1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 
16 #include <net/ipv6.h>
17 
18 #include "igc.h"
19 #include "igc_hw.h"
20 #include "igc_tsn.h"
21 #include "igc_xdp.h"
22 
23 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
24 
25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26 
27 #define IGC_XDP_PASS		0
28 #define IGC_XDP_CONSUMED	BIT(0)
29 #define IGC_XDP_TX		BIT(1)
30 #define IGC_XDP_REDIRECT	BIT(2)
31 
32 static int debug = -1;
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* reset next_to_use and next_to_clean */
258 	tx_ring->next_to_use = 0;
259 	tx_ring->next_to_clean = 0;
260 }
261 
262 /**
263  * igc_free_tx_resources - Free Tx Resources per Queue
264  * @tx_ring: Tx descriptor ring for a specific queue
265  *
266  * Free all transmit software resources
267  */
268 void igc_free_tx_resources(struct igc_ring *tx_ring)
269 {
270 	igc_clean_tx_ring(tx_ring);
271 
272 	vfree(tx_ring->tx_buffer_info);
273 	tx_ring->tx_buffer_info = NULL;
274 
275 	/* if not set, then don't free */
276 	if (!tx_ring->desc)
277 		return;
278 
279 	dma_free_coherent(tx_ring->dev, tx_ring->size,
280 			  tx_ring->desc, tx_ring->dma);
281 
282 	tx_ring->desc = NULL;
283 }
284 
285 /**
286  * igc_free_all_tx_resources - Free Tx Resources for All Queues
287  * @adapter: board private structure
288  *
289  * Free all transmit software resources
290  */
291 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
292 {
293 	int i;
294 
295 	for (i = 0; i < adapter->num_tx_queues; i++)
296 		igc_free_tx_resources(adapter->tx_ring[i]);
297 }
298 
299 /**
300  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
301  * @adapter: board private structure
302  */
303 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
304 {
305 	int i;
306 
307 	for (i = 0; i < adapter->num_tx_queues; i++)
308 		if (adapter->tx_ring[i])
309 			igc_clean_tx_ring(adapter->tx_ring[i]);
310 }
311 
312 /**
313  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
314  * @tx_ring: tx descriptor ring (for a specific queue) to setup
315  *
316  * Return 0 on success, negative on failure
317  */
318 int igc_setup_tx_resources(struct igc_ring *tx_ring)
319 {
320 	struct net_device *ndev = tx_ring->netdev;
321 	struct device *dev = tx_ring->dev;
322 	int size = 0;
323 
324 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
325 	tx_ring->tx_buffer_info = vzalloc(size);
326 	if (!tx_ring->tx_buffer_info)
327 		goto err;
328 
329 	/* round up to nearest 4K */
330 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
331 	tx_ring->size = ALIGN(tx_ring->size, 4096);
332 
333 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
334 					   &tx_ring->dma, GFP_KERNEL);
335 
336 	if (!tx_ring->desc)
337 		goto err;
338 
339 	tx_ring->next_to_use = 0;
340 	tx_ring->next_to_clean = 0;
341 
342 	return 0;
343 
344 err:
345 	vfree(tx_ring->tx_buffer_info);
346 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
347 	return -ENOMEM;
348 }
349 
350 /**
351  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
352  * @adapter: board private structure
353  *
354  * Return 0 on success, negative on failure
355  */
356 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
357 {
358 	struct net_device *dev = adapter->netdev;
359 	int i, err = 0;
360 
361 	for (i = 0; i < adapter->num_tx_queues; i++) {
362 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
363 		if (err) {
364 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
365 			for (i--; i >= 0; i--)
366 				igc_free_tx_resources(adapter->tx_ring[i]);
367 			break;
368 		}
369 	}
370 
371 	return err;
372 }
373 
374 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
375 {
376 	u16 i = rx_ring->next_to_clean;
377 
378 	dev_kfree_skb(rx_ring->skb);
379 	rx_ring->skb = NULL;
380 
381 	/* Free all the Rx ring sk_buffs */
382 	while (i != rx_ring->next_to_alloc) {
383 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
384 
385 		/* Invalidate cache lines that may have been written to by
386 		 * device so that we avoid corrupting memory.
387 		 */
388 		dma_sync_single_range_for_cpu(rx_ring->dev,
389 					      buffer_info->dma,
390 					      buffer_info->page_offset,
391 					      igc_rx_bufsz(rx_ring),
392 					      DMA_FROM_DEVICE);
393 
394 		/* free resources associated with mapping */
395 		dma_unmap_page_attrs(rx_ring->dev,
396 				     buffer_info->dma,
397 				     igc_rx_pg_size(rx_ring),
398 				     DMA_FROM_DEVICE,
399 				     IGC_RX_DMA_ATTR);
400 		__page_frag_cache_drain(buffer_info->page,
401 					buffer_info->pagecnt_bias);
402 
403 		i++;
404 		if (i == rx_ring->count)
405 			i = 0;
406 	}
407 }
408 
409 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
410 {
411 	struct igc_rx_buffer *bi;
412 	u16 i;
413 
414 	for (i = 0; i < ring->count; i++) {
415 		bi = &ring->rx_buffer_info[i];
416 		if (!bi->xdp)
417 			continue;
418 
419 		xsk_buff_free(bi->xdp);
420 		bi->xdp = NULL;
421 	}
422 }
423 
424 /**
425  * igc_clean_rx_ring - Free Rx Buffers per Queue
426  * @ring: ring to free buffers from
427  */
428 static void igc_clean_rx_ring(struct igc_ring *ring)
429 {
430 	if (ring->xsk_pool)
431 		igc_clean_rx_ring_xsk_pool(ring);
432 	else
433 		igc_clean_rx_ring_page_shared(ring);
434 
435 	clear_ring_uses_large_buffer(ring);
436 
437 	ring->next_to_alloc = 0;
438 	ring->next_to_clean = 0;
439 	ring->next_to_use = 0;
440 }
441 
442 /**
443  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
444  * @adapter: board private structure
445  */
446 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
447 {
448 	int i;
449 
450 	for (i = 0; i < adapter->num_rx_queues; i++)
451 		if (adapter->rx_ring[i])
452 			igc_clean_rx_ring(adapter->rx_ring[i]);
453 }
454 
455 /**
456  * igc_free_rx_resources - Free Rx Resources
457  * @rx_ring: ring to clean the resources from
458  *
459  * Free all receive software resources
460  */
461 void igc_free_rx_resources(struct igc_ring *rx_ring)
462 {
463 	igc_clean_rx_ring(rx_ring);
464 
465 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
466 
467 	vfree(rx_ring->rx_buffer_info);
468 	rx_ring->rx_buffer_info = NULL;
469 
470 	/* if not set, then don't free */
471 	if (!rx_ring->desc)
472 		return;
473 
474 	dma_free_coherent(rx_ring->dev, rx_ring->size,
475 			  rx_ring->desc, rx_ring->dma);
476 
477 	rx_ring->desc = NULL;
478 }
479 
480 /**
481  * igc_free_all_rx_resources - Free Rx Resources for All Queues
482  * @adapter: board private structure
483  *
484  * Free all receive software resources
485  */
486 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
487 {
488 	int i;
489 
490 	for (i = 0; i < adapter->num_rx_queues; i++)
491 		igc_free_rx_resources(adapter->rx_ring[i]);
492 }
493 
494 /**
495  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
496  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
497  *
498  * Returns 0 on success, negative on failure
499  */
500 int igc_setup_rx_resources(struct igc_ring *rx_ring)
501 {
502 	struct net_device *ndev = rx_ring->netdev;
503 	struct device *dev = rx_ring->dev;
504 	u8 index = rx_ring->queue_index;
505 	int size, desc_len, res;
506 
507 	/* XDP RX-queue info */
508 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
509 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
510 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
511 			       rx_ring->q_vector->napi.napi_id);
512 	if (res < 0) {
513 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
514 			   index);
515 		return res;
516 	}
517 
518 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
519 	rx_ring->rx_buffer_info = vzalloc(size);
520 	if (!rx_ring->rx_buffer_info)
521 		goto err;
522 
523 	desc_len = sizeof(union igc_adv_rx_desc);
524 
525 	/* Round up to nearest 4K */
526 	rx_ring->size = rx_ring->count * desc_len;
527 	rx_ring->size = ALIGN(rx_ring->size, 4096);
528 
529 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
530 					   &rx_ring->dma, GFP_KERNEL);
531 
532 	if (!rx_ring->desc)
533 		goto err;
534 
535 	rx_ring->next_to_alloc = 0;
536 	rx_ring->next_to_clean = 0;
537 	rx_ring->next_to_use = 0;
538 
539 	return 0;
540 
541 err:
542 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
543 	vfree(rx_ring->rx_buffer_info);
544 	rx_ring->rx_buffer_info = NULL;
545 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
546 	return -ENOMEM;
547 }
548 
549 /**
550  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
551  *                                (Descriptors) for all queues
552  * @adapter: board private structure
553  *
554  * Return 0 on success, negative on failure
555  */
556 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
557 {
558 	struct net_device *dev = adapter->netdev;
559 	int i, err = 0;
560 
561 	for (i = 0; i < adapter->num_rx_queues; i++) {
562 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
563 		if (err) {
564 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
565 			for (i--; i >= 0; i--)
566 				igc_free_rx_resources(adapter->rx_ring[i]);
567 			break;
568 		}
569 	}
570 
571 	return err;
572 }
573 
574 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
575 					      struct igc_ring *ring)
576 {
577 	if (!igc_xdp_is_enabled(adapter) ||
578 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
579 		return NULL;
580 
581 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
582 }
583 
584 /**
585  * igc_configure_rx_ring - Configure a receive ring after Reset
586  * @adapter: board private structure
587  * @ring: receive ring to be configured
588  *
589  * Configure the Rx unit of the MAC after a reset.
590  */
591 static void igc_configure_rx_ring(struct igc_adapter *adapter,
592 				  struct igc_ring *ring)
593 {
594 	struct igc_hw *hw = &adapter->hw;
595 	union igc_adv_rx_desc *rx_desc;
596 	int reg_idx = ring->reg_idx;
597 	u32 srrctl = 0, rxdctl = 0;
598 	u64 rdba = ring->dma;
599 	u32 buf_size;
600 
601 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
602 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
603 	if (ring->xsk_pool) {
604 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
605 						   MEM_TYPE_XSK_BUFF_POOL,
606 						   NULL));
607 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
608 	} else {
609 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
610 						   MEM_TYPE_PAGE_SHARED,
611 						   NULL));
612 	}
613 
614 	if (igc_xdp_is_enabled(adapter))
615 		set_ring_uses_large_buffer(ring);
616 
617 	/* disable the queue */
618 	wr32(IGC_RXDCTL(reg_idx), 0);
619 
620 	/* Set DMA base address registers */
621 	wr32(IGC_RDBAL(reg_idx),
622 	     rdba & 0x00000000ffffffffULL);
623 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
624 	wr32(IGC_RDLEN(reg_idx),
625 	     ring->count * sizeof(union igc_adv_rx_desc));
626 
627 	/* initialize head and tail */
628 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
629 	wr32(IGC_RDH(reg_idx), 0);
630 	writel(0, ring->tail);
631 
632 	/* reset next-to- use/clean to place SW in sync with hardware */
633 	ring->next_to_clean = 0;
634 	ring->next_to_use = 0;
635 
636 	if (ring->xsk_pool)
637 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
638 	else if (ring_uses_large_buffer(ring))
639 		buf_size = IGC_RXBUFFER_3072;
640 	else
641 		buf_size = IGC_RXBUFFER_2048;
642 
643 	srrctl = rd32(IGC_SRRCTL(reg_idx));
644 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
645 		    IGC_SRRCTL_DESCTYPE_MASK);
646 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
647 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
648 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
649 
650 	wr32(IGC_SRRCTL(reg_idx), srrctl);
651 
652 	rxdctl |= IGC_RX_PTHRESH;
653 	rxdctl |= IGC_RX_HTHRESH << 8;
654 	rxdctl |= IGC_RX_WTHRESH << 16;
655 
656 	/* initialize rx_buffer_info */
657 	memset(ring->rx_buffer_info, 0,
658 	       sizeof(struct igc_rx_buffer) * ring->count);
659 
660 	/* initialize Rx descriptor 0 */
661 	rx_desc = IGC_RX_DESC(ring, 0);
662 	rx_desc->wb.upper.length = 0;
663 
664 	/* enable receive descriptor fetching */
665 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
666 
667 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
668 }
669 
670 /**
671  * igc_configure_rx - Configure receive Unit after Reset
672  * @adapter: board private structure
673  *
674  * Configure the Rx unit of the MAC after a reset.
675  */
676 static void igc_configure_rx(struct igc_adapter *adapter)
677 {
678 	int i;
679 
680 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
681 	 * the Base and Length of the Rx Descriptor Ring
682 	 */
683 	for (i = 0; i < adapter->num_rx_queues; i++)
684 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
685 }
686 
687 /**
688  * igc_configure_tx_ring - Configure transmit ring after Reset
689  * @adapter: board private structure
690  * @ring: tx ring to configure
691  *
692  * Configure a transmit ring after a reset.
693  */
694 static void igc_configure_tx_ring(struct igc_adapter *adapter,
695 				  struct igc_ring *ring)
696 {
697 	struct igc_hw *hw = &adapter->hw;
698 	int reg_idx = ring->reg_idx;
699 	u64 tdba = ring->dma;
700 	u32 txdctl = 0;
701 
702 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
703 
704 	/* disable the queue */
705 	wr32(IGC_TXDCTL(reg_idx), 0);
706 	wrfl();
707 	mdelay(10);
708 
709 	wr32(IGC_TDLEN(reg_idx),
710 	     ring->count * sizeof(union igc_adv_tx_desc));
711 	wr32(IGC_TDBAL(reg_idx),
712 	     tdba & 0x00000000ffffffffULL);
713 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
714 
715 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
716 	wr32(IGC_TDH(reg_idx), 0);
717 	writel(0, ring->tail);
718 
719 	txdctl |= IGC_TX_PTHRESH;
720 	txdctl |= IGC_TX_HTHRESH << 8;
721 	txdctl |= IGC_TX_WTHRESH << 16;
722 
723 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
724 	wr32(IGC_TXDCTL(reg_idx), txdctl);
725 }
726 
727 /**
728  * igc_configure_tx - Configure transmit Unit after Reset
729  * @adapter: board private structure
730  *
731  * Configure the Tx unit of the MAC after a reset.
732  */
733 static void igc_configure_tx(struct igc_adapter *adapter)
734 {
735 	int i;
736 
737 	for (i = 0; i < adapter->num_tx_queues; i++)
738 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
739 }
740 
741 /**
742  * igc_setup_mrqc - configure the multiple receive queue control registers
743  * @adapter: Board private structure
744  */
745 static void igc_setup_mrqc(struct igc_adapter *adapter)
746 {
747 	struct igc_hw *hw = &adapter->hw;
748 	u32 j, num_rx_queues;
749 	u32 mrqc, rxcsum;
750 	u32 rss_key[10];
751 
752 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
753 	for (j = 0; j < 10; j++)
754 		wr32(IGC_RSSRK(j), rss_key[j]);
755 
756 	num_rx_queues = adapter->rss_queues;
757 
758 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
759 		for (j = 0; j < IGC_RETA_SIZE; j++)
760 			adapter->rss_indir_tbl[j] =
761 			(j * num_rx_queues) / IGC_RETA_SIZE;
762 		adapter->rss_indir_tbl_init = num_rx_queues;
763 	}
764 	igc_write_rss_indir_tbl(adapter);
765 
766 	/* Disable raw packet checksumming so that RSS hash is placed in
767 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
768 	 * offloads as they are enabled by default
769 	 */
770 	rxcsum = rd32(IGC_RXCSUM);
771 	rxcsum |= IGC_RXCSUM_PCSD;
772 
773 	/* Enable Receive Checksum Offload for SCTP */
774 	rxcsum |= IGC_RXCSUM_CRCOFL;
775 
776 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
777 	wr32(IGC_RXCSUM, rxcsum);
778 
779 	/* Generate RSS hash based on packet types, TCP/UDP
780 	 * port numbers and/or IPv4/v6 src and dst addresses
781 	 */
782 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
783 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
784 	       IGC_MRQC_RSS_FIELD_IPV6 |
785 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
786 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
787 
788 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
789 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
790 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
791 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
792 
793 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
794 
795 	wr32(IGC_MRQC, mrqc);
796 }
797 
798 /**
799  * igc_setup_rctl - configure the receive control registers
800  * @adapter: Board private structure
801  */
802 static void igc_setup_rctl(struct igc_adapter *adapter)
803 {
804 	struct igc_hw *hw = &adapter->hw;
805 	u32 rctl;
806 
807 	rctl = rd32(IGC_RCTL);
808 
809 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
810 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
811 
812 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
813 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
814 
815 	/* enable stripping of CRC. Newer features require
816 	 * that the HW strips the CRC.
817 	 */
818 	rctl |= IGC_RCTL_SECRC;
819 
820 	/* disable store bad packets and clear size bits. */
821 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
822 
823 	/* enable LPE to allow for reception of jumbo frames */
824 	rctl |= IGC_RCTL_LPE;
825 
826 	/* disable queue 0 to prevent tail write w/o re-config */
827 	wr32(IGC_RXDCTL(0), 0);
828 
829 	/* This is useful for sniffing bad packets. */
830 	if (adapter->netdev->features & NETIF_F_RXALL) {
831 		/* UPE and MPE will be handled by normal PROMISC logic
832 		 * in set_rx_mode
833 		 */
834 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
835 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
836 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
837 
838 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
839 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
840 	}
841 
842 	wr32(IGC_RCTL, rctl);
843 }
844 
845 /**
846  * igc_setup_tctl - configure the transmit control registers
847  * @adapter: Board private structure
848  */
849 static void igc_setup_tctl(struct igc_adapter *adapter)
850 {
851 	struct igc_hw *hw = &adapter->hw;
852 	u32 tctl;
853 
854 	/* disable queue 0 which icould be enabled by default */
855 	wr32(IGC_TXDCTL(0), 0);
856 
857 	/* Program the Transmit Control Register */
858 	tctl = rd32(IGC_TCTL);
859 	tctl &= ~IGC_TCTL_CT;
860 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
861 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
862 
863 	/* Enable transmits */
864 	tctl |= IGC_TCTL_EN;
865 
866 	wr32(IGC_TCTL, tctl);
867 }
868 
869 /**
870  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
871  * @adapter: Pointer to adapter where the filter should be set
872  * @index: Filter index
873  * @type: MAC address filter type (source or destination)
874  * @addr: MAC address
875  * @queue: If non-negative, queue assignment feature is enabled and frames
876  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
877  *         assignment is disabled.
878  */
879 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
880 				  enum igc_mac_filter_type type,
881 				  const u8 *addr, int queue)
882 {
883 	struct net_device *dev = adapter->netdev;
884 	struct igc_hw *hw = &adapter->hw;
885 	u32 ral, rah;
886 
887 	if (WARN_ON(index >= hw->mac.rar_entry_count))
888 		return;
889 
890 	ral = le32_to_cpup((__le32 *)(addr));
891 	rah = le16_to_cpup((__le16 *)(addr + 4));
892 
893 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
894 		rah &= ~IGC_RAH_ASEL_MASK;
895 		rah |= IGC_RAH_ASEL_SRC_ADDR;
896 	}
897 
898 	if (queue >= 0) {
899 		rah &= ~IGC_RAH_QSEL_MASK;
900 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
901 		rah |= IGC_RAH_QSEL_ENABLE;
902 	}
903 
904 	rah |= IGC_RAH_AV;
905 
906 	wr32(IGC_RAL(index), ral);
907 	wr32(IGC_RAH(index), rah);
908 
909 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
910 }
911 
912 /**
913  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
914  * @adapter: Pointer to adapter where the filter should be cleared
915  * @index: Filter index
916  */
917 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
918 {
919 	struct net_device *dev = adapter->netdev;
920 	struct igc_hw *hw = &adapter->hw;
921 
922 	if (WARN_ON(index >= hw->mac.rar_entry_count))
923 		return;
924 
925 	wr32(IGC_RAL(index), 0);
926 	wr32(IGC_RAH(index), 0);
927 
928 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
929 }
930 
931 /* Set default MAC address for the PF in the first RAR entry */
932 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
933 {
934 	struct net_device *dev = adapter->netdev;
935 	u8 *addr = adapter->hw.mac.addr;
936 
937 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
938 
939 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
940 }
941 
942 /**
943  * igc_set_mac - Change the Ethernet Address of the NIC
944  * @netdev: network interface device structure
945  * @p: pointer to an address structure
946  *
947  * Returns 0 on success, negative on failure
948  */
949 static int igc_set_mac(struct net_device *netdev, void *p)
950 {
951 	struct igc_adapter *adapter = netdev_priv(netdev);
952 	struct igc_hw *hw = &adapter->hw;
953 	struct sockaddr *addr = p;
954 
955 	if (!is_valid_ether_addr(addr->sa_data))
956 		return -EADDRNOTAVAIL;
957 
958 	eth_hw_addr_set(netdev, addr->sa_data);
959 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
960 
961 	/* set the correct pool for the new PF MAC address in entry 0 */
962 	igc_set_default_mac_filter(adapter);
963 
964 	return 0;
965 }
966 
967 /**
968  *  igc_write_mc_addr_list - write multicast addresses to MTA
969  *  @netdev: network interface device structure
970  *
971  *  Writes multicast address list to the MTA hash table.
972  *  Returns: -ENOMEM on failure
973  *           0 on no addresses written
974  *           X on writing X addresses to MTA
975  **/
976 static int igc_write_mc_addr_list(struct net_device *netdev)
977 {
978 	struct igc_adapter *adapter = netdev_priv(netdev);
979 	struct igc_hw *hw = &adapter->hw;
980 	struct netdev_hw_addr *ha;
981 	u8  *mta_list;
982 	int i;
983 
984 	if (netdev_mc_empty(netdev)) {
985 		/* nothing to program, so clear mc list */
986 		igc_update_mc_addr_list(hw, NULL, 0);
987 		return 0;
988 	}
989 
990 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
991 	if (!mta_list)
992 		return -ENOMEM;
993 
994 	/* The shared function expects a packed array of only addresses. */
995 	i = 0;
996 	netdev_for_each_mc_addr(ha, netdev)
997 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
998 
999 	igc_update_mc_addr_list(hw, mta_list, i);
1000 	kfree(mta_list);
1001 
1002 	return netdev_mc_count(netdev);
1003 }
1004 
1005 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1006 				bool *first_flag, bool *insert_empty)
1007 {
1008 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1009 	ktime_t cycle_time = adapter->cycle_time;
1010 	ktime_t base_time = adapter->base_time;
1011 	ktime_t now = ktime_get_clocktai();
1012 	ktime_t baset_est, end_of_cycle;
1013 	u32 launchtime;
1014 	s64 n;
1015 
1016 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1017 
1018 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1019 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1020 
1021 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1022 		if (baset_est != ring->last_ff_cycle) {
1023 			*first_flag = true;
1024 			ring->last_ff_cycle = baset_est;
1025 
1026 			if (ktime_compare(txtime, ring->last_tx_cycle) > 0)
1027 				*insert_empty = true;
1028 		}
1029 	}
1030 
1031 	/* Introducing a window at end of cycle on which packets
1032 	 * potentially not honor launchtime. Window of 5us chosen
1033 	 * considering software update the tail pointer and packets
1034 	 * are dma'ed to packet buffer.
1035 	 */
1036 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1037 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1038 			    txtime);
1039 
1040 	ring->last_tx_cycle = end_of_cycle;
1041 
1042 	launchtime = ktime_sub_ns(txtime, baset_est);
1043 	if (launchtime > 0)
1044 		div_s64_rem(launchtime, cycle_time, &launchtime);
1045 	else
1046 		launchtime = 0;
1047 
1048 	return cpu_to_le32(launchtime);
1049 }
1050 
1051 static int igc_init_empty_frame(struct igc_ring *ring,
1052 				struct igc_tx_buffer *buffer,
1053 				struct sk_buff *skb)
1054 {
1055 	unsigned int size;
1056 	dma_addr_t dma;
1057 
1058 	size = skb_headlen(skb);
1059 
1060 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1061 	if (dma_mapping_error(ring->dev, dma)) {
1062 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1063 		return -ENOMEM;
1064 	}
1065 
1066 	buffer->skb = skb;
1067 	buffer->protocol = 0;
1068 	buffer->bytecount = skb->len;
1069 	buffer->gso_segs = 1;
1070 	buffer->time_stamp = jiffies;
1071 	dma_unmap_len_set(buffer, len, skb->len);
1072 	dma_unmap_addr_set(buffer, dma, dma);
1073 
1074 	return 0;
1075 }
1076 
1077 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1078 					struct sk_buff *skb,
1079 					struct igc_tx_buffer *first)
1080 {
1081 	union igc_adv_tx_desc *desc;
1082 	u32 cmd_type, olinfo_status;
1083 	int err;
1084 
1085 	if (!igc_desc_unused(ring))
1086 		return -EBUSY;
1087 
1088 	err = igc_init_empty_frame(ring, first, skb);
1089 	if (err)
1090 		return err;
1091 
1092 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1093 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1094 		   first->bytecount;
1095 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1096 
1097 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1098 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1099 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1100 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1101 
1102 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1103 
1104 	first->next_to_watch = desc;
1105 
1106 	ring->next_to_use++;
1107 	if (ring->next_to_use == ring->count)
1108 		ring->next_to_use = 0;
1109 
1110 	return 0;
1111 }
1112 
1113 #define IGC_EMPTY_FRAME_SIZE 60
1114 
1115 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1116 			    __le32 launch_time, bool first_flag,
1117 			    u32 vlan_macip_lens, u32 type_tucmd,
1118 			    u32 mss_l4len_idx)
1119 {
1120 	struct igc_adv_tx_context_desc *context_desc;
1121 	u16 i = tx_ring->next_to_use;
1122 
1123 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1124 
1125 	i++;
1126 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1127 
1128 	/* set bits to identify this as an advanced context descriptor */
1129 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1130 
1131 	/* For i225, context index must be unique per ring. */
1132 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1133 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1134 
1135 	if (first_flag)
1136 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1137 
1138 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1139 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1140 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1141 	context_desc->launch_time	= launch_time;
1142 }
1143 
1144 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1145 			__le32 launch_time, bool first_flag)
1146 {
1147 	struct sk_buff *skb = first->skb;
1148 	u32 vlan_macip_lens = 0;
1149 	u32 type_tucmd = 0;
1150 
1151 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1152 csum_failed:
1153 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1154 		    !tx_ring->launchtime_enable)
1155 			return;
1156 		goto no_csum;
1157 	}
1158 
1159 	switch (skb->csum_offset) {
1160 	case offsetof(struct tcphdr, check):
1161 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1162 		fallthrough;
1163 	case offsetof(struct udphdr, check):
1164 		break;
1165 	case offsetof(struct sctphdr, checksum):
1166 		/* validate that this is actually an SCTP request */
1167 		if (skb_csum_is_sctp(skb)) {
1168 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1169 			break;
1170 		}
1171 		fallthrough;
1172 	default:
1173 		skb_checksum_help(skb);
1174 		goto csum_failed;
1175 	}
1176 
1177 	/* update TX checksum flag */
1178 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1179 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1180 			  skb_network_offset(skb);
1181 no_csum:
1182 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1183 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1184 
1185 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1186 			vlan_macip_lens, type_tucmd, 0);
1187 }
1188 
1189 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1190 {
1191 	struct net_device *netdev = tx_ring->netdev;
1192 
1193 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1194 
1195 	/* memory barriier comment */
1196 	smp_mb();
1197 
1198 	/* We need to check again in a case another CPU has just
1199 	 * made room available.
