1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 
9 #include "igc.h"
10 #include "igc_hw.h"
11 
12 #define DRV_VERSION	"0.0.1-k"
13 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
14 
15 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
16 
17 static int debug = -1;
18 
19 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
20 MODULE_DESCRIPTION(DRV_SUMMARY);
21 MODULE_LICENSE("GPL v2");
22 MODULE_VERSION(DRV_VERSION);
23 module_param(debug, int, 0);
24 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
25 
26 char igc_driver_name[] = "igc";
27 char igc_driver_version[] = DRV_VERSION;
28 static const char igc_driver_string[] = DRV_SUMMARY;
29 static const char igc_copyright[] =
30 	"Copyright(c) 2018 Intel Corporation.";
31 
32 static const struct igc_info *igc_info_tbl[] = {
33 	[board_base] = &igc_base_info,
34 };
35 
36 static const struct pci_device_id igc_pci_tbl[] = {
37 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
38 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
39 	/* required last entry */
40 	{0, }
41 };
42 
43 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
44 
45 /* forward declaration */
46 static void igc_clean_tx_ring(struct igc_ring *tx_ring);
47 static int igc_sw_init(struct igc_adapter *);
48 static void igc_configure(struct igc_adapter *adapter);
49 static void igc_power_down_link(struct igc_adapter *adapter);
50 static void igc_set_default_mac_filter(struct igc_adapter *adapter);
51 static void igc_set_rx_mode(struct net_device *netdev);
52 static void igc_write_itr(struct igc_q_vector *q_vector);
53 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector);
54 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx);
55 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
56 					 bool msix);
57 static void igc_free_q_vectors(struct igc_adapter *adapter);
58 static void igc_irq_disable(struct igc_adapter *adapter);
59 static void igc_irq_enable(struct igc_adapter *adapter);
60 static void igc_configure_msix(struct igc_adapter *adapter);
61 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
62 				  struct igc_rx_buffer *bi);
63 
64 enum latency_range {
65 	lowest_latency = 0,
66 	low_latency = 1,
67 	bulk_latency = 2,
68 	latency_invalid = 255
69 };
70 
71 void igc_reset(struct igc_adapter *adapter)
72 {
73 	struct pci_dev *pdev = adapter->pdev;
74 	struct igc_hw *hw = &adapter->hw;
75 
76 	hw->mac.ops.reset_hw(hw);
77 
78 	if (hw->mac.ops.init_hw(hw))
79 		dev_err(&pdev->dev, "Hardware Error\n");
80 
81 	if (!netif_running(adapter->netdev))
82 		igc_power_down_link(adapter);
83 
84 	igc_get_phy_info(hw);
85 }
86 
87 /**
88  * igc_power_up_link - Power up the phy/serdes link
89  * @adapter: address of board private structure
90  */
91 static void igc_power_up_link(struct igc_adapter *adapter)
92 {
93 	igc_reset_phy(&adapter->hw);
94 
95 	if (adapter->hw.phy.media_type == igc_media_type_copper)
96 		igc_power_up_phy_copper(&adapter->hw);
97 
98 	igc_setup_link(&adapter->hw);
99 }
100 
101 /**
102  * igc_power_down_link - Power down the phy/serdes link
103  * @adapter: address of board private structure
104  */
105 static void igc_power_down_link(struct igc_adapter *adapter)
106 {
107 	if (adapter->hw.phy.media_type == igc_media_type_copper)
108 		igc_power_down_phy_copper_base(&adapter->hw);
109 }
110 
111 /**
112  * igc_release_hw_control - release control of the h/w to f/w
113  * @adapter: address of board private structure
114  *
115  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
116  * For ASF and Pass Through versions of f/w this means that the
117  * driver is no longer loaded.
118  */
119 static void igc_release_hw_control(struct igc_adapter *adapter)
120 {
121 	struct igc_hw *hw = &adapter->hw;
122 	u32 ctrl_ext;
123 
124 	/* Let firmware take over control of h/w */
125 	ctrl_ext = rd32(IGC_CTRL_EXT);
126 	wr32(IGC_CTRL_EXT,
127 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
128 }
129 
130 /**
131  * igc_get_hw_control - get control of the h/w from f/w
132  * @adapter: address of board private structure
133  *
134  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
135  * For ASF and Pass Through versions of f/w this means that
136  * the driver is loaded.
137  */
138 static void igc_get_hw_control(struct igc_adapter *adapter)
139 {
140 	struct igc_hw *hw = &adapter->hw;
141 	u32 ctrl_ext;
142 
143 	/* Let firmware know the driver has taken over */
144 	ctrl_ext = rd32(IGC_CTRL_EXT);
145 	wr32(IGC_CTRL_EXT,
146 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
147 }
148 
149 /**
150  * igc_free_tx_resources - Free Tx Resources per Queue
151  * @tx_ring: Tx descriptor ring for a specific queue
152  *
153  * Free all transmit software resources
154  */
155 void igc_free_tx_resources(struct igc_ring *tx_ring)
156 {
157 	igc_clean_tx_ring(tx_ring);
158 
159 	vfree(tx_ring->tx_buffer_info);
160 	tx_ring->tx_buffer_info = NULL;
161 
162 	/* if not set, then don't free */
163 	if (!tx_ring->desc)
164 		return;
165 
166 	dma_free_coherent(tx_ring->dev, tx_ring->size,
167 			  tx_ring->desc, tx_ring->dma);
168 
169 	tx_ring->desc = NULL;
170 }
171 
172 /**
173  * igc_free_all_tx_resources - Free Tx Resources for All Queues
174  * @adapter: board private structure
175  *
176  * Free all transmit software resources
177  */
178 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
179 {
180 	int i;
181 
182 	for (i = 0; i < adapter->num_tx_queues; i++)
183 		igc_free_tx_resources(adapter->tx_ring[i]);
184 }
185 
186 /**
187  * igc_clean_tx_ring - Free Tx Buffers
188  * @tx_ring: ring to be cleaned
189  */
190 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
191 {
192 	u16 i = tx_ring->next_to_clean;
193 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
194 
195 	while (i != tx_ring->next_to_use) {
196 		union igc_adv_tx_desc *eop_desc, *tx_desc;
197 
198 		/* Free all the Tx ring sk_buffs */
199 		dev_kfree_skb_any(tx_buffer->skb);
200 
201 		/* unmap skb header data */
202 		dma_unmap_single(tx_ring->dev,
203 				 dma_unmap_addr(tx_buffer, dma),
204 				 dma_unmap_len(tx_buffer, len),
205 				 DMA_TO_DEVICE);
206 
207 		/* check for eop_desc to determine the end of the packet */
208 		eop_desc = tx_buffer->next_to_watch;
209 		tx_desc = IGC_TX_DESC(tx_ring, i);
210 
211 		/* unmap remaining buffers */
212 		while (tx_desc != eop_desc) {
213 			tx_buffer++;
214 			tx_desc++;
215 			i++;
216 			if (unlikely(i == tx_ring->count)) {
217 				i = 0;
218 				tx_buffer = tx_ring->tx_buffer_info;
219 				tx_desc = IGC_TX_DESC(tx_ring, 0);
220 			}
221 
222 			/* unmap any remaining paged data */
223 			if (dma_unmap_len(tx_buffer, len))
224 				dma_unmap_page(tx_ring->dev,
225 					       dma_unmap_addr(tx_buffer, dma),
226 					       dma_unmap_len(tx_buffer, len),
227 					       DMA_TO_DEVICE);
228 		}
229 
230 		/* move us one more past the eop_desc for start of next pkt */
231 		tx_buffer++;
232 		i++;
233 		if (unlikely(i == tx_ring->count)) {
234 			i = 0;
235 			tx_buffer = tx_ring->tx_buffer_info;
236 		}
237 	}
238 
239 	/* reset BQL for queue */
240 	netdev_tx_reset_queue(txring_txq(tx_ring));
241 
242 	/* reset next_to_use and next_to_clean */
243 	tx_ring->next_to_use = 0;
244 	tx_ring->next_to_clean = 0;
245 }
246 
247 /**
248  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
249  * @adapter: board private structure
250  */
251 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
252 {
253 	int i;
254 
255 	for (i = 0; i < adapter->num_tx_queues; i++)
256 		if (adapter->tx_ring[i])
257 			igc_clean_tx_ring(adapter->tx_ring[i]);
258 }
259 
260 /**
261  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
262  * @tx_ring: tx descriptor ring (for a specific queue) to setup
263  *
264  * Return 0 on success, negative on failure
265  */
266 int igc_setup_tx_resources(struct igc_ring *tx_ring)
267 {
268 	struct device *dev = tx_ring->dev;
269 	int size = 0;
270 
271 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
272 	tx_ring->tx_buffer_info = vzalloc(size);
273 	if (!tx_ring->tx_buffer_info)
274 		goto err;
275 
276 	/* round up to nearest 4K */
277 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
278 	tx_ring->size = ALIGN(tx_ring->size, 4096);
279 
280 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
281 					   &tx_ring->dma, GFP_KERNEL);
282 
283 	if (!tx_ring->desc)
284 		goto err;
285 
286 	tx_ring->next_to_use = 0;
287 	tx_ring->next_to_clean = 0;
288 
289 	return 0;
290 
291 err:
292 	vfree(tx_ring->tx_buffer_info);
293 	dev_err(dev,
294 		"Unable to allocate memory for the transmit descriptor ring\n");
295 	return -ENOMEM;
296 }
297 
298 /**
299  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
300  * @adapter: board private structure
301  *
302  * Return 0 on success, negative on failure
303  */
304 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
305 {
306 	struct pci_dev *pdev = adapter->pdev;
307 	int i, err = 0;
308 
309 	for (i = 0; i < adapter->num_tx_queues; i++) {
310 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
311 		if (err) {
312 			dev_err(&pdev->dev,
313 				"Allocation for Tx Queue %u failed\n", i);
314 			for (i--; i >= 0; i--)
315 				igc_free_tx_resources(adapter->tx_ring[i]);
316 			break;
317 		}
318 	}
319 
320 	return err;
321 }
322 
323 /**
324  * igc_clean_rx_ring - Free Rx Buffers per Queue
325  * @rx_ring: ring to free buffers from
326  */
327 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
328 {
329 	u16 i = rx_ring->next_to_clean;
330 
331 	if (rx_ring->skb)
332 		dev_kfree_skb(rx_ring->skb);
333 	rx_ring->skb = NULL;
334 
335 	/* Free all the Rx ring sk_buffs */
336 	while (i != rx_ring->next_to_alloc) {
337 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
338 
339 		/* Invalidate cache lines that may have been written to by
340 		 * device so that we avoid corrupting memory.
