1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/aer.h> 8 9 #include "igc.h" 10 #include "igc_hw.h" 11 12 #define DRV_VERSION "0.0.1-k" 13 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 14 15 static int debug = -1; 16 17 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 18 MODULE_DESCRIPTION(DRV_SUMMARY); 19 MODULE_LICENSE("GPL v2"); 20 MODULE_VERSION(DRV_VERSION); 21 module_param(debug, int, 0); 22 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 23 24 char igc_driver_name[] = "igc"; 25 char igc_driver_version[] = DRV_VERSION; 26 static const char igc_driver_string[] = DRV_SUMMARY; 27 static const char igc_copyright[] = 28 "Copyright(c) 2018 Intel Corporation."; 29 30 static const struct igc_info *igc_info_tbl[] = { 31 [board_base] = &igc_base_info, 32 }; 33 34 static const struct pci_device_id igc_pci_tbl[] = { 35 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 36 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 37 /* required last entry */ 38 {0, } 39 }; 40 41 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 42 43 /* forward declaration */ 44 static void igc_clean_tx_ring(struct igc_ring *tx_ring); 45 static int igc_sw_init(struct igc_adapter *); 46 static void igc_configure(struct igc_adapter *adapter); 47 static void igc_power_down_link(struct igc_adapter *adapter); 48 static void igc_set_default_mac_filter(struct igc_adapter *adapter); 49 static void igc_set_rx_mode(struct net_device *netdev); 50 static void igc_write_itr(struct igc_q_vector *q_vector); 51 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector); 52 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx); 53 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 54 bool msix); 55 static void igc_free_q_vectors(struct igc_adapter *adapter); 56 static void igc_irq_disable(struct igc_adapter *adapter); 57 static void igc_irq_enable(struct igc_adapter *adapter); 58 static void igc_configure_msix(struct igc_adapter *adapter); 59 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 60 struct igc_rx_buffer *bi); 61 62 enum latency_range { 63 lowest_latency = 0, 64 low_latency = 1, 65 bulk_latency = 2, 66 latency_invalid = 255 67 }; 68 69 static void igc_reset(struct igc_adapter *adapter) 70 { 71 struct pci_dev *pdev = adapter->pdev; 72 struct igc_hw *hw = &adapter->hw; 73 74 hw->mac.ops.reset_hw(hw); 75 76 if (hw->mac.ops.init_hw(hw)) 77 dev_err(&pdev->dev, "Hardware Error\n"); 78 79 if (!netif_running(adapter->netdev)) 80 igc_power_down_link(adapter); 81 82 igc_get_phy_info(hw); 83 } 84 85 /** 86 * igc_power_up_link - Power up the phy/serdes link 87 * @adapter: address of board private structure 88 */ 89 static void igc_power_up_link(struct igc_adapter *adapter) 90 { 91 igc_reset_phy(&adapter->hw); 92 93 if (adapter->hw.phy.media_type == igc_media_type_copper) 94 igc_power_up_phy_copper(&adapter->hw); 95 96 igc_setup_link(&adapter->hw); 97 } 98 99 /** 100 * igc_power_down_link - Power down the phy/serdes link 101 * @adapter: address of board private structure 102 */ 103 static void igc_power_down_link(struct igc_adapter *adapter) 104 { 105 if (adapter->hw.phy.media_type == igc_media_type_copper) 106 igc_power_down_phy_copper_base(&adapter->hw); 107 } 108 109 /** 110 * igc_release_hw_control - release control of the h/w to f/w 111 * @adapter: address of board private structure 112 * 113 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 114 * For ASF and Pass Through versions of f/w this means that the 115 * driver is no longer loaded. 116 */ 117 static void igc_release_hw_control(struct igc_adapter *adapter) 118 { 119 struct igc_hw *hw = &adapter->hw; 120 u32 ctrl_ext; 121 122 /* Let firmware take over control of h/w */ 123 ctrl_ext = rd32(IGC_CTRL_EXT); 124 wr32(IGC_CTRL_EXT, 125 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 126 } 127 128 /** 129 * igc_get_hw_control - get control of the h/w from f/w 130 * @adapter: address of board private structure 131 * 132 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 133 * For ASF and Pass Through versions of f/w this means that 134 * the driver is loaded. 135 */ 136 static void igc_get_hw_control(struct igc_adapter *adapter) 137 { 138 struct igc_hw *hw = &adapter->hw; 139 u32 ctrl_ext; 140 141 /* Let firmware know the driver has taken over */ 142 ctrl_ext = rd32(IGC_CTRL_EXT); 143 wr32(IGC_CTRL_EXT, 144 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 145 } 146 147 /** 148 * igc_free_tx_resources - Free Tx Resources per Queue 149 * @tx_ring: Tx descriptor ring for a specific queue 150 * 151 * Free all transmit software resources 152 */ 153 static void igc_free_tx_resources(struct igc_ring *tx_ring) 154 { 155 igc_clean_tx_ring(tx_ring); 156 157 vfree(tx_ring->tx_buffer_info); 158 tx_ring->tx_buffer_info = NULL; 159 160 /* if not set, then don't free */ 161 if (!tx_ring->desc) 162 return; 163 164 dma_free_coherent(tx_ring->dev, tx_ring->size, 165 tx_ring->desc, tx_ring->dma); 166 167 tx_ring->desc = NULL; 168 } 169 170 /** 171 * igc_free_all_tx_resources - Free Tx Resources for All Queues 172 * @adapter: board private structure 173 * 174 * Free all transmit software resources 175 */ 176 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 177 { 178 int i; 179 180 for (i = 0; i < adapter->num_tx_queues; i++) 181 igc_free_tx_resources(adapter->tx_ring[i]); 182 } 183 184 /** 185 * igc_clean_tx_ring - Free Tx Buffers 186 * @tx_ring: ring to be cleaned 187 */ 188 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 189 { 190 u16 i = tx_ring->next_to_clean; 191 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 192 193 while (i != tx_ring->next_to_use) { 194 union igc_adv_tx_desc *eop_desc, *tx_desc; 195 196 /* Free all the Tx ring sk_buffs */ 197 dev_kfree_skb_any(tx_buffer->skb); 198 199 /* unmap skb header data */ 200 dma_unmap_single(tx_ring->dev, 201 dma_unmap_addr(tx_buffer, dma), 202 dma_unmap_len(tx_buffer, len), 203 DMA_TO_DEVICE); 204 205 /* check for eop_desc to determine the end of the packet */ 206 eop_desc = tx_buffer->next_to_watch; 207 tx_desc = IGC_TX_DESC(tx_ring, i); 208 209 /* unmap remaining buffers */ 210 while (tx_desc != eop_desc) { 211 tx_buffer++; 212 tx_desc++; 213 i++; 214 if (unlikely(i == tx_ring->count)) { 215 i = 0; 216 tx_buffer = tx_ring->tx_buffer_info; 217 tx_desc = IGC_TX_DESC(tx_ring, 0); 218 } 219 220 /* unmap any remaining paged data */ 221 if (dma_unmap_len(tx_buffer, len)) 222 dma_unmap_page(tx_ring->dev, 223 dma_unmap_addr(tx_buffer, dma), 224 dma_unmap_len(tx_buffer, len), 225 DMA_TO_DEVICE); 226 } 227 228 /* move us one more past the eop_desc for start of next pkt */ 229 tx_buffer++; 230 i++; 231 if (unlikely(i == tx_ring->count)) { 232 i = 0; 233 tx_buffer = tx_ring->tx_buffer_info; 234 } 235 } 236 237 /* reset BQL for queue */ 238 netdev_tx_reset_queue(txring_txq(tx_ring)); 239 240 /* reset next_to_use and next_to_clean */ 241 tx_ring->next_to_use = 0; 242 tx_ring->next_to_clean = 0; 243 } 244 245 /** 246 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 247 * @adapter: board private structure 248 */ 249 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 250 { 251 int i; 252 253 for (i = 0; i < adapter->num_tx_queues; i++) 254 if (adapter->tx_ring[i]) 255 igc_clean_tx_ring(adapter->tx_ring[i]); 256 } 257 258 /** 259 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 260 * @tx_ring: tx descriptor ring (for a specific queue) to setup 261 * 262 * Return 0 on success, negative on failure 263 */ 264 static int igc_setup_tx_resources(struct igc_ring *tx_ring) 265 { 266 struct device *dev = tx_ring->dev; 267 int size = 0; 268 269 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 270 tx_ring->tx_buffer_info = vzalloc(size); 271 if (!tx_ring->tx_buffer_info) 272 goto err; 273 274 /* round up to nearest 4K */ 275 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 276 tx_ring->size = ALIGN(tx_ring->size, 4096); 277 278 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 279 &tx_ring->dma, GFP_KERNEL); 280 281 if (!tx_ring->desc) 282 goto err; 283 284 tx_ring->next_to_use = 0; 285 tx_ring->next_to_clean = 0; 286 287 return 0; 288 289 err: 290 vfree(tx_ring->tx_buffer_info); 291 dev_err(dev, 292 "Unable to allocate memory for the transmit descriptor ring\n"); 293 return -ENOMEM; 294 } 295 296 /** 297 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 298 * @adapter: board private structure 299 * 300 * Return 0 on success, negative on failure 301 */ 302 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 303 { 304 struct pci_dev *pdev = adapter->pdev; 305 int i, err = 0; 306 307 for (i = 0; i < adapter->num_tx_queues; i++) { 308 err = igc_setup_tx_resources(adapter->tx_ring[i]); 309 if (err) { 310 dev_err(&pdev->dev, 311 "Allocation for Tx Queue %u failed\n", i); 312 for (i--; i >= 0; i--) 313 igc_free_tx_resources(adapter->tx_ring[i]); 314 break; 315 } 316 } 317 318 return err; 319 } 320 321 /** 322 * igc_clean_rx_ring - Free Rx Buffers per Queue 323 * @rx_ring: ring to free buffers from 324 */ 325 static void igc_clean_rx_ring(struct igc_ring *rx_ring) 326 { 327 u16 i = rx_ring->next_to_clean; 328 329 if (rx_ring->skb) 330 dev_kfree_skb(rx_ring->skb); 331 rx_ring->skb = NULL; 332 333 /* Free all the Rx ring sk_buffs */ 334 while (i != rx_ring->next_to_alloc) { 335 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 336 337 /* Invalidate cache lines that may have been written to by 338 * device so that we avoid corrupting memory. 339 */ 340 dma_sync_single_range_for_cpu(rx_ring->dev, 341 buffer_info->dma, 342 buffer_info->page_offset, 343 igc_rx_bufsz(rx_ring), 344 DMA_FROM_DEVICE); 345 346 /* free resources associated with mapping */ 347 dma_unmap_page_attrs(rx_ring->dev, 348 buffer_info->dma, 349 igc_rx_pg_size(rx_ring), 350 DMA_FROM_DEVICE, 351 IGC_RX_DMA_ATTR); 352 __page_frag_cache_drain(buffer_info->page, 353 buffer_info->pagecnt_bias); 354 355 i++; 356 if (i == rx_ring->count) 357 i = 0; 358 } 359 360 rx_ring->next_to_alloc = 0; 361 rx_ring->next_to_clean = 0; 362 rx_ring->next_to_use = 0; 363 } 364 365 /** 366 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 367 * @adapter: board private structure 368 */ 369 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 370 { 371 int i; 372 373 for (i = 0; i < adapter->num_rx_queues; i++) 374 if (adapter->rx_ring[i]) 375 igc_clean_rx_ring(adapter->rx_ring[i]); 376 } 377 378 /** 379 * igc_free_rx_resources - Free Rx Resources 380 * @rx_ring: ring to clean the resources from 381 * 382 * Free all receive software resources 383 */ 384 static void igc_free_rx_resources(struct igc_ring *rx_ring) 385 { 386 igc_clean_rx_ring(rx_ring); 387 388 vfree(rx_ring->rx_buffer_info); 389 rx_ring->rx_buffer_info = NULL; 390 391 /* if not set, then don't free */ 392 if (!rx_ring->desc) 393 return; 394 395 dma_free_coherent(rx_ring->dev, rx_ring->size, 396 rx_ring->desc, rx_ring->dma); 397 398 rx_ring->desc = NULL; 399 } 400 401 /** 402 * igc_free_all_rx_resources - Free Rx Resources for All Queues 403 * @adapter: board private structure 404 * 405 * Free all receive software resources 406 */ 407 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 408 { 409 int i; 410 411 for (i = 0; i < adapter->num_rx_queues; i++) 412 igc_free_rx_resources(adapter->rx_ring[i]); 413 } 414 415 /** 416 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 417 * @rx_ring: rx descriptor ring (for a specific queue) to setup 418 * 419 * Returns 0 on success, negative on failure 420 */ 421 static int igc_setup_rx_resources(struct igc_ring *rx_ring) 422 { 423 struct device *dev = rx_ring->dev; 424 int size, desc_len; 425 426 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 427 rx_ring->rx_buffer_info = vzalloc(size); 428 if (!rx_ring->rx_buffer_info) 429 goto err; 430 431 desc_len = sizeof(union igc_adv_rx_desc); 432 433 /* Round up to nearest 4K */ 434 rx_ring->size = rx_ring->count * desc_len; 435 rx_ring->size = ALIGN(rx_ring->size, 4096); 436 437 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 438 &rx_ring->dma, GFP_KERNEL); 439 440 if (!rx_ring->desc) 441 goto err; 442 443 rx_ring->next_to_alloc = 0; 444 rx_ring->next_to_clean = 0; 445 rx_ring->next_to_use = 0; 446 447 return 0; 448 449 err: 450 vfree(rx_ring->rx_buffer_info); 451 rx_ring->rx_buffer_info = NULL; 452 dev_err(dev, 453 "Unable to allocate memory for the receive descriptor ring\n"); 454 return -ENOMEM; 455 } 456 457 /** 458 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 459 * (Descriptors) for all queues 460 * @adapter: board private structure 461 * 462 * Return 0 on success, negative on failure 463 */ 464 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 465 { 466 struct pci_dev *pdev = adapter->pdev; 467 int i, err = 0; 468 469 for (i = 0; i < adapter->num_rx_queues; i++) { 470 err = igc_setup_rx_resources(adapter->rx_ring[i]); 471 if (err) { 472 dev_err(&pdev->dev, 473 "Allocation for Rx Queue %u failed\n", i); 474 for (i--; i >= 0; i--) 475 igc_free_rx_resources(adapter->rx_ring[i]); 476 break; 477 } 478 } 479 480 return err; 481 } 482 483 /** 484 * igc_configure_rx_ring - Configure a receive ring after Reset 485 * @adapter: board private structure 486 * @ring: receive ring to be configured 487 * 488 * Configure the Rx unit of the MAC after a reset. 