1200 	 */
1201 	if (igc_desc_unused(tx_ring) < size)
1202 		return -EBUSY;
1203 
1204 	/* A reprieve! */
1205 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1206 
1207 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1208 	tx_ring->tx_stats.restart_queue2++;
1209 	u64_stats_update_end(&tx_ring->tx_syncp2);
1210 
1211 	return 0;
1212 }
1213 
1214 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1215 {
1216 	if (igc_desc_unused(tx_ring) >= size)
1217 		return 0;
1218 	return __igc_maybe_stop_tx(tx_ring, size);
1219 }
1220 
1221 #define IGC_SET_FLAG(_input, _flag, _result) \
1222 	(((_flag) <= (_result)) ?				\
1223 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1224 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1225 
1226 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1227 {
1228 	/* set type for advanced descriptor with frame checksum insertion */
1229 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1230 		       IGC_ADVTXD_DCMD_DEXT |
1231 		       IGC_ADVTXD_DCMD_IFCS;
1232 
1233 	/* set HW vlan bit if vlan is present */
1234 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1235 				 IGC_ADVTXD_DCMD_VLE);
1236 
1237 	/* set segmentation bits for TSO */
1238 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1239 				 (IGC_ADVTXD_DCMD_TSE));
1240 
1241 	/* set timestamp bit if present */
1242 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1243 				 (IGC_ADVTXD_MAC_TSTAMP));
1244 
1245 	/* insert frame checksum */
1246 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1247 
1248 	return cmd_type;
1249 }
1250 
1251 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1252 				 union igc_adv_tx_desc *tx_desc,
1253 				 u32 tx_flags, unsigned int paylen)
1254 {
1255 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1256 
1257 	/* insert L4 checksum */
1258 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1259 			  ((IGC_TXD_POPTS_TXSM << 8) /
1260 			  IGC_TX_FLAGS_CSUM);
1261 
1262 	/* insert IPv4 checksum */
1263 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1264 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1265 			  IGC_TX_FLAGS_IPV4);
1266 
1267 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1268 }
1269 
1270 static int igc_tx_map(struct igc_ring *tx_ring,
1271 		      struct igc_tx_buffer *first,
1272 		      const u8 hdr_len)
1273 {
1274 	struct sk_buff *skb = first->skb;
1275 	struct igc_tx_buffer *tx_buffer;
1276 	union igc_adv_tx_desc *tx_desc;
1277 	u32 tx_flags = first->tx_flags;
1278 	skb_frag_t *frag;
1279 	u16 i = tx_ring->next_to_use;
1280 	unsigned int data_len, size;
1281 	dma_addr_t dma;
1282 	u32 cmd_type;
1283 
1284 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1285 	tx_desc = IGC_TX_DESC(tx_ring, i);
1286 
1287 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1288 
1289 	size = skb_headlen(skb);
1290 	data_len = skb->data_len;
1291 
1292 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1293 
1294 	tx_buffer = first;
1295 
1296 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1297 		if (dma_mapping_error(tx_ring->dev, dma))
1298 			goto dma_error;
1299 
1300 		/* record length, and DMA address */
1301 		dma_unmap_len_set(tx_buffer, len, size);
1302 		dma_unmap_addr_set(tx_buffer, dma, dma);
1303 
1304 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1305 
1306 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1307 			tx_desc->read.cmd_type_len =
1308 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1309 
1310 			i++;
1311 			tx_desc++;
1312 			if (i == tx_ring->count) {
1313 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1314 				i = 0;
1315 			}
1316 			tx_desc->read.olinfo_status = 0;
1317 
1318 			dma += IGC_MAX_DATA_PER_TXD;
1319 			size -= IGC_MAX_DATA_PER_TXD;
1320 
1321 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1322 		}
1323 
1324 		if (likely(!data_len))
1325 			break;
1326 
1327 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1328 
1329 		i++;
1330 		tx_desc++;
1331 		if (i == tx_ring->count) {
1332 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1333 			i = 0;
1334 		}
1335 		tx_desc->read.olinfo_status = 0;
1336 
1337 		size = skb_frag_size(frag);
1338 		data_len -= size;
1339 
1340 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1341 				       size, DMA_TO_DEVICE);
1342 
1343 		tx_buffer = &tx_ring->tx_buffer_info[i];
1344 	}
1345 
1346 	/* write last descriptor with RS and EOP bits */
1347 	cmd_type |= size | IGC_TXD_DCMD;
1348 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1349 
1350 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1351 
1352 	/* set the timestamp */
1353 	first->time_stamp = jiffies;
1354 
1355 	skb_tx_timestamp(skb);
1356 
1357 	/* Force memory writes to complete before letting h/w know there
1358 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1359 	 * memory model archs, such as IA-64).
1360 	 *
1361 	 * We also need this memory barrier to make certain all of the
1362 	 * status bits have been updated before next_to_watch is written.
1363 	 */
1364 	wmb();
1365 
1366 	/* set next_to_watch value indicating a packet is present */
1367 	first->next_to_watch = tx_desc;
1368 
1369 	i++;
1370 	if (i == tx_ring->count)
1371 		i = 0;
1372 
1373 	tx_ring->next_to_use = i;
1374 
1375 	/* Make sure there is space in the ring for the next send. */
1376 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1377 
1378 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1379 		writel(i, tx_ring->tail);
1380 	}
1381 
1382 	return 0;
1383 dma_error:
1384 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1385 	tx_buffer = &tx_ring->tx_buffer_info[i];
1386 
1387 	/* clear dma mappings for failed tx_buffer_info map */
1388 	while (tx_buffer != first) {
1389 		if (dma_unmap_len(tx_buffer, len))
1390 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1391 
1392 		if (i-- == 0)
1393 			i += tx_ring->count;
1394 		tx_buffer = &tx_ring->tx_buffer_info[i];
1395 	}
1396 
1397 	if (dma_unmap_len(tx_buffer, len))
1398 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1399 
1400 	dev_kfree_skb_any(tx_buffer->skb);
1401 	tx_buffer->skb = NULL;
1402 
1403 	tx_ring->next_to_use = i;
1404 
1405 	return -1;
1406 }
1407 
1408 static int igc_tso(struct igc_ring *tx_ring,
1409 		   struct igc_tx_buffer *first,
1410 		   __le32 launch_time, bool first_flag,
1411 		   u8 *hdr_len)
1412 {
1413 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1414 	struct sk_buff *skb = first->skb;
1415 	union {
1416 		struct iphdr *v4;
1417 		struct ipv6hdr *v6;
1418 		unsigned char *hdr;
1419 	} ip;
1420 	union {
1421 		struct tcphdr *tcp;
1422 		struct udphdr *udp;
1423 		unsigned char *hdr;
1424 	} l4;
1425 	u32 paylen, l4_offset;
1426 	int err;
1427 
1428 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1429 		return 0;
1430 
1431 	if (!skb_is_gso(skb))
1432 		return 0;
1433 
1434 	err = skb_cow_head(skb, 0);
1435 	if (err < 0)
1436 		return err;
1437 
1438 	ip.hdr = skb_network_header(skb);
1439 	l4.hdr = skb_checksum_start(skb);
1440 
1441 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1442 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1443 
1444 	/* initialize outer IP header fields */
1445 	if (ip.v4->version == 4) {
1446 		unsigned char *csum_start = skb_checksum_start(skb);
1447 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1448 
1449 		/* IP header will have to cancel out any data that
1450 		 * is not a part of the outer IP header
1451 		 */
1452 		ip.v4->check = csum_fold(csum_partial(trans_start,
1453 						      csum_start - trans_start,
1454 						      0));
1455 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1456 
1457 		ip.v4->tot_len = 0;
1458 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1459 				   IGC_TX_FLAGS_CSUM |
1460 				   IGC_TX_FLAGS_IPV4;
1461 	} else {
1462 		ip.v6->payload_len = 0;
1463 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1464 				   IGC_TX_FLAGS_CSUM;
1465 	}
1466 
1467 	/* determine offset of inner transport header */
1468 	l4_offset = l4.hdr - skb->data;
1469 
1470 	/* remove payload length from inner checksum */
1471 	paylen = skb->len - l4_offset;
1472 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1473 		/* compute length of segmentation header */
1474 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1475 		csum_replace_by_diff(&l4.tcp->check,
1476 				     (__force __wsum)htonl(paylen));
1477 	} else {
1478 		/* compute length of segmentation header */
1479 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1480 		csum_replace_by_diff(&l4.udp->check,
1481 				     (__force __wsum)htonl(paylen));
1482 	}
1483 
1484 	/* update gso size and bytecount with header size */
1485 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1486 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1487 
1488 	/* MSS L4LEN IDX */
1489 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1490 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1491 
1492 	/* VLAN MACLEN IPLEN */
1493 	vlan_macip_lens = l4.hdr - ip.hdr;
1494 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1495 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1496 
1497 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1498 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1499 
1500 	return 1;
1501 }
1502 
1503 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1504 				       struct igc_ring *tx_ring)
1505 {
1506 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1507 	bool first_flag = false, insert_empty = false;
1508 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1509 	__be16 protocol = vlan_get_protocol(skb);
1510 	struct igc_tx_buffer *first;
1511 	__le32 launch_time = 0;
1512 	u32 tx_flags = 0;
1513 	unsigned short f;
1514 	ktime_t txtime;
1515 	u8 hdr_len = 0;
1516 	int tso = 0;
1517 
1518 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1519 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1520 	 *	+ 2 desc gap to keep tail from touching head,
1521 	 *	+ 1 desc for context descriptor,
1522 	 * otherwise try next time
1523 	 */
1524 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1525 		count += TXD_USE_COUNT(skb_frag_size(
1526 						&skb_shinfo(skb)->frags[f]));
1527 
1528 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1529 		/* this is a hard error */
1530 		return NETDEV_TX_BUSY;
1531 	}
1532 
1533 	if (!tx_ring->launchtime_enable)
1534 		goto done;
1535 
1536 	txtime = skb->tstamp;
1537 	skb->tstamp = ktime_set(0, 0);
1538 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1539 
1540 	if (insert_empty) {
1541 		struct igc_tx_buffer *empty_info;
1542 		struct sk_buff *empty;
1543 		void *data;
1544 
1545 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1546 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1547 		if (!empty)
1548 			goto done;
1549 
1550 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1551 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1552 
1553 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1554 
1555 		if (igc_init_tx_empty_descriptor(tx_ring,
1556 						 empty,
1557 						 empty_info) < 0)
1558 			dev_kfree_skb_any(empty);
1559 	}
1560 
1561 done:
1562 	/* record the location of the first descriptor for this packet */
1563 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1564 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1565 	first->skb = skb;
1566 	first->bytecount = skb->len;
1567 	first->gso_segs = 1;
1568 
1569 	if (tx_ring->max_sdu > 0) {
1570 		u32 max_sdu = 0;
1571 
1572 		max_sdu = tx_ring->max_sdu +
1573 			  (skb_vlan_tagged(first->skb) ? VLAN_HLEN : 0);
1574 
1575 		if (first->bytecount > max_sdu) {
1576 			adapter->stats.txdrop++;
1577 			goto out_drop;
1578 		}
1579 	}
1580 
1581 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1582 		/* FIXME: add support for retrieving timestamps from
1583 		 * the other timer registers before skipping the
1584 		 * timestamping request.
1585 		 */
1586 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1587 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1588 					   &adapter->state)) {
1589 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1590 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1591 
1592 			adapter->ptp_tx_skb = skb_get(skb);
1593 			adapter->ptp_tx_start = jiffies;
1594 		} else {
1595 			adapter->tx_hwtstamp_skipped++;
1596 		}
1597 	}
1598 
1599 	if (skb_vlan_tag_present(skb)) {
1600 		tx_flags |= IGC_TX_FLAGS_VLAN;
1601 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1602 	}
1603 
1604 	/* record initial flags and protocol */
1605 	first->tx_flags = tx_flags;
1606 	first->protocol = protocol;
1607 
1608 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1609 	if (tso < 0)
1610 		goto out_drop;
1611 	else if (!tso)
1612 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1613 
1614 	igc_tx_map(tx_ring, first, hdr_len);
1615 
1616 	return NETDEV_TX_OK;
1617 
1618 out_drop:
1619 	dev_kfree_skb_any(first->skb);
1620 	first->skb = NULL;
1621 
1622 	return NETDEV_TX_OK;
1623 }
1624 
1625 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1626 						    struct sk_buff *skb)
1627 {
1628 	unsigned int r_idx = skb->queue_mapping;
1629 
1630 	if (r_idx >= adapter->num_tx_queues)
1631 		r_idx = r_idx % adapter->num_tx_queues;
1632 
1633 	return adapter->tx_ring[r_idx];
1634 }
1635 
1636 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1637 				  struct net_device *netdev)
1638 {
1639 	struct igc_adapter *adapter = netdev_priv(netdev);
1640 
1641 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1642 	 * in order to meet this minimum size requirement.
1643 	 */
1644 	if (skb->len < 17) {
1645 		if (skb_padto(skb, 17))
1646 			return NETDEV_TX_OK;
1647 		skb->len = 17;
1648 	}
1649 
1650 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1651 }
1652 
1653 static void igc_rx_checksum(struct igc_ring *ring,
1654 			    union igc_adv_rx_desc *rx_desc,
1655 			    struct sk_buff *skb)
1656 {
1657 	skb_checksum_none_assert(skb);
1658 
1659 	/* Ignore Checksum bit is set */
1660 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1661 		return;
1662 
1663 	/* Rx checksum disabled via ethtool */
1664 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1665 		return;
1666 
1667 	/* TCP/UDP checksum error bit is set */
1668 	if (igc_test_staterr(rx_desc,
1669 			     IGC_RXDEXT_STATERR_L4E |
1670 			     IGC_RXDEXT_STATERR_IPE)) {
1671 		/* work around errata with sctp packets where the TCPE aka
1672 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1673 		 * packets (aka let the stack check the crc32c)
1674 		 */
1675 		if (!(skb->len == 60 &&
1676 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1677 			u64_stats_update_begin(&ring->rx_syncp);
1678 			ring->rx_stats.csum_err++;
1679 			u64_stats_update_end(&ring->rx_syncp);
1680 		}
1681 		/* let the stack verify checksum errors */
1682 		return;
1683 	}
1684 	/* It must be a TCP or UDP packet with a valid checksum */
1685 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1686 				      IGC_RXD_STAT_UDPCS))
1687 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1688 
1689 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1690 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1691 }
1692 
1693 /* Mapping HW RSS Type to enum pkt_hash_types */
1694 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1695 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1696 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1697 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1698 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1699 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1700 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1701 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1702 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1703 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1704 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1705 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1706 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1707 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1708 	[13] = PKT_HASH_TYPE_NONE,
1709 	[14] = PKT_HASH_TYPE_NONE,
1710 	[15] = PKT_HASH_TYPE_NONE,
1711 };
1712 
1713 static inline void igc_rx_hash(struct igc_ring *ring,
1714 			       union igc_adv_rx_desc *rx_desc,
1715 			       struct sk_buff *skb)
1716 {
1717 	if (ring->netdev->features & NETIF_F_RXHASH) {
1718 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1719 		u32 rss_type = igc_rss_type(rx_desc);
1720 
1721 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1722 	}
1723 }
1724 
1725 static void igc_rx_vlan(struct igc_ring *rx_ring,
1726 			union igc_adv_rx_desc *rx_desc,
1727 			struct sk_buff *skb)
1728 {
1729 	struct net_device *dev = rx_ring->netdev;
1730 	u16 vid;
1731 
1732 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1733 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1734 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1735 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1736 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1737 		else
1738 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1739 
1740 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1741 	}
1742 }
1743 
1744 /**
1745  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1746  * @rx_ring: rx descriptor ring packet is being transacted on
1747  * @rx_desc: pointer to the EOP Rx descriptor
1748  * @skb: pointer to current skb being populated
1749  *
1750  * This function checks the ring, descriptor, and packet information in order
1751  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1752  * skb.
1753  */
1754 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1755 				   union igc_adv_rx_desc *rx_desc,
1756 				   struct sk_buff *skb)
1757 {
1758 	igc_rx_hash(rx_ring, rx_desc, skb);
1759 
1760 	igc_rx_checksum(rx_ring, rx_desc, skb);
1761 
1762 	igc_rx_vlan(rx_ring, rx_desc, skb);
1763 
1764 	skb_record_rx_queue(skb, rx_ring->queue_index);
1765 
1766 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1767 }
1768 
1769 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1770 {
1771 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1772 	struct igc_adapter *adapter = netdev_priv(netdev);
1773 	struct igc_hw *hw = &adapter->hw;
1774 	u32 ctrl;
1775 
1776 	ctrl = rd32(IGC_CTRL);
1777 
1778 	if (enable) {
1779 		/* enable VLAN tag insert/strip */
1780 		ctrl |= IGC_CTRL_VME;
1781 	} else {
1782 		/* disable VLAN tag insert/strip */
1783 		ctrl &= ~IGC_CTRL_VME;
1784 	}
1785 	wr32(IGC_CTRL, ctrl);
1786 }
1787 
1788 static void igc_restore_vlan(struct igc_adapter *adapter)
1789 {
1790 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1791 }
1792 
1793 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1794 					       const unsigned int size,
1795 					       int *rx_buffer_pgcnt)
1796 {
1797 	struct igc_rx_buffer *rx_buffer;
1798 
1799 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1800 	*rx_buffer_pgcnt =
1801 #if (PAGE_SIZE < 8192)
1802 		page_count(rx_buffer->page);
1803 #else
1804 		0;
1805 #endif
1806 	prefetchw(rx_buffer->page);
1807 
1808 	/* we are reusing so sync this buffer for CPU use */
1809 	dma_sync_single_range_for_cpu(rx_ring->dev,
1810 				      rx_buffer->dma,
1811 				      rx_buffer->page_offset,
1812 				      size,
1813 				      DMA_FROM_DEVICE);
1814 
1815 	rx_buffer->pagecnt_bias--;
1816 
1817 	return rx_buffer;
1818 }
1819 
1820 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1821 			       unsigned int truesize)
1822 {
1823 #if (PAGE_SIZE < 8192)
1824 	buffer->page_offset ^= truesize;
1825 #else
1826 	buffer->page_offset += truesize;
1827 #endif
1828 }
1829 
1830 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1831 					      unsigned int size)
1832 {
1833 	unsigned int truesize;
1834 
1835 #if (PAGE_SIZE < 8192)
1836 	truesize = igc_rx_pg_size(ring) / 2;
1837 #else
1838 	truesize = ring_uses_build_skb(ring) ?
1839 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1840 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1841 		   SKB_DATA_ALIGN(size);
1842 #endif
1843 	return truesize;
1844 }
1845 
1846 /**
1847  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1848  * @rx_ring: rx descriptor ring to transact packets on
1849  * @rx_buffer: buffer containing page to add
1850  * @skb: sk_buff to place the data into
1851  * @size: size of buffer to be added
1852  *
1853  * This function will add the data contained in rx_buffer->page to the skb.
1854  */
1855 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1856 			    struct igc_rx_buffer *rx_buffer,
1857 			    struct sk_buff *skb,
1858 			    unsigned int size)
1859 {
1860 	unsigned int truesize;
1861 
1862 #if (PAGE_SIZE < 8192)
1863 	truesize = igc_rx_pg_size(rx_ring) / 2;
1864 #else
1865 	truesize = ring_uses_build_skb(rx_ring) ?
1866 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1867 		   SKB_DATA_ALIGN(size);
1868 #endif
1869 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1870 			rx_buffer->page_offset, size, truesize);
1871 
1872 	igc_rx_buffer_flip(rx_buffer, truesize);
1873 }
1874 
1875 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1876 				     struct igc_rx_buffer *rx_buffer,
1877 				     struct xdp_buff *xdp)
1878 {
1879 	unsigned int size = xdp->data_end - xdp->data;
1880 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1881 	unsigned int metasize = xdp->data - xdp->data_meta;
1882 	struct sk_buff *skb;
1883 
1884 	/* prefetch first cache line of first page */
1885 	net_prefetch(xdp->data_meta);
1886 
1887 	/* build an skb around the page buffer */
1888 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1889 	if (unlikely(!skb))
1890 		return NULL;
1891 
1892 	/* update pointers within the skb to store the data */
1893 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1894 	__skb_put(skb, size);
1895 	if (metasize)
1896 		skb_metadata_set(skb, metasize);
1897 
1898 	igc_rx_buffer_flip(rx_buffer, truesize);
1899 	return skb;
1900 }
1901 
1902 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1903 					 struct igc_rx_buffer *rx_buffer,
1904 					 struct xdp_buff *xdp,
1905 					 ktime_t timestamp)
1906 {
1907 	unsigned int metasize = xdp->data - xdp->data_meta;
1908 	unsigned int size = xdp->data_end - xdp->data;
1909 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1910 	void *va = xdp->data;
1911 	unsigned int headlen;
1912 	struct sk_buff *skb;
1913 
1914 	/* prefetch first cache line of first page */
1915 	net_prefetch(xdp->data_meta);
1916 
1917 	/* allocate a skb to store the frags */
1918 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1919 			     IGC_RX_HDR_LEN + metasize);
1920 	if (unlikely(!skb))
1921 		return NULL;
1922 
1923 	if (timestamp)
1924 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1925 
1926 	/* Determine available headroom for copy */
1927 	headlen = size;
1928 	if (headlen > IGC_RX_HDR_LEN)
1929 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1930 
1931 	/* align pull length to size of long to optimize memcpy performance */
1932 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1933 	       ALIGN(headlen + metasize, sizeof(long)));
1934 
1935 	if (metasize) {
1936 		skb_metadata_set(skb, metasize);
1937 		__skb_pull(skb, metasize);
1938 	}
1939 
1940 	/* update all of the pointers */
1941 	size -= headlen;
1942 	if (size) {
1943 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1944 				(va + headlen) - page_address(rx_buffer->page),
1945 				size, truesize);
1946 		igc_rx_buffer_flip(rx_buffer, truesize);
1947 	} else {
1948 		rx_buffer->pagecnt_bias++;
1949 	}
1950 
1951 	return skb;
1952 }
1953 
1954 /**
1955  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1956  * @rx_ring: rx descriptor ring to store buffers on
1957  * @old_buff: donor buffer to have page reused
1958  *
1959  * Synchronizes page for reuse by the adapter
1960  */
1961 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1962 			      struct igc_rx_buffer *old_buff)
1963 {
1964 	u16 nta = rx_ring->next_to_alloc;
1965 	struct igc_rx_buffer *new_buff;
1966 
1967 	new_buff = &rx_ring->rx_buffer_info[nta];
1968 
1969 	/* update, and store next to alloc */
1970 	nta++;
1971 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1972 
1973 	/* Transfer page from old buffer to new buffer.
1974 	 * Move each member individually to avoid possible store
1975 	 * forwarding stalls.
1976 	 */
1977 	new_buff->dma		= old_buff->dma;
1978 	new_buff->page		= old_buff->page;
1979 	new_buff->page_offset	= old_buff->page_offset;
1980 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1981 }
1982 
1983 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1984 				  int rx_buffer_pgcnt)
1985 {
1986 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1987 	struct page *page = rx_buffer->page;
1988 
1989 	/* avoid re-using remote and pfmemalloc pages */
1990 	if (!dev_page_is_reusable(page))
1991 		return false;
1992 
1993 #if (PAGE_SIZE < 8192)
1994 	/* if we are only owner of page we can reuse it */
1995 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1996 		return false;
1997 #else
1998 #define IGC_LAST_OFFSET \
1999 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2000 
2001 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2002 		return false;
2003 #endif
2004 
2005 	/* If we have drained the page fragment pool we need to update
2006 	 * the pagecnt_bias and page count so that we fully restock the
2007 	 * number of references the driver holds.
2008 	 */
2009 	if (unlikely(pagecnt_bias == 1)) {
2010 		page_ref_add(page, USHRT_MAX - 1);
2011 		rx_buffer->pagecnt_bias = USHRT_MAX;
2012 	}
2013 
2014 	return true;
2015 }
2016 
2017 /**
2018  * igc_is_non_eop - process handling of non-EOP buffers
2019  * @rx_ring: Rx ring being processed
2020  * @rx_desc: Rx descriptor for current buffer
2021  *
2022  * This function updates next to clean.  If the buffer is an EOP buffer
2023  * this function exits returning false, otherwise it will place the
2024  * sk_buff in the next buffer to be chained and return true indicating
2025  * that this is in fact a non-EOP buffer.
2026  */
2027 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2028 			   union igc_adv_rx_desc *rx_desc)
2029 {
2030 	u32 ntc = rx_ring->next_to_clean + 1;
2031 
2032 	/* fetch, update, and store next to clean */
2033 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2034 	rx_ring->next_to_clean = ntc;
2035 
2036 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2037 
2038 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2039 		return false;
2040 
2041 	return true;
2042 }
2043 
2044 /**
2045  * igc_cleanup_headers - Correct corrupted or empty headers
2046  * @rx_ring: rx descriptor ring packet is being transacted on
2047  * @rx_desc: pointer to the EOP Rx descriptor
2048  * @skb: pointer to current skb being fixed
2049  *
2050  * Address the case where we are pulling data in on pages only
2051  * and as such no data is present in the skb header.
2052  *
2053  * In addition if skb is not at least 60 bytes we need to pad it so that
2054  * it is large enough to qualify as a valid Ethernet frame.
2055  *
2056  * Returns true if an error was encountered and skb was freed.