341 		 */
342 		dma_sync_single_range_for_cpu(rx_ring->dev,
343 					      buffer_info->dma,
344 					      buffer_info->page_offset,
345 					      igc_rx_bufsz(rx_ring),
346 					      DMA_FROM_DEVICE);
347 
348 		/* free resources associated with mapping */
349 		dma_unmap_page_attrs(rx_ring->dev,
350 				     buffer_info->dma,
351 				     igc_rx_pg_size(rx_ring),
352 				     DMA_FROM_DEVICE,
353 				     IGC_RX_DMA_ATTR);
354 		__page_frag_cache_drain(buffer_info->page,
355 					buffer_info->pagecnt_bias);
356 
357 		i++;
358 		if (i == rx_ring->count)
359 			i = 0;
360 	}
361 
362 	rx_ring->next_to_alloc = 0;
363 	rx_ring->next_to_clean = 0;
364 	rx_ring->next_to_use = 0;
365 }
366 
367 /**
368  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
369  * @adapter: board private structure
370  */
371 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
372 {
373 	int i;
374 
375 	for (i = 0; i < adapter->num_rx_queues; i++)
376 		if (adapter->rx_ring[i])
377 			igc_clean_rx_ring(adapter->rx_ring[i]);
378 }
379 
380 /**
381  * igc_free_rx_resources - Free Rx Resources
382  * @rx_ring: ring to clean the resources from
383  *
384  * Free all receive software resources
385  */
386 void igc_free_rx_resources(struct igc_ring *rx_ring)
387 {
388 	igc_clean_rx_ring(rx_ring);
389 
390 	vfree(rx_ring->rx_buffer_info);
391 	rx_ring->rx_buffer_info = NULL;
392 
393 	/* if not set, then don't free */
394 	if (!rx_ring->desc)
395 		return;
396 
397 	dma_free_coherent(rx_ring->dev, rx_ring->size,
398 			  rx_ring->desc, rx_ring->dma);
399 
400 	rx_ring->desc = NULL;
401 }
402 
403 /**
404  * igc_free_all_rx_resources - Free Rx Resources for All Queues
405  * @adapter: board private structure
406  *
407  * Free all receive software resources
408  */
409 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
410 {
411 	int i;
412 
413 	for (i = 0; i < adapter->num_rx_queues; i++)
414 		igc_free_rx_resources(adapter->rx_ring[i]);
415 }
416 
417 /**
418  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
419  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
420  *
421  * Returns 0 on success, negative on failure
422  */
423 int igc_setup_rx_resources(struct igc_ring *rx_ring)
424 {
425 	struct device *dev = rx_ring->dev;
426 	int size, desc_len;
427 
428 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
429 	rx_ring->rx_buffer_info = vzalloc(size);
430 	if (!rx_ring->rx_buffer_info)
431 		goto err;
432 
433 	desc_len = sizeof(union igc_adv_rx_desc);
434 
435 	/* Round up to nearest 4K */
436 	rx_ring->size = rx_ring->count * desc_len;
437 	rx_ring->size = ALIGN(rx_ring->size, 4096);
438 
439 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
440 					   &rx_ring->dma, GFP_KERNEL);
441 
442 	if (!rx_ring->desc)
443 		goto err;
444 
445 	rx_ring->next_to_alloc = 0;
446 	rx_ring->next_to_clean = 0;
447 	rx_ring->next_to_use = 0;
448 
449 	return 0;
450 
451 err:
452 	vfree(rx_ring->rx_buffer_info);
453 	rx_ring->rx_buffer_info = NULL;
454 	dev_err(dev,
455 		"Unable to allocate memory for the receive descriptor ring\n");
456 	return -ENOMEM;
457 }
458 
459 /**
460  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
461  *                                (Descriptors) for all queues
462  * @adapter: board private structure
463  *
464  * Return 0 on success, negative on failure
465  */
466 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
467 {
468 	struct pci_dev *pdev = adapter->pdev;
469 	int i, err = 0;
470 
471 	for (i = 0; i < adapter->num_rx_queues; i++) {
472 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
473 		if (err) {
474 			dev_err(&pdev->dev,
475 				"Allocation for Rx Queue %u failed\n", i);
476 			for (i--; i >= 0; i--)
477 				igc_free_rx_resources(adapter->rx_ring[i]);
478 			break;
479 		}
480 	}
481 
482 	return err;
483 }
484 
485 /**
486  * igc_configure_rx_ring - Configure a receive ring after Reset
487  * @adapter: board private structure
488  * @ring: receive ring to be configured
489  *
490  * Configure the Rx unit of the MAC after a reset.
491  */
492 static void igc_configure_rx_ring(struct igc_adapter *adapter,
493 				  struct igc_ring *ring)
494 {
495 	struct igc_hw *hw = &adapter->hw;
496 	union igc_adv_rx_desc *rx_desc;
497 	int reg_idx = ring->reg_idx;
498 	u32 srrctl = 0, rxdctl = 0;
499 	u64 rdba = ring->dma;
500 
501 	/* disable the queue */
502 	wr32(IGC_RXDCTL(reg_idx), 0);
503 
504 	/* Set DMA base address registers */
505 	wr32(IGC_RDBAL(reg_idx),
506 	     rdba & 0x00000000ffffffffULL);
507 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
508 	wr32(IGC_RDLEN(reg_idx),
509 	     ring->count * sizeof(union igc_adv_rx_desc));
510 
511 	/* initialize head and tail */
512 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
513 	wr32(IGC_RDH(reg_idx), 0);
514 	writel(0, ring->tail);
515 
516 	/* reset next-to- use/clean to place SW in sync with hardware */
517 	ring->next_to_clean = 0;
518 	ring->next_to_use = 0;
519 
520 	/* set descriptor configuration */
521 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
522 	if (ring_uses_large_buffer(ring))
523 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
524 	else
525 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
526 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
527 
528 	wr32(IGC_SRRCTL(reg_idx), srrctl);
529 
530 	rxdctl |= IGC_RX_PTHRESH;
531 	rxdctl |= IGC_RX_HTHRESH << 8;
532 	rxdctl |= IGC_RX_WTHRESH << 16;
533 
534 	/* initialize rx_buffer_info */
535 	memset(ring->rx_buffer_info, 0,
536 	       sizeof(struct igc_rx_buffer) * ring->count);
537 
538 	/* initialize Rx descriptor 0 */
539 	rx_desc = IGC_RX_DESC(ring, 0);
540 	rx_desc->wb.upper.length = 0;
541 
542 	/* enable receive descriptor fetching */
543 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
544 
545 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
546 }
547 
548 /**
549  * igc_configure_rx - Configure receive Unit after Reset
550  * @adapter: board private structure
551  *
552  * Configure the Rx unit of the MAC after a reset.
553  */
554 static void igc_configure_rx(struct igc_adapter *adapter)
555 {
556 	int i;
557 
558 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
559 	 * the Base and Length of the Rx Descriptor Ring
560 	 */
561 	for (i = 0; i < adapter->num_rx_queues; i++)
562 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
563 }
564 
565 /**
566  * igc_configure_tx_ring - Configure transmit ring after Reset
567  * @adapter: board private structure
568  * @ring: tx ring to configure
569  *
570  * Configure a transmit ring after a reset.
571  */
572 static void igc_configure_tx_ring(struct igc_adapter *adapter,
573 				  struct igc_ring *ring)
574 {
575 	struct igc_hw *hw = &adapter->hw;
576 	int reg_idx = ring->reg_idx;
577 	u64 tdba = ring->dma;
578 	u32 txdctl = 0;
579 
580 	/* disable the queue */
581 	wr32(IGC_TXDCTL(reg_idx), 0);
582 	wrfl();
583 	mdelay(10);
584 
585 	wr32(IGC_TDLEN(reg_idx),
586 	     ring->count * sizeof(union igc_adv_tx_desc));
587 	wr32(IGC_TDBAL(reg_idx),
588 	     tdba & 0x00000000ffffffffULL);
589 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
590 
591 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
592 	wr32(IGC_TDH(reg_idx), 0);
593 	writel(0, ring->tail);
594 
595 	txdctl |= IGC_TX_PTHRESH;
596 	txdctl |= IGC_TX_HTHRESH << 8;
597 	txdctl |= IGC_TX_WTHRESH << 16;
598 
599 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
600 	wr32(IGC_TXDCTL(reg_idx), txdctl);
601 }
602 
603 /**
604  * igc_configure_tx - Configure transmit Unit after Reset
605  * @adapter: board private structure
606  *
607  * Configure the Tx unit of the MAC after a reset.
