1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/if_vlan.h> 7 #include <linux/aer.h> 8 9 #include "igc.h" 10 #include "igc_hw.h" 11 12 #define DRV_VERSION "0.0.1-k" 13 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" 14 15 static int debug = -1; 16 17 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 18 MODULE_DESCRIPTION(DRV_SUMMARY); 19 MODULE_LICENSE("GPL v2"); 20 MODULE_VERSION(DRV_VERSION); 21 module_param(debug, int, 0); 22 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 23 24 char igc_driver_name[] = "igc"; 25 char igc_driver_version[] = DRV_VERSION; 26 static const char igc_driver_string[] = DRV_SUMMARY; 27 static const char igc_copyright[] = 28 "Copyright(c) 2018 Intel Corporation."; 29 30 static const struct igc_info *igc_info_tbl[] = { 31 [board_base] = &igc_base_info, 32 }; 33 34 static const struct pci_device_id igc_pci_tbl[] = { 35 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, 36 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, 37 /* required last entry */ 38 {0, } 39 }; 40 41 MODULE_DEVICE_TABLE(pci, igc_pci_tbl); 42 43 /* forward declaration */ 44 static void igc_clean_tx_ring(struct igc_ring *tx_ring); 45 static int igc_sw_init(struct igc_adapter *); 46 static void igc_configure(struct igc_adapter *adapter); 47 static void igc_power_down_link(struct igc_adapter *adapter); 48 static void igc_set_default_mac_filter(struct igc_adapter *adapter); 49 static void igc_set_rx_mode(struct net_device *netdev); 50 static void igc_write_itr(struct igc_q_vector *q_vector); 51 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector); 52 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx); 53 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 54 bool msix); 55 static void igc_free_q_vectors(struct igc_adapter *adapter); 56 static void igc_irq_disable(struct igc_adapter *adapter); 57 static void igc_irq_enable(struct igc_adapter *adapter); 58 static void igc_configure_msix(struct igc_adapter *adapter); 59 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 60 struct igc_rx_buffer *bi); 61 62 enum latency_range { 63 lowest_latency = 0, 64 low_latency = 1, 65 bulk_latency = 2, 66 latency_invalid = 255 67 }; 68 69 static void igc_reset(struct igc_adapter *adapter) 70 { 71 struct pci_dev *pdev = adapter->pdev; 72 struct igc_hw *hw = &adapter->hw; 73 74 hw->mac.ops.reset_hw(hw); 75 76 if (hw->mac.ops.init_hw(hw)) 77 dev_err(&pdev->dev, "Hardware Error\n"); 78 79 if (!netif_running(adapter->netdev)) 80 igc_power_down_link(adapter); 81 82 igc_get_phy_info(hw); 83 } 84 85 /** 86 * igc_power_up_link - Power up the phy/serdes link 87 * @adapter: address of board private structure 88 */ 89 static void igc_power_up_link(struct igc_adapter *adapter) 90 { 91 igc_reset_phy(&adapter->hw); 92 93 if (adapter->hw.phy.media_type == igc_media_type_copper) 94 igc_power_up_phy_copper(&adapter->hw); 95 96 igc_setup_link(&adapter->hw); 97 } 98 99 /** 100 * igc_power_down_link - Power down the phy/serdes link 101 * @adapter: address of board private structure 102 */ 103 static void igc_power_down_link(struct igc_adapter *adapter) 104 { 105 if (adapter->hw.phy.media_type == igc_media_type_copper) 106 igc_power_down_phy_copper_base(&adapter->hw); 107 } 108 109 /** 110 * igc_release_hw_control - release control of the h/w to f/w 111 * @adapter: address of board private structure 112 * 113 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 114 * For ASF and Pass Through versions of f/w this means that the 115 * driver is no longer loaded. 116 */ 117 static void igc_release_hw_control(struct igc_adapter *adapter) 118 { 119 struct igc_hw *hw = &adapter->hw; 120 u32 ctrl_ext; 121 122 /* Let firmware take over control of h/w */ 123 ctrl_ext = rd32(IGC_CTRL_EXT); 124 wr32(IGC_CTRL_EXT, 125 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); 126 } 127 128 /** 129 * igc_get_hw_control - get control of the h/w from f/w 130 * @adapter: address of board private structure 131 * 132 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 133 * For ASF and Pass Through versions of f/w this means that 134 * the driver is loaded. 135 */ 136 static void igc_get_hw_control(struct igc_adapter *adapter) 137 { 138 struct igc_hw *hw = &adapter->hw; 139 u32 ctrl_ext; 140 141 /* Let firmware know the driver has taken over */ 142 ctrl_ext = rd32(IGC_CTRL_EXT); 143 wr32(IGC_CTRL_EXT, 144 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); 145 } 146 147 /** 148 * igc_free_tx_resources - Free Tx Resources per Queue 149 * @tx_ring: Tx descriptor ring for a specific queue 150 * 151 * Free all transmit software resources 152 */ 153 static void igc_free_tx_resources(struct igc_ring *tx_ring) 154 { 155 igc_clean_tx_ring(tx_ring); 156 157 vfree(tx_ring->tx_buffer_info); 158 tx_ring->tx_buffer_info = NULL; 159 160 /* if not set, then don't free */ 161 if (!tx_ring->desc) 162 return; 163 164 dma_free_coherent(tx_ring->dev, tx_ring->size, 165 tx_ring->desc, tx_ring->dma); 166 167 tx_ring->desc = NULL; 168 } 169 170 /** 171 * igc_free_all_tx_resources - Free Tx Resources for All Queues 172 * @adapter: board private structure 173 * 174 * Free all transmit software resources 175 */ 176 static void igc_free_all_tx_resources(struct igc_adapter *adapter) 177 { 178 int i; 179 180 for (i = 0; i < adapter->num_tx_queues; i++) 181 igc_free_tx_resources(adapter->tx_ring[i]); 182 } 183 184 /** 185 * igc_clean_tx_ring - Free Tx Buffers 186 * @tx_ring: ring to be cleaned 187 */ 188 static void igc_clean_tx_ring(struct igc_ring *tx_ring) 189 { 190 u16 i = tx_ring->next_to_clean; 191 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 192 193 while (i != tx_ring->next_to_use) { 194 union igc_adv_tx_desc *eop_desc, *tx_desc; 195 196 /* Free all the Tx ring sk_buffs */ 197 dev_kfree_skb_any(tx_buffer->skb); 198 199 /* unmap skb header data */ 200 dma_unmap_single(tx_ring->dev, 201 dma_unmap_addr(tx_buffer, dma), 202 dma_unmap_len(tx_buffer, len), 203 DMA_TO_DEVICE); 204 205 /* check for eop_desc to determine the end of the packet */ 206 eop_desc = tx_buffer->next_to_watch; 207 tx_desc = IGC_TX_DESC(tx_ring, i); 208 209 /* unmap remaining buffers */ 210 while (tx_desc != eop_desc) { 211 tx_buffer++; 212 tx_desc++; 213 i++; 214 if (unlikely(i == tx_ring->count)) { 215 i = 0; 216 tx_buffer = tx_ring->tx_buffer_info; 217 tx_desc = IGC_TX_DESC(tx_ring, 0); 218 } 219 220 /* unmap any remaining paged data */ 221 if (dma_unmap_len(tx_buffer, len)) 222 dma_unmap_page(tx_ring->dev, 223 dma_unmap_addr(tx_buffer, dma), 224 dma_unmap_len(tx_buffer, len), 225 DMA_TO_DEVICE); 226 } 227 228 /* move us one more past the eop_desc for start of next pkt */ 229 tx_buffer++; 230 i++; 231 if (unlikely(i == tx_ring->count)) { 232 i = 0; 233 tx_buffer = tx_ring->tx_buffer_info; 234 } 235 } 236 237 /* reset BQL for queue */ 238 netdev_tx_reset_queue(txring_txq(tx_ring)); 239 240 /* reset next_to_use and next_to_clean */ 241 tx_ring->next_to_use = 0; 242 tx_ring->next_to_clean = 0; 243 } 244 245 /** 246 * igc_clean_all_tx_rings - Free Tx Buffers for all queues 247 * @adapter: board private structure 248 */ 249 static void igc_clean_all_tx_rings(struct igc_adapter *adapter) 250 { 251 int i; 252 253 for (i = 0; i < adapter->num_tx_queues; i++) 254 if (adapter->tx_ring[i]) 255 igc_clean_tx_ring(adapter->tx_ring[i]); 256 } 257 258 /** 259 * igc_setup_tx_resources - allocate Tx resources (Descriptors) 260 * @tx_ring: tx descriptor ring (for a specific queue) to setup 261 * 262 * Return 0 on success, negative on failure 263 */ 264 static int igc_setup_tx_resources(struct igc_ring *tx_ring) 265 { 266 struct device *dev = tx_ring->dev; 267 int size = 0; 268 269 size = sizeof(struct igc_tx_buffer) * tx_ring->count; 270 tx_ring->tx_buffer_info = vzalloc(size); 271 if (!tx_ring->tx_buffer_info) 272 goto err; 273 274 /* round up to nearest 4K */ 275 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); 276 tx_ring->size = ALIGN(tx_ring->size, 4096); 277 278 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 279 &tx_ring->dma, GFP_KERNEL); 280 281 if (!tx_ring->desc) 282 goto err; 283 284 tx_ring->next_to_use = 0; 285 tx_ring->next_to_clean = 0; 286 287 return 0; 288 289 err: 290 vfree(tx_ring->tx_buffer_info); 291 dev_err(dev, 292 "Unable to allocate memory for the transmit descriptor ring\n"); 293 return -ENOMEM; 294 } 295 296 /** 297 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues 298 * @adapter: board private structure 299 * 300 * Return 0 on success, negative on failure 301 */ 302 static int igc_setup_all_tx_resources(struct igc_adapter *adapter) 303 { 304 struct pci_dev *pdev = adapter->pdev; 305 int i, err = 0; 306 307 for (i = 0; i < adapter->num_tx_queues; i++) { 308 err = igc_setup_tx_resources(adapter->tx_ring[i]); 309 if (err) { 310 dev_err(&pdev->dev, 311 "Allocation for Tx Queue %u failed\n", i); 312 for (i--; i >= 0; i--) 313 igc_free_tx_resources(adapter->tx_ring[i]); 314 break; 315 } 316 } 317 318 return err; 319 } 320 321 /** 322 * igc_clean_rx_ring - Free Rx Buffers per Queue 323 * @rx_ring: ring to free buffers from 324 */ 325 static void igc_clean_rx_ring(struct igc_ring *rx_ring) 326 { 327 u16 i = rx_ring->next_to_clean; 328 329 if (rx_ring->skb) 330 dev_kfree_skb(rx_ring->skb); 331 rx_ring->skb = NULL; 332 333 /* Free all the Rx ring sk_buffs */ 334 while (i != rx_ring->next_to_alloc) { 335 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 336 337 /* Invalidate cache lines that may have been written to by 338 * device so that we avoid corrupting memory. 339 */ 340 dma_sync_single_range_for_cpu(rx_ring->dev, 341 buffer_info->dma, 342 buffer_info->page_offset, 343 igc_rx_bufsz(rx_ring), 344 DMA_FROM_DEVICE); 345 346 /* free resources associated with mapping */ 347 dma_unmap_page_attrs(rx_ring->dev, 348 buffer_info->dma, 349 igc_rx_pg_size(rx_ring), 350 DMA_FROM_DEVICE, 351 IGC_RX_DMA_ATTR); 352 __page_frag_cache_drain(buffer_info->page, 353 buffer_info->pagecnt_bias); 354 355 i++; 356 if (i == rx_ring->count) 357 i = 0; 358 } 359 360 rx_ring->next_to_alloc = 0; 361 rx_ring->next_to_clean = 0; 362 rx_ring->next_to_use = 0; 363 } 364 365 /** 366 * igc_clean_all_rx_rings - Free Rx Buffers for all queues 367 * @adapter: board private structure 368 */ 369 static void igc_clean_all_rx_rings(struct igc_adapter *adapter) 370 { 371 int i; 372 373 for (i = 0; i < adapter->num_rx_queues; i++) 374 if (adapter->rx_ring[i]) 375 igc_clean_rx_ring(adapter->rx_ring[i]); 376 } 377 378 /** 379 * igc_free_rx_resources - Free Rx Resources 380 * @rx_ring: ring to clean the resources from 381 * 382 * Free all receive software resources 383 */ 384 static void igc_free_rx_resources(struct igc_ring *rx_ring) 385 { 386 igc_clean_rx_ring(rx_ring); 387 388 vfree(rx_ring->rx_buffer_info); 389 rx_ring->rx_buffer_info = NULL; 390 391 /* if not set, then don't free */ 392 if (!rx_ring->desc) 393 return; 394 395 dma_free_coherent(rx_ring->dev, rx_ring->size, 396 rx_ring->desc, rx_ring->dma); 397 398 rx_ring->desc = NULL; 399 } 400 401 /** 402 * igc_free_all_rx_resources - Free Rx Resources for All Queues 403 * @adapter: board private structure 404 * 405 * Free all receive software resources 406 */ 407 static void igc_free_all_rx_resources(struct igc_adapter *adapter) 408 { 409 int i; 410 411 for (i = 0; i < adapter->num_rx_queues; i++) 412 igc_free_rx_resources(adapter->rx_ring[i]); 413 } 414 415 /** 416 * igc_setup_rx_resources - allocate Rx resources (Descriptors) 417 * @rx_ring: rx descriptor ring (for a specific queue) to setup 418 * 419 * Returns 0 on success, negative on failure 420 */ 421 static int igc_setup_rx_resources(struct igc_ring *rx_ring) 422 { 423 struct device *dev = rx_ring->dev; 424 int size, desc_len; 425 426 size = sizeof(struct igc_rx_buffer) * rx_ring->count; 427 rx_ring->rx_buffer_info = vzalloc(size); 428 if (!rx_ring->rx_buffer_info) 429 goto err; 430 431 desc_len = sizeof(union igc_adv_rx_desc); 432 433 /* Round up to nearest 4K */ 434 rx_ring->size = rx_ring->count * desc_len; 435 rx_ring->size = ALIGN(rx_ring->size, 4096); 436 437 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 438 &rx_ring->dma, GFP_KERNEL); 439 440 if (!rx_ring->desc) 441 goto err; 442 443 rx_ring->next_to_alloc = 0; 444 rx_ring->next_to_clean = 0; 445 rx_ring->next_to_use = 0; 446 447 return 0; 448 449 err: 450 vfree(rx_ring->rx_buffer_info); 451 rx_ring->rx_buffer_info = NULL; 452 dev_err(dev, 453 "Unable to allocate memory for the receive descriptor ring\n"); 454 return -ENOMEM; 455 } 456 457 /** 458 * igc_setup_all_rx_resources - wrapper to allocate Rx resources 459 * (Descriptors) for all queues 460 * @adapter: board private structure 461 * 462 * Return 0 on success, negative on failure 463 */ 464 static int igc_setup_all_rx_resources(struct igc_adapter *adapter) 465 { 466 struct pci_dev *pdev = adapter->pdev; 467 int i, err = 0; 468 469 for (i = 0; i < adapter->num_rx_queues; i++) { 470 err = igc_setup_rx_resources(adapter->rx_ring[i]); 471 if (err) { 472 dev_err(&pdev->dev, 473 "Allocation for Rx Queue %u failed\n", i); 474 for (i--; i >= 0; i--) 475 igc_free_rx_resources(adapter->rx_ring[i]); 476 break; 477 } 478 } 479 480 return err; 481 } 482 483 /** 484 * igc_configure_rx_ring - Configure a receive ring after Reset 485 * @adapter: board private structure 486 * @ring: receive ring to be configured 487 * 488 * Configure the Rx unit of the MAC after a reset. 