1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/tcp.h> 8 #include <linux/udp.h> 9 #include <linux/ip.h> 10 #include <linux/pm_runtime.h> 11 #include <net/pkt_sched.h> 12 #include <linux/bpf_trace.h> 13 #include <net/xdp_sock_drv.h> 14 #include <linux/pci.h> 15 16 #include <net/ipv6.h> 17 18 #include "igc.h" 19 #include "igc_hw.h" 20 #include "igc_tsn.h" 21 #include "igc_xdp.h" 22 23 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 24 25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 26 27 #define IGC_XDP_PASS 0 28 #define IGC_XDP_CONSUMED BIT(0) 29 #define IGC_XDP_TX BIT(1) 30 #define IGC_XDP_REDIRECT BIT(2) 31 32 static int debug = -1; 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 module_param(debug, int, 0); 38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 39 40 char igc_driver_name[] = "igc"; 41 static const char igc_driver_string[] = DRV_SUMMARY; 42 static const char igc_copyright[] = 43 "Copyright(c) 2018 Intel Corporation."; 44 45 static const struct igc_info *igc_info_tbl[] = { 46 [board_base] = &igc_base_info, 47 }; 48 49 static const struct pci_device_id igc_pci_tbl[] = { 50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, 53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, 54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, 55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, 56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, 57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, 58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, 59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, 60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, 61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, 62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, 63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, 64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, 65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, 66 /* required last entry */ 67 {0, } 68 }; 69 70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 71 72 enum latency_range { 73 lowest_latency = 0, 74 low_latency = 1, 75 bulk_latency = 2, 76 latency_invalid = 255 77 }; 78 79 void igc_reset(struct igc_adapter *adapter) 80 { 81 struct net_device *dev = adapter->netdev; 82 struct igc_hw *hw = &adapter->hw; 83 struct igc_fc_info *fc = &hw->fc; 84 u32 pba, hwm; 85 86 /* Repartition PBA for greater than 9k MTU if required */ 87 pba = IGC_PBA_34K; 88 89 /* flow control settings 90 * The high water mark must be low enough to fit one full frame 91 * after transmitting the pause frame. As such we must have enough 92 * space to allow for us to complete our current transmit and then 93 * receive the frame that is in progress from the link partner. 94 * Set it to: 95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 96 */ 97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 98 99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 100 fc->low_water = fc->high_water - 16; 101 fc->pause_time = 0xFFFF; 102 fc->send_xon = 1; 103 fc->current_mode = fc->requested_mode; 104 105 hw->mac.ops.reset_hw(hw); 106 107 if (hw->mac.ops.init_hw(hw)) 108 netdev_err(dev, "Error on hardware initialization\n"); 109 110 /* Re-establish EEE setting */ 111 igc_set_eee_i225(hw, true, true, true); 112 113 if (!netif_running(adapter->netdev)) 114 igc_power_down_phy_copper_base(&adapter->hw); 115 116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ 117 wr32(IGC_VET, ETH_P_8021Q); 118 119 /* Re-enable PTP, where applicable. */ 120 igc_ptp_reset(adapter); 121 122 /* Re-enable TSN offloading, where applicable. */ 123 igc_tsn_reset(adapter); 124 125 igc_get_phy_info(hw); 126 } 127 128 /** 129 * igc_power_up_link - Power up the phy link 130 * @adapter: address of board private structure 131 */ 132 static void igc_power_up_link(struct igc_adapter *adapter) 133 { 134 igc_reset_phy(&adapter->hw); 135 136 igc_power_up_phy_copper(&adapter->hw); 137 138 igc_setup_link(&adapter->hw); 139 } 140 141 /** 142 * igc_release_hw_control - release control of the h/w to f/w 143 * @adapter: address of board private structure 144 * 145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 146 * For ASF and Pass Through versions of f/w this means that the 147 * driver is no longer loaded. 148 */ 149 static void igc_release_hw_control(struct igc_adapter *adapter) 150 { 151 struct igc_hw *hw = &adapter->hw; 152 u32 ctrl_ext; 153 154 if (!pci_device_is_present(adapter->pdev)) 155 return; 156 157 /* Let firmware take over control of h/w */ 158 ctrl_ext = rd32(IGC_CTRL_EXT); 159 wr32(IGC_CTRL_EXT, 160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 161 } 162 163 /** 164 * igc_get_hw_control - get control of the h/w from f/w 165 * @adapter: address of board private structure 166 * 167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 168 * For ASF and Pass Through versions of f/w this means that 169 * the driver is loaded. 170 */ 171 static void igc_get_hw_control(struct igc_adapter *adapter) 172 { 173 struct igc_hw *hw = &adapter->hw; 174 u32 ctrl_ext; 175 176 /* Let firmware know the driver has taken over */ 177 ctrl_ext = rd32(IGC_CTRL_EXT); 178 wr32(IGC_CTRL_EXT, 179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 180 } 181 182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) 183 { 184 dma_unmap_single(dev, dma_unmap_addr(buf, dma), 185 dma_unmap_len(buf, len), DMA_TO_DEVICE); 186 187 dma_unmap_len_set(buf, len, 0); 188 } 189 190 /** 191 * igc_clean_tx_ring - Free Tx Buffers 192 * @tx_ring: ring to be cleaned 193 */ 194 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 195 { 196 u16 i = tx_ring->next_to_clean; 197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 198 u32 xsk_frames = 0; 199 200 while (i != tx_ring->next_to_use) { 201 union igc_adv_tx_desc *eop_desc, *tx_desc; 202 203 switch (tx_buffer->type) { 204 case IGC_TX_BUFFER_TYPE_XSK: 205 xsk_frames++; 206 break; 207 case IGC_TX_BUFFER_TYPE_XDP: 208 xdp_return_frame(tx_buffer->xdpf); 209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 210 break; 211 case IGC_TX_BUFFER_TYPE_SKB: 212 dev_kfree_skb_any(tx_buffer->skb); 213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 214 break; 215 default: 216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 217 break; 218 } 219 220 /* check for eop_desc to determine the end of the packet */ 221 eop_desc = tx_buffer->next_to_watch; 222 tx_desc = IGC_TX_DESC(tx_ring, i); 223 224 /* unmap remaining buffers */ 225 while (tx_desc != eop_desc) { 226 tx_buffer++; 227 tx_desc++; 228 i++; 229 if (unlikely(i == tx_ring->count)) { 230 i = 0; 231 tx_buffer = tx_ring->tx_buffer_info; 232 tx_desc = IGC_TX_DESC(tx_ring, 0); 233 } 234 235 /* unmap any remaining paged data */ 236 if (dma_unmap_len(tx_buffer, len)) 237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 238 } 239 240 tx_buffer->next_to_watch = NULL; 241 242 /* move us one more past the eop_desc for start of next pkt */ 243 tx_buffer++; 244 i++; 245 if (unlikely(i == tx_ring->count)) { 246 i = 0; 247 tx_buffer = tx_ring->tx_buffer_info; 248 } 249 } 250 251 if (tx_ring->xsk_pool && xsk_frames) 252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 253 254 /* reset BQL for queue */ 255 netdev_tx_reset_queue(txring_txq(tx_ring)); 256 257 /* Zero out the buffer ring */ 258 memset(tx_ring->tx_buffer_info, 0, 259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count); 260 261 /* Zero out the descriptor ring */ 262 memset(tx_ring->desc, 0, tx_ring->size); 263 264 /* reset next_to_use and next_to_clean */ 265 tx_ring->next_to_use = 0; 266 tx_ring->next_to_clean = 0; 267 } 268 269 /** 270 * igc_free_tx_resources - Free Tx Resources per Queue 271 * @tx_ring: Tx descriptor ring for a specific queue 272 * 273 * Free all transmit software resources 274 */ 275 void igc_free_tx_resources(struct igc_ring *tx_ring) 276 { 277 igc_disable_tx_ring(tx_ring); 278 279 vfree(tx_ring->tx_buffer_info); 280 tx_ring->tx_buffer_info = NULL; 281 282 /* if not set, then don't free */ 283 if (!tx_ring->desc) 284 return; 285 286 dma_free_coherent(tx_ring->dev, tx_ring->size, 287 tx_ring->desc, tx_ring->dma); 288 289 tx_ring->desc = NULL; 290 } 291 292 /** 293 * igc_free_all_tx_resources - Free Tx Resources for All Queues 294 * @adapter: board private structure 295 * 296 * Free all transmit software resources 297 */ 298 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 299 { 300 int i; 301 302 for (i = 0; i < adapter->num_tx_queues; i++) 303 igc_free_tx_resources(adapter->tx_ring[i]); 304 } 305 306 /** 307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 308 * @adapter: board private structure 309 */ 310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 311 { 312 int i; 313 314 for (i = 0; i < adapter->num_tx_queues; i++) 315 if (adapter->tx_ring[i]) 316 igc_clean_tx_ring(adapter->tx_ring[i]); 317 } 318 319 /** 320 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 321 * @tx_ring: tx descriptor ring (for a specific queue) to setup 322 * 323 * Return 0 on success, negative on failure 324 */ 325 int igc_setup_tx_resources(struct igc_ring *tx_ring) 326 { 327 struct net_device *ndev = tx_ring->netdev; 328 struct device *dev = tx_ring->dev; 329 int size = 0; 330 331 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 332 tx_ring->tx_buffer_info = vzalloc(size); 333 if (!tx_ring->tx_buffer_info) 334 goto err; 335 336 /* round up to nearest 4K */ 337 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 338 tx_ring->size = ALIGN(tx_ring->size, 4096); 339 340 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 341 &tx_ring->dma, GFP_KERNEL); 342 343 if (!tx_ring->desc) 344 goto err; 345 346 tx_ring->next_to_use = 0; 347 tx_ring->next_to_clean = 0; 348 349 return 0; 350 351 err: 352 vfree(tx_ring->tx_buffer_info); 353 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); 354 return -ENOMEM; 355 } 356 357 /** 358 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 359 * @adapter: board private structure 360 * 361 * Return 0 on success, negative on failure 362 */ 363 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 364 { 365 struct net_device *dev = adapter->netdev; 366 int i, err = 0; 367 368 for (i = 0; i < adapter->num_tx_queues; i++) { 369 err = igc_setup_tx_resources(adapter->tx_ring[i]); 370 if (err) { 371 netdev_err(dev, "Error on Tx queue %u setup\n", i); 372 for (i--; i >= 0; i--) 373 igc_free_tx_resources(adapter->tx_ring[i]); 374 break; 375 } 376 } 377 378 return err; 379 } 380 381 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) 382 { 383 u16 i = rx_ring->next_to_clean; 384 385 dev_kfree_skb(rx_ring->skb); 386 rx_ring->skb = NULL; 387 388 /* Free all the Rx ring sk_buffs */ 389 while (i != rx_ring->next_to_alloc) { 390 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 391 392 /* Invalidate cache lines that may have been written to by 393 * device so that we avoid corrupting memory. 394 */ 395 dma_sync_single_range_for_cpu(rx_ring->dev, 396 buffer_info->dma, 397 buffer_info->page_offset, 398 igc_rx_bufsz(rx_ring), 399 DMA_FROM_DEVICE); 400 401 /* free resources associated with mapping */ 402 dma_unmap_page_attrs(rx_ring->dev, 403 buffer_info->dma, 404 igc_rx_pg_size(rx_ring), 405 DMA_FROM_DEVICE, 406 IGC_RX_DMA_ATTR); 407 __page_frag_cache_drain(buffer_info->page, 408 buffer_info->pagecnt_bias); 409 410 i++; 411 if (i == rx_ring->count) 412 i = 0; 413 } 414 } 415 416 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) 417 { 418 struct igc_rx_buffer *bi; 419 u16 i; 420 421 for (i = 0; i < ring->count; i++) { 422 bi = &ring->rx_buffer_info[i]; 423 if (!bi->xdp) 424 continue; 425 426 xsk_buff_free(bi->xdp); 427 bi->xdp = NULL; 428 } 429 } 430 431 /** 432 * igc_clean_rx_ring - Free Rx Buffers per Queue 433 * @ring: ring to free buffers from 434 */ 435 static void igc_clean_rx_ring(struct igc_ring *ring) 436 { 437 if (ring->xsk_pool) 438 igc_clean_rx_ring_xsk_pool(ring); 439 else 440 igc_clean_rx_ring_page_shared(ring); 441 442 clear_ring_uses_large_buffer(ring); 443 444 ring->next_to_alloc = 0; 445 ring->next_to_clean = 0; 446 ring->next_to_use = 0; 447 } 448 449 /** 450 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 451 * @adapter: board private structure 452 */ 453 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 454 { 455 int i; 456 457 for (i = 0; i < adapter->num_rx_queues; i++) 458 if (adapter->rx_ring[i]) 459 igc_clean_rx_ring(adapter->rx_ring[i]); 460 } 461 462 /** 463 * igc_free_rx_resources - Free Rx Resources 464 * @rx_ring: ring to clean the resources from 465 * 466 * Free all receive software resources 467 */ 468 void igc_free_rx_resources(struct igc_ring *rx_ring) 469 { 470 igc_clean_rx_ring(rx_ring); 471 472 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 473 474 vfree(rx_ring->rx_buffer_info); 475 rx_ring->rx_buffer_info = NULL; 476 477 /* if not set, then don't free */ 478 if (!rx_ring->desc) 479 return; 480 481 dma_free_coherent(rx_ring->dev, rx_ring->size, 482 rx_ring->desc, rx_ring->dma); 483 484 rx_ring->desc = NULL; 485 } 486 487 /** 488 * igc_free_all_rx_resources - Free Rx Resources for All Queues 489 * @adapter: board private structure 490 * 491 * Free all receive software resources 492 */ 493 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 494 { 495 int i; 496 497 for (i = 0; i < adapter->num_rx_queues; i++) 498 igc_free_rx_resources(adapter->rx_ring[i]); 499 } 500 501 /** 502 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 503 * @rx_ring: rx descriptor ring (for a specific queue) to setup 504 * 505 * Returns 0 on success, negative on failure 506 */ 507 int igc_setup_rx_resources(struct igc_ring *rx_ring) 508 { 509 struct net_device *ndev = rx_ring->netdev; 510 struct device *dev = rx_ring->dev; 511 u8 index = rx_ring->queue_index; 512 int size, desc_len, res; 513 514 /* XDP RX-queue info */ 515 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 516 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 517 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, 518 rx_ring->q_vector->napi.napi_id); 519 if (res < 0) { 520 netdev_err(ndev, "Failed to register xdp_rxq index %u\n", 521 index); 522 return res; 523 } 524 525 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 526 rx_ring->rx_buffer_info = vzalloc(size); 527 if (!rx_ring->rx_buffer_info) 528 goto err; 529 530 desc_len = sizeof(union igc_adv_rx_desc); 531 532 /* Round up to nearest 4K */ 533 rx_ring->size = rx_ring->count * desc_len; 534 rx_ring->size = ALIGN(rx_ring->size, 4096); 535 536 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 537 &rx_ring->dma, GFP_KERNEL); 538 539 if (!rx_ring->desc) 540 goto err; 541 542 rx_ring->next_to_alloc = 0; 543 rx_ring->next_to_clean = 0; 544 rx_ring->next_to_use = 0; 545 546 return 0; 547 548 err: 549 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 550 vfree(rx_ring->rx_buffer_info); 551 rx_ring->rx_buffer_info = NULL; 552 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); 553 return -ENOMEM; 554 } 555 556 /** 557 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 558 * (Descriptors) for all queues 559 * @adapter: board private structure 560 * 561 * Return 0 on success, negative on failure 562 */ 563 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 564 { 565 struct net_device *dev = adapter->netdev; 566 int i, err = 0; 567 568 for (i = 0; i < adapter->num_rx_queues; i++) { 569 err = igc_setup_rx_resources(adapter->rx_ring[i]); 570 if (err) { 571 netdev_err(dev, "Error on Rx queue %u setup\n", i); 572 for (i--; i >= 0; i--) 573 igc_free_rx_resources(adapter->rx_ring[i]); 574 break; 575 } 576 } 577 578 return err; 579 } 580 581 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, 582 struct igc_ring *ring) 583 { 584 if (!igc_xdp_is_enabled(adapter) || 585 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) 586 return NULL; 587 588 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); 589 } 590 591 /** 592 * igc_configure_rx_ring - Configure a receive ring after Reset 593 * @adapter: board private structure 594 * @ring: receive ring to be configured 595 * 596 * Configure the Rx unit of the MAC after a reset. 597 */ 598 static void igc_configure_rx_ring(struct igc_adapter *adapter, 599 struct igc_ring *ring) 600 { 601 struct igc_hw *hw = &adapter->hw; 602 union igc_adv_rx_desc *rx_desc; 603 int reg_idx = ring->reg_idx; 604 u32 srrctl = 0, rxdctl = 0; 605 u64 rdba = ring->dma; 606 u32 buf_size; 607 608 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 609 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 610 if (ring->xsk_pool) { 611 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 612 MEM_TYPE_XSK_BUFF_POOL, 613 NULL)); 614 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 615 } else { 616 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 617 MEM_TYPE_PAGE_SHARED, 618 NULL)); 619 } 620 621 if (igc_xdp_is_enabled(adapter)) 622 set_ring_uses_large_buffer(ring); 623 624 /* disable the queue */ 625 wr32(IGC_RXDCTL(reg_idx), 0); 626 627 /* Set DMA base address registers */ 628 wr32(IGC_RDBAL(reg_idx), 629 rdba & 0x00000000ffffffffULL); 630 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 631 wr32(IGC_RDLEN(reg_idx), 632 ring->count * sizeof(union igc_adv_rx_desc)); 633 634 /* initialize head and tail */ 635 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 636 wr32(IGC_RDH(reg_idx), 0); 637 writel(0, ring->tail); 638 639 /* reset next-to- use/clean to place SW in sync with hardware */ 640 ring->next_to_clean = 0; 641 ring->next_to_use = 0; 642 643 if (ring->xsk_pool) 644 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); 645 else if (ring_uses_large_buffer(ring)) 646 buf_size = IGC_RXBUFFER_3072; 647 else 648 buf_size = IGC_RXBUFFER_2048; 649 650 srrctl = rd32(IGC_SRRCTL(reg_idx)); 651 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK | 652 IGC_SRRCTL_DESCTYPE_MASK); 653 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN); 654 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size); 655 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 656 657 wr32(IGC_SRRCTL(reg_idx), srrctl); 658 659 rxdctl |= IGC_RX_PTHRESH; 660 rxdctl |= IGC_RX_HTHRESH << 8; 661 rxdctl |= IGC_RX_WTHRESH << 16; 662 663 /* initialize rx_buffer_info */ 664 memset(ring->rx_buffer_info, 0, 665 sizeof(struct igc_rx_buffer) * ring->count); 666 667 /* initialize Rx descriptor 0 */ 668 rx_desc = IGC_RX_DESC(ring, 0); 669 rx_desc->wb.upper.length = 0; 670 671 /* enable receive descriptor fetching */ 672 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 673 674 wr32(IGC_RXDCTL(reg_idx), rxdctl); 675 } 676 677 /** 678 * igc_configure_rx - Configure receive Unit after Reset 679 * @adapter: board private structure 680 * 681 * Configure the Rx unit of the MAC after a reset. 682 */ 683 static void igc_configure_rx(struct igc_adapter *adapter) 684 { 685 int i; 686 687 /* Setup the HW Rx Head and Tail Descriptor Pointers and 688 * the Base and Length of the Rx Descriptor Ring 689 */ 690 for (i = 0; i < adapter->num_rx_queues; i++) 691 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 692 } 693 694 /** 695 * igc_configure_tx_ring - Configure transmit ring after Reset 696 * @adapter: board private structure 697 * @ring: tx ring to configure 698 * 699 * Configure a transmit ring after a reset. 700 */ 701 static void igc_configure_tx_ring(struct igc_adapter *adapter, 702 struct igc_ring *ring) 703 { 704 struct igc_hw *hw = &adapter->hw; 705 int reg_idx = ring->reg_idx; 706 u64 tdba = ring->dma; 707 u32 txdctl = 0; 708 709 ring->xsk_pool = igc_get_xsk_pool(adapter, ring); 710 711 /* disable the queue */ 712 wr32(IGC_TXDCTL(reg_idx), 0); 713 wrfl(); 714 mdelay(10); 715 716 wr32(IGC_TDLEN(reg_idx), 717 ring->count * sizeof(union igc_adv_tx_desc)); 718 wr32(IGC_TDBAL(reg_idx), 719 tdba & 0x00000000ffffffffULL); 720 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 721 722 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 723 wr32(IGC_TDH(reg_idx), 0); 724 writel(0, ring->tail); 725 726 txdctl |= IGC_TX_PTHRESH; 727 txdctl |= IGC_TX_HTHRESH << 8; 728 txdctl |= IGC_TX_WTHRESH << 16; 729 730 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 731 wr32(IGC_TXDCTL(reg_idx), txdctl); 732 } 733 734 /** 735 * igc_configure_tx - Configure transmit Unit after Reset 736 * @adapter: board private structure 737 * 738 * Configure the Tx unit of the MAC after a reset. 739 */ 740 static void igc_configure_tx(struct igc_adapter *adapter) 741 { 742 int i; 743 744 for (i = 0; i < adapter->num_tx_queues; i++) 745 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 746 } 747 748 /** 749 * igc_setup_mrqc - configure the multiple receive queue control registers 750 * @adapter: Board private structure 751 */ 752 static void igc_setup_mrqc(struct igc_adapter *adapter) 753 { 754 struct igc_hw *hw = &adapter->hw; 755 u32 j, num_rx_queues; 756 u32 mrqc, rxcsum; 757 u32 rss_key[10]; 758 759 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 760 for (j = 0; j < 10; j++) 761 wr32(IGC_RSSRK(j), rss_key[j]); 762 763 num_rx_queues = adapter->rss_queues; 764 765 if (adapter->rss_indir_tbl_init != num_rx_queues) { 766 for (j = 0; j < IGC_RETA_SIZE; j++) 767 adapter->rss_indir_tbl[j] = 768 (j * num_rx_queues) / IGC_RETA_SIZE; 769 adapter->rss_indir_tbl_init = num_rx_queues; 770 } 771 igc_write_rss_indir_tbl(adapter); 772 773 /* Disable raw packet checksumming so that RSS hash is placed in 774 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 775 * offloads as they are enabled by default 776 */ 777 rxcsum = rd32(IGC_RXCSUM); 778 rxcsum |= IGC_RXCSUM_PCSD; 779 780 /* Enable Receive Checksum Offload for SCTP */ 781 rxcsum |= IGC_RXCSUM_CRCOFL; 782 783 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 784 wr32(IGC_RXCSUM, rxcsum); 785 786 /* Generate RSS hash based on packet types, TCP/UDP 787 * port numbers and/or IPv4/v6 src and dst addresses 788 */ 789 mrqc = IGC_MRQC_RSS_FIELD_IPV4 | 790 IGC_MRQC_RSS_FIELD_IPV4_TCP | 791 IGC_MRQC_RSS_FIELD_IPV6 | 792 IGC_MRQC_RSS_FIELD_IPV6_TCP | 793 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; 794 795 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) 796 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; 797 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) 798 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; 799 800 mrqc |= IGC_MRQC_ENABLE_RSS_MQ; 801 802 wr32(IGC_MRQC, mrqc); 803 } 804 805 /** 806 * igc_setup_rctl - configure the receive control registers 807 * @adapter: Board private structure 808 */ 809 static void igc_setup_rctl(struct igc_adapter *adapter) 810 { 811 struct igc_hw *hw = &adapter->hw; 812 u32 rctl; 813 814 rctl = rd32(IGC_RCTL); 815 816 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 817 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 818 819 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 820 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 821 822 /* enable stripping of CRC. Newer features require 823 * that the HW strips the CRC. 824 */ 825 rctl |= IGC_RCTL_SECRC; 826 827 /* disable store bad packets and clear size bits. */ 828 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 829 830 /* enable LPE to allow for reception of jumbo frames */ 831 rctl |= IGC_RCTL_LPE; 832 833 /* disable queue 0 to prevent tail write w/o re-config */ 834 wr32(IGC_RXDCTL(0), 0); 835 836 /* This is useful for sniffing bad packets. */ 837 if (adapter->netdev->features & NETIF_F_RXALL) { 838 /* UPE and MPE will be handled by normal PROMISC logic 839 * in set_rx_mode 840 */ 841 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 842 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 843 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 844 845 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 846 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 847 } 848 849 wr32(IGC_RCTL, rctl); 850 } 851 852 /** 853 * igc_setup_tctl - configure the transmit control registers 854 * @adapter: Board private structure 855 */ 856 static void igc_setup_tctl(struct igc_adapter *adapter) 857 { 858 struct igc_hw *hw = &adapter->hw; 859 u32 tctl; 860 861 /* disable queue 0 which icould be enabled by default */ 862 wr32(IGC_TXDCTL(0), 0); 863 864 /* Program the Transmit Control Register */ 865 tctl = rd32(IGC_TCTL); 866 tctl &= ~IGC_TCTL_CT; 867 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 868 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 869 870 /* Enable transmits */ 871 tctl |= IGC_TCTL_EN; 872 873 wr32(IGC_TCTL, tctl); 874 } 875 876 /** 877 * igc_set_mac_filter_hw() - Set MAC address filter in hardware 878 * @adapter: Pointer to adapter where the filter should be set 879 * @index: Filter index 880 * @type: MAC address filter type (source or destination) 881 * @addr: MAC address 882 * @queue: If non-negative, queue assignment feature is enabled and frames 883 * matching the filter are enqueued onto 'queue'. Otherwise, queue 884 * assignment is disabled. 885 */ 886 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, 887 enum igc_mac_filter_type type, 888 const u8 *addr, int queue) 889 { 890 struct net_device *dev = adapter->netdev; 891 struct igc_hw *hw = &adapter->hw; 892 u32 ral, rah; 893 894 if (WARN_ON(index >= hw->mac.rar_entry_count)) 895 return; 896 897 ral = le32_to_cpup((__le32 *)(addr)); 898 rah = le16_to_cpup((__le16 *)(addr + 4)); 899 900 if (type == IGC_MAC_FILTER_TYPE_SRC) { 901 rah &= ~IGC_RAH_ASEL_MASK; 902 rah |= IGC_RAH_ASEL_SRC_ADDR; 903 } 904 905 if (queue >= 0) { 906 rah &= ~IGC_RAH_QSEL_MASK; 907 rah |= (queue << IGC_RAH_QSEL_SHIFT); 908 rah |= IGC_RAH_QSEL_ENABLE; 909 } 910 911 rah |= IGC_RAH_AV; 912 913 wr32(IGC_RAL(index), ral); 914 wr32(IGC_RAH(index), rah); 915 916 netdev_dbg(dev, "MAC address filter set in HW: index %d", index); 917 } 918 919 /** 920 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware 921 * @adapter: Pointer to adapter where the filter should be cleared 922 * @index: Filter index 923 */ 924 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) 925 { 926 struct net_device *dev = adapter->netdev; 927 struct igc_hw *hw = &adapter->hw; 928 929 if (WARN_ON(index >= hw->mac.rar_entry_count)) 930 return; 931 932 wr32(IGC_RAL(index), 0); 933 wr32(IGC_RAH(index), 0); 934 935 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); 936 } 937 938 /* Set default MAC address for the PF in the first RAR entry */ 939 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 940 { 941 struct net_device *dev = adapter->netdev; 942 u8 *addr = adapter->hw.mac.addr; 943 944 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); 945 946 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); 947 } 948 949 /** 950 * igc_set_mac - Change the Ethernet Address of the NIC 951 * @netdev: network interface device structure 952 * @p: pointer to an address structure 953 * 954 * Returns 0 on success, negative on failure 955 */ 956 static int igc_set_mac(struct net_device *netdev, void *p) 957 { 958 struct igc_adapter *adapter = netdev_priv(netdev); 959 struct igc_hw *hw = &adapter->hw; 960 struct sockaddr *addr = p; 961 962 if (!is_valid_ether_addr(addr->sa_data)) 963 return -EADDRNOTAVAIL; 964 965 eth_hw_addr_set(netdev, addr->sa_data); 966 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 967 968 /* set the correct pool for the new PF MAC address in entry 0 */ 969 igc_set_default_mac_filter(adapter); 970 971 return 0; 972 } 973 974 /** 975 * igc_write_mc_addr_list - write multicast addresses to MTA 976 * @netdev: network interface device structure 977 * 978 * Writes multicast address list to the MTA hash table. 