2057  */
2058 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2059 				union igc_adv_rx_desc *rx_desc,
2060 				struct sk_buff *skb)
2061 {
2062 	/* XDP packets use error pointer so abort at this point */
2063 	if (IS_ERR(skb))
2064 		return true;
2065 
2066 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2067 		struct net_device *netdev = rx_ring->netdev;
2068 
2069 		if (!(netdev->features & NETIF_F_RXALL)) {
2070 			dev_kfree_skb_any(skb);
2071 			return true;
2072 		}
2073 	}
2074 
2075 	/* if eth_skb_pad returns an error the skb was freed */
2076 	if (eth_skb_pad(skb))
2077 		return true;
2078 
2079 	return false;
2080 }
2081 
2082 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2083 			      struct igc_rx_buffer *rx_buffer,
2084 			      int rx_buffer_pgcnt)
2085 {
2086 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2087 		/* hand second half of page back to the ring */
2088 		igc_reuse_rx_page(rx_ring, rx_buffer);
2089 	} else {
2090 		/* We are not reusing the buffer so unmap it and free
2091 		 * any references we are holding to it
2092 		 */
2093 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2094 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2095 				     IGC_RX_DMA_ATTR);
2096 		__page_frag_cache_drain(rx_buffer->page,
2097 					rx_buffer->pagecnt_bias);
2098 	}
2099 
2100 	/* clear contents of rx_buffer */
2101 	rx_buffer->page = NULL;
2102 }
2103 
2104 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2105 {
2106 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2107 
2108 	if (ring_uses_build_skb(rx_ring))
2109 		return IGC_SKB_PAD;
2110 	if (igc_xdp_is_enabled(adapter))
2111 		return XDP_PACKET_HEADROOM;
2112 
2113 	return 0;
2114 }
2115 
2116 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2117 				  struct igc_rx_buffer *bi)
2118 {
2119 	struct page *page = bi->page;
2120 	dma_addr_t dma;
2121 
2122 	/* since we are recycling buffers we should seldom need to alloc */
2123 	if (likely(page))
2124 		return true;
2125 
2126 	/* alloc new page for storage */
2127 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2128 	if (unlikely(!page)) {
2129 		rx_ring->rx_stats.alloc_failed++;
2130 		return false;
2131 	}
2132 
2133 	/* map page for use */
2134 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2135 				 igc_rx_pg_size(rx_ring),
2136 				 DMA_FROM_DEVICE,
2137 				 IGC_RX_DMA_ATTR);
2138 
2139 	/* if mapping failed free memory back to system since
2140 	 * there isn't much point in holding memory we can't use
2141 	 */
2142 	if (dma_mapping_error(rx_ring->dev, dma)) {
2143 		__free_page(page);
2144 
2145 		rx_ring->rx_stats.alloc_failed++;
2146 		return false;
2147 	}
2148 
2149 	bi->dma = dma;
2150 	bi->page = page;
2151 	bi->page_offset = igc_rx_offset(rx_ring);
2152 	page_ref_add(page, USHRT_MAX - 1);
2153 	bi->pagecnt_bias = USHRT_MAX;
2154 
2155 	return true;
2156 }
2157 
2158 /**
2159  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2160  * @rx_ring: rx descriptor ring
2161  * @cleaned_count: number of buffers to clean
2162  */
2163 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2164 {
2165 	union igc_adv_rx_desc *rx_desc;
2166 	u16 i = rx_ring->next_to_use;
2167 	struct igc_rx_buffer *bi;
2168 	u16 bufsz;
2169 
2170 	/* nothing to do */
2171 	if (!cleaned_count)
2172 		return;
2173 
2174 	rx_desc = IGC_RX_DESC(rx_ring, i);
2175 	bi = &rx_ring->rx_buffer_info[i];
2176 	i -= rx_ring->count;
2177 
2178 	bufsz = igc_rx_bufsz(rx_ring);
2179 
2180 	do {
2181 		if (!igc_alloc_mapped_page(rx_ring, bi))
2182 			break;
2183 
2184 		/* sync the buffer for use by the device */
2185 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2186 						 bi->page_offset, bufsz,
2187 						 DMA_FROM_DEVICE);
2188 
2189 		/* Refresh the desc even if buffer_addrs didn't change
2190 		 * because each write-back erases this info.
2191 		 */
2192 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2193 
2194 		rx_desc++;
2195 		bi++;
2196 		i++;
2197 		if (unlikely(!i)) {
2198 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2199 			bi = rx_ring->rx_buffer_info;
2200 			i -= rx_ring->count;
2201 		}
2202 
2203 		/* clear the length for the next_to_use descriptor */
2204 		rx_desc->wb.upper.length = 0;
2205 
2206 		cleaned_count--;
2207 	} while (cleaned_count);
2208 
2209 	i += rx_ring->count;
2210 
2211 	if (rx_ring->next_to_use != i) {
2212 		/* record the next descriptor to use */
2213 		rx_ring->next_to_use = i;
2214 
2215 		/* update next to alloc since we have filled the ring */
2216 		rx_ring->next_to_alloc = i;
2217 
2218 		/* Force memory writes to complete before letting h/w
2219 		 * know there are new descriptors to fetch.  (Only
2220 		 * applicable for weak-ordered memory model archs,
2221 		 * such as IA-64).
2222 		 */
2223 		wmb();
2224 		writel(i, rx_ring->tail);
2225 	}
2226 }
2227 
2228 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2229 {
2230 	union igc_adv_rx_desc *desc;
2231 	u16 i = ring->next_to_use;
2232 	struct igc_rx_buffer *bi;
2233 	dma_addr_t dma;
2234 	bool ok = true;
2235 
2236 	if (!count)
2237 		return ok;
2238 
2239 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2240 
2241 	desc = IGC_RX_DESC(ring, i);
2242 	bi = &ring->rx_buffer_info[i];
2243 	i -= ring->count;
2244 
2245 	do {
2246 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2247 		if (!bi->xdp) {
2248 			ok = false;
2249 			break;
2250 		}
2251 
2252 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2253 		desc->read.pkt_addr = cpu_to_le64(dma);
2254 
2255 		desc++;
2256 		bi++;
2257 		i++;
2258 		if (unlikely(!i)) {
2259 			desc = IGC_RX_DESC(ring, 0);
2260 			bi = ring->rx_buffer_info;
2261 			i -= ring->count;
2262 		}
2263 
2264 		/* Clear the length for the next_to_use descriptor. */
2265 		desc->wb.upper.length = 0;
2266 
2267 		count--;
2268 	} while (count);
2269 
2270 	i += ring->count;
2271 
2272 	if (ring->next_to_use != i) {
2273 		ring->next_to_use = i;
2274 
2275 		/* Force memory writes to complete before letting h/w
2276 		 * know there are new descriptors to fetch.  (Only
2277 		 * applicable for weak-ordered memory model archs,
2278 		 * such as IA-64).
2279 		 */
2280 		wmb();
2281 		writel(i, ring->tail);
2282 	}
2283 
2284 	return ok;
2285 }
2286 
2287 /* This function requires __netif_tx_lock is held by the caller. */
2288 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2289 				      struct xdp_frame *xdpf)
2290 {
2291 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2292 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2293 	u16 count, index = ring->next_to_use;
2294 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2295 	struct igc_tx_buffer *buffer = head;
2296 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2297 	u32 olinfo_status, len = xdpf->len, cmd_type;
2298 	void *data = xdpf->data;
2299 	u16 i;
2300 
2301 	count = TXD_USE_COUNT(len);
2302 	for (i = 0; i < nr_frags; i++)
2303 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2304 
2305 	if (igc_maybe_stop_tx(ring, count + 3)) {
2306 		/* this is a hard error */
2307 		return -EBUSY;
2308 	}
2309 
2310 	i = 0;
2311 	head->bytecount = xdp_get_frame_len(xdpf);
2312 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2313 	head->gso_segs = 1;
2314 	head->xdpf = xdpf;
2315 
2316 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2317 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2318 
2319 	for (;;) {
2320 		dma_addr_t dma;
2321 
2322 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2323 		if (dma_mapping_error(ring->dev, dma)) {
2324 			netdev_err_once(ring->netdev,
2325 					"Failed to map DMA for TX\n");
2326 			goto unmap;
2327 		}
2328 
2329 		dma_unmap_len_set(buffer, len, len);
2330 		dma_unmap_addr_set(buffer, dma, dma);
2331 
2332 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2333 			   IGC_ADVTXD_DCMD_IFCS | len;
2334 
2335 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2336 		desc->read.buffer_addr = cpu_to_le64(dma);
2337 
2338 		buffer->protocol = 0;
2339 
2340 		if (++index == ring->count)
2341 			index = 0;
2342 
2343 		if (i == nr_frags)
2344 			break;
2345 
2346 		buffer = &ring->tx_buffer_info[index];
2347 		desc = IGC_TX_DESC(ring, index);
2348 		desc->read.olinfo_status = 0;
2349 
2350 		data = skb_frag_address(&sinfo->frags[i]);
2351 		len = skb_frag_size(&sinfo->frags[i]);
2352 		i++;
2353 	}
2354 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2355 
2356 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2357 	/* set the timestamp */
2358 	head->time_stamp = jiffies;
2359 	/* set next_to_watch value indicating a packet is present */
2360 	head->next_to_watch = desc;
2361 	ring->next_to_use = index;
2362 
2363 	return 0;
2364 
2365 unmap:
2366 	for (;;) {
2367 		buffer = &ring->tx_buffer_info[index];
2368 		if (dma_unmap_len(buffer, len))
2369 			dma_unmap_page(ring->dev,
2370 				       dma_unmap_addr(buffer, dma),
2371 				       dma_unmap_len(buffer, len),
2372 				       DMA_TO_DEVICE);
2373 		dma_unmap_len_set(buffer, len, 0);
2374 		if (buffer == head)
2375 			break;
2376 
2377 		if (!index)
2378 			index += ring->count;
2379 		index--;
2380 	}
2381 
2382 	return -ENOMEM;
2383 }
2384 
2385 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2386 					    int cpu)
2387 {
2388 	int index = cpu;
2389 
2390 	if (unlikely(index < 0))
2391 		index = 0;
2392 
2393 	while (index >= adapter->num_tx_queues)
2394 		index -= adapter->num_tx_queues;
2395 
2396 	return adapter->tx_ring[index];
2397 }
2398 
2399 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2400 {
2401 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2402 	int cpu = smp_processor_id();
2403 	struct netdev_queue *nq;
2404 	struct igc_ring *ring;
2405 	int res;
2406 
2407 	if (unlikely(!xdpf))
2408 		return -EFAULT;
2409 
2410 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2411 	nq = txring_txq(ring);
2412 
2413 	__netif_tx_lock(nq, cpu);
2414 	/* Avoid transmit queue timeout since we share it with the slow path */
2415 	txq_trans_cond_update(nq);
2416 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2417 	__netif_tx_unlock(nq);
2418 	return res;
2419 }
2420 
2421 /* This function assumes rcu_read_lock() is held by the caller. */
2422 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2423 			      struct bpf_prog *prog,
2424 			      struct xdp_buff *xdp)
2425 {
2426 	u32 act = bpf_prog_run_xdp(prog, xdp);
2427 
2428 	switch (act) {
2429 	case XDP_PASS:
2430 		return IGC_XDP_PASS;
2431 	case XDP_TX:
2432 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2433 			goto out_failure;
2434 		return IGC_XDP_TX;
2435 	case XDP_REDIRECT:
2436 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2437 			goto out_failure;
2438 		return IGC_XDP_REDIRECT;
2439 		break;
2440 	default:
2441 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2442 		fallthrough;
2443 	case XDP_ABORTED:
2444 out_failure:
2445 		trace_xdp_exception(adapter->netdev, prog, act);
2446 		fallthrough;
2447 	case XDP_DROP:
2448 		return IGC_XDP_CONSUMED;
2449 	}
2450 }
2451 
2452 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2453 					struct xdp_buff *xdp)
2454 {
2455 	struct bpf_prog *prog;
2456 	int res;
2457 
2458 	prog = READ_ONCE(adapter->xdp_prog);
2459 	if (!prog) {
2460 		res = IGC_XDP_PASS;
2461 		goto out;
2462 	}
2463 
2464 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2465 
2466 out:
2467 	return ERR_PTR(-res);
2468 }
2469 
2470 /* This function assumes __netif_tx_lock is held by the caller. */
2471 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2472 {
2473 	/* Once tail pointer is updated, hardware can fetch the descriptors
2474 	 * any time so we issue a write membar here to ensure all memory
2475 	 * writes are complete before the tail pointer is updated.
2476 	 */
2477 	wmb();
2478 	writel(ring->next_to_use, ring->tail);
2479 }
2480 
2481 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2482 {
2483 	int cpu = smp_processor_id();
2484 	struct netdev_queue *nq;
2485 	struct igc_ring *ring;
2486 
2487 	if (status & IGC_XDP_TX) {
2488 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2489 		nq = txring_txq(ring);
2490 
2491 		__netif_tx_lock(nq, cpu);
2492 		igc_flush_tx_descriptors(ring);
2493 		__netif_tx_unlock(nq);
2494 	}
2495 
2496 	if (status & IGC_XDP_REDIRECT)
2497 		xdp_do_flush();
2498 }
2499 
2500 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2501 				unsigned int packets, unsigned int bytes)
2502 {
2503 	struct igc_ring *ring = q_vector->rx.ring;
2504 
2505 	u64_stats_update_begin(&ring->rx_syncp);
2506 	ring->rx_stats.packets += packets;
2507 	ring->rx_stats.bytes += bytes;
2508 	u64_stats_update_end(&ring->rx_syncp);
2509 
2510 	q_vector->rx.total_packets += packets;
2511 	q_vector->rx.total_bytes += bytes;
2512 }
2513 
2514 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2515 {
2516 	unsigned int total_bytes = 0, total_packets = 0;
2517 	struct igc_adapter *adapter = q_vector->adapter;
2518 	struct igc_ring *rx_ring = q_vector->rx.ring;
2519 	struct sk_buff *skb = rx_ring->skb;
2520 	u16 cleaned_count = igc_desc_unused(rx_ring);
2521 	int xdp_status = 0, rx_buffer_pgcnt;
2522 
2523 	while (likely(total_packets < budget)) {
2524 		union igc_adv_rx_desc *rx_desc;
2525 		struct igc_rx_buffer *rx_buffer;
2526 		unsigned int size, truesize;
2527 		struct igc_xdp_buff ctx;
2528 		ktime_t timestamp = 0;
2529 		int pkt_offset = 0;
2530 		void *pktbuf;
2531 
2532 		/* return some buffers to hardware, one at a time is too slow */
2533 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2534 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2535 			cleaned_count = 0;
2536 		}
2537 
2538 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2539 		size = le16_to_cpu(rx_desc->wb.upper.length);
2540 		if (!size)
2541 			break;
2542 
2543 		/* This memory barrier is needed to keep us from reading
2544 		 * any other fields out of the rx_desc until we know the
2545 		 * descriptor has been written back
2546 		 */
2547 		dma_rmb();
2548 
2549 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2550 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2551 
2552 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2553 
2554 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2555 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2556 							pktbuf);
2557 			ctx.rx_ts = timestamp;
2558 			pkt_offset = IGC_TS_HDR_LEN;
2559 			size -= IGC_TS_HDR_LEN;
2560 		}
2561 
2562 		if (!skb) {
2563 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2564 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2565 					 igc_rx_offset(rx_ring) + pkt_offset,
2566 					 size, true);
2567 			xdp_buff_clear_frags_flag(&ctx.xdp);
2568 			ctx.rx_desc = rx_desc;
2569 
2570 			skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2571 		}
2572 
2573 		if (IS_ERR(skb)) {
2574 			unsigned int xdp_res = -PTR_ERR(skb);
2575 
2576 			switch (xdp_res) {
2577 			case IGC_XDP_CONSUMED:
2578 				rx_buffer->pagecnt_bias++;
2579 				break;
2580 			case IGC_XDP_TX:
2581 			case IGC_XDP_REDIRECT:
2582 				igc_rx_buffer_flip(rx_buffer, truesize);
2583 				xdp_status |= xdp_res;
2584 				break;
2585 			}
2586 
2587 			total_packets++;
2588 			total_bytes += size;
2589 		} else if (skb)
2590 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2591 		else if (ring_uses_build_skb(rx_ring))
2592 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2593 		else
2594 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx.xdp,
2595 						timestamp);
2596 
2597 		/* exit if we failed to retrieve a buffer */
2598 		if (!skb) {
2599 			rx_ring->rx_stats.alloc_failed++;
2600 			rx_buffer->pagecnt_bias++;
2601 			break;
2602 		}
2603 
2604 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2605 		cleaned_count++;
2606 
2607 		/* fetch next buffer in frame if non-eop */
2608 		if (igc_is_non_eop(rx_ring, rx_desc))
2609 			continue;
2610 
2611 		/* verify the packet layout is correct */
2612 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2613 			skb = NULL;
2614 			continue;
2615 		}
2616 
2617 		/* probably a little skewed due to removing CRC */
2618 		total_bytes += skb->len;
2619 
2620 		/* populate checksum, VLAN, and protocol */
2621 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2622 
2623 		napi_gro_receive(&q_vector->napi, skb);
2624 
2625 		/* reset skb pointer */
2626 		skb = NULL;
2627 
2628 		/* update budget accounting */
2629 		total_packets++;
2630 	}
2631 
2632 	if (xdp_status)
2633 		igc_finalize_xdp(adapter, xdp_status);
2634 
2635 	/* place incomplete frames back on ring for completion */
2636 	rx_ring->skb = skb;
2637 
2638 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2639 
2640 	if (cleaned_count)
2641 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2642 
2643 	return total_packets;
2644 }
2645 
2646 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2647 					    struct xdp_buff *xdp)
2648 {
2649 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2650 	unsigned int metasize = xdp->data - xdp->data_meta;
2651 	struct sk_buff *skb;
2652 
2653 	net_prefetch(xdp->data_meta);
2654 
2655 	skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2656 			       GFP_ATOMIC | __GFP_NOWARN);
2657 	if (unlikely(!skb))
2658 		return NULL;
2659 
2660 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2661 	       ALIGN(totalsize, sizeof(long)));
2662 
2663 	if (metasize) {
2664 		skb_metadata_set(skb, metasize);
2665 		__skb_pull(skb, metasize);
2666 	}
2667 
2668 	return skb;
2669 }
2670 
2671 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2672 				union igc_adv_rx_desc *desc,
2673 				struct xdp_buff *xdp,
2674 				ktime_t timestamp)
2675 {
2676 	struct igc_ring *ring = q_vector->rx.ring;
2677 	struct sk_buff *skb;
2678 
2679 	skb = igc_construct_skb_zc(ring, xdp);
2680 	if (!skb) {
2681 		ring->rx_stats.alloc_failed++;
2682 		return;
2683 	}
2684 
2685 	if (timestamp)
2686 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2687 
2688 	if (igc_cleanup_headers(ring, desc, skb))
2689 		return;
2690 
2691 	igc_process_skb_fields(ring, desc, skb);
2692 	napi_gro_receive(&q_vector->napi, skb);
2693 }
2694 
2695 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2696 {
2697 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2698 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2699 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2700 	 */
2701        return (struct igc_xdp_buff *)xdp;
2702 }
2703 
2704 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2705 {
2706 	struct igc_adapter *adapter = q_vector->adapter;
2707 	struct igc_ring *ring = q_vector->rx.ring;
2708 	u16 cleaned_count = igc_desc_unused(ring);
2709 	int total_bytes = 0, total_packets = 0;
2710 	u16 ntc = ring->next_to_clean;
2711 	struct bpf_prog *prog;
2712 	bool failure = false;
2713 	int xdp_status = 0;
2714 
2715 	rcu_read_lock();
2716 
2717 	prog = READ_ONCE(adapter->xdp_prog);
2718 
2719 	while (likely(total_packets < budget)) {
2720 		union igc_adv_rx_desc *desc;
2721 		struct igc_rx_buffer *bi;
2722 		struct igc_xdp_buff *ctx;
2723 		ktime_t timestamp = 0;
2724 		unsigned int size;
2725 		int res;
2726 
2727 		desc = IGC_RX_DESC(ring, ntc);
2728 		size = le16_to_cpu(desc->wb.upper.length);
2729 		if (!size)
2730 			break;
2731 
2732 		/* This memory barrier is needed to keep us from reading
2733 		 * any other fields out of the rx_desc until we know the
2734 		 * descriptor has been written back
2735 		 */
2736 		dma_rmb();
2737 
2738 		bi = &ring->rx_buffer_info[ntc];
2739 
2740 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2741 		ctx->rx_desc = desc;
2742 
2743 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2744 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2745 							bi->xdp->data);
2746 			ctx->rx_ts = timestamp;
2747 
2748 			bi->xdp->data += IGC_TS_HDR_LEN;
2749 
2750 			/* HW timestamp has been copied into local variable. Metadata
2751 			 * length when XDP program is called should be 0.
2752 			 */
2753 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2754 			size -= IGC_TS_HDR_LEN;
2755 		}
2756 
2757 		bi->xdp->data_end = bi->xdp->data + size;
2758 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2759 
2760 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2761 		switch (res) {
2762 		case IGC_XDP_PASS:
2763 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2764 			fallthrough;
2765 		case IGC_XDP_CONSUMED:
2766 			xsk_buff_free(bi->xdp);
2767 			break;
2768 		case IGC_XDP_TX:
2769 		case IGC_XDP_REDIRECT:
2770 			xdp_status |= res;
2771 			break;
2772 		}
2773 
2774 		bi->xdp = NULL;
2775 		total_bytes += size;
2776 		total_packets++;
2777 		cleaned_count++;
2778 		ntc++;
2779 		if (ntc == ring->count)
2780 			ntc = 0;
2781 	}
2782 
2783 	ring->next_to_clean = ntc;
2784 	rcu_read_unlock();
2785 
2786 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2787 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2788 
2789 	if (xdp_status)
2790 		igc_finalize_xdp(adapter, xdp_status);
2791 
2792 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2793 
2794 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2795 		if (failure || ring->next_to_clean == ring->next_to_use)
2796 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2797 		else
2798 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2799 		return total_packets;
2800 	}
2801 
2802 	return failure ? budget : total_packets;
2803 }
2804 
2805 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2806 				unsigned int packets, unsigned int bytes)
2807 {
2808 	struct igc_ring *ring = q_vector->tx.ring;
2809 
2810 	u64_stats_update_begin(&ring->tx_syncp);
2811 	ring->tx_stats.bytes += bytes;
2812 	ring->tx_stats.packets += packets;
2813 	u64_stats_update_end(&ring->tx_syncp);
2814 
2815 	q_vector->tx.total_bytes += bytes;
2816 	q_vector->tx.total_packets += packets;
2817 }
2818 
2819 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2820 {
2821 	struct xsk_buff_pool *pool = ring->xsk_pool;
2822 	struct netdev_queue *nq = txring_txq(ring);
2823 	union igc_adv_tx_desc *tx_desc = NULL;
2824 	int cpu = smp_processor_id();
2825 	u16 ntu = ring->next_to_use;
2826 	struct xdp_desc xdp_desc;
2827 	u16 budget;
2828 
2829 	if (!netif_carrier_ok(ring->netdev))
2830 		return;
2831 
2832 	__netif_tx_lock(nq, cpu);
2833 
2834 	/* Avoid transmit queue timeout since we share it with the slow path */
2835 	txq_trans_cond_update(nq);
2836 
2837 	budget = igc_desc_unused(ring);
2838 
2839 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2840 		u32 cmd_type, olinfo_status;
2841 		struct igc_tx_buffer *bi;
2842 		dma_addr_t dma;
2843 
2844 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2845 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2846 			   xdp_desc.len;
2847 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2848 
2849 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2850 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2851 
2852 		tx_desc = IGC_TX_DESC(ring, ntu);
2853 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2854 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2855 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2856 
2857 		bi = &ring->tx_buffer_info[ntu];
2858 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2859 		bi->protocol = 0;
2860 		bi->bytecount = xdp_desc.len;
2861 		bi->gso_segs = 1;
2862 		bi->time_stamp = jiffies;
2863 		bi->next_to_watch = tx_desc;
2864 
2865 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2866 
2867 		ntu++;
2868 		if (ntu == ring->count)
2869 			ntu = 0;
2870 	}
2871 
2872 	ring->next_to_use = ntu;
2873 	if (tx_desc) {
2874 		igc_flush_tx_descriptors(ring);
2875 		xsk_tx_release(pool);
2876 	}
2877 
2878 	__netif_tx_unlock(nq);
2879 }
2880 
2881 /**
2882  * igc_clean_tx_irq - Reclaim resources after transmit completes
2883  * @q_vector: pointer to q_vector containing needed info
2884  * @napi_budget: Used to determine if we are in netpoll
2885  *
2886  * returns true if ring is completely cleaned
2887  */
2888 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2889 {
2890 	struct igc_adapter *adapter = q_vector->adapter;
2891 	unsigned int total_bytes = 0, total_packets = 0;
2892 	unsigned int budget = q_vector->tx.work_limit;
2893 	struct igc_ring *tx_ring = q_vector->tx.ring;
2894 	unsigned int i = tx_ring->next_to_clean;
2895 	struct igc_tx_buffer *tx_buffer;
2896 	union igc_adv_tx_desc *tx_desc;
2897 	u32 xsk_frames = 0;
2898 
2899 	if (test_bit(__IGC_DOWN, &adapter->state))
2900 		return true;
2901 
2902 	tx_buffer = &tx_ring->tx_buffer_info[i];
2903 	tx_desc = IGC_TX_DESC(tx_ring, i);
2904 	i -= tx_ring->count;
2905 
2906 	do {
2907 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2908 
2909 		/* if next_to_watch is not set then there is no work pending */
2910 		if (!eop_desc)
2911 			break;
2912 
2913 		/* prevent any other reads prior to eop_desc */
2914 		smp_rmb();
2915 
2916 		/* if DD is not set pending work has not been completed */
2917 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2918 			break;
2919 
2920 		/* clear next_to_watch to prevent false hangs */
2921 		tx_buffer->next_to_watch = NULL;
2922 
2923 		/* update the statistics for this packet */
2924 		total_bytes += tx_buffer->bytecount;
2925 		total_packets += tx_buffer->gso_segs;
2926 
2927 		switch (tx_buffer->type) {
2928 		case IGC_TX_BUFFER_TYPE_XSK:
2929 			xsk_frames++;
2930 			break;
2931 		case IGC_TX_BUFFER_TYPE_XDP:
2932 			xdp_return_frame(tx_buffer->xdpf);
2933 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2934 			break;
2935 		case IGC_TX_BUFFER_TYPE_SKB:
2936 			napi_consume_skb(tx_buffer->skb, napi_budget);
2937 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2938 			break;
2939 		default:
2940 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2941 			break;
2942 		}
2943 
2944 		/* clear last DMA location and unmap remaining buffers */
2945 		while (tx_desc != eop_desc) {
2946 			tx_buffer++;
2947 			tx_desc++;
2948 			i++;
2949 			if (unlikely(!i)) {
2950 				i -= tx_ring->count;
2951 				tx_buffer = tx_ring->tx_buffer_info;
2952 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2953 			}
2954 
2955 			/* unmap any remaining paged data */
2956 			if (dma_unmap_len(tx_buffer, len))
2957 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2958 		}
2959 
2960 		/* move us one more past the eop_desc for start of next pkt */
2961 		tx_buffer++;
2962 		tx_desc++;
2963 		i++;
2964 		if (unlikely(!i)) {
2965 			i -= tx_ring->count;
2966 			tx_buffer = tx_ring->tx_buffer_info;
2967 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2968 		}
2969 
2970 		/* issue prefetch for next Tx descriptor */
2971 		prefetch(tx_desc);
2972 
2973 		/* update budget accounting */
2974 		budget--;
2975 	} while (likely(budget));
2976 
2977 	netdev_tx_completed_queue(txring_txq(tx_ring),
2978 				  total_packets, total_bytes);
2979 
2980 	i += tx_ring->count;
2981 	tx_ring->next_to_clean = i;
2982 
2983 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2984 
2985 	if (tx_ring->xsk_pool) {
2986 		if (xsk_frames)
2987 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2988 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2989 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2990 		igc_xdp_xmit_zc(tx_ring);
2991 	}
2992 
2993 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2994 		struct igc_hw *hw = &adapter->hw;
2995 
2996 		/* Detect a transmit hang in hardware, this serializes the
2997 		 * check with the clearing of time_stamp and movement of i
2998 		 */
2999 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3000 		if (tx_buffer->next_to_watch &&
3001 		    time_after(jiffies, tx_buffer->time_stamp +
3002 		    (adapter->tx_timeout_factor * HZ)) &&
3003 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3004 		    (rd32(IGC_TDH(tx_ring->reg_idx)) !=
3005 		     readl(tx_ring->tail))) {
3006 			/* detected Tx unit hang */
3007 			netdev_err(tx_ring->netdev,
3008 				   "Detected Tx Unit Hang\n"
3009 				   "  Tx Queue             <%d>\n"
3010 				   "  TDH                  <%x>\n"
3011 				   "  TDT                  <%x>\n"
3012 				   "  next_to_use          <%x>\n"
3013 				   "  next_to_clean        <%x>\n"
3014 				   "buffer_info[next_to_clean]\n"
3015 				   "  time_stamp           <%lx>\n"
3016 				   "  next_to_watch        <%p>\n"
3017 				   "  jiffies              <%lx>\n"
3018 				   "  desc.status          <%x>\n",
3019 				   tx_ring->queue_index,
3020 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3021 				   readl(tx_ring->tail),
3022 				   tx_ring->next_to_use,
3023 				   tx_ring->next_to_clean,
3024 				   tx_buffer->time_stamp,
3025 				   tx_buffer->next_to_watch,
3026 				   jiffies,
3027 				   tx_buffer->next_to_watch->wb.status);
3028 			netif_stop_subqueue(tx_ring->netdev,
3029 					    tx_ring->queue_index);
3030 
3031 			/* we are about to reset, no point in enabling stuff */
3032 			return true;
3033 		}
3034 	}
3035 
3036 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3037 	if (unlikely(total_packets &&
3038 		     netif_carrier_ok(tx_ring->netdev) &&
3039 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3040 		/* Make sure that anybody stopping the queue after this
3041 		 * sees the new next_to_clean.
