter->msix_entries = NULL;
3393 
3394 	igc_reset_interrupt_capability(adapter);
3395 
3396 msi_only:
3397 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3398 
3399 	adapter->rss_queues = 1;
3400 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3401 	adapter->num_rx_queues = 1;
3402 	adapter->num_tx_queues = 1;
3403 	adapter->num_q_vectors = 1;
3404 	if (!pci_enable_msi(adapter->pdev))
3405 		adapter->flags |= IGC_FLAG_HAS_MSI;
3406 }
3407 
3408 /**
3409  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3410  * @q_vector: pointer to q_vector
3411  *
3412  * Stores a new ITR value based on strictly on packet size.  This
3413  * algorithm is less sophisticated than that used in igc_update_itr,
3414  * due to the difficulty of synchronizing statistics across multiple
3415  * receive rings.  The divisors and thresholds used by this function
3416  * were determined based on theoretical maximum wire speed and testing
3417  * data, in order to minimize response time while increasing bulk
3418  * throughput.
3419  * NOTE: This function is called only when operating in a multiqueue
3420  * receive environment.
3421  */
3422 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3423 {
3424 	struct igc_adapter *adapter = q_vector->adapter;
3425 	int new_val = q_vector->itr_val;
3426 	int avg_wire_size = 0;
3427 	unsigned int packets;
3428 
3429 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3430 	 * ints/sec - ITR timer value of 120 ticks.
3431 	 */
3432 	switch (adapter->link_speed) {
3433 	case SPEED_10:
3434 	case SPEED_100:
3435 		new_val = IGC_4K_ITR;
3436 		goto set_itr_val;
3437 	default:
3438 		break;
3439 	}
3440 
3441 	packets = q_vector->rx.total_packets;
3442 	if (packets)
3443 		avg_wire_size = q_vector->rx.total_bytes / packets;
3444 
3445 	packets = q_vector->tx.total_packets;
3446 	if (packets)
3447 		avg_wire_size = max_t(u32, avg_wire_size,
3448 				      q_vector->tx.total_bytes / packets);
3449 
3450 	/* if avg_wire_size isn't set no work was done */
3451 	if (!avg_wire_size)
3452 		goto clear_counts;
3453 
3454 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3455 	avg_wire_size += 24;
3456 
3457 	/* Don't starve jumbo frames */
3458 	avg_wire_size = min(avg_wire_size, 3000);
3459 
3460 	/* Give a little boost to mid-size frames */
3461 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3462 		new_val = avg_wire_size / 3;
3463 	else
3464 		new_val = avg_wire_size / 2;
3465 
3466 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3467 	if (new_val < IGC_20K_ITR &&
3468 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3469 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3470 		new_val = IGC_20K_ITR;
3471 
3472 set_itr_val:
3473 	if (new_val != q_vector->itr_val) {
3474 		q_vector->itr_val = new_val;
3475 		q_vector->set_itr = 1;
3476 	}
3477 clear_counts:
3478 	q_vector->rx.total_bytes = 0;
3479 	q_vector->rx.total_packets = 0;
3480 	q_vector->tx.total_bytes = 0;
3481 	q_vector->tx.total_packets = 0;
3482 }
3483 
3484 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3485 {
3486 	struct igc_adapter *adapter = q_vector->adapter;
3487 	struct igc_hw *hw = &adapter->hw;
3488 
3489 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3490 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3491 		if (adapter->num_q_vectors == 1)
3492 			igc_set_itr(q_vector);
3493 		else
3494 			igc_update_ring_itr(q_vector);
3495 	}
3496 
3497 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3498 		if (adapter->msix_entries)
3499 			wr32(IGC_EIMS, q_vector->eims_value);
3500 		else
3501 			igc_irq_enable(adapter);
3502 	}
3503 }
3504 
3505 static void igc_add_ring(struct igc_ring *ring,
3506 			 struct igc_ring_container *head)
3507 {
3508 	head->ring = ring;
3509 	head->count++;
3510 }
3511 
3512 /**
3513  * igc_cache_ring_register - Descriptor ring to register mapping
3514  * @adapter: board private structure to initialize
3515  *
3516  * Once we know the feature-set enabled for the device, we'll cache
3517  * the register offset the descriptor ring is assigned to.
3518  */
3519 static void igc_cache_ring_register(struct igc_adapter *adapter)
3520 {
3521 	int i = 0, j = 0;
3522 
3523 	switch (adapter->hw.mac.type) {
3524 	case igc_i225:
3525 	default:
3526 		for (; i < adapter->num_rx_queues; i++)
3527 			adapter->rx_ring[i]->reg_idx = i;
3528 		for (; j < adapter->num_tx_queues; j++)
3529 			adapter->tx_ring[j]->reg_idx = j;
3530 		break;
3531 	}
3532 }
3533 
3534 /**
3535  * igc_poll - NAPI Rx polling callback
3536  * @napi: napi polling structure
3537  * @budget: count of how many packets we should handle
3538  */
3539 static int igc_poll(struct napi_struct *napi, int budget)
3540 {
3541 	struct igc_q_vector *q_vector = container_of(napi,
3542 						     struct igc_q_vector,
3543 						     napi);
3544 	bool clean_complete = true;
3545 	int work_done = 0;
3546 
3547 	if (q_vector->tx.ring)
3548 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3549 
3550 	if (q_vector->rx.ring) {
3551 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3552 
3553 		work_done += cleaned;
3554 		if (cleaned >= budget)
3555 			clean_complete = false;
3556 	}
3557 
3558 	/* If all work not completed, return budget and keep polling */
3559 	if (!clean_complete)
3560 		return budget;
3561 
3562 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3563 	 * poll us due to busy-polling
3564 	 */
3565 	if (likely(napi_complete_done(napi, work_done)))
3566 		igc_ring_irq_enable(q_vector);
3567 
3568 	return min(work_done, budget - 1);
3569 }
3570 
3571 /**
3572  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3573  * @adapter: board private structure to initialize
3574  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3575  * @v_idx: index of vector in adapter struct
3576  * @txr_count: total number of Tx rings to allocate
3577  * @txr_idx: index of first Tx ring to allocate
3578  * @rxr_count: total number of Rx rings to allocate
3579  * @rxr_idx: index of first Rx ring to allocate
3580  *
3581  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3582  */
3583 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3584 			      unsigned int v_count, unsigned int v_idx,
3585 			      unsigned int txr_count, unsigned int txr_idx,
3586 			      unsigned int rxr_count, unsigned int rxr_idx)
3587 {
3588 	struct igc_q_vector *q_vector;
3589 	struct igc_ring *ring;
3590 	int ring_count;
3591 
3592 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3593 	if (txr_count > 1 || rxr_count > 1)
3594 		return -ENOMEM;
3595 
3596 	ring_count = txr_count + rxr_count;
3597 
3598 	/* allocate q_vector and rings */
3599 	q_vector = adapter->q_vector[v_idx];
3600 	if (!q_vector)
3601 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3602 				   GFP_KERNEL);
3603 	else
3604 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3605 	if (!q_vector)
3606 		return -ENOMEM;
3607 
3608 	/* initialize NAPI */
3609 	netif_napi_add(adapter->netdev, &q_vector->napi,
3610 		       igc_poll, 64);
3611 
3612 	/* tie q_vector and adapter together */
3613 	adapter->q_vector[v_idx] = q_vector;
3614 	q_vector->adapter = adapter;
3615 
3616 	/* initialize work limits */
3617 	q_vector->tx.work_limit = adapter->tx_work_limit;
3618 
3619 	/* initialize ITR configuration */
3620 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3621 	q_vector->itr_val = IGC_START_ITR;
3622 
3623 	/* initialize pointer to rings */
3624 	ring = q_vector->ring;
3625 
3626 	/* initialize ITR */
3627 	if (rxr_count) {
3628 		/* rx or rx/tx vector */
3629 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3630 			q_vector->itr_val = adapter->rx_itr_setting;
3631 	} else {
3632 		/* tx only vector */
3633 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3634 			q_vector->itr_val = adapter->tx_itr_setting;
3635 	}
3636 
3637 	if (txr_count) {
3638 		/* assign generic ring traits */
3639 		ring->dev = &adapter->pdev->dev;
3640 		ring->netdev = adapter->netdev;
3641 
3642 		/* configure backlink on ring */
3643 		ring->q_vector = q_vector;
3644 
3645 		/* update q_vector Tx values */
3646 		igc_add_ring(ring, &q_vector->tx);
3647 
3648 		/* apply Tx specific ring traits */
3649 		ring->count = adapter->tx_ring_count;
3650 		ring->queue_index = txr_idx;
3651 
3652 		/* assign ring to adapter */
3653 		adapter->tx_ring[txr_idx] = ring;
3654 
3655 		/* push pointer to next ring */
3656 		ring++;
3657 	}
3658 
3659 	if (rxr_count) {
3660 		/* assign generic ring traits */
3661 		ring->dev = &adapter->pdev->dev;
3662 		ring->netdev = adapter->netdev;
3663 
3664 		/* configure backlink on ring */
3665 		ring->q_vector = q_vector;
3666 
3667 		/* update q_vector Rx values */
3668 		igc_add_ring(ring, &q_vector->rx);
3669 
3670 		/* apply Rx specific ring traits */
3671 		ring->count = adapter->rx_ring_count;
3672 		ring->queue_index = rxr_idx;
3673 
3674 		/* assign ring to adapter */
3675 		adapter->rx_ring[rxr_idx] = ring;
3676 	}
3677 
3678 	return 0;
3679 }
3680 
3681 /**
3682  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3683  * @adapter: board private structure to initialize
3684  *
3685  * We allocate one q_vector per queue interrupt.  If allocation fails we
3686  * return -ENOMEM.
3687  */
3688 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3689 {
3690 	int rxr_remaining = adapter->num_rx_queues;
3691 	int txr_remaining = adapter->num_tx_queues;
3692 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3693 	int q_vectors = adapter->num_q_vectors;
3694 	int err;
3695 
3696 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3697 		for (; rxr_remaining; v_idx++) {
3698 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3699 						 0, 0, 1, rxr_idx);
3700 
3701 			if (err)
3702 				goto err_out;
3703 
3704 			/* update counts and index */
3705 			rxr_remaining--;
3706 			rxr_idx++;
3707 		}
3708 	}
3709 
3710 	for (; v_idx < q_vectors; v_idx++) {
3711 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3712 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3713 
3714 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3715 					 tqpv, txr_idx, rqpv, rxr_idx);
3716 
3717 		if (err)
3718 			goto err_out;
3719 
3720 		/* update counts and index */
3721 		rxr_remaining -= rqpv;
3722 		txr_remaining -= tqpv;
3723 		rxr_idx++;
3724 		txr_idx++;
3725 	}
3726 
3727 	return 0;
3728 
3729 err_out:
3730 	adapter->num_tx_queues = 0;
3731 	adapter->num_rx_queues = 0;
3732 	adapter->num_q_vectors = 0;
3733 
3734 	while (v_idx--)
3735 		igc_free_q_vector(adapter, v_idx);
3736 
3737 	return -ENOMEM;
3738 }
3739 
3740 /**
3741  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3742  * @adapter: Pointer to adapter structure
3743  * @msix: boolean for MSI-X capability
3744  *
3745  * This function initializes the interrupts and allocates all of the queues.