979 * Returns: -ENOMEM on failure 980 * 0 on no addresses written 981 * X on writing X addresses to MTA 982 **/ 983 static int igc_write_mc_addr_list(struct net_device *netdev) 984 { 985 struct igc_adapter *adapter = netdev_priv(netdev); 986 struct igc_hw *hw = &adapter->hw; 987 struct netdev_hw_addr *ha; 988 u8 *mta_list; 989 int i; 990 991 if (netdev_mc_empty(netdev)) { 992 /* nothing to program, so clear mc list */ 993 igc_update_mc_addr_list(hw, NULL, 0); 994 return 0; 995 } 996 997 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 998 if (!mta_list) 999 return -ENOMEM; 1000 1001 /* The shared function expects a packed array of only addresses. */ 1002 i = 0; 1003 netdev_for_each_mc_addr(ha, netdev) 1004 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1005 1006 igc_update_mc_addr_list(hw, mta_list, i); 1007 kfree(mta_list); 1008 1009 return netdev_mc_count(netdev); 1010 } 1011 1012 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime, 1013 bool *first_flag, bool *insert_empty) 1014 { 1015 struct igc_adapter *adapter = netdev_priv(ring->netdev); 1016 ktime_t cycle_time = adapter->cycle_time; 1017 ktime_t base_time = adapter->base_time; 1018 ktime_t now = ktime_get_clocktai(); 1019 ktime_t baset_est, end_of_cycle; 1020 u32 launchtime; 1021 s64 n; 1022 1023 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time); 1024 1025 baset_est = ktime_add_ns(base_time, cycle_time * (n)); 1026 end_of_cycle = ktime_add_ns(baset_est, cycle_time); 1027 1028 if (ktime_compare(txtime, end_of_cycle) >= 0) { 1029 if (baset_est != ring->last_ff_cycle) { 1030 *first_flag = true; 1031 ring->last_ff_cycle = baset_est; 1032 1033 if (ktime_compare(txtime, ring->last_tx_cycle) > 0) 1034 *insert_empty = true; 1035 } 1036 } 1037 1038 /* Introducing a window at end of cycle on which packets 1039 * potentially not honor launchtime. Window of 5us chosen 1040 * considering software update the tail pointer and packets 1041 * are dma'ed to packet buffer. 1042 */ 1043 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC)) 1044 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n", 1045 txtime); 1046 1047 ring->last_tx_cycle = end_of_cycle; 1048 1049 launchtime = ktime_sub_ns(txtime, baset_est); 1050 if (launchtime > 0) 1051 div_s64_rem(launchtime, cycle_time, &launchtime); 1052 else 1053 launchtime = 0; 1054 1055 return cpu_to_le32(launchtime); 1056 } 1057 1058 static int igc_init_empty_frame(struct igc_ring *ring, 1059 struct igc_tx_buffer *buffer, 1060 struct sk_buff *skb) 1061 { 1062 unsigned int size; 1063 dma_addr_t dma; 1064 1065 size = skb_headlen(skb); 1066 1067 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE); 1068 if (dma_mapping_error(ring->dev, dma)) { 1069 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); 1070 return -ENOMEM; 1071 } 1072 1073 buffer->skb = skb; 1074 buffer->protocol = 0; 1075 buffer->bytecount = skb->len; 1076 buffer->gso_segs = 1; 1077 buffer->time_stamp = jiffies; 1078 dma_unmap_len_set(buffer, len, skb->len); 1079 dma_unmap_addr_set(buffer, dma, dma); 1080 1081 return 0; 1082 } 1083 1084 static int igc_init_tx_empty_descriptor(struct igc_ring *ring, 1085 struct sk_buff *skb, 1086 struct igc_tx_buffer *first) 1087 { 1088 union igc_adv_tx_desc *desc; 1089 u32 cmd_type, olinfo_status; 1090 int err; 1091 1092 if (!igc_desc_unused(ring)) 1093 return -EBUSY; 1094 1095 err = igc_init_empty_frame(ring, first, skb); 1096 if (err) 1097 return err; 1098 1099 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 1100 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 1101 first->bytecount; 1102 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 1103 1104 desc = IGC_TX_DESC(ring, ring->next_to_use); 1105 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1106 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1107 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma)); 1108 1109 netdev_tx_sent_queue(txring_txq(ring), skb->len); 1110 1111 first->next_to_watch = desc; 1112 1113 ring->next_to_use++; 1114 if (ring->next_to_use == ring->count) 1115 ring->next_to_use = 0; 1116 1117 return 0; 1118 } 1119 1120 #define IGC_EMPTY_FRAME_SIZE 60 1121 1122 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, 1123 __le32 launch_time, bool first_flag, 1124 u32 vlan_macip_lens, u32 type_tucmd, 1125 u32 mss_l4len_idx) 1126 { 1127 struct igc_adv_tx_context_desc *context_desc; 1128 u16 i = tx_ring->next_to_use; 1129 1130 context_desc = IGC_TX_CTXTDESC(tx_ring, i); 1131 1132 i++; 1133 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1134 1135 /* set bits to identify this as an advanced context descriptor */ 1136 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; 1137 1138 /* For i225, context index must be unique per ring. */ 1139 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 1140 mss_l4len_idx |= tx_ring->reg_idx << 4; 1141 1142 if (first_flag) 1143 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST; 1144 1145 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1146 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1147 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1148 context_desc->launch_time = launch_time; 1149 } 1150 1151 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first, 1152 __le32 launch_time, bool first_flag) 1153 { 1154 struct sk_buff *skb = first->skb; 1155 u32 vlan_macip_lens = 0; 1156 u32 type_tucmd = 0; 1157 1158 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1159 csum_failed: 1160 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && 1161 !tx_ring->launchtime_enable) 1162 return; 1163 goto no_csum; 1164 } 1165 1166 switch (skb->csum_offset) { 1167 case offsetof(struct tcphdr, check): 1168 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1169 fallthrough; 1170 case offsetof(struct udphdr, check): 1171 break; 1172 case offsetof(struct sctphdr, checksum): 1173 /* validate that this is actually an SCTP request */ 1174 if (skb_csum_is_sctp(skb)) { 1175 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; 1176 break; 1177 } 1178 fallthrough; 1179 default: 1180 skb_checksum_help(skb); 1181 goto csum_failed; 1182 } 1183 1184 /* update TX checksum flag */ 1185 first->tx_flags |= IGC_TX_FLAGS_CSUM; 1186 vlan_macip_lens = skb_checksum_start_offset(skb) - 1187 skb_network_offset(skb); 1188 no_csum: 1189 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; 1190 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1191 1192 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1193 vlan_macip_lens, type_tucmd, 0); 1194 } 1195 1196 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1197 { 1198 struct net_device *netdev = tx_ring->netdev; 1199 1200 netif_stop_subqueue(netdev, tx_ring->queue_index); 1201 1202 /* memory barriier comment */ 1203 smp_mb(); 1204 1205 /* We need to check again in a case another CPU has just 1206 * made room available. 1207 */ 1208 if (igc_desc_unused(tx_ring) < size) 1209 return -EBUSY; 1210 1211 /* A reprieve! */ 1212 netif_wake_subqueue(netdev, tx_ring->queue_index); 1213 1214 u64_stats_update_begin(&tx_ring->tx_syncp2); 1215 tx_ring->tx_stats.restart_queue2++; 1216 u64_stats_update_end(&tx_ring->tx_syncp2); 1217 1218 return 0; 1219 } 1220 1221 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 1222 { 1223 if (igc_desc_unused(tx_ring) >= size) 1224 return 0; 1225 return __igc_maybe_stop_tx(tx_ring, size); 1226 } 1227 1228 #define IGC_SET_FLAG(_input, _flag, _result) \ 1229 (((_flag) <= (_result)) ? \ 1230 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ 1231 ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) 1232 1233 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 1234 { 1235 /* set type for advanced descriptor with frame checksum insertion */ 1236 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 1237 IGC_ADVTXD_DCMD_DEXT | 1238 IGC_ADVTXD_DCMD_IFCS; 1239 1240 /* set HW vlan bit if vlan is present */ 1241 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, 1242 IGC_ADVTXD_DCMD_VLE); 1243 1244 /* set segmentation bits for TSO */ 1245 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, 1246 (IGC_ADVTXD_DCMD_TSE)); 1247 1248 /* set timestamp bit if present */ 1249 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, 1250 (IGC_ADVTXD_MAC_TSTAMP)); 1251 1252 /* insert frame checksum */ 1253 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); 1254 1255 return cmd_type; 1256 } 1257 1258 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 1259 union igc_adv_tx_desc *tx_desc, 1260 u32 tx_flags, unsigned int paylen) 1261 { 1262 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 1263 1264 /* insert L4 checksum */ 1265 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 1266 ((IGC_TXD_POPTS_TXSM << 8) / 1267 IGC_TX_FLAGS_CSUM); 1268 1269 /* insert IPv4 checksum */ 1270 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 1271 (((IGC_TXD_POPTS_IXSM << 8)) / 1272 IGC_TX_FLAGS_IPV4); 1273 1274 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 1275 } 1276 1277 static int igc_tx_map(struct igc_ring *tx_ring, 1278 struct igc_tx_buffer *first, 1279 const u8 hdr_len) 1280 { 1281 struct sk_buff *skb = first->skb; 1282 struct igc_tx_buffer *tx_buffer; 1283 union igc_adv_tx_desc *tx_desc; 1284 u32 tx_flags = first->tx_flags; 1285 skb_frag_t *frag; 1286 u16 i = tx_ring->next_to_use; 1287 unsigned int data_len, size; 1288 dma_addr_t dma; 1289 u32 cmd_type; 1290 1291 cmd_type = igc_tx_cmd_type(skb, tx_flags); 1292 tx_desc = IGC_TX_DESC(tx_ring, i); 1293 1294 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 1295 1296 size = skb_headlen(skb); 1297 data_len = skb->data_len; 1298 1299 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1300 1301 tx_buffer = first; 1302 1303 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1304 if (dma_mapping_error(tx_ring->dev, dma)) 1305 goto dma_error; 1306 1307 /* record length, and DMA address */ 1308 dma_unmap_len_set(tx_buffer, len, size); 1309 dma_unmap_addr_set(tx_buffer, dma, dma); 1310 1311 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1312 1313 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 1314 tx_desc->read.cmd_type_len = 1315 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 1316 1317 i++; 1318 tx_desc++; 1319 if (i == tx_ring->count) { 1320 tx_desc = IGC_TX_DESC(tx_ring, 0); 1321 i = 0; 1322 } 1323 tx_desc->read.olinfo_status = 0; 1324 1325 dma += IGC_MAX_DATA_PER_TXD; 1326 size -= IGC_MAX_DATA_PER_TXD; 1327 1328 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1329 } 1330 1331 if (likely(!data_len)) 1332 break; 1333 1334 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1335 1336 i++; 1337 tx_desc++; 1338 if (i == tx_ring->count) { 1339 tx_desc = IGC_TX_DESC(tx_ring, 0); 1340 i = 0; 1341 } 1342 tx_desc->read.olinfo_status = 0; 1343 1344 size = skb_frag_size(frag); 1345 data_len -= size; 1346 1347 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 1348 size, DMA_TO_DEVICE); 1349 1350 tx_buffer = &tx_ring->tx_buffer_info[i]; 1351 } 1352 1353 /* write last descriptor with RS and EOP bits */ 1354 cmd_type |= size | IGC_TXD_DCMD; 1355 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1356 1357 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1358 1359 /* set the timestamp */ 1360 first->time_stamp = jiffies; 1361 1362 skb_tx_timestamp(skb); 1363 1364 /* Force memory writes to complete before letting h/w know there 1365 * are new descriptors to fetch. (Only applicable for weak-ordered 1366 * memory model archs, such as IA-64). 1367 * 1368 * We also need this memory barrier to make certain all of the 1369 * status bits have been updated before next_to_watch is written. 1370 */ 1371 wmb(); 1372 1373 /* set next_to_watch value indicating a packet is present */ 1374 first->next_to_watch = tx_desc; 1375 1376 i++; 1377 if (i == tx_ring->count) 1378 i = 0; 1379 1380 tx_ring->next_to_use = i; 1381 1382 /* Make sure there is space in the ring for the next send. */ 1383 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 1384 1385 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1386 writel(i, tx_ring->tail); 1387 } 1388 1389 return 0; 1390 dma_error: 1391 netdev_err(tx_ring->netdev, "TX DMA map failed\n"); 1392 tx_buffer = &tx_ring->tx_buffer_info[i]; 1393 1394 /* clear dma mappings for failed tx_buffer_info map */ 1395 while (tx_buffer != first) { 1396 if (dma_unmap_len(tx_buffer, len)) 1397 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1398 1399 if (i-- == 0) 1400 i += tx_ring->count; 1401 tx_buffer = &tx_ring->tx_buffer_info[i]; 1402 } 1403 1404 if (dma_unmap_len(tx_buffer, len)) 1405 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 1406 1407 dev_kfree_skb_any(tx_buffer->skb); 1408 tx_buffer->skb = NULL; 1409 1410 tx_ring->next_to_use = i; 1411 1412 return -1; 1413 } 1414 1415 static int igc_tso(struct igc_ring *tx_ring, 1416 struct igc_tx_buffer *first, 1417 __le32 launch_time, bool first_flag, 1418 u8 *hdr_len) 1419 { 1420 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1421 struct sk_buff *skb = first->skb; 1422 union { 1423 struct iphdr *v4; 1424 struct ipv6hdr *v6; 1425 unsigned char *hdr; 1426 } ip; 1427 union { 1428 struct tcphdr *tcp; 1429 struct udphdr *udp; 1430 unsigned char *hdr; 1431 } l4; 1432 u32 paylen, l4_offset; 1433 int err; 1434 1435 if (skb->ip_summed != CHECKSUM_PARTIAL) 1436 return 0; 1437 1438 if (!skb_is_gso(skb)) 1439 return 0; 1440 1441 err = skb_cow_head(skb, 0); 1442 if (err < 0) 1443 return err; 1444 1445 ip.hdr = skb_network_header(skb); 1446 l4.hdr = skb_checksum_start(skb); 1447 1448 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1449 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; 1450 1451 /* initialize outer IP header fields */ 1452 if (ip.v4->version == 4) { 1453 unsigned char *csum_start = skb_checksum_start(skb); 1454 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 1455 1456 /* IP header will have to cancel out any data that 1457 * is not a part of the outer IP header 1458 */ 1459 ip.v4->check = csum_fold(csum_partial(trans_start, 1460 csum_start - trans_start, 1461 0)); 1462 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; 1463 1464 ip.v4->tot_len = 0; 1465 first->tx_flags |= IGC_TX_FLAGS_TSO | 1466 IGC_TX_FLAGS_CSUM | 1467 IGC_TX_FLAGS_IPV4; 1468 } else { 1469 ip.v6->payload_len = 0; 1470 first->tx_flags |= IGC_TX_FLAGS_TSO | 1471 IGC_TX_FLAGS_CSUM; 1472 } 1473 1474 /* determine offset of inner transport header */ 1475 l4_offset = l4.hdr - skb->data; 1476 1477 /* remove payload length from inner checksum */ 1478 paylen = skb->len - l4_offset; 1479 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { 1480 /* compute length of segmentation header */ 1481 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 1482 csum_replace_by_diff(&l4.tcp->check, 1483 (__force __wsum)htonl(paylen)); 1484 } else { 1485 /* compute length of segmentation header */ 1486 *hdr_len = sizeof(*l4.udp) + l4_offset; 1487 csum_replace_by_diff(&l4.udp->check, 1488 (__force __wsum)htonl(paylen)); 1489 } 1490 1491 /* update gso size and bytecount with header size */ 1492 first->gso_segs = skb_shinfo(skb)->gso_segs; 1493 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1494 1495 /* MSS L4LEN IDX */ 1496 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; 1497 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; 1498 1499 /* VLAN MACLEN IPLEN */ 1500 vlan_macip_lens = l4.hdr - ip.hdr; 1501 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; 1502 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; 1503 1504 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag, 1505 vlan_macip_lens, type_tucmd, mss_l4len_idx); 1506 1507 return 1; 1508 } 1509 1510 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 1511 struct igc_ring *tx_ring) 1512 { 1513 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); 1514 bool first_flag = false, insert_empty = false; 1515 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1516 __be16 protocol = vlan_get_protocol(skb); 1517 struct igc_tx_buffer *first; 1518 __le32 launch_time = 0; 1519 u32 tx_flags = 0; 1520 unsigned short f; 1521 ktime_t txtime; 1522 u8 hdr_len = 0; 1523 int tso = 0; 1524 1525 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 1526 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 1527 * + 2 desc gap to keep tail from touching head, 1528 * + 1 desc for context descriptor, 1529 * otherwise try next time 1530 */ 1531 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1532 count += TXD_USE_COUNT(skb_frag_size( 1533 &skb_shinfo(skb)->frags[f])); 1534 1535 if (igc_maybe_stop_tx(tx_ring, count + 5)) { 1536 /* this is a hard error */ 1537 return NETDEV_TX_BUSY; 1538 } 1539 1540 if (!tx_ring->launchtime_enable) 1541 goto done; 1542 1543 txtime = skb->tstamp; 1544 skb->tstamp = ktime_set(0, 0); 1545 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty); 1546 1547 if (insert_empty) { 1548 struct igc_tx_buffer *empty_info; 1549 struct sk_buff *empty; 1550 void *data; 1551 1552 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1553 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC); 1554 if (!empty) 1555 goto done; 1556 1557 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE); 1558 memset(data, 0, IGC_EMPTY_FRAME_SIZE); 1559 1560 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0); 1561 1562 if (igc_init_tx_empty_descriptor(tx_ring, 1563 empty, 1564 empty_info) < 0) 1565 dev_kfree_skb_any(empty); 1566 } 1567 1568 done: 1569 /* record the location of the first descriptor for this packet */ 1570 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1571 first->type = IGC_TX_BUFFER_TYPE_SKB; 1572 first->skb = skb; 1573 first->bytecount = skb->len; 1574 first->gso_segs = 1; 1575 1576 if (tx_ring->max_sdu > 0) { 1577 u32 max_sdu = 0; 1578 1579 max_sdu = tx_ring->max_sdu + 1580 (skb_vlan_tagged(first->skb) ? VLAN_HLEN : 0); 1581 1582 if (first->bytecount > max_sdu) { 1583 adapter->stats.txdrop++; 1584 goto out_drop; 1585 } 1586 } 1587 1588 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1589 /* FIXME: add support for retrieving timestamps from 1590 * the other timer registers before skipping the 1591 * timestamping request. 1592 */ 1593 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 1594 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS, 1595 &adapter->state)) { 1596 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1597 tx_flags |= IGC_TX_FLAGS_TSTAMP; 1598 1599 adapter->ptp_tx_skb = skb_get(skb); 1600 adapter->ptp_tx_start = jiffies; 1601 } else { 1602 adapter->tx_hwtstamp_skipped++; 1603 } 1604 } 1605 1606 if (skb_vlan_tag_present(skb)) { 1607 tx_flags |= IGC_TX_FLAGS_VLAN; 1608 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); 1609 } 1610 1611 /* record initial flags and protocol */ 1612 first->tx_flags = tx_flags; 1613 first->protocol = protocol; 1614 1615 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len); 1616 if (tso < 0) 1617 goto out_drop; 1618 else if (!tso) 1619 igc_tx_csum(tx_ring, first, launch_time, first_flag); 1620 1621 igc_tx_map(tx_ring, first, hdr_len); 1622 1623 return NETDEV_TX_OK; 1624 1625 out_drop: 1626 dev_kfree_skb_any(first->skb); 1627 first->skb = NULL; 1628 1629 return NETDEV_TX_OK; 1630 } 1631 1632 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 1633 struct sk_buff *skb) 1634 { 1635 unsigned int r_idx = skb->queue_mapping; 1636 1637 if (r_idx >= adapter->num_tx_queues) 1638 r_idx = r_idx % adapter->num_tx_queues; 1639 1640 return adapter->tx_ring[r_idx]; 1641 } 1642 1643 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 1644 struct net_device *netdev) 1645 { 1646 struct igc_adapter *adapter = netdev_priv(netdev); 1647 1648 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 1649 * in order to meet this minimum size requirement. 1650 */ 1651 if (skb->len < 17) { 1652 if (skb_padto(skb, 17)) 1653 return NETDEV_TX_OK; 1654 skb->len = 17; 1655 } 1656 1657 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1658 } 1659 1660 static void igc_rx_checksum(struct igc_ring *ring, 1661 union igc_adv_rx_desc *rx_desc, 1662 struct sk_buff *skb) 1663 { 1664 skb_checksum_none_assert(skb); 1665 1666 /* Ignore Checksum bit is set */ 1667 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) 1668 return; 1669 1670 /* Rx checksum disabled via ethtool */ 1671 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 1672 return; 1673 1674 /* TCP/UDP checksum error bit is set */ 1675 if (igc_test_staterr(rx_desc, 1676 IGC_RXDEXT_STATERR_L4E | 1677 IGC_RXDEXT_STATERR_IPE)) { 1678 /* work around errata with sctp packets where the TCPE aka 1679 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 1680 * packets (aka let the stack check the crc32c) 1681 */ 1682 if (!(skb->len == 60 && 1683 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 1684 u64_stats_update_begin(&ring->rx_syncp); 1685 ring->rx_stats.csum_err++; 1686 u64_stats_update_end(&ring->rx_syncp); 1687 } 1688 /* let the stack verify checksum errors */ 1689 return; 1690 } 1691 /* It must be a TCP or UDP packet with a valid checksum */ 1692 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | 1693 IGC_RXD_STAT_UDPCS)) 1694 skb->ip_summed = CHECKSUM_UNNECESSARY; 1695 1696 netdev_dbg(ring->netdev, "cksum success: bits %08X\n", 1697 le32_to_cpu(rx_desc->wb.upper.status_error)); 1698 } 1699 1700 /* Mapping HW RSS Type to enum pkt_hash_types */ 1701 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = { 1702 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2, 1703 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4, 1704 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3, 1705 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4, 1706 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3, 1707 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3, 1708 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4, 1709 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4, 1710 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4, 1711 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4, 1712 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */ 1713 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */ 1714 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */ 1715 [13] = PKT_HASH_TYPE_NONE, 1716 [14] = PKT_HASH_TYPE_NONE, 1717 [15] = PKT_HASH_TYPE_NONE, 1718 }; 1719 1720 static inline void igc_rx_hash(struct igc_ring *ring, 1721 union igc_adv_rx_desc *rx_desc, 1722 struct sk_buff *skb) 1723 { 1724 if (ring->netdev->features & NETIF_F_RXHASH) { 1725 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); 1726 u32 rss_type = igc_rss_type(rx_desc); 1727 1728 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]); 1729 } 1730 } 1731 1732 static void igc_rx_vlan(struct igc_ring *rx_ring, 1733 union igc_adv_rx_desc *rx_desc, 1734 struct sk_buff *skb) 1735 { 1736 struct net_device *dev = rx_ring->netdev; 1737 u16 vid; 1738 1739 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1740 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { 1741 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && 1742 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 1743 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 1744 else 1745 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 1746 1747 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 1748 } 1749 } 1750 1751 /** 1752 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1753 * @rx_ring: rx descriptor ring packet is being transacted on 1754 * @rx_desc: pointer to the EOP Rx descriptor 1755 * @skb: pointer to current skb being populated 1756 * 1757 * This function checks the ring, descriptor, and packet information in order 1758 * to populate the hash, checksum, VLAN, protocol, and other fields within the 1759 * skb. 1760 */ 1761 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1762 union igc_adv_rx_desc *rx_desc, 1763 struct sk_buff *skb) 1764 { 1765 igc_rx_hash(rx_ring, rx_desc, skb); 1766 1767 igc_rx_checksum(rx_ring, rx_desc, skb); 1768 1769 igc_rx_vlan(rx_ring, rx_desc, skb); 1770 1771 skb_record_rx_queue(skb, rx_ring->queue_index); 1772 1773 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1774 } 1775 1776 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) 1777 { 1778 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 1779 struct igc_adapter *adapter = netdev_priv(netdev); 1780 struct igc_hw *hw = &adapter->hw; 1781 u32 ctrl; 1782 1783 ctrl = rd32(IGC_CTRL); 1784 1785 if (enable) { 1786 /* enable VLAN tag insert/strip */ 1787 ctrl |= IGC_CTRL_VME; 1788 } else { 1789 /* disable VLAN tag insert/strip */ 1790 ctrl &= ~IGC_CTRL_VME; 1791 } 1792 wr32(IGC_CTRL, ctrl); 1793 } 1794 1795 static void igc_restore_vlan(struct igc_adapter *adapter) 1796 { 1797 igc_vlan_mode(adapter->netdev, adapter->netdev->features); 1798 } 1799 1800 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1801 const unsigned int size, 1802 int *rx_buffer_pgcnt) 1803 { 1804 struct igc_rx_buffer *rx_buffer; 1805 1806 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1807 *rx_buffer_pgcnt = 1808 #if (PAGE_SIZE < 8192) 1809 page_count(rx_buffer->page); 1810 #else 1811 0; 1812 #endif 1813 prefetchw(rx_buffer->page); 1814 1815 /* we are reusing so sync this buffer for CPU use */ 1816 dma_sync_single_range_for_cpu(rx_ring->dev, 1817 rx_buffer->dma, 1818 rx_buffer->page_offset, 1819 size, 1820 DMA_FROM_DEVICE); 1821 1822 rx_buffer->pagecnt_bias--; 1823 1824 return rx_buffer; 1825 } 1826 1827 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, 1828 unsigned int truesize) 1829 { 1830 #if (PAGE_SIZE < 8192) 1831 buffer->page_offset ^= truesize; 1832 #else 1833 buffer->page_offset += truesize; 1834 #endif 1835 } 1836 1837 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, 1838 unsigned int size) 1839 { 1840 unsigned int truesize; 1841 1842 #if (PAGE_SIZE < 8192) 1843 truesize = igc_rx_pg_size(ring) / 2; 1844 #else 1845 truesize = ring_uses_build_skb(ring) ? 