608  */
609 static void igc_configure_tx(struct igc_adapter *adapter)
610 {
611 	int i;
612 
613 	for (i = 0; i < adapter->num_tx_queues; i++)
614 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
615 }
616 
617 /**
618  * igc_setup_mrqc - configure the multiple receive queue control registers
619  * @adapter: Board private structure
620  */
621 static void igc_setup_mrqc(struct igc_adapter *adapter)
622 {
623 	struct igc_hw *hw = &adapter->hw;
624 	u32 j, num_rx_queues;
625 	u32 mrqc, rxcsum;
626 	u32 rss_key[10];
627 
628 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
629 	for (j = 0; j < 10; j++)
630 		wr32(IGC_RSSRK(j), rss_key[j]);
631 
632 	num_rx_queues = adapter->rss_queues;
633 
634 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
635 		for (j = 0; j < IGC_RETA_SIZE; j++)
636 			adapter->rss_indir_tbl[j] =
637 			(j * num_rx_queues) / IGC_RETA_SIZE;
638 		adapter->rss_indir_tbl_init = num_rx_queues;
639 	}
640 	igc_write_rss_indir_tbl(adapter);
641 
642 	/* Disable raw packet checksumming so that RSS hash is placed in
643 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
644 	 * offloads as they are enabled by default
645 	 */
646 	rxcsum = rd32(IGC_RXCSUM);
647 	rxcsum |= IGC_RXCSUM_PCSD;
648 
649 	/* Enable Receive Checksum Offload for SCTP */
650 	rxcsum |= IGC_RXCSUM_CRCOFL;
651 
652 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
653 	wr32(IGC_RXCSUM, rxcsum);
654 
655 	/* Generate RSS hash based on packet types, TCP/UDP
656 	 * port numbers and/or IPv4/v6 src and dst addresses
657 	 */
658 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
659 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
660 	       IGC_MRQC_RSS_FIELD_IPV6 |
661 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
662 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
663 
664 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
665 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
666 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
667 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
668 
669 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
670 
671 	wr32(IGC_MRQC, mrqc);
672 }
673 
674 /**
675  * igc_setup_rctl - configure the receive control registers
676  * @adapter: Board private structure
677  */
678 static void igc_setup_rctl(struct igc_adapter *adapter)
679 {
680 	struct igc_hw *hw = &adapter->hw;
681 	u32 rctl;
682 
683 	rctl = rd32(IGC_RCTL);
684 
685 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
686 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
687 
688 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
689 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
690 
691 	/* enable stripping of CRC. Newer features require
692 	 * that the HW strips the CRC.
693 	 */
694 	rctl |= IGC_RCTL_SECRC;
695 
696 	/* disable store bad packets and clear size bits. */
697 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
698 
699 	/* enable LPE to allow for reception of jumbo frames */
700 	rctl |= IGC_RCTL_LPE;
701 
702 	/* disable queue 0 to prevent tail write w/o re-config */
703 	wr32(IGC_RXDCTL(0), 0);
704 
705 	/* This is useful for sniffing bad packets. */
706 	if (adapter->netdev->features & NETIF_F_RXALL) {
707 		/* UPE and MPE will be handled by normal PROMISC logic
708 		 * in set_rx_mode
709 		 */
710 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
711 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
712 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
713 
714 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
715 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
716 	}
717 
718 	wr32(IGC_RCTL, rctl);
719 }
720 
721 /**
722  * igc_setup_tctl - configure the transmit control registers
723  * @adapter: Board private structure
724  */
725 static void igc_setup_tctl(struct igc_adapter *adapter)
726 {
727 	struct igc_hw *hw = &adapter->hw;
728 	u32 tctl;
729 
730 	/* disable queue 0 which icould be enabled by default */
731 	wr32(IGC_TXDCTL(0), 0);
732 
733 	/* Program the Transmit Control Register */
734 	tctl = rd32(IGC_TCTL);
735 	tctl &= ~IGC_TCTL_CT;
736 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
737 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
738 
739 	/* Enable transmits */
740 	tctl |= IGC_TCTL_EN;
741 
742 	wr32(IGC_TCTL, tctl);
743 }
744 
745 /**
746  * igc_set_mac - Change the Ethernet Address of the NIC
747  * @netdev: network interface device structure
748  * @p: pointer to an address structure
749  *
750  * Returns 0 on success, negative on failure
751  */
752 static int igc_set_mac(struct net_device *netdev, void *p)
753 {
754 	struct igc_adapter *adapter = netdev_priv(netdev);
755 	struct igc_hw *hw = &adapter->hw;
756 	struct sockaddr *addr = p;
757 
758 	if (!is_valid_ether_addr(addr->sa_data))
759 		return -EADDRNOTAVAIL;
760 
761 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
762 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
763 
764 	/* set the correct pool for the new PF MAC address in entry 0 */
765 	igc_set_default_mac_filter(adapter);
766 
767 	return 0;
768 }
769 
770 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
771 {
772 }
773 
774 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
775 {
776 	struct net_device *netdev = tx_ring->netdev;
777 
778 	netif_stop_subqueue(netdev, tx_ring->queue_index);
779 
780 	/* memory barriier comment */
781 	smp_mb();
782 
783 	/* We need to check again in a case another CPU has just
784 	 * made room available.
785 	 */
786 	if (igc_desc_unused(tx_ring) < size)
787 		return -EBUSY;
788 
789 	/* A reprieve! */
790 	netif_wake_subqueue(netdev, tx_ring->queue_index);
791 
792 	u64_stats_update_begin(&tx_ring->tx_syncp2);
793 	tx_ring->tx_stats.restart_queue2++;
794 	u64_stats_update_end(&tx_ring->tx_syncp2);
795 
796 	return 0;
797 }
798 
799 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
800 {
801 	if (igc_desc_unused(tx_ring) >= size)
802 		return 0;
803 	return __igc_maybe_stop_tx(tx_ring, size);
804 }
805 
806 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
807 {
808 	/* set type for advanced descriptor with frame checksum insertion */
809 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
810 		       IGC_ADVTXD_DCMD_DEXT |
811 		       IGC_ADVTXD_DCMD_IFCS;
812 
813 	return cmd_type;
814 }
815 
816 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
817 				 union igc_adv_tx_desc *tx_desc,
818 				 u32 tx_flags, unsigned int paylen)
819 {
820 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
821 
822 	/* insert L4 checksum */
823 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
824 			  ((IGC_TXD_POPTS_TXSM << 8) /
825 			  IGC_TX_FLAGS_CSUM);
826 
827 	/* insert IPv4 checksum */
828 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
829 			  (((IGC_TXD_POPTS_IXSM << 8)) /
830 			  IGC_TX_FLAGS_IPV4);
831 
832 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
833 }
834 
835 static int igc_tx_map(struct igc_ring *tx_ring,
836 		      struct igc_tx_buffer *first,
837 		      const u8 hdr_len)
838 {
839 	struct sk_buff *skb = first->skb;
840 	struct igc_tx_buffer *tx_buffer;
841 	union igc_adv_tx_desc *tx_desc;
842 	u32 tx_flags = first->tx_flags;
843 	struct skb_frag_struct *frag;
844 	u16 i = tx_ring->next_to_use;
845 	unsigned int data_len, size;
846 	dma_addr_t dma;
847 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
848 
849 	tx_desc = IGC_TX_DESC(tx_ring, i);
850 
851 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
852 
853 	size = skb_headlen(skb);
854 	data_len = skb->data_len;
855 
856 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
857 
858 	tx_buffer = first;
859 
860 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
861 		if (dma_mapping_error(tx_ring->dev, dma))
862 			goto dma_error;
863 
864 		/* record length, and DMA address */
865 		dma_unmap_len_set(tx_buffer, len, size);
866 		dma_unmap_addr_set(tx_buffer, dma, dma);
867 
868 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
869 
870 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
871 			tx_desc->read.cmd_type_len =
872 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
873 
874 			i++;
875 			tx_desc++;
876 			if (i == tx_ring->count) {
877 				tx_desc = IGC_TX_DESC(tx_ring, 0);
878 				i = 0;
879 			}
880 			tx_desc->read.olinfo_status = 0;
881 
882 			dma += IGC_MAX_DATA_PER_TXD;
883 			size -= IGC_MAX_DATA_PER_TXD;
884 
885 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
886 		}
887 
888 		if (likely(!data_len))
889 			break;
890 
891 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
892 
893 		i++;
894 		tx_desc++;
895 		if (i == tx_ring->count) {
896 			tx_desc = IGC_TX_DESC(tx_ring, 0);
897 			i = 0;
898 		}
899 		tx_desc->read.olinfo_status = 0;
900 
901 		size = skb_frag_size(frag);
902 		data_len -= size;
903 
904 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
905 				       size, DMA_TO_DEVICE);
906 
907 		tx_buffer = &tx_ring->tx_buffer_info[i];
908 	}
909 
910 	/* write last descriptor with RS and EOP bits */
911 	cmd_type |= size | IGC_TXD_DCMD;
912 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
913 
914 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
915 
916 	/* set the timestamp */
917 	first->time_stamp = jiffies;
918 
919 	skb_tx_timestamp(skb);
920 
921 	/* Force memory writes to complete before letting h/w know there
922 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
923 	 * memory model archs, such as IA-64).
924 	 *
925 	 * We also need this memory barrier to make certain all of the
926 	 * status bits have been updated before next_to_watch is written.