3746  */
3747 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3748 {
3749 	struct net_device *dev = adapter->netdev;
3750 	int err = 0;
3751 
3752 	igc_set_interrupt_capability(adapter, msix);
3753 
3754 	err = igc_alloc_q_vectors(adapter);
3755 	if (err) {
3756 		netdev_err(dev, "Unable to allocate memory for vectors\n");
3757 		goto err_alloc_q_vectors;
3758 	}
3759 
3760 	igc_cache_ring_register(adapter);
3761 
3762 	return 0;
3763 
3764 err_alloc_q_vectors:
3765 	igc_reset_interrupt_capability(adapter);
3766 	return err;
3767 }
3768 
3769 /**
3770  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3771  * @adapter: board private structure to initialize
3772  *
3773  * igc_sw_init initializes the Adapter private data structure.
3774  * Fields are initialized based on PCI device information and
3775  * OS network device settings (MTU size).
3776  */
3777 static int igc_sw_init(struct igc_adapter *adapter)
3778 {
3779 	struct net_device *netdev = adapter->netdev;
3780 	struct pci_dev *pdev = adapter->pdev;
3781 	struct igc_hw *hw = &adapter->hw;
3782 
3783 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3784 
3785 	/* set default ring sizes */
3786 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
3787 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
3788 
3789 	/* set default ITR values */
3790 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3791 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3792 
3793 	/* set default work limits */
3794 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3795 
3796 	/* adjust max frame to be at least the size of a standard frame */
3797 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3798 				VLAN_HLEN;
3799 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3800 
3801 	mutex_init(&adapter->nfc_rule_lock);
3802 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
3803 	adapter->nfc_rule_count = 0;
3804 
3805 	spin_lock_init(&adapter->stats64_lock);
3806 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3807 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3808 
3809 	igc_init_queue_configuration(adapter);
3810 
3811 	/* This call may decrease the number of queues */
3812 	if (igc_init_interrupt_scheme(adapter, true)) {
3813 		netdev_err(netdev, "Unable to allocate memory for queues\n");
3814 		return -ENOMEM;
3815 	}
3816 
3817 	/* Explicitly disable IRQ since the NIC can be in any state. */
3818 	igc_irq_disable(adapter);
3819 
3820 	set_bit(__IGC_DOWN, &adapter->state);
3821 
3822 	return 0;
3823 }
3824 
3825 /**
3826  * igc_up - Open the interface and prepare it to handle traffic
3827  * @adapter: board private structure
3828  */
3829 void igc_up(struct igc_adapter *adapter)
3830 {
3831 	struct igc_hw *hw = &adapter->hw;
3832 	int i = 0;
3833 
3834 	/* hardware has been reset, we need to reload some things */
3835 	igc_configure(adapter);
3836 
3837 	clear_bit(__IGC_DOWN, &adapter->state);
3838 
3839 	for (i = 0; i < adapter->num_q_vectors; i++)
3840 		napi_enable(&adapter->q_vector[i]->napi);
3841 
3842 	if (adapter->msix_entries)
3843 		igc_configure_msix(adapter);
3844 	else
3845 		igc_assign_vector(adapter->q_vector[0], 0);
3846 
3847 	/* Clear any pending interrupts. */
3848 	rd32(IGC_ICR);
3849 	igc_irq_enable(adapter);
3850 
3851 	netif_tx_start_all_queues(adapter->netdev);
3852 
3853 	/* start the watchdog. */
3854 	hw->mac.get_link_status = true;
3855 	schedule_work(&adapter->watchdog_task);
3856 }
3857 
3858 /**
3859  * igc_update_stats - Update the board statistics counters
3860  * @adapter: board private structure
3861  */
3862 void igc_update_stats(struct igc_adapter *adapter)
3863 {
3864 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3865 	struct pci_dev *pdev = adapter->pdev;
3866 	struct igc_hw *hw = &adapter->hw;
3867 	u64 _bytes, _packets;
3868 	u64 bytes, packets;
3869 	unsigned int start;
3870 	u32 mpc;
3871 	int i;
3872 
3873 	/* Prevent stats update while adapter is being reset, or if the pci
3874 	 * connection is down.
3875 	 */
3876 	if (adapter->link_speed == 0)
3877 		return;
3878 	if (pci_channel_offline(pdev))
3879 		return;
3880 
3881 	packets = 0;
3882 	bytes = 0;
3883 
3884 	rcu_read_lock();
3885 	for (i = 0; i < adapter->num_rx_queues; i++) {
3886 		struct igc_ring *ring = adapter->rx_ring[i];
3887 		u32 rqdpc = rd32(IGC_RQDPC(i));
3888 
3889 		if (hw->mac.type >= igc_i225)
3890 			wr32(IGC_RQDPC(i), 0);
3891 
3892 		if (rqdpc) {
3893 			ring->rx_stats.drops += rqdpc;
3894 			net_stats->rx_fifo_errors += rqdpc;
3895 		}
3896 
3897 		do {
3898 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3899 			_bytes = ring->rx_stats.bytes;
3900 			_packets = ring->rx_stats.packets;
3901 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3902 		bytes += _bytes;
3903 		packets += _packets;
3904 	}
3905 
3906 	net_stats->rx_bytes = bytes;
3907 	net_stats->rx_packets = packets;
3908 
3909 	packets = 0;
3910 	bytes = 0;
3911 	for (i = 0; i < adapter->num_tx_queues; i++) {
3912 		struct igc_ring *ring = adapter->tx_ring[i];
3913 
3914 		do {
3915 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3916 			_bytes = ring->tx_stats.bytes;
3917 			_packets = ring->tx_stats.packets;
3918 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3919 		bytes += _bytes;
3920 		packets += _packets;
3921 	}
3922 	net_stats->tx_bytes = bytes;
3923 	net_stats->tx_packets = packets;
3924 	rcu_read_unlock();
3925 
3926 	/* read stats registers */
3927 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3928 	adapter->stats.gprc += rd32(IGC_GPRC);
3929 	adapter->stats.gorc += rd32(IGC_GORCL);
3930 	rd32(IGC_GORCH); /* clear GORCL */
3931 	adapter->stats.bprc += rd32(IGC_BPRC);
3932 	adapter->stats.mprc += rd32(IGC_MPRC);
3933 	adapter->stats.roc += rd32(IGC_ROC);
3934 
3935 	adapter->stats.prc64 += rd32(IGC_PRC64);
3936 	adapter->stats.prc127 += rd32(IGC_PRC127);
3937 	adapter->stats.prc255 += rd32(IGC_PRC255);
3938 	adapter->stats.prc511 += rd32(IGC_PRC511);
3939 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
3940 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
3941 	adapter->stats.tlpic += rd32(IGC_TLPIC);
3942 	adapter->stats.rlpic += rd32(IGC_RLPIC);
3943 	adapter->stats.hgptc += rd32(IGC_HGPTC);
3944 
3945 	mpc = rd32(IGC_MPC);
3946 	adapter->stats.mpc += mpc;
3947 	net_stats->rx_fifo_errors += mpc;
3948 	adapter->stats.scc += rd32(IGC_SCC);
3949 	adapter->stats.ecol += rd32(IGC_ECOL);
3950 	adapter->stats.mcc += rd32(IGC_MCC);
3951 	adapter->stats.latecol += rd32(IGC_LATECOL);
3952 	adapter->stats.dc += rd32(IGC_DC);
3953 	adapter->stats.rlec += rd32(IGC_RLEC);
3954 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
3955 	adapter->stats.xontxc += rd32(IGC_XONTXC);
3956 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3957 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3958 	adapter->stats.fcruc += rd32(IGC_FCRUC);
3959 	adapter->stats.gptc += rd32(IGC_GPTC);
3960 	adapter->stats.gotc += rd32(IGC_GOTCL);
3961 	rd32(IGC_GOTCH); /* clear GOTCL */
3962 	adapter->stats.rnbc += rd32(IGC_RNBC);
3963 	adapter->stats.ruc += rd32(IGC_RUC);
3964 	adapter->stats.rfc += rd32(IGC_RFC);
3965 	adapter->stats.rjc += rd32(IGC_RJC);
3966 	adapter->stats.tor += rd32(IGC_TORH);
3967 	adapter->stats.tot += rd32(IGC_TOTH);
3968 	adapter->stats.tpr += rd32(IGC_TPR);
3969 
3970 	adapter->stats.ptc64 += rd32(IGC_PTC64);
3971 	adapter->stats.ptc127 += rd32(IGC_PTC127);
3972 	adapter->stats.ptc255 += rd32(IGC_PTC255);
3973 	adapter->stats.ptc511 += rd32(IGC_PTC511);
3974 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3975 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3976 
3977 	adapter->stats.mptc += rd32(IGC_MPTC);
3978 	adapter->stats.bptc += rd32(IGC_BPTC);
3979 
3980 	adapter->stats.tpt += rd32(IGC_TPT);
3981 	adapter->stats.colc += rd32(IGC_COLC);
3982 	adapter->stats.colc += rd32(IGC_RERC);
3983 
3984 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3985 
3986 	adapter->stats.tsctc += rd32(IGC_TSCTC);
3987 
3988 	adapter->stats.iac += rd32(IGC_IAC);
3989 
3990 	/* Fill out the OS statistics structure */
3991 	net_stats->multicast = adapter->stats.mprc;
3992 	net_stats->collisions = adapter->stats.colc;
3993 
3994 	/* Rx Errors */
3995 
3996 	/* RLEC on some newer hardware can be incorrect so build
3997 	 * our own version based on RUC and ROC
3998 	 */
3999 	net_stats->rx_errors = adapter->stats.rxerrc +
4000 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4001 		adapter->stats.ruc + adapter->stats.roc +
4002 		adapter->stats.cexterr;
4003 	net_stats->rx_length_errors = adapter->stats.ruc +
4004 				      adapter->stats.roc;
4005 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4006 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4007 	net_stats->rx_missed_errors = adapter->stats.mpc;
4008 
4009 	/* Tx Errors */
4010 	net_stats->tx_errors = adapter->stats.ecol +
4011 			       adapter->stats.latecol;
4012 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4013 	net_stats->tx_window_errors = adapter->stats.latecol;
4014 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4015 
4016 	/* Tx Dropped needs to be maintained elsewhere */
4017 
4018 	/* Management Stats */
4019 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4020 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4021 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4022 }
4023 
4024 /**
4025  * igc_down - Close the interface
4026  * @adapter: board private structure
4027  */
4028 void igc_down(struct igc_adapter *adapter)
4029 {
4030 	struct net_device *netdev = adapter->netdev;
4031 	struct igc_hw *hw = &adapter->hw;
4032 	u32 tctl, rctl;
4033 	int i = 0;
4034 
4035 	set_bit(__IGC_DOWN, &adapter->state);
4036 
4037 	igc_ptp_suspend(adapter);
4038 
4039 	/* disable receives in the hardware */
4040 	rctl = rd32(IGC_RCTL);
4041 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4042 	/* flush and sleep below */
4043 
4044 	/* set trans_start so we don't get spurious watchdogs during reset */
4045 	netif_trans_update(netdev);
4046 
4047 	netif_carrier_off(netdev);
4048 	netif_tx_stop_all_queues(netdev);
4049 
4050 	/* disable transmits in the hardware */
4051 	tctl = rd32(IGC_TCTL);
4052 	tctl &= ~IGC_TCTL_EN;
4053 	wr32(IGC_TCTL, tctl);
4054 	/* flush both disables and wait for them to finish */
4055 	wrfl();