1846 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1847 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1848 SKB_DATA_ALIGN(size); 1849 #endif 1850 return truesize; 1851 } 1852 1853 /** 1854 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1855 * @rx_ring: rx descriptor ring to transact packets on 1856 * @rx_buffer: buffer containing page to add 1857 * @skb: sk_buff to place the data into 1858 * @size: size of buffer to be added 1859 * 1860 * This function will add the data contained in rx_buffer->page to the skb. 1861 */ 1862 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1863 struct igc_rx_buffer *rx_buffer, 1864 struct sk_buff *skb, 1865 unsigned int size) 1866 { 1867 unsigned int truesize; 1868 1869 #if (PAGE_SIZE < 8192) 1870 truesize = igc_rx_pg_size(rx_ring) / 2; 1871 #else 1872 truesize = ring_uses_build_skb(rx_ring) ? 1873 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1874 SKB_DATA_ALIGN(size); 1875 #endif 1876 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1877 rx_buffer->page_offset, size, truesize); 1878 1879 igc_rx_buffer_flip(rx_buffer, truesize); 1880 } 1881 1882 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1883 struct igc_rx_buffer *rx_buffer, 1884 struct xdp_buff *xdp) 1885 { 1886 unsigned int size = xdp->data_end - xdp->data; 1887 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1888 unsigned int metasize = xdp->data - xdp->data_meta; 1889 struct sk_buff *skb; 1890 1891 /* prefetch first cache line of first page */ 1892 net_prefetch(xdp->data_meta); 1893 1894 /* build an skb around the page buffer */ 1895 skb = napi_build_skb(xdp->data_hard_start, truesize); 1896 if (unlikely(!skb)) 1897 return NULL; 1898 1899 /* update pointers within the skb to store the data */ 1900 skb_reserve(skb, xdp->data - xdp->data_hard_start); 1901 __skb_put(skb, size); 1902 if (metasize) 1903 skb_metadata_set(skb, metasize); 1904 1905 igc_rx_buffer_flip(rx_buffer, truesize); 1906 return skb; 1907 } 1908 1909 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1910 struct igc_rx_buffer *rx_buffer, 1911 struct xdp_buff *xdp, 1912 ktime_t timestamp) 1913 { 1914 unsigned int metasize = xdp->data - xdp->data_meta; 1915 unsigned int size = xdp->data_end - xdp->data; 1916 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); 1917 void *va = xdp->data; 1918 unsigned int headlen; 1919 struct sk_buff *skb; 1920 1921 /* prefetch first cache line of first page */ 1922 net_prefetch(xdp->data_meta); 1923 1924 /* allocate a skb to store the frags */ 1925 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 1926 IGC_RX_HDR_LEN + metasize); 1927 if (unlikely(!skb)) 1928 return NULL; 1929 1930 if (timestamp) 1931 skb_hwtstamps(skb)->hwtstamp = timestamp; 1932 1933 /* Determine available headroom for copy */ 1934 headlen = size; 1935 if (headlen > IGC_RX_HDR_LEN) 1936 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); 1937 1938 /* align pull length to size of long to optimize memcpy performance */ 1939 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, 1940 ALIGN(headlen + metasize, sizeof(long))); 1941 1942 if (metasize) { 1943 skb_metadata_set(skb, metasize); 1944 __skb_pull(skb, metasize); 1945 } 1946 1947 /* update all of the pointers */ 1948 size -= headlen; 1949 if (size) { 1950 skb_add_rx_frag(skb, 0, rx_buffer->page, 1951 (va + headlen) - page_address(rx_buffer->page), 1952 size, truesize); 1953 igc_rx_buffer_flip(rx_buffer, truesize); 1954 } else { 1955 rx_buffer->pagecnt_bias++; 1956 } 1957 1958 return skb; 1959 } 1960 1961 /** 1962 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1963 * @rx_ring: rx descriptor ring to store buffers on 1964 * @old_buff: donor buffer to have page reused 1965 * 1966 * Synchronizes page for reuse by the adapter 1967 */ 1968 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1969 struct igc_rx_buffer *old_buff) 1970 { 1971 u16 nta = rx_ring->next_to_alloc; 1972 struct igc_rx_buffer *new_buff; 1973 1974 new_buff = &rx_ring->rx_buffer_info[nta]; 1975 1976 /* update, and store next to alloc */ 1977 nta++; 1978 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1979 1980 /* Transfer page from old buffer to new buffer. 1981 * Move each member individually to avoid possible store 1982 * forwarding stalls. 1983 */ 1984 new_buff->dma = old_buff->dma; 1985 new_buff->page = old_buff->page; 1986 new_buff->page_offset = old_buff->page_offset; 1987 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1988 } 1989 1990 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, 1991 int rx_buffer_pgcnt) 1992 { 1993 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1994 struct page *page = rx_buffer->page; 1995 1996 /* avoid re-using remote and pfmemalloc pages */ 1997 if (!dev_page_is_reusable(page)) 1998 return false; 1999 2000 #if (PAGE_SIZE < 8192) 2001 /* if we are only owner of page we can reuse it */ 2002 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 2003 return false; 2004 #else 2005 #define IGC_LAST_OFFSET \ 2006 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 2007 2008 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 2009 return false; 2010 #endif 2011 2012 /* If we have drained the page fragment pool we need to update 2013 * the pagecnt_bias and page count so that we fully restock the 2014 * number of references the driver holds. 2015 */ 2016 if (unlikely(pagecnt_bias == 1)) { 2017 page_ref_add(page, USHRT_MAX - 1); 2018 rx_buffer->pagecnt_bias = USHRT_MAX; 2019 } 2020 2021 return true; 2022 } 2023 2024 /** 2025 * igc_is_non_eop - process handling of non-EOP buffers 2026 * @rx_ring: Rx ring being processed 2027 * @rx_desc: Rx descriptor for current buffer 2028 * 2029 * This function updates next to clean. If the buffer is an EOP buffer 2030 * this function exits returning false, otherwise it will place the 2031 * sk_buff in the next buffer to be chained and return true indicating 2032 * that this is in fact a non-EOP buffer. 2033 */ 2034 static bool igc_is_non_eop(struct igc_ring *rx_ring, 2035 union igc_adv_rx_desc *rx_desc) 2036 { 2037 u32 ntc = rx_ring->next_to_clean + 1; 2038 2039 /* fetch, update, and store next to clean */ 2040 ntc = (ntc < rx_ring->count) ? ntc : 0; 2041 rx_ring->next_to_clean = ntc; 2042 2043 prefetch(IGC_RX_DESC(rx_ring, ntc)); 2044 2045 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 2046 return false; 2047 2048 return true; 2049 } 2050 2051 /** 2052 * igc_cleanup_headers - Correct corrupted or empty headers 2053 * @rx_ring: rx descriptor ring packet is being transacted on 2054 * @rx_desc: pointer to the EOP Rx descriptor 2055 * @skb: pointer to current skb being fixed 2056 * 2057 * Address the case where we are pulling data in on pages only 2058 * and as such no data is present in the skb header. 2059 * 2060 * In addition if skb is not at least 60 bytes we need to pad it so that 2061 * it is large enough to qualify as a valid Ethernet frame. 2062 * 2063 * Returns true if an error was encountered and skb was freed. 2064 */ 2065 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 2066 union igc_adv_rx_desc *rx_desc, 2067 struct sk_buff *skb) 2068 { 2069 /* XDP packets use error pointer so abort at this point */ 2070 if (IS_ERR(skb)) 2071 return true; 2072 2073 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { 2074 struct net_device *netdev = rx_ring->netdev; 2075 2076 if (!(netdev->features & NETIF_F_RXALL)) { 2077 dev_kfree_skb_any(skb); 2078 return true; 2079 } 2080 } 2081 2082 /* if eth_skb_pad returns an error the skb was freed */ 2083 if (eth_skb_pad(skb)) 2084 return true; 2085 2086 return false; 2087 } 2088 2089 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 2090 struct igc_rx_buffer *rx_buffer, 2091 int rx_buffer_pgcnt) 2092 { 2093 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2094 /* hand second half of page back to the ring */ 2095 igc_reuse_rx_page(rx_ring, rx_buffer); 2096 } else { 2097 /* We are not reusing the buffer so unmap it and free 2098 * any references we are holding to it 2099 */ 2100 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2101 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 2102 IGC_RX_DMA_ATTR); 2103 __page_frag_cache_drain(rx_buffer->page, 2104 rx_buffer->pagecnt_bias); 2105 } 2106 2107 /* clear contents of rx_buffer */ 2108 rx_buffer->page = NULL; 2109 } 2110 2111 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 2112 { 2113 struct igc_adapter *adapter = rx_ring->q_vector->adapter; 2114 2115 if (ring_uses_build_skb(rx_ring)) 2116 return IGC_SKB_PAD; 2117 if (igc_xdp_is_enabled(adapter)) 2118 return XDP_PACKET_HEADROOM; 2119 2120 return 0; 2121 } 2122 2123 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 2124 struct igc_rx_buffer *bi) 2125 { 2126 struct page *page = bi->page; 2127 dma_addr_t dma; 2128 2129 /* since we are recycling buffers we should seldom need to alloc */ 2130 if (likely(page)) 2131 return true; 2132 2133 /* alloc new page for storage */ 2134 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 2135 if (unlikely(!page)) { 2136 rx_ring->rx_stats.alloc_failed++; 2137 return false; 2138 } 2139 2140 /* map page for use */ 2141 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 2142 igc_rx_pg_size(rx_ring), 2143 DMA_FROM_DEVICE, 2144 IGC_RX_DMA_ATTR); 2145 2146 /* if mapping failed free memory back to system since 2147 * there isn't much point in holding memory we can't use 2148 */ 2149 if (dma_mapping_error(rx_ring->dev, dma)) { 2150 __free_page(page); 2151 2152 rx_ring->rx_stats.alloc_failed++; 2153 return false; 2154 } 2155 2156 bi->dma = dma; 2157 bi->page = page; 2158 bi->page_offset = igc_rx_offset(rx_ring); 2159 page_ref_add(page, USHRT_MAX - 1); 2160 bi->pagecnt_bias = USHRT_MAX; 2161 2162 return true; 2163 } 2164 2165 /** 2166 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 2167 * @rx_ring: rx descriptor ring 2168 * @cleaned_count: number of buffers to clean 2169 */ 2170 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 2171 { 2172 union igc_adv_rx_desc *rx_desc; 2173 u16 i = rx_ring->next_to_use; 2174 struct igc_rx_buffer *bi; 2175 u16 bufsz; 2176 2177 /* nothing to do */ 2178 if (!cleaned_count) 2179 return; 2180 2181 rx_desc = IGC_RX_DESC(rx_ring, i); 2182 bi = &rx_ring->rx_buffer_info[i]; 2183 i -= rx_ring->count; 2184 2185 bufsz = igc_rx_bufsz(rx_ring); 2186 2187 do { 2188 if (!igc_alloc_mapped_page(rx_ring, bi)) 2189 break; 2190 2191 /* sync the buffer for use by the device */ 2192 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 2193 bi->page_offset, bufsz, 2194 DMA_FROM_DEVICE); 2195 2196 /* Refresh the desc even if buffer_addrs didn't change 2197 * because each write-back erases this info. 2198 */ 2199 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 2200 2201 rx_desc++; 2202 bi++; 2203 i++; 2204 if (unlikely(!i)) { 2205 rx_desc = IGC_RX_DESC(rx_ring, 0); 2206 bi = rx_ring->rx_buffer_info; 2207 i -= rx_ring->count; 2208 } 2209 2210 /* clear the length for the next_to_use descriptor */ 2211 rx_desc->wb.upper.length = 0; 2212 2213 cleaned_count--; 2214 } while (cleaned_count); 2215 2216 i += rx_ring->count; 2217 2218 if (rx_ring->next_to_use != i) { 2219 /* record the next descriptor to use */ 2220 rx_ring->next_to_use = i; 2221 2222 /* update next to alloc since we have filled the ring */ 2223 rx_ring->next_to_alloc = i; 2224 2225 /* Force memory writes to complete before letting h/w 2226 * know there are new descriptors to fetch. (Only 2227 * applicable for weak-ordered memory model archs, 2228 * such as IA-64). 2229 */ 2230 wmb(); 2231 writel(i, rx_ring->tail); 2232 } 2233 } 2234 2235 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) 2236 { 2237 union igc_adv_rx_desc *desc; 2238 u16 i = ring->next_to_use; 2239 struct igc_rx_buffer *bi; 2240 dma_addr_t dma; 2241 bool ok = true; 2242 2243 if (!count) 2244 return ok; 2245 2246 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff); 2247 2248 desc = IGC_RX_DESC(ring, i); 2249 bi = &ring->rx_buffer_info[i]; 2250 i -= ring->count; 2251 2252 do { 2253 bi->xdp = xsk_buff_alloc(ring->xsk_pool); 2254 if (!bi->xdp) { 2255 ok = false; 2256 break; 2257 } 2258 2259 dma = xsk_buff_xdp_get_dma(bi->xdp); 2260 desc->read.pkt_addr = cpu_to_le64(dma); 2261 2262 desc++; 2263 bi++; 2264 i++; 2265 if (unlikely(!i)) { 2266 desc = IGC_RX_DESC(ring, 0); 2267 bi = ring->rx_buffer_info; 2268 i -= ring->count; 2269 } 2270 2271 /* Clear the length for the next_to_use descriptor. */ 2272 desc->wb.upper.length = 0; 2273 2274 count--; 2275 } while (count); 2276 2277 i += ring->count; 2278 2279 if (ring->next_to_use != i) { 2280 ring->next_to_use = i; 2281 2282 /* Force memory writes to complete before letting h/w 2283 * know there are new descriptors to fetch. (Only 2284 * applicable for weak-ordered memory model archs, 2285 * such as IA-64). 2286 */ 2287 wmb(); 2288 writel(i, ring->tail); 2289 } 2290 2291 return ok; 2292 } 2293 2294 /* This function requires __netif_tx_lock is held by the caller. */ 2295 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, 2296 struct xdp_frame *xdpf) 2297 { 2298 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2299 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 2300 u16 count, index = ring->next_to_use; 2301 struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; 2302 struct igc_tx_buffer *buffer = head; 2303 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); 2304 u32 olinfo_status, len = xdpf->len, cmd_type; 2305 void *data = xdpf->data; 2306 u16 i; 2307 2308 count = TXD_USE_COUNT(len); 2309 for (i = 0; i < nr_frags; i++) 2310 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 2311 2312 if (igc_maybe_stop_tx(ring, count + 3)) { 2313 /* this is a hard error */ 2314 return -EBUSY; 2315 } 2316 2317 i = 0; 2318 head->bytecount = xdp_get_frame_len(xdpf); 2319 head->type = IGC_TX_BUFFER_TYPE_XDP; 2320 head->gso_segs = 1; 2321 head->xdpf = xdpf; 2322 2323 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; 2324 desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2325 2326 for (;;) { 2327 dma_addr_t dma; 2328 2329 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); 2330 if (dma_mapping_error(ring->dev, dma)) { 2331 netdev_err_once(ring->netdev, 2332 "Failed to map DMA for TX\n"); 2333 goto unmap; 2334 } 2335 2336 dma_unmap_len_set(buffer, len, len); 2337 dma_unmap_addr_set(buffer, dma, dma); 2338 2339 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2340 IGC_ADVTXD_DCMD_IFCS | len; 2341 2342 desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2343 desc->read.buffer_addr = cpu_to_le64(dma); 2344 2345 buffer->protocol = 0; 2346 2347 if (++index == ring->count) 2348 index = 0; 2349 2350 if (i == nr_frags) 2351 break; 2352 2353 buffer = &ring->tx_buffer_info[index]; 2354 desc = IGC_TX_DESC(ring, index); 2355 desc->read.olinfo_status = 0; 2356 2357 data = skb_frag_address(&sinfo->frags[i]); 2358 len = skb_frag_size(&sinfo->frags[i]); 2359 i++; 2360 } 2361 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); 2362 2363 netdev_tx_sent_queue(txring_txq(ring), head->bytecount); 2364 /* set the timestamp */ 2365 head->time_stamp = jiffies; 2366 /* set next_to_watch value indicating a packet is present */ 2367 head->next_to_watch = desc; 2368 ring->next_to_use = index; 2369 2370 return 0; 2371 2372 unmap: 2373 for (;;) { 2374 buffer = &ring->tx_buffer_info[index]; 2375 if (dma_unmap_len(buffer, len)) 2376 dma_unmap_page(ring->dev, 2377 dma_unmap_addr(buffer, dma), 2378 dma_unmap_len(buffer, len), 2379 DMA_TO_DEVICE); 2380 dma_unmap_len_set(buffer, len, 0); 2381 if (buffer == head) 2382 break; 2383 2384 if (!index) 2385 index += ring->count; 2386 index--; 2387 } 2388 2389 return -ENOMEM; 2390 } 2391 2392 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, 2393 int cpu) 2394 { 2395 int index = cpu; 2396 2397 if (unlikely(index < 0)) 2398 index = 0; 2399 2400 while (index >= adapter->num_tx_queues) 2401 index -= adapter->num_tx_queues; 2402 2403 return adapter->tx_ring[index]; 2404 } 2405 2406 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) 2407 { 2408 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2409 int cpu = smp_processor_id(); 2410 struct netdev_queue *nq; 2411 struct igc_ring *ring; 2412 int res; 2413 2414 if (unlikely(!xdpf)) 2415 return -EFAULT; 2416 2417 ring = igc_xdp_get_tx_ring(adapter, cpu); 2418 nq = txring_txq(ring); 2419 2420 __netif_tx_lock(nq, cpu); 2421 /* Avoid transmit queue timeout since we share it with the slow path */ 2422 txq_trans_cond_update(nq); 2423 res = igc_xdp_init_tx_descriptor(ring, xdpf); 2424 __netif_tx_unlock(nq); 2425 return res; 2426 } 2427 2428 /* This function assumes rcu_read_lock() is held by the caller. */ 2429 static int __igc_xdp_run_prog(struct igc_adapter *adapter, 2430 struct bpf_prog *prog, 2431 struct xdp_buff *xdp) 2432 { 2433 u32 act = bpf_prog_run_xdp(prog, xdp); 2434 2435 switch (act) { 2436 case XDP_PASS: 2437 return IGC_XDP_PASS; 2438 case XDP_TX: 2439 if (igc_xdp_xmit_back(adapter, xdp) < 0) 2440 goto out_failure; 2441 return IGC_XDP_TX; 2442 case XDP_REDIRECT: 2443 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) 2444 goto out_failure; 2445 return IGC_XDP_REDIRECT; 2446 break; 2447 default: 2448 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); 2449 fallthrough; 2450 case XDP_ABORTED: 2451 out_failure: 2452 trace_xdp_exception(adapter->netdev, prog, act); 2453 fallthrough; 2454 case XDP_DROP: 2455 return IGC_XDP_CONSUMED; 2456 } 2457 } 2458 2459 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, 2460 struct xdp_buff *xdp) 2461 { 2462 struct bpf_prog *prog; 2463 int res; 2464 2465 prog = READ_ONCE(adapter->xdp_prog); 2466 if (!prog) { 2467 res = IGC_XDP_PASS; 2468 goto out; 2469 } 2470 2471 res = __igc_xdp_run_prog(adapter, prog, xdp); 2472 2473 out: 2474 return ERR_PTR(-res); 2475 } 2476 2477 /* This function assumes __netif_tx_lock is held by the caller. */ 2478 static void igc_flush_tx_descriptors(struct igc_ring *ring) 2479 { 2480 /* Once tail pointer is updated, hardware can fetch the descriptors 2481 * any time so we issue a write membar here to ensure all memory 2482 * writes are complete before the tail pointer is updated. 2483 */ 2484 wmb(); 2485 writel(ring->next_to_use, ring->tail); 2486 } 2487 2488 static void igc_finalize_xdp(struct igc_adapter *adapter, int status) 2489 { 2490 int cpu = smp_processor_id(); 2491 struct netdev_queue *nq; 2492 struct igc_ring *ring; 2493 2494 if (status & IGC_XDP_TX) { 2495 ring = igc_xdp_get_tx_ring(adapter, cpu); 2496 nq = txring_txq(ring); 2497 2498 __netif_tx_lock(nq, cpu); 2499 igc_flush_tx_descriptors(ring); 2500 __netif_tx_unlock(nq); 2501 } 2502 2503 if (status & IGC_XDP_REDIRECT) 2504 xdp_do_flush(); 2505 } 2506 2507 static void igc_update_rx_stats(struct igc_q_vector *q_vector, 2508 unsigned int packets, unsigned int bytes) 2509 { 2510 struct igc_ring *ring = q_vector->rx.ring; 2511 2512 u64_stats_update_begin(&ring->rx_syncp); 2513 ring->rx_stats.packets += packets; 2514 ring->rx_stats.bytes += bytes; 2515 u64_stats_update_end(&ring->rx_syncp); 2516 2517 q_vector->rx.total_packets += packets; 2518 q_vector->rx.total_bytes += bytes; 2519 } 2520 2521 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 2522 { 2523 unsigned int total_bytes = 0, total_packets = 0; 2524 struct igc_adapter *adapter = q_vector->adapter; 2525 struct igc_ring *rx_ring = q_vector->rx.ring; 2526 struct sk_buff *skb = rx_ring->skb; 2527 u16 cleaned_count = igc_desc_unused(rx_ring); 2528 int xdp_status = 0, rx_buffer_pgcnt; 2529 2530 while (likely(total_packets < budget)) { 2531 union igc_adv_rx_desc *rx_desc; 2532 struct igc_rx_buffer *rx_buffer; 2533 unsigned int size, truesize; 2534 struct igc_xdp_buff ctx; 2535 ktime_t timestamp = 0; 2536 int pkt_offset = 0; 2537 void *pktbuf; 2538 2539 /* return some buffers to hardware, one at a time is too slow */ 2540 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 2541 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2542 cleaned_count = 0; 2543 } 2544 2545 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 2546 size = le16_to_cpu(rx_desc->wb.upper.length); 2547 if (!size) 2548 break; 2549 2550 /* This memory barrier is needed to keep us from reading 2551 * any other fields out of the rx_desc until we know the 2552 * descriptor has been written back 2553 */ 2554 dma_rmb(); 2555 2556 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2557 truesize = igc_get_rx_frame_truesize(rx_ring, size); 2558 2559 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 2560 2561 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { 2562 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2563 pktbuf); 2564 ctx.rx_ts = timestamp; 2565 pkt_offset = IGC_TS_HDR_LEN; 2566 size -= IGC_TS_HDR_LEN; 2567 } 2568 2569 if (!skb) { 2570 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq); 2571 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring), 2572 igc_rx_offset(rx_ring) + pkt_offset, 2573 size, true); 2574 xdp_buff_clear_frags_flag(&ctx.xdp); 2575 ctx.rx_desc = rx_desc; 2576 2577 skb = igc_xdp_run_prog(adapter, &ctx.xdp); 2578 } 2579 2580 if (IS_ERR(skb)) { 2581 unsigned int xdp_res = -PTR_ERR(skb); 2582 2583 switch (xdp_res) { 2584 case IGC_XDP_CONSUMED: 2585 rx_buffer->pagecnt_bias++; 2586 break; 2587 case IGC_XDP_TX: 2588 case IGC_XDP_REDIRECT: 2589 igc_rx_buffer_flip(rx_buffer, truesize); 2590 xdp_status |= xdp_res; 2591 break; 2592 } 2593 2594 total_packets++; 2595 total_bytes += size; 2596 } else if (skb) 2597 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 2598 else if (ring_uses_build_skb(rx_ring)) 2599 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp); 2600 else 2601 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx.xdp, 2602 timestamp); 2603 2604 /* exit if we failed to retrieve a buffer */ 2605 if (!skb) { 2606 rx_ring->rx_stats.alloc_failed++; 2607 rx_buffer->pagecnt_bias++; 2608 break; 2609 } 2610 2611 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2612 cleaned_count++; 2613 2614 /* fetch next buffer in frame if non-eop */ 2615 if (igc_is_non_eop(rx_ring, rx_desc)) 2616 continue; 2617 2618 /* verify the packet layout is correct */ 2619 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 2620 skb = NULL; 2621 continue; 2622 } 2623 2624 /* probably a little skewed due to removing CRC */ 2625 total_bytes += skb->len; 2626 2627 /* populate checksum, VLAN, and protocol */ 2628 igc_process_skb_fields(rx_ring, rx_desc, skb); 2629 2630 napi_gro_receive(&q_vector->napi, skb); 2631 2632 /* reset skb pointer */ 2633 skb = NULL; 2634 2635 /* update budget accounting */ 2636 total_packets++; 2637 } 2638 2639 if (xdp_status) 2640 igc_finalize_xdp(adapter, xdp_status); 2641 2642 /* place incomplete frames back on ring for completion */ 2643 rx_ring->skb = skb; 2644 2645 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2646 2647 if (cleaned_count) 2648 igc_alloc_rx_buffers(rx_ring, cleaned_count); 2649 2650 return total_packets; 2651 } 2652 2653 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, 2654 struct xdp_buff *xdp) 2655 { 2656 unsigned int totalsize = xdp->data_end - xdp->data_meta; 2657 unsigned int metasize = xdp->data - xdp->data_meta; 2658 struct sk_buff *skb; 2659 2660 net_prefetch(xdp->data_meta); 2661 2662 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize, 2663 GFP_ATOMIC | __GFP_NOWARN); 2664 if (unlikely(!skb)) 2665 return NULL; 2666 2667 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 2668 ALIGN(totalsize, sizeof(long))); 2669 2670 if (metasize) { 2671 skb_metadata_set(skb, metasize); 2672 __skb_pull(skb, metasize); 2673 } 2674 2675 return skb; 2676 } 2677 2678 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, 2679 union igc_adv_rx_desc *desc, 2680 struct xdp_buff *xdp, 2681 ktime_t timestamp) 2682 { 2683 struct igc_ring *ring = q_vector->rx.ring; 2684 struct sk_buff *skb; 2685 2686 skb = igc_construct_skb_zc(ring, xdp); 2687 if (!skb) { 2688 ring->rx_stats.alloc_failed++; 2689 return; 2690 } 2691 2692 if (timestamp) 2693 skb_hwtstamps(skb)->hwtstamp = timestamp; 2694 2695 if (igc_cleanup_headers(ring, desc, skb)) 2696 return; 2697 2698 igc_process_skb_fields(ring, desc, skb); 2699 napi_gro_receive(&q_vector->napi, skb); 2700 } 2701 2702 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp) 2703 { 2704 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The 2705 * igc_xdp_buff shares its layout with xdp_buff_xsk and private 2706 * igc_xdp_buff fields fall into xdp_buff_xsk->cb 2707 */ 2708 return (struct igc_xdp_buff *)xdp; 2709 } 2710 2711 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) 2712 { 2713 struct igc_adapter *adapter = q_vector->adapter; 2714 struct igc_ring *ring = q_vector->rx.ring; 2715 u16 cleaned_count = igc_desc_unused(ring); 2716 int total_bytes = 0, total_packets = 0; 2717 u16 ntc = ring->next_to_clean; 2718 struct bpf_prog *prog; 2719 bool failure = false; 2720 int xdp_status = 0; 2721 2722 rcu_read_lock(); 2723 2724 prog = READ_ONCE(adapter->xdp_prog); 2725 2726 while (likely(total_packets < budget)) { 2727 union igc_adv_rx_desc *desc; 2728 struct igc_rx_buffer *bi; 2729 struct igc_xdp_buff *ctx; 2730 ktime_t timestamp = 0; 2731 unsigned int size; 2732 int res; 2733 2734 desc = IGC_RX_DESC(ring, ntc); 2735 size = le16_to_cpu(desc->wb.upper.length); 2736 if (!size) 2737 break; 2738 2739 /* This memory barrier is needed to keep us from reading 2740 * any other fields out of the rx_desc until we know the 2741 * descriptor has been written back 2742 */ 2743 dma_rmb(); 2744 2745 bi = &ring->rx_buffer_info[ntc]; 2746 2747 ctx = xsk_buff_to_igc_ctx(bi->xdp); 2748 ctx->rx_desc = desc; 2749 2750 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { 2751 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, 2752 bi->xdp->data); 2753 ctx->rx_ts = timestamp; 2754 2755 bi->xdp->data += IGC_TS_HDR_LEN; 2756 2757 /* HW timestamp has been copied into local variable. Metadata 2758 * length when XDP program is called should be 0. 