927 	 */
928 	wmb();
929 
930 	/* set next_to_watch value indicating a packet is present */
931 	first->next_to_watch = tx_desc;
932 
933 	i++;
934 	if (i == tx_ring->count)
935 		i = 0;
936 
937 	tx_ring->next_to_use = i;
938 
939 	/* Make sure there is space in the ring for the next send. */
940 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
941 
942 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
943 		writel(i, tx_ring->tail);
944 
945 		/* we need this if more than one processor can write to our tail
946 		 * at a time, it synchronizes IO on IA64/Altix systems
947 		 */
948 		mmiowb();
949 	}
950 
951 	return 0;
952 dma_error:
953 	dev_err(tx_ring->dev, "TX DMA map failed\n");
954 	tx_buffer = &tx_ring->tx_buffer_info[i];
955 
956 	/* clear dma mappings for failed tx_buffer_info map */
957 	while (tx_buffer != first) {
958 		if (dma_unmap_len(tx_buffer, len))
959 			dma_unmap_page(tx_ring->dev,
960 				       dma_unmap_addr(tx_buffer, dma),
961 				       dma_unmap_len(tx_buffer, len),
962 				       DMA_TO_DEVICE);
963 		dma_unmap_len_set(tx_buffer, len, 0);
964 
965 		if (i-- == 0)
966 			i += tx_ring->count;
967 		tx_buffer = &tx_ring->tx_buffer_info[i];
968 	}
969 
970 	if (dma_unmap_len(tx_buffer, len))
971 		dma_unmap_single(tx_ring->dev,
972 				 dma_unmap_addr(tx_buffer, dma),
973 				 dma_unmap_len(tx_buffer, len),
974 				 DMA_TO_DEVICE);
975 	dma_unmap_len_set(tx_buffer, len, 0);
976 
977 	dev_kfree_skb_any(tx_buffer->skb);
978 	tx_buffer->skb = NULL;
979 
980 	tx_ring->next_to_use = i;
981 
982 	return -1;
983 }
984 
985 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
986 				       struct igc_ring *tx_ring)
987 {
988 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
989 	__be16 protocol = vlan_get_protocol(skb);
990 	struct igc_tx_buffer *first;
991 	u32 tx_flags = 0;
992 	unsigned short f;
993 	u8 hdr_len = 0;
994 
995 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
996 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
997 	 *	+ 2 desc gap to keep tail from touching head,
998 	 *	+ 1 desc for context descriptor,
999 	 * otherwise try next time
1000 	 */
1001 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1002 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1003 
1004 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1005 		/* this is a hard error */
1006 		return NETDEV_TX_BUSY;
1007 	}
1008 
1009 	/* record the location of the first descriptor for this packet */
1010 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1011 	first->skb = skb;
1012 	first->bytecount = skb->len;
1013 	first->gso_segs = 1;
1014 
1015 	/* record initial flags and protocol */
1016 	first->tx_flags = tx_flags;
1017 	first->protocol = protocol;
1018 
1019 	igc_tx_csum(tx_ring, first);
1020 
1021 	igc_tx_map(tx_ring, first, hdr_len);
1022 
1023 	return NETDEV_TX_OK;
1024 }
1025 
1026 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1027 						    struct sk_buff *skb)
1028 {
1029 	unsigned int r_idx = skb->queue_mapping;
1030 
1031 	if (r_idx >= adapter->num_tx_queues)
1032 		r_idx = r_idx % adapter->num_tx_queues;
1033 
1034 	return adapter->tx_ring[r_idx];
1035 }
1036 
1037 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1038 				  struct net_device *netdev)
1039 {
1040 	struct igc_adapter *adapter = netdev_priv(netdev);
1041 
1042 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1043 	 * in order to meet this minimum size requirement.
1044 	 */
1045 	if (skb->len < 17) {
1046 		if (skb_padto(skb, 17))
1047 			return NETDEV_TX_OK;
1048 		skb->len = 17;
1049 	}
1050 
1051 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1052 }
1053 
1054 static inline void igc_rx_hash(struct igc_ring *ring,
1055 			       union igc_adv_rx_desc *rx_desc,
1056 			       struct sk_buff *skb)
1057 {
1058 	if (ring->netdev->features & NETIF_F_RXHASH)
1059 		skb_set_hash(skb,
1060 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1061 			     PKT_HASH_TYPE_L3);
1062 }
1063 
1064 /**
1065  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1066  * @rx_ring: rx descriptor ring packet is being transacted on
1067  * @rx_desc: pointer to the EOP Rx descriptor
1068  * @skb: pointer to current skb being populated
1069  *
1070  * This function checks the ring, descriptor, and packet information in
1071  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1072  * other fields within the skb.
1073  */
1074 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1075 				   union igc_adv_rx_desc *rx_desc,
1076 				   struct sk_buff *skb)
1077 {
1078 	igc_rx_hash(rx_ring, rx_desc, skb);
1079 
1080 	skb_record_rx_queue(skb, rx_ring->queue_index);
1081 
1082 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1083 }
1084 
1085 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1086 					       const unsigned int size)
1087 {
1088 	struct igc_rx_buffer *rx_buffer;
1089 
1090 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1091 	prefetchw(rx_buffer->page);
1092 
1093 	/* we are reusing so sync this buffer for CPU use */
1094 	dma_sync_single_range_for_cpu(rx_ring->dev,
1095 				      rx_buffer->dma,
1096 				      rx_buffer->page_offset,
1097 				      size,
1098 				      DMA_FROM_DEVICE);
1099 
1100 	rx_buffer->pagecnt_bias--;
1101 
1102 	return rx_buffer;
1103 }
1104 
1105 /**
1106  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1107  * @rx_ring: rx descriptor ring to transact packets on
1108  * @rx_buffer: buffer containing page to add
1109  * @skb: sk_buff to place the data into
1110  * @size: size of buffer to be added
1111  *
1112  * This function will add the data contained in rx_buffer->page to the skb.
1113  */
1114 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1115 			    struct igc_rx_buffer *rx_buffer,
1116 			    struct sk_buff *skb,
1117 			    unsigned int size)
1118 {
1119 #if (PAGE_SIZE < 8192)
1120 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1121 
1122 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1123 			rx_buffer->page_offset, size, truesize);
1124 	rx_buffer->page_offset ^= truesize;
1125 #else
1126 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1127 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1128 				SKB_DATA_ALIGN(size);
1129 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1130 			rx_buffer->page_offset, size, truesize);
1131 	rx_buffer->page_offset += truesize;
1132 #endif
1133 }
1134 
1135 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1136 				     struct igc_rx_buffer *rx_buffer,
1137 				     union igc_adv_rx_desc *rx_desc,
1138 				     unsigned int size)
1139 {
1140 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1141 #if (PAGE_SIZE < 8192)
1142 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1143 #else
1144 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1145 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1146 #endif
1147 	struct sk_buff *skb;
1148 
1149 	/* prefetch first cache line of first page */
1150 	prefetch(va);
1151 #if L1_CACHE_BYTES < 128
1152 	prefetch(va + L1_CACHE_BYTES);
1153 #endif
1154 
1155 	/* build an skb around the page buffer */
1156 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1157 	if (unlikely(!skb))
1158 		return NULL;
1159 
1160 	/* update pointers within the skb to store the data */
1161 	skb_reserve(skb, IGC_SKB_PAD);
1162 	__skb_put(skb, size);
1163 
1164 	/* update buffer offset */
1165 #if (PAGE_SIZE < 8192)
1166 	rx_buffer->page_offset ^= truesize;
1167 #else
1168 	rx_buffer->page_offset += truesize;
1169 #endif
1170 
1171 	return skb;
1172 }
1173 
1174 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1175 					 struct igc_rx_buffer *rx_buffer,
1176 					 union igc_adv_rx_desc *rx_desc,
1177 					 unsigned int size)
1178 {
1179 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1180 #if (PAGE_SIZE < 8192)
1181 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1182 #else
1183 	unsigned int truesize = SKB_DATA_ALIGN(size);
1184 #endif
1185 	unsigned int headlen;
1186 	struct sk_buff *skb;
1187 
1188 	/* prefetch first cache line of first page */
1189 	prefetch(va);
1190 #if L1_CACHE_BYTES < 128
1191 	prefetch(va + L1_CACHE_BYTES);
1192 #endif
1193 
1194 	/* allocate a skb to store the frags */
1195 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1196 	if (unlikely(!skb))
1197 		return NULL;
1198 
1199 	/* Determine available headroom for copy */
1200 	headlen = size;
1201 	if (headlen > IGC_RX_HDR_LEN)
1202 		headlen = eth_get_headlen(va, IGC_RX_HDR_LEN);
1203 
1204 	/* align pull length to size of long to optimize memcpy performance */
1205 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1206 
1207 	/* update all of the pointers */
1208 	size -= headlen;
1209 	if (size) {
1210 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1211 				(va + headlen) - page_address(rx_buffer->page),
1212 				size, truesize);
1213 #if (PAGE_SIZE < 8192)
1214 		rx_buffer->page_offset ^= truesize;
1215 #else
1216 		rx_buffer->page_offset += truesize;
1217 #endif
1218 	} else {
1219 		rx_buffer->pagecnt_bias++;
1220 	}
1221 
1222 	return skb;
1223 }
1224 
1225 /**
1226  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1227  * @rx_ring: rx descriptor ring to store buffers on
1228  * @old_buff: donor buffer to have page reused
1229  *
1230  * Synchronizes page for reuse by the adapter
1231  */
1232 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1233 			      struct igc_rx_buffer *old_buff)
1234 {
1235 	u16 nta = rx_ring->next_to_alloc;
1236 	struct igc_rx_buffer *new_buff;
1237 
1238 	new_buff = &rx_ring->rx_buffer_info[nta];
1239 
1240 	/* update, and store next to alloc */
1241 	nta++;
1242 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1243 
1244 	/* Transfer page from old buffer to new buffer.
1245 	 * Move each member individually to avoid possible store
1246 	 * forwarding stalls.
1247 	 */
1248 	new_buff->dma		= old_buff->dma;
1249 	new_buff->page		= old_buff->page;
1250 	new_buff->page_offset	= old_buff->page_offset;
1251 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1252 }
1253 
1254 static inline bool igc_page_is_reserved(struct page *page)
1255 {
1256 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1257 }
1258 
1259 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1260 {
1261 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1262 	struct page *page = rx_buffer->page;
1263 
1264 	/* avoid re-using remote pages */
1265 	if (unlikely(igc_page_is_reserved(page)))
1266 		return false;
1267 
1268 #if (PAGE_SIZE < 8192)
1269 	/* if we are only owner of page we can reuse it */
1270 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1271 		return false;
1272 #else
1273 #define IGC_LAST_OFFSET \
1274 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1275 
1276 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1277 		return false;
1278 #endif
1279 
1280 	/* If we have drained the page fragment pool we need to update
1281 	 * the pagecnt_bias and page count so that we fully restock the
1282 	 * number of references the driver holds.
1283 	 */
1284 	if (unlikely(!pagecnt_bias)) {
1285 		page_ref_add(page, USHRT_MAX);
1286 		rx_buffer->pagecnt_bias = USHRT_MAX;
1287 	}
1288 
1289 	return true;
1290 }
1291 
1292 /**
1293  * igc_is_non_eop - process handling of non-EOP buffers
1294  * @rx_ring: Rx ring being processed
1295  * @rx_desc: Rx descriptor for current buffer
1296  * @skb: current socket buffer containing buffer in progress
1297  *
1298  * This function updates next to clean.  If the buffer is an EOP buffer
1299  * this function exits returning false, otherwise it will place the
1300  * sk_buff in the next buffer to be chained and return true indicating
1301  * that this is in fact a non-EOP buffer.