4056 	usleep_range(10000, 20000);
4057 
4058 	igc_irq_disable(adapter);
4059 
4060 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4061 
4062 	for (i = 0; i < adapter->num_q_vectors; i++) {
4063 		if (adapter->q_vector[i]) {
4064 			napi_synchronize(&adapter->q_vector[i]->napi);
4065 			napi_disable(&adapter->q_vector[i]->napi);
4066 		}
4067 	}
4068 
4069 	del_timer_sync(&adapter->watchdog_timer);
4070 	del_timer_sync(&adapter->phy_info_timer);
4071 
4072 	/* record the stats before reset*/
4073 	spin_lock(&adapter->stats64_lock);
4074 	igc_update_stats(adapter);
4075 	spin_unlock(&adapter->stats64_lock);
4076 
4077 	adapter->link_speed = 0;
4078 	adapter->link_duplex = 0;
4079 
4080 	if (!pci_channel_offline(adapter->pdev))
4081 		igc_reset(adapter);
4082 
4083 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
4084 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4085 
4086 	igc_clean_all_tx_rings(adapter);
4087 	igc_clean_all_rx_rings(adapter);
4088 }
4089 
4090 void igc_reinit_locked(struct igc_adapter *adapter)
4091 {
4092 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4093 		usleep_range(1000, 2000);
4094 	igc_down(adapter);
4095 	igc_up(adapter);
4096 	clear_bit(__IGC_RESETTING, &adapter->state);
4097 }
4098 
4099 static void igc_reset_task(struct work_struct *work)
4100 {
4101 	struct igc_adapter *adapter;
4102 
4103 	adapter = container_of(work, struct igc_adapter, reset_task);
4104 
4105 	rtnl_lock();
4106 	/* If we're already down or resetting, just bail */
4107 	if (test_bit(__IGC_DOWN, &adapter->state) ||
4108 	    test_bit(__IGC_RESETTING, &adapter->state)) {
4109 		rtnl_unlock();
4110 		return;
4111 	}
4112 
4113 	igc_rings_dump(adapter);
4114 	igc_regs_dump(adapter);
4115 	netdev_err(adapter->netdev, "Reset adapter\n");
4116 	igc_reinit_locked(adapter);
4117 	rtnl_unlock();
4118 }
4119 
4120 /**
4121  * igc_change_mtu - Change the Maximum Transfer Unit
4122  * @netdev: network interface device structure
4123  * @new_mtu: new value for maximum frame size
4124  *
4125  * Returns 0 on success, negative on failure
4126  */
4127 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4128 {
4129 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4130 	struct igc_adapter *adapter = netdev_priv(netdev);
4131 
4132 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4133 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4134 		return -EINVAL;
4135 	}
4136 
4137 	/* adjust max frame to be at least the size of a standard frame */
4138 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4139 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4140 
4141 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4142 		usleep_range(1000, 2000);
4143 
4144 	/* igc_down has a dependency on max_frame_size */
4145 	adapter->max_frame_size = max_frame;
4146 
4147 	if (netif_running(netdev))
4148 		igc_down(adapter);
4149 
4150 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4151 	netdev->mtu = new_mtu;
4152 
4153 	if (netif_running(netdev))
4154 		igc_up(adapter);
4155 	else
4156 		igc_reset(adapter);
4157 
4158 	clear_bit(__IGC_RESETTING, &adapter->state);
4159 
4160 	return 0;
4161 }
4162 
4163 /**
4164  * igc_get_stats64 - Get System Network Statistics
4165  * @netdev: network interface device structure
4166  * @stats: rtnl_link_stats64 pointer
4167  *
4168  * Returns the address of the device statistics structure.
4169  * The statistics are updated here and also from the timer callback.
4170  */
4171 static void igc_get_stats64(struct net_device *netdev,
4172 			    struct rtnl_link_stats64 *stats)
4173 {
4174 	struct igc_adapter *adapter = netdev_priv(netdev);
4175 
4176 	spin_lock(&adapter->stats64_lock);
4177 	if (!test_bit(__IGC_RESETTING, &adapter->state))
4178 		igc_update_stats(adapter);
4179 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4180 	spin_unlock(&adapter->stats64_lock);
4181 }
4182 
4183 static netdev_features_t igc_fix_features(struct net_device *netdev,
4184 					  netdev_features_t features)
4185 {
4186 	/* Since there is no support for separate Rx/Tx vlan accel
4187 	 * enable/disable make sure Tx flag is always in same state as Rx.
4188 	 */
4189 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4190 		features |= NETIF_F_HW_VLAN_CTAG_TX;
4191 	else
4192 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4193 
4194 	return features;
4195 }
4196 
4197 static int igc_set_features(struct net_device *netdev,
4198 			    netdev_features_t features)
4199 {
4200 	netdev_features_t changed = netdev->features ^ features;
4201 	struct igc_adapter *adapter = netdev_priv(netdev);
4202 
4203 	/* Add VLAN support */
4204 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4205 		return 0;
4206 
4207 	if (!(features & NETIF_F_NTUPLE))
4208 		igc_flush_nfc_rules(adapter);
4209 
4210 	netdev->features = features;
4211 
4212 	if (netif_running(netdev))
4213 		igc_reinit_locked(adapter);
4214 	else
4215 		igc_reset(adapter);
4216 
4217 	return 1;
4218 }
4219 
4220 static netdev_features_t
4221 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4222 		   netdev_features_t features)
4223 {
4224 	unsigned int network_hdr_len, mac_hdr_len;
4225 
4226 	/* Make certain the headers can be described by a context descriptor */
4227 	mac_hdr_len = skb_network_header(skb) - skb->data;
4228 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4229 		return features & ~(NETIF_F_HW_CSUM |
4230 				    NETIF_F_SCTP_CRC |
4231 				    NETIF_F_HW_VLAN_CTAG_TX |
4232 				    NETIF_F_TSO |
4233 				    NETIF_F_TSO6);
4234 
4235 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4236 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4237 		return features & ~(NETIF_F_HW_CSUM |
4238 				    NETIF_F_SCTP_CRC |
4239 				    NETIF_F_TSO |
4240 				    NETIF_F_TSO6);
4241 
4242 	/* We can only support IPv4 TSO in tunnels if we can mangle the
4243 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4244 	 */
4245 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4246 		features &= ~NETIF_F_TSO;
4247 
4248 	return features;
4249 }
4250 
4251 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4252 {
4253 	u32 ack, tsauxc, sec, nsec, tsicr;
4254 	struct igc_hw *hw = &adapter->hw;
4255 	struct ptp_clock_event event;
4256 	struct timespec64 ts;
4257 
4258 	tsicr = rd32(IGC_TSICR);
4259 	ack = 0;
4260 
4261 	if (tsicr & IGC_TSICR_SYS_WRAP) {
4262 		event.type = PTP_CLOCK_PPS;
4263 		if (adapter->ptp_caps.pps)
4264 			ptp_clock_event(adapter->ptp_clock, &event);
4265 		ack |= IGC_TSICR_SYS_WRAP;
4266 	}
4267 
4268 	if (tsicr & IGC_TSICR_TXTS) {
4269 		/* retrieve hardware timestamp */
4270 		schedule_work(&adapter->ptp_tx_work);
4271 		ack |= IGC_TSICR_TXTS;
4272 	}
4273 
4274 	if (tsicr & IGC_TSICR_TT0) {
4275 		spin_lock(&adapter->tmreg_lock);
4276 		ts = timespec64_add(adapter->perout[0].start,
4277 				    adapter->perout[0].period);
4278 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4279 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
4280 		tsauxc = rd32(IGC_TSAUXC);
4281 		tsauxc |= IGC_TSAUXC_EN_TT0;
4282 		wr32(IGC_TSAUXC, tsauxc);
4283 		adapter->perout[0].start = ts;
4284 		spin_unlock(&adapter->tmreg_lock);
4285 		ack |= IGC_TSICR_TT0;
4286 	}
4287 
4288 	if (tsicr & IGC_TSICR_TT1) {
4289 		spin_lock(&adapter->tmreg_lock);
4290 		ts = timespec64_add(adapter->perout[1].start,
4291 				    adapter->perout[1].period);
4292 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4293 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
4294 		tsauxc = rd32(IGC_TSAUXC);
4295 		tsauxc |= IGC_TSAUXC_EN_TT1;
4296 		wr32(IGC_TSAUXC, tsauxc);
4297 		adapter->perout[1].start = ts;
4298 		spin_unlock(&adapter->tmreg_lock);
4299 		ack |= IGC_TSICR_TT1;
4300 	}
4301 
4302 	if (tsicr & IGC_TSICR_AUTT0) {
4303 		nsec = rd32(IGC_AUXSTMPL0);
4304 		sec  = rd32(IGC_AUXSTMPH0);
4305 		event.type = PTP_CLOCK_EXTTS;
4306 		event.index = 0;
4307 		event.timestamp = sec * NSEC_PER_SEC + nsec;
4308 		ptp_clock_event(adapter->ptp_clock, &event);
4309 		ack |= IGC_TSICR_AUTT0;
4310 	}
4311 
4312 	if (tsicr & IGC_TSICR_AUTT1) {
4313 		nsec = rd32(IGC_AUXSTMPL1);
4314 		sec  = rd32(IGC_AUXSTMPH1);
4315 		event.type = PTP_CLOCK_EXTTS;
4316 		event.index = 1;
4317 		event.timestamp = sec * NSEC_PER_SEC + nsec;
4318 		ptp_clock_event(adapter->ptp_clock, &event);
4319 		ack |= IGC_TSICR_AUTT1;
4320 	}
4321 
4322 	/* acknowledge the interrupts */
4323 	wr32(IGC_TSICR, ack);
4324 }
4325 
4326 /**
4327  * igc_msix_other - msix other interrupt handler
4328  * @irq: interrupt number
4329  * @data: pointer to a q_vector
4330  */
4331 static irqreturn_t igc_msix_other(int irq, void *data)
4332 {
4333 	struct igc_adapter *adapter = data;
4334 	struct igc_hw *hw = &adapter->hw;
4335 	u32 icr = rd32(IGC_ICR);
4336 
4337 	/* reading ICR causes bit 31 of EICR to be cleared */
4338 	if (icr & IGC_ICR_DRSTA)
4339 		schedule_work(&adapter->reset_task);
4340 
4341 	if (icr & IGC_ICR_DOUTSYNC) {
4342 		/* HW is reporting DMA is out of sync */
4343 		adapter->stats.doosync++;
4344 	}
4345 
4346 	if (icr & IGC_ICR_LSC) {
4347 		hw->mac.get_link_status = true;
4348 		/* guard against interrupt when we're going down */
4349 		if (!test_bit(__IGC_DOWN, &adapter->state))
4350 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4351 	}
4352 
4353 	if (icr & IGC_ICR_TS)
4354 		igc_tsync_interrupt(adapter);
4355 
4356 	wr32(IGC_EIMS, adapter->eims_other);
4357 
4358 	return IRQ_HANDLED;
4359 }
4360 
4361 static void igc_write_itr(struct igc_q_vector *q_vector)
4362 {
4363 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4364 
4365 	if (!q_vector->set_itr)
4366 		return;
4367 
4368 	if (!itr_val)
4369 		itr_val = IGC_ITR_VAL_MASK;
4370 
4371 	itr_val |= IGC_EITR_CNT_IGNR;
4372 
4373 	writel(itr_val, q_vector->itr_register);
4374 	q_vector->set_itr = 0;
4375 }
4376 
4377 static irqreturn_t igc_msix_ring(int irq, void *data)
4378 {
4379 	struct igc_q_vector *q_vector = data;
4380 
4381 	/* Write the ITR value calculated from the previous interrupt. */
4382 	igc_write_itr(q_vector);
4383 
4384 	napi_schedule(&q_vector->napi);
4385 
4386 	return IRQ_HANDLED;
4387 }
4388 
4389 /**
4390  * igc_request_msix - Initialize MSI-X interrupts
4391  * @adapter: Pointer to adapter structure
4392  *
4393  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4394  * kernel.