489 */ 490 static void igc_configure_rx_ring(struct igc_adapter *adapter, 491 struct igc_ring *ring) 492 { 493 struct igc_hw *hw = &adapter->hw; 494 union igc_adv_rx_desc *rx_desc; 495 int reg_idx = ring->reg_idx; 496 u32 srrctl = 0, rxdctl = 0; 497 u64 rdba = ring->dma; 498 499 /* disable the queue */ 500 wr32(IGC_RXDCTL(reg_idx), 0); 501 502 /* Set DMA base address registers */ 503 wr32(IGC_RDBAL(reg_idx), 504 rdba & 0x00000000ffffffffULL); 505 wr32(IGC_RDBAH(reg_idx), rdba >> 32); 506 wr32(IGC_RDLEN(reg_idx), 507 ring->count * sizeof(union igc_adv_rx_desc)); 508 509 /* initialize head and tail */ 510 ring->tail = adapter->io_addr + IGC_RDT(reg_idx); 511 wr32(IGC_RDH(reg_idx), 0); 512 writel(0, ring->tail); 513 514 /* reset next-to- use/clean to place SW in sync with hardware */ 515 ring->next_to_clean = 0; 516 ring->next_to_use = 0; 517 518 /* set descriptor configuration */ 519 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; 520 if (ring_uses_large_buffer(ring)) 521 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT; 522 else 523 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT; 524 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; 525 526 wr32(IGC_SRRCTL(reg_idx), srrctl); 527 528 rxdctl |= IGC_RX_PTHRESH; 529 rxdctl |= IGC_RX_HTHRESH << 8; 530 rxdctl |= IGC_RX_WTHRESH << 16; 531 532 /* initialize rx_buffer_info */ 533 memset(ring->rx_buffer_info, 0, 534 sizeof(struct igc_rx_buffer) * ring->count); 535 536 /* initialize Rx descriptor 0 */ 537 rx_desc = IGC_RX_DESC(ring, 0); 538 rx_desc->wb.upper.length = 0; 539 540 /* enable receive descriptor fetching */ 541 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; 542 543 wr32(IGC_RXDCTL(reg_idx), rxdctl); 544 } 545 546 /** 547 * igc_configure_rx - Configure receive Unit after Reset 548 * @adapter: board private structure 549 * 550 * Configure the Rx unit of the MAC after a reset. 551 */ 552 static void igc_configure_rx(struct igc_adapter *adapter) 553 { 554 int i; 555 556 /* Setup the HW Rx Head and Tail Descriptor Pointers and 557 * the Base and Length of the Rx Descriptor Ring 558 */ 559 for (i = 0; i < adapter->num_rx_queues; i++) 560 igc_configure_rx_ring(adapter, adapter->rx_ring[i]); 561 } 562 563 /** 564 * igc_configure_tx_ring - Configure transmit ring after Reset 565 * @adapter: board private structure 566 * @ring: tx ring to configure 567 * 568 * Configure a transmit ring after a reset. 569 */ 570 static void igc_configure_tx_ring(struct igc_adapter *adapter, 571 struct igc_ring *ring) 572 { 573 struct igc_hw *hw = &adapter->hw; 574 int reg_idx = ring->reg_idx; 575 u64 tdba = ring->dma; 576 u32 txdctl = 0; 577 578 /* disable the queue */ 579 wr32(IGC_TXDCTL(reg_idx), 0); 580 wrfl(); 581 mdelay(10); 582 583 wr32(IGC_TDLEN(reg_idx), 584 ring->count * sizeof(union igc_adv_tx_desc)); 585 wr32(IGC_TDBAL(reg_idx), 586 tdba & 0x00000000ffffffffULL); 587 wr32(IGC_TDBAH(reg_idx), tdba >> 32); 588 589 ring->tail = adapter->io_addr + IGC_TDT(reg_idx); 590 wr32(IGC_TDH(reg_idx), 0); 591 writel(0, ring->tail); 592 593 txdctl |= IGC_TX_PTHRESH; 594 txdctl |= IGC_TX_HTHRESH << 8; 595 txdctl |= IGC_TX_WTHRESH << 16; 596 597 txdctl |= IGC_TXDCTL_QUEUE_ENABLE; 598 wr32(IGC_TXDCTL(reg_idx), txdctl); 599 } 600 601 /** 602 * igc_configure_tx - Configure transmit Unit after Reset 603 * @adapter: board private structure 604 * 605 * Configure the Tx unit of the MAC after a reset. 606 */ 607 static void igc_configure_tx(struct igc_adapter *adapter) 608 { 609 int i; 610 611 for (i = 0; i < adapter->num_tx_queues; i++) 612 igc_configure_tx_ring(adapter, adapter->tx_ring[i]); 613 } 614 615 /** 616 * igc_setup_mrqc - configure the multiple receive queue control registers 617 * @adapter: Board private structure 618 */ 619 static void igc_setup_mrqc(struct igc_adapter *adapter) 620 { 621 } 622 623 /** 624 * igc_setup_rctl - configure the receive control registers 625 * @adapter: Board private structure 626 */ 627 static void igc_setup_rctl(struct igc_adapter *adapter) 628 { 629 struct igc_hw *hw = &adapter->hw; 630 u32 rctl; 631 632 rctl = rd32(IGC_RCTL); 633 634 rctl &= ~(3 << IGC_RCTL_MO_SHIFT); 635 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); 636 637 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | 638 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); 639 640 /* enable stripping of CRC. Newer features require 641 * that the HW strips the CRC. 642 */ 643 rctl |= IGC_RCTL_SECRC; 644 645 /* disable store bad packets and clear size bits. */ 646 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); 647 648 /* enable LPE to allow for reception of jumbo frames */ 649 rctl |= IGC_RCTL_LPE; 650 651 /* disable queue 0 to prevent tail write w/o re-config */ 652 wr32(IGC_RXDCTL(0), 0); 653 654 /* This is useful for sniffing bad packets. */ 655 if (adapter->netdev->features & NETIF_F_RXALL) { 656 /* UPE and MPE will be handled by normal PROMISC logic 657 * in set_rx_mode 658 */ 659 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ 660 IGC_RCTL_BAM | /* RX All Bcast Pkts */ 661 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 662 663 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ 664 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ 665 } 666 667 wr32(IGC_RCTL, rctl); 668 } 669 670 /** 671 * igc_setup_tctl - configure the transmit control registers 672 * @adapter: Board private structure 673 */ 674 static void igc_setup_tctl(struct igc_adapter *adapter) 675 { 676 struct igc_hw *hw = &adapter->hw; 677 u32 tctl; 678 679 /* disable queue 0 which icould be enabled by default */ 680 wr32(IGC_TXDCTL(0), 0); 681 682 /* Program the Transmit Control Register */ 683 tctl = rd32(IGC_TCTL); 684 tctl &= ~IGC_TCTL_CT; 685 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | 686 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); 687 688 /* Enable transmits */ 689 tctl |= IGC_TCTL_EN; 690 691 wr32(IGC_TCTL, tctl); 692 } 693 694 /** 695 * igc_set_mac - Change the Ethernet Address of the NIC 696 * @netdev: network interface device structure 697 * @p: pointer to an address structure 698 * 699 * Returns 0 on success, negative on failure 700 */ 701 static int igc_set_mac(struct net_device *netdev, void *p) 702 { 703 struct igc_adapter *adapter = netdev_priv(netdev); 704 struct igc_hw *hw = &adapter->hw; 705 struct sockaddr *addr = p; 706 707 if (!is_valid_ether_addr(addr->sa_data)) 708 return -EADDRNOTAVAIL; 709 710 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 711 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 712 713 /* set the correct pool for the new PF MAC address in entry 0 */ 714 igc_set_default_mac_filter(adapter); 715 716 return 0; 717 } 718 719 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first) 720 { 721 } 722 723 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 724 { 725 struct net_device *netdev = tx_ring->netdev; 726 727 netif_stop_subqueue(netdev, tx_ring->queue_index); 728 729 /* memory barriier comment */ 730 smp_mb(); 731 732 /* We need to check again in a case another CPU has just 733 * made room available. 734 */ 735 if (igc_desc_unused(tx_ring) < size) 736 return -EBUSY; 737 738 /* A reprieve! */ 739 netif_wake_subqueue(netdev, tx_ring->queue_index); 740 741 u64_stats_update_begin(&tx_ring->tx_syncp2); 742 tx_ring->tx_stats.restart_queue2++; 743 u64_stats_update_end(&tx_ring->tx_syncp2); 744 745 return 0; 746 } 747 748 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) 749 { 750 if (igc_desc_unused(tx_ring) >= size) 751 return 0; 752 return __igc_maybe_stop_tx(tx_ring, size); 753 } 754 755 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 756 { 757 /* set type for advanced descriptor with frame checksum insertion */ 758 u32 cmd_type = IGC_ADVTXD_DTYP_DATA | 759 IGC_ADVTXD_DCMD_DEXT | 760 IGC_ADVTXD_DCMD_IFCS; 761 762 return cmd_type; 763 } 764 765 static void igc_tx_olinfo_status(struct igc_ring *tx_ring, 766 union igc_adv_tx_desc *tx_desc, 767 u32 tx_flags, unsigned int paylen) 768 { 769 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; 770 771 /* insert L4 checksum */ 772 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * 773 ((IGC_TXD_POPTS_TXSM << 8) / 774 IGC_TX_FLAGS_CSUM); 775 776 /* insert IPv4 checksum */ 777 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * 778 (((IGC_TXD_POPTS_IXSM << 8)) / 779 IGC_TX_FLAGS_IPV4); 780 781 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 782 } 783 784 static int igc_tx_map(struct igc_ring *tx_ring, 785 struct igc_tx_buffer *first, 786 const u8 hdr_len) 787 { 788 struct sk_buff *skb = first->skb; 789 struct igc_tx_buffer *tx_buffer; 790 union igc_adv_tx_desc *tx_desc; 791 u32 tx_flags = first->tx_flags; 792 struct skb_frag_struct *frag; 793 u16 i = tx_ring->next_to_use; 794 unsigned int data_len, size; 795 dma_addr_t dma; 796 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags); 797 798 tx_desc = IGC_TX_DESC(tx_ring, i); 799 800 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 801 802 size = skb_headlen(skb); 803 data_len = skb->data_len; 804 805 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 806 807 tx_buffer = first; 808 809 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 810 if (dma_mapping_error(tx_ring->dev, dma)) 811 goto dma_error; 812 813 /* record length, and DMA address */ 814 dma_unmap_len_set(tx_buffer, len, size); 815 dma_unmap_addr_set(tx_buffer, dma, dma); 816 817 tx_desc->read.buffer_addr = cpu_to_le64(dma); 818 819 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { 820 tx_desc->read.cmd_type_len = 821 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); 822 823 i++; 824 tx_desc++; 825 if (i == tx_ring->count) { 826 tx_desc = IGC_TX_DESC(tx_ring, 0); 827 i = 0; 828 } 829 tx_desc->read.olinfo_status = 0; 830 831 dma += IGC_MAX_DATA_PER_TXD; 832 size -= IGC_MAX_DATA_PER_TXD; 833 834 tx_desc->read.buffer_addr = cpu_to_le64(dma); 835 } 836 837 if (likely(!data_len)) 838 break; 839 840 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 841 842 i++; 843 tx_desc++; 844 if (i == tx_ring->count) { 845 tx_desc = IGC_TX_DESC(tx_ring, 0); 846 i = 0; 847 } 848 tx_desc->read.olinfo_status = 0; 849 850 size = skb_frag_size(frag); 851 data_len -= size; 852 853 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 854 size, DMA_TO_DEVICE); 855 856 tx_buffer = &tx_ring->tx_buffer_info[i]; 857 } 858 859 /* write last descriptor with RS and EOP bits */ 860 cmd_type |= size | IGC_TXD_DCMD; 861 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 862 863 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 864 865 /* set the timestamp */ 866 first->time_stamp = jiffies; 867 868 /* Force memory writes to complete before letting h/w know there 869 * are new descriptors to fetch. (Only applicable for weak-ordered 870 * memory model archs, such as IA-64). 871 * 872 * We also need this memory barrier to make certain all of the 873 * status bits have been updated before next_to_watch is written. 874 */ 875 wmb(); 876 877 /* set next_to_watch value indicating a packet is present */ 878 first->next_to_watch = tx_desc; 879 880 i++; 881 if (i == tx_ring->count) 882 i = 0; 883 884 tx_ring->next_to_use = i; 885 886 /* Make sure there is space in the ring for the next send. */ 887 igc_maybe_stop_tx(tx_ring, DESC_NEEDED); 888 889 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 890 writel(i, tx_ring->tail); 891 892 /* we need this if more than one processor can write to our tail 893 * at a time, it synchronizes IO on IA64/Altix systems 894 */ 895 mmiowb(); 896 } 897 898 return 0; 899 dma_error: 900 dev_err(tx_ring->dev, "TX DMA map failed\n"); 901 tx_buffer = &tx_ring->tx_buffer_info[i]; 902 903 /* clear dma mappings for failed tx_buffer_info map */ 904 while (tx_buffer != first) { 905 if (dma_unmap_len(tx_buffer, len)) 906 dma_unmap_page(tx_ring->dev, 907 dma_unmap_addr(tx_buffer, dma), 908 dma_unmap_len(tx_buffer, len), 909 DMA_TO_DEVICE); 910 dma_unmap_len_set(tx_buffer, len, 0); 911 912 if (i-- == 0) 913 i += tx_ring->count; 914 tx_buffer = &tx_ring->tx_buffer_info[i]; 915 } 916 917 if (dma_unmap_len(tx_buffer, len)) 918 dma_unmap_single(tx_ring->dev, 919 dma_unmap_addr(tx_buffer, dma), 920 dma_unmap_len(tx_buffer, len), 921 DMA_TO_DEVICE); 922 dma_unmap_len_set(tx_buffer, len, 0); 923 924 dev_kfree_skb_any(tx_buffer->skb); 925 tx_buffer->skb = NULL; 926 927 tx_ring->next_to_use = i; 928 929 return -1; 930 } 931 932 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, 933 struct igc_ring *tx_ring) 934 { 935 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 936 __be16 protocol = vlan_get_protocol(skb); 937 struct igc_tx_buffer *first; 938 u32 tx_flags = 0; 939 unsigned short f; 940 u8 hdr_len = 0; 941 942 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, 943 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, 944 * + 2 desc gap to keep tail from touching head, 945 * + 1 desc for context descriptor, 946 * otherwise try next time 947 */ 948 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 949 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 950 951 if (igc_maybe_stop_tx(tx_ring, count + 3)) { 952 /* this is a hard error */ 953 return NETDEV_TX_BUSY; 954 } 955 956 /* record the location of the first descriptor for this packet */ 957 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 958 first->skb = skb; 959 first->bytecount = skb->len; 960 first->gso_segs = 1; 961 962 skb_tx_timestamp(skb); 963 964 /* record initial flags and protocol */ 965 first->tx_flags = tx_flags; 966 first->protocol = protocol; 967 968 igc_tx_csum(tx_ring, first); 969 970 igc_tx_map(tx_ring, first, hdr_len); 971 972 return NETDEV_TX_OK; 973 } 974 975 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, 976 struct sk_buff *skb) 977 { 978 unsigned int r_idx = skb->queue_mapping; 979 980 if (r_idx >= adapter->num_tx_queues) 981 r_idx = r_idx % adapter->num_tx_queues; 982 983 return adapter->tx_ring[r_idx]; 984 } 985 986 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, 987 struct net_device *netdev) 988 { 989 struct igc_adapter *adapter = netdev_priv(netdev); 990 991 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 992 * in order to meet this minimum size requirement. 