489 */ 490 static void igc_configure_rx_ring(struct igc_adapter *adapter, 491 struct igc_ring *ring) 492 { 493 struct igc_hw *hw = &adapter->hw; 494 union igc_adv_rx_desc *rx_desc; 495 int reg_idx = ring->reg_idx; 496 u32 srrctl = 0, rxdctl = 0; 497 u64 rdba = ring->dma; 498 499 /* disable the queue */ 500 wr32(IGC_RXDCTL(reg_idx), 0); 501 502 /* Set DMA base address registers */ 503 wr32(IGC_RDBAL(reg_idx), 504 rdba & 0x00000000ffffffffULL); 505 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 506 wr32(IGC_RDLEN(reg_idx), 507 ring->count * sizeof(union igc_adv_rx_desc)); 508 509 /* initialize head and tail */ 510 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 511 wr32(IGC_RDH(reg_idx), 0); 512 writel(0, ring->tail); 513 514 /* reset next-to- use/clean to place SW in sync with hardware */ 515 ring->next_to_clean = 0; 516 ring->next_to_use = 0; 517 518 /* set descriptor configuration */ 519 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; 520 if (ring_uses_large_buffer(ring)) 521 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT; 522 else 523 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT; 524 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 525 526 wr32(IGC_SRRCTL(reg_idx), srrctl); 527 528 rxdctl |= IGC_RX_PTHRESH; 529 rxdctl |= IGC_RX_HTHRESH << 8; 530 rxdctl |= IGC_RX_WTHRESH << 16; 531 532 /* initialize rx_buffer_info */ 533 memset(ring->rx_buffer_info, 0, 534 sizeof(struct igc_rx_buffer) * ring->count); 535 536 /* initialize Rx descriptor 0 */ 537 rx_desc = IGC_RX_DESC(ring, 0); 538 rx_desc->wb.upper.length = 0; 539 540 /* enable receive descriptor fetching */ 541 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 542 543 wr32(IGC_RXDCTL(reg_idx), rxdctl); 544 } 545 546 /** 547 * igc_configure_rx - Configure receive Unit after Reset 548 * @adapter: board private structure 549 * 550 * Configure the Rx unit of the MAC after a reset. 551 */ 552 static void igc_configure_rx(struct igc_adapter *adapter) 553 { 554 int i; 555 556 /* Setup the HW Rx Head and Tail Descriptor Pointers and 557 * the Base and Length of the Rx Descriptor Ring 558 */ 559 for (i = 0; i < adapter->num_rx_queues; i++) 560 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 561 } 562 563 /** 564 * igc_configure_tx_ring - Configure transmit ring after Reset 565 * @adapter: board private structure 566 * @ring: tx ring to configure 567 * 568 * Configure a transmit ring after a reset. 569 */ 570 static void igc_configure_tx_ring(struct igc_adapter *adapter, 571 struct igc_ring *ring) 572 { 573 struct igc_hw *hw = &adapter->hw; 574 int reg_idx = ring->reg_idx; 575 u64 tdba = ring->dma; 576 u32 txdctl = 0; 577 578 /* disable the queue */ 579 wr32(IGC_TXDCTL(reg_idx), 0); 580 wrfl(); 581 mdelay(10); 582 583 wr32(IGC_TDLEN(reg_idx), 584 ring->count * sizeof(union igc_adv_tx_desc)); 585 wr32(IGC_TDBAL(reg_idx), 586 tdba & 0x00000000ffffffffULL); 587 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 588 589 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 590 wr32(IGC_TDH(reg_idx), 0); 591 writel(0, ring->tail); 592 593 txdctl |= IGC_TX_PTHRESH; 594 txdctl |= IGC_TX_HTHRESH << 8; 595 txdctl |= IGC_TX_WTHRESH << 16; 596 597 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 598 wr32(IGC_TXDCTL(reg_idx), txdctl); 599 } 600 601 /** 602 * igc_configure_tx - Configure transmit Unit after Reset 603 * @adapter: board private structure 604 * 605 * Configure the Tx unit of the MAC after a reset. 606 */ 607 static void igc_configure_tx(struct igc_adapter *adapter) 608 { 609 int i; 610 611 for (i = 0; i < adapter->num_tx_queues; i++) 612 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 613 } 614 615 /** 616 * igc_setup_mrqc - configure the multiple receive queue control registers 617 * @adapter: Board private structure 618 */ 619 static void igc_setup_mrqc(struct igc_adapter *adapter) 620 { 621 } 622 623 /** 624 * igc_setup_rctl - configure the receive control registers 625 * @adapter: Board private structure 626 */ 627 static void igc_setup_rctl(struct igc_adapter *adapter) 628 { 629 struct igc_hw *hw = &adapter->hw; 630 u32 rctl; 631 632 rctl = rd32(IGC_RCTL); 633 634 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 635 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 636 637 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 638 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 639 640 /* enable stripping of CRC. Newer features require 641 * that the HW strips the CRC. 642 */ 643 rctl |= IGC_RCTL_SECRC; 644 645 /* disable store bad packets and clear size bits. */ 646 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 647 648 /* enable LPE to allow for reception of jumbo frames */ 649 rctl |= IGC_RCTL_LPE; 650 651 /* disable queue 0 to prevent tail write w/o re-config */ 652 wr32(IGC_RXDCTL(0), 0); 653 654 /* This is useful for sniffing bad packets. */ 655 if (adapter->netdev->features & NETIF_F_RXALL) { 656 /* UPE and MPE will be handled by normal PROMISC logic 657 * in set_rx_mode 658 */ 659 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 660 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 661 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 662 663 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 664 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 665 } 666 667 wr32(IGC_RCTL, rctl); 668 } 669 670 /** 671 * igc_setup_tctl - configure the transmit control registers 672 * @adapter: Board private structure 673 */ 674 static void igc_setup_tctl(struct igc_adapter *adapter) 675 { 676 struct igc_hw *hw = &adapter->hw; 677 u32 tctl; 678 679 /* disable queue 0 which icould be enabled by default */ 680 wr32(IGC_TXDCTL(0), 0); 681 682 /* Program the Transmit Control Register */ 683 tctl = rd32(IGC_TCTL); 684 tctl &= ~IGC_TCTL_CT; 685 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 686 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 687 688 /* Enable transmits */ 689 tctl |= IGC_TCTL_EN; 690 691 wr32(IGC_TCTL, tctl); 692 } 693 694 /** 695 * igc_set_mac - Change the Ethernet Address of the NIC 696 * @netdev: network interface device structure 697 * @p: pointer to an address structure 698 * 699 * Returns 0 on success, negative on failure 700 */ 701 static int igc_set_mac(struct net_device *netdev, void *p) 702 { 703 struct igc_adapter *adapter = netdev_priv(netdev); 704 struct igc_hw *hw = &adapter->hw; 705 struct sockaddr *addr = p; 706 707 if (!is_valid_ether_addr(addr->sa_data)) 708 return -EADDRNOTAVAIL; 709 710 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 711 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 712 713 /* set the correct pool for the new PF MAC address in entry 0 */ 714 igc_set_default_mac_filter(adapter); 715 716 return 0; 717 } 718 719 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first) 720 { 721 } 722 723 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 724 { 725 struct net_device *netdev = tx_ring->netdev; 726 727 netif_stop_subqueue(netdev, tx_ring->queue_index); 728 729 /* memory barriier comment */ 730 smp_mb(); 731 732 /* We need to check again in a case another CPU has just 733 * made room available. 734 */ 735 if (igc_desc_unused(tx_ring) < size) 736 return -EBUSY; 737 738 /* A reprieve! */ 739 netif_wake_subqueue(netdev, tx_ring->queue_index); 740 741 u64_stats_update_begin(&tx_ring->tx_syncp2); 742 tx_ring->tx_stats.restart_queue2++; 743 u64_stats_update_end(&tx_ring->tx_syncp2); 744 745 return 0; 746 } 747 748 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 749 { 750 if (igc_desc_unused(tx_ring) >= size) 751 return 0; 752 return __igc_maybe_stop_tx(tx_ring, size); 753 } 754 755 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 756 { 757 /* set type for advanced descriptor with frame checksum insertion */ 758 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 759 IGC_ADVTXD_DCMD_DEXT | 760 IGC_ADVTXD_DCMD_IFCS; 761 762 return cmd_type; 763 } 764 765 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 766 union igc_adv_tx_desc *tx_desc, 767 u32 tx_flags, unsigned int paylen) 768 { 769 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 770 771 /* insert L4 checksum */ 772 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 773 ((IGC_TXD_POPTS_TXSM << 8) / 774 IGC_TX_FLAGS_CSUM); 775 776 /* insert IPv4 checksum */ 777 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 778 (((IGC_TXD_POPTS_IXSM << 8)) / 779 IGC_TX_FLAGS_IPV4); 780 781 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 782 } 783 784 static int igc_tx_map(struct igc_ring *tx_ring, 785 struct igc_tx_buffer *first, 786 const u8 hdr_len) 787 { 788 struct sk_buff *skb = first->skb; 789 struct igc_tx_buffer *tx_buffer; 790 union igc_adv_tx_desc *tx_desc; 791 u32 tx_flags = first->tx_flags; 792 struct skb_frag_struct *frag; 793 u16 i = tx_ring->next_to_use; 794 unsigned int data_len, size; 795 dma_addr_t dma; 796 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags); 797 798 tx_desc = IGC_TX_DESC(tx_ring, i); 799 800 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 801 802 size = skb_headlen(skb); 803 data_len = skb->data_len; 804 805 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 806 807 tx_buffer = first; 808 809 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 810 if (dma_mapping_error(tx_ring->dev, dma)) 811 goto dma_error; 812 813 /* record length, and DMA address */ 814 dma_unmap_len_set(tx_buffer, len, size); 815 dma_unmap_addr_set(tx_buffer, dma, dma); 816 817 tx_desc->read.buffer_addr = cpu_to_le64(dma); 818 819 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 820 tx_desc->read.cmd_type_len = 821 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 822 823 i++; 824 tx_desc++; 825 if (i == tx_ring->count) { 826 tx_desc = IGC_TX_DESC(tx_ring, 0); 827 i = 0; 828 } 829 tx_desc->read.olinfo_status = 0; 830 831 dma += IGC_MAX_DATA_PER_TXD; 832 size -= IGC_MAX_DATA_PER_TXD; 833 834 tx_desc->read.buffer_addr = cpu_to_le64(dma); 835 } 836 837 if (likely(!data_len)) 838 break; 839 840 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 841 842 i++; 843 tx_desc++; 844 if (i == tx_ring->count) { 845 tx_desc = IGC_TX_DESC(tx_ring, 0); 846 i = 0; 847 } 848 tx_desc->read.olinfo_status = 0; 849 850 size = skb_frag_size(frag); 851 data_len -= size; 852 853 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 854 size, DMA_TO_DEVICE); 855 856 tx_buffer = &tx_ring->tx_buffer_info[i]; 857 } 858 859 /* write last descriptor with RS and EOP bits */ 860 cmd_type |= size | IGC_TXD_DCMD; 861 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 862 863 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 864 865 /* set the timestamp */ 866 first->time_stamp = jiffies; 867 868 skb_tx_timestamp(skb); 869 870 /* Force memory writes to complete before letting h/w know there 871 * are new descriptors to fetch. (Only applicable for weak-ordered 872 * memory model archs, such as IA-64). 873 * 874 * We also need this memory barrier to make certain all of the 875 * status bits have been updated before next_to_watch is written. 876 */ 877 wmb(); 878 879 /* set next_to_watch value indicating a packet is present */ 880 first->next_to_watch = tx_desc; 881 882 i++; 883 if (i == tx_ring->count) 884 i = 0; 885 886 tx_ring->next_to_use = i; 887 888 /* Make sure there is space in the ring for the next send. */ 889 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 890 891 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 892 writel(i, tx_ring->tail); 893 894 /* we need this if more than one processor can write to our tail 895 * at a time, it synchronizes IO on IA64/Altix systems 896 */ 897 mmiowb(); 898 } 899 900 return 0; 901 dma_error: 902 dev_err(tx_ring->dev, "TX DMA map failed\n"); 903 tx_buffer = &tx_ring->tx_buffer_info[i]; 904 905 /* clear dma mappings for failed tx_buffer_info map */ 906 while (tx_buffer != first) { 907 if (dma_unmap_len(tx_buffer, len)) 908 dma_unmap_page(tx_ring->dev, 909 dma_unmap_addr(tx_buffer, dma), 910 dma_unmap_len(tx_buffer, len), 911 DMA_TO_DEVICE); 912 dma_unmap_len_set(tx_buffer, len, 0); 913 914 if (i-- == 0) 915 i += tx_ring->count; 916 tx_buffer = &tx_ring->tx_buffer_info[i]; 917 } 918 919 if (dma_unmap_len(tx_buffer, len)) 920 dma_unmap_single(tx_ring->dev, 921 dma_unmap_addr(tx_buffer, dma), 922 dma_unmap_len(tx_buffer, len), 923 DMA_TO_DEVICE); 924 dma_unmap_len_set(tx_buffer, len, 0); 925 926 dev_kfree_skb_any(tx_buffer->skb); 927 tx_buffer->skb = NULL; 928 929 tx_ring->next_to_use = i; 930 931 return -1; 932 } 933 934 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 935 struct igc_ring *tx_ring) 936 { 937 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 938 __be16 protocol = vlan_get_protocol(skb); 939 struct igc_tx_buffer *first; 940 u32 tx_flags = 0; 941 unsigned short f; 942 u8 hdr_len = 0; 943 944 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 945 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 946 * + 2 desc gap to keep tail from touching head, 947 * + 1 desc for context descriptor, 948 * otherwise try next time 949 */ 950 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 951 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 952 953 if (igc_maybe_stop_tx(tx_ring, count + 3)) { 954 /* this is a hard error */ 955 return NETDEV_TX_BUSY; 956 } 957 958 /* record the location of the first descriptor for this packet */ 959 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 960 first->skb = skb; 961 first->bytecount = skb->len; 962 first->gso_segs = 1; 963 964 /* record initial flags and protocol */ 965 first->tx_flags = tx_flags; 966 first->protocol = protocol; 967 968 igc_tx_csum(tx_ring, first); 969 970 igc_tx_map(tx_ring, first, hdr_len); 971 972 return NETDEV_TX_OK; 973 } 974 975 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 976 struct sk_buff *skb) 977 { 978 unsigned int r_idx = skb->queue_mapping; 979 980 if (r_idx >= adapter->num_tx_queues) 981 r_idx = r_idx % adapter->num_tx_queues; 982 983 return adapter->tx_ring[r_idx]; 984 } 985 986 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 987 struct net_device *netdev) 988 { 989 struct igc_adapter *adapter = netdev_priv(netdev); 990 991 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 992 * in order to meet this minimum size requirement. 