1302  */
1303 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1304 			   union igc_adv_rx_desc *rx_desc)
1305 {
1306 	u32 ntc = rx_ring->next_to_clean + 1;
1307 
1308 	/* fetch, update, and store next to clean */
1309 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1310 	rx_ring->next_to_clean = ntc;
1311 
1312 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1313 
1314 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1315 		return false;
1316 
1317 	return true;
1318 }
1319 
1320 /**
1321  * igc_cleanup_headers - Correct corrupted or empty headers
1322  * @rx_ring: rx descriptor ring packet is being transacted on
1323  * @rx_desc: pointer to the EOP Rx descriptor
1324  * @skb: pointer to current skb being fixed
1325  *
1326  * Address the case where we are pulling data in on pages only
1327  * and as such no data is present in the skb header.
1328  *
1329  * In addition if skb is not at least 60 bytes we need to pad it so that
1330  * it is large enough to qualify as a valid Ethernet frame.
1331  *
1332  * Returns true if an error was encountered and skb was freed.
1333  */
1334 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1335 				union igc_adv_rx_desc *rx_desc,
1336 				struct sk_buff *skb)
1337 {
1338 	if (unlikely((igc_test_staterr(rx_desc,
1339 				       IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1340 		struct net_device *netdev = rx_ring->netdev;
1341 
1342 		if (!(netdev->features & NETIF_F_RXALL)) {
1343 			dev_kfree_skb_any(skb);
1344 			return true;
1345 		}
1346 	}
1347 
1348 	/* if eth_skb_pad returns an error the skb was freed */
1349 	if (eth_skb_pad(skb))
1350 		return true;
1351 
1352 	return false;
1353 }
1354 
1355 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1356 			      struct igc_rx_buffer *rx_buffer)
1357 {
1358 	if (igc_can_reuse_rx_page(rx_buffer)) {
1359 		/* hand second half of page back to the ring */
1360 		igc_reuse_rx_page(rx_ring, rx_buffer);
1361 	} else {
1362 		/* We are not reusing the buffer so unmap it and free
1363 		 * any references we are holding to it
1364 		 */
1365 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1366 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1367 				     IGC_RX_DMA_ATTR);
1368 		__page_frag_cache_drain(rx_buffer->page,
1369 					rx_buffer->pagecnt_bias);
1370 	}
1371 
1372 	/* clear contents of rx_buffer */
1373 	rx_buffer->page = NULL;
1374 }
1375 
1376 /**
1377  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1378  * @adapter: address of board private structure
1379  */
1380 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1381 {
1382 	union igc_adv_rx_desc *rx_desc;
1383 	u16 i = rx_ring->next_to_use;
1384 	struct igc_rx_buffer *bi;
1385 	u16 bufsz;
1386 
1387 	/* nothing to do */
1388 	if (!cleaned_count)
1389 		return;
1390 
1391 	rx_desc = IGC_RX_DESC(rx_ring, i);
1392 	bi = &rx_ring->rx_buffer_info[i];
1393 	i -= rx_ring->count;
1394 
1395 	bufsz = igc_rx_bufsz(rx_ring);
1396 
1397 	do {
1398 		if (!igc_alloc_mapped_page(rx_ring, bi))
1399 			break;
1400 
1401 		/* sync the buffer for use by the device */
1402 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1403 						 bi->page_offset, bufsz,
1404 						 DMA_FROM_DEVICE);
1405 
1406 		/* Refresh the desc even if buffer_addrs didn't change
1407 		 * because each write-back erases this info.
1408 		 */
1409 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1410 
1411 		rx_desc++;
1412 		bi++;
1413 		i++;
1414 		if (unlikely(!i)) {
1415 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1416 			bi = rx_ring->rx_buffer_info;
1417 			i -= rx_ring->count;
1418 		}
1419 
1420 		/* clear the length for the next_to_use descriptor */
1421 		rx_desc->wb.upper.length = 0;
1422 
1423 		cleaned_count--;
1424 	} while (cleaned_count);
1425 
1426 	i += rx_ring->count;
1427 
1428 	if (rx_ring->next_to_use != i) {
1429 		/* record the next descriptor to use */
1430 		rx_ring->next_to_use = i;
1431 
1432 		/* update next to alloc since we have filled the ring */
1433 		rx_ring->next_to_alloc = i;
1434 
1435 		/* Force memory writes to complete before letting h/w
1436 		 * know there are new descriptors to fetch.  (Only
1437 		 * applicable for weak-ordered memory model archs,
1438 		 * such as IA-64).
1439 		 */
1440 		wmb();
1441 		writel(i, rx_ring->tail);
1442 	}
1443 }
1444 
1445 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1446 {
1447 	unsigned int total_bytes = 0, total_packets = 0;
1448 	struct igc_ring *rx_ring = q_vector->rx.ring;
1449 	struct sk_buff *skb = rx_ring->skb;
1450 	u16 cleaned_count = igc_desc_unused(rx_ring);
1451 
1452 	while (likely(total_packets < budget)) {
1453 		union igc_adv_rx_desc *rx_desc;
1454 		struct igc_rx_buffer *rx_buffer;
1455 		unsigned int size;
1456 
1457 		/* return some buffers to hardware, one at a time is too slow */
1458 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1459 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
1460 			cleaned_count = 0;
1461 		}
1462 
1463 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1464 		size = le16_to_cpu(rx_desc->wb.upper.length);
1465 		if (!size)
1466 			break;
1467 
1468 		/* This memory barrier is needed to keep us from reading
1469 		 * any other fields out of the rx_desc until we know the
1470 		 * descriptor has been written back
1471 		 */
1472 		dma_rmb();
1473 
1474 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
1475 
1476 		/* retrieve a buffer from the ring */
1477 		if (skb)
1478 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1479 		else if (ring_uses_build_skb(rx_ring))
1480 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1481 		else
1482 			skb = igc_construct_skb(rx_ring, rx_buffer,
1483 						rx_desc, size);
1484 
1485 		/* exit if we failed to retrieve a buffer */
1486 		if (!skb) {
1487 			rx_ring->rx_stats.alloc_failed++;
1488 			rx_buffer->pagecnt_bias++;
1489 			break;
1490 		}
1491 
1492 		igc_put_rx_buffer(rx_ring, rx_buffer);
1493 		cleaned_count++;
1494 
1495 		/* fetch next buffer in frame if non-eop */
1496 		if (igc_is_non_eop(rx_ring, rx_desc))
1497 			continue;
1498 
1499 		/* verify the packet layout is correct */
1500 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1501 			skb = NULL;
1502 			continue;
1503 		}
1504 
1505 		/* probably a little skewed due to removing CRC */
1506 		total_bytes += skb->len;
1507 
1508 		/* populate checksum, timestamp, VLAN, and protocol */
1509 		igc_process_skb_fields(rx_ring, rx_desc, skb);
1510 
1511 		napi_gro_receive(&q_vector->napi, skb);
1512 
1513 		/* reset skb pointer */
1514 		skb = NULL;
1515 
1516 		/* update budget accounting */
1517 		total_packets++;
1518 	}
1519 
1520 	/* place incomplete frames back on ring for completion */
1521 	rx_ring->skb = skb;
1522 
1523 	u64_stats_update_begin(&rx_ring->rx_syncp);
1524 	rx_ring->rx_stats.packets += total_packets;
1525 	rx_ring->rx_stats.bytes += total_bytes;
1526 	u64_stats_update_end(&rx_ring->rx_syncp);
1527 	q_vector->rx.total_packets += total_packets;
1528 	q_vector->rx.total_bytes += total_bytes;
1529 
1530 	if (cleaned_count)
1531 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
1532 
1533 	return total_packets;
1534 }
1535 
1536 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1537 {
1538 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1539 }
1540 
1541 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1542 				  struct igc_rx_buffer *bi)
1543 {
1544 	struct page *page = bi->page;
1545 	dma_addr_t dma;
1546 
1547 	/* since we are recycling buffers we should seldom need to alloc */
1548 	if (likely(page))
1549 		return true;
1550 
1551 	/* alloc new page for storage */
1552 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1553 	if (unlikely(!page)) {
1554 		rx_ring->rx_stats.alloc_failed++;
1555 		return false;
1556 	}
1557 
1558 	/* map page for use */