993 */ 994 if (skb->len < 17) { 995 if (skb_padto(skb, 17)) 996 return NETDEV_TX_OK; 997 skb->len = 17; 998 } 999 1000 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); 1001 } 1002 1003 static inline void igc_rx_hash(struct igc_ring *ring, 1004 union igc_adv_rx_desc *rx_desc, 1005 struct sk_buff *skb) 1006 { 1007 if (ring->netdev->features & NETIF_F_RXHASH) 1008 skb_set_hash(skb, 1009 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 1010 PKT_HASH_TYPE_L3); 1011 } 1012 1013 /** 1014 * igc_process_skb_fields - Populate skb header fields from Rx descriptor 1015 * @rx_ring: rx descriptor ring packet is being transacted on 1016 * @rx_desc: pointer to the EOP Rx descriptor 1017 * @skb: pointer to current skb being populated 1018 * 1019 * This function checks the ring, descriptor, and packet information in 1020 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 1021 * other fields within the skb. 1022 */ 1023 static void igc_process_skb_fields(struct igc_ring *rx_ring, 1024 union igc_adv_rx_desc *rx_desc, 1025 struct sk_buff *skb) 1026 { 1027 igc_rx_hash(rx_ring, rx_desc, skb); 1028 1029 skb_record_rx_queue(skb, rx_ring->queue_index); 1030 1031 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1032 } 1033 1034 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, 1035 const unsigned int size) 1036 { 1037 struct igc_rx_buffer *rx_buffer; 1038 1039 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 1040 prefetchw(rx_buffer->page); 1041 1042 /* we are reusing so sync this buffer for CPU use */ 1043 dma_sync_single_range_for_cpu(rx_ring->dev, 1044 rx_buffer->dma, 1045 rx_buffer->page_offset, 1046 size, 1047 DMA_FROM_DEVICE); 1048 1049 rx_buffer->pagecnt_bias--; 1050 1051 return rx_buffer; 1052 } 1053 1054 /** 1055 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff 1056 * @rx_ring: rx descriptor ring to transact packets on 1057 * @rx_buffer: buffer containing page to add 1058 * @skb: sk_buff to place the data into 1059 * @size: size of buffer to be added 1060 * 1061 * This function will add the data contained in rx_buffer->page to the skb. 1062 */ 1063 static void igc_add_rx_frag(struct igc_ring *rx_ring, 1064 struct igc_rx_buffer *rx_buffer, 1065 struct sk_buff *skb, 1066 unsigned int size) 1067 { 1068 #if (PAGE_SIZE < 8192) 1069 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1070 1071 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1072 rx_buffer->page_offset, size, truesize); 1073 rx_buffer->page_offset ^= truesize; 1074 #else 1075 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1076 SKB_DATA_ALIGN(IGC_SKB_PAD + size) : 1077 SKB_DATA_ALIGN(size); 1078 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1079 rx_buffer->page_offset, size, truesize); 1080 rx_buffer->page_offset += truesize; 1081 #endif 1082 } 1083 1084 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, 1085 struct igc_rx_buffer *rx_buffer, 1086 union igc_adv_rx_desc *rx_desc, 1087 unsigned int size) 1088 { 1089 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1090 #if (PAGE_SIZE < 8192) 1091 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1092 #else 1093 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1094 SKB_DATA_ALIGN(IGC_SKB_PAD + size); 1095 #endif 1096 struct sk_buff *skb; 1097 1098 /* prefetch first cache line of first page */ 1099 prefetch(va); 1100 #if L1_CACHE_BYTES < 128 1101 prefetch(va + L1_CACHE_BYTES); 1102 #endif 1103 1104 /* build an skb around the page buffer */ 1105 skb = build_skb(va - IGC_SKB_PAD, truesize); 1106 if (unlikely(!skb)) 1107 return NULL; 1108 1109 /* update pointers within the skb to store the data */ 1110 skb_reserve(skb, IGC_SKB_PAD); 1111 __skb_put(skb, size); 1112 1113 /* update buffer offset */ 1114 #if (PAGE_SIZE < 8192) 1115 rx_buffer->page_offset ^= truesize; 1116 #else 1117 rx_buffer->page_offset += truesize; 1118 #endif 1119 1120 return skb; 1121 } 1122 1123 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, 1124 struct igc_rx_buffer *rx_buffer, 1125 union igc_adv_rx_desc *rx_desc, 1126 unsigned int size) 1127 { 1128 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1129 #if (PAGE_SIZE < 8192) 1130 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2; 1131 #else 1132 unsigned int truesize = SKB_DATA_ALIGN(size); 1133 #endif 1134 unsigned int headlen; 1135 struct sk_buff *skb; 1136 1137 /* prefetch first cache line of first page */ 1138 prefetch(va); 1139 #if L1_CACHE_BYTES < 128 1140 prefetch(va + L1_CACHE_BYTES); 1141 #endif 1142 1143 /* allocate a skb to store the frags */ 1144 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN); 1145 if (unlikely(!skb)) 1146 return NULL; 1147 1148 /* Determine available headroom for copy */ 1149 headlen = size; 1150 if (headlen > IGC_RX_HDR_LEN) 1151 headlen = eth_get_headlen(va, IGC_RX_HDR_LEN); 1152 1153 /* align pull length to size of long to optimize memcpy performance */ 1154 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1155 1156 /* update all of the pointers */ 1157 size -= headlen; 1158 if (size) { 1159 skb_add_rx_frag(skb, 0, rx_buffer->page, 1160 (va + headlen) - page_address(rx_buffer->page), 1161 size, truesize); 1162 #if (PAGE_SIZE < 8192) 1163 rx_buffer->page_offset ^= truesize; 1164 #else 1165 rx_buffer->page_offset += truesize; 1166 #endif 1167 } else { 1168 rx_buffer->pagecnt_bias++; 1169 } 1170 1171 return skb; 1172 } 1173 1174 /** 1175 * igc_reuse_rx_page - page flip buffer and store it back on the ring 1176 * @rx_ring: rx descriptor ring to store buffers on 1177 * @old_buff: donor buffer to have page reused 1178 * 1179 * Synchronizes page for reuse by the adapter 1180 */ 1181 static void igc_reuse_rx_page(struct igc_ring *rx_ring, 1182 struct igc_rx_buffer *old_buff) 1183 { 1184 u16 nta = rx_ring->next_to_alloc; 1185 struct igc_rx_buffer *new_buff; 1186 1187 new_buff = &rx_ring->rx_buffer_info[nta]; 1188 1189 /* update, and store next to alloc */ 1190 nta++; 1191 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1192 1193 /* Transfer page from old buffer to new buffer. 1194 * Move each member individually to avoid possible store 1195 * forwarding stalls. 1196 */ 1197 new_buff->dma = old_buff->dma; 1198 new_buff->page = old_buff->page; 1199 new_buff->page_offset = old_buff->page_offset; 1200 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1201 } 1202 1203 static inline bool igc_page_is_reserved(struct page *page) 1204 { 1205 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 1206 } 1207 1208 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer) 1209 { 1210 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1211 struct page *page = rx_buffer->page; 1212 1213 /* avoid re-using remote pages */ 1214 if (unlikely(igc_page_is_reserved(page))) 1215 return false; 1216 1217 #if (PAGE_SIZE < 8192) 1218 /* if we are only owner of page we can reuse it */ 1219 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 1220 return false; 1221 #else 1222 #define IGC_LAST_OFFSET \ 1223 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) 1224 1225 if (rx_buffer->page_offset > IGC_LAST_OFFSET) 1226 return false; 1227 #endif 1228 1229 /* If we have drained the page fragment pool we need to update 1230 * the pagecnt_bias and page count so that we fully restock the 1231 * number of references the driver holds. 1232 */ 1233 if (unlikely(!pagecnt_bias)) { 1234 page_ref_add(page, USHRT_MAX); 1235 rx_buffer->pagecnt_bias = USHRT_MAX; 1236 } 1237 1238 return true; 1239 } 1240 1241 /** 1242 * igc_is_non_eop - process handling of non-EOP buffers 1243 * @rx_ring: Rx ring being processed 1244 * @rx_desc: Rx descriptor for current buffer 1245 * @skb: current socket buffer containing buffer in progress 1246 * 1247 * This function updates next to clean. If the buffer is an EOP buffer 1248 * this function exits returning false, otherwise it will place the 1249 * sk_buff in the next buffer to be chained and return true indicating 1250 * that this is in fact a non-EOP buffer. 1251 */ 1252 static bool igc_is_non_eop(struct igc_ring *rx_ring, 1253 union igc_adv_rx_desc *rx_desc) 1254 { 1255 u32 ntc = rx_ring->next_to_clean + 1; 1256 1257 /* fetch, update, and store next to clean */ 1258 ntc = (ntc < rx_ring->count) ? ntc : 0; 1259 rx_ring->next_to_clean = ntc; 1260 1261 prefetch(IGC_RX_DESC(rx_ring, ntc)); 1262 1263 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) 1264 return false; 1265 1266 return true; 1267 } 1268 1269 /** 1270 * igc_cleanup_headers - Correct corrupted or empty headers 1271 * @rx_ring: rx descriptor ring packet is being transacted on 1272 * @rx_desc: pointer to the EOP Rx descriptor 1273 * @skb: pointer to current skb being fixed 1274 * 1275 * Address the case where we are pulling data in on pages only 1276 * and as such no data is present in the skb header. 1277 * 1278 * In addition if skb is not at least 60 bytes we need to pad it so that 1279 * it is large enough to qualify as a valid Ethernet frame. 1280 * 1281 * Returns true if an error was encountered and skb was freed. 1282 */ 1283 static bool igc_cleanup_headers(struct igc_ring *rx_ring, 1284 union igc_adv_rx_desc *rx_desc, 1285 struct sk_buff *skb) 1286 { 1287 if (unlikely((igc_test_staterr(rx_desc, 1288 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) { 1289 struct net_device *netdev = rx_ring->netdev; 1290 1291 if (!(netdev->features & NETIF_F_RXALL)) { 1292 dev_kfree_skb_any(skb); 1293 return true; 1294 } 1295 } 1296 1297 /* if eth_skb_pad returns an error the skb was freed */ 1298 if (eth_skb_pad(skb)) 1299 return true; 1300 1301 return false; 1302 } 1303 1304 static void igc_put_rx_buffer(struct igc_ring *rx_ring, 1305 struct igc_rx_buffer *rx_buffer) 1306 { 1307 if (igc_can_reuse_rx_page(rx_buffer)) { 1308 /* hand second half of page back to the ring */ 1309 igc_reuse_rx_page(rx_ring, rx_buffer); 1310 } else { 1311 /* We are not reusing the buffer so unmap it and free 1312 * any references we are holding to it 1313 */ 1314 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1315 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 1316 IGC_RX_DMA_ATTR); 1317 __page_frag_cache_drain(rx_buffer->page, 1318 rx_buffer->pagecnt_bias); 1319 } 1320 1321 /* clear contents of rx_buffer */ 1322 rx_buffer->page = NULL; 1323 } 1324 1325 /** 1326 * igc_alloc_rx_buffers - Replace used receive buffers; packet split 1327 * @adapter: address of board private structure 1328 */ 1329 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) 1330 { 1331 union igc_adv_rx_desc *rx_desc; 1332 u16 i = rx_ring->next_to_use; 1333 struct igc_rx_buffer *bi; 1334 u16 bufsz; 1335 1336 /* nothing to do */ 1337 if (!cleaned_count) 1338 return; 1339 1340 rx_desc = IGC_RX_DESC(rx_ring, i); 1341 bi = &rx_ring->rx_buffer_info[i]; 1342 i -= rx_ring->count; 1343 1344 bufsz = igc_rx_bufsz(rx_ring); 1345 1346 do { 1347 if (!igc_alloc_mapped_page(rx_ring, bi)) 1348 break; 1349 1350 /* sync the buffer for use by the device */ 1351 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1352 bi->page_offset, bufsz, 1353 DMA_FROM_DEVICE); 1354 1355 /* Refresh the desc even if buffer_addrs didn't change 1356 * because each write-back erases this info. 1357 */ 1358 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1359 1360 rx_desc++; 1361 bi++; 1362 i++; 1363 if (unlikely(!i)) { 1364 rx_desc = IGC_RX_DESC(rx_ring, 0); 1365 bi = rx_ring->rx_buffer_info; 1366 i -= rx_ring->count; 1367 } 1368 1369 /* clear the length for the next_to_use descriptor */ 1370 rx_desc->wb.upper.length = 0; 1371 1372 cleaned_count--; 1373 } while (cleaned_count); 1374 1375 i += rx_ring->count; 1376 1377 if (rx_ring->next_to_use != i) { 1378 /* record the next descriptor to use */ 1379 rx_ring->next_to_use = i; 1380 1381 /* update next to alloc since we have filled the ring */ 1382 rx_ring->next_to_alloc = i; 1383 1384 /* Force memory writes to complete before letting h/w 1385 * know there are new descriptors to fetch. (Only 1386 * applicable for weak-ordered memory model archs, 1387 * such as IA-64). 1388 */ 1389 wmb(); 1390 writel(i, rx_ring->tail); 1391 } 1392 } 1393 1394 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) 1395 { 1396 unsigned int total_bytes = 0, total_packets = 0; 1397 struct igc_ring *rx_ring = q_vector->rx.ring; 1398 struct sk_buff *skb = rx_ring->skb; 1399 u16 cleaned_count = igc_desc_unused(rx_ring); 1400 1401 while (likely(total_packets < budget)) { 1402 union igc_adv_rx_desc *rx_desc; 1403 struct igc_rx_buffer *rx_buffer; 1404 unsigned int size; 1405 1406 /* return some buffers to hardware, one at a time is too slow */ 1407 if (cleaned_count >= IGC_RX_BUFFER_WRITE) { 1408 igc_alloc_rx_buffers(rx_ring, cleaned_count); 1409 cleaned_count = 0; 1410 } 1411 1412 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); 1413 size = le16_to_cpu(rx_desc->wb.upper.length); 1414 if (!size) 1415 break; 1416 1417 /* This memory barrier is needed to keep us from reading 1418 * any other fields out of the rx_desc until we know the 1419 * descriptor has been written back 1420 */ 1421 dma_rmb(); 1422 1423 rx_buffer = igc_get_rx_buffer(rx_ring, size); 1424 1425 /* retrieve a buffer from the ring */ 1426 if (skb) 1427 igc_add_rx_frag(rx_ring, rx_buffer, skb, size); 1428 else if (ring_uses_build_skb(rx_ring)) 1429 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size); 1430 else 1431 skb = igc_construct_skb(rx_ring, rx_buffer, 1432 rx_desc, size); 1433 1434 /* exit if we failed to retrieve a buffer */ 1435 if (!skb) { 1436 rx_ring->rx_stats.alloc_failed++; 1437 rx_buffer->pagecnt_bias++; 1438 break; 1439 } 1440 1441 igc_put_rx_buffer(rx_ring, rx_buffer); 1442 cleaned_count++; 1443 1444 /* fetch next buffer in frame if non-eop */ 1445 if (igc_is_non_eop(rx_ring, rx_desc)) 1446 continue; 1447 1448 /* verify the packet layout is correct */ 1449 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { 1450 skb = NULL; 1451 continue; 1452 } 1453 1454 /* probably a little skewed due to removing CRC */ 1455 total_bytes += skb->len; 1456 1457 /* populate checksum, timestamp, VLAN, and protocol */ 1458 igc_process_skb_fields(rx_ring, rx_desc, skb); 1459 1460 napi_gro_receive(&q_vector->napi, skb); 1461 1462 /* reset skb pointer */ 1463 skb = NULL; 1464 1465 /* update budget accounting */ 1466 total_packets++; 1467 } 1468 1469 /* place incomplete frames back on ring for completion */ 1470 rx_ring->skb = skb; 1471 1472 u64_stats_update_begin(&rx_ring->rx_syncp); 1473 rx_ring->rx_stats.packets += total_packets; 1474 rx_ring->rx_stats.bytes += total_bytes; 1475 u64_stats_update_end(&rx_ring->rx_syncp); 1476 q_vector->rx.total_packets += total_packets; 1477 q_vector->rx.total_bytes += total_bytes; 1478 1479 if (cleaned_count) 1480 igc_alloc_rx_buffers(rx_ring, cleaned_count); 1481 1482 return total_packets; 1483 } 1484 1485 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) 1486 { 1487 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0; 1488 } 1489 1490 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, 1491 struct igc_rx_buffer *bi) 1492 { 1493 struct page *page = bi->page; 1494 dma_addr_t dma; 1495 1496 /* since we are recycling buffers we