993 */ 994 if (skb->len < 17) { 995 if (skb_padto(skb, 17)) 996 return NETDEV_TX_OK; 997 skb->len = 17; 998 } 999 1000 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1001 } 1002 1003 static inline void igc_rx_hash(struct igc_ring *ring, 1004 union igc_adv_rx_desc *rx_desc, 1005 struct sk_buff *skb) 1006 { 1007 if (ring->netdev->features & NETIF_F_RXHASH) 1008 skb_set_hash(skb, 1009 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1010 PKT_HASH_TYPE_L3); 1011 } 1012 1013 /** 1014 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1015 * @rx_ring: rx descriptor ring packet is being transacted on 1016 * @rx_desc: pointer to the EOP Rx descriptor 1017 * @skb: pointer to current skb being populated 1018 * 1019 * This function checks the ring, descriptor, and packet information in 1020 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 1021 * other fields within the skb. 1022 */ 1023 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1024 union igc_adv_rx_desc *rx_desc, 1025 struct sk_buff *skb) 1026 { 1027 igc_rx_hash(rx_ring, rx_desc, skb); 1028 1029 skb_record_rx_queue(skb, rx_ring->queue_index); 1030 1031 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1032 } 1033 1034 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1035 const unsigned int size) 1036 { 1037 struct igc_rx_buffer *rx_buffer; 1038 1039 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1040 prefetchw(rx_buffer->page); 1041 1042 /* we are reusing so sync this buffer for CPU use */ 1043 dma_sync_single_range_for_cpu(rx_ring->dev, 1044 rx_buffer->dma, 1045 rx_buffer->page_offset, 1046 size, 1047 DMA_FROM_DEVICE); 1048 1049 rx_buffer->pagecnt_bias--; 1050 1051 return rx_buffer; 1052 } 1053 1054 /** 1055 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1056 * @rx_ring: rx descriptor ring to transact packets on 1057 * @rx_buffer: buffer containing page to add 1058 * @skb: sk_buff to place the data into 1059 * @size: size of buffer to be added 1060 * 1061 * This function will add the data contained in rx_buffer->page to the skb. 1062 */ 1063 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1064 struct igc_rx_buffer *rx_buffer, 1065 struct sk_buff *skb, 1066 unsigned int size) 1067 { 1068 #if (PAGE_SIZE < 8192) 1069 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1070 1071 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1072 rx_buffer->page_offset, size, truesize); 1073 rx_buffer->page_offset ^= truesize; 1074 #else 1075 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1076 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1077 SKB_DATA_ALIGN(size); 1078 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1079 rx_buffer->page_offset, size, truesize); 1080 rx_buffer->page_offset += truesize; 1081 #endif 1082 } 1083 1084 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1085 struct igc_rx_buffer *rx_buffer, 1086 union igc_adv_rx_desc *rx_desc, 1087 unsigned int size) 1088 { 1089 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1090 #if (PAGE_SIZE < 8192) 1091 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1092 #else 1093 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1094 SKB_DATA_ALIGN(IGC_SKB_PAD + size); 1095 #endif 1096 struct sk_buff *skb; 1097 1098 /* prefetch first cache line of first page */ 1099 prefetch(va); 1100 #if L1_CACHE_BYTES < 128 1101 prefetch(va + L1_CACHE_BYTES); 1102 #endif 1103 1104 /* build an skb around the page buffer */ 1105 skb = build_skb(va - IGC_SKB_PAD, truesize); 1106 if (unlikely(!skb)) 1107 return NULL; 1108 1109 /* update pointers within the skb to store the data */ 1110 skb_reserve(skb, IGC_SKB_PAD); 1111 __skb_put(skb, size); 1112 1113 /* update buffer offset */ 1114 #if (PAGE_SIZE < 8192) 1115 rx_buffer->page_offset ^= truesize; 1116 #else 1117 rx_buffer->page_offset += truesize; 1118 #endif 1119 1120 return skb; 1121 } 1122 1123 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1124 struct igc_rx_buffer *rx_buffer, 1125 union igc_adv_rx_desc *rx_desc, 1126 unsigned int size) 1127 { 1128 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1129 #if (PAGE_SIZE < 8192) 1130 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1131 #else 1132 unsigned int truesize = SKB_DATA_ALIGN(size); 1133 #endif 1134 unsigned int headlen; 1135 struct sk_buff *skb; 1136 1137 /* prefetch first cache line of first page */ 1138 prefetch(va); 1139 #if L1_CACHE_BYTES < 128 1140 prefetch(va + L1_CACHE_BYTES); 1141 #endif 1142 1143 /* allocate a skb to store the frags */ 1144 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN); 1145 if (unlikely(!skb)) 1146 return NULL; 1147 1148 /* Determine available headroom for copy */ 1149 headlen = size; 1150 if (headlen > IGC_RX_HDR_LEN) 1151 headlen = eth_get_headlen(va, IGC_RX_HDR_LEN); 1152 1153 /* align pull length to size of long to optimize memcpy performance */ 1154 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1155 1156 /* update all of the pointers */ 1157 size -= headlen; 1158 if (size) { 1159 skb_add_rx_frag(skb, 0, rx_buffer->page, 1160 (va + headlen) - page_address(rx_buffer->page), 1161 size, truesize); 1162 #if (PAGE_SIZE < 8192) 1163 rx_buffer->page_offset ^= truesize; 1164 #else 1165 rx_buffer->page_offset += truesize; 1166 #endif 1167 } else { 1168 rx_buffer->pagecnt_bias++; 1169 } 1170 1171 return skb; 1172 } 1173 1174 /** 1175 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1176 * @rx_ring: rx descriptor ring to store buffers on 1177 * @old_buff: donor buffer to have page reused 1178 * 1179 * Synchronizes page for reuse by the adapter 1180 */ 1181 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1182 struct igc_rx_buffer *old_buff) 1183 { 1184 u16 nta = rx_ring->next_to_alloc; 1185 struct igc_rx_buffer *new_buff; 1186 1187 new_buff = &rx_ring->rx_buffer_info[nta]; 1188 1189 /* update, and store next to alloc */ 1190 nta++; 1191 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1192 1193 /* Transfer page from old buffer to new buffer. 1194 * Move each member individually to avoid possible store 1195 * forwarding stalls. 1196 */ 1197 new_buff->dma = old_buff->dma; 1198 new_buff->page = old_buff->page; 1199 new_buff->page_offset = old_buff->page_offset; 1200 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1201 } 1202 1203 static inline bool igc_page_is_reserved(struct page *page) 1204 { 1205 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 1206 } 1207 1208 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer) 1209 { 1210 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1211 struct page *page = rx_buffer->page; 1212 1213 /* avoid re-using remote pages */ 1214 if (unlikely(igc_page_is_reserved(page))) 1215 return false; 1216 1217 #if (PAGE_SIZE < 8192) 1218 /* if we are only owner of page we can reuse it */ 1219 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 1220 return false; 1221 #else 1222 #define IGC_LAST_OFFSET \ 1223 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1224 1225 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1226 return false; 1227 #endif 1228 1229 /* If we have drained the page fragment pool we need to update 1230 * the pagecnt_bias and page count so that we fully restock the 1231 * number of references the driver holds. 1232 */ 1233 if (unlikely(!pagecnt_bias)) { 1234 page_ref_add(page, USHRT_MAX); 1235 rx_buffer->pagecnt_bias = USHRT_MAX; 1236 } 1237 1238 return true; 1239 } 1240 1241 /** 1242 * igc_is_non_eop - process handling of non-EOP buffers 1243 * @rx_ring: Rx ring being processed 1244 * @rx_desc: Rx descriptor for current buffer 1245 * @skb: current socket buffer containing buffer in progress 1246 * 1247 * This function updates next to clean. If the buffer is an EOP buffer 1248 * this function exits returning false, otherwise it will place the 1249 * sk_buff in the next buffer to be chained and return true indicating 1250 * that this is in fact a non-EOP buffer. 1251 */ 1252 static bool igc_is_non_eop(struct igc_ring *rx_ring, 1253 union igc_adv_rx_desc *rx_desc) 1254 { 1255 u32 ntc = rx_ring->next_to_clean + 1; 1256 1257 /* fetch, update, and store next to clean */ 1258 ntc = (ntc < rx_ring->count) ? ntc : 0; 1259 rx_ring->next_to_clean = ntc; 1260 1261 prefetch(IGC_RX_DESC(rx_ring, ntc)); 1262 1263 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 1264 return false; 1265 1266 return true; 1267 } 1268 1269 /** 1270 * igc_cleanup_headers - Correct corrupted or empty headers 1271 * @rx_ring: rx descriptor ring packet is being transacted on 1272 * @rx_desc: pointer to the EOP Rx descriptor 1273 * @skb: pointer to current skb being fixed 1274 * 1275 * Address the case where we are pulling data in on pages only 1276 * and as such no data is present in the skb header. 1277 * 1278 * In addition if skb is not at least 60 bytes we need to pad it so that 1279 * it is large enough to qualify as a valid Ethernet frame. 1280 * 1281 * Returns true if an error was encountered and skb was freed. 1282 */ 1283 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 1284 union igc_adv_rx_desc *rx_desc, 1285 struct sk_buff *skb) 1286 { 1287 if (unlikely((igc_test_staterr(rx_desc, 1288 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) { 1289 struct net_device *netdev = rx_ring->netdev; 1290 1291 if (!(netdev->features & NETIF_F_RXALL)) { 1292 dev_kfree_skb_any(skb); 1293 return true; 1294 } 1295 } 1296 1297 /* if eth_skb_pad returns an error the skb was freed */ 1298 if (eth_skb_pad(skb)) 1299 return true; 1300 1301 return false; 1302 } 1303 1304 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 1305 struct igc_rx_buffer *rx_buffer) 1306 { 1307 if (igc_can_reuse_rx_page(rx_buffer)) { 1308 /* hand second half of page back to the ring */ 1309 igc_reuse_rx_page(rx_ring, rx_buffer); 1310 } else { 1311 /* We are not reusing the buffer so unmap it and free 1312 * any references we are holding to it 1313 */ 1314 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1315 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1316 IGC_RX_DMA_ATTR); 1317 __page_frag_cache_drain(rx_buffer->page, 1318 rx_buffer->pagecnt_bias); 1319 } 1320 1321 /* clear contents of rx_buffer */ 1322 rx_buffer->page = NULL; 1323 } 1324 1325 /** 1326 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 1327 * @adapter: address of board private structure 1328 */ 1329 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 1330 { 1331 union igc_adv_rx_desc *rx_desc; 1332 u16 i = rx_ring->next_to_use; 1333 struct igc_rx_buffer *bi; 1334 u16 bufsz; 1335 1336 /* nothing to do */ 1337 if (!cleaned_count) 1338 return; 1339 1340 rx_desc = IGC_RX_DESC(rx_ring, i); 1341 bi = &rx_ring->rx_buffer_info[i]; 1342 i -= rx_ring->count; 1343 1344 bufsz = igc_rx_bufsz(rx_ring); 1345 1346 do { 1347 if (!igc_alloc_mapped_page(rx_ring, bi)) 1348 break; 1349 1350 /* sync the buffer for use by the device */ 1351 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1352 bi->page_offset, bufsz, 1353 DMA_FROM_DEVICE); 1354 1355 /* Refresh the desc even if buffer_addrs didn't change 1356 * because each write-back erases this info. 1357 */ 1358 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1359 1360 rx_desc++; 1361 bi++; 1362 i++; 1363 if (unlikely(!i)) { 1364 rx_desc = IGC_RX_DESC(rx_ring, 0); 1365 bi = rx_ring->rx_buffer_info; 1366 i -= rx_ring->count; 1367 } 1368 1369 /* clear the length for the next_to_use descriptor */ 1370 rx_desc->wb.upper.length = 0; 1371 1372 cleaned_count--; 1373 } while (cleaned_count); 1374 1375 i += rx_ring->count; 1376 1377 if (rx_ring->next_to_use != i) { 1378 /* record the next descriptor to use */ 1379 rx_ring->next_to_use = i; 1380 1381 /* update next to alloc since we have filled the ring */ 1382 rx_ring->next_to_alloc = i; 1383 1384 /* Force memory writes to complete before letting h/w 1385 * know there are new descriptors to fetch. (Only 1386 * applicable for weak-ordered memory model archs, 1387 * such as IA-64). 1388 */ 1389 wmb(); 1390 writel(i, rx_ring->tail); 1391 } 1392 } 1393 1394 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 1395 { 1396 unsigned int total_bytes = 0, total_packets = 0; 1397 struct igc_ring *rx_ring = q_vector->rx.ring; 1398 struct sk_buff *skb = rx_ring->skb; 1399 u16 cleaned_count = igc_desc_unused(rx_ring); 1400 1401 while (likely(total_packets < budget)) { 1402 union igc_adv_rx_desc *rx_desc; 1403 struct igc_rx_buffer *rx_buffer; 1404 unsigned int size; 1405 1406 /* return some buffers to hardware, one at a time is too slow */ 1407 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 1408 igc_alloc_rx_buffers(rx_ring, cleaned_count); 1409 cleaned_count = 0; 1410 } 1411 1412 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 1413 size = le16_to_cpu(rx_desc->wb.upper.length); 1414 if (!size) 1415 break; 1416 1417 /* This memory barrier is needed to keep us from reading 1418 * any other fields out of the rx_desc until we know the 1419 * descriptor has been written back 1420 */ 1421 dma_rmb(); 1422 1423 rx_buffer = igc_get_rx_buffer(rx_ring, size); 1424 1425 /* retrieve a buffer from the ring */ 1426 if (skb) 1427 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 1428 else if (ring_uses_build_skb(rx_ring)) 1429 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size); 1430 else 1431 skb = igc_construct_skb(rx_ring, rx_buffer, 1432 rx_desc, size); 1433 1434 /* exit if we failed to retrieve a buffer */ 1435 if (!skb) { 1436 rx_ring->rx_stats.alloc_failed++; 1437 rx_buffer->pagecnt_bias++; 1438 break; 1439 } 1440 1441 igc_put_rx_buffer(rx_ring, rx_buffer); 1442 cleaned_count++; 1443 1444 /* fetch next buffer in frame if non-eop */ 1445 if (igc_is_non_eop(rx_ring, rx_desc)) 1446 continue; 1447 1448 /* verify the packet layout is correct */ 1449 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 1450 skb = NULL; 1451 continue; 1452 } 1453 1454 /* probably a little skewed due to removing CRC */ 1455 total_bytes += skb->len; 1456 1457 /* populate checksum, timestamp, VLAN, and protocol */ 1458 igc_process_skb_fields(rx_ring, rx_desc, skb); 1459 1460 napi_gro_receive(&q_vector->napi, skb); 1461 1462 /* reset skb pointer */ 1463 skb = NULL; 1464 1465 /* update budget accounting */ 1466 total_packets++; 1467 } 1468 1469 /* place incomplete frames back on ring for completion */ 1470 rx_ring->skb = skb; 1471 1472 u64_stats_update_begin(&rx_ring->rx_syncp); 1473 rx_ring->rx_stats.packets += total_packets; 1474 rx_ring->rx_stats.bytes += total_bytes; 1475 u64_stats_update_end(&rx_ring->rx_syncp); 1476 q_vector->rx.total_packets += total_packets; 1477 q_vector->rx.total_bytes += total_bytes; 1478 1479 if (cleaned_count) 1480 igc_alloc_rx_buffers(rx_ring, cleaned_count); 1481 1482 return total_packets; 1483 } 1484 1485 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 1486 { 1487 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0; 1488 } 1489 1490 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 1491 struct igc_rx_buffer *bi) 