3042 		 */
3043 		smp_mb();
3044 		if (__netif_subqueue_stopped(tx_ring->netdev,
3045 					     tx_ring->queue_index) &&
3046 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3047 			netif_wake_subqueue(tx_ring->netdev,
3048 					    tx_ring->queue_index);
3049 
3050 			u64_stats_update_begin(&tx_ring->tx_syncp);
3051 			tx_ring->tx_stats.restart_queue++;
3052 			u64_stats_update_end(&tx_ring->tx_syncp);
3053 		}
3054 	}
3055 
3056 	return !!budget;
3057 }
3058 
3059 static int igc_find_mac_filter(struct igc_adapter *adapter,
3060 			       enum igc_mac_filter_type type, const u8 *addr)
3061 {
3062 	struct igc_hw *hw = &adapter->hw;
3063 	int max_entries = hw->mac.rar_entry_count;
3064 	u32 ral, rah;
3065 	int i;
3066 
3067 	for (i = 0; i < max_entries; i++) {
3068 		ral = rd32(IGC_RAL(i));
3069 		rah = rd32(IGC_RAH(i));
3070 
3071 		if (!(rah & IGC_RAH_AV))
3072 			continue;
3073 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3074 			continue;
3075 		if ((rah & IGC_RAH_RAH_MASK) !=
3076 		    le16_to_cpup((__le16 *)(addr + 4)))
3077 			continue;
3078 		if (ral != le32_to_cpup((__le32 *)(addr)))
3079 			continue;
3080 
3081 		return i;
3082 	}
3083 
3084 	return -1;
3085 }
3086 
3087 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3088 {
3089 	struct igc_hw *hw = &adapter->hw;
3090 	int max_entries = hw->mac.rar_entry_count;
3091 	u32 rah;
3092 	int i;
3093 
3094 	for (i = 0; i < max_entries; i++) {
3095 		rah = rd32(IGC_RAH(i));
3096 
3097 		if (!(rah & IGC_RAH_AV))
3098 			return i;
3099 	}
3100 
3101 	return -1;
3102 }
3103 
3104 /**
3105  * igc_add_mac_filter() - Add MAC address filter
3106  * @adapter: Pointer to adapter where the filter should be added
3107  * @type: MAC address filter type (source or destination)
3108  * @addr: MAC address
3109  * @queue: If non-negative, queue assignment feature is enabled and frames
3110  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3111  *         assignment is disabled.
3112  *
3113  * Return: 0 in case of success, negative errno code otherwise.
3114  */
3115 static int igc_add_mac_filter(struct igc_adapter *adapter,
3116 			      enum igc_mac_filter_type type, const u8 *addr,
3117 			      int queue)
3118 {
3119 	struct net_device *dev = adapter->netdev;
3120 	int index;
3121 
3122 	index = igc_find_mac_filter(adapter, type, addr);
3123 	if (index >= 0)
3124 		goto update_filter;
3125 
3126 	index = igc_get_avail_mac_filter_slot(adapter);
3127 	if (index < 0)
3128 		return -ENOSPC;
3129 
3130 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3131 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3132 		   addr, queue);
3133 
3134 update_filter:
3135 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3136 	return 0;
3137 }
3138 
3139 /**
3140  * igc_del_mac_filter() - Delete MAC address filter
3141  * @adapter: Pointer to adapter where the filter should be deleted from
3142  * @type: MAC address filter type (source or destination)
3143  * @addr: MAC address
3144  */
3145 static void igc_del_mac_filter(struct igc_adapter *adapter,
3146 			       enum igc_mac_filter_type type, const u8 *addr)
3147 {
3148 	struct net_device *dev = adapter->netdev;
3149 	int index;
3150 
3151 	index = igc_find_mac_filter(adapter, type, addr);
3152 	if (index < 0)
3153 		return;
3154 
3155 	if (index == 0) {
3156 		/* If this is the default filter, we don't actually delete it.
3157 		 * We just reset to its default value i.e. disable queue
3158 		 * assignment.
3159 		 */
3160 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3161 
3162 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3163 	} else {
3164 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3165 			   index,
3166 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3167 			   addr);
3168 
3169 		igc_clear_mac_filter_hw(adapter, index);
3170 	}
3171 }
3172 
3173 /**
3174  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3175  * @adapter: Pointer to adapter where the filter should be added
3176  * @prio: VLAN priority value
3177  * @queue: Queue number which matching frames are assigned to
3178  *
3179  * Return: 0 in case of success, negative errno code otherwise.
3180  */
3181 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3182 				    int queue)
3183 {
3184 	struct net_device *dev = adapter->netdev;
3185 	struct igc_hw *hw = &adapter->hw;
3186 	u32 vlanpqf;
3187 
3188 	vlanpqf = rd32(IGC_VLANPQF);
3189 
3190 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3191 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3192 		return -EEXIST;
3193 	}
3194 
3195 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3196 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3197 
3198 	wr32(IGC_VLANPQF, vlanpqf);
3199 
3200 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3201 		   prio, queue);
3202 	return 0;
3203 }
3204 
3205 /**
3206  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3207  * @adapter: Pointer to adapter where the filter should be deleted from
3208  * @prio: VLAN priority value
3209  */
3210 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3211 {
3212 	struct igc_hw *hw = &adapter->hw;
3213 	u32 vlanpqf;
3214 
3215 	vlanpqf = rd32(IGC_VLANPQF);
3216 
3217 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3218 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3219 
3220 	wr32(IGC_VLANPQF, vlanpqf);
3221 
3222 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3223 		   prio);
3224 }
3225 
3226 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3227 {
3228 	struct igc_hw *hw = &adapter->hw;
3229 	int i;
3230 
3231 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3232 		u32 etqf = rd32(IGC_ETQF(i));
3233 
3234 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3235 			return i;
3236 	}
3237 
3238 	return -1;
3239 }
3240 
3241 /**
3242  * igc_add_etype_filter() - Add ethertype filter
3243  * @adapter: Pointer to adapter where the filter should be added
3244  * @etype: Ethertype value
3245  * @queue: If non-negative, queue assignment feature is enabled and frames
3246  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3247  *         assignment is disabled.
3248  *
3249  * Return: 0 in case of success, negative errno code otherwise.
3250  */
3251 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3252 				int queue)
3253 {
3254 	struct igc_hw *hw = &adapter->hw;
3255 	int index;
3256 	u32 etqf;
3257 
3258 	index = igc_get_avail_etype_filter_slot(adapter);
3259 	if (index < 0)
3260 		return -ENOSPC;
3261 
3262 	etqf = rd32(IGC_ETQF(index));
3263 
3264 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3265 	etqf |= etype;
3266 
3267 	if (queue >= 0) {
3268 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3269 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3270 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3271 	}
3272 
3273 	etqf |= IGC_ETQF_FILTER_ENABLE;
3274 
3275 	wr32(IGC_ETQF(index), etqf);
3276 
3277 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3278 		   etype, queue);
3279 	return 0;
3280 }
3281 
3282 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3283 {
3284 	struct igc_hw *hw = &adapter->hw;
3285 	int i;
3286 
3287 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3288 		u32 etqf = rd32(IGC_ETQF(i));
3289 
3290 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3291 			return i;
3292 	}
3293 
3294 	return -1;
3295 }
3296 
3297 /**
3298  * igc_del_etype_filter() - Delete ethertype filter
3299  * @adapter: Pointer to adapter where the filter should be deleted from
3300  * @etype: Ethertype value
3301  */
3302 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3303 {
3304 	struct igc_hw *hw = &adapter->hw;
3305 	int index;
3306 
3307 	index = igc_find_etype_filter(adapter, etype);
3308 	if (index < 0)
3309 		return;
3310 
3311 	wr32(IGC_ETQF(index), 0);
3312 
3313 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3314 		   etype);
3315 }
3316 
3317 static int igc_flex_filter_select(struct igc_adapter *adapter,
3318 				  struct igc_flex_filter *input,
3319 				  u32 *fhft)
3320 {
3321 	struct igc_hw *hw = &adapter->hw;
3322 	u8 fhft_index;
3323 	u32 fhftsl;
3324 
3325 	if (input->index >= MAX_FLEX_FILTER) {
3326 		dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3327 		return -EINVAL;
3328 	}
3329 
3330 	/* Indirect table select register */
3331 	fhftsl = rd32(IGC_FHFTSL);
3332 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3333 	switch (input->index) {
3334 	case 0 ... 7:
3335 		fhftsl |= 0x00;
3336 		break;
3337 	case 8 ... 15:
3338 		fhftsl |= 0x01;
3339 		break;
3340 	case 16 ... 23:
3341 		fhftsl |= 0x02;
3342 		break;
3343 	case 24 ... 31:
3344 		fhftsl |= 0x03;
3345 		break;
3346 	}
3347 	wr32(IGC_FHFTSL, fhftsl);
3348 
3349 	/* Normalize index down to host table register */
3350 	fhft_index = input->index % 8;
3351 
3352 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3353 		IGC_FHFT_EXT(fhft_index - 4);
3354 
3355 	return 0;
3356 }
3357 
3358 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3359 				    struct igc_flex_filter *input)
3360 {
3361 	struct device *dev = &adapter->pdev->dev;
3362 	struct igc_hw *hw = &adapter->hw;
3363 	u8 *data = input->data;
3364 	u8 *mask = input->mask;
3365 	u32 queuing;
3366 	u32 fhft;
3367 	u32 wufc;
3368 	int ret;
3369 	int i;
3370 
3371 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3372 	 * out early to avoid surprises later.
3373 	 */
3374 	if (input->length % 8 != 0) {
3375 		dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3376 		return -EINVAL;
3377 	}
3378 
3379 	/* Select corresponding flex filter register and get base for host table. */
3380 	ret = igc_flex_filter_select(adapter, input, &fhft);
3381 	if (ret)
3382 		return ret;
3383 
3384 	/* When adding a filter globally disable flex filter feature. That is
3385 	 * recommended within the datasheet.
3386 	 */
3387 	wufc = rd32(IGC_WUFC);
3388 	wufc &= ~IGC_WUFC_FLEX_HQ;
3389 	wr32(IGC_WUFC, wufc);
3390 
3391 	/* Configure filter */
3392 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3393 	queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3394 	queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3395 
3396 	if (input->immediate_irq)
3397 		queuing |= IGC_FHFT_IMM_INT;
3398 
3399 	if (input->drop)
3400 		queuing |= IGC_FHFT_DROP;
3401 
3402 	wr32(fhft + 0xFC, queuing);
3403 
3404 	/* Write data (128 byte) and mask (128 bit) */
3405 	for (i = 0; i < 16; ++i) {
3406 		const size_t data_idx = i * 8;
3407 		const size_t row_idx = i * 16;
3408 		u32 dw0 =
3409 			(data[data_idx + 0] << 0) |
3410 			(data[data_idx + 1] << 8) |
3411 			(data[data_idx + 2] << 16) |
3412 			(data[data_idx + 3] << 24);
3413 		u32 dw1 =
3414 			(data[data_idx + 4] << 0) |
3415 			(data[data_idx + 5] << 8) |
3416 			(data[data_idx + 6] << 16) |
3417 			(data[data_idx + 7] << 24);
3418 		u32 tmp;
3419 
3420 		/* Write row: dw0, dw1 and mask */
3421 		wr32(fhft + row_idx, dw0);
3422 		wr32(fhft + row_idx + 4, dw1);
3423 
3424 		/* mask is only valid for MASK(7, 0) */
3425 		tmp = rd32(fhft + row_idx + 8);
3426 		tmp &= ~GENMASK(7, 0);
3427 		tmp |= mask[i];
3428 		wr32(fhft + row_idx + 8, tmp);
3429 	}
3430 
3431 	/* Enable filter. */
3432 	wufc |= IGC_WUFC_FLEX_HQ;
3433 	if (input->index > 8) {
3434 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3435 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3436 
3437 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3438 
3439 		wr32(IGC_WUFC_EXT, wufc_ext);
3440 	} else {
3441 		wufc |= (IGC_WUFC_FLX0 << input->index);
3442 	}
3443 	wr32(IGC_WUFC, wufc);
3444 
3445 	dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3446 		input->index);
3447 
3448 	return 0;
3449 }
3450 
3451 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3452 				      const void *src, unsigned int offset,
3453 				      size_t len, const void *mask)
3454 {
3455 	int i;
3456 
3457 	/* data */
3458 	memcpy(&flex->data[offset], src, len);
3459 
3460 	/* mask */
3461 	for (i = 0; i < len; ++i) {
3462 		const unsigned int idx = i + offset;
3463 		const u8 *ptr = mask;
3464 
3465 		if (mask) {
3466 			if (ptr[i] & 0xff)
3467 				flex->mask[idx / 8] |= BIT(idx % 8);
3468 
3469 			continue;
3470 		}
3471 
3472 		flex->mask[idx / 8] |= BIT(idx % 8);
3473 	}
3474 }
3475 
3476 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3477 {
3478 	struct igc_hw *hw = &adapter->hw;
3479 	u32 wufc, wufc_ext;
3480 	int i;
3481 
3482 	wufc = rd32(IGC_WUFC);
3483 	wufc_ext = rd32(IGC_WUFC_EXT);
3484 
3485 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3486 		if (i < 8) {
3487 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3488 				return i;
3489 		} else {
3490 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3491 				return i;
3492 		}
3493 	}
3494 
3495 	return -ENOSPC;
3496 }
3497 
3498 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3499 {
3500 	struct igc_hw *hw = &adapter->hw;
3501 	u32 wufc, wufc_ext;
3502 
3503 	wufc = rd32(IGC_WUFC);
3504 	wufc_ext = rd32(IGC_WUFC_EXT);
3505 
3506 	if (wufc & IGC_WUFC_FILTER_MASK)
3507 		return true;
3508 
3509 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3510 		return true;
3511 
3512 	return false;
3513 }
3514 
3515 static int igc_add_flex_filter(struct igc_adapter *adapter,
3516 			       struct igc_nfc_rule *rule)
3517 {
3518 	struct igc_flex_filter flex = { };
3519 	struct igc_nfc_filter *filter = &rule->filter;
3520 	unsigned int eth_offset, user_offset;
3521 	int ret, index;
3522 	bool vlan;
3523 
3524 	index = igc_find_avail_flex_filter_slot(adapter);
3525 	if (index < 0)
3526 		return -ENOSPC;
3527 
3528 	/* Construct the flex filter:
3529 	 *  -> dest_mac [6]
3530 	 *  -> src_mac [6]
3531 	 *  -> tpid [2]
3532 	 *  -> vlan tci [2]
3533 	 *  -> ether type [2]
3534 	 *  -> user data [8]
3535 	 *  -> = 26 bytes => 32 length
3536 	 */
3537 	flex.index    = index;
3538 	flex.length   = 32;
3539 	flex.rx_queue = rule->action;
3540 
3541 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3542 	eth_offset = vlan ? 16 : 12;
3543 	user_offset = vlan ? 18 : 14;
3544 
3545 	/* Add destination MAC  */
3546 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3547 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3548 					  ETH_ALEN, NULL);
3549 
3550 	/* Add source MAC */
3551 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3552 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3553 					  ETH_ALEN, NULL);
3554 
3555 	/* Add VLAN etype */
3556 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3557 		igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3558 					  sizeof(filter->vlan_etype),
3559 					  NULL);
3560 
3561 	/* Add VLAN TCI */
3562 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3563 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3564 					  sizeof(filter->vlan_tci), NULL);
3565 
3566 	/* Add Ether type */
3567 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3568 		__be16 etype = cpu_to_be16(filter->etype);
3569 
3570 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3571 					  sizeof(etype), NULL);
3572 	}
3573 
3574 	/* Add user data */
3575 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3576 		igc_flex_filter_add_field(&flex, &filter->user_data,
3577 					  user_offset,
3578 					  sizeof(filter->user_data),
3579 					  filter->user_mask);
3580 
3581 	/* Add it down to the hardware and enable it. */
3582 	ret = igc_write_flex_filter_ll(adapter, &flex);
3583 	if (ret)
3584 		return ret;
3585 
3586 	filter->flex_index = index;
3587 
3588 	return 0;
3589 }
3590 
3591 static void igc_del_flex_filter(struct igc_adapter *adapter,
3592 				u16 reg_index)
3593 {
3594 	struct igc_hw *hw = &adapter->hw;
3595 	u32 wufc;
3596 
3597 	/* Just disable the filter. The filter table itself is kept
3598 	 * intact. Another flex_filter_add() should override the "old" data
3599 	 * then.
3600 	 */
3601 	if (reg_index > 8) {
3602 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3603 
3604 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3605 		wr32(IGC_WUFC_EXT, wufc_ext);
3606 	} else {
3607 		wufc = rd32(IGC_WUFC);
3608 
3609 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3610 		wr32(IGC_WUFC, wufc);
3611 	}
3612 
3613 	if (igc_flex_filter_in_use(adapter))
3614 		return;
3615 
3616 	/* No filters are in use, we may disable flex filters */
3617 	wufc = rd32(IGC_WUFC);
3618 	wufc &= ~IGC_WUFC_FLEX_HQ;
3619 	wr32(IGC_WUFC, wufc);
3620 }
3621 
3622 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3623 			       struct igc_nfc_rule *rule)
3624 {
3625 	int err;
3626 
3627 	if (rule->flex) {
3628 		return igc_add_flex_filter(adapter, rule);
3629 	}
3630 
3631 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3632 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3633 					   rule->action);
3634 		if (err)
3635 			return err;
3636 	}
3637 
3638 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3639 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3640 					 rule->filter.src_addr, rule->action);
3641 		if (err)
3642 			return err;
3643 	}
3644 
3645 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3646 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3647 					 rule->filter.dst_addr, rule->action);
3648 		if (err)
3649 			return err;
3650 	}
3651 
3652 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3653 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3654 			   VLAN_PRIO_SHIFT;
3655 
3656 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3657 		if (err)
3658 			return err;
3659 	}
3660 
3661 	return 0;
3662 }
3663 
3664 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3665 				 const struct igc_nfc_rule *rule)
3666 {
3667 	if (rule->flex) {
3668 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3669 		return;
3670 	}
3671 
3672 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3673 		igc_del_etype_filter(adapter, rule->filter.etype);
3674 
3675 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3676 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3677 			   VLAN_PRIO_SHIFT;
3678 
3679 		igc_del_vlan_prio_filter(adapter, prio);
3680 	}
3681 
3682 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3683 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3684 				   rule->filter.src_addr);
3685 
3686 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3687 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3688 				   rule->filter.dst_addr);
3689 }
3690 
3691 /**
3692  * igc_get_nfc_rule() - Get NFC rule
3693  * @adapter: Pointer to adapter
3694  * @location: Rule location
3695  *
3696  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3697  *
3698  * Return: Pointer to NFC rule at @location. If not found, NULL.
3699  */
3700 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3701 				      u32 location)
3702 {
3703 	struct igc_nfc_rule *rule;
3704 
3705 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3706 		if (rule->location == location)
3707 			return rule;
3708 		if (rule->location > location)
3709 			break;
3710 	}
3711 
3712 	return NULL;
3713 }
3714 
3715 /**
3716  * igc_del_nfc_rule() - Delete NFC rule
3717  * @adapter: Pointer to adapter
3718  * @rule: Pointer to rule to be deleted
3719  *
3720  * Disable NFC rule in hardware and delete it from adapter.
3721  *
3722  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3723  */
3724 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3725 {
3726 	igc_disable_nfc_rule(adapter, rule);
3727 
3728 	list_del(&rule->list);
3729 	adapter->nfc_rule_count--;
3730 
3731 	kfree(rule);
3732 }
3733 
3734 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3735 {
3736 	struct igc_nfc_rule *rule, *tmp;
3737 
3738 	mutex_lock(&adapter->nfc_rule_lock);
3739 
3740 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3741 		igc_del_nfc_rule(adapter, rule);
3742 
3743 	mutex_unlock(&adapter->nfc_rule_lock);
3744 }
3745 
3746 /**
3747  * igc_add_nfc_rule() - Add NFC rule
3748  * @adapter: Pointer to adapter
3749  * @rule: Pointer to rule to be added
3750  *
3751  * Enable NFC rule in hardware and add it to adapter.
3752  *
3753  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3754  *
3755  * Return: 0 on success, negative errno on failure.
3756  */
3757 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3758 {
3759 	struct igc_nfc_rule *pred, *cur;
3760 	int err;
3761 
3762 	err = igc_enable_nfc_rule(adapter, rule);
3763 	if (err)
3764 		return err;
3765 
3766 	pred = NULL;
3767 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3768 		if (cur->location >= rule->location)
3769 			break;
3770 		pred = cur;
3771 	}
3772 
3773 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3774 	adapter->nfc_rule_count++;
3775 	return 0;
3776 }
3777 
3778 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3779 {
3780 	struct igc_nfc_rule *rule;
3781 
3782 	mutex_lock(&adapter->nfc_rule_lock);
3783 
3784 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3785 		igc_enable_nfc_rule(adapter, rule);
3786 
3787 	mutex_unlock(&adapter->nfc_rule_lock);
3788 }
3789 
3790 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3791 {
3792 	struct igc_adapter *adapter = netdev_priv(netdev);
3793 
3794 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3795 }
3796 
3797 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3798 {
3799 	struct igc_adapter *adapter = netdev_priv(netdev);
3800 
3801 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3802 	return 0;
3803 }
3804 
3805 /**
3806  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3807  * @netdev: network interface device structure
3808  *
3809  * The set_rx_mode entry point is called whenever the unicast or multicast
3810  * address lists or the network interface flags are updated.  This routine is
3811  * responsible for configuring the hardware for proper unicast, multicast,
3812  * promiscuous mode, and all-multi behavior.
3813  */
3814 static void igc_set_rx_mode(struct net_device *netdev)
3815 {
3816 	struct igc_adapter *adapter = netdev_priv(netdev);
3817 	struct igc_hw *hw = &adapter->hw;
3818 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3819 	int count;
3820 
3821 	/* Check for Promiscuous and All Multicast modes */
3822 	if (netdev->flags & IFF_PROMISC) {
3823 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3824 	} else {
3825 		if (netdev->flags & IFF_ALLMULTI) {
3826 			rctl |= IGC_RCTL_MPE;
3827 		} else {
3828 			/* Write addresses to the MTA, if the attempt fails
3829 			 * then we should just turn on promiscuous mode so
3830 			 * that we can at least receive multicast traffic
3831 			 */
3832 			count = igc_write_mc_addr_list(netdev);
3833 			if (count < 0)
3834 				rctl |= IGC_RCTL_MPE;
3835 		}
3836 	}
3837 
3838 	/* Write addresses to available RAR registers, if there is not
3839 	 * sufficient space to store all the addresses then enable
3840 	 * unicast promiscuous mode
3841 	 */
3842 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3843 		rctl |= IGC_RCTL_UPE;
3844 
3845 	/* update state of unicast and multicast */
3846 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3847 	wr32(IGC_RCTL, rctl);
3848 
3849 #if (PAGE_SIZE < 8192)
3850 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3851 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3852 #endif
3853 	wr32(IGC_RLPML, rlpml);
3854 }
3855 
3856 /**
3857  * igc_configure - configure the hardware for RX and TX
3858  * @adapter: private board structure
3859  */
3860 static void igc_configure(struct igc_adapter *adapter)
3861 {
3862 	struct net_device *netdev = adapter->netdev;
3863 	int i = 0;
3864 
3865 	igc_get_hw_control(adapter);
3866 	igc_set_rx_mode(netdev);
3867 
3868 	igc_restore_vlan(adapter);
3869 
3870 	igc_setup_tctl(adapter);
3871 	igc_setup_mrqc(adapter);
3872 	igc_setup_rctl(adapter);
3873 
3874 	igc_set_default_mac_filter(adapter);
3875 	igc_restore_nfc_rules(adapter);
3876 
3877 	igc_configure_tx(adapter);
3878 	igc_configure_rx(adapter);
3879 
3880 	igc_rx_fifo_flush_base(&adapter->hw);
3881 
3882 	/* call igc_desc_unused which always leaves
3883 	 * at least 1 descriptor unused to make sure
3884 	 * next_to_use != next_to_clean
3885 	 */
3886 	for (i = 0; i < adapter->num_rx_queues; i++) {
3887 		struct igc_ring *ring = adapter->rx_ring[i];
3888 
3889 		if (ring->xsk_pool)
3890 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3891 		else
3892 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3893 	}
3894 }
3895 
3896 /**
3897  * igc_write_ivar - configure ivar for given MSI-X vector
3898  * @hw: pointer to the HW structure
3899  * @msix_vector: vector number we are allocating to a given ring
3900  * @index: row index of IVAR register to write within IVAR table
3901  * @offset: column offset of in IVAR, should be multiple of 8
3902  *
3903  * The IVAR table consists of 2 columns,
3904  * each containing an cause allocation for an Rx and Tx ring, and a
3905  * variable number of rows depending on the number of queues supported.