4395  */
4396 static int igc_request_msix(struct igc_adapter *adapter)
4397 {
4398 	int i = 0, err = 0, vector = 0, free_vector = 0;
4399 	struct net_device *netdev = adapter->netdev;
4400 
4401 	err = request_irq(adapter->msix_entries[vector].vector,
4402 			  &igc_msix_other, 0, netdev->name, adapter);
4403 	if (err)
4404 		goto err_out;
4405 
4406 	for (i = 0; i < adapter->num_q_vectors; i++) {
4407 		struct igc_q_vector *q_vector = adapter->q_vector[i];
4408 
4409 		vector++;
4410 
4411 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4412 
4413 		if (q_vector->rx.ring && q_vector->tx.ring)
4414 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4415 				q_vector->rx.ring->queue_index);
4416 		else if (q_vector->tx.ring)
4417 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4418 				q_vector->tx.ring->queue_index);
4419 		else if (q_vector->rx.ring)
4420 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4421 				q_vector->rx.ring->queue_index);
4422 		else
4423 			sprintf(q_vector->name, "%s-unused", netdev->name);
4424 
4425 		err = request_irq(adapter->msix_entries[vector].vector,
4426 				  igc_msix_ring, 0, q_vector->name,
4427 				  q_vector);
4428 		if (err)
4429 			goto err_free;
4430 	}
4431 
4432 	igc_configure_msix(adapter);
4433 	return 0;
4434 
4435 err_free:
4436 	/* free already assigned IRQs */
4437 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4438 
4439 	vector--;
4440 	for (i = 0; i < vector; i++) {
4441 		free_irq(adapter->msix_entries[free_vector++].vector,
4442 			 adapter->q_vector[i]);
4443 	}
4444 err_out:
4445 	return err;
4446 }
4447 
4448 /**
4449  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4450  * @adapter: Pointer to adapter structure
4451  *
4452  * This function resets the device so that it has 0 rx queues, tx queues, and
4453  * MSI-X interrupts allocated.
4454  */
4455 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4456 {
4457 	igc_free_q_vectors(adapter);
4458 	igc_reset_interrupt_capability(adapter);
4459 }
4460 
4461 /* Need to wait a few seconds after link up to get diagnostic information from
4462  * the phy
4463  */
4464 static void igc_update_phy_info(struct timer_list *t)
4465 {
4466 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4467 
4468 	igc_get_phy_info(&adapter->hw);
4469 }
4470 
4471 /**
4472  * igc_has_link - check shared code for link and determine up/down
4473  * @adapter: pointer to driver private info
4474  */
4475 bool igc_has_link(struct igc_adapter *adapter)
4476 {
4477 	struct igc_hw *hw = &adapter->hw;
4478 	bool link_active = false;
4479 
4480 	/* get_link_status is set on LSC (link status) interrupt or
4481 	 * rx sequence error interrupt.  get_link_status will stay
4482 	 * false until the igc_check_for_link establishes link
4483 	 * for copper adapters ONLY
4484 	 */
4485 	switch (hw->phy.media_type) {
4486 	case igc_media_type_copper:
4487 		if (!hw->mac.get_link_status)
4488 			return true;
4489 		hw->mac.ops.check_for_link(hw);
4490 		link_active = !hw->mac.get_link_status;
4491 		break;
4492 	default:
4493 	case igc_media_type_unknown:
4494 		break;
4495 	}
4496 
4497 	if (hw->mac.type == igc_i225 &&
4498 	    hw->phy.id == I225_I_PHY_ID) {
4499 		if (!netif_carrier_ok(adapter->netdev)) {
4500 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4501 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4502 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4503 			adapter->link_check_timeout = jiffies;
4504 		}
4505 	}
4506 
4507 	return link_active;
4508 }
4509 
4510 /**
4511  * igc_watchdog - Timer Call-back
4512  * @t: timer for the watchdog
4513  */
4514 static void igc_watchdog(struct timer_list *t)
4515 {
4516 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4517 	/* Do the rest outside of interrupt context */
4518 	schedule_work(&adapter->watchdog_task);
4519 }
4520 
4521 static void igc_watchdog_task(struct work_struct *work)
4522 {
4523 	struct igc_adapter *adapter = container_of(work,
4524 						   struct igc_adapter,
4525 						   watchdog_task);
4526 	struct net_device *netdev = adapter->netdev;
4527 	struct igc_hw *hw = &adapter->hw;
4528 	struct igc_phy_info *phy = &hw->phy;
4529 	u16 phy_data, retry_count = 20;
4530 	u32 link;
4531 	int i;
4532 
4533 	link = igc_has_link(adapter);
4534 
4535 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4536 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4537 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4538 		else
4539 			link = false;
4540 	}
4541 
4542 	if (link) {
4543 		/* Cancel scheduled suspend requests. */
4544 		pm_runtime_resume(netdev->dev.parent);
4545 
4546 		if (!netif_carrier_ok(netdev)) {
4547 			u32 ctrl;
4548 
4549 			hw->mac.ops.get_speed_and_duplex(hw,
4550 							 &adapter->link_speed,
4551 							 &adapter->link_duplex);
4552 
4553 			ctrl = rd32(IGC_CTRL);
4554 			/* Link status message must follow this format */
4555 			netdev_info(netdev,
4556 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4557 				    adapter->link_speed,
4558 				    adapter->link_duplex == FULL_DUPLEX ?
4559 				    "Full" : "Half",
4560 				    (ctrl & IGC_CTRL_TFCE) &&
4561 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4562 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4563 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4564 
4565 			/* disable EEE if enabled */
4566 			if ((adapter->flags & IGC_FLAG_EEE) &&
4567 			    adapter->link_duplex == HALF_DUPLEX) {
4568 				netdev_info(netdev,
4569 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4570 				adapter->hw.dev_spec._base.eee_enable = false;
4571 				adapter->flags &= ~IGC_FLAG_EEE;
4572 			}
4573 
4574 			/* check if SmartSpeed worked */
4575 			igc_check_downshift(hw);
4576 			if (phy->speed_downgraded)
4577 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4578 
4579 			/* adjust timeout factor according to speed/duplex */
4580 			adapter->tx_timeout_factor = 1;
4581 			switch (adapter->link_speed) {
4582 			case SPEED_10:
4583 				adapter->tx_timeout_factor = 14;
4584 				break;
4585 			case SPEED_100:
4586 				/* maybe add some timeout factor ? */
4587 				break;
4588 			}
4589 
4590 			if (adapter->link_speed != SPEED_1000)
4591 				goto no_wait;
4592 
4593 			/* wait for Remote receiver status OK */
4594 retry_read_status:
4595 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4596 					      &phy_data)) {
4597 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4598 				    retry_count) {
4599 					msleep(100);
4600 					retry_count--;
4601 					goto retry_read_status;
4602 				} else if (!retry_count) {
4603 					netdev_err(netdev, "exceed max 2 second\n");
4604 				}
4605 			} else {
4606 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
4607 			}
4608 no_wait:
4609 			netif_carrier_on(netdev);
4610 
4611 			/* link state has changed, schedule phy info update */
4612 			if (!test_bit(__IGC_DOWN, &adapter->state))
4613 				mod_timer(&adapter->phy_info_timer,
4614 					  round_jiffies(jiffies + 2 * HZ));
4615 		}
4616 	} else {
4617 		if (netif_carrier_ok(netdev)) {
4618 			adapter->link_speed = 0;
4619 			adapter->link_duplex = 0;
4620 
4621 			/* Links status message must follow this format */
4622 			netdev_info(netdev, "NIC Link is Down\n");
4623 			netif_carrier_off(netdev);
4624 
4625 			/* link state has changed, schedule phy info update */
4626 			if (!test_bit(__IGC_DOWN, &adapter->state))
4627 				mod_timer(&adapter->phy_info_timer,
4628 					  round_jiffies(jiffies + 2 * HZ));
4629 
4630 			/* link is down, time to check for alternate media */
4631 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4632 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4633 					schedule_work(&adapter->reset_task);
4634 					/* return immediately */
4635 					return;
4636 				}
4637 			}
4638 			pm_schedule_suspend(netdev->dev.parent,
4639 					    MSEC_PER_SEC * 5);
4640 
4641 		/* also check for alternate media here */
4642 		} else if (!netif_carrier_ok(netdev) &&
4643 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4644 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4645 				schedule_work(&adapter->reset_task);
4646 				/* return immediately */
4647 				return;
4648 			}
4649 		}
4650 	}
4651 
4652 	spin_lock(&adapter->stats64_lock);
4653 	igc_update_stats(adapter);
4654 	spin_unlock(&adapter->stats64_lock);
4655 
4656 	for (i = 0; i < adapter->num_tx_queues; i++) {
4657 		struct igc_ring *tx_ring = adapter->tx_ring[i];
4658 
4659 		if (!netif_carrier_ok(netdev)) {
4660 			/* We've lost link, so the controller stops DMA,
4661 			 * but we've got queued Tx work that's never going
4662 			 * to get done, so reset controller to flush Tx.
4663 			 * (Do the reset outside of interrupt context).