1492 { 1493 struct page *page = bi->page; 1494 dma_addr_t dma; 1495 1496 /* since we are recycling buffers we should seldom need to alloc */ 1497 if (likely(page)) 1498 return true; 1499 1500 /* alloc new page for storage */ 1501 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 1502 if (unlikely(!page)) { 1503 rx_ring->rx_stats.alloc_failed++; 1504 return false; 1505 } 1506 1507 /* map page for use */ 1508 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1509 igc_rx_pg_size(rx_ring), 1510 DMA_FROM_DEVICE, 1511 IGC_RX_DMA_ATTR); 1512 1513 /* if mapping failed free memory back to system since 1514 * there isn't much point in holding memory we can't use 1515 */ 1516 if (dma_mapping_error(rx_ring->dev, dma)) { 1517 __free_page(page); 1518 1519 rx_ring->rx_stats.alloc_failed++; 1520 return false; 1521 } 1522 1523 bi->dma = dma; 1524 bi->page = page; 1525 bi->page_offset = igc_rx_offset(rx_ring); 1526 bi->pagecnt_bias = 1; 1527 1528 return true; 1529 } 1530 1531 /** 1532 * igc_clean_tx_irq - Reclaim resources after transmit completes 1533 * @q_vector: pointer to q_vector containing needed info 1534 * @napi_budget: Used to determine if we are in netpoll 1535 * 1536 * returns true if ring is completely cleaned 1537 */ 1538 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 1539 { 1540 struct igc_adapter *adapter = q_vector->adapter; 1541 unsigned int total_bytes = 0, total_packets = 0; 1542 unsigned int budget = q_vector->tx.work_limit; 1543 struct igc_ring *tx_ring = q_vector->tx.ring; 1544 unsigned int i = tx_ring->next_to_clean; 1545 struct igc_tx_buffer *tx_buffer; 1546 union igc_adv_tx_desc *tx_desc; 1547 1548 if (test_bit(__IGC_DOWN, &adapter->state)) 1549 return true; 1550 1551 tx_buffer = &tx_ring->tx_buffer_info[i]; 1552 tx_desc = IGC_TX_DESC(tx_ring, i); 1553 i -= tx_ring->count; 1554 1555 do { 1556 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 1557 1558 /* if next_to_watch is not set then there is no work pending */ 1559 if (!eop_desc) 1560 break; 1561 1562 /* prevent any other reads prior to eop_desc */ 1563 smp_rmb(); 1564 1565 /* if DD is not set pending work has not been completed */ 1566 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 1567 break; 1568 1569 /* clear next_to_watch to prevent false hangs */ 1570 tx_buffer->next_to_watch = NULL; 1571 1572 /* update the statistics for this packet */ 1573 total_bytes += tx_buffer->bytecount; 1574 total_packets += tx_buffer->gso_segs; 1575 1576 /* free the skb */ 1577 napi_consume_skb(tx_buffer->skb, napi_budget); 1578 1579 /* unmap skb header data */ 1580 dma_unmap_single(tx_ring->dev, 1581 dma_unmap_addr(tx_buffer, dma), 1582 dma_unmap_len(tx_buffer, len), 1583 DMA_TO_DEVICE); 1584 1585 /* clear tx_buffer data */ 1586 dma_unmap_len_set(tx_buffer, len, 0); 1587 1588 /* clear last DMA location and unmap remaining buffers */ 1589 while (tx_desc != eop_desc) { 1590 tx_buffer++; 1591 tx_desc++; 1592 i++; 1593 if (unlikely(!i)) { 1594 i -= tx_ring->count; 1595 tx_buffer = tx_ring->tx_buffer_info; 1596 tx_desc = IGC_TX_DESC(tx_ring, 0); 1597 } 1598 1599 /* unmap any remaining paged data */ 1600 if (dma_unmap_len(tx_buffer, len)) { 1601 dma_unmap_page(tx_ring->dev, 1602 dma_unmap_addr(tx_buffer, dma), 1603 dma_unmap_len(tx_buffer, len), 1604 DMA_TO_DEVICE); 1605 dma_unmap_len_set(tx_buffer, len, 0); 1606 } 1607 } 1608 1609 /* move us one more past the eop_desc for start of next pkt */ 1610 tx_buffer++; 1611 tx_desc++; 1612 i++; 1613 if (unlikely(!i)) { 1614 i -= tx_ring->count; 1615 tx_buffer = tx_ring->tx_buffer_info; 1616 tx_desc = IGC_TX_DESC(tx_ring, 0); 1617 } 1618 1619 /* issue prefetch for next Tx descriptor */ 1620 prefetch(tx_desc); 1621 1622 /* update budget accounting */ 1623 budget--; 1624 } while (likely(budget)); 1625 1626 netdev_tx_completed_queue(txring_txq(tx_ring), 1627 total_packets, total_bytes); 1628 1629 i += tx_ring->count; 1630 tx_ring->next_to_clean = i; 1631 u64_stats_update_begin(&tx_ring->tx_syncp); 1632 tx_ring->tx_stats.bytes += total_bytes; 1633 tx_ring->tx_stats.packets += total_packets; 1634 u64_stats_update_end(&tx_ring->tx_syncp); 1635 q_vector->tx.total_bytes += total_bytes; 1636 q_vector->tx.total_packets += total_packets; 1637 1638 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 1639 struct igc_hw *hw = &adapter->hw; 1640 1641 /* Detect a transmit hang in hardware, this serializes the 1642 * check with the clearing of time_stamp and movement of i 1643 */ 1644 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 1645 if (tx_buffer->next_to_watch && 1646 time_after(jiffies, tx_buffer->time_stamp + 1647 (adapter->tx_timeout_factor * HZ)) && 1648 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) { 1649 /* detected Tx unit hang */ 1650 dev_err(tx_ring->dev, 1651 "Detected Tx Unit Hang\n" 1652 " Tx Queue <%d>\n" 1653 " TDH <%x>\n" 1654 " TDT <%x>\n" 1655 " next_to_use <%x>\n" 1656 " next_to_clean <%x>\n" 1657 "buffer_info[next_to_clean]\n" 1658 " time_stamp <%lx>\n" 1659 " next_to_watch <%p>\n" 1660 " jiffies <%lx>\n" 1661 " desc.status <%x>\n", 1662 tx_ring->queue_index, 1663 rd32(IGC_TDH(tx_ring->reg_idx)), 1664 readl(tx_ring->tail), 1665 tx_ring->next_to_use, 1666 tx_ring->next_to_clean, 1667 tx_buffer->time_stamp, 1668 tx_buffer->next_to_watch, 1669 jiffies, 1670 tx_buffer->next_to_watch->wb.status); 1671 netif_stop_subqueue(tx_ring->netdev, 1672 tx_ring->queue_index); 1673 1674 /* we are about to reset, no point in enabling stuff */ 1675 return true; 1676 } 1677 } 1678 1679 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 1680 if (unlikely(total_packets && 1681 netif_carrier_ok(tx_ring->netdev) && 1682 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 1683 /* Make sure that anybody stopping the queue after this 1684 * sees the new next_to_clean. 1685 */ 1686 smp_mb(); 1687 if (__netif_subqueue_stopped(tx_ring->netdev, 1688 tx_ring->queue_index) && 1689 !(test_bit(__IGC_DOWN, &adapter->state))) { 1690 netif_wake_subqueue(tx_ring->netdev, 1691 tx_ring->queue_index); 1692 1693 u64_stats_update_begin(&tx_ring->tx_syncp); 1694 tx_ring->tx_stats.restart_queue++; 1695 u64_stats_update_end(&tx_ring->tx_syncp); 1696 } 1697 } 1698 1699 return !!budget; 1700 } 1701 1702 /** 1703 * igc_up - Open the interface and prepare it to handle traffic 1704 * @adapter: board private structure 1705 */ 1706 static void igc_up(struct igc_adapter *adapter) 1707 { 1708 struct igc_hw *hw = &adapter->hw; 1709 int i = 0; 1710 1711 /* hardware has been reset, we need to reload some things */ 1712 igc_configure(adapter); 1713 1714 clear_bit(__IGC_DOWN, &adapter->state); 1715 1716 for (i = 0; i < adapter->num_q_vectors; i++) 1717 napi_enable(&adapter->q_vector[i]->napi); 1718 1719 if (adapter->msix_entries) 1720 igc_configure_msix(adapter); 1721 else 1722 igc_assign_vector(adapter->q_vector[0], 0); 1723 1724 /* Clear any pending interrupts. */ 1725 rd32(IGC_ICR); 1726 igc_irq_enable(adapter); 1727 1728 netif_tx_start_all_queues(adapter->netdev); 1729 1730 /* start the watchdog. */ 1731 hw->mac.get_link_status = 1; 1732 schedule_work(&adapter->watchdog_task); 1733 } 1734 1735 /** 1736 * igc_update_stats - Update the board statistics counters 1737 * @adapter: board private structure 1738 */ 1739 static void igc_update_stats(struct igc_adapter *adapter) 1740 { 1741 } 1742 1743 static void igc_nfc_filter_exit(struct igc_adapter *adapter) 1744 { 1745 } 1746 1747 /** 1748 * igc_down - Close the interface 1749 * @adapter: board private structure 1750 */ 1751 static void igc_down(struct igc_adapter *adapter) 1752 { 1753 struct net_device *netdev = adapter->netdev; 1754 struct igc_hw *hw = &adapter->hw; 1755 u32 tctl, rctl; 1756 int i = 0; 1757 1758 set_bit(__IGC_DOWN, &adapter->state); 1759 1760 /* disable receives in the hardware */ 1761 rctl = rd32(IGC_RCTL); 1762 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 1763 /* flush and sleep below */ 1764 1765 igc_nfc_filter_exit(adapter); 1766 1767 /* set trans_start so we don't get spurious watchdogs during reset */ 1768 netif_trans_update(netdev); 1769 1770 netif_carrier_off(netdev); 1771 netif_tx_stop_all_queues(netdev); 1772 1773 /* disable transmits in the hardware */ 1774 tctl = rd32(IGC_TCTL); 1775 tctl &= ~IGC_TCTL_EN; 1776 wr32(IGC_TCTL, tctl); 1777 /* flush both disables and wait for them to finish */ 1778 wrfl(); 1779 usleep_range(10000, 20000); 1780 1781 igc_irq_disable(adapter); 1782 1783 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 1784 1785 for (i = 0; i < adapter->num_q_vectors; i++) { 1786 if (adapter->q_vector[i]) { 1787 napi_synchronize(&adapter->q_vector[i]->napi); 1788 napi_disable(&adapter->q_vector[i]->napi); 1789 } 1790 } 1791 1792 del_timer_sync(&adapter->watchdog_timer); 1793 del_timer_sync(&adapter->phy_info_timer); 1794 1795 /* record the stats before reset*/ 1796 spin_lock(&adapter->stats64_lock); 1797 igc_update_stats(adapter); 1798 spin_unlock(&adapter->stats64_lock); 1799 1800 adapter->link_speed = 0; 1801 adapter->link_duplex = 0; 1802 1803 if (!pci_channel_offline(adapter->pdev)) 1804 igc_reset(adapter); 1805 1806 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 1807 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 1808 1809 igc_clean_all_tx_rings(adapter); 1810 igc_clean_all_rx_rings(adapter); 1811 } 1812 1813 static void igc_reinit_locked(struct igc_adapter *adapter) 1814 { 1815 WARN_ON(in_interrupt()); 1816 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 1817 usleep_range(1000, 2000); 1818 igc_down(adapter); 1819 igc_up(adapter); 1820 clear_bit(__IGC_RESETTING, &adapter->state); 1821 } 1822 1823 static void igc_reset_task(struct work_struct *work) 1824 { 1825 struct igc_adapter *adapter; 1826 1827 adapter = container_of(work, struct igc_adapter, reset_task); 1828 1829 netdev_err(adapter->netdev, "Reset adapter\n"); 1830 igc_reinit_locked(adapter); 1831 } 1832 1833 /** 1834 * igc_change_mtu - Change the Maximum Transfer Unit 1835 * @netdev: network interface device structure 1836 * @new_mtu: new value for maximum frame size 1837 * 1838 * Returns 0 on success, negative on failure 1839 */ 1840 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 1841 { 1842 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1843 struct igc_adapter *adapter = netdev_priv(netdev); 1844 struct pci_dev *pdev = adapter->pdev; 1845 1846 /* adjust max frame to be at least the size of a standard frame */ 1847 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 1848 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 1849 1850 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 1851 usleep_range(1000, 2000); 1852 1853 /* igc_down has a dependency on max_frame_size */ 1854 adapter->max_frame_size = max_frame; 1855 1856 if (netif_running(netdev)) 1857 igc_down(adapter); 1858 1859 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 1860 netdev->mtu, new_mtu); 1861 netdev->mtu = new_mtu; 1862 1863 if (netif_running(netdev)) 1864 igc_up(adapter); 1865 else 1866 igc_reset(adapter); 1867 1868 clear_bit(__IGC_RESETTING, &adapter->state); 1869 1870 return 0; 1871 } 1872 1873 /** 1874 * igc_get_stats - Get System Network Statistics 1875 * @netdev: network interface device structure 1876 * 1877 * Returns the address of the device statistics structure. 1878 * The statistics are updated here and also from the timer callback. 1879 */ 1880 static struct net_device_stats *igc_get_stats(struct net_device *netdev) 1881 { 1882 struct igc_adapter *adapter = netdev_priv(netdev); 1883 1884 if (!test_bit(__IGC_RESETTING, &adapter->state)) 1885 igc_update_stats(adapter); 1886 1887 /* only return the current stats */ 1888 return &netdev->stats; 1889 } 1890 1891 /** 1892 * igc_configure - configure the hardware for RX and TX 1893 * @adapter: private board structure 1894 */ 1895 static void igc_configure(struct igc_adapter *adapter) 1896 { 1897 struct net_device *netdev = adapter->netdev; 1898 int i = 0; 1899 1900 igc_get_hw_control(adapter); 1901 igc_set_rx_mode(netdev); 1902 1903 igc_setup_tctl(adapter); 1904 igc_setup_mrqc(adapter); 1905 igc_setup_rctl(adapter); 1906 1907 igc_configure_tx(adapter); 1908 igc_configure_rx(adapter); 1909 1910 igc_rx_fifo_flush_base(&adapter->hw); 1911 1912 /* call igc_desc_unused which always leaves 1913 * at least 1 descriptor unused to make sure 1914 * next_to_use != next_to_clean 1915 */ 1916 for (i = 0; i < adapter->num_rx_queues; i++) { 1917 struct igc_ring *ring = adapter->rx_ring[i]; 1918 1919 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 1920 } 1921 } 1922 1923 /** 1924 * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table 1925 * @adapter: Pointer to adapter structure 1926 * @index: Index of the RAR entry which need to be synced with MAC table 1927 */ 1928 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index) 1929 { 1930 u8 *addr = adapter->mac_table[index].addr; 1931 struct igc_hw *hw = &adapter->hw; 1932 u32 rar_low, rar_high; 1933 1934 /* HW expects these to be in network order when they are plugged 1935 * into the registers which are little endian. In order to guarantee 1936 * that ordering we need to do an leXX_to_cpup here in order to be 1937 * ready for the byteswap that occurs with writel 1938 */ 1939 rar_low = le32_to_cpup((__le32 *)(addr)); 1940 rar_high = le16_to_cpup((__le16 *)(addr + 4)); 1941 1942 /* Indicate to hardware the Address is Valid. */ 1943 if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) { 1944 if (is_valid_ether_addr(addr)) 1945 rar_high |= IGC_RAH_AV; 1946 1947 rar_high |= IGC_RAH_POOL_1 << 1948 adapter->mac_table[index].queue; 1949 } 1950 1951 wr32(IGC_RAL(index), rar_low); 1952 wrfl(); 1953 wr32(IGC_RAH(index), rar_high); 1954 wrfl(); 1955 } 1956 1957 /* Set default MAC address for the PF in the first RAR entry */ 1958 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 1959 { 1960 struct igc_mac_addr *mac_table = &adapter->mac_table[0]; 1961 1962 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr); 1963 mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE; 1964 1965 igc_rar_set_index(adapter, 0); 1966 } 1967 1968 /** 1969 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 1970 * @netdev: network interface device structure 1971 * 1972 * The set_rx_mode entry point is called whenever the unicast or multicast 1973 * address lists or the network interface flags are updated. This routine is 1974 * responsible for configuring the hardware for proper unicast, multicast, 1975 * promiscuous mode, and all-multi behavior. 