3906  */
3907 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3908 			   int index, int offset)
3909 {
3910 	u32 ivar = array_rd32(IGC_IVAR0, index);
3911 
3912 	/* clear any bits that are currently set */
3913 	ivar &= ~((u32)0xFF << offset);
3914 
3915 	/* write vector and valid bit */
3916 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3917 
3918 	array_wr32(IGC_IVAR0, index, ivar);
3919 }
3920 
3921 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3922 {
3923 	struct igc_adapter *adapter = q_vector->adapter;
3924 	struct igc_hw *hw = &adapter->hw;
3925 	int rx_queue = IGC_N0_QUEUE;
3926 	int tx_queue = IGC_N0_QUEUE;
3927 
3928 	if (q_vector->rx.ring)
3929 		rx_queue = q_vector->rx.ring->reg_idx;
3930 	if (q_vector->tx.ring)
3931 		tx_queue = q_vector->tx.ring->reg_idx;
3932 
3933 	switch (hw->mac.type) {
3934 	case igc_i225:
3935 		if (rx_queue > IGC_N0_QUEUE)
3936 			igc_write_ivar(hw, msix_vector,
3937 				       rx_queue >> 1,
3938 				       (rx_queue & 0x1) << 4);
3939 		if (tx_queue > IGC_N0_QUEUE)
3940 			igc_write_ivar(hw, msix_vector,
3941 				       tx_queue >> 1,
3942 				       ((tx_queue & 0x1) << 4) + 8);
3943 		q_vector->eims_value = BIT(msix_vector);
3944 		break;
3945 	default:
3946 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3947 		break;
3948 	}
3949 
3950 	/* add q_vector eims value to global eims_enable_mask */
3951 	adapter->eims_enable_mask |= q_vector->eims_value;
3952 
3953 	/* configure q_vector to set itr on first interrupt */
3954 	q_vector->set_itr = 1;
3955 }
3956 
3957 /**
3958  * igc_configure_msix - Configure MSI-X hardware
3959  * @adapter: Pointer to adapter structure
3960  *
3961  * igc_configure_msix sets up the hardware to properly
3962  * generate MSI-X interrupts.
3963  */
3964 static void igc_configure_msix(struct igc_adapter *adapter)
3965 {
3966 	struct igc_hw *hw = &adapter->hw;
3967 	int i, vector = 0;
3968 	u32 tmp;
3969 
3970 	adapter->eims_enable_mask = 0;
3971 
3972 	/* set vector for other causes, i.e. link changes */
3973 	switch (hw->mac.type) {
3974 	case igc_i225:
3975 		/* Turn on MSI-X capability first, or our settings
3976 		 * won't stick.  And it will take days to debug.
3977 		 */
3978 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3979 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3980 		     IGC_GPIE_NSICR);
3981 
3982 		/* enable msix_other interrupt */
3983 		adapter->eims_other = BIT(vector);
3984 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3985 
3986 		wr32(IGC_IVAR_MISC, tmp);
3987 		break;
3988 	default:
3989 		/* do nothing, since nothing else supports MSI-X */
3990 		break;
3991 	} /* switch (hw->mac.type) */
3992 
3993 	adapter->eims_enable_mask |= adapter->eims_other;
3994 
3995 	for (i = 0; i < adapter->num_q_vectors; i++)
3996 		igc_assign_vector(adapter->q_vector[i], vector++);
3997 
3998 	wrfl();
3999 }
4000 
4001 /**
4002  * igc_irq_enable - Enable default interrupt generation settings
4003  * @adapter: board private structure
4004  */
4005 static void igc_irq_enable(struct igc_adapter *adapter)
4006 {
4007 	struct igc_hw *hw = &adapter->hw;
4008 
4009 	if (adapter->msix_entries) {
4010 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4011 		u32 regval = rd32(IGC_EIAC);
4012 
4013 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4014 		regval = rd32(IGC_EIAM);
4015 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4016 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4017 		wr32(IGC_IMS, ims);
4018 	} else {
4019 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4020 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4021 	}
4022 }
4023 
4024 /**
4025  * igc_irq_disable - Mask off interrupt generation on the NIC
4026  * @adapter: board private structure
4027  */
4028 static void igc_irq_disable(struct igc_adapter *adapter)
4029 {
4030 	struct igc_hw *hw = &adapter->hw;
4031 
4032 	if (adapter->msix_entries) {
4033 		u32 regval = rd32(IGC_EIAM);
4034 
4035 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4036 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4037 		regval = rd32(IGC_EIAC);
4038 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4039 	}
4040 
4041 	wr32(IGC_IAM, 0);
4042 	wr32(IGC_IMC, ~0);
4043 	wrfl();
4044 
4045 	if (adapter->msix_entries) {
4046 		int vector = 0, i;
4047 
4048 		synchronize_irq(adapter->msix_entries[vector++].vector);
4049 
4050 		for (i = 0; i < adapter->num_q_vectors; i++)
4051 			synchronize_irq(adapter->msix_entries[vector++].vector);
4052 	} else {
4053 		synchronize_irq(adapter->pdev->irq);
4054 	}
4055 }
4056 
4057 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4058 			      const u32 max_rss_queues)
4059 {
4060 	/* Determine if we need to pair queues. */
4061 	/* If rss_queues > half of max_rss_queues, pair the queues in
4062 	 * order to conserve interrupts due to limited supply.
4063 	 */
4064 	if (adapter->rss_queues > (max_rss_queues / 2))
4065 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4066 	else
4067 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4068 }
4069 
4070 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4071 {
4072 	return IGC_MAX_RX_QUEUES;
4073 }
4074 
4075 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4076 {
4077 	u32 max_rss_queues;
4078 
4079 	max_rss_queues = igc_get_max_rss_queues(adapter);
4080 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4081 
4082 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4083 }
4084 
4085 /**
4086  * igc_reset_q_vector - Reset config for interrupt vector
4087  * @adapter: board private structure to initialize
4088  * @v_idx: Index of vector to be reset
4089  *
4090  * If NAPI is enabled it will delete any references to the
4091  * NAPI struct. This is preparation for igc_free_q_vector.
4092  */
4093 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4094 {
4095 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4096 
4097 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4098 	 * not yet allocated
4099 	 */
4100 	if (!q_vector)
4101 		return;
4102 
4103 	if (q_vector->tx.ring)
4104 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4105 
4106 	if (q_vector->rx.ring)
4107 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4108 
4109 	netif_napi_del(&q_vector->napi);
4110 }
4111 
4112 /**
4113  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4114  * @adapter: board private structure to initialize
4115  * @v_idx: Index of vector to be freed
4116  *
4117  * This function frees the memory allocated to the q_vector.
4118  */
4119 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4120 {
4121 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4122 
4123 	adapter->q_vector[v_idx] = NULL;
4124 
4125 	/* igc_get_stats64() might access the rings on this vector,
4126 	 * we must wait a grace period before freeing it.
4127 	 */
4128 	if (q_vector)
4129 		kfree_rcu(q_vector, rcu);
4130 }
4131 
4132 /**
4133  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4134  * @adapter: board private structure to initialize
4135  *
4136  * This function frees the memory allocated to the q_vectors.  In addition if
4137  * NAPI is enabled it will delete any references to the NAPI struct prior
4138  * to freeing the q_vector.
4139  */
4140 static void igc_free_q_vectors(struct igc_adapter *adapter)
4141 {
4142 	int v_idx = adapter->num_q_vectors;
4143 
4144 	adapter->num_tx_queues = 0;
4145 	adapter->num_rx_queues = 0;
4146 	adapter->num_q_vectors = 0;
4147 
4148 	while (v_idx--) {
4149 		igc_reset_q_vector(adapter, v_idx);
4150 		igc_free_q_vector(adapter, v_idx);
4151 	}
4152 }
4153 
4154 /**
4155  * igc_update_itr - update the dynamic ITR value based on statistics
4156  * @q_vector: pointer to q_vector
4157  * @ring_container: ring info to update the itr for
4158  *
4159  * Stores a new ITR value based on packets and byte
4160  * counts during the last interrupt.  The advantage of per interrupt
4161  * computation is faster updates and more accurate ITR for the current
4162  * traffic pattern.  Constants in this function were computed
4163  * based on theoretical maximum wire speed and thresholds were set based
4164  * on testing data as well as attempting to minimize response time
4165  * while increasing bulk throughput.
4166  * NOTE: These calculations are only valid when operating in a single-
4167  * queue environment.
4168  */
4169 static void igc_update_itr(struct igc_q_vector *q_vector,
4170 			   struct igc_ring_container *ring_container)
4171 {
4172 	unsigned int packets = ring_container->total_packets;
4173 	unsigned int bytes = ring_container->total_bytes;
4174 	u8 itrval = ring_container->itr;
4175 
4176 	/* no packets, exit with status unchanged */
4177 	if (packets == 0)
4178 		return;
4179 
4180 	switch (itrval) {
4181 	case lowest_latency:
4182 		/* handle TSO and jumbo frames */
4183 		if (bytes / packets > 8000)
4184 			itrval = bulk_latency;
4185 		else if ((packets < 5) && (bytes > 512))
4186 			itrval = low_latency;
4187 		break;
4188 	case low_latency:  /* 50 usec aka 20000 ints/s */
4189 		if (bytes > 10000) {
4190 			/* this if handles the TSO accounting */
4191 			if (bytes / packets > 8000)
4192 				itrval = bulk_latency;
4193 			else if ((packets < 10) || ((bytes / packets) > 1200))
4194 				itrval = bulk_latency;
4195 			else if ((packets > 35))
4196 				itrval = lowest_latency;
4197 		} else if (bytes / packets > 2000) {
4198 			itrval = bulk_latency;
4199 		} else if (packets <= 2 && bytes < 512) {
4200 			itrval = lowest_latency;
4201 		}
4202 		break;
4203 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4204 		if (bytes > 25000) {
4205 			if (packets > 35)
4206 				itrval = low_latency;
4207 		} else if (bytes < 1500) {
4208 			itrval = low_latency;
4209 		}
4210 		break;
4211 	}
4212 
4213 	/* clear work counters since we have the values we need */
4214 	ring_container->total_bytes = 0;
4215 	ring_container->total_packets = 0;
4216 
4217 	/* write updated itr to ring container */
4218 	ring_container->itr = itrval;
4219 }
4220 
4221 static void igc_set_itr(struct igc_q_vector *q_vector)
4222 {
4223 	struct igc_adapter *adapter = q_vector->adapter;
4224 	u32 new_itr = q_vector->itr_val;
4225 	u8 current_itr = 0;
4226 
4227 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4228 	switch (adapter->link_speed) {
4229 	case SPEED_10:
4230 	case SPEED_100:
4231 		current_itr = 0;
4232 		new_itr = IGC_4K_ITR;
4233 		goto set_itr_now;
4234 	default:
4235 		break;
4236 	}
4237 
4238 	igc_update_itr(q_vector, &q_vector->tx);
4239 	igc_update_itr(q_vector, &q_vector->rx);
4240 
4241 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4242 
4243 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4244 	if (current_itr == lowest_latency &&
4245 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4246 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4247 		current_itr = low_latency;
4248 
4249 	switch (current_itr) {
4250 	/* counts and packets in update_itr are dependent on these numbers */
4251 	case lowest_latency:
4252 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4253 		break;
4254 	case low_latency:
4255 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4256 		break;
4257 	case bulk_latency:
4258 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4259 		break;
4260 	default:
4261 		break;
4262 	}
4263 
4264 set_itr_now:
4265 	if (new_itr != q_vector->itr_val) {
4266 		/* this attempts to bias the interrupt rate towards Bulk
4267 		 * by adding intermediate steps when interrupt rate is
4268 		 * increasing
4269 		 */
4270 		new_itr = new_itr > q_vector->itr_val ?
4271 			  max((new_itr * q_vector->itr_val) /
4272 			  (new_itr + (q_vector->itr_val >> 2)),
4273 			  new_itr) : new_itr;
4274 		/* Don't write the value here; it resets the adapter's
4275 		 * internal timer, and causes us to delay far longer than
4276 		 * we should between interrupts.  Instead, we write the ITR
4277 		 * value at the beginning of the next interrupt so the timing
4278 		 * ends up being correct.
4279 		 */
4280 		q_vector->itr_val = new_itr;
4281 		q_vector->set_itr = 1;
4282 	}
4283 }
4284 
4285 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4286 {
4287 	int v_idx = adapter->num_q_vectors;
4288 
4289 	if (adapter->msix_entries) {
4290 		pci_disable_msix(adapter->pdev);
4291 		kfree(adapter->msix_entries);
4292 		adapter->msix_entries = NULL;
4293 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4294 		pci_disable_msi(adapter->pdev);
4295 	}
4296 
4297 	while (v_idx--)
4298 		igc_reset_q_vector(adapter, v_idx);
4299 }
4300 
4301 /**
4302  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4303  * @adapter: Pointer to adapter structure
4304  * @msix: boolean value for MSI-X capability
4305  *
4306  * Attempt to configure interrupts using the best available
4307  * capabilities of the hardware and kernel.
4308  */
4309 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4310 					 bool msix)
4311 {
4312 	int numvecs, i;
4313 	int err;
4314 
4315 	if (!msix)
4316 		goto msi_only;
4317 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4318 
4319 	/* Number of supported queues. */
4320 	adapter->num_rx_queues = adapter->rss_queues;
4321 
4322 	adapter->num_tx_queues = adapter->rss_queues;
4323 
4324 	/* start with one vector for every Rx queue */
4325 	numvecs = adapter->num_rx_queues;
4326 
4327 	/* if Tx handler is separate add 1 for every Tx queue */
4328 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4329 		numvecs += adapter->num_tx_queues;
4330 
4331 	/* store the number of vectors reserved for queues */
4332 	adapter->num_q_vectors = numvecs;
4333 
4334 	/* add 1 vector for link status interrupts */
4335 	numvecs++;
4336 
4337 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4338 					GFP_KERNEL);
4339 
4340 	if (!adapter->msix_entries)
4341 		return;
4342 
4343 	/* populate entry values */
4344 	for (i = 0; i < numvecs; i++)
4345 		adapter->msix_entries[i].entry = i;
4346 
4347 	err = pci_enable_msix_range(adapter->pdev,
4348 				    adapter->msix_entries,
4349 				    numvecs,
4350 				    numvecs);
4351 	if (err > 0)
4352 		return;
4353 
4354 	kfree(adapter->msix_entries);
4355 	adapter->msix_entries = NULL;
4356 
4357 	igc_reset_interrupt_capability(adapter);
4358 
4359 msi_only:
4360 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4361 
4362 	adapter->rss_queues = 1;
4363 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4364 	adapter->num_rx_queues = 1;
4365 	adapter->num_tx_queues = 1;
4366 	adapter->num_q_vectors = 1;
4367 	if (!pci_enable_msi(adapter->pdev))
4368 		adapter->flags |= IGC_FLAG_HAS_MSI;
4369 }
4370 
4371 /**
4372  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4373  * @q_vector: pointer to q_vector
4374  *
4375  * Stores a new ITR value based on strictly on packet size.  This
4376  * algorithm is less sophisticated than that used in igc_update_itr,
4377  * due to the difficulty of synchronizing statistics across multiple
4378  * receive rings.  The divisors and thresholds used by this function
4379  * were determined based on theoretical maximum wire speed and testing
4380  * data, in order to minimize response time while increasing bulk
4381  * throughput.
4382  * NOTE: This function is called only when operating in a multiqueue
4383  * receive environment.
4384  */
4385 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4386 {
4387 	struct igc_adapter *adapter = q_vector->adapter;
4388 	int new_val = q_vector->itr_val;
4389 	int avg_wire_size = 0;
4390 	unsigned int packets;
4391 
4392 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4393 	 * ints/sec - ITR timer value of 120 ticks.
4394 	 */
4395 	switch (adapter->link_speed) {
4396 	case SPEED_10:
4397 	case SPEED_100:
4398 		new_val = IGC_4K_ITR;
4399 		goto set_itr_val;
4400 	default:
4401 		break;
4402 	}
4403 
4404 	packets = q_vector->rx.total_packets;
4405 	if (packets)
4406 		avg_wire_size = q_vector->rx.total_bytes / packets;
4407 
4408 	packets = q_vector->tx.total_packets;
4409 	if (packets)
4410 		avg_wire_size = max_t(u32, avg_wire_size,
4411 				      q_vector->tx.total_bytes / packets);
4412 
4413 	/* if avg_wire_size isn't set no work was done */
4414 	if (!avg_wire_size)
4415 		goto clear_counts;
4416 
4417 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4418 	avg_wire_size += 24;
4419 
4420 	/* Don't starve jumbo frames */
4421 	avg_wire_size = min(avg_wire_size, 3000);
4422 
4423 	/* Give a little boost to mid-size frames */
4424 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4425 		new_val = avg_wire_size / 3;
4426 	else
4427 		new_val = avg_wire_size / 2;
4428 
4429 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4430 	if (new_val < IGC_20K_ITR &&
4431 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4432 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4433 		new_val = IGC_20K_ITR;
4434 
4435 set_itr_val:
4436 	if (new_val != q_vector->itr_val) {
4437 		q_vector->itr_val = new_val;
4438 		q_vector->set_itr = 1;
4439 	}
4440 clear_counts:
4441 	q_vector->rx.total_bytes = 0;
4442 	q_vector->rx.total_packets = 0;
4443 	q_vector->tx.total_bytes = 0;
4444 	q_vector->tx.total_packets = 0;
4445 }
4446 
4447 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4448 {
4449 	struct igc_adapter *adapter = q_vector->adapter;
4450 	struct igc_hw *hw = &adapter->hw;
4451 
4452 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4453 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4454 		if (adapter->num_q_vectors == 1)
4455 			igc_set_itr(q_vector);
4456 		else
4457 			igc_update_ring_itr(q_vector);
4458 	}
4459 
4460 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4461 		if (adapter->msix_entries)
4462 			wr32(IGC_EIMS, q_vector->eims_value);
4463 		else
4464 			igc_irq_enable(adapter);
4465 	}
4466 }
4467 
4468 static void igc_add_ring(struct igc_ring *ring,
4469 			 struct igc_ring_container *head)
4470 {
4471 	head->ring = ring;
4472 	head->count++;
4473 }
4474 
4475 /**
4476  * igc_cache_ring_register - Descriptor ring to register mapping
4477  * @adapter: board private structure to initialize
4478  *
4479  * Once we know the feature-set enabled for the device, we'll cache
4480  * the register offset the descriptor ring is assigned to.
4481  */
4482 static void igc_cache_ring_register(struct igc_adapter *adapter)
4483 {
4484 	int i = 0, j = 0;
4485 
4486 	switch (adapter->hw.mac.type) {
4487 	case igc_i225:
4488 	default:
4489 		for (; i < adapter->num_rx_queues; i++)
4490 			adapter->rx_ring[i]->reg_idx = i;
4491 		for (; j < adapter->num_tx_queues; j++)
4492 			adapter->tx_ring[j]->reg_idx = j;
4493 		break;
4494 	}
4495 }
4496 
4497 /**
4498  * igc_poll - NAPI Rx polling callback
4499  * @napi: napi polling structure
4500  * @budget: count of how many packets we should handle
4501  */
4502 static int igc_poll(struct napi_struct *napi, int budget)
4503 {
4504 	struct igc_q_vector *q_vector = container_of(napi,
4505 						     struct igc_q_vector,
4506 						     napi);
4507 	struct igc_ring *rx_ring = q_vector->rx.ring;
4508 	bool clean_complete = true;
4509 	int work_done = 0;
4510 
4511 	if (q_vector->tx.ring)
4512 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4513 
4514 	if (rx_ring) {
4515 		int cleaned = rx_ring->xsk_pool ?
4516 			      igc_clean_rx_irq_zc(q_vector, budget) :
4517 			      igc_clean_rx_irq(q_vector, budget);
4518 
4519 		work_done += cleaned;
4520 		if (cleaned >= budget)
4521 			clean_complete = false;
4522 	}
4523 
4524 	/* If all work not completed, return budget and keep polling */
4525 	if (!clean_complete)
4526 		return budget;
4527 
4528 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4529 	 * poll us due to busy-polling
4530 	 */
4531 	if (likely(napi_complete_done(napi, work_done)))
4532 		igc_ring_irq_enable(q_vector);
4533 
4534 	return min(work_done, budget - 1);
4535 }
4536 
4537 /**
4538  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4539  * @adapter: board private structure to initialize
4540  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4541  * @v_idx: index of vector in adapter struct
4542  * @txr_count: total number of Tx rings to allocate
4543  * @txr_idx: index of first Tx ring to allocate
4544  * @rxr_count: total number of Rx rings to allocate
4545  * @rxr_idx: index of first Rx ring to allocate
4546  *
4547  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4548  */
4549 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4550 			      unsigned int v_count, unsigned int v_idx,
4551 			      unsigned int txr_count, unsigned int txr_idx,
4552 			      unsigned int rxr_count, unsigned int rxr_idx)
4553 {
4554 	struct igc_q_vector *q_vector;
4555 	struct igc_ring *ring;
4556 	int ring_count;
4557 
4558 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4559 	if (txr_count > 1 || rxr_count > 1)
4560 		return -ENOMEM;
4561 
4562 	ring_count = txr_count + rxr_count;
4563 
4564 	/* allocate q_vector and rings */
4565 	q_vector = adapter->q_vector[v_idx];
4566 	if (!q_vector)
4567 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4568 				   GFP_KERNEL);
4569 	else
4570 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4571 	if (!q_vector)
4572 		return -ENOMEM;
4573 
4574 	/* initialize NAPI */
4575 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4576 
4577 	/* tie q_vector and adapter together */
4578 	adapter->q_vector[v_idx] = q_vector;
4579 	q_vector->adapter = adapter;
4580 
4581 	/* initialize work limits */
4582 	q_vector->tx.work_limit = adapter->tx_work_limit;
4583 
4584 	/* initialize ITR configuration */
4585 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4586 	q_vector->itr_val = IGC_START_ITR;
4587 
4588 	/* initialize pointer to rings */
4589 	ring = q_vector->ring;
4590 
4591 	/* initialize ITR */
4592 	if (rxr_count) {
4593 		/* rx or rx/tx vector */
4594 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4595 			q_vector->itr_val = adapter->rx_itr_setting;
4596 	} else {
4597 		/* tx only vector */
4598 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4599 			q_vector->itr_val = adapter->tx_itr_setting;
4600 	}
4601 
4602 	if (txr_count) {
4603 		/* assign generic ring traits */
4604 		ring->dev = &adapter->pdev->dev;
4605 		ring->netdev = adapter->netdev;
4606 
4607 		/* configure backlink on ring */
4608 		ring->q_vector = q_vector;
4609 
4610 		/* update q_vector Tx values */
4611 		igc_add_ring(ring, &q_vector->tx);
4612 
4613 		/* apply Tx specific ring traits */
4614 		ring->count = adapter->tx_ring_count;
4615 		ring->queue_index = txr_idx;
4616 
4617 		/* assign ring to adapter */
4618 		adapter->tx_ring[txr_idx] = ring;
4619 
4620 		/* push pointer to next ring */
4621 		ring++;
4622 	}
4623 
4624 	if (rxr_count) {
4625 		/* assign generic ring traits */
4626 		ring->dev = &adapter->pdev->dev;
4627 		ring->netdev = adapter->netdev;
4628 
4629 		/* configure backlink on ring */
4630 		ring->q_vector = q_vector;
4631 
4632 		/* update q_vector Rx values */
4633 		igc_add_ring(ring, &q_vector->rx);
4634 
4635 		/* apply Rx specific ring traits */
4636 		ring->count = adapter->rx_ring_count;
4637 		ring->queue_index = rxr_idx;
4638 
4639 		/* assign ring to adapter */
4640 		adapter->rx_ring[rxr_idx] = ring;
4641 	}
4642 
4643 	return 0;
4644 }
4645 
4646 /**
4647  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4648  * @adapter: board private structure to initialize
4649  *
4650  * We allocate one q_vector per queue interrupt.  If allocation fails we
4651  * return -ENOMEM.
4652  */
4653 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4654 {
4655 	int rxr_remaining = adapter->num_rx_queues;
4656 	int txr_remaining = adapter->num_tx_queues;
4657 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4658 	int q_vectors = adapter->num_q_vectors;
4659 	int err;
4660 
4661 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4662 		for (; rxr_remaining; v_idx++) {
4663 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4664 						 0, 0, 1, rxr_idx);
4665 
4666 			if (err)
4667 				goto err_out;
4668 
4669 			/* update counts and index */
4670 			rxr_remaining--;
4671 			rxr_idx++;
4672 		}
4673 	}
4674 
4675 	for (; v_idx < q_vectors; v_idx++) {
4676 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4677 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4678 
4679 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4680 					 tqpv, txr_idx, rqpv, rxr_idx);
4681 
4682 		if (err)
4683 			goto err_out;
4684 
4685 		/* update counts and index */
4686 		rxr_remaining -= rqpv;
4687 		txr_remaining -= tqpv;
4688 		rxr_idx++;
4689 		txr_idx++;
4690 	}
4691 
4692 	return 0;
4693 
4694 err_out:
4695 	adapter->num_tx_queues = 0;
4696 	adapter->num_rx_queues = 0;
4697 	adapter->num_q_vectors = 0;
4698 
4699 	while (v_idx--)
4700 		igc_free_q_vector(adapter, v_idx);
4701 
4702 	return -ENOMEM;
4703 }
4704 
4705 /**
4706  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4707  * @adapter: Pointer to adapter structure
4708  * @msix: boolean for MSI-X capability
4709  *
4710  * This function initializes the interrupts and allocates all of the queues.
4711  */
4712 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4713 {
4714 	struct net_device *dev = adapter->netdev;
4715 	int err = 0;
4716 
4717 	igc_set_interrupt_capability(adapter, msix);
4718 
4719 	err = igc_alloc_q_vectors(adapter);
4720 	if (err) {
4721 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4722 		goto err_alloc_q_vectors;
4723 	}
4724 
4725 	igc_cache_ring_register(adapter);
4726 
4727 	return 0;
4728 
4729 err_alloc_q_vectors:
4730 	igc_reset_interrupt_capability(adapter);
4731 	return err;
4732 }
4733 
4734 /**
4735  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4736  * @adapter: board private structure to initialize
4737  *
4738  * igc_sw_init initializes the Adapter private data structure.
4739  * Fields are initialized based on PCI device information and
4740  * OS network device settings (MTU size).