should seldom need to alloc */ 1497 if (likely(page)) 1498 return true; 1499 1500 /* alloc new page for storage */ 1501 page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); 1502 if (unlikely(!page)) { 1503 rx_ring->rx_stats.alloc_failed++; 1504 return false; 1505 } 1506 1507 /* map page for use */ 1508 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1509 igc_rx_pg_size(rx_ring), 1510 DMA_FROM_DEVICE, 1511 IGC_RX_DMA_ATTR); 1512 1513 /* if mapping failed free memory back to system since 1514 * there isn't much point in holding memory we can't use 1515 */ 1516 if (dma_mapping_error(rx_ring->dev, dma)) { 1517 __free_page(page); 1518 1519 rx_ring->rx_stats.alloc_failed++; 1520 return false; 1521 } 1522 1523 bi->dma = dma; 1524 bi->page = page; 1525 bi->page_offset = igc_rx_offset(rx_ring); 1526 bi->pagecnt_bias = 1; 1527 1528 return true; 1529 } 1530 1531 /** 1532 * igc_clean_tx_irq - Reclaim resources after transmit completes 1533 * @q_vector: pointer to q_vector containing needed info 1534 * @napi_budget: Used to determine if we are in netpoll 1535 * 1536 * returns true if ring is completely cleaned 1537 */ 1538 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) 1539 { 1540 struct igc_adapter *adapter = q_vector->adapter; 1541 unsigned int total_bytes = 0, total_packets = 0; 1542 unsigned int budget = q_vector->tx.work_limit; 1543 struct igc_ring *tx_ring = q_vector->tx.ring; 1544 unsigned int i = tx_ring->next_to_clean; 1545 struct igc_tx_buffer *tx_buffer; 1546 union igc_adv_tx_desc *tx_desc; 1547 1548 if (test_bit(__IGC_DOWN, &adapter->state)) 1549 return true; 1550 1551 tx_buffer = &tx_ring->tx_buffer_info[i]; 1552 tx_desc = IGC_TX_DESC(tx_ring, i); 1553 i -= tx_ring->count; 1554 1555 do { 1556 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 1557 1558 /* if next_to_watch is not set then there is no work pending */ 1559 if (!eop_desc) 1560 break; 1561 1562 /* prevent any other reads prior to eop_desc */ 1563 smp_rmb(); 1564 1565 /* if DD is not set pending work has not been completed */ 1566 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) 1567 break; 1568 1569 /* clear next_to_watch to prevent false hangs */ 1570 tx_buffer->next_to_watch = NULL; 1571 1572 /* update the statistics for this packet */ 1573 total_bytes += tx_buffer->bytecount; 1574 total_packets += tx_buffer->gso_segs; 1575 1576 /* free the skb */ 1577 napi_consume_skb(tx_buffer->skb, napi_budget); 1578 1579 /* unmap skb header data */ 1580 dma_unmap_single(tx_ring->dev, 1581 dma_unmap_addr(tx_buffer, dma), 1582 dma_unmap_len(tx_buffer, len), 1583 DMA_TO_DEVICE); 1584 1585 /* clear tx_buffer data */ 1586 dma_unmap_len_set(tx_buffer, len, 0); 1587 1588 /* clear last DMA location and unmap remaining buffers */ 1589 while (tx_desc != eop_desc) { 1590 tx_buffer++; 1591 tx_desc++; 1592 i++; 1593 if (unlikely(!i)) { 1594 i -= tx_ring->count; 1595 tx_buffer = tx_ring->tx_buffer_info; 1596 tx_desc = IGC_TX_DESC(tx_ring, 0); 1597 } 1598 1599 /* unmap any remaining paged data */ 1600 if (dma_unmap_len(tx_buffer, len)) { 1601 dma_unmap_page(tx_ring->dev, 1602 dma_unmap_addr(tx_buffer, dma), 1603 dma_unmap_len(tx_buffer, len), 1604 DMA_TO_DEVICE); 1605 dma_unmap_len_set(tx_buffer, len, 0); 1606 } 1607 } 1608 1609 /* move us one more past the eop_desc for start of next pkt */ 1610 tx_buffer++; 1611 tx_desc++; 1612 i++; 1613 if (unlikely(!i)) { 1614 i -= tx_ring->count; 1615 tx_buffer = tx_ring->tx_buffer_info; 1616 tx_desc = IGC_TX_DESC(tx_ring, 0); 1617 } 1618 1619 /* issue prefetch for next Tx descriptor */ 1620 prefetch(tx_desc); 1621 1622 /* update budget accounting */ 1623 budget--; 1624 } while (likely(budget)); 1625 1626 netdev_tx_completed_queue(txring_txq(tx_ring), 1627 total_packets, total_bytes); 1628 1629 i += tx_ring->count; 1630 tx_ring->next_to_clean = i; 1631 u64_stats_update_begin(&tx_ring->tx_syncp); 1632 tx_ring->tx_stats.bytes += total_bytes; 1633 tx_ring->tx_stats.packets += total_packets; 1634 u64_stats_update_end(&tx_ring->tx_syncp); 1635 q_vector->tx.total_bytes += total_bytes; 1636 q_vector->tx.total_packets += total_packets; 1637 1638 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 1639 struct igc_hw *hw = &adapter->hw; 1640 1641 /* Detect a transmit hang in hardware, this serializes the 1642 * check with the clearing of time_stamp and movement of i 1643 */ 1644 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 1645 if (tx_buffer->next_to_watch && 1646 time_after(jiffies, tx_buffer->time_stamp + 1647 (adapter->tx_timeout_factor * HZ)) && 1648 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) { 1649 /* detected Tx unit hang */ 1650 dev_err(tx_ring->dev, 1651 "Detected Tx Unit Hang\n" 1652 " Tx Queue <%d>\n" 1653 " TDH <%x>\n" 1654 " TDT <%x>\n" 1655 " next_to_use <%x>\n" 1656 " next_to_clean <%x>\n" 1657 "buffer_info[next_to_clean]\n" 1658 " time_stamp <%lx>\n" 1659 " next_to_watch <%p>\n" 1660 " jiffies <%lx>\n" 1661 " desc.status <%x>\n", 1662 tx_ring->queue_index, 1663 rd32(IGC_TDH(tx_ring->reg_idx)), 1664 readl(tx_ring->tail), 1665 tx_ring->next_to_use, 1666 tx_ring->next_to_clean, 1667 tx_buffer->time_stamp, 1668 tx_buffer->next_to_watch, 1669 jiffies, 1670 tx_buffer->next_to_watch->wb.status); 1671 netif_stop_subqueue(tx_ring->netdev, 1672 tx_ring->queue_index); 1673 1674 /* we are about to reset, no point in enabling stuff */ 1675 return true; 1676 } 1677 } 1678 1679 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 1680 if (unlikely(total_packets && 1681 netif_carrier_ok(tx_ring->netdev) && 1682 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 1683 /* Make sure that anybody stopping the queue after this 1684 * sees the new next_to_clean. 1685 */ 1686 smp_mb(); 1687 if (__netif_subqueue_stopped(tx_ring->netdev, 1688 tx_ring->queue_index) && 1689 !(test_bit(__IGC_DOWN, &adapter->state))) { 1690 netif_wake_subqueue(tx_ring->netdev, 1691 tx_ring->queue_index); 1692 1693 u64_stats_update_begin(&tx_ring->tx_syncp); 1694 tx_ring->tx_stats.restart_queue++; 1695 u64_stats_update_end(&tx_ring->tx_syncp); 1696 } 1697 } 1698 1699 return !!budget; 1700 } 1701 1702 /** 1703 * igc_ioctl - I/O control method 1704 * @netdev: network interface device structure 1705 * @ifreq: frequency 1706 * @cmd: command 1707 */ 1708 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1709 { 1710 switch (cmd) { 1711 default: 1712 return -EOPNOTSUPP; 1713 } 1714 } 1715 1716 /** 1717 * igc_up - Open the interface and prepare it to handle traffic 1718 * @adapter: board private structure 1719 */ 1720 static void igc_up(struct igc_adapter *adapter) 1721 { 1722 struct igc_hw *hw = &adapter->hw; 1723 int i = 0; 1724 1725 /* hardware has been reset, we need to reload some things */ 1726 igc_configure(adapter); 1727 1728 clear_bit(__IGC_DOWN, &adapter->state); 1729 1730 for (i = 0; i < adapter->num_q_vectors; i++) 1731 napi_enable(&adapter->q_vector[i]->napi); 1732 1733 if (adapter->msix_entries) 1734 igc_configure_msix(adapter); 1735 else 1736 igc_assign_vector(adapter->q_vector[0], 0); 1737 1738 /* Clear any pending interrupts. */ 1739 rd32(IGC_ICR); 1740 igc_irq_enable(adapter); 1741 1742 netif_tx_start_all_queues(adapter->netdev); 1743 1744 /* start the watchdog. */ 1745 hw->mac.get_link_status = 1; 1746 schedule_work(&adapter->watchdog_task); 1747 } 1748 1749 /** 1750 * igc_update_stats - Update the board statistics counters 1751 * @adapter: board private structure 1752 */ 1753 static void igc_update_stats(struct igc_adapter *adapter) 1754 { 1755 } 1756 1757 static void igc_nfc_filter_exit(struct igc_adapter *adapter) 1758 { 1759 } 1760 1761 /** 1762 * igc_down - Close the interface 1763 * @adapter: board private structure 1764 */ 1765 static void igc_down(struct igc_adapter *adapter) 1766 { 1767 struct net_device *netdev = adapter->netdev; 1768 struct igc_hw *hw = &adapter->hw; 1769 u32 tctl, rctl; 1770 int i = 0; 1771 1772 set_bit(__IGC_DOWN, &adapter->state); 1773 1774 /* disable receives in the hardware */ 1775 rctl = rd32(IGC_RCTL); 1776 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); 1777 /* flush and sleep below */ 1778 1779 igc_nfc_filter_exit(adapter); 1780 1781 /* set trans_start so we don't get spurious watchdogs during reset */ 1782 netif_trans_update(netdev); 1783 1784 netif_carrier_off(netdev); 1785 netif_tx_stop_all_queues(netdev); 1786 1787 /* disable transmits in the hardware */ 1788 tctl = rd32(IGC_TCTL); 1789 tctl &= ~IGC_TCTL_EN; 1790 wr32(IGC_TCTL, tctl); 1791 /* flush both disables and wait for them to finish */ 1792 wrfl(); 1793 usleep_range(10000, 20000); 1794 1795 igc_irq_disable(adapter); 1796 1797 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 1798 1799 for (i = 0; i < adapter->num_q_vectors; i++) { 1800 if (adapter->q_vector[i]) { 1801 napi_synchronize(&adapter->q_vector[i]->napi); 1802 napi_disable(&adapter->q_vector[i]->napi); 1803 } 1804 } 1805 1806 del_timer_sync(&adapter->watchdog_timer); 1807 del_timer_sync(&adapter->phy_info_timer); 1808 1809 /* record the stats before reset*/ 1810 spin_lock(&adapter->stats64_lock); 1811 igc_update_stats(adapter); 1812 spin_unlock(&adapter->stats64_lock); 1813 1814 adapter->link_speed = 0; 1815 adapter->link_duplex = 0; 1816 1817 if (!pci_channel_offline(adapter->pdev)) 1818 igc_reset(adapter); 1819 1820 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 1821 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; 1822 1823 igc_clean_all_tx_rings(adapter); 1824 igc_clean_all_rx_rings(adapter); 1825 } 1826 1827 static void igc_reinit_locked(struct igc_adapter *adapter) 1828 { 1829 WARN_ON(in_interrupt()); 1830 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 1831 usleep_range(1000, 2000); 1832 igc_down(adapter); 1833 igc_up(adapter); 1834 clear_bit(__IGC_RESETTING, &adapter->state); 1835 } 1836 1837 static void igc_reset_task(struct work_struct *work) 1838 { 1839 struct igc_adapter *adapter; 1840 1841 adapter = container_of(work, struct igc_adapter, reset_task); 1842 1843 netdev_err(adapter->netdev, "Reset adapter\n"); 1844 igc_reinit_locked(adapter); 1845 } 1846 1847 /** 1848 * igc_change_mtu - Change the Maximum Transfer Unit 1849 * @netdev: network interface device structure 1850 * @new_mtu: new value for maximum frame size 1851 * 1852 * Returns 0 on success, negative on failure 1853 */ 1854 static int igc_change_mtu(struct net_device *netdev, int new_mtu) 1855 { 1856 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1857 struct igc_adapter *adapter = netdev_priv(netdev); 1858 struct pci_dev *pdev = adapter->pdev; 1859 1860 /* adjust max frame to be at least the size of a standard frame */ 1861 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 1862 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 1863 1864 while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) 1865 usleep_range(1000, 2000); 1866 1867 /* igc_down has a dependency on max_frame_size */ 1868 adapter->max_frame_size = max_frame; 1869 1870 if (netif_running(netdev)) 1871 igc_down(adapter); 1872 1873 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 1874 netdev->mtu, new_mtu); 1875 netdev->mtu = new_mtu; 1876 1877 if (netif_running(netdev)) 1878 igc_up(adapter); 1879 else 1880 igc_reset(adapter); 1881 1882 clear_bit(__IGC_RESETTING, &adapter->state); 1883 1884 return 0; 1885 } 1886 1887 /** 1888 * igc_get_stats - Get System Network Statistics 1889 * @netdev: network interface device structure 1890 * 1891 * Returns the address of the device statistics structure. 1892 * The statistics are updated here and also from the timer callback. 1893 */ 1894 static struct net_device_stats *igc_get_stats(struct net_device *netdev) 1895 { 1896 struct igc_adapter *adapter = netdev_priv(netdev); 1897 1898 if (!test_bit(__IGC_RESETTING, &adapter->state)) 1899 igc_update_stats(adapter); 1900 1901 /* only return the current stats */ 1902 return &netdev->stats; 1903 } 1904 1905 /** 1906 * igc_configure - configure the hardware for RX and TX 1907 * @adapter: private board structure 1908 */ 1909 static void igc_configure(struct igc_adapter *adapter) 1910 { 1911 struct net_device *netdev = adapter->netdev; 1912 int i = 0; 1913 1914 igc_get_hw_control(adapter); 1915 igc_set_rx_mode(netdev); 1916 1917 igc_setup_tctl(adapter); 1918 igc_setup_mrqc(adapter); 1919 igc_setup_rctl(adapter); 1920 1921 igc_configure_tx(adapter); 1922 igc_configure_rx(adapter); 1923 1924 igc_rx_fifo_flush_base(&adapter->hw); 1925 1926 /* call igc_desc_unused which always leaves 1927 * at least 1 descriptor unused to make sure 1928 * next_to_use != next_to_clean 1929 */ 1930 for (i = 0; i < adapter->num_rx_queues; i++) { 1931 struct igc_ring *ring = adapter->rx_ring[i]; 1932 1933 igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); 1934 } 1935 } 1936 1937 /** 1938 * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table 1939 * @adapter: Pointer to adapter structure 1940 * @index: Index of the RAR entry which need to be synced with MAC table 1941 */ 1942 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index) 1943 { 1944 u8 *addr = adapter->mac_table[index].addr; 1945 struct igc_hw *hw = &adapter->hw; 1946 u32 rar_low, rar_high; 1947 1948 /* HW expects these to be in network order when they are plugged 1949 * into the registers which are little endian. In order to guarantee 1950 * that ordering we need to do an leXX_to_cpup here in order to be 1951 * ready for the byteswap that occurs with writel 1952 */ 1953 rar_low = le32_to_cpup((__le32 *)(addr)); 1954 rar_high = le16_to_cpup((__le16 *)(addr + 4)); 1955 1956 /* Indicate to hardware the Address is Valid. */ 1957 if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) { 1958 if (is_valid_ether_addr(addr)) 1959 rar_high |= IGC_RAH_AV; 1960 1961 rar_high |= IGC_RAH_POOL_1 << 1962 adapter->mac_table[index].queue; 1963 } 1964 1965 wr32(IGC_RAL(index), rar_low); 1966 wrfl(); 1967 wr32(IGC_RAH(index), rar_high); 1968 wrfl(); 1969 } 1970 1971 /* Set default MAC address for the PF in the first RAR entry */ 1972 static void igc_set_default_mac_filter(struct igc_adapter *adapter) 1973 { 1974 struct igc_mac_addr *mac_table = &adapter->mac_table[0]; 1975 1976 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr); 1977 mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE; 1978 1979 igc_rar_set_index(adapter, 0); 1980 } 1981 1982 /** 1983 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 1984 * @netdev: network interface device structure 1985 * 1986 * The set_rx_mode entry point is called whenever the unicast or multicast 1987 * address lists or the network interface flags are updated. This routine is 1988 * responsible for configuring the hardware for proper unicast, multicast, 1989 * promiscuous mode, and all-multi behavior. 