1976 */ 1977 static void igc_set_rx_mode(struct net_device *netdev) 1978 { 1979 } 1980 1981 /** 1982 * igc_msix_other - msix other interrupt handler 1983 * @irq: interrupt number 1984 * @data: pointer to a q_vector 1985 */ 1986 static irqreturn_t igc_msix_other(int irq, void *data) 1987 { 1988 struct igc_adapter *adapter = data; 1989 struct igc_hw *hw = &adapter->hw; 1990 u32 icr = rd32(IGC_ICR); 1991 1992 /* reading ICR causes bit 31 of EICR to be cleared */ 1993 if (icr & IGC_ICR_DRSTA) 1994 schedule_work(&adapter->reset_task); 1995 1996 if (icr & IGC_ICR_DOUTSYNC) { 1997 /* HW is reporting DMA is out of sync */ 1998 adapter->stats.doosync++; 1999 } 2000 2001 if (icr & IGC_ICR_LSC) { 2002 hw->mac.get_link_status = 1; 2003 /* guard against interrupt when we're going down */ 2004 if (!test_bit(__IGC_DOWN, &adapter->state)) 2005 mod_timer(&adapter->watchdog_timer, jiffies + 1); 2006 } 2007 2008 wr32(IGC_EIMS, adapter->eims_other); 2009 2010 return IRQ_HANDLED; 2011 } 2012 2013 /** 2014 * igc_write_ivar - configure ivar for given MSI-X vector 2015 * @hw: pointer to the HW structure 2016 * @msix_vector: vector number we are allocating to a given ring 2017 * @index: row index of IVAR register to write within IVAR table 2018 * @offset: column offset of in IVAR, should be multiple of 8 2019 * 2020 * The IVAR table consists of 2 columns, 2021 * each containing an cause allocation for an Rx and Tx ring, and a 2022 * variable number of rows depending on the number of queues supported. 2023 */ 2024 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 2025 int index, int offset) 2026 { 2027 u32 ivar = array_rd32(IGC_IVAR0, index); 2028 2029 /* clear any bits that are currently set */ 2030 ivar &= ~((u32)0xFF << offset); 2031 2032 /* write vector and valid bit */ 2033 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 2034 2035 array_wr32(IGC_IVAR0, index, ivar); 2036 } 2037 2038 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 2039 { 2040 struct igc_adapter *adapter = q_vector->adapter; 2041 struct igc_hw *hw = &adapter->hw; 2042 int rx_queue = IGC_N0_QUEUE; 2043 int tx_queue = IGC_N0_QUEUE; 2044 2045 if (q_vector->rx.ring) 2046 rx_queue = q_vector->rx.ring->reg_idx; 2047 if (q_vector->tx.ring) 2048 tx_queue = q_vector->tx.ring->reg_idx; 2049 2050 switch (hw->mac.type) { 2051 case igc_i225: 2052 if (rx_queue > IGC_N0_QUEUE) 2053 igc_write_ivar(hw, msix_vector, 2054 rx_queue >> 1, 2055 (rx_queue & 0x1) << 4); 2056 if (tx_queue > IGC_N0_QUEUE) 2057 igc_write_ivar(hw, msix_vector, 2058 tx_queue >> 1, 2059 ((tx_queue & 0x1) << 4) + 8); 2060 q_vector->eims_value = BIT(msix_vector); 2061 break; 2062 default: 2063 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 2064 break; 2065 } 2066 2067 /* add q_vector eims value to global eims_enable_mask */ 2068 adapter->eims_enable_mask |= q_vector->eims_value; 2069 2070 /* configure q_vector to set itr on first interrupt */ 2071 q_vector->set_itr = 1; 2072 } 2073 2074 /** 2075 * igc_configure_msix - Configure MSI-X hardware 2076 * @adapter: Pointer to adapter structure 2077 * 2078 * igc_configure_msix sets up the hardware to properly 2079 * generate MSI-X interrupts. 2080 */ 2081 static void igc_configure_msix(struct igc_adapter *adapter) 2082 { 2083 struct igc_hw *hw = &adapter->hw; 2084 int i, vector = 0; 2085 u32 tmp; 2086 2087 adapter->eims_enable_mask = 0; 2088 2089 /* set vector for other causes, i.e. link changes */ 2090 switch (hw->mac.type) { 2091 case igc_i225: 2092 /* Turn on MSI-X capability first, or our settings 2093 * won't stick. And it will take days to debug. 2094 */ 2095 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 2096 IGC_GPIE_PBA | IGC_GPIE_EIAME | 2097 IGC_GPIE_NSICR); 2098 2099 /* enable msix_other interrupt */ 2100 adapter->eims_other = BIT(vector); 2101 tmp = (vector++ | IGC_IVAR_VALID) << 8; 2102 2103 wr32(IGC_IVAR_MISC, tmp); 2104 break; 2105 default: 2106 /* do nothing, since nothing else supports MSI-X */ 2107 break; 2108 } /* switch (hw->mac.type) */ 2109 2110 adapter->eims_enable_mask |= adapter->eims_other; 2111 2112 for (i = 0; i < adapter->num_q_vectors; i++) 2113 igc_assign_vector(adapter->q_vector[i], vector++); 2114 2115 wrfl(); 2116 } 2117 2118 static irqreturn_t igc_msix_ring(int irq, void *data) 2119 { 2120 struct igc_q_vector *q_vector = data; 2121 2122 /* Write the ITR value calculated from the previous interrupt. */ 2123 igc_write_itr(q_vector); 2124 2125 napi_schedule(&q_vector->napi); 2126 2127 return IRQ_HANDLED; 2128 } 2129 2130 /** 2131 * igc_request_msix - Initialize MSI-X interrupts 2132 * @adapter: Pointer to adapter structure 2133 * 2134 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 2135 * kernel. 2136 */ 2137 static int igc_request_msix(struct igc_adapter *adapter) 2138 { 2139 int i = 0, err = 0, vector = 0, free_vector = 0; 2140 struct net_device *netdev = adapter->netdev; 2141 2142 err = request_irq(adapter->msix_entries[vector].vector, 2143 &igc_msix_other, 0, netdev->name, adapter); 2144 if (err) 2145 goto err_out; 2146 2147 for (i = 0; i < adapter->num_q_vectors; i++) { 2148 struct igc_q_vector *q_vector = adapter->q_vector[i]; 2149 2150 vector++; 2151 2152 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 2153 2154 if (q_vector->rx.ring && q_vector->tx.ring) 2155 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 2156 q_vector->rx.ring->queue_index); 2157 else if (q_vector->tx.ring) 2158 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 2159 q_vector->tx.ring->queue_index); 2160 else if (q_vector->rx.ring) 2161 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 2162 q_vector->rx.ring->queue_index); 2163 else 2164 sprintf(q_vector->name, "%s-unused", netdev->name); 2165 2166 err = request_irq(adapter->msix_entries[vector].vector, 2167 igc_msix_ring, 0, q_vector->name, 2168 q_vector); 2169 if (err) 2170 goto err_free; 2171 } 2172 2173 igc_configure_msix(adapter); 2174 return 0; 2175 2176 err_free: 2177 /* free already assigned IRQs */ 2178 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 2179 2180 vector--; 2181 for (i = 0; i < vector; i++) { 2182 free_irq(adapter->msix_entries[free_vector++].vector, 2183 adapter->q_vector[i]); 2184 } 2185 err_out: 2186 return err; 2187 } 2188 2189 /** 2190 * igc_reset_q_vector - Reset config for interrupt vector 2191 * @adapter: board private structure to initialize 2192 * @v_idx: Index of vector to be reset 2193 * 2194 * If NAPI is enabled it will delete any references to the 2195 * NAPI struct. This is preparation for igc_free_q_vector. 2196 */ 2197 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 2198 { 2199 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 2200 2201 /* if we're coming from igc_set_interrupt_capability, the vectors are 2202 * not yet allocated 2203 */ 2204 if (!q_vector) 2205 return; 2206 2207 if (q_vector->tx.ring) 2208 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 2209 2210 if (q_vector->rx.ring) 2211 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 2212 2213 netif_napi_del(&q_vector->napi); 2214 } 2215 2216 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 2217 { 2218 int v_idx = adapter->num_q_vectors; 2219 2220 if (adapter->msix_entries) { 2221 pci_disable_msix(adapter->pdev); 2222 kfree(adapter->msix_entries); 2223 adapter->msix_entries = NULL; 2224 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 2225 pci_disable_msi(adapter->pdev); 2226 } 2227 2228 while (v_idx--) 2229 igc_reset_q_vector(adapter, v_idx); 2230 } 2231 2232 /** 2233 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 2234 * @adapter: Pointer to adapter structure 2235 * 2236 * This function resets the device so that it has 0 rx queues, tx queues, and 2237 * MSI-X interrupts allocated. 2238 */ 2239 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 2240 { 2241 igc_free_q_vectors(adapter); 2242 igc_reset_interrupt_capability(adapter); 2243 } 2244 2245 /** 2246 * igc_free_q_vectors - Free memory allocated for interrupt vectors 2247 * @adapter: board private structure to initialize 2248 * 2249 * This function frees the memory allocated to the q_vectors. In addition if 2250 * NAPI is enabled it will delete any references to the NAPI struct prior 2251 * to freeing the q_vector. 2252 */ 2253 static void igc_free_q_vectors(struct igc_adapter *adapter) 2254 { 2255 int v_idx = adapter->num_q_vectors; 2256 2257 adapter->num_tx_queues = 0; 2258 adapter->num_rx_queues = 0; 2259 adapter->num_q_vectors = 0; 2260 2261 while (v_idx--) { 2262 igc_reset_q_vector(adapter, v_idx); 2263 igc_free_q_vector(adapter, v_idx); 2264 } 2265 } 2266 2267 /** 2268 * igc_free_q_vector - Free memory allocated for specific interrupt vector 2269 * @adapter: board private structure to initialize 2270 * @v_idx: Index of vector to be freed 2271 * 2272 * This function frees the memory allocated to the q_vector. 2273 */ 2274 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 2275 { 2276 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 2277 2278 adapter->q_vector[v_idx] = NULL; 2279 2280 /* igc_get_stats64() might access the rings on this vector, 2281 * we must wait a grace period before freeing it. 2282 */ 2283 if (q_vector) 2284 kfree_rcu(q_vector, rcu); 2285 } 2286 2287 /* Need to wait a few seconds after link up to get diagnostic information from 2288 * the phy 2289 */ 2290 static void igc_update_phy_info(struct timer_list *t) 2291 { 2292 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 2293 2294 igc_get_phy_info(&adapter->hw); 2295 } 2296 2297 /** 2298 * igc_has_link - check shared code for link and determine up/down 2299 * @adapter: pointer to driver private info 2300 */ 2301 static bool igc_has_link(struct igc_adapter *adapter) 2302 { 2303 struct igc_hw *hw = &adapter->hw; 2304 bool link_active = false; 2305 2306 /* get_link_status is set on LSC (link status) interrupt or 2307 * rx sequence error interrupt. get_link_status will stay 2308 * false until the igc_check_for_link establishes link 2309 * for copper adapters ONLY 2310 */ 2311 switch (hw->phy.media_type) { 2312 case igc_media_type_copper: 2313 if (!hw->mac.get_link_status) 2314 return true; 2315 hw->mac.ops.check_for_link(hw); 2316 link_active = !hw->mac.get_link_status; 2317 break; 2318 default: 2319 case igc_media_type_unknown: 2320 break; 2321 } 2322 2323 if (hw->mac.type == igc_i225 && 2324 hw->phy.id == I225_I_PHY_ID) { 2325 if (!netif_carrier_ok(adapter->netdev)) { 2326 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 2327 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 2328 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 2329 adapter->link_check_timeout = jiffies; 2330 } 2331 } 2332 2333 return link_active; 2334 } 2335 2336 /** 2337 * igc_watchdog - Timer Call-back 2338 * @data: pointer to adapter cast into an unsigned long 2339 */ 2340 static void igc_watchdog(struct timer_list *t) 2341 { 2342 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 2343 /* Do the rest outside of interrupt context */ 2344 schedule_work(&adapter->watchdog_task); 2345 } 2346 2347 static void igc_watchdog_task(struct work_struct *work) 2348 { 2349 struct igc_adapter *adapter = container_of(work, 2350 struct igc_adapter, 2351 watchdog_task); 2352 struct net_device *netdev = adapter->netdev; 2353 struct igc_hw *hw = &adapter->hw; 2354 struct igc_phy_info *phy = &hw->phy; 2355 u16 phy_data, retry_count = 20; 2356 u32 connsw; 2357 u32 link; 2358 int i; 2359 2360 link = igc_has_link(adapter); 2361 2362 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 2363 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 2364 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 2365 else 2366 link = false; 2367 } 2368 2369 /* Force link down if we have fiber to swap to */ 2370 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 2371 if (hw->phy.media_type == igc_media_type_copper) { 2372 connsw = rd32(IGC_CONNSW); 2373 if (!(connsw & IGC_CONNSW_AUTOSENSE_EN)) 2374 link = 0; 2375 } 2376 } 2377 if (link) { 2378 if (!netif_carrier_ok(netdev)) { 2379 u32 ctrl; 2380 2381 hw->mac.ops.get_speed_and_duplex(hw, 2382 &adapter->link_speed, 2383 &adapter->link_duplex); 2384 2385 ctrl = rd32(IGC_CTRL); 2386 /* Link status message must follow this format */ 2387 netdev_info(netdev, 2388 "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 2389 netdev->name, 2390 adapter->link_speed, 2391 adapter->link_duplex == FULL_DUPLEX ? 