4741  */
4742 static int igc_sw_init(struct igc_adapter *adapter)
4743 {
4744 	struct net_device *netdev = adapter->netdev;
4745 	struct pci_dev *pdev = adapter->pdev;
4746 	struct igc_hw *hw = &adapter->hw;
4747 
4748 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4749 
4750 	/* set default ring sizes */
4751 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4752 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4753 
4754 	/* set default ITR values */
4755 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4756 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4757 
4758 	/* set default work limits */
4759 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4760 
4761 	/* adjust max frame to be at least the size of a standard frame */
4762 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4763 				VLAN_HLEN;
4764 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4765 
4766 	mutex_init(&adapter->nfc_rule_lock);
4767 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4768 	adapter->nfc_rule_count = 0;
4769 
4770 	spin_lock_init(&adapter->stats64_lock);
4771 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4772 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4773 
4774 	igc_init_queue_configuration(adapter);
4775 
4776 	/* This call may decrease the number of queues */
4777 	if (igc_init_interrupt_scheme(adapter, true)) {
4778 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4779 		return -ENOMEM;
4780 	}
4781 
4782 	/* Explicitly disable IRQ since the NIC can be in any state. */
4783 	igc_irq_disable(adapter);
4784 
4785 	set_bit(__IGC_DOWN, &adapter->state);
4786 
4787 	return 0;
4788 }
4789 
4790 /**
4791  * igc_up - Open the interface and prepare it to handle traffic
4792  * @adapter: board private structure
4793  */
4794 void igc_up(struct igc_adapter *adapter)
4795 {
4796 	struct igc_hw *hw = &adapter->hw;
4797 	int i = 0;
4798 
4799 	/* hardware has been reset, we need to reload some things */
4800 	igc_configure(adapter);
4801 
4802 	clear_bit(__IGC_DOWN, &adapter->state);
4803 
4804 	for (i = 0; i < adapter->num_q_vectors; i++)
4805 		napi_enable(&adapter->q_vector[i]->napi);
4806 
4807 	if (adapter->msix_entries)
4808 		igc_configure_msix(adapter);
4809 	else
4810 		igc_assign_vector(adapter->q_vector[0], 0);
4811 
4812 	/* Clear any pending interrupts. */
4813 	rd32(IGC_ICR);
4814 	igc_irq_enable(adapter);
4815 
4816 	netif_tx_start_all_queues(adapter->netdev);
4817 
4818 	/* start the watchdog. */
4819 	hw->mac.get_link_status = true;
4820 	schedule_work(&adapter->watchdog_task);
4821 }
4822 
4823 /**
4824  * igc_update_stats - Update the board statistics counters
4825  * @adapter: board private structure
4826  */
4827 void igc_update_stats(struct igc_adapter *adapter)
4828 {
4829 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4830 	struct pci_dev *pdev = adapter->pdev;
4831 	struct igc_hw *hw = &adapter->hw;
4832 	u64 _bytes, _packets;
4833 	u64 bytes, packets;
4834 	unsigned int start;
4835 	u32 mpc;
4836 	int i;
4837 
4838 	/* Prevent stats update while adapter is being reset, or if the pci
4839 	 * connection is down.
4840 	 */
4841 	if (adapter->link_speed == 0)
4842 		return;
4843 	if (pci_channel_offline(pdev))
4844 		return;
4845 
4846 	packets = 0;
4847 	bytes = 0;
4848 
4849 	rcu_read_lock();
4850 	for (i = 0; i < adapter->num_rx_queues; i++) {
4851 		struct igc_ring *ring = adapter->rx_ring[i];
4852 		u32 rqdpc = rd32(IGC_RQDPC(i));
4853 
4854 		if (hw->mac.type >= igc_i225)
4855 			wr32(IGC_RQDPC(i), 0);
4856 
4857 		if (rqdpc) {
4858 			ring->rx_stats.drops += rqdpc;
4859 			net_stats->rx_fifo_errors += rqdpc;
4860 		}
4861 
4862 		do {
4863 			start = u64_stats_fetch_begin(&ring->rx_syncp);
4864 			_bytes = ring->rx_stats.bytes;
4865 			_packets = ring->rx_stats.packets;
4866 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4867 		bytes += _bytes;
4868 		packets += _packets;
4869 	}
4870 
4871 	net_stats->rx_bytes = bytes;
4872 	net_stats->rx_packets = packets;
4873 
4874 	packets = 0;
4875 	bytes = 0;
4876 	for (i = 0; i < adapter->num_tx_queues; i++) {
4877 		struct igc_ring *ring = adapter->tx_ring[i];
4878 
4879 		do {
4880 			start = u64_stats_fetch_begin(&ring->tx_syncp);
4881 			_bytes = ring->tx_stats.bytes;
4882 			_packets = ring->tx_stats.packets;
4883 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4884 		bytes += _bytes;
4885 		packets += _packets;
4886 	}
4887 	net_stats->tx_bytes = bytes;
4888 	net_stats->tx_packets = packets;
4889 	rcu_read_unlock();
4890 
4891 	/* read stats registers */
4892 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4893 	adapter->stats.gprc += rd32(IGC_GPRC);
4894 	adapter->stats.gorc += rd32(IGC_GORCL);
4895 	rd32(IGC_GORCH); /* clear GORCL */
4896 	adapter->stats.bprc += rd32(IGC_BPRC);
4897 	adapter->stats.mprc += rd32(IGC_MPRC);
4898 	adapter->stats.roc += rd32(IGC_ROC);
4899 
4900 	adapter->stats.prc64 += rd32(IGC_PRC64);
4901 	adapter->stats.prc127 += rd32(IGC_PRC127);
4902 	adapter->stats.prc255 += rd32(IGC_PRC255);
4903 	adapter->stats.prc511 += rd32(IGC_PRC511);
4904 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4905 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4906 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4907 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4908 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4909 
4910 	mpc = rd32(IGC_MPC);
4911 	adapter->stats.mpc += mpc;
4912 	net_stats->rx_fifo_errors += mpc;
4913 	adapter->stats.scc += rd32(IGC_SCC);
4914 	adapter->stats.ecol += rd32(IGC_ECOL);
4915 	adapter->stats.mcc += rd32(IGC_MCC);
4916 	adapter->stats.latecol += rd32(IGC_LATECOL);
4917 	adapter->stats.dc += rd32(IGC_DC);
4918 	adapter->stats.rlec += rd32(IGC_RLEC);
4919 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4920 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4921 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4922 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4923 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4924 	adapter->stats.gptc += rd32(IGC_GPTC);
4925 	adapter->stats.gotc += rd32(IGC_GOTCL);
4926 	rd32(IGC_GOTCH); /* clear GOTCL */
4927 	adapter->stats.rnbc += rd32(IGC_RNBC);
4928 	adapter->stats.ruc += rd32(IGC_RUC);
4929 	adapter->stats.rfc += rd32(IGC_RFC);
4930 	adapter->stats.rjc += rd32(IGC_RJC);
4931 	adapter->stats.tor += rd32(IGC_TORH);
4932 	adapter->stats.tot += rd32(IGC_TOTH);
4933 	adapter->stats.tpr += rd32(IGC_TPR);
4934 
4935 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4936 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4937 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4938 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4939 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4940 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4941 
4942 	adapter->stats.mptc += rd32(IGC_MPTC);
4943 	adapter->stats.bptc += rd32(IGC_BPTC);
4944 
4945 	adapter->stats.tpt += rd32(IGC_TPT);
4946 	adapter->stats.colc += rd32(IGC_COLC);
4947 	adapter->stats.colc += rd32(IGC_RERC);
4948 
4949 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4950 
4951 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4952 
4953 	adapter->stats.iac += rd32(IGC_IAC);
4954 
4955 	/* Fill out the OS statistics structure */
4956 	net_stats->multicast = adapter->stats.mprc;
4957 	net_stats->collisions = adapter->stats.colc;
4958 
4959 	/* Rx Errors */
4960 
4961 	/* RLEC on some newer hardware can be incorrect so build
4962 	 * our own version based on RUC and ROC
4963 	 */
4964 	net_stats->rx_errors = adapter->stats.rxerrc +
4965 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4966 		adapter->stats.ruc + adapter->stats.roc +
4967 		adapter->stats.cexterr;
4968 	net_stats->rx_length_errors = adapter->stats.ruc +
4969 				      adapter->stats.roc;
4970 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4971 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4972 	net_stats->rx_missed_errors = adapter->stats.mpc;
4973 
4974 	/* Tx Errors */
4975 	net_stats->tx_errors = adapter->stats.ecol +
4976 			       adapter->stats.latecol;
4977 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4978 	net_stats->tx_window_errors = adapter->stats.latecol;
4979 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4980 
4981 	/* Tx Dropped */
4982 	net_stats->tx_dropped = adapter->stats.txdrop;
4983 
4984 	/* Management Stats */
4985 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4986 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4987 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4988 }
4989 
4990 /**
4991  * igc_down - Close the interface
4992  * @adapter: board private structure
4993  */
4994 void igc_down(struct igc_adapter *adapter)
4995 {
4996 	struct net_device *netdev = adapter->netdev;
4997 	struct igc_hw *hw = &adapter->hw;
4998 	u32 tctl, rctl;
4999 	int i = 0;
5000 
5001 	set_bit(__IGC_DOWN, &adapter->state);
5002 
5003 	igc_ptp_suspend(adapter);
5004 
5005 	if (pci_device_is_present(adapter->pdev)) {
5006 		/* disable receives in the hardware */
5007 		rctl = rd32(IGC_RCTL);
5008 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5009 		/* flush and sleep below */
5010 	}
5011 	/* set trans_start so we don't get spurious watchdogs during reset */
5012 	netif_trans_update(netdev);
5013 
5014 	netif_carrier_off(netdev);
5015 	netif_tx_stop_all_queues(netdev);
5016 
5017 	if (pci_device_is_present(adapter->pdev)) {
5018 		/* disable transmits in the hardware */
5019 		tctl = rd32(IGC_TCTL);
5020 		tctl &= ~IGC_TCTL_EN;
5021 		wr32(IGC_TCTL, tctl);
5022 		/* flush both disables and wait for them to finish */
5023 		wrfl();
5024 		usleep_range(10000, 20000);
5025 
5026 		igc_irq_disable(adapter);
5027 	}
5028 
5029 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5030 
5031 	for (i = 0; i < adapter->num_q_vectors; i++) {
5032 		if (adapter->q_vector[i]) {
5033 			napi_synchronize(&adapter->q_vector[i]->napi);
5034 			napi_disable(&adapter->q_vector[i]->napi);
5035 		}
5036 	}
5037 
5038 	del_timer_sync(&adapter->watchdog_timer);
5039 	del_timer_sync(&adapter->phy_info_timer);
5040 
5041 	/* record the stats before reset*/
5042 	spin_lock(&adapter->stats64_lock);
5043 	igc_update_stats(adapter);
5044 	spin_unlock(&adapter->stats64_lock);
5045 
5046 	adapter->link_speed = 0;
5047 	adapter->link_duplex = 0;
5048 
5049 	if (!pci_channel_offline(adapter->pdev))
5050 		igc_reset(adapter);
5051 
5052 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5053 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5054 
5055 	igc_clean_all_tx_rings(adapter);
5056 	igc_clean_all_rx_rings(adapter);
5057 }
5058 
5059 void igc_reinit_locked(struct igc_adapter *adapter)
5060 {
5061 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5062 		usleep_range(1000, 2000);
5063 	igc_down(adapter);
5064 	igc_up(adapter);
5065 	clear_bit(__IGC_RESETTING, &adapter->state);
5066 }
5067 
5068 static void igc_reset_task(struct work_struct *work)
5069 {
5070 	struct igc_adapter *adapter;
5071 
5072 	adapter = container_of(work, struct igc_adapter, reset_task);
5073 
5074 	rtnl_lock();
5075 	/* If we're already down or resetting, just bail */
5076 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5077 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5078 		rtnl_unlock();
5079 		return;
5080 	}
5081 
5082 	igc_rings_dump(adapter);
5083 	igc_regs_dump(adapter);
5084 	netdev_err(adapter->netdev, "Reset adapter\n");
5085 	igc_reinit_locked(adapter);
5086 	rtnl_unlock();
5087 }
5088 
5089 /**
5090  * igc_change_mtu - Change the Maximum Transfer Unit
5091  * @netdev: network interface device structure
5092  * @new_mtu: new value for maximum frame size
5093  *
5094  * Returns 0 on success, negative on failure
5095  */
5096 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5097 {
5098 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5099 	struct igc_adapter *adapter = netdev_priv(netdev);
5100 
5101 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5102 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5103 		return -EINVAL;
5104 	}
5105 
5106 	/* adjust max frame to be at least the size of a standard frame */
5107 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5108 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5109 
5110 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5111 		usleep_range(1000, 2000);
5112 
5113 	/* igc_down has a dependency on max_frame_size */
5114 	adapter->max_frame_size = max_frame;
5115 
5116 	if (netif_running(netdev))
5117 		igc_down(adapter);
5118 
5119 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5120 	netdev->mtu = new_mtu;
5121 
5122 	if (netif_running(netdev))
5123 		igc_up(adapter);
5124 	else
5125 		igc_reset(adapter);
5126 
5127 	clear_bit(__IGC_RESETTING, &adapter->state);
5128 
5129 	return 0;
5130 }
5131 
5132 /**
5133  * igc_tx_timeout - Respond to a Tx Hang
5134  * @netdev: network interface device structure
5135  * @txqueue: queue number that timed out
5136  **/
5137 static void igc_tx_timeout(struct net_device *netdev,
5138 			   unsigned int __always_unused txqueue)
5139 {
5140 	struct igc_adapter *adapter = netdev_priv(netdev);
5141 	struct igc_hw *hw = &adapter->hw;
5142 
5143 	/* Do the reset outside of interrupt context */
5144 	adapter->tx_timeout_count++;
5145 	schedule_work(&adapter->reset_task);
5146 	wr32(IGC_EICS,
5147 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5148 }
5149 
5150 /**
5151  * igc_get_stats64 - Get System Network Statistics
5152  * @netdev: network interface device structure
5153  * @stats: rtnl_link_stats64 pointer
5154  *
5155  * Returns the address of the device statistics structure.
5156  * The statistics are updated here and also from the timer callback.
5157  */
5158 static void igc_get_stats64(struct net_device *netdev,
5159 			    struct rtnl_link_stats64 *stats)
5160 {
5161 	struct igc_adapter *adapter = netdev_priv(netdev);
5162 
5163 	spin_lock(&adapter->stats64_lock);
5164 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5165 		igc_update_stats(adapter);
5166 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5167 	spin_unlock(&adapter->stats64_lock);
5168 }
5169 
5170 static netdev_features_t igc_fix_features(struct net_device *netdev,
5171 					  netdev_features_t features)
5172 {
5173 	/* Since there is no support for separate Rx/Tx vlan accel
5174 	 * enable/disable make sure Tx flag is always in same state as Rx.
5175 	 */
5176 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5177 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5178 	else
5179 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5180 
5181 	return features;
5182 }
5183 
5184 static int igc_set_features(struct net_device *netdev,
5185 			    netdev_features_t features)
5186 {
5187 	netdev_features_t changed = netdev->features ^ features;
5188 	struct igc_adapter *adapter = netdev_priv(netdev);
5189 
5190 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5191 		igc_vlan_mode(netdev, features);
5192 
5193 	/* Add VLAN support */
5194 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5195 		return 0;
5196 
5197 	if (!(features & NETIF_F_NTUPLE))
5198 		igc_flush_nfc_rules(adapter);
5199 
5200 	netdev->features = features;
5201 
5202 	if (netif_running(netdev))
5203 		igc_reinit_locked(adapter);
5204 	else
5205 		igc_reset(adapter);
5206 
5207 	return 1;
5208 }
5209 
5210 static netdev_features_t
5211 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5212 		   netdev_features_t features)
5213 {
5214 	unsigned int network_hdr_len, mac_hdr_len;
5215 
5216 	/* Make certain the headers can be described by a context descriptor */
5217 	mac_hdr_len = skb_network_header(skb) - skb->data;
5218 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5219 		return features & ~(NETIF_F_HW_CSUM |
5220 				    NETIF_F_SCTP_CRC |
5221 				    NETIF_F_HW_VLAN_CTAG_TX |
5222 				    NETIF_F_TSO |
5223 				    NETIF_F_TSO6);
5224 
5225 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5226 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5227 		return features & ~(NETIF_F_HW_CSUM |
5228 				    NETIF_F_SCTP_CRC |
5229 				    NETIF_F_TSO |
5230 				    NETIF_F_TSO6);
5231 
5232 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5233 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5234 	 */
5235 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5236 		features &= ~NETIF_F_TSO;
5237 
5238 	return features;
5239 }
5240 
5241 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5242 {
5243 	u32 ack, tsauxc, sec, nsec, tsicr;
5244 	struct igc_hw *hw = &adapter->hw;
5245 	struct ptp_clock_event event;
5246 	struct timespec64 ts;
5247 
5248 	tsicr = rd32(IGC_TSICR);
5249 	ack = 0;
5250 
5251 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5252 		event.type = PTP_CLOCK_PPS;
5253 		if (adapter->ptp_caps.pps)
5254 			ptp_clock_event(adapter->ptp_clock, &event);
5255 		ack |= IGC_TSICR_SYS_WRAP;
5256 	}
5257 
5258 	if (tsicr & IGC_TSICR_TXTS) {
5259 		/* retrieve hardware timestamp */
5260 		schedule_work(&adapter->ptp_tx_work);
5261 		ack |= IGC_TSICR_TXTS;
5262 	}
5263 
5264 	if (tsicr & IGC_TSICR_TT0) {
5265 		spin_lock(&adapter->tmreg_lock);
5266 		ts = timespec64_add(adapter->perout[0].start,
5267 				    adapter->perout[0].period);
5268 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5269 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5270 		tsauxc = rd32(IGC_TSAUXC);
5271 		tsauxc |= IGC_TSAUXC_EN_TT0;
5272 		wr32(IGC_TSAUXC, tsauxc);
5273 		adapter->perout[0].start = ts;
5274 		spin_unlock(&adapter->tmreg_lock);
5275 		ack |= IGC_TSICR_TT0;
5276 	}
5277 
5278 	if (tsicr & IGC_TSICR_TT1) {
5279 		spin_lock(&adapter->tmreg_lock);
5280 		ts = timespec64_add(adapter->perout[1].start,
5281 				    adapter->perout[1].period);
5282 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5283 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5284 		tsauxc = rd32(IGC_TSAUXC);
5285 		tsauxc |= IGC_TSAUXC_EN_TT1;
5286 		wr32(IGC_TSAUXC, tsauxc);
5287 		adapter->perout[1].start = ts;
5288 		spin_unlock(&adapter->tmreg_lock);
5289 		ack |= IGC_TSICR_TT1;
5290 	}
5291 
5292 	if (tsicr & IGC_TSICR_AUTT0) {
5293 		nsec = rd32(IGC_AUXSTMPL0);
5294 		sec  = rd32(IGC_AUXSTMPH0);
5295 		event.type = PTP_CLOCK_EXTTS;
5296 		event.index = 0;
5297 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5298 		ptp_clock_event(adapter->ptp_clock, &event);
5299 		ack |= IGC_TSICR_AUTT0;
5300 	}
5301 
5302 	if (tsicr & IGC_TSICR_AUTT1) {
5303 		nsec = rd32(IGC_AUXSTMPL1);
5304 		sec  = rd32(IGC_AUXSTMPH1);
5305 		event.type = PTP_CLOCK_EXTTS;
5306 		event.index = 1;
5307 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5308 		ptp_clock_event(adapter->ptp_clock, &event);
5309 		ack |= IGC_TSICR_AUTT1;
5310 	}
5311 
5312 	/* acknowledge the interrupts */
5313 	wr32(IGC_TSICR, ack);
5314 }
5315 
5316 /**
5317  * igc_msix_other - msix other interrupt handler
5318  * @irq: interrupt number
5319  * @data: pointer to a q_vector
5320  */
5321 static irqreturn_t igc_msix_other(int irq, void *data)
5322 {
5323 	struct igc_adapter *adapter = data;
5324 	struct igc_hw *hw = &adapter->hw;
5325 	u32 icr = rd32(IGC_ICR);
5326 
5327 	/* reading ICR causes bit 31 of EICR to be cleared */
5328 	if (icr & IGC_ICR_DRSTA)
5329 		schedule_work(&adapter->reset_task);
5330 
5331 	if (icr & IGC_ICR_DOUTSYNC) {
5332 		/* HW is reporting DMA is out of sync */
5333 		adapter->stats.doosync++;
5334 	}
5335 
5336 	if (icr & IGC_ICR_LSC) {
5337 		hw->mac.get_link_status = true;
5338 		/* guard against interrupt when we're going down */
5339 		if (!test_bit(__IGC_DOWN, &adapter->state))
5340 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5341 	}
5342 
5343 	if (icr & IGC_ICR_TS)
5344 		igc_tsync_interrupt(adapter);
5345 
5346 	wr32(IGC_EIMS, adapter->eims_other);
5347 
5348 	return IRQ_HANDLED;
5349 }
5350 
5351 static void igc_write_itr(struct igc_q_vector *q_vector)
5352 {
5353 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5354 
5355 	if (!q_vector->set_itr)
5356 		return;
5357 
5358 	if (!itr_val)
5359 		itr_val = IGC_ITR_VAL_MASK;
5360 
5361 	itr_val |= IGC_EITR_CNT_IGNR;
5362 
5363 	writel(itr_val, q_vector->itr_register);
5364 	q_vector->set_itr = 0;
5365 }
5366 
5367 static irqreturn_t igc_msix_ring(int irq, void *data)
5368 {
5369 	struct igc_q_vector *q_vector = data;
5370 
5371 	/* Write the ITR value calculated from the previous interrupt. */
5372 	igc_write_itr(q_vector);
5373 
5374 	napi_schedule(&q_vector->napi);
5375 
5376 	return IRQ_HANDLED;
5377 }
5378 
5379 /**
5380  * igc_request_msix - Initialize MSI-X interrupts
5381  * @adapter: Pointer to adapter structure
5382  *
5383  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5384  * kernel.
5385  */
5386 static int igc_request_msix(struct igc_adapter *adapter)
5387 {
5388 	unsigned int num_q_vectors = adapter->num_q_vectors;
5389 	int i = 0, err = 0, vector = 0, free_vector = 0;
5390 	struct net_device *netdev = adapter->netdev;
5391 
5392 	err = request_irq(adapter->msix_entries[vector].vector,
5393 			  &igc_msix_other, 0, netdev->name, adapter);
5394 	if (err)
5395 		goto err_out;
5396 
5397 	if (num_q_vectors > MAX_Q_VECTORS) {
5398 		num_q_vectors = MAX_Q_VECTORS;
5399 		dev_warn(&adapter->pdev->dev,
5400 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5401 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5402 	}
5403 	for (i = 0; i < num_q_vectors; i++) {
5404 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5405 
5406 		vector++;
5407 
5408 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5409 
5410 		if (q_vector->rx.ring && q_vector->tx.ring)
5411 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5412 				q_vector->rx.ring->queue_index);
5413 		else if (q_vector->tx.ring)
5414 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5415 				q_vector->tx.ring->queue_index);
5416 		else if (q_vector->rx.ring)
5417 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5418 				q_vector->rx.ring->queue_index);
5419 		else
5420 			sprintf(q_vector->name, "%s-unused", netdev->name);
5421 
5422 		err = request_irq(adapter->msix_entries[vector].vector,
5423 				  igc_msix_ring, 0, q_vector->name,
5424 				  q_vector);
5425 		if (err)
5426 			goto err_free;
5427 	}
5428 
5429 	igc_configure_msix(adapter);
5430 	return 0;
5431 
5432 err_free:
5433 	/* free already assigned IRQs */
5434 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5435 
5436 	vector--;
5437 	for (i = 0; i < vector; i++) {
5438 		free_irq(adapter->msix_entries[free_vector++].vector,
5439 			 adapter->q_vector[i]);
5440 	}
5441 err_out:
5442 	return err;
5443 }
5444 
5445 /**
5446  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5447  * @adapter: Pointer to adapter structure
5448  *
5449  * This function resets the device so that it has 0 rx queues, tx queues, and
5450  * MSI-X interrupts allocated.
5451  */
5452 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5453 {
5454 	igc_free_q_vectors(adapter);
5455 	igc_reset_interrupt_capability(adapter);
5456 }
5457 
5458 /* Need to wait a few seconds after link up to get diagnostic information from
5459  * the phy
5460  */
5461 static void igc_update_phy_info(struct timer_list *t)
5462 {
5463 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5464 
5465 	igc_get_phy_info(&adapter->hw);
5466 }
5467 
5468 /**
5469  * igc_has_link - check shared code for link and determine up/down
5470  * @adapter: pointer to driver private info
5471  */
5472 bool igc_has_link(struct igc_adapter *adapter)
5473 {
5474 	struct igc_hw *hw = &adapter->hw;
5475 	bool link_active = false;
5476 
5477 	/* get_link_status is set on LSC (link status) interrupt or
5478 	 * rx sequence error interrupt.  get_link_status will stay
5479 	 * false until the igc_check_for_link establishes link
5480 	 * for copper adapters ONLY
5481 	 */
5482 	if (!hw->mac.get_link_status)
5483 		return true;
5484 	hw->mac.ops.check_for_link(hw);
5485 	link_active = !hw->mac.get_link_status;
5486 
5487 	if (hw->mac.type == igc_i225) {
5488 		if (!netif_carrier_ok(adapter->netdev)) {
5489 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5490 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5491 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5492 			adapter->link_check_timeout = jiffies;
5493 		}
5494 	}
5495 
5496 	return link_active;
5497 }
5498 
5499 /**
5500  * igc_watchdog - Timer Call-back
5501  * @t: timer for the watchdog
5502  */
5503 static void igc_watchdog(struct timer_list *t)
5504 {
5505 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5506 	/* Do the rest outside of interrupt context */
5507 	schedule_work(&adapter->watchdog_task);
5508 }
5509 
5510 static void igc_watchdog_task(struct work_struct *work)
5511 {
5512 	struct igc_adapter *adapter = container_of(work,
5513 						   struct igc_adapter,
5514 						   watchdog_task);
5515 	struct net_device *netdev = adapter->netdev;
5516 	struct igc_hw *hw = &adapter->hw;
5517 	struct igc_phy_info *phy = &hw->phy;
5518 	u16 phy_data, retry_count = 20;
5519 	u32 link;
5520 	int i;
5521 
5522 	link = igc_has_link(adapter);
5523 
5524 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5525 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5526 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5527 		else
5528 			link = false;
5529 	}
5530 
5531 	if (link) {
5532 		/* Cancel scheduled suspend requests. */
5533 		pm_runtime_resume(netdev->dev.parent);
5534 
5535 		if (!netif_carrier_ok(netdev)) {
5536 			u32 ctrl;
5537 
5538 			hw->mac.ops.get_speed_and_duplex(hw,
5539 							 &adapter->link_speed,
5540 							 &adapter->link_duplex);
5541 
5542 			ctrl = rd32(IGC_CTRL);
5543 			/* Link status message must follow this format */
5544 			netdev_info(netdev,
5545 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5546 				    adapter->link_speed,
5547 				    adapter->link_duplex == FULL_DUPLEX ?
5548 				    "Full" : "Half",
5549 				    (ctrl & IGC_CTRL_TFCE) &&
5550 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5551 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5552 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5553 
5554 			/* disable EEE if enabled */
5555 			if ((adapter->flags & IGC_FLAG_EEE) &&
5556 			    adapter->link_duplex == HALF_DUPLEX) {
5557 				netdev_info(netdev,
5558 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5559 				adapter->hw.dev_spec._base.eee_enable = false;
5560 				adapter->flags &= ~IGC_FLAG_EEE;
5561 			}
5562 
5563 			/* check if SmartSpeed worked */
5564 			igc_check_downshift(hw);
5565 			if (phy->speed_downgraded)
5566 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5567 
5568 			/* adjust timeout factor according to speed/duplex */
5569 			adapter->tx_timeout_factor = 1;
5570 			switch (adapter->link_speed) {
5571 			case SPEED_10:
5572 				adapter->tx_timeout_factor = 14;
5573 				break;
5574 			case SPEED_100:
5575 			case SPEED_1000:
5576 			case SPEED_2500:
5577 				adapter->tx_timeout_factor = 1;
5578 				break;
5579 			}
5580 
5581 			/* Once the launch time has been set on the wire, there
5582 			 * is a delay before the link speed can be determined
5583 			 * based on link-up activity. Write into the register
5584 			 * as soon as we know the correct link speed.