1559 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1560 				 igc_rx_pg_size(rx_ring),
1561 				 DMA_FROM_DEVICE,
1562 				 IGC_RX_DMA_ATTR);
1563 
1564 	/* if mapping failed free memory back to system since
1565 	 * there isn't much point in holding memory we can't use
1566 	 */
1567 	if (dma_mapping_error(rx_ring->dev, dma)) {
1568 		__free_page(page);
1569 
1570 		rx_ring->rx_stats.alloc_failed++;
1571 		return false;
1572 	}
1573 
1574 	bi->dma = dma;
1575 	bi->page = page;
1576 	bi->page_offset = igc_rx_offset(rx_ring);
1577 	bi->pagecnt_bias = 1;
1578 
1579 	return true;
1580 }
1581 
1582 /**
1583  * igc_clean_tx_irq - Reclaim resources after transmit completes
1584  * @q_vector: pointer to q_vector containing needed info
1585  * @napi_budget: Used to determine if we are in netpoll
1586  *
1587  * returns true if ring is completely cleaned
1588  */
1589 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1590 {
1591 	struct igc_adapter *adapter = q_vector->adapter;
1592 	unsigned int total_bytes = 0, total_packets = 0;
1593 	unsigned int budget = q_vector->tx.work_limit;
1594 	struct igc_ring *tx_ring = q_vector->tx.ring;
1595 	unsigned int i = tx_ring->next_to_clean;
1596 	struct igc_tx_buffer *tx_buffer;
1597 	union igc_adv_tx_desc *tx_desc;
1598 
1599 	if (test_bit(__IGC_DOWN, &adapter->state))
1600 		return true;
1601 
1602 	tx_buffer = &tx_ring->tx_buffer_info[i];
1603 	tx_desc = IGC_TX_DESC(tx_ring, i);
1604 	i -= tx_ring->count;
1605 
1606 	do {
1607 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
1608 
1609 		/* if next_to_watch is not set then there is no work pending */
1610 		if (!eop_desc)
1611 			break;
1612 
1613 		/* prevent any other reads prior to eop_desc */
1614 		smp_rmb();
1615 
1616 		/* if DD is not set pending work has not been completed */
1617 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
1618 			break;
1619 
1620 		/* clear next_to_watch to prevent false hangs */
1621 		tx_buffer->next_to_watch = NULL;
1622 
1623 		/* update the statistics for this packet */
1624 		total_bytes += tx_buffer->bytecount;
1625 		total_packets += tx_buffer->gso_segs;
1626 
1627 		/* free the skb */
1628 		napi_consume_skb(tx_buffer->skb, napi_budget);
1629 
1630 		/* unmap skb header data */
1631 		dma_unmap_single(tx_ring->dev,
1632 				 dma_unmap_addr(tx_buffer, dma),
1633 				 dma_unmap_len(tx_buffer, len),
1634 				 DMA_TO_DEVICE);
1635 
1636 		/* clear tx_buffer data */
1637 		dma_unmap_len_set(tx_buffer, len, 0);
1638 
1639 		/* clear last DMA location and unmap remaining buffers */
1640 		while (tx_desc != eop_desc) {
1641 			tx_buffer++;
1642 			tx_desc++;
1643 			i++;
1644 			if (unlikely(!i)) {
1645 				i -= tx_ring->count;
1646 				tx_buffer = tx_ring->tx_buffer_info;
1647 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1648 			}
1649 
1650 			/* unmap any remaining paged data */
1651 			if (dma_unmap_len(tx_buffer, len)) {
1652 				dma_unmap_page(tx_ring->dev,
1653 					       dma_unmap_addr(tx_buffer, dma),
1654 					       dma_unmap_len(tx_buffer, len),
1655 					       DMA_TO_DEVICE);
1656 				dma_unmap_len_set(tx_buffer, len, 0);
1657 			}
1658 		}
1659 
1660 		/* move us one more past the eop_desc for start of next pkt */
1661 		tx_buffer++;
1662 		tx_desc++;
1663 		i++;
1664 		if (unlikely(!i)) {
1665 			i -= tx_ring->count;
1666 			tx_buffer = tx_ring->tx_buffer_info;
1667 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1668 		}
1669 
1670 		/* issue prefetch for next Tx descriptor */
1671 		prefetch(tx_desc);
1672 
1673 		/* update budget accounting */
1674 		budget--;
1675 	} while (likely(budget));
1676 
1677 	netdev_tx_completed_queue(txring_txq(tx_ring),
1678 				  total_packets, total_bytes);
1679 
1680 	i += tx_ring->count;
1681 	tx_ring->next_to_clean = i;
1682 	u64_stats_update_begin(&tx_ring->tx_syncp);
1683 	tx_ring->tx_stats.bytes += total_bytes;
1684 	tx_ring->tx_stats.packets += total_packets;
1685 	u64_stats_update_end(&tx_ring->tx_syncp);
1686 	q_vector->tx.total_bytes += total_bytes;
1687 	q_vector->tx.total_packets += total_packets;
1688 
1689 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
1690 		struct igc_hw *hw = &adapter->hw;
1691 
1692 		/* Detect a transmit hang in hardware, this serializes the
1693 		 * check with the clearing of time_stamp and movement of i
1694 		 */
1695 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
1696 		if (tx_buffer->next_to_watch &&
1697 		    time_after(jiffies, tx_buffer->time_stamp +
1698 		    (adapter->tx_timeout_factor * HZ)) &&
1699 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
1700 			/* detected Tx unit hang */
1701 			dev_err(tx_ring->dev,
1702 				"Detected Tx Unit Hang\n"
1703 				"  Tx Queue             <%d>\n"
1704 				"  TDH                  <%x>\n"
1705 				"  TDT                  <%x>\n"
1706 				"  next_to_use          <%x>\n"
1707 				"  next_to_clean        <%x>\n"
1708 				"buffer_info[next_to_clean]\n"
1709 				"  time_stamp           <%lx>\n"
1710 				"  next_to_watch        <%p>\n"
1711 				"  jiffies              <%lx>\n"
1712 				"  desc.status          <%x>\n",
1713 				tx_ring->queue_index,
1714 				rd32(IGC_TDH(tx_ring->reg_idx)),
1715 				readl(tx_ring->tail),
1716 				tx_ring->next_to_use,
1717 				tx_ring->next_to_clean,
1718 				tx_buffer->time_stamp,
1719 				tx_buffer->next_to_watch,
1720 				jiffies,
1721 				tx_buffer->next_to_watch->wb.status);
1722 			netif_stop_subqueue(tx_ring->netdev,
1723 					    tx_ring->queue_index);
1724 
1725 			/* we are about to reset, no point in enabling stuff */
1726 			return true;
1727 		}
1728 	}
1729 
1730 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
1731 	if (unlikely(total_packets &&
1732 		     netif_carrier_ok(tx_ring->netdev) &&
1733 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
1734 		/* Make sure that anybody stopping the queue after this
1735 		 * sees the new next_to_clean.
1736 		 */
1737 		smp_mb();
1738 		if (__netif_subqueue_stopped(tx_ring->netdev,
1739 					     tx_ring->queue_index) &&
1740 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
1741 			netif_wake_subqueue(tx_ring->netdev,
1742 					    tx_ring->queue_index);
1743 
1744 			u64_stats_update_begin(&tx_ring->tx_syncp);
1745 			tx_ring->tx_stats.restart_queue++;
1746 			u64_stats_update_end(&tx_ring->tx_syncp);
1747 		}
1748 	}
1749 
1750 	return !!budget;
1751 }
1752 
1753 /**
1754  * igc_up - Open the interface and prepare it to handle traffic
1755  * @adapter: board private structure
1756  */
1757 void igc_up(struct igc_adapter *adapter)
1758 {
1759 	struct igc_hw *hw = &adapter->hw;
1760 	int i = 0;
1761 
1762 	/* hardware has been reset, we need to reload some things */
1763 	igc_configure(adapter);
1764 
1765 	clear_bit(__IGC_DOWN, &adapter->state);
1766 
1767 	for (i = 0; i < adapter->num_q_vectors; i++)
1768 		napi_enable(&adapter->q_vector[i]->napi);
1769 
1770 	if (adapter->msix_entries)
1771 		igc_configure_msix(adapter);
1772 	else
1773 		igc_assign_vector(adapter->q_vector[0], 0);
1774 
1775 	/* Clear any pending interrupts. */
1776 	rd32(IGC_ICR);
1777 	igc_irq_enable(adapter);
1778 
1779 	netif_tx_start_all_queues(adapter->netdev);
1780 
1781 	/* start the watchdog. */
1782 	hw->mac.get_link_status = 1;
1783 	schedule_work(&adapter->watchdog_task);
1784 }
1785 
1786 /**
1787  * igc_update_stats - Update the board statistics counters
1788  * @adapter: board private structure
1789  */
1790 void igc_update_stats(struct igc_adapter *adapter)
1791 {
1792 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
1793 	struct pci_dev *pdev = adapter->pdev;
1794 	struct igc_hw *hw = &adapter->hw;
1795 	u64 _bytes, _packets;
1796 	u64 bytes, packets;
1797 	unsigned int start;
1798 	u32 mpc;
1799 	int i;
1800 
1801 	/* Prevent stats update while adapter is being reset, or if the pci
1802 	 * connection is down.