2392 "Full" : "Half", 2393 (ctrl & IGC_CTRL_TFCE) && 2394 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 2395 (ctrl & IGC_CTRL_RFCE) ? "RX" : 2396 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 2397 2398 /* check if SmartSpeed worked */ 2399 igc_check_downshift(hw); 2400 if (phy->speed_downgraded) 2401 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 2402 2403 /* adjust timeout factor according to speed/duplex */ 2404 adapter->tx_timeout_factor = 1; 2405 switch (adapter->link_speed) { 2406 case SPEED_10: 2407 adapter->tx_timeout_factor = 14; 2408 break; 2409 case SPEED_100: 2410 /* maybe add some timeout factor ? */ 2411 break; 2412 } 2413 2414 if (adapter->link_speed != SPEED_1000) 2415 goto no_wait; 2416 2417 /* wait for Remote receiver status OK */ 2418 retry_read_status: 2419 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 2420 &phy_data)) { 2421 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 2422 retry_count) { 2423 msleep(100); 2424 retry_count--; 2425 goto retry_read_status; 2426 } else if (!retry_count) { 2427 dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); 2428 } 2429 } else { 2430 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); 2431 } 2432 no_wait: 2433 netif_carrier_on(netdev); 2434 2435 /* link state has changed, schedule phy info update */ 2436 if (!test_bit(__IGC_DOWN, &adapter->state)) 2437 mod_timer(&adapter->phy_info_timer, 2438 round_jiffies(jiffies + 2 * HZ)); 2439 } 2440 } else { 2441 if (netif_carrier_ok(netdev)) { 2442 adapter->link_speed = 0; 2443 adapter->link_duplex = 0; 2444 2445 /* Links status message must follow this format */ 2446 netdev_info(netdev, "igc: %s NIC Link is Down\n", 2447 netdev->name); 2448 netif_carrier_off(netdev); 2449 2450 /* link state has changed, schedule phy info update */ 2451 if (!test_bit(__IGC_DOWN, &adapter->state)) 2452 mod_timer(&adapter->phy_info_timer, 2453 round_jiffies(jiffies + 2 * HZ)); 2454 2455 /* link is down, time to check for alternate media */ 2456 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 2457 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 2458 schedule_work(&adapter->reset_task); 2459 /* return immediately */ 2460 return; 2461 } 2462 } 2463 2464 /* also check for alternate media here */ 2465 } else if (!netif_carrier_ok(netdev) && 2466 (adapter->flags & IGC_FLAG_MAS_ENABLE)) { 2467 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 2468 schedule_work(&adapter->reset_task); 2469 /* return immediately */ 2470 return; 2471 } 2472 } 2473 } 2474 2475 spin_lock(&adapter->stats64_lock); 2476 igc_update_stats(adapter); 2477 spin_unlock(&adapter->stats64_lock); 2478 2479 for (i = 0; i < adapter->num_tx_queues; i++) { 2480 struct igc_ring *tx_ring = adapter->tx_ring[i]; 2481 2482 if (!netif_carrier_ok(netdev)) { 2483 /* We've lost link, so the controller stops DMA, 2484 * but we've got queued Tx work that's never going 2485 * to get done, so reset controller to flush Tx. 2486 * (Do the reset outside of interrupt context). 2487 */ 2488 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 2489 adapter->tx_timeout_count++; 2490 schedule_work(&adapter->reset_task); 2491 /* return immediately since reset is imminent */ 2492 return; 2493 } 2494 } 2495 2496 /* Force detection of hung controller every watchdog period */ 2497 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2498 } 2499 2500 /* Cause software interrupt to ensure Rx ring is cleaned */ 2501 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 2502 u32 eics = 0; 2503 2504 for (i = 0; i < adapter->num_q_vectors; i++) 2505 eics |= adapter->q_vector[i]->eims_value; 2506 wr32(IGC_EICS, eics); 2507 } else { 2508 wr32(IGC_ICS, IGC_ICS_RXDMT0); 2509 } 2510 2511 /* Reset the timer */ 2512 if (!test_bit(__IGC_DOWN, &adapter->state)) { 2513 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 2514 mod_timer(&adapter->watchdog_timer, 2515 round_jiffies(jiffies + HZ)); 2516 else 2517 mod_timer(&adapter->watchdog_timer, 2518 round_jiffies(jiffies + 2 * HZ)); 2519 } 2520 } 2521 2522 /** 2523 * igc_update_ring_itr - update the dynamic ITR value based on packet size 2524 * @q_vector: pointer to q_vector 2525 * 2526 * Stores a new ITR value based on strictly on packet size. This 2527 * algorithm is less sophisticated than that used in igc_update_itr, 2528 * due to the difficulty of synchronizing statistics across multiple 2529 * receive rings. The divisors and thresholds used by this function 2530 * were determined based on theoretical maximum wire speed and testing 2531 * data, in order to minimize response time while increasing bulk 2532 * throughput. 2533 * NOTE: This function is called only when operating in a multiqueue 2534 * receive environment. 2535 */ 2536 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 2537 { 2538 struct igc_adapter *adapter = q_vector->adapter; 2539 int new_val = q_vector->itr_val; 2540 int avg_wire_size = 0; 2541 unsigned int packets; 2542 2543 /* For non-gigabit speeds, just fix the interrupt rate at 4000 2544 * ints/sec - ITR timer value of 120 ticks. 2545 */ 2546 switch (adapter->link_speed) { 2547 case SPEED_10: 2548 case SPEED_100: 2549 new_val = IGC_4K_ITR; 2550 goto set_itr_val; 2551 default: 2552 break; 2553 } 2554 2555 packets = q_vector->rx.total_packets; 2556 if (packets) 2557 avg_wire_size = q_vector->rx.total_bytes / packets; 2558 2559 packets = q_vector->tx.total_packets; 2560 if (packets) 2561 avg_wire_size = max_t(u32, avg_wire_size, 2562 q_vector->tx.total_bytes / packets); 2563 2564 /* if avg_wire_size isn't set no work was done */ 2565 if (!avg_wire_size) 2566 goto clear_counts; 2567 2568 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 2569 avg_wire_size += 24; 2570 2571 /* Don't starve jumbo frames */ 2572 avg_wire_size = min(avg_wire_size, 3000); 2573 2574 /* Give a little boost to mid-size frames */ 2575 if (avg_wire_size > 300 && avg_wire_size < 1200) 2576 new_val = avg_wire_size / 3; 2577 else 2578 new_val = avg_wire_size / 2; 2579 2580 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2581 if (new_val < IGC_20K_ITR && 2582 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 2583 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 2584 new_val = IGC_20K_ITR; 2585 2586 set_itr_val: 2587 if (new_val != q_vector->itr_val) { 2588 q_vector->itr_val = new_val; 2589 q_vector->set_itr = 1; 2590 } 2591 clear_counts: 2592 q_vector->rx.total_bytes = 0; 2593 q_vector->rx.total_packets = 0; 2594 q_vector->tx.total_bytes = 0; 2595 q_vector->tx.total_packets = 0; 2596 } 2597 2598 /** 2599 * igc_update_itr - update the dynamic ITR value based on statistics 2600 * @q_vector: pointer to q_vector 2601 * @ring_container: ring info to update the itr for 2602 * 2603 * Stores a new ITR value based on packets and byte 2604 * counts during the last interrupt. The advantage of per interrupt 2605 * computation is faster updates and more accurate ITR for the current 2606 * traffic pattern. Constants in this function were computed 2607 * based on theoretical maximum wire speed and thresholds were set based 2608 * on testing data as well as attempting to minimize response time 2609 * while increasing bulk throughput. 2610 * NOTE: These calculations are only valid when operating in a single- 2611 * queue environment. 2612 */ 2613 static void igc_update_itr(struct igc_q_vector *q_vector, 2614 struct igc_ring_container *ring_container) 2615 { 2616 unsigned int packets = ring_container->total_packets; 2617 unsigned int bytes = ring_container->total_bytes; 2618 u8 itrval = ring_container->itr; 2619 2620 /* no packets, exit with status unchanged */ 2621 if (packets == 0) 2622 return; 2623 2624 switch (itrval) { 2625 case lowest_latency: 2626 /* handle TSO and jumbo frames */ 2627 if (bytes / packets > 8000) 2628 itrval = bulk_latency; 2629 else if ((packets < 5) && (bytes > 512)) 2630 itrval = low_latency; 2631 break; 2632 case low_latency: /* 50 usec aka 20000 ints/s */ 2633 if (bytes > 10000) { 2634 /* this if handles the TSO accounting */ 2635 if (bytes / packets > 8000) 2636 itrval = bulk_latency; 2637 else if ((packets < 10) || ((bytes / packets) > 1200)) 2638 itrval = bulk_latency; 2639 else if ((packets > 35)) 2640 itrval = lowest_latency; 2641 } else if (bytes / packets > 2000) { 2642 itrval = bulk_latency; 2643 } else if (packets <= 2 && bytes < 512) { 2644 itrval = lowest_latency; 2645 } 2646 break; 2647 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2648 if (bytes > 25000) { 2649 if (packets > 35) 2650 itrval = low_latency; 2651 } else if (bytes < 1500) { 2652 itrval = low_latency; 2653 } 2654 break; 2655 } 2656 2657 /* clear work counters since we have the values we need */ 2658 ring_container->total_bytes = 0; 2659 ring_container->total_packets = 0; 2660 2661 /* write updated itr to ring container */ 2662 ring_container->itr = itrval; 2663 } 2664 2665 /** 2666 * igc_intr_msi - Interrupt Handler 2667 * @irq: interrupt number 2668 * @data: pointer to a network interface device structure 2669 */ 2670 static irqreturn_t igc_intr_msi(int irq, void *data) 2671 { 2672 struct igc_adapter *adapter = data; 2673 struct igc_q_vector *q_vector = adapter->q_vector[0]; 2674 struct igc_hw *hw = &adapter->hw; 2675 /* read ICR disables interrupts using IAM */ 2676 u32 icr = rd32(IGC_ICR); 2677 2678 igc_write_itr(q_vector); 2679 2680 if (icr & IGC_ICR_DRSTA) 2681 schedule_work(&adapter->reset_task); 2682 2683 if (icr & IGC_ICR_DOUTSYNC) { 2684 /* HW is reporting DMA is out of sync */ 2685 adapter->stats.doosync++; 2686 } 2687 2688 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 2689 hw->mac.get_link_status = 1; 2690 if (!test_bit(__IGC_DOWN, &adapter->state)) 2691 mod_timer(&adapter->watchdog_timer, jiffies + 1); 2692 } 2693 2694 napi_schedule(&q_vector->napi); 2695 2696 return IRQ_HANDLED; 2697 } 2698 2699 /** 2700 * igc_intr - Legacy Interrupt Handler 2701 * @irq: interrupt number 2702 * @data: pointer to a network interface device structure 2703 */ 2704 static irqreturn_t igc_intr(int irq, void *data) 2705 { 2706 struct igc_adapter *adapter = data; 2707 struct igc_q_vector *q_vector = adapter->q_vector[0]; 2708 struct igc_hw *hw = &adapter->hw; 2709 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 2710 * need for the IMC write 2711 */ 2712 u32 icr = rd32(IGC_ICR); 2713 2714 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 2715 * not set, then the adapter didn't send an interrupt 2716 */ 2717 if (!(icr & IGC_ICR_INT_ASSERTED)) 2718 return IRQ_NONE; 2719 2720 igc_write_itr(q_vector); 2721 2722 if (icr & IGC_ICR_DRSTA) 2723 schedule_work(&adapter->reset_task); 2724 2725 if (icr & IGC_ICR_DOUTSYNC) { 2726 /* HW is reporting DMA is out of sync */ 2727 adapter->stats.doosync++; 2728 } 2729 2730 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 2731 hw->mac.get_link_status = 1; 2732 /* guard against interrupt when we're going down */ 2733 if (!test_bit(__IGC_DOWN, &adapter->state)) 2734 mod_timer(&adapter->watchdog_timer, jiffies + 1); 2735 } 2736 2737 napi_schedule(&q_vector->napi); 2738 2739 return IRQ_HANDLED; 2740 } 2741 2742 static void igc_set_itr(struct igc_q_vector *q_vector) 2743 { 2744 struct igc_adapter *adapter = q_vector->adapter; 2745 u32 new_itr = q_vector->itr_val; 2746 u8 current_itr = 0; 2747 2748 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2749 switch (adapter->link_speed) { 2750 case SPEED_10: 2751 case SPEED_100: 2752 current_itr = 0; 2753 new_itr = IGC_4K_ITR; 2754 goto set_itr_now; 2755 default: 2756 break; 2757 } 2758 2759 igc_update_itr(q_vector, &q_vector->tx); 2760 igc_update_itr(q_vector, &q_vector->rx); 2761 2762 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 2763 2764 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2765 if (current_itr == lowest_latency && 2766 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 2767 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 2768 current_itr = low_latency; 2769 2770 switch (current_itr) { 2771 /* counts and packets in update_itr are dependent on these numbers */ 2772 case lowest_latency: 2773 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 2774 break; 2775 case low_latency: 2776 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 2777 break; 2778 case bulk_latency: 2779 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 2780 break; 2781 default: 2782 break; 2783 } 2784 2785 set_itr_now: 2786 if (new_itr != q_vector->itr_val) { 2787 /* this attempts to bias the interrupt rate towards Bulk 2788 * by adding intermediate steps when interrupt rate is 2789 * increasing 2790 */ 2791 new_itr = new_itr > q_vector->itr_val ? 2792 max((new_itr * q_vector->itr_val) / 2793 (new_itr + (q_vector->itr_val >> 2)), 2794 new_itr) : new_itr; 2795 /* Don't write the value here; it resets the adapter's 2796 * internal timer, and causes us to delay far longer than 2797 * we should between interrupts. Instead, we write the ITR 2798 * value at the beginning of the next interrupt so the timing 2799 * ends up being correct. 2800 */ 2801 q_vector->itr_val = new_itr; 2802 q_vector->set_itr = 1; 2803 } 2804 } 2805 2806 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 2807 { 2808 struct igc_adapter *adapter = q_vector->adapter; 2809 struct igc_hw *hw = &adapter->hw; 2810 2811 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 2812 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 2813 if (adapter->num_q_vectors == 1) 2814 igc_set_itr(q_vector); 2815 else 2816 igc_update_ring_itr(q_vector); 2817 } 2818 2819 if (!test_bit(__IGC_DOWN, &adapter->state)) { 2820 if (adapter->msix_entries) 2821 wr32(IGC_EIMS, q_vector->eims_value); 2822 else 2823 igc_irq_enable(adapter); 2824 } 2825 } 2826 2827 /** 2828 * igc_poll - NAPI Rx polling callback 2829 * @napi: napi polling structure 2830 * @budget: count of how many packets we should handle 2831 */ 2832 static int igc_poll(struct napi_struct *napi, int budget) 2833 { 2834 struct igc_q_vector *q_vector = container_of(napi, 2835 struct igc_q_vector, 2836 napi); 2837 bool clean_complete = true; 2838 int work_done = 0; 2839 2840 if (q_vector->tx.ring) 2841 clean_complete = igc_clean_tx_irq(q_vector, budget); 2842 2843 if (q_vector->rx.ring) { 2844 int cleaned = igc_clean_rx_irq(q_vector, budget); 2845 2846 work_done += cleaned; 2847 if (cleaned >= budget) 2848 clean_complete = false; 2849 } 2850 2851 /* If all work not completed, return budget and keep polling */ 2852 if (!clean_complete) 2853 return budget; 2854 2855 /* Exit the polling mode, but don't re-enable interrupts if stack might 2856 * poll us due to busy-polling 2857 */ 2858 if (likely(napi_complete_done(napi, work_done))) 2859 igc_ring_irq_enable(q_vector); 2860 2861 return min(work_done, budget - 1); 2862 } 2863 2864 /** 2865 * igc_set_interrupt_capability - set MSI or MSI-X if supported 2866 * @adapter: Pointer to adapter structure 2867 * 2868 * Attempt to configure interrupts using the best available 2869 * capabilities of the hardware and kernel. 