4664 			 */
4665 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4666 				adapter->tx_timeout_count++;
4667 				schedule_work(&adapter->reset_task);
4668 				/* return immediately since reset is imminent */
4669 				return;
4670 			}
4671 		}
4672 
4673 		/* Force detection of hung controller every watchdog period */
4674 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4675 	}
4676 
4677 	/* Cause software interrupt to ensure Rx ring is cleaned */
4678 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4679 		u32 eics = 0;
4680 
4681 		for (i = 0; i < adapter->num_q_vectors; i++)
4682 			eics |= adapter->q_vector[i]->eims_value;
4683 		wr32(IGC_EICS, eics);
4684 	} else {
4685 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
4686 	}
4687 
4688 	igc_ptp_tx_hang(adapter);
4689 
4690 	/* Reset the timer */
4691 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4692 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4693 			mod_timer(&adapter->watchdog_timer,
4694 				  round_jiffies(jiffies +  HZ));
4695 		else
4696 			mod_timer(&adapter->watchdog_timer,
4697 				  round_jiffies(jiffies + 2 * HZ));
4698 	}
4699 }
4700 
4701 /**
4702  * igc_intr_msi - Interrupt Handler
4703  * @irq: interrupt number
4704  * @data: pointer to a network interface device structure
4705  */
4706 static irqreturn_t igc_intr_msi(int irq, void *data)
4707 {
4708 	struct igc_adapter *adapter = data;
4709 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4710 	struct igc_hw *hw = &adapter->hw;
4711 	/* read ICR disables interrupts using IAM */
4712 	u32 icr = rd32(IGC_ICR);
4713 
4714 	igc_write_itr(q_vector);
4715 
4716 	if (icr & IGC_ICR_DRSTA)
4717 		schedule_work(&adapter->reset_task);
4718 
4719 	if (icr & IGC_ICR_DOUTSYNC) {
4720 		/* HW is reporting DMA is out of sync */
4721 		adapter->stats.doosync++;
4722 	}
4723 
4724 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4725 		hw->mac.get_link_status = true;
4726 		if (!test_bit(__IGC_DOWN, &adapter->state))
4727 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4728 	}
4729 
4730 	napi_schedule(&q_vector->napi);
4731 
4732 	return IRQ_HANDLED;
4733 }
4734 
4735 /**
4736  * igc_intr - Legacy Interrupt Handler
4737  * @irq: interrupt number
4738  * @data: pointer to a network interface device structure
4739  */
4740 static irqreturn_t igc_intr(int irq, void *data)
4741 {
4742 	struct igc_adapter *adapter = data;
4743 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4744 	struct igc_hw *hw = &adapter->hw;
4745 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4746 	 * need for the IMC write
4747 	 */
4748 	u32 icr = rd32(IGC_ICR);
4749 
4750 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4751 	 * not set, then the adapter didn't send an interrupt
4752 	 */
4753 	if (!(icr & IGC_ICR_INT_ASSERTED))
4754 		return IRQ_NONE;
4755 
4756 	igc_write_itr(q_vector);
4757 
4758 	if (icr & IGC_ICR_DRSTA)
4759 		schedule_work(&adapter->reset_task);
4760 
4761 	if (icr & IGC_ICR_DOUTSYNC) {
4762 		/* HW is reporting DMA is out of sync */
4763 		adapter->stats.doosync++;
4764 	}
4765 
4766 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4767 		hw->mac.get_link_status = true;
4768 		/* guard against interrupt when we're going down */
4769 		if (!test_bit(__IGC_DOWN, &adapter->state))
4770 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4771 	}
4772 
4773 	napi_schedule(&q_vector->napi);
4774 
4775 	return IRQ_HANDLED;
4776 }
4777 
4778 static void igc_free_irq(struct igc_adapter *adapter)
4779 {
4780 	if (adapter->msix_entries) {
4781 		int vector = 0, i;
4782 
4783 		free_irq(adapter->msix_entries[vector++].vector, adapter);
4784 
4785 		for (i = 0; i < adapter->num_q_vectors; i++)
4786 			free_irq(adapter->msix_entries[vector++].vector,
4787 				 adapter->q_vector[i]);
4788 	} else {
4789 		free_irq(adapter->pdev->irq, adapter);
4790 	}
4791 }
4792 
4793 /**
4794  * igc_request_irq - initialize interrupts
4795  * @adapter: Pointer to adapter structure
4796  *
4797  * Attempts to configure interrupts using the best available
4798  * capabilities of the hardware and kernel.
4799  */
4800 static int igc_request_irq(struct igc_adapter *adapter)
4801 {
4802 	struct net_device *netdev = adapter->netdev;
4803 	struct pci_dev *pdev = adapter->pdev;
4804 	int err = 0;
4805 
4806 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4807 		err = igc_request_msix(adapter);
4808 		if (!err)
4809 			goto request_done;
4810 		/* fall back to MSI */
4811 		igc_free_all_tx_resources(adapter);
4812 		igc_free_all_rx_resources(adapter);
4813 
4814 		igc_clear_interrupt_scheme(adapter);
4815 		err = igc_init_interrupt_scheme(adapter, false);
4816 		if (err)
4817 			goto request_done;
4818 		igc_setup_all_tx_resources(adapter);
4819 		igc_setup_all_rx_resources(adapter);
4820 		igc_configure(adapter);
4821 	}
4822 
4823 	igc_assign_vector(adapter->q_vector[0], 0);
4824 
4825 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
4826 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
4827 				  netdev->name, adapter);
4828 		if (!err)
4829 			goto request_done;
4830 
4831 		/* fall back to legacy interrupts */
4832 		igc_reset_interrupt_capability(adapter);
4833 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
4834 	}
4835 
4836 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4837 			  netdev->name, adapter);
4838 
4839 	if (err)
4840 		netdev_err(netdev, "Error %d getting interrupt\n", err);
4841 
4842 request_done:
4843 	return err;
4844 }
4845 
4846 /**
4847  * __igc_open - Called when a network interface is made active
4848  * @netdev: network interface device structure
4849  * @resuming: boolean indicating if the device is resuming
4850  *
4851  * Returns 0 on success, negative value on failure
4852  *
4853  * The open entry point is called when a network interface is made
4854  * active by the system (IFF_UP).  At this point all resources needed
4855  * for transmit and receive operations are allocated, the interrupt
4856  * handler is registered with the OS, the watchdog timer is started,
4857  * and the stack is notified that the interface is ready.
4858  */
4859 static int __igc_open(struct net_device *netdev, bool resuming)
4860 {
4861 	struct igc_adapter *adapter = netdev_priv(netdev);
4862 	struct pci_dev *pdev = adapter->pdev;
4863 	struct igc_hw *hw = &adapter->hw;
4864 	int err = 0;
4865 	int i = 0;
4866 
4867 	/* disallow open during test */
4868 
4869 	if (test_bit(__IGC_TESTING, &adapter->state)) {
4870 		WARN_ON(resuming);
4871 		return -EBUSY;
4872 	}
4873 
4874 	if (!resuming)
4875 		pm_runtime_get_sync(&pdev->dev);
4876 
4877 	netif_carrier_off(netdev);
4878 
4879 	/* allocate transmit descriptors */
4880 	err = igc_setup_all_tx_resources(adapter);
4881 	if (err)
4882 		goto err_setup_tx;
4883 
4884 	/* allocate receive descriptors */
4885 	err = igc_setup_all_rx_resources(adapter);
4886 	if (err)
4887 		goto err_setup_rx;
4888 
4889 	igc_power_up_link(adapter);
4890 
4891 	igc_configure(adapter);
4892 
4893 	err = igc_request_irq(adapter);
4894 	if (err)
4895 		goto err_req_irq;
4896 
4897 	/* Notify the stack of the actual queue counts. */
4898 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4899 	if (err)
4900 		goto err_set_queues;
4901 
4902 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4903 	if (err)
4904 		goto err_set_queues;
4905 
4906 	clear_bit(__IGC_DOWN, &adapter->state);
4907 
4908 	for (i = 0; i < adapter->num_q_vectors; i++)
4909 		napi_enable(&adapter->q_vector[i]->napi);
4910 
4911 	/* Clear any pending interrupts. */
4912 	rd32(IGC_ICR);
4913 	igc_irq_enable(adapter);
4914 
4915 	if (!resuming)
4916 		pm_runtime_put(&pdev->dev);
4917 
4918 	netif_tx_start_all_queues(netdev);
4919 
4920 	/* start the watchdog. */
4921 	hw->mac.get_link_status = true;
4922 	schedule_work(&adapter->watchdog_task);
4923 
4924 	return IGC_SUCCESS;
4925 
4926 err_set_queues:
4927 	igc_free_irq(adapter);
4928 err_req_irq:
4929 	igc_release_hw_control(adapter);
4930 	igc_power_down_phy_copper_base(&adapter->hw);
4931 	igc_free_all_rx_resources(adapter);
4932 err_setup_rx:
4933 	igc_free_all_tx_resources(adapter);
4934 err_setup_tx:
4935 	igc_reset(adapter);
4936 	if (!resuming)
4937 		pm_runtime_put(&pdev->dev);
4938 
4939 	return err;
4940 }
4941 
4942 int igc_open(struct net_device *netdev)
4943 {
4944 	return __igc_open(netdev, false);
4945 }
4946 
4947 /**
4948  * __igc_close - Disables a network interface
4949  * @netdev: network interface device structure
4950  * @suspending: boolean indicating the device is suspending
4951  *
4952  * Returns 0, this is not allowed to fail
4953  *
4954  * The close entry point is called when an interface is de-activated
4955  * by the OS.  The hardware is still under the driver's control, but
4956  * needs to be disabled.  A global MAC reset is issued to stop the
4957  * hardware, and all transmit and receive resources are freed.