2759 */ 2760 bi->xdp->data_meta += IGC_TS_HDR_LEN; 2761 size -= IGC_TS_HDR_LEN; 2762 } 2763 2764 bi->xdp->data_end = bi->xdp->data + size; 2765 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); 2766 2767 res = __igc_xdp_run_prog(adapter, prog, bi->xdp); 2768 switch (res) { 2769 case IGC_XDP_PASS: 2770 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); 2771 fallthrough; 2772 case IGC_XDP_CONSUMED: 2773 xsk_buff_free(bi->xdp); 2774 break; 2775 case IGC_XDP_TX: 2776 case IGC_XDP_REDIRECT: 2777 xdp_status |= res; 2778 break; 2779 } 2780 2781 bi->xdp = NULL; 2782 total_bytes += size; 2783 total_packets++; 2784 cleaned_count++; 2785 ntc++; 2786 if (ntc == ring->count) 2787 ntc = 0; 2788 } 2789 2790 ring->next_to_clean = ntc; 2791 rcu_read_unlock(); 2792 2793 if (cleaned_count >= IGC_RX_BUFFER_WRITE) 2794 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); 2795 2796 if (xdp_status) 2797 igc_finalize_xdp(adapter, xdp_status); 2798 2799 igc_update_rx_stats(q_vector, total_packets, total_bytes); 2800 2801 if (xsk_uses_need_wakeup(ring->xsk_pool)) { 2802 if (failure || ring->next_to_clean == ring->next_to_use) 2803 xsk_set_rx_need_wakeup(ring->xsk_pool); 2804 else 2805 xsk_clear_rx_need_wakeup(ring->xsk_pool); 2806 return total_packets; 2807 } 2808 2809 return failure ? budget : total_packets; 2810 } 2811 2812 static void igc_update_tx_stats(struct igc_q_vector *q_vector, 2813 unsigned int packets, unsigned int bytes) 2814 { 2815 struct igc_ring *ring = q_vector->tx.ring; 2816 2817 u64_stats_update_begin(&ring->tx_syncp); 2818 ring->tx_stats.bytes += bytes; 2819 ring->tx_stats.packets += packets; 2820 u64_stats_update_end(&ring->tx_syncp); 2821 2822 q_vector->tx.total_bytes += bytes; 2823 q_vector->tx.total_packets += packets; 2824 } 2825 2826 static void igc_xdp_xmit_zc(struct igc_ring *ring) 2827 { 2828 struct xsk_buff_pool *pool = ring->xsk_pool; 2829 struct netdev_queue *nq = txring_txq(ring); 2830 union igc_adv_tx_desc *tx_desc = NULL; 2831 int cpu = smp_processor_id(); 2832 u16 ntu = ring->next_to_use; 2833 struct xdp_desc xdp_desc; 2834 u16 budget; 2835 2836 if (!netif_carrier_ok(ring->netdev)) 2837 return; 2838 2839 __netif_tx_lock(nq, cpu); 2840 2841 /* Avoid transmit queue timeout since we share it with the slow path */ 2842 txq_trans_cond_update(nq); 2843 2844 budget = igc_desc_unused(ring); 2845 2846 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { 2847 u32 cmd_type, olinfo_status; 2848 struct igc_tx_buffer *bi; 2849 dma_addr_t dma; 2850 2851 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | 2852 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | 2853 xdp_desc.len; 2854 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; 2855 2856 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2857 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); 2858 2859 tx_desc = IGC_TX_DESC(ring, ntu); 2860 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 2861 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2862 tx_desc->read.buffer_addr = cpu_to_le64(dma); 2863 2864 bi = &ring->tx_buffer_info[ntu]; 2865 bi->type = IGC_TX_BUFFER_TYPE_XSK; 2866 bi->protocol = 0; 2867 bi->bytecount = xdp_desc.len; 2868 bi->gso_segs = 1; 2869 bi->time_stamp = jiffies; 2870 bi->next_to_watch = tx_desc; 2871 2872 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); 2873 2874 ntu++; 2875 if (ntu == ring->count) 2876 ntu = 0; 2877 } 2878 2879 ring->next_to_use = ntu; 2880 if (tx_desc) { 2881 igc_flush_tx_descriptors(ring); 2882 xsk_tx_release(pool); 2883 } 2884 2885 __netif_tx_unlock(nq); 2886 } 2887 2888 /** 2889 * igc_clean_tx_irq - Reclaim resources after transmit completes 2890 * @q_vector: pointer to q_vector containing needed info 2891 * @napi_budget: Used to determine if we are in netpoll 2892 * 2893 * returns true if ring is completely cleaned 2894 */ 2895 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 2896 { 2897 struct igc_adapter *adapter = q_vector->adapter; 2898 unsigned int total_bytes = 0, total_packets = 0; 2899 unsigned int budget = q_vector->tx.work_limit; 2900 struct igc_ring *tx_ring = q_vector->tx.ring; 2901 unsigned int i = tx_ring->next_to_clean; 2902 struct igc_tx_buffer *tx_buffer; 2903 union igc_adv_tx_desc *tx_desc; 2904 u32 xsk_frames = 0; 2905 2906 if (test_bit(__IGC_DOWN, &adapter->state)) 2907 return true; 2908 2909 tx_buffer = &tx_ring->tx_buffer_info[i]; 2910 tx_desc = IGC_TX_DESC(tx_ring, i); 2911 i -= tx_ring->count; 2912 2913 do { 2914 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 2915 2916 /* if next_to_watch is not set then there is no work pending */ 2917 if (!eop_desc) 2918 break; 2919 2920 /* prevent any other reads prior to eop_desc */ 2921 smp_rmb(); 2922 2923 /* if DD is not set pending work has not been completed */ 2924 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 2925 break; 2926 2927 /* clear next_to_watch to prevent false hangs */ 2928 tx_buffer->next_to_watch = NULL; 2929 2930 /* update the statistics for this packet */ 2931 total_bytes += tx_buffer->bytecount; 2932 total_packets += tx_buffer->gso_segs; 2933 2934 switch (tx_buffer->type) { 2935 case IGC_TX_BUFFER_TYPE_XSK: 2936 xsk_frames++; 2937 break; 2938 case IGC_TX_BUFFER_TYPE_XDP: 2939 xdp_return_frame(tx_buffer->xdpf); 2940 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2941 break; 2942 case IGC_TX_BUFFER_TYPE_SKB: 2943 napi_consume_skb(tx_buffer->skb, napi_budget); 2944 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2945 break; 2946 default: 2947 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); 2948 break; 2949 } 2950 2951 /* clear last DMA location and unmap remaining buffers */ 2952 while (tx_desc != eop_desc) { 2953 tx_buffer++; 2954 tx_desc++; 2955 i++; 2956 if (unlikely(!i)) { 2957 i -= tx_ring->count; 2958 tx_buffer = tx_ring->tx_buffer_info; 2959 tx_desc = IGC_TX_DESC(tx_ring, 0); 2960 } 2961 2962 /* unmap any remaining paged data */ 2963 if (dma_unmap_len(tx_buffer, len)) 2964 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); 2965 } 2966 2967 /* move us one more past the eop_desc for start of next pkt */ 2968 tx_buffer++; 2969 tx_desc++; 2970 i++; 2971 if (unlikely(!i)) { 2972 i -= tx_ring->count; 2973 tx_buffer = tx_ring->tx_buffer_info; 2974 tx_desc = IGC_TX_DESC(tx_ring, 0); 2975 } 2976 2977 /* issue prefetch for next Tx descriptor */ 2978 prefetch(tx_desc); 2979 2980 /* update budget accounting */ 2981 budget--; 2982 } while (likely(budget)); 2983 2984 netdev_tx_completed_queue(txring_txq(tx_ring), 2985 total_packets, total_bytes); 2986 2987 i += tx_ring->count; 2988 tx_ring->next_to_clean = i; 2989 2990 igc_update_tx_stats(q_vector, total_packets, total_bytes); 2991 2992 if (tx_ring->xsk_pool) { 2993 if (xsk_frames) 2994 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); 2995 if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) 2996 xsk_set_tx_need_wakeup(tx_ring->xsk_pool); 2997 igc_xdp_xmit_zc(tx_ring); 2998 } 2999 3000 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 3001 struct igc_hw *hw = &adapter->hw; 3002 3003 /* Detect a transmit hang in hardware, this serializes the 3004 * check with the clearing of time_stamp and movement of i 3005 */ 3006 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 3007 if (tx_buffer->next_to_watch && 3008 time_after(jiffies, tx_buffer->time_stamp + 3009 (adapter->tx_timeout_factor * HZ)) && 3010 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) && 3011 (rd32(IGC_TDH(tx_ring->reg_idx)) != 3012 readl(tx_ring->tail))) { 3013 /* detected Tx unit hang */ 3014 netdev_err(tx_ring->netdev, 3015 "Detected Tx Unit Hang\n" 3016 " Tx Queue <%d>\n" 3017 " TDH <%x>\n" 3018 " TDT <%x>\n" 3019 " next_to_use <%x>\n" 3020 " next_to_clean <%x>\n" 3021 "buffer_info[next_to_clean]\n" 3022 " time_stamp <%lx>\n" 3023 " next_to_watch <%p>\n" 3024 " jiffies <%lx>\n" 3025 " desc.status <%x>\n", 3026 tx_ring->queue_index, 3027 rd32(IGC_TDH(tx_ring->reg_idx)), 3028 readl(tx_ring->tail), 3029 tx_ring->next_to_use, 3030 tx_ring->next_to_clean, 3031 tx_buffer->time_stamp, 3032 tx_buffer->next_to_watch, 3033 jiffies, 3034 tx_buffer->next_to_watch->wb.status); 3035 netif_stop_subqueue(tx_ring->netdev, 3036 tx_ring->queue_index); 3037 3038 /* we are about to reset, no point in enabling stuff */ 3039 return true; 3040 } 3041 } 3042 3043 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 3044 if (unlikely(total_packets && 3045 netif_carrier_ok(tx_ring->netdev) && 3046 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 3047 /* Make sure that anybody stopping the queue after this 3048 * sees the new next_to_clean. 3049 */ 3050 smp_mb(); 3051 if (__netif_subqueue_stopped(tx_ring->netdev, 3052 tx_ring->queue_index) && 3053 !(test_bit(__IGC_DOWN, &adapter->state))) { 3054 netif_wake_subqueue(tx_ring->netdev, 3055 tx_ring->queue_index); 3056 3057 u64_stats_update_begin(&tx_ring->tx_syncp); 3058 tx_ring->tx_stats.restart_queue++; 3059 u64_stats_update_end(&tx_ring->tx_syncp); 3060 } 3061 } 3062 3063 return !!budget; 3064 } 3065 3066 static int igc_find_mac_filter(struct igc_adapter *adapter, 3067 enum igc_mac_filter_type type, const u8 *addr) 3068 { 3069 struct igc_hw *hw = &adapter->hw; 3070 int max_entries = hw->mac.rar_entry_count; 3071 u32 ral, rah; 3072 int i; 3073 3074 for (i = 0; i < max_entries; i++) { 3075 ral = rd32(IGC_RAL(i)); 3076 rah = rd32(IGC_RAH(i)); 3077 3078 if (!(rah & IGC_RAH_AV)) 3079 continue; 3080 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) 3081 continue; 3082 if ((rah & IGC_RAH_RAH_MASK) != 3083 le16_to_cpup((__le16 *)(addr + 4))) 3084 continue; 3085 if (ral != le32_to_cpup((__le32 *)(addr))) 3086 continue; 3087 3088 return i; 3089 } 3090 3091 return -1; 3092 } 3093 3094 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) 3095 { 3096 struct igc_hw *hw = &adapter->hw; 3097 int max_entries = hw->mac.rar_entry_count; 3098 u32 rah; 3099 int i; 3100 3101 for (i = 0; i < max_entries; i++) { 3102 rah = rd32(IGC_RAH(i)); 3103 3104 if (!(rah & IGC_RAH_AV)) 3105 return i; 3106 } 3107 3108 return -1; 3109 } 3110 3111 /** 3112 * igc_add_mac_filter() - Add MAC address filter 3113 * @adapter: Pointer to adapter where the filter should be added 3114 * @type: MAC address filter type (source or destination) 3115 * @addr: MAC address 3116 * @queue: If non-negative, queue assignment feature is enabled and frames 3117 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3118 * assignment is disabled. 3119 * 3120 * Return: 0 in case of success, negative errno code otherwise. 3121 */ 3122 static int igc_add_mac_filter(struct igc_adapter *adapter, 3123 enum igc_mac_filter_type type, const u8 *addr, 3124 int queue) 3125 { 3126 struct net_device *dev = adapter->netdev; 3127 int index; 3128 3129 index = igc_find_mac_filter(adapter, type, addr); 3130 if (index >= 0) 3131 goto update_filter; 3132 3133 index = igc_get_avail_mac_filter_slot(adapter); 3134 if (index < 0) 3135 return -ENOSPC; 3136 3137 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", 3138 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3139 addr, queue); 3140 3141 update_filter: 3142 igc_set_mac_filter_hw(adapter, index, type, addr, queue); 3143 return 0; 3144 } 3145 3146 /** 3147 * igc_del_mac_filter() - Delete MAC address filter 3148 * @adapter: Pointer to adapter where the filter should be deleted from 3149 * @type: MAC address filter type (source or destination) 3150 * @addr: MAC address 3151 */ 3152 static void igc_del_mac_filter(struct igc_adapter *adapter, 3153 enum igc_mac_filter_type type, const u8 *addr) 3154 { 3155 struct net_device *dev = adapter->netdev; 3156 int index; 3157 3158 index = igc_find_mac_filter(adapter, type, addr); 3159 if (index < 0) 3160 return; 3161 3162 if (index == 0) { 3163 /* If this is the default filter, we don't actually delete it. 3164 * We just reset to its default value i.e. disable queue 3165 * assignment. 3166 */ 3167 netdev_dbg(dev, "Disable default MAC filter queue assignment"); 3168 3169 igc_set_mac_filter_hw(adapter, 0, type, addr, -1); 3170 } else { 3171 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", 3172 index, 3173 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", 3174 addr); 3175 3176 igc_clear_mac_filter_hw(adapter, index); 3177 } 3178 } 3179 3180 /** 3181 * igc_add_vlan_prio_filter() - Add VLAN priority filter 3182 * @adapter: Pointer to adapter where the filter should be added 3183 * @prio: VLAN priority value 3184 * @queue: Queue number which matching frames are assigned to 3185 * 3186 * Return: 0 in case of success, negative errno code otherwise. 3187 */ 3188 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, 3189 int queue) 3190 { 3191 struct net_device *dev = adapter->netdev; 3192 struct igc_hw *hw = &adapter->hw; 3193 u32 vlanpqf; 3194 3195 vlanpqf = rd32(IGC_VLANPQF); 3196 3197 if (vlanpqf & IGC_VLANPQF_VALID(prio)) { 3198 netdev_dbg(dev, "VLAN priority filter already in use\n"); 3199 return -EEXIST; 3200 } 3201 3202 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); 3203 vlanpqf |= IGC_VLANPQF_VALID(prio); 3204 3205 wr32(IGC_VLANPQF, vlanpqf); 3206 3207 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", 3208 prio, queue); 3209 return 0; 3210 } 3211 3212 /** 3213 * igc_del_vlan_prio_filter() - Delete VLAN priority filter 3214 * @adapter: Pointer to adapter where the filter should be deleted from 3215 * @prio: VLAN priority value 3216 */ 3217 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) 3218 { 3219 struct igc_hw *hw = &adapter->hw; 3220 u32 vlanpqf; 3221 3222 vlanpqf = rd32(IGC_VLANPQF); 3223 3224 vlanpqf &= ~IGC_VLANPQF_VALID(prio); 3225 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); 3226 3227 wr32(IGC_VLANPQF, vlanpqf); 3228 3229 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", 3230 prio); 3231 } 3232 3233 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) 3234 { 3235 struct igc_hw *hw = &adapter->hw; 3236 int i; 3237 3238 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3239 u32 etqf = rd32(IGC_ETQF(i)); 3240 3241 if (!(etqf & IGC_ETQF_FILTER_ENABLE)) 3242 return i; 3243 } 3244 3245 return -1; 3246 } 3247 3248 /** 3249 * igc_add_etype_filter() - Add ethertype filter 3250 * @adapter: Pointer to adapter where the filter should be added 3251 * @etype: Ethertype value 3252 * @queue: If non-negative, queue assignment feature is enabled and frames 3253 * matching the filter are enqueued onto 'queue'. Otherwise, queue 3254 * assignment is disabled. 3255 * 3256 * Return: 0 in case of success, negative errno code otherwise. 3257 */ 3258 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, 3259 int queue) 3260 { 3261 struct igc_hw *hw = &adapter->hw; 3262 int index; 3263 u32 etqf; 3264 3265 index = igc_get_avail_etype_filter_slot(adapter); 3266 if (index < 0) 3267 return -ENOSPC; 3268 3269 etqf = rd32(IGC_ETQF(index)); 3270 3271 etqf &= ~IGC_ETQF_ETYPE_MASK; 3272 etqf |= etype; 3273 3274 if (queue >= 0) { 3275 etqf &= ~IGC_ETQF_QUEUE_MASK; 3276 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); 3277 etqf |= IGC_ETQF_QUEUE_ENABLE; 3278 } 3279 3280 etqf |= IGC_ETQF_FILTER_ENABLE; 3281 3282 wr32(IGC_ETQF(index), etqf); 3283 3284 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", 3285 etype, queue); 3286 return 0; 3287 } 3288 3289 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) 3290 { 3291 struct igc_hw *hw = &adapter->hw; 3292 int i; 3293 3294 for (i = 0; i < MAX_ETYPE_FILTER; i++) { 3295 u32 etqf = rd32(IGC_ETQF(i)); 3296 3297 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) 3298 return i; 3299 } 3300 3301 return -1; 3302 } 3303 3304 /** 3305 * igc_del_etype_filter() - Delete ethertype filter 3306 * @adapter: Pointer to adapter where the filter should be deleted from 3307 * @etype: Ethertype value 3308 */ 3309 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) 3310 { 3311 struct igc_hw *hw = &adapter->hw; 3312 int index; 3313 3314 index = igc_find_etype_filter(adapter, etype); 3315 if (index < 0) 3316 return; 3317 3318 wr32(IGC_ETQF(index), 0); 3319 3320 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", 3321 etype); 3322 } 3323 3324 static int igc_flex_filter_select(struct igc_adapter *adapter, 3325 struct igc_flex_filter *input, 3326 u32 *fhft) 3327 { 3328 struct igc_hw *hw = &adapter->hw; 3329 u8 fhft_index; 3330 u32 fhftsl; 3331 3332 if (input->index >= MAX_FLEX_FILTER) { 3333 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n"); 3334 return -EINVAL; 3335 } 3336 3337 /* Indirect table select register */ 3338 fhftsl = rd32(IGC_FHFTSL); 3339 fhftsl &= ~IGC_FHFTSL_FTSL_MASK; 3340 switch (input->index) { 3341 case 0 ... 7: 3342 fhftsl |= 0x00; 3343 break; 3344 case 8 ... 15: 3345 fhftsl |= 0x01; 3346 break; 3347 case 16 ... 23: 3348 fhftsl |= 0x02; 3349 break; 3350 case 24 ... 31: 3351 fhftsl |= 0x03; 3352 break; 3353 } 3354 wr32(IGC_FHFTSL, fhftsl); 3355 3356 /* Normalize index down to host table register */ 3357 fhft_index = input->index % 8; 3358 3359 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : 3360 IGC_FHFT_EXT(fhft_index - 4); 3361 3362 return 0; 3363 } 3364 3365 static int igc_write_flex_filter_ll(struct igc_adapter *adapter, 3366 struct igc_flex_filter *input) 3367 { 3368 struct device *dev = &adapter->pdev->dev; 3369 struct igc_hw *hw = &adapter->hw; 3370 u8 *data = input->data; 3371 u8 *mask = input->mask; 3372 u32 queuing; 3373 u32 fhft; 3374 u32 wufc; 3375 int ret; 3376 int i; 3377 3378 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail 3379 * out early to avoid surprises later. 3380 */ 3381 if (input->length % 8 != 0) { 3382 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n"); 3383 return -EINVAL; 3384 } 3385 3386 /* Select corresponding flex filter register and get base for host table. */ 3387 ret = igc_flex_filter_select(adapter, input, &fhft); 3388 if (ret) 3389 return ret; 3390 3391 /* When adding a filter globally disable flex filter feature. That is 3392 * recommended within the datasheet. 3393 */ 3394 wufc = rd32(IGC_WUFC); 3395 wufc &= ~IGC_WUFC_FLEX_HQ; 3396 wr32(IGC_WUFC, wufc); 3397 3398 /* Configure filter */ 3399 queuing = input->length & IGC_FHFT_LENGTH_MASK; 3400 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK; 3401 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK; 3402 3403 if (input->immediate_irq) 3404 queuing |= IGC_FHFT_IMM_INT; 3405 3406 if (input->drop) 3407 queuing |= IGC_FHFT_DROP; 3408 3409 wr32(fhft + 0xFC, queuing); 3410 3411 /* Write data (128 byte) and mask (128 bit) */ 3412 for (i = 0; i < 16; ++i) { 3413 const size_t data_idx = i * 8; 3414 const size_t row_idx = i * 16; 3415 u32 dw0 = 3416 (data[data_idx + 0] << 0) | 3417 (data[data_idx + 1] << 8) | 3418 (data[data_idx + 2] << 16) | 3419 (data[data_idx + 3] << 24); 3420 u32 dw1 = 3421 (data[data_idx + 4] << 0) | 3422 (data[data_idx + 5] << 8) | 3423 (data[data_idx + 6] << 16) | 3424 (data[data_idx + 7] << 24); 3425 u32 tmp; 3426 3427 /* Write row: dw0, dw1 and mask */ 3428 wr32(fhft + row_idx, dw0); 3429 wr32(fhft + row_idx + 4, dw1); 3430 3431 /* mask is only valid for MASK(7, 0) */ 3432 tmp = rd32(fhft + row_idx + 8); 3433 tmp &= ~GENMASK(7, 0); 3434 tmp |= mask[i]; 3435 wr32(fhft + row_idx + 8, tmp); 3436 } 3437 3438 /* Enable filter. */ 3439 wufc |= IGC_WUFC_FLEX_HQ; 3440 if (input->index > 8) { 3441 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ 3442 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3443 3444 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); 3445 3446 wr32(IGC_WUFC_EXT, wufc_ext); 3447 } else { 3448 wufc |= (IGC_WUFC_FLX0 << input->index); 3449 } 3450 wr32(IGC_WUFC, wufc); 3451 3452 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n", 3453 input->index); 3454 3455 return 0; 3456 } 3457 3458 static void igc_flex_filter_add_field(struct igc_flex_filter *flex, 3459 const void *src, unsigned int offset, 3460 size_t len, const void *mask) 3461 { 3462 int i; 3463 3464 /* data */ 3465 memcpy(&flex->data[offset], src, len); 3466 3467 /* mask */ 3468 for (i = 0; i < len; ++i) { 3469 const unsigned int idx = i + offset; 3470 const u8 *ptr = mask; 3471 3472 if (mask) { 3473 if (ptr[i] & 0xff) 3474 flex->mask[idx / 8] |= BIT(idx % 8); 3475 3476 continue; 3477 } 3478 3479 flex->mask[idx / 8] |= BIT(idx % 8); 3480 } 3481 } 3482 3483 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) 3484 { 3485 struct igc_hw *hw = &adapter->hw; 3486 u32 wufc, wufc_ext; 3487 int i; 3488 3489 wufc = rd32(IGC_WUFC); 3490 wufc_ext = rd32(IGC_WUFC_EXT); 3491 3492 for (i = 0; i < MAX_FLEX_FILTER; i++) { 3493 if (i < 8) { 3494 if (!(wufc & (IGC_WUFC_FLX0 << i))) 3495 return i; 3496 } else { 3497 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) 3498 return i; 3499 } 3500 } 3501 3502 return -ENOSPC; 3503 } 3504 3505 static bool igc_flex_filter_in_use(struct igc_adapter *adapter) 3506 { 3507 struct igc_hw *hw = &adapter->hw; 3508 u32 wufc, wufc_ext; 3509 3510 wufc = rd32(IGC_WUFC); 3511 wufc_ext = rd32(IGC_WUFC_EXT); 3512 3513 if (wufc & IGC_WUFC_FILTER_MASK) 3514 return true; 3515 3516 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) 3517 return true; 3518 3519 return false; 3520 } 3521 3522 static int igc_add_flex_filter(struct igc_adapter *adapter, 3523 struct igc_nfc_rule *rule) 3524 { 3525 struct igc_flex_filter flex = { }; 3526 struct igc_nfc_filter *filter = &rule->filter; 3527 unsigned int eth_offset, user_offset; 3528 int ret, index; 3529 bool vlan; 3530 3531 index = igc_find_avail_flex_filter_slot(adapter); 3532 if (index < 0) 3533 return -ENOSPC; 3534 3535 /* Construct the flex filter: 3536 * -> dest_mac [6] 3537 * -> src_mac [6] 3538 * -> tpid [2] 3539 * -> vlan tci [2] 3540 * -> ether type [2] 3541 * -> user data [8] 3542 * -> = 26 bytes => 32 length 3543 */ 3544 flex.index = index; 3545 flex.length = 32; 3546 flex.rx_queue = rule->action; 3547 3548 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; 3549 eth_offset = vlan ? 16 : 12; 3550 user_offset = vlan ? 18 : 14; 3551 3552 /* Add destination MAC */ 3553 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3554 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, 3555 ETH_ALEN, NULL); 3556 3557 /* Add source MAC */ 3558 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3559 igc_flex_filter_add_field(&flex, &filter->src_addr, 6, 3560 ETH_ALEN, NULL); 3561 3562 /* Add VLAN etype */ 3563 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) 3564 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12, 3565 sizeof(filter->vlan_etype), 3566 NULL); 3567 3568 /* Add VLAN TCI */ 3569 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) 3570 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, 3571 sizeof(filter->vlan_tci), NULL); 3572 3573 /* Add Ether type */ 3574 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3575 __be16 etype = cpu_to_be16(filter->etype); 3576 3577 igc_flex_filter_add_field(&flex, &etype, eth_offset, 3578 sizeof(etype), NULL); 3579 } 3580 3581 /* Add user data */ 3582 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) 3583 igc_flex_filter_add_field(&flex, &filter->user_data, 3584 user_offset, 3585 sizeof(filter->user_data), 3586 filter->user_mask); 3587 3588 /* Add it down to the hardware and enable it. */ 3589 ret = igc_write_flex_filter_ll(adapter, &flex); 3590 if (ret) 3591 return ret; 3592 3593 filter->flex_index = index; 3594 3595 return 0; 3596 } 3597 3598 static void igc_del_flex_filter(struct igc_adapter *adapter, 3599 u16 reg_index) 3600 { 3601 struct igc_hw *hw = &adapter->hw; 3602 u32 wufc; 3603 3604 /* Just disable the filter. The filter table itself is kept 3605 * intact. Another flex_filter_add() should override the "old" data 3606 * then. 3607 */ 3608 if (reg_index > 8) { 3609 u32 wufc_ext = rd32(IGC_WUFC_EXT); 3610 3611 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); 3612 wr32(IGC_WUFC_EXT, wufc_ext); 3613 } else { 3614 wufc = rd32(IGC_WUFC); 3615 3616 wufc &= ~(IGC_WUFC_FLX0 << reg_index); 3617 wr32(IGC_WUFC, wufc); 3618 } 3619 3620 if (igc_flex_filter_in_use(adapter)) 3621 return; 3622 3623 /* No filters are in use, we may disable flex filters */ 3624 wufc = rd32(IGC_WUFC); 3625 wufc &= ~IGC_WUFC_FLEX_HQ; 3626 wr32(IGC_WUFC, wufc); 3627 } 3628 3629 static int igc_enable_nfc_rule(struct igc_adapter *adapter, 3630 struct igc_nfc_rule *rule) 3631 { 3632 int err; 3633 3634 if (rule->flex) { 3635 return igc_add_flex_filter(adapter, rule); 3636 } 3637 3638 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { 3639 err = igc_add_etype_filter(adapter, rule->filter.etype, 3640 rule->action); 3641 if (err) 3642 return err; 3643 } 3644 3645 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { 3646 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3647 rule->filter.src_addr, rule->action); 3648 if (err) 3649 return err; 3650 } 3651 3652 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { 3653 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3654 rule->filter.dst_addr, rule->action); 3655 if (err) 3656 return err; 3657 } 3658 3659 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3660 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3661 VLAN_PRIO_SHIFT; 3662 3663 err = igc_add_vlan_prio_filter(adapter, prio, rule->action); 3664 if (err) 3665 return err; 3666 } 3667 3668 return 0; 3669 } 3670 3671 static void igc_disable_nfc_rule(struct igc_adapter *adapter, 3672 const struct igc_nfc_rule *rule) 3673 { 3674 if (rule->flex) { 3675 igc_del_flex_filter(adapter, rule->filter.flex_index); 3676 return; 3677 } 3678 3679 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) 3680 igc_del_etype_filter(adapter, rule->filter.etype); 3681 3682 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { 3683 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> 3684 VLAN_PRIO_SHIFT; 3685 3686 igc_del_vlan_prio_filter(adapter, prio); 3687 } 3688 3689 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) 3690 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, 3691 rule->filter.src_addr); 3692 3693 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) 3694 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, 3695 rule->filter.dst_addr); 3696 } 3697 3698 /** 3699 * igc_get_nfc_rule() - Get NFC rule 3700 * @adapter: Pointer to adapter 3701 * @location: Rule location 3702 * 3703 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3704 * 3705 * Return: Pointer to NFC rule at @location. If not found, NULL. 3706 */ 3707 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, 3708 u32 location) 3709 { 3710 struct igc_nfc_rule *rule; 3711 3712 list_for_each_entry(rule, &adapter->nfc_rule_list, list) { 3713 if (rule->location == location) 3714 return rule; 3715 if (rule->location > location) 3716 break; 3717 } 3718 3719 return NULL; 3720 } 3721 3722 /** 3723 * igc_del_nfc_rule() - Delete NFC rule 3724 * @adapter: Pointer to adapter 3725 * @rule: Pointer to rule to be deleted 3726 * 3727 * Disable NFC rule in hardware and delete it from adapter. 