2870 */ 2871 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 2872 bool msix) 2873 { 2874 int numvecs, i; 2875 int err; 2876 2877 if (!msix) 2878 goto msi_only; 2879 adapter->flags |= IGC_FLAG_HAS_MSIX; 2880 2881 /* Number of supported queues. */ 2882 adapter->num_rx_queues = adapter->rss_queues; 2883 2884 adapter->num_tx_queues = adapter->rss_queues; 2885 2886 /* start with one vector for every Rx queue */ 2887 numvecs = adapter->num_rx_queues; 2888 2889 /* if Tx handler is separate add 1 for every Tx queue */ 2890 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 2891 numvecs += adapter->num_tx_queues; 2892 2893 /* store the number of vectors reserved for queues */ 2894 adapter->num_q_vectors = numvecs; 2895 2896 /* add 1 vector for link status interrupts */ 2897 numvecs++; 2898 2899 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 2900 GFP_KERNEL); 2901 2902 if (!adapter->msix_entries) 2903 return; 2904 2905 /* populate entry values */ 2906 for (i = 0; i < numvecs; i++) 2907 adapter->msix_entries[i].entry = i; 2908 2909 err = pci_enable_msix_range(adapter->pdev, 2910 adapter->msix_entries, 2911 numvecs, 2912 numvecs); 2913 if (err > 0) 2914 return; 2915 2916 kfree(adapter->msix_entries); 2917 adapter->msix_entries = NULL; 2918 2919 igc_reset_interrupt_capability(adapter); 2920 2921 msi_only: 2922 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 2923 2924 adapter->rss_queues = 1; 2925 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 2926 adapter->num_rx_queues = 1; 2927 adapter->num_tx_queues = 1; 2928 adapter->num_q_vectors = 1; 2929 if (!pci_enable_msi(adapter->pdev)) 2930 adapter->flags |= IGC_FLAG_HAS_MSI; 2931 } 2932 2933 static void igc_add_ring(struct igc_ring *ring, 2934 struct igc_ring_container *head) 2935 { 2936 head->ring = ring; 2937 head->count++; 2938 } 2939 2940 /** 2941 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 2942 * @adapter: board private structure to initialize 2943 * @v_count: q_vectors allocated on adapter, used for ring interleaving 2944 * @v_idx: index of vector in adapter struct 2945 * @txr_count: total number of Tx rings to allocate 2946 * @txr_idx: index of first Tx ring to allocate 2947 * @rxr_count: total number of Rx rings to allocate 2948 * @rxr_idx: index of first Rx ring to allocate 2949 * 2950 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2951 */ 2952 static int igc_alloc_q_vector(struct igc_adapter *adapter, 2953 unsigned int v_count, unsigned int v_idx, 2954 unsigned int txr_count, unsigned int txr_idx, 2955 unsigned int rxr_count, unsigned int rxr_idx) 2956 { 2957 struct igc_q_vector *q_vector; 2958 struct igc_ring *ring; 2959 int ring_count, size; 2960 2961 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 2962 if (txr_count > 1 || rxr_count > 1) 2963 return -ENOMEM; 2964 2965 ring_count = txr_count + rxr_count; 2966 size = sizeof(struct igc_q_vector) + 2967 (sizeof(struct igc_ring) * ring_count); 2968 2969 /* allocate q_vector and rings */ 2970 q_vector = adapter->q_vector[v_idx]; 2971 if (!q_vector) 2972 q_vector = kzalloc(size, GFP_KERNEL); 2973 else 2974 memset(q_vector, 0, size); 2975 if (!q_vector) 2976 return -ENOMEM; 2977 2978 /* initialize NAPI */ 2979 netif_napi_add(adapter->netdev, &q_vector->napi, 2980 igc_poll, 64); 2981 2982 /* tie q_vector and adapter together */ 2983 adapter->q_vector[v_idx] = q_vector; 2984 q_vector->adapter = adapter; 2985 2986 /* initialize work limits */ 2987 q_vector->tx.work_limit = adapter->tx_work_limit; 2988 2989 /* initialize ITR configuration */ 2990 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 2991 q_vector->itr_val = IGC_START_ITR; 2992 2993 /* initialize pointer to rings */ 2994 ring = q_vector->ring; 2995 2996 /* initialize ITR */ 2997 if (rxr_count) { 2998 /* rx or rx/tx vector */ 2999 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 3000 q_vector->itr_val = adapter->rx_itr_setting; 3001 } else { 3002 /* tx only vector */ 3003 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 3004 q_vector->itr_val = adapter->tx_itr_setting; 3005 } 3006 3007 if (txr_count) { 3008 /* assign generic ring traits */ 3009 ring->dev = &adapter->pdev->dev; 3010 ring->netdev = adapter->netdev; 3011 3012 /* configure backlink on ring */ 3013 ring->q_vector = q_vector; 3014 3015 /* update q_vector Tx values */ 3016 igc_add_ring(ring, &q_vector->tx); 3017 3018 /* apply Tx specific ring traits */ 3019 ring->count = adapter->tx_ring_count; 3020 ring->queue_index = txr_idx; 3021 3022 /* assign ring to adapter */ 3023 adapter->tx_ring[txr_idx] = ring; 3024 3025 /* push pointer to next ring */ 3026 ring++; 3027 } 3028 3029 if (rxr_count) { 3030 /* assign generic ring traits */ 3031 ring->dev = &adapter->pdev->dev; 3032 ring->netdev = adapter->netdev; 3033 3034 /* configure backlink on ring */ 3035 ring->q_vector = q_vector; 3036 3037 /* update q_vector Rx values */ 3038 igc_add_ring(ring, &q_vector->rx); 3039 3040 /* apply Rx specific ring traits */ 3041 ring->count = adapter->rx_ring_count; 3042 ring->queue_index = rxr_idx; 3043 3044 /* assign ring to adapter */ 3045 adapter->rx_ring[rxr_idx] = ring; 3046 } 3047 3048 return 0; 3049 } 3050 3051 /** 3052 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 3053 * @adapter: board private structure to initialize 3054 * 3055 * We allocate one q_vector per queue interrupt. If allocation fails we 3056 * return -ENOMEM. 3057 */ 3058 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 3059 { 3060 int rxr_remaining = adapter->num_rx_queues; 3061 int txr_remaining = adapter->num_tx_queues; 3062 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 3063 int q_vectors = adapter->num_q_vectors; 3064 int err; 3065 3066 if (q_vectors >= (rxr_remaining + txr_remaining)) { 3067 for (; rxr_remaining; v_idx++) { 3068 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 3069 0, 0, 1, rxr_idx); 3070 3071 if (err) 3072 goto err_out; 3073 3074 /* update counts and index */ 3075 rxr_remaining--; 3076 rxr_idx++; 3077 } 3078 } 3079 3080 for (; v_idx < q_vectors; v_idx++) { 3081 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 3082 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 3083 3084 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 3085 tqpv, txr_idx, rqpv, rxr_idx); 3086 3087 if (err) 3088 goto err_out; 3089 3090 /* update counts and index */ 3091 rxr_remaining -= rqpv; 3092 txr_remaining -= tqpv; 3093 rxr_idx++; 3094 txr_idx++; 3095 } 3096 3097 return 0; 3098 3099 err_out: 3100 adapter->num_tx_queues = 0; 3101 adapter->num_rx_queues = 0; 3102 adapter->num_q_vectors = 0; 3103 3104 while (v_idx--) 3105 igc_free_q_vector(adapter, v_idx); 3106 3107 return -ENOMEM; 3108 } 3109 3110 /** 3111 * igc_cache_ring_register - Descriptor ring to register mapping 3112 * @adapter: board private structure to initialize 3113 * 3114 * Once we know the feature-set enabled for the device, we'll cache 3115 * the register offset the descriptor ring is assigned to. 3116 */ 3117 static void igc_cache_ring_register(struct igc_adapter *adapter) 3118 { 3119 int i = 0, j = 0; 3120 3121 switch (adapter->hw.mac.type) { 3122 case igc_i225: 3123 /* Fall through */ 3124 default: 3125 for (; i < adapter->num_rx_queues; i++) 3126 adapter->rx_ring[i]->reg_idx = i; 3127 for (; j < adapter->num_tx_queues; j++) 3128 adapter->tx_ring[j]->reg_idx = j; 3129 break; 3130 } 3131 } 3132 3133 /** 3134 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 3135 * @adapter: Pointer to adapter structure 3136 * 3137 * This function initializes the interrupts and allocates all of the queues. 3138 */ 3139 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 3140 { 3141 struct pci_dev *pdev = adapter->pdev; 3142 int err = 0; 3143 3144 igc_set_interrupt_capability(adapter, msix); 3145 3146 err = igc_alloc_q_vectors(adapter); 3147 if (err) { 3148 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 3149 goto err_alloc_q_vectors; 3150 } 3151 3152 igc_cache_ring_register(adapter); 3153 3154 return 0; 3155 3156 err_alloc_q_vectors: 3157 igc_reset_interrupt_capability(adapter); 3158 return err; 3159 } 3160 3161 static void igc_free_irq(struct igc_adapter *adapter) 3162 { 3163 if (adapter->msix_entries) { 3164 int vector = 0, i; 3165 3166 free_irq(adapter->msix_entries[vector++].vector, adapter); 3167 3168 for (i = 0; i < adapter->num_q_vectors; i++) 3169 free_irq(adapter->msix_entries[vector++].vector, 3170 adapter->q_vector[i]); 3171 } else { 3172 free_irq(adapter->pdev->irq, adapter); 3173 } 3174 } 3175 3176 /** 3177 * igc_irq_disable - Mask off interrupt generation on the NIC 3178 * @adapter: board private structure 3179 */ 3180 static void igc_irq_disable(struct igc_adapter *adapter) 3181 { 3182 struct igc_hw *hw = &adapter->hw; 3183 3184 if (adapter->msix_entries) { 3185 u32 regval = rd32(IGC_EIAM); 3186 3187 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3188 wr32(IGC_EIMC, adapter->eims_enable_mask); 3189 regval = rd32(IGC_EIAC); 3190 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 3191 } 3192 3193 wr32(IGC_IAM, 0); 3194 wr32(IGC_IMC, ~0); 3195 wrfl(); 3196 3197 if (adapter->msix_entries) { 3198 int vector = 0, i; 3199 3200 synchronize_irq(adapter->msix_entries[vector++].vector); 3201 3202 for (i = 0; i < adapter->num_q_vectors; i++) 3203 synchronize_irq(adapter->msix_entries[vector++].vector); 3204 } else { 3205 synchronize_irq(adapter->pdev->irq); 3206 } 3207 } 3208 3209 /** 3210 * igc_irq_enable - Enable default interrupt generation settings 3211 * @adapter: board private structure 3212 */ 3213 static void igc_irq_enable(struct igc_adapter *adapter) 3214 { 3215 struct igc_hw *hw = &adapter->hw; 3216 3217 if (adapter->msix_entries) { 3218 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3219 u32 regval = rd32(IGC_EIAC); 3220 3221 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3222 regval = rd32(IGC_EIAM); 3223 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3224 wr32(IGC_EIMS, adapter->eims_enable_mask); 3225 wr32(IGC_IMS, ims); 3226 } else { 3227 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3228 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3229 } 3230 } 3231 3232 /** 3233 * igc_request_irq - initialize interrupts 3234 * @adapter: Pointer to adapter structure 3235 * 3236 * Attempts to configure interrupts using the best available 3237 * capabilities of the hardware and kernel. 3238 */ 3239 static int igc_request_irq(struct igc_adapter *adapter) 3240 { 3241 struct net_device *netdev = adapter->netdev; 3242 struct pci_dev *pdev = adapter->pdev; 3243 int err = 0; 3244 3245 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 3246 err = igc_request_msix(adapter); 3247 if (!err) 3248 goto request_done; 3249 /* fall back to MSI */ 3250 igc_free_all_tx_resources(adapter); 3251 igc_free_all_rx_resources(adapter); 3252 3253 igc_clear_interrupt_scheme(adapter); 3254 err = igc_init_interrupt_scheme(adapter, false); 3255 if (err) 3256 goto request_done; 3257 igc_setup_all_tx_resources(adapter); 3258 igc_setup_all_rx_resources(adapter); 3259 igc_configure(adapter); 3260 } 3261 3262 igc_assign_vector(adapter->q_vector[0], 0); 3263 3264 if (adapter->flags & IGC_FLAG_HAS_MSI) { 3265 err = request_irq(pdev->irq, &igc_intr_msi, 0, 3266 netdev->name, adapter); 3267 if (!err) 3268 goto request_done; 3269 3270 /* fall back to legacy interrupts */ 3271 igc_reset_interrupt_capability(adapter); 3272 adapter->flags &= ~IGC_FLAG_HAS_MSI; 3273 } 3274 3275 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 3276 netdev->name, adapter); 3277 3278 if (err) 3279 dev_err(&pdev->dev, "Error %d getting interrupt\n", 3280 err); 3281 3282 request_done: 3283 return err; 3284 } 3285 3286 static void igc_write_itr(struct igc_q_vector *q_vector) 3287 { 3288 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 3289 3290 if (!q_vector->set_itr) 3291 return; 3292 3293 if (!itr_val) 3294 itr_val = IGC_ITR_VAL_MASK; 3295 3296 itr_val |= IGC_EITR_CNT_IGNR; 3297 3298 writel(itr_val, q_vector->itr_register); 3299 q_vector->set_itr = 0; 3300 } 3301 3302 /** 3303 * igc_open - Called when a network interface is made active 3304 * @netdev: network interface device structure 3305 * 3306 * Returns 0 on success, negative value on failure 3307 * 3308 * The open entry point is called when a network interface is made 3309 * active by the system (IFF_UP). At this point all resources needed 3310 * for transmit and receive operations are allocated, the interrupt 3311 * handler is registered with the OS, the watchdog timer is started, 3312 * and the stack is notified that the interface is ready. 3313 */ 3314 static int __igc_open(struct net_device *netdev, bool resuming) 3315 { 3316 struct igc_adapter *adapter = netdev_priv(netdev); 3317 struct igc_hw *hw = &adapter->hw; 3318 int err = 0; 3319 int i = 0; 3320 3321 /* disallow open during test */ 3322 3323 if (test_bit(__IGC_TESTING, &adapter->state)) { 3324 WARN_ON(resuming); 3325 return -EBUSY; 3326 } 3327 3328 netif_carrier_off(netdev); 3329 3330 /* allocate transmit descriptors */ 3331 err = igc_setup_all_tx_resources(adapter); 3332 if (err) 3333 goto err_setup_tx; 3334 3335 /* allocate receive descriptors */ 3336 err = igc_setup_all_rx_resources(adapter); 3337 if (err) 3338 goto err_setup_rx; 3339 3340 igc_power_up_link(adapter); 3341 3342 igc_configure(adapter); 3343 3344 err = igc_request_irq(adapter); 3345 if (err) 3346 goto err_req_irq; 3347 3348 /* Notify the stack of the actual queue counts. */ 3349 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3350 if (err) 3351 goto err_set_queues; 3352 3353 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3354 if (err) 3355 goto err_set_queues; 3356 3357 clear_bit(__IGC_DOWN, &adapter->state); 3358 3359 for (i = 0; i < adapter->num_q_vectors; i++) 3360 napi_enable(&adapter->q_vector[i]->napi); 3361 3362 /* Clear any pending interrupts. */ 3363 rd32(IGC_ICR); 3364 igc_irq_enable(adapter); 3365 3366 netif_tx_start_all_queues(netdev); 3367 3368 /* start the watchdog. */ 3369 hw->mac.get_link_status = 1; 3370 schedule_work(&adapter->watchdog_task); 3371 3372 return IGC_SUCCESS; 3373 3374 err_set_queues: 3375 igc_free_irq(adapter); 3376 err_req_irq: 3377 igc_release_hw_control(adapter); 3378 igc_power_down_link(adapter); 3379 igc_free_all_rx_resources(adapter); 3380 err_setup_rx: 3381 igc_free_all_tx_resources(adapter); 3382 err_setup_tx: 3383 igc_reset(adapter); 3384 3385 return err; 3386 } 3387 3388 static int igc_open(struct net_device *netdev) 3389 { 3390 return __igc_open(netdev, false); 3391 } 3392 3393 /** 3394 * igc_close - Disables a network interface 3395 * @netdev: network interface device structure 3396 * 3397 * Returns 0, this is not allowed to fail 3398 * 3399 * The close entry point is called when an interface is de-activated 3400 * by the OS. The hardware is still under the driver's control, but 3401 * needs to be disabled. A global MAC reset is issued to stop the 3402 * hardware, and all transmit and receive resources are freed. 