1990 */ 1991 static void igc_set_rx_mode(struct net_device *netdev) 1992 { 1993 } 1994 1995 /** 1996 * igc_msix_other - msix other interrupt handler 1997 * @irq: interrupt number 1998 * @data: pointer to a q_vector 1999 */ 2000 static irqreturn_t igc_msix_other(int irq, void *data) 2001 { 2002 struct igc_adapter *adapter = data; 2003 struct igc_hw *hw = &adapter->hw; 2004 u32 icr = rd32(IGC_ICR); 2005 2006 /* reading ICR causes bit 31 of EICR to be cleared */ 2007 if (icr & IGC_ICR_DRSTA) 2008 schedule_work(&adapter->reset_task); 2009 2010 if (icr & IGC_ICR_DOUTSYNC) { 2011 /* HW is reporting DMA is out of sync */ 2012 adapter->stats.doosync++; 2013 } 2014 2015 if (icr & IGC_ICR_LSC) { 2016 hw->mac.get_link_status = 1; 2017 /* guard against interrupt when we're going down */ 2018 if (!test_bit(__IGC_DOWN, &adapter->state)) 2019 mod_timer(&adapter->watchdog_timer, jiffies + 1); 2020 } 2021 2022 wr32(IGC_EIMS, adapter->eims_other); 2023 2024 return IRQ_HANDLED; 2025 } 2026 2027 /** 2028 * igc_write_ivar - configure ivar for given MSI-X vector 2029 * @hw: pointer to the HW structure 2030 * @msix_vector: vector number we are allocating to a given ring 2031 * @index: row index of IVAR register to write within IVAR table 2032 * @offset: column offset of in IVAR, should be multiple of 8 2033 * 2034 * The IVAR table consists of 2 columns, 2035 * each containing an cause allocation for an Rx and Tx ring, and a 2036 * variable number of rows depending on the number of queues supported. 2037 */ 2038 static void igc_write_ivar(struct igc_hw *hw, int msix_vector, 2039 int index, int offset) 2040 { 2041 u32 ivar = array_rd32(IGC_IVAR0, index); 2042 2043 /* clear any bits that are currently set */ 2044 ivar &= ~((u32)0xFF << offset); 2045 2046 /* write vector and valid bit */ 2047 ivar |= (msix_vector | IGC_IVAR_VALID) << offset; 2048 2049 array_wr32(IGC_IVAR0, index, ivar); 2050 } 2051 2052 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) 2053 { 2054 struct igc_adapter *adapter = q_vector->adapter; 2055 struct igc_hw *hw = &adapter->hw; 2056 int rx_queue = IGC_N0_QUEUE; 2057 int tx_queue = IGC_N0_QUEUE; 2058 2059 if (q_vector->rx.ring) 2060 rx_queue = q_vector->rx.ring->reg_idx; 2061 if (q_vector->tx.ring) 2062 tx_queue = q_vector->tx.ring->reg_idx; 2063 2064 switch (hw->mac.type) { 2065 case igc_i225: 2066 if (rx_queue > IGC_N0_QUEUE) 2067 igc_write_ivar(hw, msix_vector, 2068 rx_queue >> 1, 2069 (rx_queue & 0x1) << 4); 2070 if (tx_queue > IGC_N0_QUEUE) 2071 igc_write_ivar(hw, msix_vector, 2072 tx_queue >> 1, 2073 ((tx_queue & 0x1) << 4) + 8); 2074 q_vector->eims_value = BIT(msix_vector); 2075 break; 2076 default: 2077 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); 2078 break; 2079 } 2080 2081 /* add q_vector eims value to global eims_enable_mask */ 2082 adapter->eims_enable_mask |= q_vector->eims_value; 2083 2084 /* configure q_vector to set itr on first interrupt */ 2085 q_vector->set_itr = 1; 2086 } 2087 2088 /** 2089 * igc_configure_msix - Configure MSI-X hardware 2090 * @adapter: Pointer to adapter structure 2091 * 2092 * igc_configure_msix sets up the hardware to properly 2093 * generate MSI-X interrupts. 2094 */ 2095 static void igc_configure_msix(struct igc_adapter *adapter) 2096 { 2097 struct igc_hw *hw = &adapter->hw; 2098 int i, vector = 0; 2099 u32 tmp; 2100 2101 adapter->eims_enable_mask = 0; 2102 2103 /* set vector for other causes, i.e. link changes */ 2104 switch (hw->mac.type) { 2105 case igc_i225: 2106 /* Turn on MSI-X capability first, or our settings 2107 * won't stick. And it will take days to debug. 2108 */ 2109 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | 2110 IGC_GPIE_PBA | IGC_GPIE_EIAME | 2111 IGC_GPIE_NSICR); 2112 2113 /* enable msix_other interrupt */ 2114 adapter->eims_other = BIT(vector); 2115 tmp = (vector++ | IGC_IVAR_VALID) << 8; 2116 2117 wr32(IGC_IVAR_MISC, tmp); 2118 break; 2119 default: 2120 /* do nothing, since nothing else supports MSI-X */ 2121 break; 2122 } /* switch (hw->mac.type) */ 2123 2124 adapter->eims_enable_mask |= adapter->eims_other; 2125 2126 for (i = 0; i < adapter->num_q_vectors; i++) 2127 igc_assign_vector(adapter->q_vector[i], vector++); 2128 2129 wrfl(); 2130 } 2131 2132 static irqreturn_t igc_msix_ring(int irq, void *data) 2133 { 2134 struct igc_q_vector *q_vector = data; 2135 2136 /* Write the ITR value calculated from the previous interrupt. */ 2137 igc_write_itr(q_vector); 2138 2139 napi_schedule(&q_vector->napi); 2140 2141 return IRQ_HANDLED; 2142 } 2143 2144 /** 2145 * igc_request_msix - Initialize MSI-X interrupts 2146 * @adapter: Pointer to adapter structure 2147 * 2148 * igc_request_msix allocates MSI-X vectors and requests interrupts from the 2149 * kernel. 2150 */ 2151 static int igc_request_msix(struct igc_adapter *adapter) 2152 { 2153 int i = 0, err = 0, vector = 0, free_vector = 0; 2154 struct net_device *netdev = adapter->netdev; 2155 2156 err = request_irq(adapter->msix_entries[vector].vector, 2157 &igc_msix_other, 0, netdev->name, adapter); 2158 if (err) 2159 goto err_out; 2160 2161 for (i = 0; i < adapter->num_q_vectors; i++) { 2162 struct igc_q_vector *q_vector = adapter->q_vector[i]; 2163 2164 vector++; 2165 2166 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); 2167 2168 if (q_vector->rx.ring && q_vector->tx.ring) 2169 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 2170 q_vector->rx.ring->queue_index); 2171 else if (q_vector->tx.ring) 2172 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 2173 q_vector->tx.ring->queue_index); 2174 else if (q_vector->rx.ring) 2175 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 2176 q_vector->rx.ring->queue_index); 2177 else 2178 sprintf(q_vector->name, "%s-unused", netdev->name); 2179 2180 err = request_irq(adapter->msix_entries[vector].vector, 2181 igc_msix_ring, 0, q_vector->name, 2182 q_vector); 2183 if (err) 2184 goto err_free; 2185 } 2186 2187 igc_configure_msix(adapter); 2188 return 0; 2189 2190 err_free: 2191 /* free already assigned IRQs */ 2192 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 2193 2194 vector--; 2195 for (i = 0; i < vector; i++) { 2196 free_irq(adapter->msix_entries[free_vector++].vector, 2197 adapter->q_vector[i]); 2198 } 2199 err_out: 2200 return err; 2201 } 2202 2203 /** 2204 * igc_reset_q_vector - Reset config for interrupt vector 2205 * @adapter: board private structure to initialize 2206 * @v_idx: Index of vector to be reset 2207 * 2208 * If NAPI is enabled it will delete any references to the 2209 * NAPI struct. This is preparation for igc_free_q_vector. 2210 */ 2211 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) 2212 { 2213 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 2214 2215 /* if we're coming from igc_set_interrupt_capability, the vectors are 2216 * not yet allocated 2217 */ 2218 if (!q_vector) 2219 return; 2220 2221 if (q_vector->tx.ring) 2222 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 2223 2224 if (q_vector->rx.ring) 2225 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 2226 2227 netif_napi_del(&q_vector->napi); 2228 } 2229 2230 static void igc_reset_interrupt_capability(struct igc_adapter *adapter) 2231 { 2232 int v_idx = adapter->num_q_vectors; 2233 2234 if (adapter->msix_entries) { 2235 pci_disable_msix(adapter->pdev); 2236 kfree(adapter->msix_entries); 2237 adapter->msix_entries = NULL; 2238 } else if (adapter->flags & IGC_FLAG_HAS_MSI) { 2239 pci_disable_msi(adapter->pdev); 2240 } 2241 2242 while (v_idx--) 2243 igc_reset_q_vector(adapter, v_idx); 2244 } 2245 2246 /** 2247 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts 2248 * @adapter: Pointer to adapter structure 2249 * 2250 * This function resets the device so that it has 0 rx queues, tx queues, and 2251 * MSI-X interrupts allocated. 2252 */ 2253 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) 2254 { 2255 igc_free_q_vectors(adapter); 2256 igc_reset_interrupt_capability(adapter); 2257 } 2258 2259 /** 2260 * igc_free_q_vectors - Free memory allocated for interrupt vectors 2261 * @adapter: board private structure to initialize 2262 * 2263 * This function frees the memory allocated to the q_vectors. In addition if 2264 * NAPI is enabled it will delete any references to the NAPI struct prior 2265 * to freeing the q_vector. 2266 */ 2267 static void igc_free_q_vectors(struct igc_adapter *adapter) 2268 { 2269 int v_idx = adapter->num_q_vectors; 2270 2271 adapter->num_tx_queues = 0; 2272 adapter->num_rx_queues = 0; 2273 adapter->num_q_vectors = 0; 2274 2275 while (v_idx--) { 2276 igc_reset_q_vector(adapter, v_idx); 2277 igc_free_q_vector(adapter, v_idx); 2278 } 2279 } 2280 2281 /** 2282 * igc_free_q_vector - Free memory allocated for specific interrupt vector 2283 * @adapter: board private structure to initialize 2284 * @v_idx: Index of vector to be freed 2285 * 2286 * This function frees the memory allocated to the q_vector. 2287 */ 2288 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) 2289 { 2290 struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; 2291 2292 adapter->q_vector[v_idx] = NULL; 2293 2294 /* igc_get_stats64() might access the rings on this vector, 2295 * we must wait a grace period before freeing it. 2296 */ 2297 if (q_vector) 2298 kfree_rcu(q_vector, rcu); 2299 } 2300 2301 /* Need to wait a few seconds after link up to get diagnostic information from 2302 * the phy 2303 */ 2304 static void igc_update_phy_info(struct timer_list *t) 2305 { 2306 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); 2307 2308 igc_get_phy_info(&adapter->hw); 2309 } 2310 2311 /** 2312 * igc_has_link - check shared code for link and determine up/down 2313 * @adapter: pointer to driver private info 2314 */ 2315 static bool igc_has_link(struct igc_adapter *adapter) 2316 { 2317 struct igc_hw *hw = &adapter->hw; 2318 bool link_active = false; 2319 2320 /* get_link_status is set on LSC (link status) interrupt or 2321 * rx sequence error interrupt. get_link_status will stay 2322 * false until the igc_check_for_link establishes link 2323 * for copper adapters ONLY 2324 */ 2325 switch (hw->phy.media_type) { 2326 case igc_media_type_copper: 2327 if (!hw->mac.get_link_status) 2328 return true; 2329 hw->mac.ops.check_for_link(hw); 2330 link_active = !hw->mac.get_link_status; 2331 break; 2332 default: 2333 case igc_media_type_unknown: 2334 break; 2335 } 2336 2337 if (hw->mac.type == igc_i225 && 2338 hw->phy.id == I225_I_PHY_ID) { 2339 if (!netif_carrier_ok(adapter->netdev)) { 2340 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 2341 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { 2342 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; 2343 adapter->link_check_timeout = jiffies; 2344 } 2345 } 2346 2347 return link_active; 2348 } 2349 2350 /** 2351 * igc_watchdog - Timer Call-back 2352 * @data: pointer to adapter cast into an unsigned long 2353 */ 2354 static void igc_watchdog(struct timer_list *t) 2355 { 2356 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); 2357 /* Do the rest outside of interrupt context */ 2358 schedule_work(&adapter->watchdog_task); 2359 } 2360 2361 static void igc_watchdog_task(struct work_struct *work) 2362 { 2363 struct igc_adapter *adapter = container_of(work, 2364 struct igc_adapter, 2365 watchdog_task); 2366 struct net_device *netdev = adapter->netdev; 2367 struct igc_hw *hw = &adapter->hw; 2368 struct igc_phy_info *phy = &hw->phy; 2369 u16 phy_data, retry_count = 20; 2370 u32 connsw; 2371 u32 link; 2372 int i; 2373 2374 link = igc_has_link(adapter); 2375 2376 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { 2377 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 2378 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; 2379 else 2380 link = false; 2381 } 2382 2383 /* Force link down if we have fiber to swap to */ 2384 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 2385 if (hw->phy.media_type == igc_media_type_copper) { 2386 connsw = rd32(IGC_CONNSW); 2387 if (!(connsw & IGC_CONNSW_AUTOSENSE_EN)) 2388 link = 0; 2389 } 2390 } 2391 if (link) { 2392 if (!netif_carrier_ok(netdev)) { 2393 u32 ctrl; 2394 2395 hw->mac.ops.get_speed_and_duplex(hw, 2396 &adapter->link_speed, 2397 &adapter->link_duplex); 2398 2399 ctrl = rd32(IGC_CTRL); 2400 /* Link status message must follow this format */ 2401 netdev_info(netdev, 2402 "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 2403 netdev->name, 2404 adapter->link_speed, 2405 adapter->link_duplex == FULL_DUPLEX ? 