3728 * 3729 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3730 */ 3731 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3732 { 3733 igc_disable_nfc_rule(adapter, rule); 3734 3735 list_del(&rule->list); 3736 adapter->nfc_rule_count--; 3737 3738 kfree(rule); 3739 } 3740 3741 static void igc_flush_nfc_rules(struct igc_adapter *adapter) 3742 { 3743 struct igc_nfc_rule *rule, *tmp; 3744 3745 mutex_lock(&adapter->nfc_rule_lock); 3746 3747 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) 3748 igc_del_nfc_rule(adapter, rule); 3749 3750 mutex_unlock(&adapter->nfc_rule_lock); 3751 } 3752 3753 /** 3754 * igc_add_nfc_rule() - Add NFC rule 3755 * @adapter: Pointer to adapter 3756 * @rule: Pointer to rule to be added 3757 * 3758 * Enable NFC rule in hardware and add it to adapter. 3759 * 3760 * Context: Expects adapter->nfc_rule_lock to be held by caller. 3761 * 3762 * Return: 0 on success, negative errno on failure. 3763 */ 3764 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) 3765 { 3766 struct igc_nfc_rule *pred, *cur; 3767 int err; 3768 3769 err = igc_enable_nfc_rule(adapter, rule); 3770 if (err) 3771 return err; 3772 3773 pred = NULL; 3774 list_for_each_entry(cur, &adapter->nfc_rule_list, list) { 3775 if (cur->location >= rule->location) 3776 break; 3777 pred = cur; 3778 } 3779 3780 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); 3781 adapter->nfc_rule_count++; 3782 return 0; 3783 } 3784 3785 static void igc_restore_nfc_rules(struct igc_adapter *adapter) 3786 { 3787 struct igc_nfc_rule *rule; 3788 3789 mutex_lock(&adapter->nfc_rule_lock); 3790 3791 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) 3792 igc_enable_nfc_rule(adapter, rule); 3793 3794 mutex_unlock(&adapter->nfc_rule_lock); 3795 } 3796 3797 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) 3798 { 3799 struct igc_adapter *adapter = netdev_priv(netdev); 3800 3801 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); 3802 } 3803 3804 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) 3805 { 3806 struct igc_adapter *adapter = netdev_priv(netdev); 3807 3808 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); 3809 return 0; 3810 } 3811 3812 /** 3813 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3814 * @netdev: network interface device structure 3815 * 3816 * The set_rx_mode entry point is called whenever the unicast or multicast 3817 * address lists or the network interface flags are updated. This routine is 3818 * responsible for configuring the hardware for proper unicast, multicast, 3819 * promiscuous mode, and all-multi behavior. 3820 */ 3821 static void igc_set_rx_mode(struct net_device *netdev) 3822 { 3823 struct igc_adapter *adapter = netdev_priv(netdev); 3824 struct igc_hw *hw = &adapter->hw; 3825 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 3826 int count; 3827 3828 /* Check for Promiscuous and All Multicast modes */ 3829 if (netdev->flags & IFF_PROMISC) { 3830 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; 3831 } else { 3832 if (netdev->flags & IFF_ALLMULTI) { 3833 rctl |= IGC_RCTL_MPE; 3834 } else { 3835 /* Write addresses to the MTA, if the attempt fails 3836 * then we should just turn on promiscuous mode so 3837 * that we can at least receive multicast traffic 3838 */ 3839 count = igc_write_mc_addr_list(netdev); 3840 if (count < 0) 3841 rctl |= IGC_RCTL_MPE; 3842 } 3843 } 3844 3845 /* Write addresses to available RAR registers, if there is not 3846 * sufficient space to store all the addresses then enable 3847 * unicast promiscuous mode 3848 */ 3849 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) 3850 rctl |= IGC_RCTL_UPE; 3851 3852 /* update state of unicast and multicast */ 3853 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); 3854 wr32(IGC_RCTL, rctl); 3855 3856 #if (PAGE_SIZE < 8192) 3857 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) 3858 rlpml = IGC_MAX_FRAME_BUILD_SKB; 3859 #endif 3860 wr32(IGC_RLPML, rlpml); 3861 } 3862 3863 /** 3864 * igc_configure - configure the hardware for RX and TX 3865 * @adapter: private board structure 3866 */ 3867 static void igc_configure(struct igc_adapter *adapter) 3868 { 3869 struct net_device *netdev = adapter->netdev; 3870 int i = 0; 3871 3872 igc_get_hw_control(adapter); 3873 igc_set_rx_mode(netdev); 3874 3875 igc_restore_vlan(adapter); 3876 3877 igc_setup_tctl(adapter); 3878 igc_setup_mrqc(adapter); 3879 igc_setup_rctl(adapter); 3880 3881 igc_set_default_mac_filter(adapter); 3882 igc_restore_nfc_rules(adapter); 3883 3884 igc_configure_tx(adapter); 3885 igc_configure_rx(adapter); 3886 3887 igc_rx_fifo_flush_base(&adapter->hw); 3888 3889 /* call igc_desc_unused which always leaves 3890 * at least 1 descriptor unused to make sure 3891 * next_to_use != next_to_clean 3892 */ 3893 for (i = 0; i < adapter->num_rx_queues; i++) { 3894 struct igc_ring *ring = adapter->rx_ring[i]; 3895 3896 if (ring->xsk_pool) 3897 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 3898 else 3899 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 3900 } 3901 } 3902 3903 /** 3904 * igc_write_ivar - configure ivar for given MSI-X vector 3905 * @hw: pointer to the HW structure 3906 * @msix_vector: vector number we are allocating to a given ring 3907 * @index: row index of IVAR register to write within IVAR table 3908 * @offset: column offset of in IVAR, should be multiple of 8 3909 * 3910 * The IVAR table consists of 2 columns, 3911 * each containing an cause allocation for an Rx and Tx ring, and a 3912 * variable number of rows depending on the number of queues supported. 3913 */ 3914 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 3915 int index, int offset) 3916 { 3917 u32 ivar = array_rd32(IGC_IVAR0, index); 3918 3919 /* clear any bits that are currently set */ 3920 ivar &= ~((u32)0xFF << offset); 3921 3922 /* write vector and valid bit */ 3923 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 3924 3925 array_wr32(IGC_IVAR0, index, ivar); 3926 } 3927 3928 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 3929 { 3930 struct igc_adapter *adapter = q_vector->adapter; 3931 struct igc_hw *hw = &adapter->hw; 3932 int rx_queue = IGC_N0_QUEUE; 3933 int tx_queue = IGC_N0_QUEUE; 3934 3935 if (q_vector->rx.ring) 3936 rx_queue = q_vector->rx.ring->reg_idx; 3937 if (q_vector->tx.ring) 3938 tx_queue = q_vector->tx.ring->reg_idx; 3939 3940 switch (hw->mac.type) { 3941 case igc_i225: 3942 if (rx_queue > IGC_N0_QUEUE) 3943 igc_write_ivar(hw, msix_vector, 3944 rx_queue >> 1, 3945 (rx_queue & 0x1) << 4); 3946 if (tx_queue > IGC_N0_QUEUE) 3947 igc_write_ivar(hw, msix_vector, 3948 tx_queue >> 1, 3949 ((tx_queue & 0x1) << 4) + 8); 3950 q_vector->eims_value = BIT(msix_vector); 3951 break; 3952 default: 3953 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 3954 break; 3955 } 3956 3957 /* add q_vector eims value to global eims_enable_mask */ 3958 adapter->eims_enable_mask |= q_vector->eims_value; 3959 3960 /* configure q_vector to set itr on first interrupt */ 3961 q_vector->set_itr = 1; 3962 } 3963 3964 /** 3965 * igc_configure_msix - Configure MSI-X hardware 3966 * @adapter: Pointer to adapter structure 3967 * 3968 * igc_configure_msix sets up the hardware to properly 3969 * generate MSI-X interrupts. 3970 */ 3971 static void igc_configure_msix(struct igc_adapter *adapter) 3972 { 3973 struct igc_hw *hw = &adapter->hw; 3974 int i, vector = 0; 3975 u32 tmp; 3976 3977 adapter->eims_enable_mask = 0; 3978 3979 /* set vector for other causes, i.e. link changes */ 3980 switch (hw->mac.type) { 3981 case igc_i225: 3982 /* Turn on MSI-X capability first, or our settings 3983 * won't stick. And it will take days to debug. 3984 */ 3985 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 3986 IGC_GPIE_PBA | IGC_GPIE_EIAME | 3987 IGC_GPIE_NSICR); 3988 3989 /* enable msix_other interrupt */ 3990 adapter->eims_other = BIT(vector); 3991 tmp = (vector++ | IGC_IVAR_VALID) << 8; 3992 3993 wr32(IGC_IVAR_MISC, tmp); 3994 break; 3995 default: 3996 /* do nothing, since nothing else supports MSI-X */ 3997 break; 3998 } /* switch (hw->mac.type) */ 3999 4000 adapter->eims_enable_mask |= adapter->eims_other; 4001 4002 for (i = 0; i < adapter->num_q_vectors; i++) 4003 igc_assign_vector(adapter->q_vector[i], vector++); 4004 4005 wrfl(); 4006 } 4007 4008 /** 4009 * igc_irq_enable - Enable default interrupt generation settings 4010 * @adapter: board private structure 4011 */ 4012 static void igc_irq_enable(struct igc_adapter *adapter) 4013 { 4014 struct igc_hw *hw = &adapter->hw; 4015 4016 if (adapter->msix_entries) { 4017 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 4018 u32 regval = rd32(IGC_EIAC); 4019 4020 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 4021 regval = rd32(IGC_EIAM); 4022 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 4023 wr32(IGC_EIMS, adapter->eims_enable_mask); 4024 wr32(IGC_IMS, ims); 4025 } else { 4026 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 4027 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 4028 } 4029 } 4030 4031 /** 4032 * igc_irq_disable - Mask off interrupt generation on the NIC 4033 * @adapter: board private structure 4034 */ 4035 static void igc_irq_disable(struct igc_adapter *adapter) 4036 { 4037 struct igc_hw *hw = &adapter->hw; 4038 4039 if (adapter->msix_entries) { 4040 u32 regval = rd32(IGC_EIAM); 4041 4042 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 4043 wr32(IGC_EIMC, adapter->eims_enable_mask); 4044 regval = rd32(IGC_EIAC); 4045 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 4046 } 4047 4048 wr32(IGC_IAM, 0); 4049 wr32(IGC_IMC, ~0); 4050 wrfl(); 4051 4052 if (adapter->msix_entries) { 4053 int vector = 0, i; 4054 4055 synchronize_irq(adapter->msix_entries[vector++].vector); 4056 4057 for (i = 0; i < adapter->num_q_vectors; i++) 4058 synchronize_irq(adapter->msix_entries[vector++].vector); 4059 } else { 4060 synchronize_irq(adapter->pdev->irq); 4061 } 4062 } 4063 4064 void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 4065 const u32 max_rss_queues) 4066 { 4067 /* Determine if we need to pair queues. */ 4068 /* If rss_queues > half of max_rss_queues, pair the queues in 4069 * order to conserve interrupts due to limited supply. 4070 */ 4071 if (adapter->rss_queues > (max_rss_queues / 2)) 4072 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4073 else 4074 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 4075 } 4076 4077 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 4078 { 4079 return IGC_MAX_RX_QUEUES; 4080 } 4081 4082 static void igc_init_queue_configuration(struct igc_adapter *adapter) 4083 { 4084 u32 max_rss_queues; 4085 4086 max_rss_queues = igc_get_max_rss_queues(adapter); 4087 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 4088 4089 igc_set_flag_queue_pairs(adapter, max_rss_queues); 4090 } 4091 4092 /** 4093 * igc_reset_q_vector - Reset config for interrupt vector 4094 * @adapter: board private structure to initialize 4095 * @v_idx: Index of vector to be reset 4096 * 4097 * If NAPI is enabled it will delete any references to the 4098 * NAPI struct. This is preparation for igc_free_q_vector. 4099 */ 4100 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 4101 { 4102 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4103 4104 /* if we're coming from igc_set_interrupt_capability, the vectors are 4105 * not yet allocated 4106 */ 4107 if (!q_vector) 4108 return; 4109 4110 if (q_vector->tx.ring) 4111 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 4112 4113 if (q_vector->rx.ring) 4114 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 4115 4116 netif_napi_del(&q_vector->napi); 4117 } 4118 4119 /** 4120 * igc_free_q_vector - Free memory allocated for specific interrupt vector 4121 * @adapter: board private structure to initialize 4122 * @v_idx: Index of vector to be freed 4123 * 4124 * This function frees the memory allocated to the q_vector. 4125 */ 4126 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 4127 { 4128 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 4129 4130 adapter->q_vector[v_idx] = NULL; 4131 4132 /* igc_get_stats64() might access the rings on this vector, 4133 * we must wait a grace period before freeing it. 4134 */ 4135 if (q_vector) 4136 kfree_rcu(q_vector, rcu); 4137 } 4138 4139 /** 4140 * igc_free_q_vectors - Free memory allocated for interrupt vectors 4141 * @adapter: board private structure to initialize 4142 * 4143 * This function frees the memory allocated to the q_vectors. In addition if 4144 * NAPI is enabled it will delete any references to the NAPI struct prior 4145 * to freeing the q_vector. 4146 */ 4147 static void igc_free_q_vectors(struct igc_adapter *adapter) 4148 { 4149 int v_idx = adapter->num_q_vectors; 4150 4151 adapter->num_tx_queues = 0; 4152 adapter->num_rx_queues = 0; 4153 adapter->num_q_vectors = 0; 4154 4155 while (v_idx--) { 4156 igc_reset_q_vector(adapter, v_idx); 4157 igc_free_q_vector(adapter, v_idx); 4158 } 4159 } 4160 4161 /** 4162 * igc_update_itr - update the dynamic ITR value based on statistics 4163 * @q_vector: pointer to q_vector 4164 * @ring_container: ring info to update the itr for 4165 * 4166 * Stores a new ITR value based on packets and byte 4167 * counts during the last interrupt. The advantage of per interrupt 4168 * computation is faster updates and more accurate ITR for the current 4169 * traffic pattern. Constants in this function were computed 4170 * based on theoretical maximum wire speed and thresholds were set based 4171 * on testing data as well as attempting to minimize response time 4172 * while increasing bulk throughput. 4173 * NOTE: These calculations are only valid when operating in a single- 4174 * queue environment. 4175 */ 4176 static void igc_update_itr(struct igc_q_vector *q_vector, 4177 struct igc_ring_container *ring_container) 4178 { 4179 unsigned int packets = ring_container->total_packets; 4180 unsigned int bytes = ring_container->total_bytes; 4181 u8 itrval = ring_container->itr; 4182 4183 /* no packets, exit with status unchanged */ 4184 if (packets == 0) 4185 return; 4186 4187 switch (itrval) { 4188 case lowest_latency: 4189 /* handle TSO and jumbo frames */ 4190 if (bytes / packets > 8000) 4191 itrval = bulk_latency; 4192 else if ((packets < 5) && (bytes > 512)) 4193 itrval = low_latency; 4194 break; 4195 case low_latency: /* 50 usec aka 20000 ints/s */ 4196 if (bytes > 10000) { 4197 /* this if handles the TSO accounting */ 4198 if (bytes / packets > 8000) 4199 itrval = bulk_latency; 4200 else if ((packets < 10) || ((bytes / packets) > 1200)) 4201 itrval = bulk_latency; 4202 else if ((packets > 35)) 4203 itrval = lowest_latency; 4204 } else if (bytes / packets > 2000) { 4205 itrval = bulk_latency; 4206 } else if (packets <= 2 && bytes < 512) { 4207 itrval = lowest_latency; 4208 } 4209 break; 4210 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4211 if (bytes > 25000) { 4212 if (packets > 35) 4213 itrval = low_latency; 4214 } else if (bytes < 1500) { 4215 itrval = low_latency; 4216 } 4217 break; 4218 } 4219 4220 /* clear work counters since we have the values we need */ 4221 ring_container->total_bytes = 0; 4222 ring_container->total_packets = 0; 4223 4224 /* write updated itr to ring container */ 4225 ring_container->itr = itrval; 4226 } 4227 4228 static void igc_set_itr(struct igc_q_vector *q_vector) 4229 { 4230 struct igc_adapter *adapter = q_vector->adapter; 4231 u32 new_itr = q_vector->itr_val; 4232 u8 current_itr = 0; 4233 4234 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4235 switch (adapter->link_speed) { 4236 case SPEED_10: 4237 case SPEED_100: 4238 current_itr = 0; 4239 new_itr = IGC_4K_ITR; 4240 goto set_itr_now; 4241 default: 4242 break; 4243 } 4244 4245 igc_update_itr(q_vector, &q_vector->tx); 4246 igc_update_itr(q_vector, &q_vector->rx); 4247 4248 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4249 4250 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4251 if (current_itr == lowest_latency && 4252 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4253 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4254 current_itr = low_latency; 4255 4256 switch (current_itr) { 4257 /* counts and packets in update_itr are dependent on these numbers */ 4258 case lowest_latency: 4259 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 4260 break; 4261 case low_latency: 4262 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 4263 break; 4264 case bulk_latency: 4265 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 4266 break; 4267 default: 4268 break; 4269 } 4270 4271 set_itr_now: 4272 if (new_itr != q_vector->itr_val) { 4273 /* this attempts to bias the interrupt rate towards Bulk 4274 * by adding intermediate steps when interrupt rate is 4275 * increasing 4276 */ 4277 new_itr = new_itr > q_vector->itr_val ? 4278 max((new_itr * q_vector->itr_val) / 4279 (new_itr + (q_vector->itr_val >> 2)), 4280 new_itr) : new_itr; 4281 /* Don't write the value here; it resets the adapter's 4282 * internal timer, and causes us to delay far longer than 4283 * we should between interrupts. Instead, we write the ITR 4284 * value at the beginning of the next interrupt so the timing 4285 * ends up being correct. 4286 */ 4287 q_vector->itr_val = new_itr; 4288 q_vector->set_itr = 1; 4289 } 4290 } 4291 4292 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 4293 { 4294 int v_idx = adapter->num_q_vectors; 4295 4296 if (adapter->msix_entries) { 4297 pci_disable_msix(adapter->pdev); 4298 kfree(adapter->msix_entries); 4299 adapter->msix_entries = NULL; 4300 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 4301 pci_disable_msi(adapter->pdev); 4302 } 4303 4304 while (v_idx--) 4305 igc_reset_q_vector(adapter, v_idx); 4306 } 4307 4308 /** 4309 * igc_set_interrupt_capability - set MSI or MSI-X if supported 4310 * @adapter: Pointer to adapter structure 4311 * @msix: boolean value for MSI-X capability 4312 * 4313 * Attempt to configure interrupts using the best available 4314 * capabilities of the hardware and kernel. 4315 */ 4316 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 4317 bool msix) 4318 { 4319 int numvecs, i; 4320 int err; 4321 4322 if (!msix) 4323 goto msi_only; 4324 adapter->flags |= IGC_FLAG_HAS_MSIX; 4325 4326 /* Number of supported queues. */ 4327 adapter->num_rx_queues = adapter->rss_queues; 4328 4329 adapter->num_tx_queues = adapter->rss_queues; 4330 4331 /* start with one vector for every Rx queue */ 4332 numvecs = adapter->num_rx_queues; 4333 4334 /* if Tx handler is separate add 1 for every Tx queue */ 4335 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 4336 numvecs += adapter->num_tx_queues; 4337 4338 /* store the number of vectors reserved for queues */ 4339 adapter->num_q_vectors = numvecs; 4340 4341 /* add 1 vector for link status interrupts */ 4342 numvecs++; 4343 4344 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 4345 GFP_KERNEL); 4346 4347 if (!adapter->msix_entries) 4348 return; 4349 4350 /* populate entry values */ 4351 for (i = 0; i < numvecs; i++) 4352 adapter->msix_entries[i].entry = i; 4353 4354 err = pci_enable_msix_range(adapter->pdev, 4355 adapter->msix_entries, 4356 numvecs, 4357 numvecs); 4358 if (err > 0) 4359 return; 4360 4361 kfree(adapter->msix_entries); 4362 adapter->msix_entries = NULL; 4363 4364 igc_reset_interrupt_capability(adapter); 4365 4366 msi_only: 4367 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 4368 4369 adapter->rss_queues = 1; 4370 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 4371 adapter->num_rx_queues = 1; 4372 adapter->num_tx_queues = 1; 4373 adapter->num_q_vectors = 1; 4374 if (!pci_enable_msi(adapter->pdev)) 4375 adapter->flags |= IGC_FLAG_HAS_MSI; 4376 } 4377 4378 /** 4379 * igc_update_ring_itr - update the dynamic ITR value based on packet size 4380 * @q_vector: pointer to q_vector 4381 * 4382 * Stores a new ITR value based on strictly on packet size. This 4383 * algorithm is less sophisticated than that used in igc_update_itr, 4384 * due to the difficulty of synchronizing statistics across multiple 4385 * receive rings. The divisors and thresholds used by this function 4386 * were determined based on theoretical maximum wire speed and testing 4387 * data, in order to minimize response time while increasing bulk 4388 * throughput. 4389 * NOTE: This function is called only when operating in a multiqueue 4390 * receive environment. 4391 */ 4392 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 4393 { 4394 struct igc_adapter *adapter = q_vector->adapter; 4395 int new_val = q_vector->itr_val; 4396 int avg_wire_size = 0; 4397 unsigned int packets; 4398 4399 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4400 * ints/sec - ITR timer value of 120 ticks. 4401 */ 4402 switch (adapter->link_speed) { 4403 case SPEED_10: 4404 case SPEED_100: 4405 new_val = IGC_4K_ITR; 4406 goto set_itr_val; 4407 default: 4408 break; 4409 } 4410 4411 packets = q_vector->rx.total_packets; 4412 if (packets) 4413 avg_wire_size = q_vector->rx.total_bytes / packets; 4414 4415 packets = q_vector->tx.total_packets; 4416 if (packets) 4417 avg_wire_size = max_t(u32, avg_wire_size, 4418 q_vector->tx.total_bytes / packets); 4419 4420 /* if avg_wire_size isn't set no work was done */ 4421 if (!avg_wire_size) 4422 goto clear_counts; 4423 4424 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4425 avg_wire_size += 24; 4426 4427 /* Don't starve jumbo frames */ 4428 avg_wire_size = min(avg_wire_size, 3000); 4429 4430 /* Give a little boost to mid-size frames */ 4431 if (avg_wire_size > 300 && avg_wire_size < 1200) 4432 new_val = avg_wire_size / 3; 4433 else 4434 new_val = avg_wire_size / 2; 4435 4436 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4437 if (new_val < IGC_20K_ITR && 4438 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4439 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4440 new_val = IGC_20K_ITR; 4441 4442 set_itr_val: 4443 if (new_val != q_vector->itr_val) { 4444 q_vector->itr_val = new_val; 4445 q_vector->set_itr = 1; 4446 } 4447 clear_counts: 4448 q_vector->rx.total_bytes = 0; 4449 q_vector->rx.total_packets = 0; 4450 q_vector->tx.total_bytes = 0; 4451 q_vector->tx.total_packets = 0; 4452 } 4453 4454 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 4455 { 4456 struct igc_adapter *adapter = q_vector->adapter; 4457 struct igc_hw *hw = &adapter->hw; 4458 4459 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 4460 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 4461 if (adapter->num_q_vectors == 1) 4462 igc_set_itr(q_vector); 4463 else 4464 igc_update_ring_itr(q_vector); 4465 } 4466 4467 if (!test_bit(__IGC_DOWN, &adapter->state)) { 4468 if (adapter->msix_entries) 4469 wr32(IGC_EIMS, q_vector->eims_value); 4470 else 4471 igc_irq_enable(adapter); 4472 } 4473 } 4474 4475 static void igc_add_ring(struct igc_ring *ring, 4476 struct igc_ring_container *head) 4477 { 4478 head->ring = ring; 4479 head->count++; 4480 } 4481 4482 /** 4483 * igc_cache_ring_register - Descriptor ring to register mapping 4484 * @adapter: board private structure to initialize 4485 * 4486 * Once we know the feature-set enabled for the device, we'll cache 4487 * the register offset the descriptor ring is assigned to. 4488 */ 4489 static void igc_cache_ring_register(struct igc_adapter *adapter) 4490 { 4491 int i = 0, j = 0; 4492 4493 switch (adapter->hw.mac.type) { 4494 case igc_i225: 4495 default: 4496 for (; i < adapter->num_rx_queues; i++) 4497 adapter->rx_ring[i]->reg_idx = i; 4498 for (; j < adapter->num_tx_queues; j++) 4499 adapter->tx_ring[j]->reg_idx = j; 4500 break; 4501 } 4502 } 4503 4504 /** 4505 * igc_poll - NAPI Rx polling callback 4506 * @napi: napi polling structure 4507 * @budget: count of how many packets we should handle 4508 */ 4509 static int igc_poll(struct napi_struct *napi, int budget) 4510 { 4511 struct igc_q_vector *q_vector = container_of(napi, 4512 struct igc_q_vector, 4513 napi); 4514 struct igc_ring *rx_ring = q_vector->rx.ring; 4515 bool clean_complete = true; 4516 int work_done = 0; 4517 4518 if (q_vector->tx.ring) 4519 clean_complete = igc_clean_tx_irq(q_vector, budget); 4520 4521 if (rx_ring) { 4522 int cleaned = rx_ring->xsk_pool ? 4523 igc_clean_rx_irq_zc(q_vector, budget) : 4524 igc_clean_rx_irq(q_vector, budget); 4525 4526 work_done += cleaned; 4527 if (cleaned >= budget) 4528 clean_complete = false; 4529 } 4530 4531 /* If all work not completed, return budget and keep polling */ 4532 if (!clean_complete) 4533 return budget; 4534 4535 /* Exit the polling mode, but don't re-enable interrupts if stack might 4536 * poll us due to busy-polling 4537 */ 4538 if (likely(napi_complete_done(napi, work_done))) 4539 igc_ring_irq_enable(q_vector); 4540 4541 return min(work_done, budget - 1); 4542 } 4543 4544 /** 4545 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 4546 * @adapter: board private structure to initialize 4547 * @v_count: q_vectors allocated on adapter, used for ring interleaving 4548 * @v_idx: index of vector in adapter struct 4549 * @txr_count: total number of Tx rings to allocate 4550 * @txr_idx: index of first Tx ring to allocate 4551 * @rxr_count: total number of Rx rings to allocate 4552 * @rxr_idx: index of first Rx ring to allocate 4553 * 4554 * We allocate one q_vector. If allocation fails we return -ENOMEM. 