4958  */
4959 static int __igc_close(struct net_device *netdev, bool suspending)
4960 {
4961 	struct igc_adapter *adapter = netdev_priv(netdev);
4962 	struct pci_dev *pdev = adapter->pdev;
4963 
4964 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4965 
4966 	if (!suspending)
4967 		pm_runtime_get_sync(&pdev->dev);
4968 
4969 	igc_down(adapter);
4970 
4971 	igc_release_hw_control(adapter);
4972 
4973 	igc_free_irq(adapter);
4974 
4975 	igc_free_all_tx_resources(adapter);
4976 	igc_free_all_rx_resources(adapter);
4977 
4978 	if (!suspending)
4979 		pm_runtime_put_sync(&pdev->dev);
4980 
4981 	return 0;
4982 }
4983 
4984 int igc_close(struct net_device *netdev)
4985 {
4986 	if (netif_device_present(netdev) || netdev->dismantle)
4987 		return __igc_close(netdev, false);
4988 	return 0;
4989 }
4990 
4991 /**
4992  * igc_ioctl - Access the hwtstamp interface
4993  * @netdev: network interface device structure
4994  * @ifr: interface request data
4995  * @cmd: ioctl command
4996  **/
4997 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4998 {
4999 	switch (cmd) {
5000 	case SIOCGHWTSTAMP:
5001 		return igc_ptp_get_ts_config(netdev, ifr);
5002 	case SIOCSHWTSTAMP:
5003 		return igc_ptp_set_ts_config(netdev, ifr);
5004 	default:
5005 		return -EOPNOTSUPP;
5006 	}
5007 }
5008 
5009 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5010 				      bool enable)
5011 {
5012 	struct igc_ring *ring;
5013 	int i;
5014 
5015 	if (queue < 0 || queue >= adapter->num_tx_queues)
5016 		return -EINVAL;
5017 
5018 	ring = adapter->tx_ring[queue];
5019 	ring->launchtime_enable = enable;
5020 
5021 	if (adapter->base_time)
5022 		return 0;
5023 
5024 	adapter->cycle_time = NSEC_PER_SEC;
5025 
5026 	for (i = 0; i < adapter->num_tx_queues; i++) {
5027 		ring = adapter->tx_ring[i];
5028 		ring->start_time = 0;
5029 		ring->end_time = NSEC_PER_SEC;
5030 	}
5031 
5032 	return 0;
5033 }
5034 
5035 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5036 {
5037 	struct timespec64 b;
5038 
5039 	b = ktime_to_timespec64(base_time);
5040 
5041 	return timespec64_compare(now, &b) > 0;
5042 }
5043 
5044 static bool validate_schedule(struct igc_adapter *adapter,
5045 			      const struct tc_taprio_qopt_offload *qopt)
5046 {
5047 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
5048 	struct timespec64 now;
5049 	size_t n;
5050 
5051 	if (qopt->cycle_time_extension)
5052 		return false;
5053 
5054 	igc_ptp_read(adapter, &now);
5055 
5056 	/* If we program the controller's BASET registers with a time
5057 	 * in the future, it will hold all the packets until that
5058 	 * time, causing a lot of TX Hangs, so to avoid that, we
5059 	 * reject schedules that would start in the future.
5060 	 */
5061 	if (!is_base_time_past(qopt->base_time, &now))
5062 		return false;
5063 
5064 	for (n = 0; n < qopt->num_entries; n++) {
5065 		const struct tc_taprio_sched_entry *e;
5066 		int i;
5067 
5068 		e = &qopt->entries[n];
5069 
5070 		/* i225 only supports "global" frame preemption
5071 		 * settings.
5072 		 */
5073 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
5074 			return false;
5075 
5076 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5077 			if (e->gate_mask & BIT(i))
5078 				queue_uses[i]++;
5079 
5080 			if (queue_uses[i] > 1)
5081 				return false;
5082 		}
5083 	}
5084 
5085 	return true;
5086 }
5087 
5088 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5089 				     struct tc_etf_qopt_offload *qopt)
5090 {
5091 	struct igc_hw *hw = &adapter->hw;
5092 	int err;
5093 
5094 	if (hw->mac.type != igc_i225)
5095 		return -EOPNOTSUPP;
5096 
5097 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5098 	if (err)
5099 		return err;
5100 
5101 	return igc_tsn_offload_apply(adapter);
5102 }
5103 
5104 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5105 				 struct tc_taprio_qopt_offload *qopt)
5106 {
5107 	u32 start_time = 0, end_time = 0;
5108 	size_t n;
5109 
5110 	if (!qopt->enable) {
5111 		adapter->base_time = 0;
5112 		return 0;
5113 	}
5114 
5115 	if (adapter->base_time)
5116 		return -EALREADY;
5117 
5118 	if (!validate_schedule(adapter, qopt))
5119 		return -EINVAL;
5120 
5121 	adapter->cycle_time = qopt->cycle_time;
5122 	adapter->base_time = qopt->base_time;
5123 
5124 	/* FIXME: be a little smarter about cases when the gate for a
5125 	 * queue stays open for more than one entry.
5126 	 */
5127 	for (n = 0; n < qopt->num_entries; n++) {
5128 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
5129 		int i;
5130 
5131 		end_time += e->interval;
5132 
5133 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5134 			struct igc_ring *ring = adapter->tx_ring[i];
5135 
5136 			if (!(e->gate_mask & BIT(i)))
5137 				continue;
5138 
5139 			ring->start_time = start_time;
5140 			ring->end_time = end_time;
5141 		}
5142 
5143 		start_time += e->interval;
5144 	}
5145 
5146 	return 0;
5147 }
5148 
5149 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5150 					 struct tc_taprio_qopt_offload *qopt)
5151 {
5152 	struct igc_hw *hw = &adapter->hw;
5153 	int err;
5154 
5155 	if (hw->mac.type != igc_i225)
5156 		return -EOPNOTSUPP;
5157 
5158 	err = igc_save_qbv_schedule(adapter, qopt);
5159 	if (err)
5160 		return err;
5161 
5162 	return igc_tsn_offload_apply(adapter);
5163 }
5164 
5165 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5166 			void *type_data)
5167 {
5168 	struct igc_adapter *adapter = netdev_priv(dev);
5169 
5170 	switch (type) {
5171 	case TC_SETUP_QDISC_TAPRIO:
5172 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5173 
5174 	case TC_SETUP_QDISC_ETF:
5175 		return igc_tsn_enable_launchtime(adapter, type_data);
5176 
5177 	default:
5178 		return -EOPNOTSUPP;
5179 	}
5180 }
5181 
5182 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5183 {
5184 	struct igc_adapter *adapter = netdev_priv(dev);
5185 
5186 	switch (bpf->command) {
5187 	case XDP_SETUP_PROG:
5188 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5189 	default:
5190 		return -EOPNOTSUPP;
5191 	}
5192 }
5193 
5194 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5195 			struct xdp_frame **frames, u32 flags)
5196 {
5197 	struct igc_adapter *adapter = netdev_priv(dev);
5198 	int cpu = smp_processor_id();
5199 	struct netdev_queue *nq;
5200 	struct igc_ring *ring;
5201 	int i, drops;
5202 
5203 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5204 		return -ENETDOWN;
5205 
5206 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5207 		return -EINVAL;
5208 
5209 	ring = igc_xdp_get_tx_ring(adapter, cpu);
5210 	nq = txring_txq(ring);
5211 
5212 	__netif_tx_lock(nq, cpu);
5213 
5214 	drops = 0;
5215 	for (i = 0; i < num_frames; i++) {
5216 		int err;
5217 		struct xdp_frame *xdpf = frames[i];
5218 
5219 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
5220 		if (err) {
5221 			xdp_return_frame_rx_napi(xdpf);
5222 			drops++;
5223 		}
5224 	}
5225 
5226 	if (flags & XDP_XMIT_FLUSH)
5227 		igc_flush_tx_descriptors(ring);
5228 
5229 	__netif_tx_unlock(nq);
5230 
5231 	return num_frames - drops;
5232 }
5233 
5234 static const struct net_device_ops igc_netdev_ops = {
5235 	.ndo_open		= igc_open,
5236 	.ndo_stop		= igc_close,
5237 	.ndo_start_xmit		= igc_xmit_frame,
5238 	.ndo_set_rx_mode	= igc_set_rx_mode,
5239 	.ndo_set_mac_address	= igc_set_mac,
5240 	.ndo_change_mtu		= igc_change_mtu,
5241 	.ndo_get_stats64	= igc_get_stats64,
5242 	.ndo_fix_features	= igc_fix_features,
5243 	.ndo_set_features	= igc_set_features,
5244 	.ndo_features_check	= igc_features_check,
5245 	.ndo_do_ioctl		= igc_ioctl,
5246 	.ndo_setup_tc		= igc_setup_tc,
5247 	.ndo_bpf		= igc_bpf,
5248 	.ndo_xdp_xmit		= igc_xdp_xmit,
5249 };
5250 
5251 /* PCIe configuration access */
5252 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5253 {
5254 	struct igc_adapter *adapter = hw->back;
5255 
5256 	pci_read_config_word(adapter->pdev, reg, value);
5257 }
5258 
5259 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5260 {
5261 	struct igc_adapter *adapter = hw->back;
5262 
5263 	pci_write_config_word(adapter->pdev, reg, *value);
5264 }
5265 
5266 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5267 {
5268 	struct igc_adapter *adapter = hw->back;
5269 
5270 	if (!pci_is_pcie(adapter->pdev))
5271 		return -IGC_ERR_CONFIG;
5272 
5273 	pcie_capability_read_word(adapter->pdev, reg, value);
5274 
5275 	return IGC_SUCCESS;
5276 }
5277 
5278 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5279 {
5280 	struct igc_adapter *adapter = hw->back;
5281 
5282 	if (!pci_is_pcie(adapter->pdev))
5283 		return -IGC_ERR_CONFIG;
5284 
5285 	pcie_capability_write_word(adapter->pdev, reg, *value);
5286 
5287 	return IGC_SUCCESS;
5288 }
5289 
5290 u32 igc_rd32(struct igc_hw *hw, u32 reg)
5291 {
5292 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5293 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5294 	u32 value = 0;
5295 
5296 	value = readl(&hw_addr[reg]);
5297 
5298 	/* reads should not return all F's */
5299 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5300 		struct net_device *netdev = igc->netdev;
5301 
5302 		hw->hw_addr = NULL;
5303 		netif_device_detach(netdev);
5304 		netdev_err(netdev, "PCIe link lost, device now detached\n");
5305 		WARN(pci_device_is_present(igc->pdev),
5306 		     "igc: Failed to read reg 0x%x!\n", reg);
5307 	}
5308 
5309 	return value;
5310 }
5311 
5312 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5313 {
5314 	struct igc_mac_info *mac = &adapter->hw.mac;
5315 
5316 	mac->autoneg = false;
5317 
5318 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5319 	 * for the switch() below to work
5320 	 */
5321 	if ((spd & 1) || (dplx & ~1))
5322 		goto err_inval;
5323 
5324 	switch (spd + dplx) {
5325 	case SPEED_10 + DUPLEX_HALF:
5326 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
5327 		break;
5328 	case SPEED_10 + DUPLEX_FULL:
5329 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
5330 		break;
5331 	case SPEED_100 + DUPLEX_HALF:
5332 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
5333 		break;
5334 	case SPEED_100 + DUPLEX_FULL:
5335 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
5336 		break;
5337 	case SPEED_1000 + DUPLEX_FULL:
5338 		mac->autoneg = true;
5339 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5340 		break;
5341 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5342 		goto err_inval;
5343 	case SPEED_2500 + DUPLEX_FULL:
5344 		mac->autoneg = true;
5345 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5346 		break;
5347 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
5348 	default:
5349 		goto err_inval;
5350 	}
5351 
5352 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5353 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
5354 
5355 	return 0;
5356 
5357 err_inval:
5358 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5359 	return -EINVAL;
5360 }
5361 
5362 /**
5363  * igc_probe - Device Initialization Routine
5364  * @pdev: PCI device information struct
5365  * @ent: entry in igc_pci_tbl
5366  *
5367  * Returns 0 on success, negative on failure
5368  *
5369  * igc_probe initializes an adapter identified by a pci_dev structure.
5370  * The OS initialization, configuring the adapter private structure,
5371  * and a hardware reset occur.