1803 	 */
1804 	if (adapter->link_speed == 0)
1805 		return;
1806 	if (pci_channel_offline(pdev))
1807 		return;
1808 
1809 	packets = 0;
1810 	bytes = 0;
1811 
1812 	rcu_read_lock();
1813 	for (i = 0; i < adapter->num_rx_queues; i++) {
1814 		struct igc_ring *ring = adapter->rx_ring[i];
1815 		u32 rqdpc = rd32(IGC_RQDPC(i));
1816 
1817 		if (hw->mac.type >= igc_i225)
1818 			wr32(IGC_RQDPC(i), 0);
1819 
1820 		if (rqdpc) {
1821 			ring->rx_stats.drops += rqdpc;
1822 			net_stats->rx_fifo_errors += rqdpc;
1823 		}
1824 
1825 		do {
1826 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
1827 			_bytes = ring->rx_stats.bytes;
1828 			_packets = ring->rx_stats.packets;
1829 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
1830 		bytes += _bytes;
1831 		packets += _packets;
1832 	}
1833 
1834 	net_stats->rx_bytes = bytes;
1835 	net_stats->rx_packets = packets;
1836 
1837 	packets = 0;
1838 	bytes = 0;
1839 	for (i = 0; i < adapter->num_tx_queues; i++) {
1840 		struct igc_ring *ring = adapter->tx_ring[i];
1841 
1842 		do {
1843 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
1844 			_bytes = ring->tx_stats.bytes;
1845 			_packets = ring->tx_stats.packets;
1846 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
1847 		bytes += _bytes;
1848 		packets += _packets;
1849 	}
1850 	net_stats->tx_bytes = bytes;
1851 	net_stats->tx_packets = packets;
1852 	rcu_read_unlock();
1853 
1854 	/* read stats registers */
1855 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
1856 	adapter->stats.gprc += rd32(IGC_GPRC);
1857 	adapter->stats.gorc += rd32(IGC_GORCL);
1858 	rd32(IGC_GORCH); /* clear GORCL */
1859 	adapter->stats.bprc += rd32(IGC_BPRC);
1860 	adapter->stats.mprc += rd32(IGC_MPRC);
1861 	adapter->stats.roc += rd32(IGC_ROC);
1862 
1863 	adapter->stats.prc64 += rd32(IGC_PRC64);
1864 	adapter->stats.prc127 += rd32(IGC_PRC127);
1865 	adapter->stats.prc255 += rd32(IGC_PRC255);
1866 	adapter->stats.prc511 += rd32(IGC_PRC511);
1867 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
1868 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
1869 	adapter->stats.symerrs += rd32(IGC_SYMERRS);
1870 	adapter->stats.sec += rd32(IGC_SEC);
1871 
1872 	mpc = rd32(IGC_MPC);
1873 	adapter->stats.mpc += mpc;
1874 	net_stats->rx_fifo_errors += mpc;
1875 	adapter->stats.scc += rd32(IGC_SCC);
1876 	adapter->stats.ecol += rd32(IGC_ECOL);
1877 	adapter->stats.mcc += rd32(IGC_MCC);
1878 	adapter->stats.latecol += rd32(IGC_LATECOL);
1879 	adapter->stats.dc += rd32(IGC_DC);
1880 	adapter->stats.rlec += rd32(IGC_RLEC);
1881 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
1882 	adapter->stats.xontxc += rd32(IGC_XONTXC);
1883 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
1884 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
1885 	adapter->stats.fcruc += rd32(IGC_FCRUC);
1886 	adapter->stats.gptc += rd32(IGC_GPTC);
1887 	adapter->stats.gotc += rd32(IGC_GOTCL);
1888 	rd32(IGC_GOTCH); /* clear GOTCL */
1889 	adapter->stats.rnbc += rd32(IGC_RNBC);
1890 	adapter->stats.ruc += rd32(IGC_RUC);
1891 	adapter->stats.rfc += rd32(IGC_RFC);
1892 	adapter->stats.rjc += rd32(IGC_RJC);
1893 	adapter->stats.tor += rd32(IGC_TORH);
1894 	adapter->stats.tot += rd32(IGC_TOTH);
1895 	adapter->stats.tpr += rd32(IGC_TPR);
1896 
1897 	adapter->stats.ptc64 += rd32(IGC_PTC64);
1898 	adapter->stats.ptc127 += rd32(IGC_PTC127);
1899 	adapter->stats.ptc255 += rd32(IGC_PTC255);
1900 	adapter->stats.ptc511 += rd32(IGC_PTC511);
1901 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
1902 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
1903 
1904 	adapter->stats.mptc += rd32(IGC_MPTC);
1905 	adapter->stats.bptc += rd32(IGC_BPTC);
1906 
1907 	adapter->stats.tpt += rd32(IGC_TPT);
1908 	adapter->stats.colc += rd32(IGC_COLC);
1909 
1910 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
1911 
1912 	adapter->stats.tsctc += rd32(IGC_TSCTC);
1913 	adapter->stats.tsctfc += rd32(IGC_TSCTFC);
1914 
1915 	adapter->stats.iac += rd32(IGC_IAC);
1916 	adapter->stats.icrxoc += rd32(IGC_ICRXOC);
1917 	adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
1918 	adapter->stats.icrxatc += rd32(IGC_ICRXATC);
1919 	adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
1920 	adapter->stats.ictxatc += rd32(IGC_ICTXATC);
1921 	adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
1922 	adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
1923 	adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
1924 
1925 	/* Fill out the OS statistics structure */
1926 	net_stats->multicast = adapter->stats.mprc;
1927 	net_stats->collisions = adapter->stats.colc;
1928 
1929 	/* Rx Errors */
1930 
1931 	/* RLEC on some newer hardware can be incorrect so build
1932 	 * our own version based on RUC and ROC
1933 	 */
1934 	net_stats->rx_errors = adapter->stats.rxerrc +
1935 		adapter->stats.crcerrs + adapter->stats.algnerrc +
1936 		adapter->stats.ruc + adapter->stats.roc +
1937 		adapter->stats.cexterr;
1938 	net_stats->rx_length_errors = adapter->stats.ruc +
1939 				      adapter->stats.roc;
1940 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
1941 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
1942 	net_stats->rx_missed_errors = adapter->stats.mpc;
1943 
1944 	/* Tx Errors */
1945 	net_stats->tx_errors = adapter->stats.ecol +
1946 			       adapter->stats.latecol;
1947 	net_stats->tx_aborted_errors = adapter->stats.ecol;
1948 	net_stats->tx_window_errors = adapter->stats.latecol;
1949 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
1950 
1951 	/* Tx Dropped needs to be maintained elsewhere */
1952 
1953 	/* Management Stats */
1954 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
1955 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
1956 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
1957 }
1958 
1959 static void igc_nfc_filter_exit(struct igc_adapter *adapter)
1960 {
1961 	struct igc_nfc_filter *rule;
1962 
1963 	spin_lock(&adapter->nfc_lock);
1964 
1965 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
1966 		igc_erase_filter(adapter, rule);
1967 
1968 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
1969 		igc_erase_filter(adapter, rule);
1970 
1971 	spin_unlock(&adapter->nfc_lock);
1972 }
1973 
1974 static void igc_nfc_filter_restore(struct igc_adapter *adapter)
1975 {
1976 	struct igc_nfc_filter *rule;
1977 
1978 	spin_lock(&adapter->nfc_lock);
1979 
1980 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
1981 		igc_add_filter(adapter, rule);
1982 
1983 	spin_unlock(&adapter->nfc_lock);
1984 }
1985 
1986 /**
1987  * igc_down - Close the interface
1988  * @adapter: board private structure
1989  */
1990 void igc_down(struct igc_adapter *adapter)
1991 {
1992 	struct net_device *netdev = adapter->netdev;
1993 	struct igc_hw *hw = &adapter->hw;
1994 	u32 tctl, rctl;
1995 	int i = 0;
1996 
1997 	set_bit(__IGC_DOWN, &adapter->state);
1998 
1999 	/* disable receives in the hardware */
2000 	rctl = rd32(IGC_RCTL);
2001 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
2002 	/* flush and sleep below */
2003 
2004 	igc_nfc_filter_exit(adapter);
2005 
2006 	/* set trans_start so we don't get spurious watchdogs during reset */
2007 	netif_trans_update(netdev);
2008 
2009 	netif_carrier_off(netdev);
2010 	netif_tx_stop_all_queues(netdev);
2011 
2012 	/* disable transmits in the hardware */
2013 	tctl = rd32(IGC_TCTL);
2014 	tctl &= ~IGC_TCTL_EN;
2015 	wr32(IGC_TCTL, tctl);
2016 	/* flush both disables and wait for them to finish */
2017 	wrfl();
2018 	usleep_range(10000, 20000);
2019 
2020 	igc_irq_disable(adapter);
2021 
2022 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2023 
2024 	for (i = 0; i < adapter->num_q_vectors; i++) {
2025 		if (adapter->q_vector[i]) {
2026 			napi_synchronize(&adapter->q_vector[i]->napi);
2027 			napi_disable(&adapter->q_vector[i]->napi);
2028 		}
2029 	}
2030 
2031 	del_timer_sync(&adapter->watchdog_timer);
2032 	del_timer_sync(&adapter->phy_info_timer);
2033 
2034 	/* record the stats before reset*/
2035 	spin_lock(&adapter->stats64_lock);
2036 	igc_update_stats(adapter);
2037 	spin_unlock(&adapter->stats64_lock);
2038 
2039 	adapter->link_speed = 0;
2040 	adapter->link_duplex = 0;
2041 
2042 	if (!pci_channel_offline(adapter->pdev))
2043 		igc_reset(adapter);
2044 
2045 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2046 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
2047 
2048 	igc_clean_all_tx_rings(adapter);
2049 	igc_clean_all_rx_rings(adapter);
2050 }
2051 
2052 void igc_reinit_locked(struct igc_adapter *adapter)
2053 {
2054 	WARN_ON(in_interrupt());
2055 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2056 		usleep_range(1000, 2000);
2057 	igc_down(adapter);
2058 	igc_up(adapter);
2059 	clear_bit(__IGC_RESETTING, &adapter->state);
2060 }
2061 
2062 static void igc_reset_task(struct work_struct *work)
2063 {
2064 	struct igc_adapter *adapter;
2065 
2066 	adapter = container_of(work, struct igc_adapter, reset_task);
2067 
2068 	netdev_err(adapter->netdev, "Reset adapter\n");
2069 	igc_reinit_locked(adapter);
2070 }
2071 
2072 /**
2073  * igc_change_mtu - Change the Maximum Transfer Unit
2074  * @netdev: network interface device structure
2075  * @new_mtu: new value for maximum frame size
2076  *
2077  * Returns 0 on success, negative on failure
2078  */
2079 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
2080 {
2081 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2082 	struct igc_adapter *adapter = netdev_priv(netdev);
2083 	struct pci_dev *pdev = adapter->pdev;
2084 
2085 	/* adjust max frame to be at least the size of a standard frame */
2086 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
2087 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
2088 
2089 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2090 		usleep_range(1000, 2000);
2091 
2092 	/* igc_down has a dependency on max_frame_size */
2093 	adapter->max_frame_size = max_frame;
2094 
2095 	if (netif_running(netdev))
2096 		igc_down(adapter);
2097 
2098 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
2099 		 netdev->mtu, new_mtu);
2100 	netdev->mtu = new_mtu;
2101 
2102 	if (netif_running(netdev))
2103 		igc_up(adapter);
2104 	else
2105 		igc_reset(adapter);
2106 
2107 	clear_bit(__IGC_RESETTING, &adapter->state);
2108 
2109 	return 0;
2110 }
2111 
2112 /**
2113  * igc_get_stats - Get System Network Statistics
2114  * @netdev: network interface device structure
2115  *
2116  * Returns the address of the device statistics structure.
2117  * The statistics are updated here and also from the timer callback.
2118  */
2119 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
2120 {
2121 	struct igc_adapter *adapter = netdev_priv(netdev);
2122 
2123 	if (!test_bit(__IGC_RESETTING, &adapter->state))
2124 		igc_update_stats(adapter);
2125 
2126 	/* only return the current stats */
2127 	return &netdev->stats;
2128 }
2129 
2130 static netdev_features_t igc_fix_features(struct net_device *netdev,
2131 					  netdev_features_t features)
2132 {
2133 	/* Since there is no support for separate Rx/Tx vlan accel
2134 	 * enable/disable make sure Tx flag is always in same state as Rx.