4555 */ 4556 static int igc_alloc_q_vector(struct igc_adapter *adapter, 4557 unsigned int v_count, unsigned int v_idx, 4558 unsigned int txr_count, unsigned int txr_idx, 4559 unsigned int rxr_count, unsigned int rxr_idx) 4560 { 4561 struct igc_q_vector *q_vector; 4562 struct igc_ring *ring; 4563 int ring_count; 4564 4565 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 4566 if (txr_count > 1 || rxr_count > 1) 4567 return -ENOMEM; 4568 4569 ring_count = txr_count + rxr_count; 4570 4571 /* allocate q_vector and rings */ 4572 q_vector = adapter->q_vector[v_idx]; 4573 if (!q_vector) 4574 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 4575 GFP_KERNEL); 4576 else 4577 memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); 4578 if (!q_vector) 4579 return -ENOMEM; 4580 4581 /* initialize NAPI */ 4582 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); 4583 4584 /* tie q_vector and adapter together */ 4585 adapter->q_vector[v_idx] = q_vector; 4586 q_vector->adapter = adapter; 4587 4588 /* initialize work limits */ 4589 q_vector->tx.work_limit = adapter->tx_work_limit; 4590 4591 /* initialize ITR configuration */ 4592 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 4593 q_vector->itr_val = IGC_START_ITR; 4594 4595 /* initialize pointer to rings */ 4596 ring = q_vector->ring; 4597 4598 /* initialize ITR */ 4599 if (rxr_count) { 4600 /* rx or rx/tx vector */ 4601 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 4602 q_vector->itr_val = adapter->rx_itr_setting; 4603 } else { 4604 /* tx only vector */ 4605 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 4606 q_vector->itr_val = adapter->tx_itr_setting; 4607 } 4608 4609 if (txr_count) { 4610 /* assign generic ring traits */ 4611 ring->dev = &adapter->pdev->dev; 4612 ring->netdev = adapter->netdev; 4613 4614 /* configure backlink on ring */ 4615 ring->q_vector = q_vector; 4616 4617 /* update q_vector Tx values */ 4618 igc_add_ring(ring, &q_vector->tx); 4619 4620 /* apply Tx specific ring traits */ 4621 ring->count = adapter->tx_ring_count; 4622 ring->queue_index = txr_idx; 4623 4624 /* assign ring to adapter */ 4625 adapter->tx_ring[txr_idx] = ring; 4626 4627 /* push pointer to next ring */ 4628 ring++; 4629 } 4630 4631 if (rxr_count) { 4632 /* assign generic ring traits */ 4633 ring->dev = &adapter->pdev->dev; 4634 ring->netdev = adapter->netdev; 4635 4636 /* configure backlink on ring */ 4637 ring->q_vector = q_vector; 4638 4639 /* update q_vector Rx values */ 4640 igc_add_ring(ring, &q_vector->rx); 4641 4642 /* apply Rx specific ring traits */ 4643 ring->count = adapter->rx_ring_count; 4644 ring->queue_index = rxr_idx; 4645 4646 /* assign ring to adapter */ 4647 adapter->rx_ring[rxr_idx] = ring; 4648 } 4649 4650 return 0; 4651 } 4652 4653 /** 4654 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 4655 * @adapter: board private structure to initialize 4656 * 4657 * We allocate one q_vector per queue interrupt. If allocation fails we 4658 * return -ENOMEM. 4659 */ 4660 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 4661 { 4662 int rxr_remaining = adapter->num_rx_queues; 4663 int txr_remaining = adapter->num_tx_queues; 4664 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 4665 int q_vectors = adapter->num_q_vectors; 4666 int err; 4667 4668 if (q_vectors >= (rxr_remaining + txr_remaining)) { 4669 for (; rxr_remaining; v_idx++) { 4670 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4671 0, 0, 1, rxr_idx); 4672 4673 if (err) 4674 goto err_out; 4675 4676 /* update counts and index */ 4677 rxr_remaining--; 4678 rxr_idx++; 4679 } 4680 } 4681 4682 for (; v_idx < q_vectors; v_idx++) { 4683 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 4684 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 4685 4686 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 4687 tqpv, txr_idx, rqpv, rxr_idx); 4688 4689 if (err) 4690 goto err_out; 4691 4692 /* update counts and index */ 4693 rxr_remaining -= rqpv; 4694 txr_remaining -= tqpv; 4695 rxr_idx++; 4696 txr_idx++; 4697 } 4698 4699 return 0; 4700 4701 err_out: 4702 adapter->num_tx_queues = 0; 4703 adapter->num_rx_queues = 0; 4704 adapter->num_q_vectors = 0; 4705 4706 while (v_idx--) 4707 igc_free_q_vector(adapter, v_idx); 4708 4709 return -ENOMEM; 4710 } 4711 4712 /** 4713 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 4714 * @adapter: Pointer to adapter structure 4715 * @msix: boolean for MSI-X capability 4716 * 4717 * This function initializes the interrupts and allocates all of the queues. 4718 */ 4719 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 4720 { 4721 struct net_device *dev = adapter->netdev; 4722 int err = 0; 4723 4724 igc_set_interrupt_capability(adapter, msix); 4725 4726 err = igc_alloc_q_vectors(adapter); 4727 if (err) { 4728 netdev_err(dev, "Unable to allocate memory for vectors\n"); 4729 goto err_alloc_q_vectors; 4730 } 4731 4732 igc_cache_ring_register(adapter); 4733 4734 return 0; 4735 4736 err_alloc_q_vectors: 4737 igc_reset_interrupt_capability(adapter); 4738 return err; 4739 } 4740 4741 /** 4742 * igc_sw_init - Initialize general software structures (struct igc_adapter) 4743 * @adapter: board private structure to initialize 4744 * 4745 * igc_sw_init initializes the Adapter private data structure. 4746 * Fields are initialized based on PCI device information and 4747 * OS network device settings (MTU size). 4748 */ 4749 static int igc_sw_init(struct igc_adapter *adapter) 4750 { 4751 struct net_device *netdev = adapter->netdev; 4752 struct pci_dev *pdev = adapter->pdev; 4753 struct igc_hw *hw = &adapter->hw; 4754 4755 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 4756 4757 /* set default ring sizes */ 4758 adapter->tx_ring_count = IGC_DEFAULT_TXD; 4759 adapter->rx_ring_count = IGC_DEFAULT_RXD; 4760 4761 /* set default ITR values */ 4762 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 4763 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 4764 4765 /* set default work limits */ 4766 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 4767 4768 /* adjust max frame to be at least the size of a standard frame */ 4769 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 4770 VLAN_HLEN; 4771 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4772 4773 mutex_init(&adapter->nfc_rule_lock); 4774 INIT_LIST_HEAD(&adapter->nfc_rule_list); 4775 adapter->nfc_rule_count = 0; 4776 4777 spin_lock_init(&adapter->stats64_lock); 4778 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4779 adapter->flags |= IGC_FLAG_HAS_MSIX; 4780 4781 igc_init_queue_configuration(adapter); 4782 4783 /* This call may decrease the number of queues */ 4784 if (igc_init_interrupt_scheme(adapter, true)) { 4785 netdev_err(netdev, "Unable to allocate memory for queues\n"); 4786 return -ENOMEM; 4787 } 4788 4789 /* Explicitly disable IRQ since the NIC can be in any state. */ 4790 igc_irq_disable(adapter); 4791 4792 set_bit(__IGC_DOWN, &adapter->state); 4793 4794 return 0; 4795 } 4796 4797 /** 4798 * igc_up - Open the interface and prepare it to handle traffic 4799 * @adapter: board private structure 4800 */ 4801 void igc_up(struct igc_adapter *adapter) 4802 { 4803 struct igc_hw *hw = &adapter->hw; 4804 int i = 0; 4805 4806 /* hardware has been reset, we need to reload some things */ 4807 igc_configure(adapter); 4808 4809 clear_bit(__IGC_DOWN, &adapter->state); 4810 4811 for (i = 0; i < adapter->num_q_vectors; i++) 4812 napi_enable(&adapter->q_vector[i]->napi); 4813 4814 if (adapter->msix_entries) 4815 igc_configure_msix(adapter); 4816 else 4817 igc_assign_vector(adapter->q_vector[0], 0); 4818 4819 /* Clear any pending interrupts. */ 4820 rd32(IGC_ICR); 4821 igc_irq_enable(adapter); 4822 4823 netif_tx_start_all_queues(adapter->netdev); 4824 4825 /* start the watchdog. */ 4826 hw->mac.get_link_status = true; 4827 schedule_work(&adapter->watchdog_task); 4828 } 4829 4830 /** 4831 * igc_update_stats - Update the board statistics counters 4832 * @adapter: board private structure 4833 */ 4834 void igc_update_stats(struct igc_adapter *adapter) 4835 { 4836 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 4837 struct pci_dev *pdev = adapter->pdev; 4838 struct igc_hw *hw = &adapter->hw; 4839 u64 _bytes, _packets; 4840 u64 bytes, packets; 4841 unsigned int start; 4842 u32 mpc; 4843 int i; 4844 4845 /* Prevent stats update while adapter is being reset, or if the pci 4846 * connection is down. 4847 */ 4848 if (adapter->link_speed == 0) 4849 return; 4850 if (pci_channel_offline(pdev)) 4851 return; 4852 4853 packets = 0; 4854 bytes = 0; 4855 4856 rcu_read_lock(); 4857 for (i = 0; i < adapter->num_rx_queues; i++) { 4858 struct igc_ring *ring = adapter->rx_ring[i]; 4859 u32 rqdpc = rd32(IGC_RQDPC(i)); 4860 4861 if (hw->mac.type >= igc_i225) 4862 wr32(IGC_RQDPC(i), 0); 4863 4864 if (rqdpc) { 4865 ring->rx_stats.drops += rqdpc; 4866 net_stats->rx_fifo_errors += rqdpc; 4867 } 4868 4869 do { 4870 start = u64_stats_fetch_begin(&ring->rx_syncp); 4871 _bytes = ring->rx_stats.bytes; 4872 _packets = ring->rx_stats.packets; 4873 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 4874 bytes += _bytes; 4875 packets += _packets; 4876 } 4877 4878 net_stats->rx_bytes = bytes; 4879 net_stats->rx_packets = packets; 4880 4881 packets = 0; 4882 bytes = 0; 4883 for (i = 0; i < adapter->num_tx_queues; i++) { 4884 struct igc_ring *ring = adapter->tx_ring[i]; 4885 4886 do { 4887 start = u64_stats_fetch_begin(&ring->tx_syncp); 4888 _bytes = ring->tx_stats.bytes; 4889 _packets = ring->tx_stats.packets; 4890 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 4891 bytes += _bytes; 4892 packets += _packets; 4893 } 4894 net_stats->tx_bytes = bytes; 4895 net_stats->tx_packets = packets; 4896 rcu_read_unlock(); 4897 4898 /* read stats registers */ 4899 adapter->stats.crcerrs += rd32(IGC_CRCERRS); 4900 adapter->stats.gprc += rd32(IGC_GPRC); 4901 adapter->stats.gorc += rd32(IGC_GORCL); 4902 rd32(IGC_GORCH); /* clear GORCL */ 4903 adapter->stats.bprc += rd32(IGC_BPRC); 4904 adapter->stats.mprc += rd32(IGC_MPRC); 4905 adapter->stats.roc += rd32(IGC_ROC); 4906 4907 adapter->stats.prc64 += rd32(IGC_PRC64); 4908 adapter->stats.prc127 += rd32(IGC_PRC127); 4909 adapter->stats.prc255 += rd32(IGC_PRC255); 4910 adapter->stats.prc511 += rd32(IGC_PRC511); 4911 adapter->stats.prc1023 += rd32(IGC_PRC1023); 4912 adapter->stats.prc1522 += rd32(IGC_PRC1522); 4913 adapter->stats.tlpic += rd32(IGC_TLPIC); 4914 adapter->stats.rlpic += rd32(IGC_RLPIC); 4915 adapter->stats.hgptc += rd32(IGC_HGPTC); 4916 4917 mpc = rd32(IGC_MPC); 4918 adapter->stats.mpc += mpc; 4919 net_stats->rx_fifo_errors += mpc; 4920 adapter->stats.scc += rd32(IGC_SCC); 4921 adapter->stats.ecol += rd32(IGC_ECOL); 4922 adapter->stats.mcc += rd32(IGC_MCC); 4923 adapter->stats.latecol += rd32(IGC_LATECOL); 4924 adapter->stats.dc += rd32(IGC_DC); 4925 adapter->stats.rlec += rd32(IGC_RLEC); 4926 adapter->stats.xonrxc += rd32(IGC_XONRXC); 4927 adapter->stats.xontxc += rd32(IGC_XONTXC); 4928 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); 4929 adapter->stats.xofftxc += rd32(IGC_XOFFTXC); 4930 adapter->stats.fcruc += rd32(IGC_FCRUC); 4931 adapter->stats.gptc += rd32(IGC_GPTC); 4932 adapter->stats.gotc += rd32(IGC_GOTCL); 4933 rd32(IGC_GOTCH); /* clear GOTCL */ 4934 adapter->stats.rnbc += rd32(IGC_RNBC); 4935 adapter->stats.ruc += rd32(IGC_RUC); 4936 adapter->stats.rfc += rd32(IGC_RFC); 4937 adapter->stats.rjc += rd32(IGC_RJC); 4938 adapter->stats.tor += rd32(IGC_TORH); 4939 adapter->stats.tot += rd32(IGC_TOTH); 4940 adapter->stats.tpr += rd32(IGC_TPR); 4941 4942 adapter->stats.ptc64 += rd32(IGC_PTC64); 4943 adapter->stats.ptc127 += rd32(IGC_PTC127); 4944 adapter->stats.ptc255 += rd32(IGC_PTC255); 4945 adapter->stats.ptc511 += rd32(IGC_PTC511); 4946 adapter->stats.ptc1023 += rd32(IGC_PTC1023); 4947 adapter->stats.ptc1522 += rd32(IGC_PTC1522); 4948 4949 adapter->stats.mptc += rd32(IGC_MPTC); 4950 adapter->stats.bptc += rd32(IGC_BPTC); 4951 4952 adapter->stats.tpt += rd32(IGC_TPT); 4953 adapter->stats.colc += rd32(IGC_COLC); 4954 adapter->stats.colc += rd32(IGC_RERC); 4955 4956 adapter->stats.algnerrc += rd32(IGC_ALGNERRC); 4957 4958 adapter->stats.tsctc += rd32(IGC_TSCTC); 4959 4960 adapter->stats.iac += rd32(IGC_IAC); 4961 4962 /* Fill out the OS statistics structure */ 4963 net_stats->multicast = adapter->stats.mprc; 4964 net_stats->collisions = adapter->stats.colc; 4965 4966 /* Rx Errors */ 4967 4968 /* RLEC on some newer hardware can be incorrect so build 4969 * our own version based on RUC and ROC 4970 */ 4971 net_stats->rx_errors = adapter->stats.rxerrc + 4972 adapter->stats.crcerrs + adapter->stats.algnerrc + 4973 adapter->stats.ruc + adapter->stats.roc + 4974 adapter->stats.cexterr; 4975 net_stats->rx_length_errors = adapter->stats.ruc + 4976 adapter->stats.roc; 4977 net_stats->rx_crc_errors = adapter->stats.crcerrs; 4978 net_stats->rx_frame_errors = adapter->stats.algnerrc; 4979 net_stats->rx_missed_errors = adapter->stats.mpc; 4980 4981 /* Tx Errors */ 4982 net_stats->tx_errors = adapter->stats.ecol + 4983 adapter->stats.latecol; 4984 net_stats->tx_aborted_errors = adapter->stats.ecol; 4985 net_stats->tx_window_errors = adapter->stats.latecol; 4986 net_stats->tx_carrier_errors = adapter->stats.tncrs; 4987 4988 /* Tx Dropped */ 4989 net_stats->tx_dropped = adapter->stats.txdrop; 4990 4991 /* Management Stats */ 4992 adapter->stats.mgptc += rd32(IGC_MGTPTC); 4993 adapter->stats.mgprc += rd32(IGC_MGTPRC); 4994 adapter->stats.mgpdc += rd32(IGC_MGTPDC); 4995 } 4996 4997 /** 4998 * igc_down - Close the interface 4999 * @adapter: board private structure 5000 */ 5001 void igc_down(struct igc_adapter *adapter) 5002 { 5003 struct net_device *netdev = adapter->netdev; 5004 struct igc_hw *hw = &adapter->hw; 5005 u32 tctl, rctl; 5006 int i = 0; 5007 5008 set_bit(__IGC_DOWN, &adapter->state); 5009 5010 igc_ptp_suspend(adapter); 5011 5012 if (pci_device_is_present(adapter->pdev)) { 5013 /* disable receives in the hardware */ 5014 rctl = rd32(IGC_RCTL); 5015 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 5016 /* flush and sleep below */ 5017 } 5018 /* set trans_start so we don't get spurious watchdogs during reset */ 5019 netif_trans_update(netdev); 5020 5021 netif_carrier_off(netdev); 5022 netif_tx_stop_all_queues(netdev); 5023 5024 if (pci_device_is_present(adapter->pdev)) { 5025 /* disable transmits in the hardware */ 5026 tctl = rd32(IGC_TCTL); 5027 tctl &= ~IGC_TCTL_EN; 5028 wr32(IGC_TCTL, tctl); 5029 /* flush both disables and wait for them to finish */ 5030 wrfl(); 5031 usleep_range(10000, 20000); 5032 5033 igc_irq_disable(adapter); 5034 } 5035 5036 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5037 5038 for (i = 0; i < adapter->num_q_vectors; i++) { 5039 if (adapter->q_vector[i]) { 5040 napi_synchronize(&adapter->q_vector[i]->napi); 5041 napi_disable(&adapter->q_vector[i]->napi); 5042 } 5043 } 5044 5045 del_timer_sync(&adapter->watchdog_timer); 5046 del_timer_sync(&adapter->phy_info_timer); 5047 5048 /* record the stats before reset*/ 5049 spin_lock(&adapter->stats64_lock); 5050 igc_update_stats(adapter); 5051 spin_unlock(&adapter->stats64_lock); 5052 5053 adapter->link_speed = 0; 5054 adapter->link_duplex = 0; 5055 5056 if (!pci_channel_offline(adapter->pdev)) 5057 igc_reset(adapter); 5058 5059 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 5060 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 5061 5062 igc_clean_all_tx_rings(adapter); 5063 igc_clean_all_rx_rings(adapter); 5064 } 5065 5066 void igc_reinit_locked(struct igc_adapter *adapter) 5067 { 5068 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5069 usleep_range(1000, 2000); 5070 igc_down(adapter); 5071 igc_up(adapter); 5072 clear_bit(__IGC_RESETTING, &adapter->state); 5073 } 5074 5075 static void igc_reset_task(struct work_struct *work) 5076 { 5077 struct igc_adapter *adapter; 5078 5079 adapter = container_of(work, struct igc_adapter, reset_task); 5080 5081 rtnl_lock(); 5082 /* If we're already down or resetting, just bail */ 5083 if (test_bit(__IGC_DOWN, &adapter->state) || 5084 test_bit(__IGC_RESETTING, &adapter->state)) { 5085 rtnl_unlock(); 5086 return; 5087 } 5088 5089 igc_rings_dump(adapter); 5090 igc_regs_dump(adapter); 5091 netdev_err(adapter->netdev, "Reset adapter\n"); 5092 igc_reinit_locked(adapter); 5093 rtnl_unlock(); 5094 } 5095 5096 /** 5097 * igc_change_mtu - Change the Maximum Transfer Unit 5098 * @netdev: network interface device structure 5099 * @new_mtu: new value for maximum frame size 5100 * 5101 * Returns 0 on success, negative on failure 5102 */ 5103 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 5104 { 5105 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5106 struct igc_adapter *adapter = netdev_priv(netdev); 5107 5108 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { 5109 netdev_dbg(netdev, "Jumbo frames not supported with XDP"); 5110 return -EINVAL; 5111 } 5112 5113 /* adjust max frame to be at least the size of a standard frame */ 5114 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5115 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5116 5117 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 5118 usleep_range(1000, 2000); 5119 5120 /* igc_down has a dependency on max_frame_size */ 5121 adapter->max_frame_size = max_frame; 5122 5123 if (netif_running(netdev)) 5124 igc_down(adapter); 5125 5126 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5127 netdev->mtu = new_mtu; 5128 5129 if (netif_running(netdev)) 5130 igc_up(adapter); 5131 else 5132 igc_reset(adapter); 5133 5134 clear_bit(__IGC_RESETTING, &adapter->state); 5135 5136 return 0; 5137 } 5138 5139 /** 5140 * igc_tx_timeout - Respond to a Tx Hang 5141 * @netdev: network interface device structure 5142 * @txqueue: queue number that timed out 5143 **/ 5144 static void igc_tx_timeout(struct net_device *netdev, 5145 unsigned int __always_unused txqueue) 5146 { 5147 struct igc_adapter *adapter = netdev_priv(netdev); 5148 struct igc_hw *hw = &adapter->hw; 5149 5150 /* Do the reset outside of interrupt context */ 5151 adapter->tx_timeout_count++; 5152 schedule_work(&adapter->reset_task); 5153 wr32(IGC_EICS, 5154 (adapter->eims_enable_mask & ~adapter->eims_other)); 5155 } 5156 5157 /** 5158 * igc_get_stats64 - Get System Network Statistics 5159 * @netdev: network interface device structure 5160 * @stats: rtnl_link_stats64 pointer 5161 * 5162 * Returns the address of the device statistics structure. 5163 * The statistics are updated here and also from the timer callback. 5164 */ 5165 static void igc_get_stats64(struct net_device *netdev, 5166 struct rtnl_link_stats64 *stats) 5167 { 5168 struct igc_adapter *adapter = netdev_priv(netdev); 5169 5170 spin_lock(&adapter->stats64_lock); 5171 if (!test_bit(__IGC_RESETTING, &adapter->state)) 5172 igc_update_stats(adapter); 5173 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5174 spin_unlock(&adapter->stats64_lock); 5175 } 5176 5177 static netdev_features_t igc_fix_features(struct net_device *netdev, 5178 netdev_features_t features) 5179 { 5180 /* Since there is no support for separate Rx/Tx vlan accel 5181 * enable/disable make sure Tx flag is always in same state as Rx. 5182 */ 5183 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5184 features |= NETIF_F_HW_VLAN_CTAG_TX; 5185 else 5186 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 5187 5188 return features; 5189 } 5190 5191 static int igc_set_features(struct net_device *netdev, 5192 netdev_features_t features) 5193 { 5194 netdev_features_t changed = netdev->features ^ features; 5195 struct igc_adapter *adapter = netdev_priv(netdev); 5196 5197 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 5198 igc_vlan_mode(netdev, features); 5199 5200 /* Add VLAN support */ 5201 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 5202 return 0; 5203 5204 if (!(features & NETIF_F_NTUPLE)) 5205 igc_flush_nfc_rules(adapter); 5206 5207 netdev->features = features; 5208 5209 if (netif_running(netdev)) 5210 igc_reinit_locked(adapter); 5211 else 5212 igc_reset(adapter); 5213 5214 return 1; 5215 } 5216 5217 static netdev_features_t 5218 igc_features_check(struct sk_buff *skb, struct net_device *dev, 5219 netdev_features_t features) 5220 { 5221 unsigned int network_hdr_len, mac_hdr_len; 5222 5223 /* Make certain the headers can be described by a context descriptor */ 5224 mac_hdr_len = skb_network_header(skb) - skb->data; 5225 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) 5226 return features & ~(NETIF_F_HW_CSUM | 5227 NETIF_F_SCTP_CRC | 5228 NETIF_F_HW_VLAN_CTAG_TX | 5229 NETIF_F_TSO | 5230 NETIF_F_TSO6); 5231 5232 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 5233 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) 5234 return features & ~(NETIF_F_HW_CSUM | 5235 NETIF_F_SCTP_CRC | 5236 NETIF_F_TSO | 5237 NETIF_F_TSO6); 5238 5239 /* We can only support IPv4 TSO in tunnels if we can mangle the 5240 * inner IP ID field, so strip TSO if MANGLEID is not supported. 5241 */ 5242 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 5243 features &= ~NETIF_F_TSO; 5244 5245 return features; 5246 } 5247 5248 static void igc_tsync_interrupt(struct igc_adapter *adapter) 5249 { 5250 u32 ack, tsauxc, sec, nsec, tsicr; 5251 struct igc_hw *hw = &adapter->hw; 5252 struct ptp_clock_event event; 5253 struct timespec64 ts; 5254 5255 tsicr = rd32(IGC_TSICR); 5256 ack = 0; 5257 5258 if (tsicr & IGC_TSICR_SYS_WRAP) { 5259 event.type = PTP_CLOCK_PPS; 5260 if (adapter->ptp_caps.pps) 5261 ptp_clock_event(adapter->ptp_clock, &event); 5262 ack |= IGC_TSICR_SYS_WRAP; 5263 } 5264 5265 if (tsicr & IGC_TSICR_TXTS) { 5266 /* retrieve hardware timestamp */ 5267 schedule_work(&adapter->ptp_tx_work); 5268 ack |= IGC_TSICR_TXTS; 5269 } 5270 5271 if (tsicr & IGC_TSICR_TT0) { 5272 spin_lock(&adapter->tmreg_lock); 5273 ts = timespec64_add(adapter->perout[0].start, 5274 adapter->perout[0].period); 5275 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5276 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); 5277 tsauxc = rd32(IGC_TSAUXC); 5278 tsauxc |= IGC_TSAUXC_EN_TT0; 5279 wr32(IGC_TSAUXC, tsauxc); 5280 adapter->perout[0].start = ts; 5281 spin_unlock(&adapter->tmreg_lock); 5282 ack |= IGC_TSICR_TT0; 5283 } 5284 5285 if (tsicr & IGC_TSICR_TT1) { 5286 spin_lock(&adapter->tmreg_lock); 5287 ts = timespec64_add(adapter->perout[1].start, 5288 adapter->perout[1].period); 5289 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); 5290 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); 5291 tsauxc = rd32(IGC_TSAUXC); 5292 tsauxc |= IGC_TSAUXC_EN_TT1; 5293 wr32(IGC_TSAUXC, tsauxc); 5294 adapter->perout[1].start = ts; 5295 spin_unlock(&adapter->tmreg_lock); 5296 ack |= IGC_TSICR_TT1; 5297 } 5298 5299 if (tsicr & IGC_TSICR_AUTT0) { 5300 nsec = rd32(IGC_AUXSTMPL0); 5301 sec = rd32(IGC_AUXSTMPH0); 5302 event.type = PTP_CLOCK_EXTTS; 5303 event.index = 0; 5304 event.timestamp = sec * NSEC_PER_SEC + nsec; 5305 ptp_clock_event(adapter->ptp_clock, &event); 5306 ack |= IGC_TSICR_AUTT0; 5307 } 5308 5309 if (tsicr & IGC_TSICR_AUTT1) { 5310 nsec = rd32(IGC_AUXSTMPL1); 5311 sec = rd32(IGC_AUXSTMPH1); 5312 event.type = PTP_CLOCK_EXTTS; 5313 event.index = 1; 5314 event.timestamp = sec * NSEC_PER_SEC + nsec; 5315 ptp_clock_event(adapter->ptp_clock, &event); 5316 ack |= IGC_TSICR_AUTT1; 5317 } 5318 5319 /* acknowledge the interrupts */ 5320 wr32(IGC_TSICR, ack); 5321 } 5322 5323 /** 5324 * igc_msix_other - msix other interrupt handler 5325 * @irq: interrupt number 5326 * @data: pointer to a q_vector 5327 */ 5328 static irqreturn_t igc_msix_other(int irq, void *data) 5329 { 5330 struct igc_adapter *adapter = data; 5331 struct igc_hw *hw = &adapter->hw; 5332 u32 icr = rd32(IGC_ICR); 5333 5334 /* reading ICR causes bit 31 of EICR to be cleared */ 5335 if (icr & IGC_ICR_DRSTA) 5336 schedule_work(&adapter->reset_task); 5337 5338 if (icr & IGC_ICR_DOUTSYNC) { 5339 /* HW is reporting DMA is out of sync */ 5340 adapter->stats.doosync++; 5341 } 5342 5343 if (icr & IGC_ICR_LSC) { 5344 hw->mac.get_link_status = true; 5345 /* guard against interrupt when we're going down */ 5346 if (!test_bit(__IGC_DOWN, &adapter->state)) 5347 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5348 } 5349 5350 if (icr & IGC_ICR_TS) 5351 igc_tsync_interrupt(adapter); 5352 5353 wr32(IGC_EIMS, adapter->eims_other); 5354 5355 return IRQ_HANDLED; 5356 } 5357 5358 static void igc_write_itr(struct igc_q_vector *q_vector) 5359 { 5360 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 5361 5362 if (!q_vector->set_itr) 5363 return; 5364 5365 if (!itr_val) 5366 itr_val = IGC_ITR_VAL_MASK; 5367 5368 itr_val |= IGC_EITR_CNT_IGNR; 5369 5370 writel(itr_val, q_vector->itr_register); 5371 q_vector->set_itr = 0; 5372 } 5373 5374 static irqreturn_t igc_msix_ring(int irq, void *data) 5375 { 5376 struct igc_q_vector *q_vector = data; 5377 5378 /* Write the ITR value calculated from the previous interrupt. */ 5379 igc_write_itr(q_vector); 5380 5381 napi_schedule(&q_vector->napi); 5382 5383 return IRQ_HANDLED; 5384 } 5385 5386 /** 5387 * igc_request_msix - Initialize MSI-X interrupts 5388 * @adapter: Pointer to adapter structure 5389 * 5390 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 5391 * kernel. 5392 */ 5393 static int igc_request_msix(struct igc_adapter *adapter) 5394 { 5395 unsigned int num_q_vectors = adapter->num_q_vectors; 5396 int i = 0, err = 0, vector = 0, free_vector = 0; 5397 struct net_device *netdev = adapter->netdev; 5398 5399 err = request_irq(adapter->msix_entries[vector].vector, 5400 &igc_msix_other, 0, netdev->name, adapter); 5401 if (err) 5402 goto err_out; 5403 5404 if (num_q_vectors > MAX_Q_VECTORS) { 5405 num_q_vectors = MAX_Q_VECTORS; 5406 dev_warn(&adapter->pdev->dev, 5407 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 5408 adapter->num_q_vectors, MAX_Q_VECTORS); 5409 } 5410 for (i = 0; i < num_q_vectors; i++) { 5411 struct igc_q_vector *q_vector = adapter->q_vector[i]; 5412 5413 vector++; 5414 5415 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 5416 5417 if (q_vector->rx.ring && q_vector->tx.ring) 5418 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 5419 q_vector->rx.ring->queue_index); 5420 else if (q_vector->tx.ring) 5421 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 5422 q_vector->tx.ring->queue_index); 5423 else if (q_vector->rx.ring) 5424 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 5425 q_vector->rx.ring->queue_index); 5426 else 5427 sprintf(q_vector->name, "%s-unused", netdev->name); 5428 5429 err = request_irq(adapter->msix_entries[vector].vector, 5430 igc_msix_ring, 0, q_vector->name, 5431 q_vector); 5432 if (err) 5433 goto err_free; 5434 } 5435 5436 igc_configure_msix(adapter); 5437 return 0; 5438 5439 err_free: 5440 /* free already assigned IRQs */ 5441 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 5442 5443 vector--; 5444 for (i = 0; i < vector; i++) { 5445 free_irq(adapter->msix_entries[free_vector++].vector, 5446 adapter->q_vector[i]); 5447 } 5448 err_out: 5449 return err; 5450 } 5451 5452 /** 5453 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 5454 * @adapter: Pointer to adapter structure 5455 * 5456 * This function resets the device so that it has 0 rx queues, tx queues, and 5457 * MSI-X interrupts allocated. 