5372  */
5373 static int igc_probe(struct pci_dev *pdev,
5374 		     const struct pci_device_id *ent)
5375 {
5376 	struct igc_adapter *adapter;
5377 	struct net_device *netdev;
5378 	struct igc_hw *hw;
5379 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5380 	int err, pci_using_dac;
5381 
5382 	err = pci_enable_device_mem(pdev);
5383 	if (err)
5384 		return err;
5385 
5386 	pci_using_dac = 0;
5387 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5388 	if (!err) {
5389 		pci_using_dac = 1;
5390 	} else {
5391 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5392 		if (err) {
5393 			dev_err(&pdev->dev,
5394 				"No usable DMA configuration, aborting\n");
5395 			goto err_dma;
5396 		}
5397 	}
5398 
5399 	err = pci_request_mem_regions(pdev, igc_driver_name);
5400 	if (err)
5401 		goto err_pci_reg;
5402 
5403 	pci_enable_pcie_error_reporting(pdev);
5404 
5405 	pci_set_master(pdev);
5406 
5407 	err = -ENOMEM;
5408 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5409 				   IGC_MAX_TX_QUEUES);
5410 
5411 	if (!netdev)
5412 		goto err_alloc_etherdev;
5413 
5414 	SET_NETDEV_DEV(netdev, &pdev->dev);
5415 
5416 	pci_set_drvdata(pdev, netdev);
5417 	adapter = netdev_priv(netdev);
5418 	adapter->netdev = netdev;
5419 	adapter->pdev = pdev;
5420 	hw = &adapter->hw;
5421 	hw->back = adapter;
5422 	adapter->port_num = hw->bus.func;
5423 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5424 
5425 	err = pci_save_state(pdev);
5426 	if (err)
5427 		goto err_ioremap;
5428 
5429 	err = -EIO;
5430 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5431 				   pci_resource_len(pdev, 0));
5432 	if (!adapter->io_addr)
5433 		goto err_ioremap;
5434 
5435 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5436 	hw->hw_addr = adapter->io_addr;
5437 
5438 	netdev->netdev_ops = &igc_netdev_ops;
5439 	igc_ethtool_set_ops(netdev);
5440 	netdev->watchdog_timeo = 5 * HZ;
5441 
5442 	netdev->mem_start = pci_resource_start(pdev, 0);
5443 	netdev->mem_end = pci_resource_end(pdev, 0);
5444 
5445 	/* PCI config space info */
5446 	hw->vendor_id = pdev->vendor;
5447 	hw->device_id = pdev->device;
5448 	hw->revision_id = pdev->revision;
5449 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5450 	hw->subsystem_device_id = pdev->subsystem_device;
5451 
5452 	/* Copy the default MAC and PHY function pointers */
5453 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5454 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5455 
5456 	/* Initialize skew-specific constants */
5457 	err = ei->get_invariants(hw);
5458 	if (err)
5459 		goto err_sw_init;
5460 
5461 	/* Add supported features to the features list*/
5462 	netdev->features |= NETIF_F_SG;
5463 	netdev->features |= NETIF_F_TSO;
5464 	netdev->features |= NETIF_F_TSO6;
5465 	netdev->features |= NETIF_F_TSO_ECN;
5466 	netdev->features |= NETIF_F_RXCSUM;
5467 	netdev->features |= NETIF_F_HW_CSUM;
5468 	netdev->features |= NETIF_F_SCTP_CRC;
5469 	netdev->features |= NETIF_F_HW_TC;
5470 
5471 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5472 				  NETIF_F_GSO_GRE_CSUM | \
5473 				  NETIF_F_GSO_IPXIP4 | \
5474 				  NETIF_F_GSO_IPXIP6 | \
5475 				  NETIF_F_GSO_UDP_TUNNEL | \
5476 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5477 
5478 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5479 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5480 
5481 	/* setup the private structure */
5482 	err = igc_sw_init(adapter);
5483 	if (err)
5484 		goto err_sw_init;
5485 
5486 	/* copy netdev features into list of user selectable features */
5487 	netdev->hw_features |= NETIF_F_NTUPLE;
5488 	netdev->hw_features |= netdev->features;
5489 
5490 	if (pci_using_dac)
5491 		netdev->features |= NETIF_F_HIGHDMA;
5492 
5493 	/* MTU range: 68 - 9216 */
5494 	netdev->min_mtu = ETH_MIN_MTU;
5495 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5496 
5497 	/* before reading the NVM, reset the controller to put the device in a
5498 	 * known good starting state
5499 	 */
5500 	hw->mac.ops.reset_hw(hw);
5501 
5502 	if (igc_get_flash_presence_i225(hw)) {
5503 		if (hw->nvm.ops.validate(hw) < 0) {
5504 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5505 			err = -EIO;
5506 			goto err_eeprom;
5507 		}
5508 	}
5509 
5510 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5511 		/* copy the MAC address out of the NVM */
5512 		if (hw->mac.ops.read_mac_addr(hw))
5513 			dev_err(&pdev->dev, "NVM Read Error\n");
5514 	}
5515 
5516 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5517 
5518 	if (!is_valid_ether_addr(netdev->dev_addr)) {
5519 		dev_err(&pdev->dev, "Invalid MAC Address\n");
5520 		err = -EIO;
5521 		goto err_eeprom;
5522 	}
5523 
5524 	/* configure RXPBSIZE and TXPBSIZE */
5525 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5526 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5527 
5528 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5529 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5530 
5531 	INIT_WORK(&adapter->reset_task, igc_reset_task);
5532 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5533 
5534 	/* Initialize link properties that are user-changeable */
5535 	adapter->fc_autoneg = true;
5536 	hw->mac.autoneg = true;
5537 	hw->phy.autoneg_advertised = 0xaf;
5538 
5539 	hw->fc.requested_mode = igc_fc_default;
5540 	hw->fc.current_mode = igc_fc_default;
5541 
5542 	/* By default, support wake on port A */
5543 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5544 
5545 	/* initialize the wol settings based on the eeprom settings */
5546 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5547 		adapter->wol |= IGC_WUFC_MAG;
5548 
5549 	device_set_wakeup_enable(&adapter->pdev->dev,
5550 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5551 
5552 	igc_ptp_init(adapter);
5553 
5554 	/* reset the hardware with the new settings */
5555 	igc_reset(adapter);
5556 
5557 	/* let the f/w know that the h/w is now under the control of the
5558 	 * driver.
5559 	 */
5560 	igc_get_hw_control(adapter);
5561 
5562 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
5563 	err = register_netdev(netdev);
5564 	if (err)
5565 		goto err_register;
5566 
5567 	 /* carrier off reporting is important to ethtool even BEFORE open */
5568 	netif_carrier_off(netdev);
5569 
5570 	/* Check if Media Autosense is enabled */
5571 	adapter->ei = *ei;
5572 
5573 	/* print pcie link status and MAC address */
5574 	pcie_print_link_status(pdev);
5575 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5576 
5577 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5578 	/* Disable EEE for internal PHY devices */
5579 	hw->dev_spec._base.eee_enable = false;
5580 	adapter->flags &= ~IGC_FLAG_EEE;
5581 	igc_set_eee_i225(hw, false, false, false);
5582 
5583 	pm_runtime_put_noidle(&pdev->dev);
5584 
5585 	return 0;
5586 
5587 err_register:
5588 	igc_release_hw_control(adapter);
5589 err_eeprom:
5590 	if (!igc_check_reset_block(hw))
5591 		igc_reset_phy(hw);
5592 err_sw_init:
5593 	igc_clear_interrupt_scheme(adapter);
5594 	iounmap(adapter->io_addr);
5595 err_ioremap:
5596 	free_netdev(netdev);
5597 err_alloc_etherdev:
5598 	pci_release_mem_regions(pdev);
5599 err_pci_reg:
5600 err_dma:
5601 	pci_disable_device(pdev);
5602 	return err;
5603 }
5604 
5605 /**
5606  * igc_remove - Device Removal Routine
5607  * @pdev: PCI device information struct
5608  *
5609  * igc_remove is called by the PCI subsystem to alert the driver
5610  * that it should release a PCI device.  This could be caused by a
5611  * Hot-Plug event, or because the driver is going to be removed from
5612  * memory.
5613  */
5614 static void igc_remove(struct pci_dev *pdev)
5615 {
5616 	struct net_device *netdev = pci_get_drvdata(pdev);
5617 	struct igc_adapter *adapter = netdev_priv(netdev);
5618 
5619 	pm_runtime_get_noresume(&pdev->dev);
5620 
5621 	igc_flush_nfc_rules(adapter);
5622 
5623 	igc_ptp_stop(adapter);
5624 
5625 	set_bit(__IGC_DOWN, &adapter->state);
5626 
5627 	del_timer_sync(&adapter->watchdog_timer);
5628 	del_timer_sync(&adapter->phy_info_timer);
5629 
5630 	cancel_work_sync(&adapter->reset_task);
5631 	cancel_work_sync(&adapter->watchdog_task);
5632 
5633 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5634 	 * would have already happened in close and is redundant.
5635 	 */
5636 	igc_release_hw_control(adapter);
5637 	unregister_netdev(netdev);
5638 
5639 	igc_clear_interrupt_scheme(adapter);
5640 	pci_iounmap(pdev, adapter->io_addr);
5641 	pci_release_mem_regions(pdev);
5642 
5643 	free_netdev(netdev);
5644 
5645 	pci_disable_pcie_error_reporting(pdev);
5646 
5647 	pci_disable_device(pdev);
5648 }
5649 
5650 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5651 			  bool runtime)
5652 {
5653 	struct net_device *netdev = pci_get_drvdata(pdev);
5654 	struct igc_adapter *adapter = netdev_priv(netdev);
5655 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5656 	struct igc_hw *hw = &adapter->hw;
5657 	u32 ctrl, rctl, status;
5658 	bool wake;
5659 
5660 	rtnl_lock();
5661 	netif_device_detach(netdev);
5662 
5663 	if (netif_running(netdev))
5664 		__igc_close(netdev, true);
5665 
5666 	igc_ptp_suspend(adapter);
5667 
5668 	igc_clear_interrupt_scheme(adapter);
5669 	rtnl_unlock();
5670 
5671 	status = rd32(IGC_STATUS);
5672 	if (status & IGC_STATUS_LU)
5673 		wufc &= ~IGC_WUFC_LNKC;
5674 
5675 	if (wufc) {
5676 		igc_setup_rctl(adapter);
5677 		igc_set_rx_mode(netdev);
5678 
5679 		/* turn on all-multi mode if wake on multicast is enabled */
5680 		if (wufc & IGC_WUFC_MC) {
5681 			rctl = rd32(IGC_RCTL);
5682 			rctl |= IGC_RCTL_MPE;
5683 			wr32(IGC_RCTL, rctl);
5684 		}
5685 
5686 		ctrl = rd32(IGC_CTRL);
5687 		ctrl |= IGC_CTRL_ADVD3WUC;
5688 		wr32(IGC_CTRL, ctrl);
5689 
5690 		/* Allow time for pending master requests to run */
5691 		igc_disable_pcie_master(hw);
5692 
5693 		wr32(IGC_WUC, IGC_WUC_PME_EN);
5694 		wr32(IGC_WUFC, wufc);
5695 	} else {
5696 		wr32(IGC_WUC, 0);
5697 		wr32(IGC_WUFC, 0);
5698 	}
5699 
5700 	wake = wufc || adapter->en_mng_pt;
5701 	if (!wake)
5702 		igc_power_down_phy_copper_base(&adapter->hw);
5703 	else
5704 		igc_power_up_link(adapter);
5705 
5706 	if (enable_wake)
5707 		*enable_wake = wake;
5708 
5709 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5710 	 * would have already happened in close and is redundant.