2406 "Full" : "Half", 2407 (ctrl & IGC_CTRL_TFCE) && 2408 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : 2409 (ctrl & IGC_CTRL_RFCE) ? "RX" : 2410 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); 2411 2412 /* check if SmartSpeed worked */ 2413 igc_check_downshift(hw); 2414 if (phy->speed_downgraded) 2415 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 2416 2417 /* adjust timeout factor according to speed/duplex */ 2418 adapter->tx_timeout_factor = 1; 2419 switch (adapter->link_speed) { 2420 case SPEED_10: 2421 adapter->tx_timeout_factor = 14; 2422 break; 2423 case SPEED_100: 2424 /* maybe add some timeout factor ? */ 2425 break; 2426 } 2427 2428 if (adapter->link_speed != SPEED_1000) 2429 goto no_wait; 2430 2431 /* wait for Remote receiver status OK */ 2432 retry_read_status: 2433 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, 2434 &phy_data)) { 2435 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 2436 retry_count) { 2437 msleep(100); 2438 retry_count--; 2439 goto retry_read_status; 2440 } else if (!retry_count) { 2441 dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); 2442 } 2443 } else { 2444 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); 2445 } 2446 no_wait: 2447 netif_carrier_on(netdev); 2448 2449 /* link state has changed, schedule phy info update */ 2450 if (!test_bit(__IGC_DOWN, &adapter->state)) 2451 mod_timer(&adapter->phy_info_timer, 2452 round_jiffies(jiffies + 2 * HZ)); 2453 } 2454 } else { 2455 if (netif_carrier_ok(netdev)) { 2456 adapter->link_speed = 0; 2457 adapter->link_duplex = 0; 2458 2459 /* Links status message must follow this format */ 2460 netdev_info(netdev, "igc: %s NIC Link is Down\n", 2461 netdev->name); 2462 netif_carrier_off(netdev); 2463 2464 /* link state has changed, schedule phy info update */ 2465 if (!test_bit(__IGC_DOWN, &adapter->state)) 2466 mod_timer(&adapter->phy_info_timer, 2467 round_jiffies(jiffies + 2 * HZ)); 2468 2469 /* link is down, time to check for alternate media */ 2470 if (adapter->flags & IGC_FLAG_MAS_ENABLE) { 2471 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 2472 schedule_work(&adapter->reset_task); 2473 /* return immediately */ 2474 return; 2475 } 2476 } 2477 2478 /* also check for alternate media here */ 2479 } else if (!netif_carrier_ok(netdev) && 2480 (adapter->flags & IGC_FLAG_MAS_ENABLE)) { 2481 if (adapter->flags & IGC_FLAG_MEDIA_RESET) { 2482 schedule_work(&adapter->reset_task); 2483 /* return immediately */ 2484 return; 2485 } 2486 } 2487 } 2488 2489 spin_lock(&adapter->stats64_lock); 2490 igc_update_stats(adapter); 2491 spin_unlock(&adapter->stats64_lock); 2492 2493 for (i = 0; i < adapter->num_tx_queues; i++) { 2494 struct igc_ring *tx_ring = adapter->tx_ring[i]; 2495 2496 if (!netif_carrier_ok(netdev)) { 2497 /* We've lost link, so the controller stops DMA, 2498 * but we've got queued Tx work that's never going 2499 * to get done, so reset controller to flush Tx. 2500 * (Do the reset outside of interrupt context). 2501 */ 2502 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { 2503 adapter->tx_timeout_count++; 2504 schedule_work(&adapter->reset_task); 2505 /* return immediately since reset is imminent */ 2506 return; 2507 } 2508 } 2509 2510 /* Force detection of hung controller every watchdog period */ 2511 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 2512 } 2513 2514 /* Cause software interrupt to ensure Rx ring is cleaned */ 2515 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 2516 u32 eics = 0; 2517 2518 for (i = 0; i < adapter->num_q_vectors; i++) 2519 eics |= adapter->q_vector[i]->eims_value; 2520 wr32(IGC_EICS, eics); 2521 } else { 2522 wr32(IGC_ICS, IGC_ICS_RXDMT0); 2523 } 2524 2525 /* Reset the timer */ 2526 if (!test_bit(__IGC_DOWN, &adapter->state)) { 2527 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) 2528 mod_timer(&adapter->watchdog_timer, 2529 round_jiffies(jiffies + HZ)); 2530 else 2531 mod_timer(&adapter->watchdog_timer, 2532 round_jiffies(jiffies + 2 * HZ)); 2533 } 2534 } 2535 2536 /** 2537 * igc_update_ring_itr - update the dynamic ITR value based on packet size 2538 * @q_vector: pointer to q_vector 2539 * 2540 * Stores a new ITR value based on strictly on packet size. This 2541 * algorithm is less sophisticated than that used in igc_update_itr, 2542 * due to the difficulty of synchronizing statistics across multiple 2543 * receive rings. The divisors and thresholds used by this function 2544 * were determined based on theoretical maximum wire speed and testing 2545 * data, in order to minimize response time while increasing bulk 2546 * throughput. 2547 * NOTE: This function is called only when operating in a multiqueue 2548 * receive environment. 2549 */ 2550 static void igc_update_ring_itr(struct igc_q_vector *q_vector) 2551 { 2552 struct igc_adapter *adapter = q_vector->adapter; 2553 int new_val = q_vector->itr_val; 2554 int avg_wire_size = 0; 2555 unsigned int packets; 2556 2557 /* For non-gigabit speeds, just fix the interrupt rate at 4000 2558 * ints/sec - ITR timer value of 120 ticks. 2559 */ 2560 switch (adapter->link_speed) { 2561 case SPEED_10: 2562 case SPEED_100: 2563 new_val = IGC_4K_ITR; 2564 goto set_itr_val; 2565 default: 2566 break; 2567 } 2568 2569 packets = q_vector->rx.total_packets; 2570 if (packets) 2571 avg_wire_size = q_vector->rx.total_bytes / packets; 2572 2573 packets = q_vector->tx.total_packets; 2574 if (packets) 2575 avg_wire_size = max_t(u32, avg_wire_size, 2576 q_vector->tx.total_bytes / packets); 2577 2578 /* if avg_wire_size isn't set no work was done */ 2579 if (!avg_wire_size) 2580 goto clear_counts; 2581 2582 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 2583 avg_wire_size += 24; 2584 2585 /* Don't starve jumbo frames */ 2586 avg_wire_size = min(avg_wire_size, 3000); 2587 2588 /* Give a little boost to mid-size frames */ 2589 if (avg_wire_size > 300 && avg_wire_size < 1200) 2590 new_val = avg_wire_size / 3; 2591 else 2592 new_val = avg_wire_size / 2; 2593 2594 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2595 if (new_val < IGC_20K_ITR && 2596 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 2597 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 2598 new_val = IGC_20K_ITR; 2599 2600 set_itr_val: 2601 if (new_val != q_vector->itr_val) { 2602 q_vector->itr_val = new_val; 2603 q_vector->set_itr = 1; 2604 } 2605 clear_counts: 2606 q_vector->rx.total_bytes = 0; 2607 q_vector->rx.total_packets = 0; 2608 q_vector->tx.total_bytes = 0; 2609 q_vector->tx.total_packets = 0; 2610 } 2611 2612 /** 2613 * igc_update_itr - update the dynamic ITR value based on statistics 2614 * @q_vector: pointer to q_vector 2615 * @ring_container: ring info to update the itr for 2616 * 2617 * Stores a new ITR value based on packets and byte 2618 * counts during the last interrupt. The advantage of per interrupt 2619 * computation is faster updates and more accurate ITR for the current 2620 * traffic pattern. Constants in this function were computed 2621 * based on theoretical maximum wire speed and thresholds were set based 2622 * on testing data as well as attempting to minimize response time 2623 * while increasing bulk throughput. 2624 * NOTE: These calculations are only valid when operating in a single- 2625 * queue environment. 2626 */ 2627 static void igc_update_itr(struct igc_q_vector *q_vector, 2628 struct igc_ring_container *ring_container) 2629 { 2630 unsigned int packets = ring_container->total_packets; 2631 unsigned int bytes = ring_container->total_bytes; 2632 u8 itrval = ring_container->itr; 2633 2634 /* no packets, exit with status unchanged */ 2635 if (packets == 0) 2636 return; 2637 2638 switch (itrval) { 2639 case lowest_latency: 2640 /* handle TSO and jumbo frames */ 2641 if (bytes / packets > 8000) 2642 itrval = bulk_latency; 2643 else if ((packets < 5) && (bytes > 512)) 2644 itrval = low_latency; 2645 break; 2646 case low_latency: /* 50 usec aka 20000 ints/s */ 2647 if (bytes > 10000) { 2648 /* this if handles the TSO accounting */ 2649 if (bytes / packets > 8000) 2650 itrval = bulk_latency; 2651 else if ((packets < 10) || ((bytes / packets) > 1200)) 2652 itrval = bulk_latency; 2653 else if ((packets > 35)) 2654 itrval = lowest_latency; 2655 } else if (bytes / packets > 2000) { 2656 itrval = bulk_latency; 2657 } else if (packets <= 2 && bytes < 512) { 2658 itrval = lowest_latency; 2659 } 2660 break; 2661 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2662 if (bytes > 25000) { 2663 if (packets > 35) 2664 itrval = low_latency; 2665 } else if (bytes < 1500) { 2666 itrval = low_latency; 2667 } 2668 break; 2669 } 2670 2671 /* clear work counters since we have the values we need */ 2672 ring_container->total_bytes = 0; 2673 ring_container->total_packets = 0; 2674 2675 /* write updated itr to ring container */ 2676 ring_container->itr = itrval; 2677 } 2678 2679 /** 2680 * igc_intr_msi - Interrupt Handler 2681 * @irq: interrupt number 2682 * @data: pointer to a network interface device structure 2683 */ 2684 static irqreturn_t igc_intr_msi(int irq, void *data) 2685 { 2686 struct igc_adapter *adapter = data; 2687 struct igc_q_vector *q_vector = adapter->q_vector[0]; 2688 struct igc_hw *hw = &adapter->hw; 2689 /* read ICR disables interrupts using IAM */ 2690 u32 icr = rd32(IGC_ICR); 2691 2692 igc_write_itr(q_vector); 2693 2694 if (icr & IGC_ICR_DRSTA) 2695 schedule_work(&adapter->reset_task); 2696 2697 if (icr & IGC_ICR_DOUTSYNC) { 2698 /* HW is reporting DMA is out of sync */ 2699 adapter->stats.doosync++; 2700 } 2701 2702 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 2703 hw->mac.get_link_status = 1; 2704 if (!test_bit(__IGC_DOWN, &adapter->state)) 2705 mod_timer(&adapter->watchdog_timer, jiffies + 1); 2706 } 2707 2708 napi_schedule(&q_vector->napi); 2709 2710 return IRQ_HANDLED; 2711 } 2712 2713 /** 2714 * igc_intr - Legacy Interrupt Handler 2715 * @irq: interrupt number 2716 * @data: pointer to a network interface device structure 2717 */ 2718 static irqreturn_t igc_intr(int irq, void *data) 2719 { 2720 struct igc_adapter *adapter = data; 2721 struct igc_q_vector *q_vector = adapter->q_vector[0]; 2722 struct igc_hw *hw = &adapter->hw; 2723 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 2724 * need for the IMC write 2725 */ 2726 u32 icr = rd32(IGC_ICR); 2727 2728 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 2729 * not set, then the adapter didn't send an interrupt 2730 */ 2731 if (!(icr & IGC_ICR_INT_ASSERTED)) 2732 return IRQ_NONE; 2733 2734 igc_write_itr(q_vector); 2735 2736 if (icr & IGC_ICR_DRSTA) 2737 schedule_work(&adapter->reset_task); 2738 2739 if (icr & IGC_ICR_DOUTSYNC) { 2740 /* HW is reporting DMA is out of sync */ 2741 adapter->stats.doosync++; 2742 } 2743 2744 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { 2745 hw->mac.get_link_status = 1; 2746 /* guard against interrupt when we're going down */ 2747 if (!test_bit(__IGC_DOWN, &adapter->state)) 2748 mod_timer(&adapter->watchdog_timer, jiffies + 1); 2749 } 2750 2751 napi_schedule(&q_vector->napi); 2752 2753 return IRQ_HANDLED; 2754 } 2755 2756 static void igc_set_itr(struct igc_q_vector *q_vector) 2757 { 2758 struct igc_adapter *adapter = q_vector->adapter; 2759 u32 new_itr = q_vector->itr_val; 2760 u8 current_itr = 0; 2761 2762 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2763 switch (adapter->link_speed) { 2764 case SPEED_10: 2765 case SPEED_100: 2766 current_itr = 0; 2767 new_itr = IGC_4K_ITR; 2768 goto set_itr_now; 2769 default: 2770 break; 2771 } 2772 2773 igc_update_itr(q_vector, &q_vector->tx); 2774 igc_update_itr(q_vector, &q_vector->rx); 2775 2776 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 2777 2778 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2779 if (current_itr == lowest_latency && 2780 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 2781 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 2782 current_itr = low_latency; 2783 2784 switch (current_itr) { 2785 /* counts and packets in update_itr are dependent on these numbers */ 2786 case lowest_latency: 2787 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ 2788 break; 2789 case low_latency: 2790 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ 2791 break; 2792 case bulk_latency: 2793 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ 2794 break; 2795 default: 2796 break; 2797 } 2798 2799 set_itr_now: 2800 if (new_itr != q_vector->itr_val) { 2801 /* this attempts to bias the interrupt rate towards Bulk 2802 * by adding intermediate steps when interrupt rate is 2803 * increasing 2804 */ 2805 new_itr = new_itr > q_vector->itr_val ? 2806 max((new_itr * q_vector->itr_val) / 2807 (new_itr + (q_vector->itr_val >> 2)), 2808 new_itr) : new_itr; 2809 /* Don't write the value here; it resets the adapter's 2810 * internal timer, and causes us to delay far longer than 2811 * we should between interrupts. Instead, we write the ITR 2812 * value at the beginning of the next interrupt so the timing 2813 * ends up being correct. 2814 */ 2815 q_vector->itr_val = new_itr; 2816 q_vector->set_itr = 1; 2817 } 2818 } 2819 2820 static void igc_ring_irq_enable(struct igc_q_vector *q_vector) 2821 { 2822 struct igc_adapter *adapter = q_vector->adapter; 2823 struct igc_hw *hw = &adapter->hw; 2824 2825 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 2826 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 2827 if (adapter->num_q_vectors == 1) 2828 igc_set_itr(q_vector); 2829 else 2830 igc_update_ring_itr(q_vector); 2831 } 2832 2833 if (!test_bit(__IGC_DOWN, &adapter->state)) { 2834 if (adapter->msix_entries) 2835 wr32(IGC_EIMS, q_vector->eims_value); 2836 else 2837 igc_irq_enable(adapter); 2838 } 2839 } 2840 2841 /** 2842 * igc_poll - NAPI Rx polling callback 2843 * @napi: napi polling structure 2844 * @budget: count of how many packets we should handle 2845 */ 2846 static int igc_poll(struct napi_struct *napi, int budget) 2847 { 2848 struct igc_q_vector *q_vector = container_of(napi, 2849 struct igc_q_vector, 2850 napi); 2851 bool clean_complete = true; 2852 int work_done = 0; 2853 2854 if (q_vector->tx.ring) 2855 clean_complete = igc_clean_tx_irq(q_vector, budget); 2856 2857 if (q_vector->rx.ring) { 2858 int cleaned = igc_clean_rx_irq(q_vector, budget); 2859 2860 work_done += cleaned; 2861 if (cleaned >= budget) 2862 clean_complete = false; 2863 } 2864 2865 /* If all work not completed, return budget and keep polling */ 2866 if (!clean_complete) 2867 return budget; 2868 2869 /* If not enough Rx work done, exit the polling mode */ 2870 napi_complete_done(napi, work_done); 2871 igc_ring_irq_enable(q_vector); 2872 2873 return 0; 2874 } 2875 2876 /** 2877 * igc_set_interrupt_capability - set MSI or MSI-X if supported 2878 * @adapter: Pointer to adapter structure 2879 * 2880 * Attempt to configure interrupts using the best available 2881 * capabilities of the hardware and kernel. 