5458 */ 5459 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 5460 { 5461 igc_free_q_vectors(adapter); 5462 igc_reset_interrupt_capability(adapter); 5463 } 5464 5465 /* Need to wait a few seconds after link up to get diagnostic information from 5466 * the phy 5467 */ 5468 static void igc_update_phy_info(struct timer_list *t) 5469 { 5470 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5471 5472 igc_get_phy_info(&adapter->hw); 5473 } 5474 5475 /** 5476 * igc_has_link - check shared code for link and determine up/down 5477 * @adapter: pointer to driver private info 5478 */ 5479 bool igc_has_link(struct igc_adapter *adapter) 5480 { 5481 struct igc_hw *hw = &adapter->hw; 5482 bool link_active = false; 5483 5484 /* get_link_status is set on LSC (link status) interrupt or 5485 * rx sequence error interrupt. get_link_status will stay 5486 * false until the igc_check_for_link establishes link 5487 * for copper adapters ONLY 5488 */ 5489 if (!hw->mac.get_link_status) 5490 return true; 5491 hw->mac.ops.check_for_link(hw); 5492 link_active = !hw->mac.get_link_status; 5493 5494 if (hw->mac.type == igc_i225) { 5495 if (!netif_carrier_ok(adapter->netdev)) { 5496 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5497 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 5498 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 5499 adapter->link_check_timeout = jiffies; 5500 } 5501 } 5502 5503 return link_active; 5504 } 5505 5506 /** 5507 * igc_watchdog - Timer Call-back 5508 * @t: timer for the watchdog 5509 */ 5510 static void igc_watchdog(struct timer_list *t) 5511 { 5512 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5513 /* Do the rest outside of interrupt context */ 5514 schedule_work(&adapter->watchdog_task); 5515 } 5516 5517 static void igc_watchdog_task(struct work_struct *work) 5518 { 5519 struct igc_adapter *adapter = container_of(work, 5520 struct igc_adapter, 5521 watchdog_task); 5522 struct net_device *netdev = adapter->netdev; 5523 struct igc_hw *hw = &adapter->hw; 5524 struct igc_phy_info *phy = &hw->phy; 5525 u16 phy_data, retry_count = 20; 5526 u32 link; 5527 int i; 5528 5529 link = igc_has_link(adapter); 5530 5531 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 5532 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5533 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 5534 else 5535 link = false; 5536 } 5537 5538 if (link) { 5539 /* Cancel scheduled suspend requests. */ 5540 pm_runtime_resume(netdev->dev.parent); 5541 5542 if (!netif_carrier_ok(netdev)) { 5543 u32 ctrl; 5544 5545 hw->mac.ops.get_speed_and_duplex(hw, 5546 &adapter->link_speed, 5547 &adapter->link_duplex); 5548 5549 ctrl = rd32(IGC_CTRL); 5550 /* Link status message must follow this format */ 5551 netdev_info(netdev, 5552 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5553 adapter->link_speed, 5554 adapter->link_duplex == FULL_DUPLEX ? 5555 "Full" : "Half", 5556 (ctrl & IGC_CTRL_TFCE) && 5557 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 5558 (ctrl & IGC_CTRL_RFCE) ? "RX" : 5559 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 5560 5561 /* disable EEE if enabled */ 5562 if ((adapter->flags & IGC_FLAG_EEE) && 5563 adapter->link_duplex == HALF_DUPLEX) { 5564 netdev_info(netdev, 5565 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); 5566 adapter->hw.dev_spec._base.eee_enable = false; 5567 adapter->flags &= ~IGC_FLAG_EEE; 5568 } 5569 5570 /* check if SmartSpeed worked */ 5571 igc_check_downshift(hw); 5572 if (phy->speed_downgraded) 5573 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5574 5575 /* adjust timeout factor according to speed/duplex */ 5576 adapter->tx_timeout_factor = 1; 5577 switch (adapter->link_speed) { 5578 case SPEED_10: 5579 adapter->tx_timeout_factor = 14; 5580 break; 5581 case SPEED_100: 5582 case SPEED_1000: 5583 case SPEED_2500: 5584 adapter->tx_timeout_factor = 1; 5585 break; 5586 } 5587 5588 /* Once the launch time has been set on the wire, there 5589 * is a delay before the link speed can be determined 5590 * based on link-up activity. Write into the register 5591 * as soon as we know the correct link speed. 5592 */ 5593 igc_tsn_adjust_txtime_offset(adapter); 5594 5595 if (adapter->link_speed != SPEED_1000) 5596 goto no_wait; 5597 5598 /* wait for Remote receiver status OK */ 5599 retry_read_status: 5600 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 5601 &phy_data)) { 5602 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5603 retry_count) { 5604 msleep(100); 5605 retry_count--; 5606 goto retry_read_status; 5607 } else if (!retry_count) { 5608 netdev_err(netdev, "exceed max 2 second\n"); 5609 } 5610 } else { 5611 netdev_err(netdev, "read 1000Base-T Status Reg\n"); 5612 } 5613 no_wait: 5614 netif_carrier_on(netdev); 5615 5616 /* link state has changed, schedule phy info update */ 5617 if (!test_bit(__IGC_DOWN, &adapter->state)) 5618 mod_timer(&adapter->phy_info_timer, 5619 round_jiffies(jiffies + 2 * HZ)); 5620 } 5621 } else { 5622 if (netif_carrier_ok(netdev)) { 5623 adapter->link_speed = 0; 5624 adapter->link_duplex = 0; 5625 5626 /* Links status message must follow this format */ 5627 netdev_info(netdev, "NIC Link is Down\n"); 5628 netif_carrier_off(netdev); 5629 5630 /* link state has changed, schedule phy info update */ 5631 if (!test_bit(__IGC_DOWN, &adapter->state)) 5632 mod_timer(&adapter->phy_info_timer, 5633 round_jiffies(jiffies + 2 * HZ)); 5634 5635 pm_schedule_suspend(netdev->dev.parent, 5636 MSEC_PER_SEC * 5); 5637 } 5638 } 5639 5640 spin_lock(&adapter->stats64_lock); 5641 igc_update_stats(adapter); 5642 spin_unlock(&adapter->stats64_lock); 5643 5644 for (i = 0; i < adapter->num_tx_queues; i++) { 5645 struct igc_ring *tx_ring = adapter->tx_ring[i]; 5646 5647 if (!netif_carrier_ok(netdev)) { 5648 /* We've lost link, so the controller stops DMA, 5649 * but we've got queued Tx work that's never going 5650 * to get done, so reset controller to flush Tx. 5651 * (Do the reset outside of interrupt context). 5652 */ 5653 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 5654 adapter->tx_timeout_count++; 5655 schedule_work(&adapter->reset_task); 5656 /* return immediately since reset is imminent */ 5657 return; 5658 } 5659 } 5660 5661 /* Force detection of hung controller every watchdog period */ 5662 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5663 } 5664 5665 /* Cause software interrupt to ensure Rx ring is cleaned */ 5666 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5667 u32 eics = 0; 5668 5669 for (i = 0; i < adapter->num_q_vectors; i++) 5670 eics |= adapter->q_vector[i]->eims_value; 5671 wr32(IGC_EICS, eics); 5672 } else { 5673 wr32(IGC_ICS, IGC_ICS_RXDMT0); 5674 } 5675 5676 igc_ptp_tx_hang(adapter); 5677 5678 /* Reset the timer */ 5679 if (!test_bit(__IGC_DOWN, &adapter->state)) { 5680 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 5681 mod_timer(&adapter->watchdog_timer, 5682 round_jiffies(jiffies + HZ)); 5683 else 5684 mod_timer(&adapter->watchdog_timer, 5685 round_jiffies(jiffies + 2 * HZ)); 5686 } 5687 } 5688 5689 /** 5690 * igc_intr_msi - Interrupt Handler 5691 * @irq: interrupt number 5692 * @data: pointer to a network interface device structure 5693 */ 5694 static irqreturn_t igc_intr_msi(int irq, void *data) 5695 { 5696 struct igc_adapter *adapter = data; 5697 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5698 struct igc_hw *hw = &adapter->hw; 5699 /* read ICR disables interrupts using IAM */ 5700 u32 icr = rd32(IGC_ICR); 5701 5702 igc_write_itr(q_vector); 5703 5704 if (icr & IGC_ICR_DRSTA) 5705 schedule_work(&adapter->reset_task); 5706 5707 if (icr & IGC_ICR_DOUTSYNC) { 5708 /* HW is reporting DMA is out of sync */ 5709 adapter->stats.doosync++; 5710 } 5711 5712 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5713 hw->mac.get_link_status = true; 5714 if (!test_bit(__IGC_DOWN, &adapter->state)) 5715 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5716 } 5717 5718 if (icr & IGC_ICR_TS) 5719 igc_tsync_interrupt(adapter); 5720 5721 napi_schedule(&q_vector->napi); 5722 5723 return IRQ_HANDLED; 5724 } 5725 5726 /** 5727 * igc_intr - Legacy Interrupt Handler 5728 * @irq: interrupt number 5729 * @data: pointer to a network interface device structure 5730 */ 5731 static irqreturn_t igc_intr(int irq, void *data) 5732 { 5733 struct igc_adapter *adapter = data; 5734 struct igc_q_vector *q_vector = adapter->q_vector[0]; 5735 struct igc_hw *hw = &adapter->hw; 5736 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5737 * need for the IMC write 5738 */ 5739 u32 icr = rd32(IGC_ICR); 5740 5741 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5742 * not set, then the adapter didn't send an interrupt 5743 */ 5744 if (!(icr & IGC_ICR_INT_ASSERTED)) 5745 return IRQ_NONE; 5746 5747 igc_write_itr(q_vector); 5748 5749 if (icr & IGC_ICR_DRSTA) 5750 schedule_work(&adapter->reset_task); 5751 5752 if (icr & IGC_ICR_DOUTSYNC) { 5753 /* HW is reporting DMA is out of sync */ 5754 adapter->stats.doosync++; 5755 } 5756 5757 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 5758 hw->mac.get_link_status = true; 5759 /* guard against interrupt when we're going down */ 5760 if (!test_bit(__IGC_DOWN, &adapter->state)) 5761 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5762 } 5763 5764 if (icr & IGC_ICR_TS) 5765 igc_tsync_interrupt(adapter); 5766 5767 napi_schedule(&q_vector->napi); 5768 5769 return IRQ_HANDLED; 5770 } 5771 5772 static void igc_free_irq(struct igc_adapter *adapter) 5773 { 5774 if (adapter->msix_entries) { 5775 int vector = 0, i; 5776 5777 free_irq(adapter->msix_entries[vector++].vector, adapter); 5778 5779 for (i = 0; i < adapter->num_q_vectors; i++) 5780 free_irq(adapter->msix_entries[vector++].vector, 5781 adapter->q_vector[i]); 5782 } else { 5783 free_irq(adapter->pdev->irq, adapter); 5784 } 5785 } 5786 5787 /** 5788 * igc_request_irq - initialize interrupts 5789 * @adapter: Pointer to adapter structure 5790 * 5791 * Attempts to configure interrupts using the best available 5792 * capabilities of the hardware and kernel. 5793 */ 5794 static int igc_request_irq(struct igc_adapter *adapter) 5795 { 5796 struct net_device *netdev = adapter->netdev; 5797 struct pci_dev *pdev = adapter->pdev; 5798 int err = 0; 5799 5800 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 5801 err = igc_request_msix(adapter); 5802 if (!err) 5803 goto request_done; 5804 /* fall back to MSI */ 5805 igc_free_all_tx_resources(adapter); 5806 igc_free_all_rx_resources(adapter); 5807 5808 igc_clear_interrupt_scheme(adapter); 5809 err = igc_init_interrupt_scheme(adapter, false); 5810 if (err) 5811 goto request_done; 5812 igc_setup_all_tx_resources(adapter); 5813 igc_setup_all_rx_resources(adapter); 5814 igc_configure(adapter); 5815 } 5816 5817 igc_assign_vector(adapter->q_vector[0], 0); 5818 5819 if (adapter->flags & IGC_FLAG_HAS_MSI) { 5820 err = request_irq(pdev->irq, &igc_intr_msi, 0, 5821 netdev->name, adapter); 5822 if (!err) 5823 goto request_done; 5824 5825 /* fall back to legacy interrupts */ 5826 igc_reset_interrupt_capability(adapter); 5827 adapter->flags &= ~IGC_FLAG_HAS_MSI; 5828 } 5829 5830 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 5831 netdev->name, adapter); 5832 5833 if (err) 5834 netdev_err(netdev, "Error %d getting interrupt\n", err); 5835 5836 request_done: 5837 return err; 5838 } 5839 5840 /** 5841 * __igc_open - Called when a network interface is made active 5842 * @netdev: network interface device structure 5843 * @resuming: boolean indicating if the device is resuming 5844 * 5845 * Returns 0 on success, negative value on failure 5846 * 5847 * The open entry point is called when a network interface is made 5848 * active by the system (IFF_UP). At this point all resources needed 5849 * for transmit and receive operations are allocated, the interrupt 5850 * handler is registered with the OS, the watchdog timer is started, 5851 * and the stack is notified that the interface is ready. 5852 */ 5853 static int __igc_open(struct net_device *netdev, bool resuming) 5854 { 5855 struct igc_adapter *adapter = netdev_priv(netdev); 5856 struct pci_dev *pdev = adapter->pdev; 5857 struct igc_hw *hw = &adapter->hw; 5858 int err = 0; 5859 int i = 0; 5860 5861 /* disallow open during test */ 5862 5863 if (test_bit(__IGC_TESTING, &adapter->state)) { 5864 WARN_ON(resuming); 5865 return -EBUSY; 5866 } 5867 5868 if (!resuming) 5869 pm_runtime_get_sync(&pdev->dev); 5870 5871 netif_carrier_off(netdev); 5872 5873 /* allocate transmit descriptors */ 5874 err = igc_setup_all_tx_resources(adapter); 5875 if (err) 5876 goto err_setup_tx; 5877 5878 /* allocate receive descriptors */ 5879 err = igc_setup_all_rx_resources(adapter); 5880 if (err) 5881 goto err_setup_rx; 5882 5883 igc_power_up_link(adapter); 5884 5885 igc_configure(adapter); 5886 5887 err = igc_request_irq(adapter); 5888 if (err) 5889 goto err_req_irq; 5890 5891 /* Notify the stack of the actual queue counts. */ 5892 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 5893 if (err) 5894 goto err_set_queues; 5895 5896 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 5897 if (err) 5898 goto err_set_queues; 5899 5900 clear_bit(__IGC_DOWN, &adapter->state); 5901 5902 for (i = 0; i < adapter->num_q_vectors; i++) 5903 napi_enable(&adapter->q_vector[i]->napi); 5904 5905 /* Clear any pending interrupts. */ 5906 rd32(IGC_ICR); 5907 igc_irq_enable(adapter); 5908 5909 if (!resuming) 5910 pm_runtime_put(&pdev->dev); 5911 5912 netif_tx_start_all_queues(netdev); 5913 5914 /* start the watchdog. */ 5915 hw->mac.get_link_status = true; 5916 schedule_work(&adapter->watchdog_task); 5917 5918 return IGC_SUCCESS; 5919 5920 err_set_queues: 5921 igc_free_irq(adapter); 5922 err_req_irq: 5923 igc_release_hw_control(adapter); 5924 igc_power_down_phy_copper_base(&adapter->hw); 5925 igc_free_all_rx_resources(adapter); 5926 err_setup_rx: 5927 igc_free_all_tx_resources(adapter); 5928 err_setup_tx: 5929 igc_reset(adapter); 5930 if (!resuming) 5931 pm_runtime_put(&pdev->dev); 5932 5933 return err; 5934 } 5935 5936 int igc_open(struct net_device *netdev) 5937 { 5938 return __igc_open(netdev, false); 5939 } 5940 5941 /** 5942 * __igc_close - Disables a network interface 5943 * @netdev: network interface device structure 5944 * @suspending: boolean indicating the device is suspending 5945 * 5946 * Returns 0, this is not allowed to fail 5947 * 5948 * The close entry point is called when an interface is de-activated 5949 * by the OS. The hardware is still under the driver's control, but 5950 * needs to be disabled. A global MAC reset is issued to stop the 5951 * hardware, and all transmit and receive resources are freed. 5952 */ 5953 static int __igc_close(struct net_device *netdev, bool suspending) 5954 { 5955 struct igc_adapter *adapter = netdev_priv(netdev); 5956 struct pci_dev *pdev = adapter->pdev; 5957 5958 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 5959 5960 if (!suspending) 5961 pm_runtime_get_sync(&pdev->dev); 5962 5963 igc_down(adapter); 5964 5965 igc_release_hw_control(adapter); 5966 5967 igc_free_irq(adapter); 5968 5969 igc_free_all_tx_resources(adapter); 5970 igc_free_all_rx_resources(adapter); 5971 5972 if (!suspending) 5973 pm_runtime_put_sync(&pdev->dev); 5974 5975 return 0; 5976 } 5977 5978 int igc_close(struct net_device *netdev) 5979 { 5980 if (netif_device_present(netdev) || netdev->dismantle) 5981 return __igc_close(netdev, false); 5982 return 0; 5983 } 5984 5985 /** 5986 * igc_ioctl - Access the hwtstamp interface 5987 * @netdev: network interface device structure 5988 * @ifr: interface request data 5989 * @cmd: ioctl command 5990 **/ 5991 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5992 { 5993 switch (cmd) { 5994 case SIOCGHWTSTAMP: 5995 return igc_ptp_get_ts_config(netdev, ifr); 5996 case SIOCSHWTSTAMP: 5997 return igc_ptp_set_ts_config(netdev, ifr); 5998 default: 5999 return -EOPNOTSUPP; 6000 } 6001 } 6002 6003 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, 6004 bool enable) 6005 { 6006 struct igc_ring *ring; 6007 6008 if (queue < 0 || queue >= adapter->num_tx_queues) 6009 return -EINVAL; 6010 6011 ring = adapter->tx_ring[queue]; 6012 ring->launchtime_enable = enable; 6013 6014 return 0; 6015 } 6016 6017 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) 6018 { 6019 struct timespec64 b; 6020 6021 b = ktime_to_timespec64(base_time); 6022 6023 return timespec64_compare(now, &b) > 0; 6024 } 6025 6026 static bool validate_schedule(struct igc_adapter *adapter, 6027 const struct tc_taprio_qopt_offload *qopt) 6028 { 6029 int queue_uses[IGC_MAX_TX_QUEUES] = { }; 6030 struct igc_hw *hw = &adapter->hw; 6031 struct timespec64 now; 6032 size_t n; 6033 6034 if (qopt->cycle_time_extension) 6035 return false; 6036 6037 igc_ptp_read(adapter, &now); 6038 6039 /* If we program the controller's BASET registers with a time 6040 * in the future, it will hold all the packets until that 6041 * time, causing a lot of TX Hangs, so to avoid that, we 6042 * reject schedules that would start in the future. 6043 * Note: Limitation above is no longer in i226. 6044 */ 6045 if (!is_base_time_past(qopt->base_time, &now) && 6046 igc_is_device_id_i225(hw)) 6047 return false; 6048 6049 for (n = 0; n < qopt->num_entries; n++) { 6050 const struct tc_taprio_sched_entry *e, *prev; 6051 int i; 6052 6053 prev = n ? &qopt->entries[n - 1] : NULL; 6054 e = &qopt->entries[n]; 6055 6056 /* i225 only supports "global" frame preemption 6057 * settings. 6058 */ 6059 if (e->command != TC_TAPRIO_CMD_SET_GATES) 6060 return false; 6061 6062 for (i = 0; i < adapter->num_tx_queues; i++) 6063 if (e->gate_mask & BIT(i)) { 6064 queue_uses[i]++; 6065 6066 /* There are limitations: A single queue cannot 6067 * be opened and closed multiple times per cycle 6068 * unless the gate stays open. Check for it. 6069 */ 6070 if (queue_uses[i] > 1 && 6071 !(prev->gate_mask & BIT(i))) 6072 return false; 6073 } 6074 } 6075 6076 return true; 6077 } 6078 6079 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, 6080 struct tc_etf_qopt_offload *qopt) 6081 { 6082 struct igc_hw *hw = &adapter->hw; 6083 int err; 6084 6085 if (hw->mac.type != igc_i225) 6086 return -EOPNOTSUPP; 6087 6088 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); 6089 if (err) 6090 return err; 6091 6092 return igc_tsn_offload_apply(adapter); 6093 } 6094 6095 static int igc_tsn_clear_schedule(struct igc_adapter *adapter) 6096 { 6097 int i; 6098 6099 adapter->base_time = 0; 6100 adapter->cycle_time = NSEC_PER_SEC; 6101 adapter->qbv_config_change_errors = 0; 6102 6103 for (i = 0; i < adapter->num_tx_queues; i++) { 6104 struct igc_ring *ring = adapter->tx_ring[i]; 6105 6106 ring->start_time = 0; 6107 ring->end_time = NSEC_PER_SEC; 6108 ring->max_sdu = 0; 6109 } 6110 6111 return 0; 6112 } 6113 6114 static int igc_save_qbv_schedule(struct igc_adapter *adapter, 6115 struct tc_taprio_qopt_offload *qopt) 6116 { 6117 bool queue_configured[IGC_MAX_TX_QUEUES] = { }; 6118 struct igc_hw *hw = &adapter->hw; 6119 u32 start_time = 0, end_time = 0; 6120 size_t n; 6121 int i; 6122 6123 switch (qopt->cmd) { 6124 case TAPRIO_CMD_REPLACE: 6125 adapter->qbv_enable = true; 6126 break; 6127 case TAPRIO_CMD_DESTROY: 6128 adapter->qbv_enable = false; 6129 break; 6130 default: 6131 return -EOPNOTSUPP; 6132 } 6133 6134 if (!adapter->qbv_enable) 6135 return igc_tsn_clear_schedule(adapter); 6136 6137 if (qopt->base_time < 0) 6138 return -ERANGE; 6139 6140 if (igc_is_device_id_i225(hw) && adapter->base_time) 6141 return -EALREADY; 6142 6143 if (!validate_schedule(adapter, qopt)) 6144 return -EINVAL; 6145 6146 adapter->cycle_time = qopt->cycle_time; 6147 adapter->base_time = qopt->base_time; 6148 6149 for (n = 0; n < qopt->num_entries; n++) { 6150 struct tc_taprio_sched_entry *e = &qopt->entries[n]; 6151 6152 end_time += e->interval; 6153 6154 /* If any of the conditions below are true, we need to manually 6155 * control the end time of the cycle. 6156 * 1. Qbv users can specify a cycle time that is not equal 6157 * to the total GCL intervals. Hence, recalculation is 6158 * necessary here to exclude the time interval that 6159 * exceeds the cycle time. 6160 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2, 6161 * once the end of the list is reached, it will switch 6162 * to the END_OF_CYCLE state and leave the gates in the 6163 * same state until the next cycle is started. 6164 */ 6165 if (end_time > adapter->cycle_time || 6166 n + 1 == qopt->num_entries) 6167 end_time = adapter->cycle_time; 6168 6169 for (i = 0; i < adapter->num_tx_queues; i++) { 6170 struct igc_ring *ring = adapter->tx_ring[i]; 6171 6172 if (!(e->gate_mask & BIT(i))) 6173 continue; 6174 6175 /* Check whether a queue stays open for more than one 6176 * entry. If so, keep the start and advance the end 6177 * time. 6178 */ 6179 if (!queue_configured[i]) 6180 ring->start_time = start_time; 6181 ring->end_time = end_time; 6182 6183 queue_configured[i] = true; 6184 } 6185 6186 start_time += e->interval; 6187 } 6188 6189 /* Check whether a queue gets configured. 6190 * If not, set the start and end time to be end time. 6191 */ 6192 for (i = 0; i < adapter->num_tx_queues; i++) { 6193 if (!queue_configured[i]) { 6194 struct igc_ring *ring = adapter->tx_ring[i]; 6195 6196 ring->start_time = end_time; 6197 ring->end_time = end_time; 6198 } 6199 } 6200 6201 for (i = 0; i < adapter->num_tx_queues; i++) { 6202 struct igc_ring *ring = adapter->tx_ring[i]; 6203 struct net_device *dev = adapter->netdev; 6204 6205 if (qopt->max_sdu[i]) 6206 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len; 6207 else 6208 ring->max_sdu = 0; 6209 } 6210 6211 return 0; 6212 } 6213 6214 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, 6215 struct tc_taprio_qopt_offload *qopt) 6216 { 6217 struct igc_hw *hw = &adapter->hw; 6218 int err; 6219 6220 if (hw->mac.type != igc_i225) 6221 return -EOPNOTSUPP; 6222 6223 err = igc_save_qbv_schedule(adapter, qopt); 6224 if (err) 6225 return err; 6226 6227 return igc_tsn_offload_apply(adapter); 6228 } 6229 6230 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, 6231 bool enable, int idleslope, int sendslope, 6232 int hicredit, int locredit) 6233 { 6234 bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; 6235 struct net_device *netdev = adapter->netdev; 6236 struct igc_ring *ring; 6237 int i; 6238 6239 /* i225 has two sets of credit-based shaper logic. 6240 * Supporting it only on the top two priority queues 6241 */ 6242 if (queue < 0 || queue > 1) 6243 return -EINVAL; 6244 6245 ring = adapter->tx_ring[queue]; 6246 6247 for (i = 0; i < IGC_MAX_SR_QUEUES; i++) 6248 if (adapter->tx_ring[i]) 6249 cbs_status[i] = adapter->tx_ring[i]->cbs_enable; 6250 6251 /* CBS should be enabled on the highest priority queue first in order 6252 * for the CBS algorithm to operate as intended. 