3403 */ 3404 static int __igc_close(struct net_device *netdev, bool suspending) 3405 { 3406 struct igc_adapter *adapter = netdev_priv(netdev); 3407 3408 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 3409 3410 igc_down(adapter); 3411 3412 igc_release_hw_control(adapter); 3413 3414 igc_free_irq(adapter); 3415 3416 igc_free_all_tx_resources(adapter); 3417 igc_free_all_rx_resources(adapter); 3418 3419 return 0; 3420 } 3421 3422 static int igc_close(struct net_device *netdev) 3423 { 3424 if (netif_device_present(netdev) || netdev->dismantle) 3425 return __igc_close(netdev, false); 3426 return 0; 3427 } 3428 3429 static const struct net_device_ops igc_netdev_ops = { 3430 .ndo_open = igc_open, 3431 .ndo_stop = igc_close, 3432 .ndo_start_xmit = igc_xmit_frame, 3433 .ndo_set_mac_address = igc_set_mac, 3434 .ndo_change_mtu = igc_change_mtu, 3435 .ndo_get_stats = igc_get_stats, 3436 }; 3437 3438 /* PCIe configuration access */ 3439 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 3440 { 3441 struct igc_adapter *adapter = hw->back; 3442 3443 pci_read_config_word(adapter->pdev, reg, value); 3444 } 3445 3446 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 3447 { 3448 struct igc_adapter *adapter = hw->back; 3449 3450 pci_write_config_word(adapter->pdev, reg, *value); 3451 } 3452 3453 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 3454 { 3455 struct igc_adapter *adapter = hw->back; 3456 u16 cap_offset; 3457 3458 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 3459 if (!cap_offset) 3460 return -IGC_ERR_CONFIG; 3461 3462 pci_read_config_word(adapter->pdev, cap_offset + reg, value); 3463 3464 return IGC_SUCCESS; 3465 } 3466 3467 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 3468 { 3469 struct igc_adapter *adapter = hw->back; 3470 u16 cap_offset; 3471 3472 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 3473 if (!cap_offset) 3474 return -IGC_ERR_CONFIG; 3475 3476 pci_write_config_word(adapter->pdev, cap_offset + reg, *value); 3477 3478 return IGC_SUCCESS; 3479 } 3480 3481 u32 igc_rd32(struct igc_hw *hw, u32 reg) 3482 { 3483 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 3484 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 3485 u32 value = 0; 3486 3487 if (IGC_REMOVED(hw_addr)) 3488 return ~value; 3489 3490 value = readl(&hw_addr[reg]); 3491 3492 /* reads should not return all F's */ 3493 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 3494 struct net_device *netdev = igc->netdev; 3495 3496 hw->hw_addr = NULL; 3497 netif_device_detach(netdev); 3498 netdev_err(netdev, "PCIe link lost, device now detached\n"); 3499 } 3500 3501 return value; 3502 } 3503 3504 /** 3505 * igc_probe - Device Initialization Routine 3506 * @pdev: PCI device information struct 3507 * @ent: entry in igc_pci_tbl 3508 * 3509 * Returns 0 on success, negative on failure 3510 * 3511 * igc_probe initializes an adapter identified by a pci_dev structure. 3512 * The OS initialization, configuring the adapter private structure, 3513 * and a hardware reset occur. 3514 */ 3515 static int igc_probe(struct pci_dev *pdev, 3516 const struct pci_device_id *ent) 3517 { 3518 struct igc_adapter *adapter; 3519 struct net_device *netdev; 3520 struct igc_hw *hw; 3521 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 3522 int err; 3523 3524 err = pci_enable_device_mem(pdev); 3525 if (err) 3526 return err; 3527 3528 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 3529 if (!err) { 3530 err = dma_set_coherent_mask(&pdev->dev, 3531 DMA_BIT_MASK(64)); 3532 } else { 3533 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 3534 if (err) { 3535 err = dma_set_coherent_mask(&pdev->dev, 3536 DMA_BIT_MASK(32)); 3537 if (err) { 3538 dev_err(&pdev->dev, "igc: Wrong DMA config\n"); 3539 goto err_dma; 3540 } 3541 } 3542 } 3543 3544 err = pci_request_selected_regions(pdev, 3545 pci_select_bars(pdev, 3546 IORESOURCE_MEM), 3547 igc_driver_name); 3548 if (err) 3549 goto err_pci_reg; 3550 3551 pci_enable_pcie_error_reporting(pdev); 3552 3553 pci_set_master(pdev); 3554 3555 err = -ENOMEM; 3556 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 3557 IGC_MAX_TX_QUEUES); 3558 3559 if (!netdev) 3560 goto err_alloc_etherdev; 3561 3562 SET_NETDEV_DEV(netdev, &pdev->dev); 3563 3564 pci_set_drvdata(pdev, netdev); 3565 adapter = netdev_priv(netdev); 3566 adapter->netdev = netdev; 3567 adapter->pdev = pdev; 3568 hw = &adapter->hw; 3569 hw->back = adapter; 3570 adapter->port_num = hw->bus.func; 3571 adapter->msg_enable = GENMASK(debug - 1, 0); 3572 3573 err = pci_save_state(pdev); 3574 if (err) 3575 goto err_ioremap; 3576 3577 err = -EIO; 3578 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 3579 pci_resource_len(pdev, 0)); 3580 if (!adapter->io_addr) 3581 goto err_ioremap; 3582 3583 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 3584 hw->hw_addr = adapter->io_addr; 3585 3586 netdev->netdev_ops = &igc_netdev_ops; 3587 3588 netdev->watchdog_timeo = 5 * HZ; 3589 3590 netdev->mem_start = pci_resource_start(pdev, 0); 3591 netdev->mem_end = pci_resource_end(pdev, 0); 3592 3593 /* PCI config space info */ 3594 hw->vendor_id = pdev->vendor; 3595 hw->device_id = pdev->device; 3596 hw->revision_id = pdev->revision; 3597 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3598 hw->subsystem_device_id = pdev->subsystem_device; 3599 3600 /* Copy the default MAC and PHY function pointers */ 3601 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 3602 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 3603 3604 /* Initialize skew-specific constants */ 3605 err = ei->get_invariants(hw); 3606 if (err) 3607 goto err_sw_init; 3608 3609 /* setup the private structure */ 3610 err = igc_sw_init(adapter); 3611 if (err) 3612 goto err_sw_init; 3613 3614 /* MTU range: 68 - 9216 */ 3615 netdev->min_mtu = ETH_MIN_MTU; 3616 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 3617 3618 /* before reading the NVM, reset the controller to put the device in a 3619 * known good starting state 3620 */ 3621 hw->mac.ops.reset_hw(hw); 3622 3623 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 3624 /* copy the MAC address out of the NVM */ 3625 if (hw->mac.ops.read_mac_addr(hw)) 3626 dev_err(&pdev->dev, "NVM Read Error\n"); 3627 } 3628 3629 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 3630 3631 if (!is_valid_ether_addr(netdev->dev_addr)) { 3632 dev_err(&pdev->dev, "Invalid MAC Address\n"); 3633 err = -EIO; 3634 goto err_eeprom; 3635 } 3636 3637 /* configure RXPBSIZE and TXPBSIZE */ 3638 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 3639 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 3640 3641 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 3642 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 3643 3644 INIT_WORK(&adapter->reset_task, igc_reset_task); 3645 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 3646 3647 /* Initialize link properties that are user-changeable */ 3648 adapter->fc_autoneg = true; 3649 hw->mac.autoneg = true; 3650 hw->phy.autoneg_advertised = 0xaf; 3651 3652 hw->fc.requested_mode = igc_fc_default; 3653 hw->fc.current_mode = igc_fc_default; 3654 3655 /* reset the hardware with the new settings */ 3656 igc_reset(adapter); 3657 3658 /* let the f/w know that the h/w is now under the control of the 3659 * driver. 3660 */ 3661 igc_get_hw_control(adapter); 3662 3663 strncpy(netdev->name, "eth%d", IFNAMSIZ); 3664 err = register_netdev(netdev); 3665 if (err) 3666 goto err_register; 3667 3668 /* carrier off reporting is important to ethtool even BEFORE open */ 3669 netif_carrier_off(netdev); 3670 3671 /* Check if Media Autosense is enabled */ 3672 adapter->ei = *ei; 3673 3674 /* print pcie link status and MAC address */ 3675 pcie_print_link_status(pdev); 3676 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 3677 3678 return 0; 3679 3680 err_register: 3681 igc_release_hw_control(adapter); 3682 err_eeprom: 3683 if (!igc_check_reset_block(hw)) 3684 igc_reset_phy(hw); 3685 err_sw_init: 3686 igc_clear_interrupt_scheme(adapter); 3687 iounmap(adapter->io_addr); 3688 err_ioremap: 3689 free_netdev(netdev); 3690 err_alloc_etherdev: 3691 pci_release_selected_regions(pdev, 3692 pci_select_bars(pdev, IORESOURCE_MEM)); 3693 err_pci_reg: 3694 err_dma: 3695 pci_disable_device(pdev); 3696 return err; 3697 } 3698 3699 /** 3700 * igc_remove - Device Removal Routine 3701 * @pdev: PCI device information struct 3702 * 3703 * igc_remove is called by the PCI subsystem to alert the driver 3704 * that it should release a PCI device. This could be caused by a 3705 * Hot-Plug event, or because the driver is going to be removed from 3706 * memory. 3707 */ 3708 static void igc_remove(struct pci_dev *pdev) 3709 { 3710 struct net_device *netdev = pci_get_drvdata(pdev); 3711 struct igc_adapter *adapter = netdev_priv(netdev); 3712 3713 set_bit(__IGC_DOWN, &adapter->state); 3714 3715 del_timer_sync(&adapter->watchdog_timer); 3716 del_timer_sync(&adapter->phy_info_timer); 3717 3718 cancel_work_sync(&adapter->reset_task); 3719 cancel_work_sync(&adapter->watchdog_task); 3720 3721 /* Release control of h/w to f/w. If f/w is AMT enabled, this 3722 * would have already happened in close and is redundant. 3723 */ 3724 igc_release_hw_control(adapter); 3725 unregister_netdev(netdev); 3726 3727 igc_clear_interrupt_scheme(adapter); 3728 pci_iounmap(pdev, adapter->io_addr); 3729 pci_release_mem_regions(pdev); 3730 3731 kfree(adapter->mac_table); 3732 kfree(adapter->shadow_vfta); 3733 free_netdev(netdev); 3734 3735 pci_disable_pcie_error_reporting(pdev); 3736 3737 pci_disable_device(pdev); 3738 } 3739 3740 static struct pci_driver igc_driver = { 3741 .name = igc_driver_name, 3742 .id_table = igc_pci_tbl, 3743 .probe = igc_probe, 3744 .remove = igc_remove, 3745 }; 3746 3747 static void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 3748 const u32 max_rss_queues) 3749 { 3750 /* Determine if we need to pair queues. */ 3751 /* If rss_queues > half of max_rss_queues, pair the queues in 3752 * order to conserve interrupts due to limited supply. 3753 */ 3754 if (adapter->rss_queues > (max_rss_queues / 2)) 3755 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 3756 else 3757 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 3758 } 3759 3760 static unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 3761 { 3762 unsigned int max_rss_queues; 3763 3764 /* Determine the maximum number of RSS queues supported. */ 3765 max_rss_queues = IGC_MAX_RX_QUEUES; 3766 3767 return max_rss_queues; 3768 } 3769 3770 static void igc_init_queue_configuration(struct igc_adapter *adapter) 3771 { 3772 u32 max_rss_queues; 3773 3774 max_rss_queues = igc_get_max_rss_queues(adapter); 3775 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3776 3777 igc_set_flag_queue_pairs(adapter, max_rss_queues); 3778 } 3779 3780 /** 3781 * igc_sw_init - Initialize general software structures (struct igc_adapter) 3782 * @adapter: board private structure to initialize 3783 * 3784 * igc_sw_init initializes the Adapter private data structure. 3785 * Fields are initialized based on PCI device information and 3786 * OS network device settings (MTU size). 3787 */ 3788 static int igc_sw_init(struct igc_adapter *adapter) 3789 { 3790 struct net_device *netdev = adapter->netdev; 3791 struct pci_dev *pdev = adapter->pdev; 3792 struct igc_hw *hw = &adapter->hw; 3793 3794 int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count; 3795 3796 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 3797 3798 /* set default ring sizes */ 3799 adapter->tx_ring_count = IGC_DEFAULT_TXD; 3800 adapter->rx_ring_count = IGC_DEFAULT_RXD; 3801 3802 /* set default ITR values */ 3803 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 3804 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 3805 3806 /* set default work limits */ 3807 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 3808 3809 /* adjust max frame to be at least the size of a standard frame */ 3810 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 3811 VLAN_HLEN; 3812 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3813 3814 spin_lock_init(&adapter->nfc_lock); 3815 spin_lock_init(&adapter->stats64_lock); 3816 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 3817 adapter->flags |= IGC_FLAG_HAS_MSIX; 3818 3819 adapter->mac_table = kzalloc(size, GFP_ATOMIC); 3820 if (!adapter->mac_table) 3821 return -ENOMEM; 3822 3823 igc_init_queue_configuration(adapter); 3824 3825 /* This call may decrease the number of queues */ 3826 if (igc_init_interrupt_scheme(adapter, true)) { 3827 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 3828 return -ENOMEM; 3829 } 3830 3831 /* Explicitly disable IRQ since the NIC can be in any state. */ 3832 igc_irq_disable(adapter); 3833 3834 set_bit(__IGC_DOWN, &adapter->state); 3835 3836 return 0; 3837 } 3838 3839 /** 3840 * igc_get_hw_dev - return device 3841 * @hw: pointer to hardware structure 3842 * 3843 * used by hardware layer to print debugging information 3844 */ 3845 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 3846 { 3847 struct igc_adapter *adapter = hw->back; 3848 3849 return adapter->netdev; 3850 } 3851 3852 /** 3853 * igc_init_module - Driver Registration Routine 3854 * 3855 * igc_init_module is the first routine called when the driver is 3856 * loaded. All it does is register with the PCI subsystem. 3857 */ 3858 static int __init igc_init_module(void) 3859 { 3860 int ret; 3861 3862 pr_info("%s - version %s\n", 3863 igc_driver_string, igc_driver_version); 3864 3865 pr_info("%s\n", igc_copyright); 3866 3867 ret = pci_register_driver(&igc_driver); 3868 return ret; 3869 } 3870 3871 module_init(igc_init_module); 3872 3873 /** 3874 * igc_exit_module - Driver Exit Cleanup Routine 3875 * 3876 * igc_exit_module is called just before the driver is removed 3877 * from memory. 3878 */ 3879 static void __exit igc_exit_module(void) 3880 { 3881 pci_unregister_driver(&igc_driver); 3882 } 3883 3884 module_exit(igc_exit_module); 3885 /* igc_main.c */ 3886