2882 */ 2883 static void igc_set_interrupt_capability(struct igc_adapter *adapter, 2884 bool msix) 2885 { 2886 int numvecs, i; 2887 int err; 2888 2889 if (!msix) 2890 goto msi_only; 2891 adapter->flags |= IGC_FLAG_HAS_MSIX; 2892 2893 /* Number of supported queues. */ 2894 adapter->num_rx_queues = adapter->rss_queues; 2895 2896 adapter->num_tx_queues = adapter->rss_queues; 2897 2898 /* start with one vector for every Rx queue */ 2899 numvecs = adapter->num_rx_queues; 2900 2901 /* if Tx handler is separate add 1 for every Tx queue */ 2902 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) 2903 numvecs += adapter->num_tx_queues; 2904 2905 /* store the number of vectors reserved for queues */ 2906 adapter->num_q_vectors = numvecs; 2907 2908 /* add 1 vector for link status interrupts */ 2909 numvecs++; 2910 2911 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 2912 GFP_KERNEL); 2913 2914 if (!adapter->msix_entries) 2915 return; 2916 2917 /* populate entry values */ 2918 for (i = 0; i < numvecs; i++) 2919 adapter->msix_entries[i].entry = i; 2920 2921 err = pci_enable_msix_range(adapter->pdev, 2922 adapter->msix_entries, 2923 numvecs, 2924 numvecs); 2925 if (err > 0) 2926 return; 2927 2928 kfree(adapter->msix_entries); 2929 adapter->msix_entries = NULL; 2930 2931 igc_reset_interrupt_capability(adapter); 2932 2933 msi_only: 2934 adapter->flags &= ~IGC_FLAG_HAS_MSIX; 2935 2936 adapter->rss_queues = 1; 2937 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 2938 adapter->num_rx_queues = 1; 2939 adapter->num_tx_queues = 1; 2940 adapter->num_q_vectors = 1; 2941 if (!pci_enable_msi(adapter->pdev)) 2942 adapter->flags |= IGC_FLAG_HAS_MSI; 2943 } 2944 2945 static void igc_add_ring(struct igc_ring *ring, 2946 struct igc_ring_container *head) 2947 { 2948 head->ring = ring; 2949 head->count++; 2950 } 2951 2952 /** 2953 * igc_alloc_q_vector - Allocate memory for a single interrupt vector 2954 * @adapter: board private structure to initialize 2955 * @v_count: q_vectors allocated on adapter, used for ring interleaving 2956 * @v_idx: index of vector in adapter struct 2957 * @txr_count: total number of Tx rings to allocate 2958 * @txr_idx: index of first Tx ring to allocate 2959 * @rxr_count: total number of Rx rings to allocate 2960 * @rxr_idx: index of first Rx ring to allocate 2961 * 2962 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2963 */ 2964 static int igc_alloc_q_vector(struct igc_adapter *adapter, 2965 unsigned int v_count, unsigned int v_idx, 2966 unsigned int txr_count, unsigned int txr_idx, 2967 unsigned int rxr_count, unsigned int rxr_idx) 2968 { 2969 struct igc_q_vector *q_vector; 2970 struct igc_ring *ring; 2971 int ring_count, size; 2972 2973 /* igc only supports 1 Tx and/or 1 Rx queue per vector */ 2974 if (txr_count > 1 || rxr_count > 1) 2975 return -ENOMEM; 2976 2977 ring_count = txr_count + rxr_count; 2978 size = sizeof(struct igc_q_vector) + 2979 (sizeof(struct igc_ring) * ring_count); 2980 2981 /* allocate q_vector and rings */ 2982 q_vector = adapter->q_vector[v_idx]; 2983 if (!q_vector) 2984 q_vector = kzalloc(size, GFP_KERNEL); 2985 else 2986 memset(q_vector, 0, size); 2987 if (!q_vector) 2988 return -ENOMEM; 2989 2990 /* initialize NAPI */ 2991 netif_napi_add(adapter->netdev, &q_vector->napi, 2992 igc_poll, 64); 2993 2994 /* tie q_vector and adapter together */ 2995 adapter->q_vector[v_idx] = q_vector; 2996 q_vector->adapter = adapter; 2997 2998 /* initialize work limits */ 2999 q_vector->tx.work_limit = adapter->tx_work_limit; 3000 3001 /* initialize ITR configuration */ 3002 q_vector->itr_register = adapter->io_addr + IGC_EITR(0); 3003 q_vector->itr_val = IGC_START_ITR; 3004 3005 /* initialize pointer to rings */ 3006 ring = q_vector->ring; 3007 3008 /* initialize ITR */ 3009 if (rxr_count) { 3010 /* rx or rx/tx vector */ 3011 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 3012 q_vector->itr_val = adapter->rx_itr_setting; 3013 } else { 3014 /* tx only vector */ 3015 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 3016 q_vector->itr_val = adapter->tx_itr_setting; 3017 } 3018 3019 if (txr_count) { 3020 /* assign generic ring traits */ 3021 ring->dev = &adapter->pdev->dev; 3022 ring->netdev = adapter->netdev; 3023 3024 /* configure backlink on ring */ 3025 ring->q_vector = q_vector; 3026 3027 /* update q_vector Tx values */ 3028 igc_add_ring(ring, &q_vector->tx); 3029 3030 /* apply Tx specific ring traits */ 3031 ring->count = adapter->tx_ring_count; 3032 ring->queue_index = txr_idx; 3033 3034 /* assign ring to adapter */ 3035 adapter->tx_ring[txr_idx] = ring; 3036 3037 /* push pointer to next ring */ 3038 ring++; 3039 } 3040 3041 if (rxr_count) { 3042 /* assign generic ring traits */ 3043 ring->dev = &adapter->pdev->dev; 3044 ring->netdev = adapter->netdev; 3045 3046 /* configure backlink on ring */ 3047 ring->q_vector = q_vector; 3048 3049 /* update q_vector Rx values */ 3050 igc_add_ring(ring, &q_vector->rx); 3051 3052 /* apply Rx specific ring traits */ 3053 ring->count = adapter->rx_ring_count; 3054 ring->queue_index = rxr_idx; 3055 3056 /* assign ring to adapter */ 3057 adapter->rx_ring[rxr_idx] = ring; 3058 } 3059 3060 return 0; 3061 } 3062 3063 /** 3064 * igc_alloc_q_vectors - Allocate memory for interrupt vectors 3065 * @adapter: board private structure to initialize 3066 * 3067 * We allocate one q_vector per queue interrupt. If allocation fails we 3068 * return -ENOMEM. 3069 */ 3070 static int igc_alloc_q_vectors(struct igc_adapter *adapter) 3071 { 3072 int rxr_remaining = adapter->num_rx_queues; 3073 int txr_remaining = adapter->num_tx_queues; 3074 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 3075 int q_vectors = adapter->num_q_vectors; 3076 int err; 3077 3078 if (q_vectors >= (rxr_remaining + txr_remaining)) { 3079 for (; rxr_remaining; v_idx++) { 3080 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 3081 0, 0, 1, rxr_idx); 3082 3083 if (err) 3084 goto err_out; 3085 3086 /* update counts and index */ 3087 rxr_remaining--; 3088 rxr_idx++; 3089 } 3090 } 3091 3092 for (; v_idx < q_vectors; v_idx++) { 3093 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 3094 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 3095 3096 err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 3097 tqpv, txr_idx, rqpv, rxr_idx); 3098 3099 if (err) 3100 goto err_out; 3101 3102 /* update counts and index */ 3103 rxr_remaining -= rqpv; 3104 txr_remaining -= tqpv; 3105 rxr_idx++; 3106 txr_idx++; 3107 } 3108 3109 return 0; 3110 3111 err_out: 3112 adapter->num_tx_queues = 0; 3113 adapter->num_rx_queues = 0; 3114 adapter->num_q_vectors = 0; 3115 3116 while (v_idx--) 3117 igc_free_q_vector(adapter, v_idx); 3118 3119 return -ENOMEM; 3120 } 3121 3122 /** 3123 * igc_cache_ring_register - Descriptor ring to register mapping 3124 * @adapter: board private structure to initialize 3125 * 3126 * Once we know the feature-set enabled for the device, we'll cache 3127 * the register offset the descriptor ring is assigned to. 3128 */ 3129 static void igc_cache_ring_register(struct igc_adapter *adapter) 3130 { 3131 int i = 0, j = 0; 3132 3133 switch (adapter->hw.mac.type) { 3134 case igc_i225: 3135 /* Fall through */ 3136 default: 3137 for (; i < adapter->num_rx_queues; i++) 3138 adapter->rx_ring[i]->reg_idx = i; 3139 for (; j < adapter->num_tx_queues; j++) 3140 adapter->tx_ring[j]->reg_idx = j; 3141 break; 3142 } 3143 } 3144 3145 /** 3146 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 3147 * @adapter: Pointer to adapter structure 3148 * 3149 * This function initializes the interrupts and allocates all of the queues. 3150 */ 3151 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) 3152 { 3153 struct pci_dev *pdev = adapter->pdev; 3154 int err = 0; 3155 3156 igc_set_interrupt_capability(adapter, msix); 3157 3158 err = igc_alloc_q_vectors(adapter); 3159 if (err) { 3160 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 3161 goto err_alloc_q_vectors; 3162 } 3163 3164 igc_cache_ring_register(adapter); 3165 3166 return 0; 3167 3168 err_alloc_q_vectors: 3169 igc_reset_interrupt_capability(adapter); 3170 return err; 3171 } 3172 3173 static void igc_free_irq(struct igc_adapter *adapter) 3174 { 3175 if (adapter->msix_entries) { 3176 int vector = 0, i; 3177 3178 free_irq(adapter->msix_entries[vector++].vector, adapter); 3179 3180 for (i = 0; i < adapter->num_q_vectors; i++) 3181 free_irq(adapter->msix_entries[vector++].vector, 3182 adapter->q_vector[i]); 3183 } else { 3184 free_irq(adapter->pdev->irq, adapter); 3185 } 3186 } 3187 3188 /** 3189 * igc_irq_disable - Mask off interrupt generation on the NIC 3190 * @adapter: board private structure 3191 */ 3192 static void igc_irq_disable(struct igc_adapter *adapter) 3193 { 3194 struct igc_hw *hw = &adapter->hw; 3195 3196 if (adapter->msix_entries) { 3197 u32 regval = rd32(IGC_EIAM); 3198 3199 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); 3200 wr32(IGC_EIMC, adapter->eims_enable_mask); 3201 regval = rd32(IGC_EIAC); 3202 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); 3203 } 3204 3205 wr32(IGC_IAM, 0); 3206 wr32(IGC_IMC, ~0); 3207 wrfl(); 3208 3209 if (adapter->msix_entries) { 3210 int vector = 0, i; 3211 3212 synchronize_irq(adapter->msix_entries[vector++].vector); 3213 3214 for (i = 0; i < adapter->num_q_vectors; i++) 3215 synchronize_irq(adapter->msix_entries[vector++].vector); 3216 } else { 3217 synchronize_irq(adapter->pdev->irq); 3218 } 3219 } 3220 3221 /** 3222 * igc_irq_enable - Enable default interrupt generation settings 3223 * @adapter: board private structure 3224 */ 3225 static void igc_irq_enable(struct igc_adapter *adapter) 3226 { 3227 struct igc_hw *hw = &adapter->hw; 3228 3229 if (adapter->msix_entries) { 3230 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; 3231 u32 regval = rd32(IGC_EIAC); 3232 3233 wr32(IGC_EIAC, regval | adapter->eims_enable_mask); 3234 regval = rd32(IGC_EIAM); 3235 wr32(IGC_EIAM, regval | adapter->eims_enable_mask); 3236 wr32(IGC_EIMS, adapter->eims_enable_mask); 3237 wr32(IGC_IMS, ims); 3238 } else { 3239 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3240 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); 3241 } 3242 } 3243 3244 /** 3245 * igc_request_irq - initialize interrupts 3246 * @adapter: Pointer to adapter structure 3247 * 3248 * Attempts to configure interrupts using the best available 3249 * capabilities of the hardware and kernel. 3250 */ 3251 static int igc_request_irq(struct igc_adapter *adapter) 3252 { 3253 struct net_device *netdev = adapter->netdev; 3254 struct pci_dev *pdev = adapter->pdev; 3255 int err = 0; 3256 3257 if (adapter->flags & IGC_FLAG_HAS_MSIX) { 3258 err = igc_request_msix(adapter); 3259 if (!err) 3260 goto request_done; 3261 /* fall back to MSI */ 3262 igc_free_all_tx_resources(adapter); 3263 igc_free_all_rx_resources(adapter); 3264 3265 igc_clear_interrupt_scheme(adapter); 3266 err = igc_init_interrupt_scheme(adapter, false); 3267 if (err) 3268 goto request_done; 3269 igc_setup_all_tx_resources(adapter); 3270 igc_setup_all_rx_resources(adapter); 3271 igc_configure(adapter); 3272 } 3273 3274 igc_assign_vector(adapter->q_vector[0], 0); 3275 3276 if (adapter->flags & IGC_FLAG_HAS_MSI) { 3277 err = request_irq(pdev->irq, &igc_intr_msi, 0, 3278 netdev->name, adapter); 3279 if (!err) 3280 goto request_done; 3281 3282 /* fall back to legacy interrupts */ 3283 igc_reset_interrupt_capability(adapter); 3284 adapter->flags &= ~IGC_FLAG_HAS_MSI; 3285 } 3286 3287 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, 3288 netdev->name, adapter); 3289 3290 if (err) 3291 dev_err(&pdev->dev, "Error %d getting interrupt\n", 3292 err); 3293 3294 request_done: 3295 return err; 3296 } 3297 3298 static void igc_write_itr(struct igc_q_vector *q_vector) 3299 { 3300 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; 3301 3302 if (!q_vector->set_itr) 3303 return; 3304 3305 if (!itr_val) 3306 itr_val = IGC_ITR_VAL_MASK; 3307 3308 itr_val |= IGC_EITR_CNT_IGNR; 3309 3310 writel(itr_val, q_vector->itr_register); 3311 q_vector->set_itr = 0; 3312 } 3313 3314 /** 3315 * igc_open - Called when a network interface is made active 3316 * @netdev: network interface device structure 3317 * 3318 * Returns 0 on success, negative value on failure 3319 * 3320 * The open entry point is called when a network interface is made 3321 * active by the system (IFF_UP). At this point all resources needed 3322 * for transmit and receive operations are allocated, the interrupt 3323 * handler is registered with the OS, the watchdog timer is started, 3324 * and the stack is notified that the interface is ready. 3325 */ 3326 static int __igc_open(struct net_device *netdev, bool resuming) 3327 { 3328 struct igc_adapter *adapter = netdev_priv(netdev); 3329 struct igc_hw *hw = &adapter->hw; 3330 int err = 0; 3331 int i = 0; 3332 3333 /* disallow open during test */ 3334 3335 if (test_bit(__IGC_TESTING, &adapter->state)) { 3336 WARN_ON(resuming); 3337 return -EBUSY; 3338 } 3339 3340 netif_carrier_off(netdev); 3341 3342 /* allocate transmit descriptors */ 3343 err = igc_setup_all_tx_resources(adapter); 3344 if (err) 3345 goto err_setup_tx; 3346 3347 /* allocate receive descriptors */ 3348 err = igc_setup_all_rx_resources(adapter); 3349 if (err) 3350 goto err_setup_rx; 3351 3352 igc_power_up_link(adapter); 3353 3354 igc_configure(adapter); 3355 3356 err = igc_request_irq(adapter); 3357 if (err) 3358 goto err_req_irq; 3359 3360 /* Notify the stack of the actual queue counts. */ 3361 netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3362 if (err) 3363 goto err_set_queues; 3364 3365 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3366 if (err) 3367 goto err_set_queues; 3368 3369 clear_bit(__IGC_DOWN, &adapter->state); 3370 3371 for (i = 0; i < adapter->num_q_vectors; i++) 3372 napi_enable(&adapter->q_vector[i]->napi); 3373 3374 /* Clear any pending interrupts. */ 3375 rd32(IGC_ICR); 3376 igc_irq_enable(adapter); 3377 3378 netif_tx_start_all_queues(netdev); 3379 3380 /* start the watchdog. */ 3381 hw->mac.get_link_status = 1; 3382 schedule_work(&adapter->watchdog_task); 3383 3384 return IGC_SUCCESS; 3385 3386 err_set_queues: 3387 igc_free_irq(adapter); 3388 err_req_irq: 3389 igc_release_hw_control(adapter); 3390 igc_power_down_link(adapter); 3391 igc_free_all_rx_resources(adapter); 3392 err_setup_rx: 3393 igc_free_all_tx_resources(adapter); 3394 err_setup_tx: 3395 igc_reset(adapter); 3396 3397 return err; 3398 } 3399 3400 static int igc_open(struct net_device *netdev) 3401 { 3402 return __igc_open(netdev, false); 3403 } 3404 3405 /** 3406 * igc_close - Disables a network interface 3407 * @netdev: network interface device structure 3408 * 3409 * Returns 0, this is not allowed to fail 3410 * 3411 * The close entry point is called when an interface is de-activated 3412 * by the OS. The hardware is still under the driver's control, but 3413 * needs to be disabled. A global MAC reset is issued to stop the 3414 * hardware, and all transmit and receive resources are freed. 