5585 			 */
5586 			igc_tsn_adjust_txtime_offset(adapter);
5587 
5588 			if (adapter->link_speed != SPEED_1000)
5589 				goto no_wait;
5590 
5591 			/* wait for Remote receiver status OK */
5592 retry_read_status:
5593 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5594 					      &phy_data)) {
5595 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5596 				    retry_count) {
5597 					msleep(100);
5598 					retry_count--;
5599 					goto retry_read_status;
5600 				} else if (!retry_count) {
5601 					netdev_err(netdev, "exceed max 2 second\n");
5602 				}
5603 			} else {
5604 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5605 			}
5606 no_wait:
5607 			netif_carrier_on(netdev);
5608 
5609 			/* link state has changed, schedule phy info update */
5610 			if (!test_bit(__IGC_DOWN, &adapter->state))
5611 				mod_timer(&adapter->phy_info_timer,
5612 					  round_jiffies(jiffies + 2 * HZ));
5613 		}
5614 	} else {
5615 		if (netif_carrier_ok(netdev)) {
5616 			adapter->link_speed = 0;
5617 			adapter->link_duplex = 0;
5618 
5619 			/* Links status message must follow this format */
5620 			netdev_info(netdev, "NIC Link is Down\n");
5621 			netif_carrier_off(netdev);
5622 
5623 			/* link state has changed, schedule phy info update */
5624 			if (!test_bit(__IGC_DOWN, &adapter->state))
5625 				mod_timer(&adapter->phy_info_timer,
5626 					  round_jiffies(jiffies + 2 * HZ));
5627 
5628 			pm_schedule_suspend(netdev->dev.parent,
5629 					    MSEC_PER_SEC * 5);
5630 		}
5631 	}
5632 
5633 	spin_lock(&adapter->stats64_lock);
5634 	igc_update_stats(adapter);
5635 	spin_unlock(&adapter->stats64_lock);
5636 
5637 	for (i = 0; i < adapter->num_tx_queues; i++) {
5638 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5639 
5640 		if (!netif_carrier_ok(netdev)) {
5641 			/* We've lost link, so the controller stops DMA,
5642 			 * but we've got queued Tx work that's never going
5643 			 * to get done, so reset controller to flush Tx.
5644 			 * (Do the reset outside of interrupt context).
5645 			 */
5646 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5647 				adapter->tx_timeout_count++;
5648 				schedule_work(&adapter->reset_task);
5649 				/* return immediately since reset is imminent */
5650 				return;
5651 			}
5652 		}
5653 
5654 		/* Force detection of hung controller every watchdog period */
5655 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5656 	}
5657 
5658 	/* Cause software interrupt to ensure Rx ring is cleaned */
5659 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5660 		u32 eics = 0;
5661 
5662 		for (i = 0; i < adapter->num_q_vectors; i++)
5663 			eics |= adapter->q_vector[i]->eims_value;
5664 		wr32(IGC_EICS, eics);
5665 	} else {
5666 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5667 	}
5668 
5669 	igc_ptp_tx_hang(adapter);
5670 
5671 	/* Reset the timer */
5672 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5673 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5674 			mod_timer(&adapter->watchdog_timer,
5675 				  round_jiffies(jiffies +  HZ));
5676 		else
5677 			mod_timer(&adapter->watchdog_timer,
5678 				  round_jiffies(jiffies + 2 * HZ));
5679 	}
5680 }
5681 
5682 /**
5683  * igc_intr_msi - Interrupt Handler
5684  * @irq: interrupt number
5685  * @data: pointer to a network interface device structure
5686  */
5687 static irqreturn_t igc_intr_msi(int irq, void *data)
5688 {
5689 	struct igc_adapter *adapter = data;
5690 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5691 	struct igc_hw *hw = &adapter->hw;
5692 	/* read ICR disables interrupts using IAM */
5693 	u32 icr = rd32(IGC_ICR);
5694 
5695 	igc_write_itr(q_vector);
5696 
5697 	if (icr & IGC_ICR_DRSTA)
5698 		schedule_work(&adapter->reset_task);
5699 
5700 	if (icr & IGC_ICR_DOUTSYNC) {
5701 		/* HW is reporting DMA is out of sync */
5702 		adapter->stats.doosync++;
5703 	}
5704 
5705 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5706 		hw->mac.get_link_status = true;
5707 		if (!test_bit(__IGC_DOWN, &adapter->state))
5708 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5709 	}
5710 
5711 	if (icr & IGC_ICR_TS)
5712 		igc_tsync_interrupt(adapter);
5713 
5714 	napi_schedule(&q_vector->napi);
5715 
5716 	return IRQ_HANDLED;
5717 }
5718 
5719 /**
5720  * igc_intr - Legacy Interrupt Handler
5721  * @irq: interrupt number
5722  * @data: pointer to a network interface device structure
5723  */
5724 static irqreturn_t igc_intr(int irq, void *data)
5725 {
5726 	struct igc_adapter *adapter = data;
5727 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5728 	struct igc_hw *hw = &adapter->hw;
5729 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5730 	 * need for the IMC write
5731 	 */
5732 	u32 icr = rd32(IGC_ICR);
5733 
5734 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5735 	 * not set, then the adapter didn't send an interrupt
5736 	 */
5737 	if (!(icr & IGC_ICR_INT_ASSERTED))
5738 		return IRQ_NONE;
5739 
5740 	igc_write_itr(q_vector);
5741 
5742 	if (icr & IGC_ICR_DRSTA)
5743 		schedule_work(&adapter->reset_task);
5744 
5745 	if (icr & IGC_ICR_DOUTSYNC) {
5746 		/* HW is reporting DMA is out of sync */
5747 		adapter->stats.doosync++;
5748 	}
5749 
5750 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5751 		hw->mac.get_link_status = true;
5752 		/* guard against interrupt when we're going down */
5753 		if (!test_bit(__IGC_DOWN, &adapter->state))
5754 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5755 	}
5756 
5757 	if (icr & IGC_ICR_TS)
5758 		igc_tsync_interrupt(adapter);
5759 
5760 	napi_schedule(&q_vector->napi);
5761 
5762 	return IRQ_HANDLED;
5763 }
5764 
5765 static void igc_free_irq(struct igc_adapter *adapter)
5766 {
5767 	if (adapter->msix_entries) {
5768 		int vector = 0, i;
5769 
5770 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5771 
5772 		for (i = 0; i < adapter->num_q_vectors; i++)
5773 			free_irq(adapter->msix_entries[vector++].vector,
5774 				 adapter->q_vector[i]);
5775 	} else {
5776 		free_irq(adapter->pdev->irq, adapter);
5777 	}
5778 }
5779 
5780 /**
5781  * igc_request_irq - initialize interrupts
5782  * @adapter: Pointer to adapter structure
5783  *
5784  * Attempts to configure interrupts using the best available
5785  * capabilities of the hardware and kernel.
5786  */
5787 static int igc_request_irq(struct igc_adapter *adapter)
5788 {
5789 	struct net_device *netdev = adapter->netdev;
5790 	struct pci_dev *pdev = adapter->pdev;
5791 	int err = 0;
5792 
5793 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5794 		err = igc_request_msix(adapter);
5795 		if (!err)
5796 			goto request_done;
5797 		/* fall back to MSI */
5798 		igc_free_all_tx_resources(adapter);
5799 		igc_free_all_rx_resources(adapter);
5800 
5801 		igc_clear_interrupt_scheme(adapter);
5802 		err = igc_init_interrupt_scheme(adapter, false);
5803 		if (err)
5804 			goto request_done;
5805 		igc_setup_all_tx_resources(adapter);
5806 		igc_setup_all_rx_resources(adapter);
5807 		igc_configure(adapter);
5808 	}
5809 
5810 	igc_assign_vector(adapter->q_vector[0], 0);
5811 
5812 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5813 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5814 				  netdev->name, adapter);
5815 		if (!err)
5816 			goto request_done;
5817 
5818 		/* fall back to legacy interrupts */
5819 		igc_reset_interrupt_capability(adapter);
5820 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5821 	}
5822 
5823 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5824 			  netdev->name, adapter);
5825 
5826 	if (err)
5827 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5828 
5829 request_done:
5830 	return err;
5831 }
5832 
5833 /**
5834  * __igc_open - Called when a network interface is made active
5835  * @netdev: network interface device structure
5836  * @resuming: boolean indicating if the device is resuming
5837  *
5838  * Returns 0 on success, negative value on failure
5839  *
5840  * The open entry point is called when a network interface is made
5841  * active by the system (IFF_UP).  At this point all resources needed
5842  * for transmit and receive operations are allocated, the interrupt
5843  * handler is registered with the OS, the watchdog timer is started,
5844  * and the stack is notified that the interface is ready.
5845  */
5846 static int __igc_open(struct net_device *netdev, bool resuming)
5847 {
5848 	struct igc_adapter *adapter = netdev_priv(netdev);
5849 	struct pci_dev *pdev = adapter->pdev;
5850 	struct igc_hw *hw = &adapter->hw;
5851 	int err = 0;
5852 	int i = 0;
5853 
5854 	/* disallow open during test */
5855 
5856 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5857 		WARN_ON(resuming);
5858 		return -EBUSY;
5859 	}
5860 
5861 	if (!resuming)
5862 		pm_runtime_get_sync(&pdev->dev);
5863 
5864 	netif_carrier_off(netdev);
5865 
5866 	/* allocate transmit descriptors */
5867 	err = igc_setup_all_tx_resources(adapter);
5868 	if (err)
5869 		goto err_setup_tx;
5870 
5871 	/* allocate receive descriptors */
5872 	err = igc_setup_all_rx_resources(adapter);
5873 	if (err)
5874 		goto err_setup_rx;
5875 
5876 	igc_power_up_link(adapter);
5877 
5878 	igc_configure(adapter);
5879 
5880 	err = igc_request_irq(adapter);
5881 	if (err)
5882 		goto err_req_irq;
5883 
5884 	/* Notify the stack of the actual queue counts. */
5885 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5886 	if (err)
5887 		goto err_set_queues;
5888 
5889 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5890 	if (err)
5891 		goto err_set_queues;
5892 
5893 	clear_bit(__IGC_DOWN, &adapter->state);
5894 
5895 	for (i = 0; i < adapter->num_q_vectors; i++)
5896 		napi_enable(&adapter->q_vector[i]->napi);
5897 
5898 	/* Clear any pending interrupts. */
5899 	rd32(IGC_ICR);
5900 	igc_irq_enable(adapter);
5901 
5902 	if (!resuming)
5903 		pm_runtime_put(&pdev->dev);
5904 
5905 	netif_tx_start_all_queues(netdev);
5906 
5907 	/* start the watchdog. */
5908 	hw->mac.get_link_status = true;
5909 	schedule_work(&adapter->watchdog_task);
5910 
5911 	return IGC_SUCCESS;
5912 
5913 err_set_queues:
5914 	igc_free_irq(adapter);
5915 err_req_irq:
5916 	igc_release_hw_control(adapter);
5917 	igc_power_down_phy_copper_base(&adapter->hw);
5918 	igc_free_all_rx_resources(adapter);
5919 err_setup_rx:
5920 	igc_free_all_tx_resources(adapter);
5921 err_setup_tx:
5922 	igc_reset(adapter);
5923 	if (!resuming)
5924 		pm_runtime_put(&pdev->dev);
5925 
5926 	return err;
5927 }
5928 
5929 int igc_open(struct net_device *netdev)
5930 {
5931 	return __igc_open(netdev, false);
5932 }
5933 
5934 /**
5935  * __igc_close - Disables a network interface
5936  * @netdev: network interface device structure
5937  * @suspending: boolean indicating the device is suspending
5938  *
5939  * Returns 0, this is not allowed to fail
5940  *
5941  * The close entry point is called when an interface is de-activated
5942  * by the OS.  The hardware is still under the driver's control, but
5943  * needs to be disabled.  A global MAC reset is issued to stop the
5944  * hardware, and all transmit and receive resources are freed.
5945  */
5946 static int __igc_close(struct net_device *netdev, bool suspending)
5947 {
5948 	struct igc_adapter *adapter = netdev_priv(netdev);
5949 	struct pci_dev *pdev = adapter->pdev;
5950 
5951 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5952 
5953 	if (!suspending)
5954 		pm_runtime_get_sync(&pdev->dev);
5955 
5956 	igc_down(adapter);
5957 
5958 	igc_release_hw_control(adapter);
5959 
5960 	igc_free_irq(adapter);
5961 
5962 	igc_free_all_tx_resources(adapter);
5963 	igc_free_all_rx_resources(adapter);
5964 
5965 	if (!suspending)
5966 		pm_runtime_put_sync(&pdev->dev);
5967 
5968 	return 0;
5969 }
5970 
5971 int igc_close(struct net_device *netdev)
5972 {
5973 	if (netif_device_present(netdev) || netdev->dismantle)
5974 		return __igc_close(netdev, false);
5975 	return 0;
5976 }
5977 
5978 /**
5979  * igc_ioctl - Access the hwtstamp interface
5980  * @netdev: network interface device structure
5981  * @ifr: interface request data
5982  * @cmd: ioctl command
5983  **/
5984 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5985 {
5986 	switch (cmd) {
5987 	case SIOCGHWTSTAMP:
5988 		return igc_ptp_get_ts_config(netdev, ifr);
5989 	case SIOCSHWTSTAMP:
5990 		return igc_ptp_set_ts_config(netdev, ifr);
5991 	default:
5992 		return -EOPNOTSUPP;
5993 	}
5994 }
5995 
5996 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5997 				      bool enable)
5998 {
5999 	struct igc_ring *ring;
6000 
6001 	if (queue < 0 || queue >= adapter->num_tx_queues)
6002 		return -EINVAL;
6003 
6004 	ring = adapter->tx_ring[queue];
6005 	ring->launchtime_enable = enable;
6006 
6007 	return 0;
6008 }
6009 
6010 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6011 {
6012 	struct timespec64 b;
6013 
6014 	b = ktime_to_timespec64(base_time);
6015 
6016 	return timespec64_compare(now, &b) > 0;
6017 }
6018 
6019 static bool validate_schedule(struct igc_adapter *adapter,
6020 			      const struct tc_taprio_qopt_offload *qopt)
6021 {
6022 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6023 	struct igc_hw *hw = &adapter->hw;
6024 	struct timespec64 now;
6025 	size_t n;
6026 
6027 	if (qopt->cycle_time_extension)
6028 		return false;
6029 
6030 	igc_ptp_read(adapter, &now);
6031 
6032 	/* If we program the controller's BASET registers with a time
6033 	 * in the future, it will hold all the packets until that
6034 	 * time, causing a lot of TX Hangs, so to avoid that, we
6035 	 * reject schedules that would start in the future.
6036 	 * Note: Limitation above is no longer in i226.
6037 	 */
6038 	if (!is_base_time_past(qopt->base_time, &now) &&
6039 	    igc_is_device_id_i225(hw))
6040 		return false;
6041 
6042 	for (n = 0; n < qopt->num_entries; n++) {
6043 		const struct tc_taprio_sched_entry *e, *prev;
6044 		int i;
6045 
6046 		prev = n ? &qopt->entries[n - 1] : NULL;
6047 		e = &qopt->entries[n];
6048 
6049 		/* i225 only supports "global" frame preemption
6050 		 * settings.
6051 		 */
6052 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6053 			return false;
6054 
6055 		for (i = 0; i < adapter->num_tx_queues; i++)
6056 			if (e->gate_mask & BIT(i)) {
6057 				queue_uses[i]++;
6058 
6059 				/* There are limitations: A single queue cannot
6060 				 * be opened and closed multiple times per cycle
6061 				 * unless the gate stays open. Check for it.
6062 				 */
6063 				if (queue_uses[i] > 1 &&
6064 				    !(prev->gate_mask & BIT(i)))
6065 					return false;
6066 			}
6067 	}
6068 
6069 	return true;
6070 }
6071 
6072 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6073 				     struct tc_etf_qopt_offload *qopt)
6074 {
6075 	struct igc_hw *hw = &adapter->hw;
6076 	int err;
6077 
6078 	if (hw->mac.type != igc_i225)
6079 		return -EOPNOTSUPP;
6080 
6081 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6082 	if (err)
6083 		return err;
6084 
6085 	return igc_tsn_offload_apply(adapter);
6086 }
6087 
6088 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6089 {
6090 	int i;
6091 
6092 	adapter->base_time = 0;
6093 	adapter->cycle_time = NSEC_PER_SEC;
6094 	adapter->qbv_config_change_errors = 0;
6095 
6096 	for (i = 0; i < adapter->num_tx_queues; i++) {
6097 		struct igc_ring *ring = adapter->tx_ring[i];
6098 
6099 		ring->start_time = 0;
6100 		ring->end_time = NSEC_PER_SEC;
6101 		ring->max_sdu = 0;
6102 	}
6103 
6104 	return 0;
6105 }
6106 
6107 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6108 				 struct tc_taprio_qopt_offload *qopt)
6109 {
6110 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6111 	struct igc_hw *hw = &adapter->hw;
6112 	u32 start_time = 0, end_time = 0;
6113 	size_t n;
6114 	int i;
6115 
6116 	switch (qopt->cmd) {
6117 	case TAPRIO_CMD_REPLACE:
6118 		adapter->qbv_enable = true;
6119 		break;
6120 	case TAPRIO_CMD_DESTROY:
6121 		adapter->qbv_enable = false;
6122 		break;
6123 	default:
6124 		return -EOPNOTSUPP;
6125 	}
6126 
6127 	if (!adapter->qbv_enable)
6128 		return igc_tsn_clear_schedule(adapter);
6129 
6130 	if (qopt->base_time < 0)
6131 		return -ERANGE;
6132 
6133 	if (igc_is_device_id_i225(hw) && adapter->base_time)
6134 		return -EALREADY;
6135 
6136 	if (!validate_schedule(adapter, qopt))
6137 		return -EINVAL;
6138 
6139 	adapter->cycle_time = qopt->cycle_time;
6140 	adapter->base_time = qopt->base_time;
6141 
6142 	for (n = 0; n < qopt->num_entries; n++) {
6143 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6144 
6145 		end_time += e->interval;
6146 
6147 		/* If any of the conditions below are true, we need to manually
6148 		 * control the end time of the cycle.
6149 		 * 1. Qbv users can specify a cycle time that is not equal
6150 		 * to the total GCL intervals. Hence, recalculation is
6151 		 * necessary here to exclude the time interval that
6152 		 * exceeds the cycle time.
6153 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6154 		 * once the end of the list is reached, it will switch
6155 		 * to the END_OF_CYCLE state and leave the gates in the
6156 		 * same state until the next cycle is started.
6157 		 */
6158 		if (end_time > adapter->cycle_time ||
6159 		    n + 1 == qopt->num_entries)
6160 			end_time = adapter->cycle_time;
6161 
6162 		for (i = 0; i < adapter->num_tx_queues; i++) {
6163 			struct igc_ring *ring = adapter->tx_ring[i];
6164 
6165 			if (!(e->gate_mask & BIT(i)))
6166 				continue;
6167 
6168 			/* Check whether a queue stays open for more than one
6169 			 * entry. If so, keep the start and advance the end
6170 			 * time.
6171 			 */
6172 			if (!queue_configured[i])
6173 				ring->start_time = start_time;
6174 			ring->end_time = end_time;
6175 
6176 			queue_configured[i] = true;
6177 		}
6178 
6179 		start_time += e->interval;
6180 	}
6181 
6182 	/* Check whether a queue gets configured.
6183 	 * If not, set the start and end time to be end time.
6184 	 */
6185 	for (i = 0; i < adapter->num_tx_queues; i++) {
6186 		if (!queue_configured[i]) {
6187 			struct igc_ring *ring = adapter->tx_ring[i];
6188 
6189 			ring->start_time = end_time;
6190 			ring->end_time = end_time;
6191 		}
6192 	}
6193 
6194 	for (i = 0; i < adapter->num_tx_queues; i++) {
6195 		struct igc_ring *ring = adapter->tx_ring[i];
6196 		struct net_device *dev = adapter->netdev;
6197 
6198 		if (qopt->max_sdu[i])
6199 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len;
6200 		else
6201 			ring->max_sdu = 0;
6202 	}
6203 
6204 	return 0;
6205 }
6206 
6207 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6208 					 struct tc_taprio_qopt_offload *qopt)
6209 {
6210 	struct igc_hw *hw = &adapter->hw;
6211 	int err;
6212 
6213 	if (hw->mac.type != igc_i225)
6214 		return -EOPNOTSUPP;
6215 
6216 	err = igc_save_qbv_schedule(adapter, qopt);
6217 	if (err)
6218 		return err;
6219 
6220 	return igc_tsn_offload_apply(adapter);
6221 }
6222 
6223 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6224 			       bool enable, int idleslope, int sendslope,
6225 			       int hicredit, int locredit)
6226 {
6227 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6228 	struct net_device *netdev = adapter->netdev;
6229 	struct igc_ring *ring;
6230 	int i;
6231 
6232 	/* i225 has two sets of credit-based shaper logic.
6233 	 * Supporting it only on the top two priority queues
6234 	 */
6235 	if (queue < 0 || queue > 1)
6236 		return -EINVAL;
6237 
6238 	ring = adapter->tx_ring[queue];
6239 
6240 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6241 		if (adapter->tx_ring[i])
6242 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6243 
6244 	/* CBS should be enabled on the highest priority queue first in order
6245 	 * for the CBS algorithm to operate as intended.
6246 	 */
6247 	if (enable) {
6248 		if (queue == 1 && !cbs_status[0]) {
6249 			netdev_err(netdev,
6250 				   "Enabling CBS on queue1 before queue0\n");
6251 			return -EINVAL;
6252 		}
6253 	} else {
6254 		if (queue == 0 && cbs_status[1]) {
6255 			netdev_err(netdev,
6256 				   "Disabling CBS on queue0 before queue1\n");
6257 			return -EINVAL;
6258 		}
6259 	}
6260 
6261 	ring->cbs_enable = enable;
6262 	ring->idleslope = idleslope;
6263 	ring->sendslope = sendslope;
6264 	ring->hicredit = hicredit;
6265 	ring->locredit = locredit;
6266 
6267 	return 0;
6268 }
6269 
6270 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6271 			      struct tc_cbs_qopt_offload *qopt)
6272 {
6273 	struct igc_hw *hw = &adapter->hw;
6274 	int err;
6275 
6276 	if (hw->mac.type != igc_i225)
6277 		return -EOPNOTSUPP;
6278 
6279 	if (qopt->queue < 0 || qopt->queue > 1)
6280 		return -EINVAL;
6281 
6282 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6283 				  qopt->idleslope, qopt->sendslope,
6284 				  qopt->hicredit, qopt->locredit);
6285 	if (err)
6286 		return err;
6287 
6288 	return igc_tsn_offload_apply(adapter);
6289 }
6290 
6291 static int igc_tc_query_caps(struct igc_adapter *adapter,
6292 			     struct tc_query_caps_base *base)
6293 {
6294 	struct igc_hw *hw = &adapter->hw;
6295 
6296 	switch (base->type) {
6297 	case TC_SETUP_QDISC_TAPRIO: {
6298 		struct tc_taprio_caps *caps = base->caps;
6299 
6300 		caps->broken_mqprio = true;
6301 
6302 		if (hw->mac.type == igc_i225) {
6303 			caps->supports_queue_max_sdu = true;
6304 			caps->gate_mask_per_txq = true;
6305 		}
6306 
6307 		return 0;
6308 	}
6309 	default:
6310 		return -EOPNOTSUPP;
6311 	}
6312 }
6313 
6314 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6315 			void *type_data)
6316 {
6317 	struct igc_adapter *adapter = netdev_priv(dev);
6318 
6319 	switch (type) {
6320 	case TC_QUERY_CAPS:
6321 		return igc_tc_query_caps(adapter, type_data);
6322 	case TC_SETUP_QDISC_TAPRIO:
6323 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6324 
6325 	case TC_SETUP_QDISC_ETF:
6326 		return igc_tsn_enable_launchtime(adapter, type_data);
6327 
6328 	case TC_SETUP_QDISC_CBS:
6329 		return igc_tsn_enable_cbs(adapter, type_data);
6330 
6331 	default:
6332 		return -EOPNOTSUPP;
6333 	}
6334 }
6335 
6336 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6337 {
6338 	struct igc_adapter *adapter = netdev_priv(dev);
6339 
6340 	switch (bpf->command) {
6341 	case XDP_SETUP_PROG:
6342 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6343 	case XDP_SETUP_XSK_POOL:
6344 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6345 					  bpf->xsk.queue_id);
6346 	default:
6347 		return -EOPNOTSUPP;
6348 	}
6349 }
6350 
6351 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6352 			struct xdp_frame **frames, u32 flags)
6353 {
6354 	struct igc_adapter *adapter = netdev_priv(dev);
6355 	int cpu = smp_processor_id();
6356 	struct netdev_queue *nq;
6357 	struct igc_ring *ring;
6358 	int i, drops;
6359 
6360 	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6361 		return -ENETDOWN;
6362 
6363 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6364 		return -EINVAL;
6365 
6366 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6367 	nq = txring_txq(ring);
6368 
6369 	__netif_tx_lock(nq, cpu);
6370 
6371 	/* Avoid transmit queue timeout since we share it with the slow path */
6372 	txq_trans_cond_update(nq);
6373 
6374 	drops = 0;
6375 	for (i = 0; i < num_frames; i++) {
6376 		int err;
6377 		struct xdp_frame *xdpf = frames[i];
6378 
6379 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6380 		if (err) {
6381 			xdp_return_frame_rx_napi(xdpf);
6382 			drops++;
6383 		}
6384 	}
6385 
6386 	if (flags & XDP_XMIT_FLUSH)
6387 		igc_flush_tx_descriptors(ring);
6388 
6389 	__netif_tx_unlock(nq);
6390 
6391 	return num_frames - drops;
6392 }
6393 
6394 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6395 					struct igc_q_vector *q_vector)
6396 {
6397 	struct igc_hw *hw = &adapter->hw;
6398 	u32 eics = 0;
6399 
6400 	eics |= q_vector->eims_value;
6401 	wr32(IGC_EICS, eics);
6402 }
6403 
6404 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6405 {
6406 	struct igc_adapter *adapter = netdev_priv(dev);
6407 	struct igc_q_vector *q_vector;
6408 	struct igc_ring *ring;
6409 
6410 	if (test_bit(__IGC_DOWN, &adapter->state))
6411 		return -ENETDOWN;
6412 
6413 	if (!igc_xdp_is_enabled(adapter))
6414 		return -ENXIO;
6415 
6416 	if (queue_id >= adapter->num_rx_queues)
6417 		return -EINVAL;
6418 
6419 	ring = adapter->rx_ring[queue_id];
6420 
6421 	if (!ring->xsk_pool)
6422 		return -ENXIO;
6423 
6424 	q_vector = adapter->q_vector[queue_id];
6425 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6426 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6427 
6428 	return 0;
6429 }
6430 
6431 static const struct net_device_ops igc_netdev_ops = {
6432 	.ndo_open		= igc_open,
6433 	.ndo_stop		= igc_close,
6434 	.ndo_start_xmit		= igc_xmit_frame,
6435 	.ndo_set_rx_mode	= igc_set_rx_mode,
6436 	.ndo_set_mac_address	= igc_set_mac,
6437 	.ndo_change_mtu		= igc_change_mtu,
6438 	.ndo_tx_timeout		= igc_tx_timeout,
6439 	.ndo_get_stats64	= igc_get_stats64,
6440 	.ndo_fix_features	= igc_fix_features,
6441 	.ndo_set_features	= igc_set_features,
6442 	.ndo_features_check	= igc_features_check,
6443 	.ndo_eth_ioctl		= igc_ioctl,
6444 	.ndo_setup_tc		= igc_setup_tc,
6445 	.ndo_bpf		= igc_bpf,
6446 	.ndo_xdp_xmit		= igc_xdp_xmit,
6447 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6448 };
6449 
6450 /* PCIe configuration access */
6451 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6452 {
6453 	struct igc_adapter *adapter = hw->back;
6454 
6455 	pci_read_config_word(adapter->pdev, reg, value);
6456 }
6457 
6458 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6459 {
6460 	struct igc_adapter *adapter = hw->back;
6461 
6462 	pci_write_config_word(adapter->pdev, reg, *value);
6463 }
6464 
6465 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6466 {
6467 	struct igc_adapter *adapter = hw->back;
6468 
6469 	if (!pci_is_pcie(adapter->pdev))
6470 		return -IGC_ERR_CONFIG;
6471 
6472 	pcie_capability_read_word(adapter->pdev, reg, value);
6473 
6474 	return IGC_SUCCESS;
6475 }
6476 
6477 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6478 {
6479 	struct igc_adapter *adapter = hw->back;
6480 
6481 	if (!pci_is_pcie(adapter->pdev))
6482 		return -IGC_ERR_CONFIG;
6483 
6484 	pcie_capability_write_word(adapter->pdev, reg, *value);
6485 
6486 	return IGC_SUCCESS;
6487 }
6488 
6489 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6490 {
6491 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6492 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6493 	u32 value = 0;
6494 
6495 	if (IGC_REMOVED(hw_addr))
6496 		return ~value;
6497 
6498 	value = readl(&hw_addr[reg]);
6499 
6500 	/* reads should not return all F's */
6501 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6502 		struct net_device *netdev = igc->netdev;
6503 
6504 		hw->hw_addr = NULL;
6505 		netif_device_detach(netdev);
6506 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6507 		WARN(pci_device_is_present(igc->pdev),
6508 		     "igc: Failed to read reg 0x%x!\n", reg);
6509 	}
6510 
6511 	return value;
6512 }
6513 
6514 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6515 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6516 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6517 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6518 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6519 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6520 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6521 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6522 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6523 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6524 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6525 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6526 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6527 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6528 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6529 	[13] = XDP_RSS_TYPE_NONE,
6530 	[14] = XDP_RSS_TYPE_NONE,
6531 	[15] = XDP_RSS_TYPE_NONE,
6532 };
6533 
6534 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6535 			   enum xdp_rss_hash_type *rss_type)
6536 {
6537 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6538 
6539 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6540 		return -ENODATA;
6541 
6542 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6543 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6544 
6545 	return 0;
6546 }
6547 
6548 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6549 {
6550 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6551 
6552 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6553 		*timestamp = ctx->rx_ts;
6554 
6555 		return 0;
6556 	}
6557 
6558 	return -ENODATA;
6559 }
6560 
6561 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6562 	.xmo_rx_hash			= igc_xdp_rx_hash,
6563 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6564 };
6565 
6566 /**
6567  * igc_probe - Device Initialization Routine
6568  * @pdev: PCI device information struct
6569  * @ent: entry in igc_pci_tbl
6570  *
6571  * Returns 0 on success, negative on failure
6572  *
6573  * igc_probe initializes an adapter identified by a pci_dev structure.