6253 */ 6254 if (enable) { 6255 if (queue == 1 && !cbs_status[0]) { 6256 netdev_err(netdev, 6257 "Enabling CBS on queue1 before queue0\n"); 6258 return -EINVAL; 6259 } 6260 } else { 6261 if (queue == 0 && cbs_status[1]) { 6262 netdev_err(netdev, 6263 "Disabling CBS on queue0 before queue1\n"); 6264 return -EINVAL; 6265 } 6266 } 6267 6268 ring->cbs_enable = enable; 6269 ring->idleslope = idleslope; 6270 ring->sendslope = sendslope; 6271 ring->hicredit = hicredit; 6272 ring->locredit = locredit; 6273 6274 return 0; 6275 } 6276 6277 static int igc_tsn_enable_cbs(struct igc_adapter *adapter, 6278 struct tc_cbs_qopt_offload *qopt) 6279 { 6280 struct igc_hw *hw = &adapter->hw; 6281 int err; 6282 6283 if (hw->mac.type != igc_i225) 6284 return -EOPNOTSUPP; 6285 6286 if (qopt->queue < 0 || qopt->queue > 1) 6287 return -EINVAL; 6288 6289 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, 6290 qopt->idleslope, qopt->sendslope, 6291 qopt->hicredit, qopt->locredit); 6292 if (err) 6293 return err; 6294 6295 return igc_tsn_offload_apply(adapter); 6296 } 6297 6298 static int igc_tc_query_caps(struct igc_adapter *adapter, 6299 struct tc_query_caps_base *base) 6300 { 6301 struct igc_hw *hw = &adapter->hw; 6302 6303 switch (base->type) { 6304 case TC_SETUP_QDISC_TAPRIO: { 6305 struct tc_taprio_caps *caps = base->caps; 6306 6307 caps->broken_mqprio = true; 6308 6309 if (hw->mac.type == igc_i225) { 6310 caps->supports_queue_max_sdu = true; 6311 caps->gate_mask_per_txq = true; 6312 } 6313 6314 return 0; 6315 } 6316 default: 6317 return -EOPNOTSUPP; 6318 } 6319 } 6320 6321 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, 6322 void *type_data) 6323 { 6324 struct igc_adapter *adapter = netdev_priv(dev); 6325 6326 switch (type) { 6327 case TC_QUERY_CAPS: 6328 return igc_tc_query_caps(adapter, type_data); 6329 case TC_SETUP_QDISC_TAPRIO: 6330 return igc_tsn_enable_qbv_scheduling(adapter, type_data); 6331 6332 case TC_SETUP_QDISC_ETF: 6333 return igc_tsn_enable_launchtime(adapter, type_data); 6334 6335 case TC_SETUP_QDISC_CBS: 6336 return igc_tsn_enable_cbs(adapter, type_data); 6337 6338 default: 6339 return -EOPNOTSUPP; 6340 } 6341 } 6342 6343 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6344 { 6345 struct igc_adapter *adapter = netdev_priv(dev); 6346 6347 switch (bpf->command) { 6348 case XDP_SETUP_PROG: 6349 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); 6350 case XDP_SETUP_XSK_POOL: 6351 return igc_xdp_setup_pool(adapter, bpf->xsk.pool, 6352 bpf->xsk.queue_id); 6353 default: 6354 return -EOPNOTSUPP; 6355 } 6356 } 6357 6358 static int igc_xdp_xmit(struct net_device *dev, int num_frames, 6359 struct xdp_frame **frames, u32 flags) 6360 { 6361 struct igc_adapter *adapter = netdev_priv(dev); 6362 int cpu = smp_processor_id(); 6363 struct netdev_queue *nq; 6364 struct igc_ring *ring; 6365 int i, drops; 6366 6367 if (unlikely(test_bit(__IGC_DOWN, &adapter->state))) 6368 return -ENETDOWN; 6369 6370 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6371 return -EINVAL; 6372 6373 ring = igc_xdp_get_tx_ring(adapter, cpu); 6374 nq = txring_txq(ring); 6375 6376 __netif_tx_lock(nq, cpu); 6377 6378 /* Avoid transmit queue timeout since we share it with the slow path */ 6379 txq_trans_cond_update(nq); 6380 6381 drops = 0; 6382 for (i = 0; i < num_frames; i++) { 6383 int err; 6384 struct xdp_frame *xdpf = frames[i]; 6385 6386 err = igc_xdp_init_tx_descriptor(ring, xdpf); 6387 if (err) { 6388 xdp_return_frame_rx_napi(xdpf); 6389 drops++; 6390 } 6391 } 6392 6393 if (flags & XDP_XMIT_FLUSH) 6394 igc_flush_tx_descriptors(ring); 6395 6396 __netif_tx_unlock(nq); 6397 6398 return num_frames - drops; 6399 } 6400 6401 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, 6402 struct igc_q_vector *q_vector) 6403 { 6404 struct igc_hw *hw = &adapter->hw; 6405 u32 eics = 0; 6406 6407 eics |= q_vector->eims_value; 6408 wr32(IGC_EICS, eics); 6409 } 6410 6411 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) 6412 { 6413 struct igc_adapter *adapter = netdev_priv(dev); 6414 struct igc_q_vector *q_vector; 6415 struct igc_ring *ring; 6416 6417 if (test_bit(__IGC_DOWN, &adapter->state)) 6418 return -ENETDOWN; 6419 6420 if (!igc_xdp_is_enabled(adapter)) 6421 return -ENXIO; 6422 6423 if (queue_id >= adapter->num_rx_queues) 6424 return -EINVAL; 6425 6426 ring = adapter->rx_ring[queue_id]; 6427 6428 if (!ring->xsk_pool) 6429 return -ENXIO; 6430 6431 q_vector = adapter->q_vector[queue_id]; 6432 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 6433 igc_trigger_rxtxq_interrupt(adapter, q_vector); 6434 6435 return 0; 6436 } 6437 6438 static const struct net_device_ops igc_netdev_ops = { 6439 .ndo_open = igc_open, 6440 .ndo_stop = igc_close, 6441 .ndo_start_xmit = igc_xmit_frame, 6442 .ndo_set_rx_mode = igc_set_rx_mode, 6443 .ndo_set_mac_address = igc_set_mac, 6444 .ndo_change_mtu = igc_change_mtu, 6445 .ndo_tx_timeout = igc_tx_timeout, 6446 .ndo_get_stats64 = igc_get_stats64, 6447 .ndo_fix_features = igc_fix_features, 6448 .ndo_set_features = igc_set_features, 6449 .ndo_features_check = igc_features_check, 6450 .ndo_eth_ioctl = igc_ioctl, 6451 .ndo_setup_tc = igc_setup_tc, 6452 .ndo_bpf = igc_bpf, 6453 .ndo_xdp_xmit = igc_xdp_xmit, 6454 .ndo_xsk_wakeup = igc_xsk_wakeup, 6455 }; 6456 6457 /* PCIe configuration access */ 6458 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6459 { 6460 struct igc_adapter *adapter = hw->back; 6461 6462 pci_read_config_word(adapter->pdev, reg, value); 6463 } 6464 6465 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 6466 { 6467 struct igc_adapter *adapter = hw->back; 6468 6469 pci_write_config_word(adapter->pdev, reg, *value); 6470 } 6471 6472 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6473 { 6474 struct igc_adapter *adapter = hw->back; 6475 6476 if (!pci_is_pcie(adapter->pdev)) 6477 return -IGC_ERR_CONFIG; 6478 6479 pcie_capability_read_word(adapter->pdev, reg, value); 6480 6481 return IGC_SUCCESS; 6482 } 6483 6484 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 6485 { 6486 struct igc_adapter *adapter = hw->back; 6487 6488 if (!pci_is_pcie(adapter->pdev)) 6489 return -IGC_ERR_CONFIG; 6490 6491 pcie_capability_write_word(adapter->pdev, reg, *value); 6492 6493 return IGC_SUCCESS; 6494 } 6495 6496 u32 igc_rd32(struct igc_hw *hw, u32 reg) 6497 { 6498 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 6499 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 6500 u32 value = 0; 6501 6502 if (IGC_REMOVED(hw_addr)) 6503 return ~value; 6504 6505 value = readl(&hw_addr[reg]); 6506 6507 /* reads should not return all F's */ 6508 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 6509 struct net_device *netdev = igc->netdev; 6510 6511 hw->hw_addr = NULL; 6512 netif_device_detach(netdev); 6513 netdev_err(netdev, "PCIe link lost, device now detached\n"); 6514 WARN(pci_device_is_present(igc->pdev), 6515 "igc: Failed to read reg 0x%x!\n", reg); 6516 } 6517 6518 return value; 6519 } 6520 6521 /* Mapping HW RSS Type to enum xdp_rss_hash_type */ 6522 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = { 6523 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2, 6524 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP, 6525 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4, 6526 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP, 6527 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX, 6528 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6, 6529 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX, 6530 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP, 6531 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP, 6532 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX, 6533 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */ 6534 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */ 6535 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */ 6536 [13] = XDP_RSS_TYPE_NONE, 6537 [14] = XDP_RSS_TYPE_NONE, 6538 [15] = XDP_RSS_TYPE_NONE, 6539 }; 6540 6541 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash, 6542 enum xdp_rss_hash_type *rss_type) 6543 { 6544 const struct igc_xdp_buff *ctx = (void *)_ctx; 6545 6546 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH)) 6547 return -ENODATA; 6548 6549 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss); 6550 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)]; 6551 6552 return 0; 6553 } 6554 6555 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp) 6556 { 6557 const struct igc_xdp_buff *ctx = (void *)_ctx; 6558 6559 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) { 6560 *timestamp = ctx->rx_ts; 6561 6562 return 0; 6563 } 6564 6565 return -ENODATA; 6566 } 6567 6568 static const struct xdp_metadata_ops igc_xdp_metadata_ops = { 6569 .xmo_rx_hash = igc_xdp_rx_hash, 6570 .xmo_rx_timestamp = igc_xdp_rx_timestamp, 6571 }; 6572 6573 /** 6574 * igc_probe - Device Initialization Routine 6575 * @pdev: PCI device information struct 6576 * @ent: entry in igc_pci_tbl 6577 * 6578 * Returns 0 on success, negative on failure 6579 * 6580 * igc_probe initializes an adapter identified by a pci_dev structure. 6581 * The OS initialization, configuring the adapter private structure, 6582 * and a hardware reset occur. 6583 */ 6584 static int igc_probe(struct pci_dev *pdev, 6585 const struct pci_device_id *ent) 6586 { 6587 struct igc_adapter *adapter; 6588 struct net_device *netdev; 6589 struct igc_hw *hw; 6590 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 6591 int err; 6592 6593 err = pci_enable_device_mem(pdev); 6594 if (err) 6595 return err; 6596 6597 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6598 if (err) { 6599 dev_err(&pdev->dev, 6600 "No usable DMA configuration, aborting\n"); 6601 goto err_dma; 6602 } 6603 6604 err = pci_request_mem_regions(pdev, igc_driver_name); 6605 if (err) 6606 goto err_pci_reg; 6607 6608 err = pci_enable_ptm(pdev, NULL); 6609 if (err < 0) 6610 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); 6611 6612 pci_set_master(pdev); 6613 6614 err = -ENOMEM; 6615 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 6616 IGC_MAX_TX_QUEUES); 6617 6618 if (!netdev) 6619 goto err_alloc_etherdev; 6620 6621 SET_NETDEV_DEV(netdev, &pdev->dev); 6622 6623 pci_set_drvdata(pdev, netdev); 6624 adapter = netdev_priv(netdev); 6625 adapter->netdev = netdev; 6626 adapter->pdev = pdev; 6627 hw = &adapter->hw; 6628 hw->back = adapter; 6629 adapter->port_num = hw->bus.func; 6630 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6631 6632 err = pci_save_state(pdev); 6633 if (err) 6634 goto err_ioremap; 6635 6636 err = -EIO; 6637 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 6638 pci_resource_len(pdev, 0)); 6639 if (!adapter->io_addr) 6640 goto err_ioremap; 6641 6642 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 6643 hw->hw_addr = adapter->io_addr; 6644 6645 netdev->netdev_ops = &igc_netdev_ops; 6646 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops; 6647 igc_ethtool_set_ops(netdev); 6648 netdev->watchdog_timeo = 5 * HZ; 6649 6650 netdev->mem_start = pci_resource_start(pdev, 0); 6651 netdev->mem_end = pci_resource_end(pdev, 0); 6652 6653 /* PCI config space info */ 6654 hw->vendor_id = pdev->vendor; 6655 hw->device_id = pdev->device; 6656 hw->revision_id = pdev->revision; 6657 hw->subsystem_vendor_id = pdev->subsystem_vendor; 6658 hw->subsystem_device_id = pdev->subsystem_device; 6659 6660 /* Copy the default MAC and PHY function pointers */ 6661 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6662 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6663 6664 /* Initialize skew-specific constants */ 6665 err = ei->get_invariants(hw); 6666 if (err) 6667 goto err_sw_init; 6668 6669 /* Add supported features to the features list*/ 6670 netdev->features |= NETIF_F_SG; 6671 netdev->features |= NETIF_F_TSO; 6672 netdev->features |= NETIF_F_TSO6; 6673 netdev->features |= NETIF_F_TSO_ECN; 6674 netdev->features |= NETIF_F_RXHASH; 6675 netdev->features |= NETIF_F_RXCSUM; 6676 netdev->features |= NETIF_F_HW_CSUM; 6677 netdev->features |= NETIF_F_SCTP_CRC; 6678 netdev->features |= NETIF_F_HW_TC; 6679 6680 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 6681 NETIF_F_GSO_GRE_CSUM | \ 6682 NETIF_F_GSO_IPXIP4 | \ 6683 NETIF_F_GSO_IPXIP6 | \ 6684 NETIF_F_GSO_UDP_TUNNEL | \ 6685 NETIF_F_GSO_UDP_TUNNEL_CSUM) 6686 6687 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; 6688 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; 6689 6690 /* setup the private structure */ 6691 err = igc_sw_init(adapter); 6692 if (err) 6693 goto err_sw_init; 6694 6695 /* copy netdev features into list of user selectable features */ 6696 netdev->hw_features |= NETIF_F_NTUPLE; 6697 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 6698 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 6699 netdev->hw_features |= netdev->features; 6700 6701 netdev->features |= NETIF_F_HIGHDMA; 6702 6703 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 6704 netdev->mpls_features |= NETIF_F_HW_CSUM; 6705 netdev->hw_enc_features |= netdev->vlan_features; 6706 6707 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 6708 NETDEV_XDP_ACT_XSK_ZEROCOPY; 6709 6710 /* MTU range: 68 - 9216 */ 6711 netdev->min_mtu = ETH_MIN_MTU; 6712 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 6713 6714 /* before reading the NVM, reset the controller to put the device in a 6715 * known good starting state 6716 */ 6717 hw->mac.ops.reset_hw(hw); 6718 6719 if (igc_get_flash_presence_i225(hw)) { 6720 if (hw->nvm.ops.validate(hw) < 0) { 6721 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6722 err = -EIO; 6723 goto err_eeprom; 6724 } 6725 } 6726 6727 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 6728 /* copy the MAC address out of the NVM */ 6729 if (hw->mac.ops.read_mac_addr(hw)) 6730 dev_err(&pdev->dev, "NVM Read Error\n"); 6731 } 6732 6733 eth_hw_addr_set(netdev, hw->mac.addr); 6734 6735 if (!is_valid_ether_addr(netdev->dev_addr)) { 6736 dev_err(&pdev->dev, "Invalid MAC Address\n"); 6737 err = -EIO; 6738 goto err_eeprom; 6739 } 6740 6741 /* configure RXPBSIZE and TXPBSIZE */ 6742 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 6743 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 6744 6745 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 6746 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 6747 6748 INIT_WORK(&adapter->reset_task, igc_reset_task); 6749 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 6750 6751 /* Initialize link properties that are user-changeable */ 6752 adapter->fc_autoneg = true; 6753 hw->mac.autoneg = true; 6754 hw->phy.autoneg_advertised = 0xaf; 6755 6756 hw->fc.requested_mode = igc_fc_default; 6757 hw->fc.current_mode = igc_fc_default; 6758 6759 /* By default, support wake on port A */ 6760 adapter->flags |= IGC_FLAG_WOL_SUPPORTED; 6761 6762 /* initialize the wol settings based on the eeprom settings */ 6763 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) 6764 adapter->wol |= IGC_WUFC_MAG; 6765 6766 device_set_wakeup_enable(&adapter->pdev->dev, 6767 adapter->flags & IGC_FLAG_WOL_SUPPORTED); 6768 6769 igc_ptp_init(adapter); 6770 6771 igc_tsn_clear_schedule(adapter); 6772 6773 /* reset the hardware with the new settings */ 6774 igc_reset(adapter); 6775 6776 /* let the f/w know that the h/w is now under the control of the 6777 * driver. 6778 */ 6779 igc_get_hw_control(adapter); 6780 6781 strncpy(netdev->name, "eth%d", IFNAMSIZ); 6782 err = register_netdev(netdev); 6783 if (err) 6784 goto err_register; 6785 6786 /* carrier off reporting is important to ethtool even BEFORE open */ 6787 netif_carrier_off(netdev); 6788 6789 /* Check if Media Autosense is enabled */ 6790 adapter->ei = *ei; 6791 6792 /* print pcie link status and MAC address */ 6793 pcie_print_link_status(pdev); 6794 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 6795 6796 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 6797 /* Disable EEE for internal PHY devices */ 6798 hw->dev_spec._base.eee_enable = false; 6799 adapter->flags &= ~IGC_FLAG_EEE; 6800 igc_set_eee_i225(hw, false, false, false); 6801 6802 pm_runtime_put_noidle(&pdev->dev); 6803 6804 return 0; 6805 6806 err_register: 6807 igc_release_hw_control(adapter); 6808 err_eeprom: 6809 if (!igc_check_reset_block(hw)) 6810 igc_reset_phy(hw); 6811 err_sw_init: 6812 igc_clear_interrupt_scheme(adapter); 6813 iounmap(adapter->io_addr); 6814 err_ioremap: 6815 free_netdev(netdev); 6816 err_alloc_etherdev: 6817 pci_release_mem_regions(pdev); 6818 err_pci_reg: 6819 err_dma: 6820 pci_disable_device(pdev); 6821 return err; 6822 } 6823 6824 /** 6825 * igc_remove - Device Removal Routine 6826 * @pdev: PCI device information struct 6827 * 6828 * igc_remove is called by the PCI subsystem to alert the driver 6829 * that it should release a PCI device. This could be caused by a 6830 * Hot-Plug event, or because the driver is going to be removed from 6831 * memory. 6832 */ 6833 static void igc_remove(struct pci_dev *pdev) 6834 { 6835 struct net_device *netdev = pci_get_drvdata(pdev); 6836 struct igc_adapter *adapter = netdev_priv(netdev); 6837 6838 pm_runtime_get_noresume(&pdev->dev); 6839 6840 igc_flush_nfc_rules(adapter); 6841 6842 igc_ptp_stop(adapter); 6843 6844 pci_disable_ptm(pdev); 6845 pci_clear_master(pdev); 6846 6847 set_bit(__IGC_DOWN, &adapter->state); 6848 6849 del_timer_sync(&adapter->watchdog_timer); 6850 del_timer_sync(&adapter->phy_info_timer); 6851 6852 cancel_work_sync(&adapter->reset_task); 6853 cancel_work_sync(&adapter->watchdog_task); 6854 6855 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6856 * would have already happened in close and is redundant. 6857 */ 6858 igc_release_hw_control(adapter); 6859 unregister_netdev(netdev); 6860 6861 igc_clear_interrupt_scheme(adapter); 6862 pci_iounmap(pdev, adapter->io_addr); 6863 pci_release_mem_regions(pdev); 6864 6865 free_netdev(netdev); 6866 6867 pci_disable_device(pdev); 6868 } 6869 6870 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, 6871 bool runtime) 6872 { 6873 struct net_device *netdev = pci_get_drvdata(pdev); 6874 struct igc_adapter *adapter = netdev_priv(netdev); 6875 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; 6876 struct igc_hw *hw = &adapter->hw; 6877 u32 ctrl, rctl, status; 6878 bool wake; 6879 6880 rtnl_lock(); 6881 netif_device_detach(netdev); 6882 6883 if (netif_running(netdev)) 6884 __igc_close(netdev, true); 6885 6886 igc_ptp_suspend(adapter); 6887 6888 igc_clear_interrupt_scheme(adapter); 6889 rtnl_unlock(); 6890 6891 status = rd32(IGC_STATUS); 6892 if (status & IGC_STATUS_LU) 6893 wufc &= ~IGC_WUFC_LNKC; 6894 6895 if (wufc) { 6896 igc_setup_rctl(adapter); 6897 igc_set_rx_mode(netdev); 6898 6899 /* turn on all-multi mode if wake on multicast is enabled */ 6900 if (wufc & IGC_WUFC_MC) { 6901 rctl = rd32(IGC_RCTL); 6902 rctl |= IGC_RCTL_MPE; 6903 wr32(IGC_RCTL, rctl); 6904 } 6905 6906 ctrl = rd32(IGC_CTRL); 6907 ctrl |= IGC_CTRL_ADVD3WUC; 6908 wr32(IGC_CTRL, ctrl); 6909 6910 /* Allow time for pending master requests to run */ 6911 igc_disable_pcie_master(hw); 6912 6913 wr32(IGC_WUC, IGC_WUC_PME_EN); 6914 wr32(IGC_WUFC, wufc); 6915 } else { 6916 wr32(IGC_WUC, 0); 6917 wr32(IGC_WUFC, 0); 6918 } 6919 6920 wake = wufc || adapter->en_mng_pt; 6921 if (!wake) 6922 igc_power_down_phy_copper_base(&adapter->hw); 6923 else 6924 igc_power_up_link(adapter); 6925 6926 if (enable_wake) 6927 *enable_wake = wake; 6928 6929 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6930 * would have already happened in close and is redundant. 6931 */ 6932 igc_release_hw_control(adapter); 6933 6934 pci_disable_device(pdev); 6935 6936 return 0; 6937 } 6938 6939 #ifdef CONFIG_PM 6940 static int __maybe_unused igc_runtime_suspend(struct device *dev) 6941 { 6942 return __igc_shutdown(to_pci_dev(dev), NULL, 1); 6943 } 6944 6945 static void igc_deliver_wake_packet(struct net_device *netdev) 6946 { 6947 struct igc_adapter *adapter = netdev_priv(netdev); 6948 struct igc_hw *hw = &adapter->hw; 6949 struct sk_buff *skb; 6950 u32 wupl; 6951 6952 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; 6953 6954 /* WUPM stores only the first 128 bytes of the wake packet. 6955 * Read the packet only if we have the whole thing. 6956 */ 6957 if (wupl == 0 || wupl > IGC_WUPM_BYTES) 6958 return; 6959 6960 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); 6961 if (!skb) 6962 return; 6963 6964 skb_put(skb, wupl); 6965 6966 /* Ensure reads are 32-bit aligned */ 6967 wupl = roundup(wupl, 4); 6968 6969 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); 6970 6971 skb->protocol = eth_type_trans(skb, netdev); 6972 netif_rx(skb); 6973 } 6974 6975 static int __maybe_unused igc_resume(struct device *dev) 6976 { 6977 struct pci_dev *pdev = to_pci_dev(dev); 6978 struct net_device *netdev = pci_get_drvdata(pdev); 6979 struct igc_adapter *adapter = netdev_priv(netdev); 6980 struct igc_hw *hw = &adapter->hw; 6981 u32 err, val; 6982 6983 pci_set_power_state(pdev, PCI_D0); 6984 pci_restore_state(pdev); 6985 pci_save_state(pdev); 6986 6987 if (!pci_device_is_present(pdev)) 6988 return -ENODEV; 6989 err = pci_enable_device_mem(pdev); 6990 if (err) { 6991 netdev_err(netdev, "Cannot enable PCI device from suspend\n"); 6992 return err; 6993 } 6994 pci_set_master(pdev); 6995 6996 pci_enable_wake(pdev, PCI_D3hot, 0); 6997 pci_enable_wake(pdev, PCI_D3cold, 0); 6998 6999 if (igc_init_interrupt_scheme(adapter, true)) { 7000 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7001 return -ENOMEM; 7002 } 7003 7004 igc_reset(adapter); 7005 7006 /* let the f/w know that the h/w is now under the control of the 7007 * driver. 7008 */ 7009 igc_get_hw_control(adapter); 7010 7011 val = rd32(IGC_WUS); 7012 if (val & WAKE_PKT_WUS) 7013 igc_deliver_wake_packet(netdev); 7014 7015 wr32(IGC_WUS, ~0); 7016 7017 rtnl_lock(); 7018 if (!err && netif_running(netdev)) 7019 err = __igc_open(netdev, true); 7020 7021 if (!err) 7022 netif_device_attach(netdev); 7023 rtnl_unlock(); 7024 7025 return err; 7026 } 7027 7028 static int __maybe_unused igc_runtime_resume(struct device *dev) 7029 { 7030 return igc_resume(dev); 7031 } 7032 7033 static int __maybe_unused igc_suspend(struct device *dev) 7034 { 7035 return __igc_shutdown(to_pci_dev(dev), NULL, 0); 7036 } 7037 7038 static int __maybe_unused igc_runtime_idle(struct device *dev) 7039 { 7040 struct net_device *netdev = dev_get_drvdata(dev); 7041 struct igc_adapter *adapter = netdev_priv(netdev); 7042 7043 if (!igc_has_link(adapter)) 7044 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7045 7046 return -EBUSY; 7047 } 7048 #endif /* CONFIG_PM */ 7049 7050 static void igc_shutdown(struct pci_dev *pdev) 7051 { 7052 bool wake; 7053 7054 __igc_shutdown(pdev, &wake, 0); 7055 7056 if (system_state == SYSTEM_POWER_OFF) { 7057 pci_wake_from_d3(pdev, wake); 7058 pci_set_power_state(pdev, PCI_D3hot); 7059 } 7060 } 7061 7062 /** 7063 * igc_io_error_detected - called when PCI error is detected 7064 * @pdev: Pointer to PCI device 7065 * @state: The current PCI connection state 7066 * 7067 * This function is called after a PCI bus error affecting 7068 * this device has been detected. 7069 **/ 7070 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, 7071 pci_channel_state_t state) 7072 { 7073 struct net_device *netdev = pci_get_drvdata(pdev); 7074 struct igc_adapter *adapter = netdev_priv(netdev); 7075 7076 netif_device_detach(netdev); 7077 7078 if (state == pci_channel_io_perm_failure) 7079 return PCI_ERS_RESULT_DISCONNECT; 7080 7081 if (netif_running(netdev)) 7082 igc_down(adapter); 7083 pci_disable_device(pdev); 7084 7085 /* Request a slot reset. */ 7086 return PCI_ERS_RESULT_NEED_RESET; 7087 } 7088 7089 /** 7090 * igc_io_slot_reset - called after the PCI bus has been reset. 7091 * @pdev: Pointer to PCI device 7092 * 7093 * Restart the card from scratch, as if from a cold-boot. Implementation 7094 * resembles the first-half of the igc_resume routine. 7095 **/ 7096 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) 7097 { 7098 struct net_device *netdev = pci_get_drvdata(pdev); 7099 struct igc_adapter *adapter = netdev_priv(netdev); 7100 struct igc_hw *hw = &adapter->hw; 7101 pci_ers_result_t result; 7102 7103 if (pci_enable_device_mem(pdev)) { 7104 netdev_err(netdev, "Could not re-enable PCI device after reset\n"); 7105 result = PCI_ERS_RESULT_DISCONNECT; 7106 } else { 7107 pci_set_master(pdev); 7108 pci_restore_state(pdev); 7109 pci_save_state(pdev); 7110 7111 pci_enable_wake(pdev, PCI_D3hot, 0); 7112 pci_enable_wake(pdev, PCI_D3cold, 0); 7113 7114 /* In case of PCI error, adapter loses its HW address 7115 * so we should re-assign it here. 7116 */ 7117 hw->hw_addr = adapter->io_addr; 7118 7119 igc_reset(adapter); 7120 wr32(IGC_WUS, ~0); 7121 result = PCI_ERS_RESULT_RECOVERED; 7122 } 7123 7124 return result; 7125 } 7126 7127 /** 7128 * igc_io_resume - called when traffic can start to flow again. 7129 * @pdev: Pointer to PCI device 7130 * 7131 * This callback is called when the error recovery driver tells us that 7132 * its OK to resume normal operation. Implementation resembles the 7133 * second-half of the igc_resume routine. 7134 */ 7135 static void igc_io_resume(struct pci_dev *pdev) 7136 { 7137 struct net_device *netdev = pci_get_drvdata(pdev); 7138 struct igc_adapter *adapter = netdev_priv(netdev); 7139 7140 rtnl_lock(); 7141 if (netif_running(netdev)) { 7142 if (igc_open(netdev)) { 7143 netdev_err(netdev, "igc_open failed after reset\n"); 7144 return; 7145 } 7146 } 7147 7148 netif_device_attach(netdev); 7149 7150 /* let the f/w know that the h/w is now under the control of the 7151 * driver. 7152 */ 7153 igc_get_hw_control(adapter); 7154 rtnl_unlock(); 7155 } 7156 7157 static const struct pci_error_handlers igc_err_handler = { 7158 .error_detected = igc_io_error_detected, 7159 .slot_reset = igc_io_slot_reset, 7160 .resume = igc_io_resume, 7161 }; 7162 7163 #ifdef CONFIG_PM 7164 static const struct dev_pm_ops igc_pm_ops = { 7165 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) 7166 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, 7167 igc_runtime_idle) 7168 }; 7169 #endif 7170 7171 static struct pci_driver igc_driver = { 7172 .name = igc_driver_name, 7173 .id_table = igc_pci_tbl, 7174 .probe = igc_probe, 7175 .remove = igc_remove, 7176 #ifdef CONFIG_PM 7177 .driver.pm = &igc_pm_ops, 7178 #endif 7179 .shutdown = igc_shutdown, 7180 .err_handler = &igc_err_handler, 7181 }; 7182 7183 /** 7184 * igc_reinit_queues - return error 7185 * @adapter: pointer to adapter structure 7186 */ 7187 int igc_reinit_queues(struct igc_adapter *adapter) 7188 { 7189 struct net_device *netdev = adapter->netdev; 7190 int err = 0; 7191 7192 if (netif_running(netdev)) 7193 igc_close(netdev); 7194 7195 igc_reset_interrupt_capability(adapter); 7196 7197 if (igc_init_interrupt_scheme(adapter, true)) { 7198 netdev_err(netdev, "Unable to allocate memory for queues\n"); 7199 return -ENOMEM; 7200 } 7201 7202 if (netif_running(netdev)) 7203 err = igc_open(netdev); 7204 7205 return err; 7206 } 7207 7208 /** 7209 * igc_get_hw_dev - return device 7210 * @hw: pointer to hardware structure 7211 * 7212 * used by hardware layer to print debugging information 7213 */ 7214 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 7215 { 7216 struct igc_adapter *adapter = hw->back; 7217 7218 return adapter->netdev; 7219 } 7220 7221 static void igc_disable_rx_ring_hw(struct igc_ring *ring) 7222 { 7223 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7224 u8 idx = ring->reg_idx; 7225 u32 rxdctl; 7226 7227 rxdctl = rd32(IGC_RXDCTL(idx)); 7228 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; 7229 rxdctl |= IGC_RXDCTL_SWFLUSH; 7230 wr32(IGC_RXDCTL(idx), rxdctl); 7231 } 7232 7233 void igc_disable_rx_ring(struct igc_ring *ring) 7234 { 7235 igc_disable_rx_ring_hw(ring); 7236 igc_clean_rx_ring(ring); 7237 } 7238 7239 void igc_enable_rx_ring(struct igc_ring *ring) 7240 { 7241 struct igc_adapter *adapter = ring->q_vector->adapter; 7242 7243 igc_configure_rx_ring(adapter, ring); 7244 7245 if (ring->xsk_pool) 7246 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); 7247 else 7248 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 7249 } 7250 7251 static void igc_disable_tx_ring_hw(struct igc_ring *ring) 7252 { 7253 struct igc_hw *hw = &ring->q_vector->adapter->hw; 7254 u8 idx = ring->reg_idx; 7255 u32 txdctl; 7256 7257 txdctl = rd32(IGC_TXDCTL(idx)); 7258 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; 7259 txdctl |= IGC_TXDCTL_SWFLUSH; 7260 wr32(IGC_TXDCTL(idx), txdctl); 7261 } 7262 7263 void igc_disable_tx_ring(struct igc_ring *ring) 7264 { 7265 igc_disable_tx_ring_hw(ring); 7266 igc_clean_tx_ring(ring); 7267 } 7268 7269 void igc_enable_tx_ring(struct igc_ring *ring) 7270 { 7271 struct igc_adapter *adapter = ring->q_vector->adapter; 7272 7273 igc_configure_tx_ring(adapter, ring); 7274 } 7275 7276 /** 7277 * igc_init_module - Driver Registration Routine 7278 * 7279 * igc_init_module is the first routine called when the driver is 7280 * loaded. All it does is register with the PCI subsystem. 7281 */ 7282 static int __init igc_init_module(void) 7283 { 7284 int ret; 7285 7286 pr_info("%s\n", igc_driver_string); 7287 pr_info("%s\n", igc_copyright); 7288 7289 ret = pci_register_driver(&igc_driver); 7290 return ret; 7291 } 7292 7293 module_init(igc_init_module); 7294 7295 /** 7296 * igc_exit_module - Driver Exit Cleanup Routine 7297 * 7298 * igc_exit_module is called just before the driver is removed 7299 * from memory. 7300 */ 7301 static void __exit igc_exit_module(void) 7302 { 7303 pci_unregister_driver(&igc_driver); 7304 } 7305 7306 module_exit(igc_exit_module); 7307 /* igc_main.c */ 7308