3415 */ 3416 static int __igc_close(struct net_device *netdev, bool suspending) 3417 { 3418 struct igc_adapter *adapter = netdev_priv(netdev); 3419 3420 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); 3421 3422 igc_down(adapter); 3423 3424 igc_release_hw_control(adapter); 3425 3426 igc_free_irq(adapter); 3427 3428 igc_free_all_tx_resources(adapter); 3429 igc_free_all_rx_resources(adapter); 3430 3431 return 0; 3432 } 3433 3434 static int igc_close(struct net_device *netdev) 3435 { 3436 if (netif_device_present(netdev) || netdev->dismantle) 3437 return __igc_close(netdev, false); 3438 return 0; 3439 } 3440 3441 static const struct net_device_ops igc_netdev_ops = { 3442 .ndo_open = igc_open, 3443 .ndo_stop = igc_close, 3444 .ndo_start_xmit = igc_xmit_frame, 3445 .ndo_set_mac_address = igc_set_mac, 3446 .ndo_change_mtu = igc_change_mtu, 3447 .ndo_get_stats = igc_get_stats, 3448 .ndo_do_ioctl = igc_ioctl, 3449 }; 3450 3451 /* PCIe configuration access */ 3452 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 3453 { 3454 struct igc_adapter *adapter = hw->back; 3455 3456 pci_read_config_word(adapter->pdev, reg, value); 3457 } 3458 3459 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) 3460 { 3461 struct igc_adapter *adapter = hw->back; 3462 3463 pci_write_config_word(adapter->pdev, reg, *value); 3464 } 3465 3466 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 3467 { 3468 struct igc_adapter *adapter = hw->back; 3469 u16 cap_offset; 3470 3471 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 3472 if (!cap_offset) 3473 return -IGC_ERR_CONFIG; 3474 3475 pci_read_config_word(adapter->pdev, cap_offset + reg, value); 3476 3477 return IGC_SUCCESS; 3478 } 3479 3480 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) 3481 { 3482 struct igc_adapter *adapter = hw->back; 3483 u16 cap_offset; 3484 3485 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 3486 if (!cap_offset) 3487 return -IGC_ERR_CONFIG; 3488 3489 pci_write_config_word(adapter->pdev, cap_offset + reg, *value); 3490 3491 return IGC_SUCCESS; 3492 } 3493 3494 u32 igc_rd32(struct igc_hw *hw, u32 reg) 3495 { 3496 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); 3497 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 3498 u32 value = 0; 3499 3500 if (IGC_REMOVED(hw_addr)) 3501 return ~value; 3502 3503 value = readl(&hw_addr[reg]); 3504 3505 /* reads should not return all F's */ 3506 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 3507 struct net_device *netdev = igc->netdev; 3508 3509 hw->hw_addr = NULL; 3510 netif_device_detach(netdev); 3511 netdev_err(netdev, "PCIe link lost, device now detached\n"); 3512 } 3513 3514 return value; 3515 } 3516 3517 /** 3518 * igc_probe - Device Initialization Routine 3519 * @pdev: PCI device information struct 3520 * @ent: entry in igc_pci_tbl 3521 * 3522 * Returns 0 on success, negative on failure 3523 * 3524 * igc_probe initializes an adapter identified by a pci_dev structure. 3525 * The OS initialization, configuring the adapter private structure, 3526 * and a hardware reset occur. 3527 */ 3528 static int igc_probe(struct pci_dev *pdev, 3529 const struct pci_device_id *ent) 3530 { 3531 struct igc_adapter *adapter; 3532 struct net_device *netdev; 3533 struct igc_hw *hw; 3534 const struct igc_info *ei = igc_info_tbl[ent->driver_data]; 3535 int err, pci_using_dac; 3536 3537 err = pci_enable_device_mem(pdev); 3538 if (err) 3539 return err; 3540 3541 pci_using_dac = 0; 3542 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 3543 if (!err) { 3544 err = dma_set_coherent_mask(&pdev->dev, 3545 DMA_BIT_MASK(64)); 3546 if (!err) 3547 pci_using_dac = 1; 3548 } else { 3549 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 3550 if (err) { 3551 err = dma_set_coherent_mask(&pdev->dev, 3552 DMA_BIT_MASK(32)); 3553 if (err) { 3554 IGC_ERR("Wrong DMA configuration, aborting\n"); 3555 goto err_dma; 3556 } 3557 } 3558 } 3559 3560 err = pci_request_selected_regions(pdev, 3561 pci_select_bars(pdev, 3562 IORESOURCE_MEM), 3563 igc_driver_name); 3564 if (err) 3565 goto err_pci_reg; 3566 3567 pci_enable_pcie_error_reporting(pdev); 3568 3569 pci_set_master(pdev); 3570 3571 err = -ENOMEM; 3572 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), 3573 IGC_MAX_TX_QUEUES); 3574 3575 if (!netdev) 3576 goto err_alloc_etherdev; 3577 3578 SET_NETDEV_DEV(netdev, &pdev->dev); 3579 3580 pci_set_drvdata(pdev, netdev); 3581 adapter = netdev_priv(netdev); 3582 adapter->netdev = netdev; 3583 adapter->pdev = pdev; 3584 hw = &adapter->hw; 3585 hw->back = adapter; 3586 adapter->port_num = hw->bus.func; 3587 adapter->msg_enable = GENMASK(debug - 1, 0); 3588 3589 err = pci_save_state(pdev); 3590 if (err) 3591 goto err_ioremap; 3592 3593 err = -EIO; 3594 adapter->io_addr = ioremap(pci_resource_start(pdev, 0), 3595 pci_resource_len(pdev, 0)); 3596 if (!adapter->io_addr) 3597 goto err_ioremap; 3598 3599 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ 3600 hw->hw_addr = adapter->io_addr; 3601 3602 netdev->netdev_ops = &igc_netdev_ops; 3603 3604 netdev->watchdog_timeo = 5 * HZ; 3605 3606 netdev->mem_start = pci_resource_start(pdev, 0); 3607 netdev->mem_end = pci_resource_end(pdev, 0); 3608 3609 /* PCI config space info */ 3610 hw->vendor_id = pdev->vendor; 3611 hw->device_id = pdev->device; 3612 hw->revision_id = pdev->revision; 3613 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3614 hw->subsystem_device_id = pdev->subsystem_device; 3615 3616 /* Copy the default MAC and PHY function pointers */ 3617 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 3618 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 3619 3620 /* Initialize skew-specific constants */ 3621 err = ei->get_invariants(hw); 3622 if (err) 3623 goto err_sw_init; 3624 3625 /* setup the private structure */ 3626 err = igc_sw_init(adapter); 3627 if (err) 3628 goto err_sw_init; 3629 3630 /* MTU range: 68 - 9216 */ 3631 netdev->min_mtu = ETH_MIN_MTU; 3632 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 3633 3634 /* before reading the NVM, reset the controller to put the device in a 3635 * known good starting state 3636 */ 3637 hw->mac.ops.reset_hw(hw); 3638 3639 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 3640 /* copy the MAC address out of the NVM */ 3641 if (hw->mac.ops.read_mac_addr(hw)) 3642 dev_err(&pdev->dev, "NVM Read Error\n"); 3643 } 3644 3645 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 3646 3647 if (!is_valid_ether_addr(netdev->dev_addr)) { 3648 dev_err(&pdev->dev, "Invalid MAC Address\n"); 3649 err = -EIO; 3650 goto err_eeprom; 3651 } 3652 3653 /* configure RXPBSIZE and TXPBSIZE */ 3654 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); 3655 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); 3656 3657 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); 3658 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); 3659 3660 INIT_WORK(&adapter->reset_task, igc_reset_task); 3661 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); 3662 3663 /* Initialize link properties that are user-changeable */ 3664 adapter->fc_autoneg = true; 3665 hw->mac.autoneg = true; 3666 hw->phy.autoneg_advertised = 0xaf; 3667 3668 hw->fc.requested_mode = igc_fc_default; 3669 hw->fc.current_mode = igc_fc_default; 3670 3671 /* reset the hardware with the new settings */ 3672 igc_reset(adapter); 3673 3674 /* let the f/w know that the h/w is now under the control of the 3675 * driver. 3676 */ 3677 igc_get_hw_control(adapter); 3678 3679 strncpy(netdev->name, "eth%d", IFNAMSIZ); 3680 err = register_netdev(netdev); 3681 if (err) 3682 goto err_register; 3683 3684 /* carrier off reporting is important to ethtool even BEFORE open */ 3685 netif_carrier_off(netdev); 3686 3687 /* Check if Media Autosense is enabled */ 3688 adapter->ei = *ei; 3689 3690 /* print pcie link status and MAC address */ 3691 pcie_print_link_status(pdev); 3692 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); 3693 3694 return 0; 3695 3696 err_register: 3697 igc_release_hw_control(adapter); 3698 err_eeprom: 3699 if (!igc_check_reset_block(hw)) 3700 igc_reset_phy(hw); 3701 err_sw_init: 3702 igc_clear_interrupt_scheme(adapter); 3703 iounmap(adapter->io_addr); 3704 err_ioremap: 3705 free_netdev(netdev); 3706 err_alloc_etherdev: 3707 pci_release_selected_regions(pdev, 3708 pci_select_bars(pdev, IORESOURCE_MEM)); 3709 err_pci_reg: 3710 err_dma: 3711 pci_disable_device(pdev); 3712 return err; 3713 } 3714 3715 /** 3716 * igc_remove - Device Removal Routine 3717 * @pdev: PCI device information struct 3718 * 3719 * igc_remove is called by the PCI subsystem to alert the driver 3720 * that it should release a PCI device. This could be caused by a 3721 * Hot-Plug event, or because the driver is going to be removed from 3722 * memory. 3723 */ 3724 static void igc_remove(struct pci_dev *pdev) 3725 { 3726 struct net_device *netdev = pci_get_drvdata(pdev); 3727 struct igc_adapter *adapter = netdev_priv(netdev); 3728 3729 set_bit(__IGC_DOWN, &adapter->state); 3730 3731 del_timer_sync(&adapter->watchdog_timer); 3732 del_timer_sync(&adapter->phy_info_timer); 3733 3734 cancel_work_sync(&adapter->reset_task); 3735 cancel_work_sync(&adapter->watchdog_task); 3736 3737 /* Release control of h/w to f/w. If f/w is AMT enabled, this 3738 * would have already happened in close and is redundant. 3739 */ 3740 igc_release_hw_control(adapter); 3741 unregister_netdev(netdev); 3742 3743 igc_clear_interrupt_scheme(adapter); 3744 pci_iounmap(pdev, adapter->io_addr); 3745 pci_release_mem_regions(pdev); 3746 3747 kfree(adapter->mac_table); 3748 kfree(adapter->shadow_vfta); 3749 free_netdev(netdev); 3750 3751 pci_disable_pcie_error_reporting(pdev); 3752 3753 pci_disable_device(pdev); 3754 } 3755 3756 static struct pci_driver igc_driver = { 3757 .name = igc_driver_name, 3758 .id_table = igc_pci_tbl, 3759 .probe = igc_probe, 3760 .remove = igc_remove, 3761 }; 3762 3763 static void igc_set_flag_queue_pairs(struct igc_adapter *adapter, 3764 const u32 max_rss_queues) 3765 { 3766 /* Determine if we need to pair queues. */ 3767 /* If rss_queues > half of max_rss_queues, pair the queues in 3768 * order to conserve interrupts due to limited supply. 3769 */ 3770 if (adapter->rss_queues > (max_rss_queues / 2)) 3771 adapter->flags |= IGC_FLAG_QUEUE_PAIRS; 3772 else 3773 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; 3774 } 3775 3776 static unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) 3777 { 3778 unsigned int max_rss_queues; 3779 3780 /* Determine the maximum number of RSS queues supported. */ 3781 max_rss_queues = IGC_MAX_RX_QUEUES; 3782 3783 return max_rss_queues; 3784 } 3785 3786 static void igc_init_queue_configuration(struct igc_adapter *adapter) 3787 { 3788 u32 max_rss_queues; 3789 3790 max_rss_queues = igc_get_max_rss_queues(adapter); 3791 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3792 3793 igc_set_flag_queue_pairs(adapter, max_rss_queues); 3794 } 3795 3796 /** 3797 * igc_sw_init - Initialize general software structures (struct igc_adapter) 3798 * @adapter: board private structure to initialize 3799 * 3800 * igc_sw_init initializes the Adapter private data structure. 3801 * Fields are initialized based on PCI device information and 3802 * OS network device settings (MTU size). 3803 */ 3804 static int igc_sw_init(struct igc_adapter *adapter) 3805 { 3806 struct net_device *netdev = adapter->netdev; 3807 struct pci_dev *pdev = adapter->pdev; 3808 struct igc_hw *hw = &adapter->hw; 3809 3810 int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count; 3811 3812 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 3813 3814 /* set default ring sizes */ 3815 adapter->tx_ring_count = IGC_DEFAULT_TXD; 3816 adapter->rx_ring_count = IGC_DEFAULT_RXD; 3817 3818 /* set default ITR values */ 3819 adapter->rx_itr_setting = IGC_DEFAULT_ITR; 3820 adapter->tx_itr_setting = IGC_DEFAULT_ITR; 3821 3822 /* set default work limits */ 3823 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; 3824 3825 /* adjust max frame to be at least the size of a standard frame */ 3826 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 3827 VLAN_HLEN; 3828 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3829 3830 spin_lock_init(&adapter->nfc_lock); 3831 spin_lock_init(&adapter->stats64_lock); 3832 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 3833 adapter->flags |= IGC_FLAG_HAS_MSIX; 3834 3835 adapter->mac_table = kzalloc(size, GFP_ATOMIC); 3836 if (!adapter->mac_table) 3837 return -ENOMEM; 3838 3839 igc_init_queue_configuration(adapter); 3840 3841 /* This call may decrease the number of queues */ 3842 if (igc_init_interrupt_scheme(adapter, true)) { 3843 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 3844 return -ENOMEM; 3845 } 3846 3847 /* Explicitly disable IRQ since the NIC can be in any state. */ 3848 igc_irq_disable(adapter); 3849 3850 set_bit(__IGC_DOWN, &adapter->state); 3851 3852 return 0; 3853 } 3854 3855 /** 3856 * igc_get_hw_dev - return device 3857 * @hw: pointer to hardware structure 3858 * 3859 * used by hardware layer to print debugging information 3860 */ 3861 struct net_device *igc_get_hw_dev(struct igc_hw *hw) 3862 { 3863 struct igc_adapter *adapter = hw->back; 3864 3865 return adapter->netdev; 3866 } 3867 3868 /** 3869 * igc_init_module - Driver Registration Routine 3870 * 3871 * igc_init_module is the first routine called when the driver is 3872 * loaded. All it does is register with the PCI subsystem. 3873 */ 3874 static int __init igc_init_module(void) 3875 { 3876 int ret; 3877 3878 pr_info("%s - version %s\n", 3879 igc_driver_string, igc_driver_version); 3880 3881 pr_info("%s\n", igc_copyright); 3882 3883 ret = pci_register_driver(&igc_driver); 3884 return ret; 3885 } 3886 3887 module_init(igc_init_module); 3888 3889 /** 3890 * igc_exit_module - Driver Exit Cleanup Routine 3891 * 3892 * igc_exit_module is called just before the driver is removed 3893 * from memory. 3894 */ 3895 static void __exit igc_exit_module(void) 3896 { 3897 pci_unregister_driver(&igc_driver); 3898 } 3899 3900 module_exit(igc_exit_module); 3901 /* igc_main.c */ 3902