5711 	 */
5712 	igc_release_hw_control(adapter);
5713 
5714 	pci_disable_device(pdev);
5715 
5716 	return 0;
5717 }
5718 
5719 #ifdef CONFIG_PM
5720 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5721 {
5722 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5723 }
5724 
5725 static void igc_deliver_wake_packet(struct net_device *netdev)
5726 {
5727 	struct igc_adapter *adapter = netdev_priv(netdev);
5728 	struct igc_hw *hw = &adapter->hw;
5729 	struct sk_buff *skb;
5730 	u32 wupl;
5731 
5732 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5733 
5734 	/* WUPM stores only the first 128 bytes of the wake packet.
5735 	 * Read the packet only if we have the whole thing.
5736 	 */
5737 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5738 		return;
5739 
5740 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5741 	if (!skb)
5742 		return;
5743 
5744 	skb_put(skb, wupl);
5745 
5746 	/* Ensure reads are 32-bit aligned */
5747 	wupl = roundup(wupl, 4);
5748 
5749 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5750 
5751 	skb->protocol = eth_type_trans(skb, netdev);
5752 	netif_rx(skb);
5753 }
5754 
5755 static int __maybe_unused igc_resume(struct device *dev)
5756 {
5757 	struct pci_dev *pdev = to_pci_dev(dev);
5758 	struct net_device *netdev = pci_get_drvdata(pdev);
5759 	struct igc_adapter *adapter = netdev_priv(netdev);
5760 	struct igc_hw *hw = &adapter->hw;
5761 	u32 err, val;
5762 
5763 	pci_set_power_state(pdev, PCI_D0);
5764 	pci_restore_state(pdev);
5765 	pci_save_state(pdev);
5766 
5767 	if (!pci_device_is_present(pdev))
5768 		return -ENODEV;
5769 	err = pci_enable_device_mem(pdev);
5770 	if (err) {
5771 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5772 		return err;
5773 	}
5774 	pci_set_master(pdev);
5775 
5776 	pci_enable_wake(pdev, PCI_D3hot, 0);
5777 	pci_enable_wake(pdev, PCI_D3cold, 0);
5778 
5779 	if (igc_init_interrupt_scheme(adapter, true)) {
5780 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5781 		return -ENOMEM;
5782 	}
5783 
5784 	igc_reset(adapter);
5785 
5786 	/* let the f/w know that the h/w is now under the control of the
5787 	 * driver.
5788 	 */
5789 	igc_get_hw_control(adapter);
5790 
5791 	val = rd32(IGC_WUS);
5792 	if (val & WAKE_PKT_WUS)
5793 		igc_deliver_wake_packet(netdev);
5794 
5795 	wr32(IGC_WUS, ~0);
5796 
5797 	rtnl_lock();
5798 	if (!err && netif_running(netdev))
5799 		err = __igc_open(netdev, true);
5800 
5801 	if (!err)
5802 		netif_device_attach(netdev);
5803 	rtnl_unlock();
5804 
5805 	return err;
5806 }
5807 
5808 static int __maybe_unused igc_runtime_resume(struct device *dev)
5809 {
5810 	return igc_resume(dev);
5811 }
5812 
5813 static int __maybe_unused igc_suspend(struct device *dev)
5814 {
5815 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5816 }
5817 
5818 static int __maybe_unused igc_runtime_idle(struct device *dev)
5819 {
5820 	struct net_device *netdev = dev_get_drvdata(dev);
5821 	struct igc_adapter *adapter = netdev_priv(netdev);
5822 
5823 	if (!igc_has_link(adapter))
5824 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5825 
5826 	return -EBUSY;
5827 }
5828 #endif /* CONFIG_PM */
5829 
5830 static void igc_shutdown(struct pci_dev *pdev)
5831 {
5832 	bool wake;
5833 
5834 	__igc_shutdown(pdev, &wake, 0);
5835 
5836 	if (system_state == SYSTEM_POWER_OFF) {
5837 		pci_wake_from_d3(pdev, wake);
5838 		pci_set_power_state(pdev, PCI_D3hot);
5839 	}
5840 }
5841 
5842 /**
5843  *  igc_io_error_detected - called when PCI error is detected
5844  *  @pdev: Pointer to PCI device
5845  *  @state: The current PCI connection state
5846  *
5847  *  This function is called after a PCI bus error affecting
5848  *  this device has been detected.
5849  **/
5850 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5851 					      pci_channel_state_t state)
5852 {
5853 	struct net_device *netdev = pci_get_drvdata(pdev);
5854 	struct igc_adapter *adapter = netdev_priv(netdev);
5855 
5856 	netif_device_detach(netdev);
5857 
5858 	if (state == pci_channel_io_perm_failure)
5859 		return PCI_ERS_RESULT_DISCONNECT;
5860 
5861 	if (netif_running(netdev))
5862 		igc_down(adapter);
5863 	pci_disable_device(pdev);
5864 
5865 	/* Request a slot reset. */
5866 	return PCI_ERS_RESULT_NEED_RESET;
5867 }
5868 
5869 /**
5870  *  igc_io_slot_reset - called after the PCI bus has been reset.
5871  *  @pdev: Pointer to PCI device
5872  *
5873  *  Restart the card from scratch, as if from a cold-boot. Implementation
5874  *  resembles the first-half of the igc_resume routine.
5875  **/
5876 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5877 {
5878 	struct net_device *netdev = pci_get_drvdata(pdev);
5879 	struct igc_adapter *adapter = netdev_priv(netdev);
5880 	struct igc_hw *hw = &adapter->hw;
5881 	pci_ers_result_t result;
5882 
5883 	if (pci_enable_device_mem(pdev)) {
5884 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5885 		result = PCI_ERS_RESULT_DISCONNECT;
5886 	} else {
5887 		pci_set_master(pdev);
5888 		pci_restore_state(pdev);
5889 		pci_save_state(pdev);
5890 
5891 		pci_enable_wake(pdev, PCI_D3hot, 0);
5892 		pci_enable_wake(pdev, PCI_D3cold, 0);
5893 
5894 		/* In case of PCI error, adapter loses its HW address
5895 		 * so we should re-assign it here.
5896 		 */
5897 		hw->hw_addr = adapter->io_addr;
5898 
5899 		igc_reset(adapter);
5900 		wr32(IGC_WUS, ~0);
5901 		result = PCI_ERS_RESULT_RECOVERED;
5902 	}
5903 
5904 	return result;
5905 }
5906 
5907 /**
5908  *  igc_io_resume - called when traffic can start to flow again.
5909  *  @pdev: Pointer to PCI device
5910  *
5911  *  This callback is called when the error recovery driver tells us that
5912  *  its OK to resume normal operation. Implementation resembles the
5913  *  second-half of the igc_resume routine.
5914  */
5915 static void igc_io_resume(struct pci_dev *pdev)
5916 {
5917 	struct net_device *netdev = pci_get_drvdata(pdev);
5918 	struct igc_adapter *adapter = netdev_priv(netdev);
5919 
5920 	rtnl_lock();
5921 	if (netif_running(netdev)) {
5922 		if (igc_open(netdev)) {
5923 			netdev_err(netdev, "igc_open failed after reset\n");
5924 			return;
5925 		}
5926 	}
5927 
5928 	netif_device_attach(netdev);
5929 
5930 	/* let the f/w know that the h/w is now under the control of the
5931 	 * driver.
5932 	 */
5933 	igc_get_hw_control(adapter);
5934 	rtnl_unlock();
5935 }
5936 
5937 static const struct pci_error_handlers igc_err_handler = {
5938 	.error_detected = igc_io_error_detected,
5939 	.slot_reset = igc_io_slot_reset,
5940 	.resume = igc_io_resume,
5941 };
5942 
5943 #ifdef CONFIG_PM
5944 static const struct dev_pm_ops igc_pm_ops = {
5945 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5946 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5947 			   igc_runtime_idle)
5948 };
5949 #endif
5950 
5951 static struct pci_driver igc_driver = {
5952 	.name     = igc_driver_name,
5953 	.id_table = igc_pci_tbl,
5954 	.probe    = igc_probe,
5955 	.remove   = igc_remove,
5956 #ifdef CONFIG_PM
5957 	.driver.pm = &igc_pm_ops,
5958 #endif
5959 	.shutdown = igc_shutdown,
5960 	.err_handler = &igc_err_handler,
5961 };
5962 
5963 /**
5964  * igc_reinit_queues - return error
5965  * @adapter: pointer to adapter structure
5966  */
5967 int igc_reinit_queues(struct igc_adapter *adapter)
5968 {
5969 	struct net_device *netdev = adapter->netdev;
5970 	int err = 0;
5971 
5972 	if (netif_running(netdev))
5973 		igc_close(netdev);
5974 
5975 	igc_reset_interrupt_capability(adapter);
5976 
5977 	if (igc_init_interrupt_scheme(adapter, true)) {
5978 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5979 		return -ENOMEM;
5980 	}
5981 
5982 	if (netif_running(netdev))
5983 		err = igc_open(netdev);
5984 
5985 	return err;
5986 }
5987 
5988 /**
5989  * igc_get_hw_dev - return device
5990  * @hw: pointer to hardware structure
5991  *
5992  * used by hardware layer to print debugging information
5993  */
5994 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5995 {
5996 	struct igc_adapter *adapter = hw->back;
5997 
5998 	return adapter->netdev;
5999 }
6000 
6001 /**
6002  * igc_init_module - Driver Registration Routine
6003  *
6004  * igc_init_module is the first routine called when the driver is
6005  * loaded. All it does is register with the PCI subsystem.
6006  */
6007 static int __init igc_init_module(void)
6008 {
6009 	int ret;
6010 
6011 	pr_info("%s\n", igc_driver_string);
6012 	pr_info("%s\n", igc_copyright);
6013 
6014 	ret = pci_register_driver(&igc_driver);
6015 	return ret;
6016 }
6017 
6018 module_init(igc_init_module);
6019 
6020 /**
6021  * igc_exit_module - Driver Exit Cleanup Routine
6022  *
6023  * igc_exit_module is called just before the driver is removed
6024  * from memory.
6025  */
6026 static void __exit igc_exit_module(void)
6027 {
6028 	pci_unregister_driver(&igc_driver);
6029 }
6030 
6031 module_exit(igc_exit_module);
6032 /* igc_main.c */
6033