6574  * The OS initialization, configuring the adapter private structure,
6575  * and a hardware reset occur.
6576  */
6577 static int igc_probe(struct pci_dev *pdev,
6578 		     const struct pci_device_id *ent)
6579 {
6580 	struct igc_adapter *adapter;
6581 	struct net_device *netdev;
6582 	struct igc_hw *hw;
6583 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6584 	int err;
6585 
6586 	err = pci_enable_device_mem(pdev);
6587 	if (err)
6588 		return err;
6589 
6590 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6591 	if (err) {
6592 		dev_err(&pdev->dev,
6593 			"No usable DMA configuration, aborting\n");
6594 		goto err_dma;
6595 	}
6596 
6597 	err = pci_request_mem_regions(pdev, igc_driver_name);
6598 	if (err)
6599 		goto err_pci_reg;
6600 
6601 	err = pci_enable_ptm(pdev, NULL);
6602 	if (err < 0)
6603 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6604 
6605 	pci_set_master(pdev);
6606 
6607 	err = -ENOMEM;
6608 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6609 				   IGC_MAX_TX_QUEUES);
6610 
6611 	if (!netdev)
6612 		goto err_alloc_etherdev;
6613 
6614 	SET_NETDEV_DEV(netdev, &pdev->dev);
6615 
6616 	pci_set_drvdata(pdev, netdev);
6617 	adapter = netdev_priv(netdev);
6618 	adapter->netdev = netdev;
6619 	adapter->pdev = pdev;
6620 	hw = &adapter->hw;
6621 	hw->back = adapter;
6622 	adapter->port_num = hw->bus.func;
6623 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6624 
6625 	err = pci_save_state(pdev);
6626 	if (err)
6627 		goto err_ioremap;
6628 
6629 	err = -EIO;
6630 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6631 				   pci_resource_len(pdev, 0));
6632 	if (!adapter->io_addr)
6633 		goto err_ioremap;
6634 
6635 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6636 	hw->hw_addr = adapter->io_addr;
6637 
6638 	netdev->netdev_ops = &igc_netdev_ops;
6639 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6640 	igc_ethtool_set_ops(netdev);
6641 	netdev->watchdog_timeo = 5 * HZ;
6642 
6643 	netdev->mem_start = pci_resource_start(pdev, 0);
6644 	netdev->mem_end = pci_resource_end(pdev, 0);
6645 
6646 	/* PCI config space info */
6647 	hw->vendor_id = pdev->vendor;
6648 	hw->device_id = pdev->device;
6649 	hw->revision_id = pdev->revision;
6650 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6651 	hw->subsystem_device_id = pdev->subsystem_device;
6652 
6653 	/* Copy the default MAC and PHY function pointers */
6654 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6655 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6656 
6657 	/* Initialize skew-specific constants */
6658 	err = ei->get_invariants(hw);
6659 	if (err)
6660 		goto err_sw_init;
6661 
6662 	/* Add supported features to the features list*/
6663 	netdev->features |= NETIF_F_SG;
6664 	netdev->features |= NETIF_F_TSO;
6665 	netdev->features |= NETIF_F_TSO6;
6666 	netdev->features |= NETIF_F_TSO_ECN;
6667 	netdev->features |= NETIF_F_RXHASH;
6668 	netdev->features |= NETIF_F_RXCSUM;
6669 	netdev->features |= NETIF_F_HW_CSUM;
6670 	netdev->features |= NETIF_F_SCTP_CRC;
6671 	netdev->features |= NETIF_F_HW_TC;
6672 
6673 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6674 				  NETIF_F_GSO_GRE_CSUM | \
6675 				  NETIF_F_GSO_IPXIP4 | \
6676 				  NETIF_F_GSO_IPXIP6 | \
6677 				  NETIF_F_GSO_UDP_TUNNEL | \
6678 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6679 
6680 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6681 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6682 
6683 	/* setup the private structure */
6684 	err = igc_sw_init(adapter);
6685 	if (err)
6686 		goto err_sw_init;
6687 
6688 	/* copy netdev features into list of user selectable features */
6689 	netdev->hw_features |= NETIF_F_NTUPLE;
6690 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6691 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6692 	netdev->hw_features |= netdev->features;
6693 
6694 	netdev->features |= NETIF_F_HIGHDMA;
6695 
6696 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6697 	netdev->mpls_features |= NETIF_F_HW_CSUM;
6698 	netdev->hw_enc_features |= netdev->vlan_features;
6699 
6700 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6701 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
6702 
6703 	/* MTU range: 68 - 9216 */
6704 	netdev->min_mtu = ETH_MIN_MTU;
6705 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6706 
6707 	/* before reading the NVM, reset the controller to put the device in a
6708 	 * known good starting state
6709 	 */
6710 	hw->mac.ops.reset_hw(hw);
6711 
6712 	if (igc_get_flash_presence_i225(hw)) {
6713 		if (hw->nvm.ops.validate(hw) < 0) {
6714 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6715 			err = -EIO;
6716 			goto err_eeprom;
6717 		}
6718 	}
6719 
6720 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6721 		/* copy the MAC address out of the NVM */
6722 		if (hw->mac.ops.read_mac_addr(hw))
6723 			dev_err(&pdev->dev, "NVM Read Error\n");
6724 	}
6725 
6726 	eth_hw_addr_set(netdev, hw->mac.addr);
6727 
6728 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6729 		dev_err(&pdev->dev, "Invalid MAC Address\n");
6730 		err = -EIO;
6731 		goto err_eeprom;
6732 	}
6733 
6734 	/* configure RXPBSIZE and TXPBSIZE */
6735 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6736 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6737 
6738 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6739 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6740 
6741 	INIT_WORK(&adapter->reset_task, igc_reset_task);
6742 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6743 
6744 	/* Initialize link properties that are user-changeable */
6745 	adapter->fc_autoneg = true;
6746 	hw->mac.autoneg = true;
6747 	hw->phy.autoneg_advertised = 0xaf;
6748 
6749 	hw->fc.requested_mode = igc_fc_default;
6750 	hw->fc.current_mode = igc_fc_default;
6751 
6752 	/* By default, support wake on port A */
6753 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6754 
6755 	/* initialize the wol settings based on the eeprom settings */
6756 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6757 		adapter->wol |= IGC_WUFC_MAG;
6758 
6759 	device_set_wakeup_enable(&adapter->pdev->dev,
6760 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6761 
6762 	igc_ptp_init(adapter);
6763 
6764 	igc_tsn_clear_schedule(adapter);
6765 
6766 	/* reset the hardware with the new settings */
6767 	igc_reset(adapter);
6768 
6769 	/* let the f/w know that the h/w is now under the control of the
6770 	 * driver.
6771 	 */
6772 	igc_get_hw_control(adapter);
6773 
6774 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6775 	err = register_netdev(netdev);
6776 	if (err)
6777 		goto err_register;
6778 
6779 	 /* carrier off reporting is important to ethtool even BEFORE open */
6780 	netif_carrier_off(netdev);
6781 
6782 	/* Check if Media Autosense is enabled */
6783 	adapter->ei = *ei;
6784 
6785 	/* print pcie link status and MAC address */
6786 	pcie_print_link_status(pdev);
6787 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6788 
6789 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6790 	/* Disable EEE for internal PHY devices */
6791 	hw->dev_spec._base.eee_enable = false;
6792 	adapter->flags &= ~IGC_FLAG_EEE;
6793 	igc_set_eee_i225(hw, false, false, false);
6794 
6795 	pm_runtime_put_noidle(&pdev->dev);
6796 
6797 	return 0;
6798 
6799 err_register:
6800 	igc_release_hw_control(adapter);
6801 err_eeprom:
6802 	if (!igc_check_reset_block(hw))
6803 		igc_reset_phy(hw);
6804 err_sw_init:
6805 	igc_clear_interrupt_scheme(adapter);
6806 	iounmap(adapter->io_addr);
6807 err_ioremap:
6808 	free_netdev(netdev);
6809 err_alloc_etherdev:
6810 	pci_release_mem_regions(pdev);
6811 err_pci_reg:
6812 err_dma:
6813 	pci_disable_device(pdev);
6814 	return err;
6815 }
6816 
6817 /**
6818  * igc_remove - Device Removal Routine
6819  * @pdev: PCI device information struct
6820  *
6821  * igc_remove is called by the PCI subsystem to alert the driver
6822  * that it should release a PCI device.  This could be caused by a
6823  * Hot-Plug event, or because the driver is going to be removed from
6824  * memory.
6825  */
6826 static void igc_remove(struct pci_dev *pdev)
6827 {
6828 	struct net_device *netdev = pci_get_drvdata(pdev);
6829 	struct igc_adapter *adapter = netdev_priv(netdev);
6830 
6831 	pm_runtime_get_noresume(&pdev->dev);
6832 
6833 	igc_flush_nfc_rules(adapter);
6834 
6835 	igc_ptp_stop(adapter);
6836 
6837 	set_bit(__IGC_DOWN, &adapter->state);
6838 
6839 	del_timer_sync(&adapter->watchdog_timer);
6840 	del_timer_sync(&adapter->phy_info_timer);
6841 
6842 	cancel_work_sync(&adapter->reset_task);
6843 	cancel_work_sync(&adapter->watchdog_task);
6844 
6845 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6846 	 * would have already happened in close and is redundant.
6847 	 */
6848 	igc_release_hw_control(adapter);
6849 	unregister_netdev(netdev);
6850 
6851 	igc_clear_interrupt_scheme(adapter);
6852 	pci_iounmap(pdev, adapter->io_addr);
6853 	pci_release_mem_regions(pdev);
6854 
6855 	free_netdev(netdev);
6856 
6857 	pci_disable_device(pdev);
6858 }
6859 
6860 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6861 			  bool runtime)
6862 {
6863 	struct net_device *netdev = pci_get_drvdata(pdev);
6864 	struct igc_adapter *adapter = netdev_priv(netdev);
6865 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6866 	struct igc_hw *hw = &adapter->hw;
6867 	u32 ctrl, rctl, status;
6868 	bool wake;
6869 
6870 	rtnl_lock();
6871 	netif_device_detach(netdev);
6872 
6873 	if (netif_running(netdev))
6874 		__igc_close(netdev, true);
6875 
6876 	igc_ptp_suspend(adapter);
6877 
6878 	igc_clear_interrupt_scheme(adapter);
6879 	rtnl_unlock();
6880 
6881 	status = rd32(IGC_STATUS);
6882 	if (status & IGC_STATUS_LU)
6883 		wufc &= ~IGC_WUFC_LNKC;
6884 
6885 	if (wufc) {
6886 		igc_setup_rctl(adapter);
6887 		igc_set_rx_mode(netdev);
6888 
6889 		/* turn on all-multi mode if wake on multicast is enabled */
6890 		if (wufc & IGC_WUFC_MC) {
6891 			rctl = rd32(IGC_RCTL);
6892 			rctl |= IGC_RCTL_MPE;
6893 			wr32(IGC_RCTL, rctl);
6894 		}
6895 
6896 		ctrl = rd32(IGC_CTRL);
6897 		ctrl |= IGC_CTRL_ADVD3WUC;
6898 		wr32(IGC_CTRL, ctrl);
6899 
6900 		/* Allow time for pending master requests to run */
6901 		igc_disable_pcie_master(hw);
6902 
6903 		wr32(IGC_WUC, IGC_WUC_PME_EN);
6904 		wr32(IGC_WUFC, wufc);
6905 	} else {
6906 		wr32(IGC_WUC, 0);
6907 		wr32(IGC_WUFC, 0);
6908 	}
6909 
6910 	wake = wufc || adapter->en_mng_pt;
6911 	if (!wake)
6912 		igc_power_down_phy_copper_base(&adapter->hw);
6913 	else
6914 		igc_power_up_link(adapter);
6915 
6916 	if (enable_wake)
6917 		*enable_wake = wake;
6918 
6919 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6920 	 * would have already happened in close and is redundant.
6921 	 */
6922 	igc_release_hw_control(adapter);
6923 
6924 	pci_disable_device(pdev);
6925 
6926 	return 0;
6927 }
6928 
6929 #ifdef CONFIG_PM
6930 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6931 {
6932 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6933 }
6934 
6935 static void igc_deliver_wake_packet(struct net_device *netdev)
6936 {
6937 	struct igc_adapter *adapter = netdev_priv(netdev);
6938 	struct igc_hw *hw = &adapter->hw;
6939 	struct sk_buff *skb;
6940 	u32 wupl;
6941 
6942 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6943 
6944 	/* WUPM stores only the first 128 bytes of the wake packet.
6945 	 * Read the packet only if we have the whole thing.
6946 	 */
6947 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6948 		return;
6949 
6950 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6951 	if (!skb)
6952 		return;
6953 
6954 	skb_put(skb, wupl);
6955 
6956 	/* Ensure reads are 32-bit aligned */
6957 	wupl = roundup(wupl, 4);
6958 
6959 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6960 
6961 	skb->protocol = eth_type_trans(skb, netdev);
6962 	netif_rx(skb);
6963 }
6964 
6965 static int __maybe_unused igc_resume(struct device *dev)
6966 {
6967 	struct pci_dev *pdev = to_pci_dev(dev);
6968 	struct net_device *netdev = pci_get_drvdata(pdev);
6969 	struct igc_adapter *adapter = netdev_priv(netdev);
6970 	struct igc_hw *hw = &adapter->hw;
6971 	u32 err, val;
6972 
6973 	pci_set_power_state(pdev, PCI_D0);
6974 	pci_restore_state(pdev);
6975 	pci_save_state(pdev);
6976 
6977 	if (!pci_device_is_present(pdev))
6978 		return -ENODEV;
6979 	err = pci_enable_device_mem(pdev);
6980 	if (err) {
6981 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6982 		return err;
6983 	}
6984 	pci_set_master(pdev);
6985 
6986 	pci_enable_wake(pdev, PCI_D3hot, 0);
6987 	pci_enable_wake(pdev, PCI_D3cold, 0);
6988 
6989 	if (igc_init_interrupt_scheme(adapter, true)) {
6990 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6991 		return -ENOMEM;
6992 	}
6993 
6994 	igc_reset(adapter);
6995 
6996 	/* let the f/w know that the h/w is now under the control of the
6997 	 * driver.
6998 	 */
6999 	igc_get_hw_control(adapter);
7000 
7001 	val = rd32(IGC_WUS);
7002 	if (val & WAKE_PKT_WUS)
7003 		igc_deliver_wake_packet(netdev);
7004 
7005 	wr32(IGC_WUS, ~0);
7006 
7007 	rtnl_lock();
7008 	if (!err && netif_running(netdev))
7009 		err = __igc_open(netdev, true);
7010 
7011 	if (!err)
7012 		netif_device_attach(netdev);
7013 	rtnl_unlock();
7014 
7015 	return err;
7016 }
7017 
7018 static int __maybe_unused igc_runtime_resume(struct device *dev)
7019 {
7020 	return igc_resume(dev);
7021 }
7022 
7023 static int __maybe_unused igc_suspend(struct device *dev)
7024 {
7025 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7026 }
7027 
7028 static int __maybe_unused igc_runtime_idle(struct device *dev)
7029 {
7030 	struct net_device *netdev = dev_get_drvdata(dev);
7031 	struct igc_adapter *adapter = netdev_priv(netdev);
7032 
7033 	if (!igc_has_link(adapter))
7034 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7035 
7036 	return -EBUSY;
7037 }
7038 #endif /* CONFIG_PM */
7039 
7040 static void igc_shutdown(struct pci_dev *pdev)
7041 {
7042 	bool wake;
7043 
7044 	__igc_shutdown(pdev, &wake, 0);
7045 
7046 	if (system_state == SYSTEM_POWER_OFF) {
7047 		pci_wake_from_d3(pdev, wake);
7048 		pci_set_power_state(pdev, PCI_D3hot);
7049 	}
7050 }
7051 
7052 /**
7053  *  igc_io_error_detected - called when PCI error is detected
7054  *  @pdev: Pointer to PCI device
7055  *  @state: The current PCI connection state
7056  *
7057  *  This function is called after a PCI bus error affecting
7058  *  this device has been detected.
7059  **/
7060 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7061 					      pci_channel_state_t state)
7062 {
7063 	struct net_device *netdev = pci_get_drvdata(pdev);
7064 	struct igc_adapter *adapter = netdev_priv(netdev);
7065 
7066 	netif_device_detach(netdev);
7067 
7068 	if (state == pci_channel_io_perm_failure)
7069 		return PCI_ERS_RESULT_DISCONNECT;
7070 
7071 	if (netif_running(netdev))
7072 		igc_down(adapter);
7073 	pci_disable_device(pdev);
7074 
7075 	/* Request a slot reset. */
7076 	return PCI_ERS_RESULT_NEED_RESET;
7077 }
7078 
7079 /**
7080  *  igc_io_slot_reset - called after the PCI bus has been reset.
7081  *  @pdev: Pointer to PCI device
7082  *
7083  *  Restart the card from scratch, as if from a cold-boot. Implementation
7084  *  resembles the first-half of the igc_resume routine.
7085  **/
7086 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7087 {
7088 	struct net_device *netdev = pci_get_drvdata(pdev);
7089 	struct igc_adapter *adapter = netdev_priv(netdev);
7090 	struct igc_hw *hw = &adapter->hw;
7091 	pci_ers_result_t result;
7092 
7093 	if (pci_enable_device_mem(pdev)) {
7094 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7095 		result = PCI_ERS_RESULT_DISCONNECT;
7096 	} else {
7097 		pci_set_master(pdev);
7098 		pci_restore_state(pdev);
7099 		pci_save_state(pdev);
7100 
7101 		pci_enable_wake(pdev, PCI_D3hot, 0);
7102 		pci_enable_wake(pdev, PCI_D3cold, 0);
7103 
7104 		/* In case of PCI error, adapter loses its HW address
7105 		 * so we should re-assign it here.
7106 		 */
7107 		hw->hw_addr = adapter->io_addr;
7108 
7109 		igc_reset(adapter);
7110 		wr32(IGC_WUS, ~0);
7111 		result = PCI_ERS_RESULT_RECOVERED;
7112 	}
7113 
7114 	return result;
7115 }
7116 
7117 /**
7118  *  igc_io_resume - called when traffic can start to flow again.
7119  *  @pdev: Pointer to PCI device
7120  *
7121  *  This callback is called when the error recovery driver tells us that
7122  *  its OK to resume normal operation. Implementation resembles the
7123  *  second-half of the igc_resume routine.
7124  */
7125 static void igc_io_resume(struct pci_dev *pdev)
7126 {
7127 	struct net_device *netdev = pci_get_drvdata(pdev);
7128 	struct igc_adapter *adapter = netdev_priv(netdev);
7129 
7130 	rtnl_lock();
7131 	if (netif_running(netdev)) {
7132 		if (igc_open(netdev)) {
7133 			netdev_err(netdev, "igc_open failed after reset\n");
7134 			return;
7135 		}
7136 	}
7137 
7138 	netif_device_attach(netdev);
7139 
7140 	/* let the f/w know that the h/w is now under the control of the
7141 	 * driver.
7142 	 */
7143 	igc_get_hw_control(adapter);
7144 	rtnl_unlock();
7145 }
7146 
7147 static const struct pci_error_handlers igc_err_handler = {
7148 	.error_detected = igc_io_error_detected,
7149 	.slot_reset = igc_io_slot_reset,
7150 	.resume = igc_io_resume,
7151 };
7152 
7153 #ifdef CONFIG_PM
7154 static const struct dev_pm_ops igc_pm_ops = {
7155 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7156 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7157 			   igc_runtime_idle)
7158 };
7159 #endif
7160 
7161 static struct pci_driver igc_driver = {
7162 	.name     = igc_driver_name,
7163 	.id_table = igc_pci_tbl,
7164 	.probe    = igc_probe,
7165 	.remove   = igc_remove,
7166 #ifdef CONFIG_PM
7167 	.driver.pm = &igc_pm_ops,
7168 #endif
7169 	.shutdown = igc_shutdown,
7170 	.err_handler = &igc_err_handler,
7171 };
7172 
7173 /**
7174  * igc_reinit_queues - return error
7175  * @adapter: pointer to adapter structure
7176  */
7177 int igc_reinit_queues(struct igc_adapter *adapter)
7178 {
7179 	struct net_device *netdev = adapter->netdev;
7180 	int err = 0;
7181 
7182 	if (netif_running(netdev))
7183 		igc_close(netdev);
7184 
7185 	igc_reset_interrupt_capability(adapter);
7186 
7187 	if (igc_init_interrupt_scheme(adapter, true)) {
7188 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7189 		return -ENOMEM;
7190 	}
7191 
7192 	if (netif_running(netdev))
7193 		err = igc_open(netdev);
7194 
7195 	return err;
7196 }
7197 
7198 /**
7199  * igc_get_hw_dev - return device
7200  * @hw: pointer to hardware structure
7201  *
7202  * used by hardware layer to print debugging information
7203  */
7204 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7205 {
7206 	struct igc_adapter *adapter = hw->back;
7207 
7208 	return adapter->netdev;
7209 }
7210 
7211 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7212 {
7213 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7214 	u8 idx = ring->reg_idx;
7215 	u32 rxdctl;
7216 
7217 	rxdctl = rd32(IGC_RXDCTL(idx));
7218 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7219 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7220 	wr32(IGC_RXDCTL(idx), rxdctl);
7221 }
7222 
7223 void igc_disable_rx_ring(struct igc_ring *ring)
7224 {
7225 	igc_disable_rx_ring_hw(ring);
7226 	igc_clean_rx_ring(ring);
7227 }
7228 
7229 void igc_enable_rx_ring(struct igc_ring *ring)
7230 {
7231 	struct igc_adapter *adapter = ring->q_vector->adapter;
7232 
7233 	igc_configure_rx_ring(adapter, ring);
7234 
7235 	if (ring->xsk_pool)
7236 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7237 	else
7238 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7239 }
7240 
7241 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
7242 {
7243 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7244 	u8 idx = ring->reg_idx;
7245 	u32 txdctl;
7246 
7247 	txdctl = rd32(IGC_TXDCTL(idx));
7248 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
7249 	txdctl |= IGC_TXDCTL_SWFLUSH;
7250 	wr32(IGC_TXDCTL(idx), txdctl);
7251 }
7252 
7253 void igc_disable_tx_ring(struct igc_ring *ring)
7254 {
7255 	igc_disable_tx_ring_hw(ring);
7256 	igc_clean_tx_ring(ring);
7257 }
7258 
7259 void igc_enable_tx_ring(struct igc_ring *ring)
7260 {
7261 	struct igc_adapter *adapter = ring->q_vector->adapter;
7262 
7263 	igc_configure_tx_ring(adapter, ring);
7264 }
7265 
7266 /**
7267  * igc_init_module - Driver Registration Routine
7268  *
7269  * igc_init_module is the first routine called when the driver is
7270  * loaded. All it does is register with the PCI subsystem.
7271  */
7272 static int __init igc_init_module(void)
7273 {
7274 	int ret;
7275 
7276 	pr_info("%s\n", igc_driver_string);
7277 	pr_info("%s\n", igc_copyright);
7278 
7279 	ret = pci_register_driver(&igc_driver);
7280 	return ret;
7281 }
7282 
7283 module_init(igc_init_module);
7284 
7285 /**
7286  * igc_exit_module - Driver Exit Cleanup Routine
7287  *
7288  * igc_exit_module is called just before the driver is removed
7289  * from memory.
7290  */
7291 static void __exit igc_exit_module(void)
7292 {
7293 	pci_unregister_driver(&igc_driver);
7294 }
7295 
7296 module_exit(igc_exit_module);
7297 /* igc_main.c */
7298