2135 	 */
2136 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2137 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2138 	else
2139 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2140 
2141 	return features;
2142 }
2143 
2144 static int igc_set_features(struct net_device *netdev,
2145 			    netdev_features_t features)
2146 {
2147 	netdev_features_t changed = netdev->features ^ features;
2148 	struct igc_adapter *adapter = netdev_priv(netdev);
2149 
2150 	/* Add VLAN support */
2151 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2152 		return 0;
2153 
2154 	if (!(features & NETIF_F_NTUPLE)) {
2155 		struct hlist_node *node2;
2156 		struct igc_nfc_filter *rule;
2157 
2158 		spin_lock(&adapter->nfc_lock);
2159 		hlist_for_each_entry_safe(rule, node2,
2160 					  &adapter->nfc_filter_list, nfc_node) {
2161 			igc_erase_filter(adapter, rule);
2162 			hlist_del(&rule->nfc_node);
2163 			kfree(rule);
2164 		}
2165 		spin_unlock(&adapter->nfc_lock);
2166 		adapter->nfc_filter_count = 0;
2167 	}
2168 
2169 	netdev->features = features;
2170 
2171 	if (netif_running(netdev))
2172 		igc_reinit_locked(adapter);
2173 	else
2174 		igc_reset(adapter);
2175 
2176 	return 1;
2177 }
2178 
2179 static netdev_features_t
2180 igc_features_check(struct sk_buff *skb, struct net_device *dev,
2181 		   netdev_features_t features)
2182 {
2183 	unsigned int network_hdr_len, mac_hdr_len;
2184 
2185 	/* Make certain the headers can be described by a context descriptor */
2186 	mac_hdr_len = skb_network_header(skb) - skb->data;
2187 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
2188 		return features & ~(NETIF_F_HW_CSUM |
2189 				    NETIF_F_SCTP_CRC |
2190 				    NETIF_F_HW_VLAN_CTAG_TX |
2191 				    NETIF_F_TSO |
2192 				    NETIF_F_TSO6);
2193 
2194 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2195 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
2196 		return features & ~(NETIF_F_HW_CSUM |
2197 				    NETIF_F_SCTP_CRC |
2198 				    NETIF_F_TSO |
2199 				    NETIF_F_TSO6);
2200 
2201 	/* We can only support IPv4 TSO in tunnels if we can mangle the
2202 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2203 	 */
2204 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2205 		features &= ~NETIF_F_TSO;
2206 
2207 	return features;
2208 }
2209 
2210 /**
2211  * igc_configure - configure the hardware for RX and TX
2212  * @adapter: private board structure
2213  */
2214 static void igc_configure(struct igc_adapter *adapter)
2215 {
2216 	struct net_device *netdev = adapter->netdev;
2217 	int i = 0;
2218 
2219 	igc_get_hw_control(adapter);
2220 	igc_set_rx_mode(netdev);
2221 
2222 	igc_setup_tctl(adapter);
2223 	igc_setup_mrqc(adapter);
2224 	igc_setup_rctl(adapter);
2225 
2226 	igc_nfc_filter_restore(adapter);
2227 	igc_configure_tx(adapter);
2228 	igc_configure_rx(adapter);
2229 
2230 	igc_rx_fifo_flush_base(&adapter->hw);
2231 
2232 	/* call igc_desc_unused which always leaves
2233 	 * at least 1 descriptor unused to make sure
2234 	 * next_to_use != next_to_clean
2235 	 */
2236 	for (i = 0; i < adapter->num_rx_queues; i++) {
2237 		struct igc_ring *ring = adapter->rx_ring[i];
2238 
2239 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2240 	}
2241 }
2242 
2243 /**
2244  * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
2245  * @adapter: address of board private structure
2246  * @index: Index of the RAR entry which need to be synced with MAC table
2247  */
2248 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index)
2249 {
2250 	u8 *addr = adapter->mac_table[index].addr;
2251 	struct igc_hw *hw = &adapter->hw;
2252 	u32 rar_low, rar_high;
2253 
2254 	/* HW expects these to be in network order when they are plugged
2255 	 * into the registers which are little endian.  In order to guarantee
2256 	 * that ordering we need to do an leXX_to_cpup here in order to be
2257 	 * ready for the byteswap that occurs with writel
2258 	 */
2259 	rar_low = le32_to_cpup((__le32 *)(addr));
2260 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
2261 
2262 	/* Indicate to hardware the Address is Valid. */
2263 	if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) {
2264 		if (is_valid_ether_addr(addr))
2265 			rar_high |= IGC_RAH_AV;
2266 
2267 		rar_high |= IGC_RAH_POOL_1 <<
2268 			adapter->mac_table[index].queue;
2269 	}
2270 
2271 	wr32(IGC_RAL(index), rar_low);
2272 	wrfl();
2273 	wr32(IGC_RAH(index), rar_high);
2274 	wrfl();
2275 }
2276 
2277 /* Set default MAC address for the PF in the first RAR entry */
2278 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
2279 {
2280 	struct igc_mac_addr *mac_table = &adapter->mac_table[0];
2281 
2282 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
2283 	mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2284 
2285 	igc_rar_set_index(adapter, 0);
2286 }
2287 
2288 /* If the filter to be added and an already existing filter express
2289  * the same address and address type, it should be possible to only
2290  * override the other configurations, for example the queue to steer
2291  * traffic.
2292  */
2293 static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry,
2294 				      const u8 *addr, const u8 flags)
2295 {
2296 	if (!(entry->state & IGC_MAC_STATE_IN_USE))
2297 		return true;
2298 
2299 	if ((entry->state & IGC_MAC_STATE_SRC_ADDR) !=
2300 	    (flags & IGC_MAC_STATE_SRC_ADDR))
2301 		return false;
2302 
2303 	if (!ether_addr_equal(addr, entry->addr))
2304 		return false;
2305 
2306 	return true;
2307 }
2308 
2309 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
2310  * 'flags' is used to indicate what kind of match is made, match is by
2311  * default for the destination address, if matching by source address
2312  * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
2313  */
2314 static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
2315 				    const u8 *addr, const u8 queue,
2316 				    const u8 flags)
2317 {
2318 	struct igc_hw *hw = &adapter->hw;
2319 	int rar_entries = hw->mac.rar_entry_count;
2320 	int i;
2321 
2322 	if (is_zero_ether_addr(addr))
2323 		return -EINVAL;
2324 
2325 	/* Search for the first empty entry in the MAC table.
2326 	 * Do not touch entries at the end of the table reserved for the VF MAC
2327 	 * addresses.
2328 	 */
2329 	for (i = 0; i < rar_entries; i++) {
2330 		if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
2331 					       addr, flags))
2332 			continue;
2333 
2334 		ether_addr_copy(adapter->mac_table[i].addr, addr);
2335 		adapter->mac_table[i].queue = queue;
2336 		adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
2337 
2338 		igc_rar_set_index(adapter, i);
2339 		return i;
2340 	}
2341 
2342 	return -ENOSPC;
2343 }
2344 
2345 int igc_add_mac_steering_filter(struct igc_adapter *adapter,
2346 				const u8 *addr, u8 queue, u8 flags)
2347 {
2348 	return igc_add_mac_filter_flags(adapter, addr, queue,
2349 					IGC_MAC_STATE_QUEUE_STEERING | flags);
2350 }
2351 
2352 /* Remove a MAC filter for 'addr' directing matching traffic to
2353  * 'queue', 'flags' is used to indicate what kind of match need to be
2354  * removed, match is by default for the destination address, if
2355  * matching by source address is to be removed the flag
2356  * IGC_MAC_STATE_SRC_ADDR can be used.
2357  */
2358 static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
2359 				    const u8 *addr, const u8 queue,
2360 				    const u8 flags)
2361 {
2362 	struct igc_hw *hw = &adapter->hw;
2363 	int rar_entries = hw->mac.rar_entry_count;
2364 	int i;
2365 
2366 	if (is_zero_ether_addr(addr))
2367 		return -EINVAL;
2368 
2369 	/* Search for matching entry in the MAC table based on given address
2370 	 * and queue. Do not touch entries at the end of the table reserved
2371 	 * for the VF MAC addresses.
2372 	 */
2373 	for (i = 0; i < rar_entries; i++) {
2374 		if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
2375 			continue;
2376 		if ((adapter->mac_table[i].state & flags) != flags)
2377 			continue;
2378 		if (adapter->mac_table[i].queue != queue)
2379 			continue;
2380 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
2381 			continue;
2382 
2383 		/* When a filter for the default address is "deleted",
2384 		 * we return it to its initial configuration
2385 		 */
2386 		if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
2387 			adapter->mac_table[i].state =
2388 				IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2389 		} else {
2390 			adapter->mac_table[i].state = 0;
2391 			adapter->mac_table[i].queue = 0;
2392 			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
2393 		}
2394 
2395 		igc_rar_set_index(adapter, i);
2396 		return 0;
2397 	}
2398 
2399 	return -ENOENT;
2400 }
2401 
2402 int igc_del_mac_steering_filter(struct igc_adapter *adapter,
2403 				const u8 *addr, u8 queue, u8 flags)
2404 {
2405 	return igc_del_mac_filter_flags(adapter, addr, queue,
2406 					IGC_MAC_STATE_QUEUE_STEERING | flags);
2407 }
2408 
2409 /**
2410  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2411  * @netdev: network interface device structure
2412  *
2413  * The set_rx_mode entry point is called whenever the unicast or multicast
2414  * address lists or the network interface flags are updated.  This routine is
2415  * responsible for configuring the hardware for proper unicast, multicast,
2416  * promiscuous mode, and all-multi behavior.
2417  */
2418 static void igc_set_rx_mode(struct net_device *netdev)
2419 {
2420 }
2421 
2422 /**
2423  * igc_msix_other - msix other interrupt handler
2424  * @irq: interrupt number
2425  * @data: pointer to a q_vector
2426  */
2427 static irqreturn_t igc_msix_other(int irq, void *data)
2428 {
2429 	struct igc_adapter *adapter = data;
2430 	struct igc_hw *hw = &adapter->hw;
2431 	u32 icr = rd32(IGC_ICR);
2432 
2433 	/* reading ICR causes bit 31 of EICR to be cleared */
2434 	if (icr & IGC_ICR_DRSTA)
2435 		schedule_work(&adapter->reset_task);
2436 
2437 	if (icr & IGC_ICR_DOUTSYNC) {
2438 		/* HW is reporting DMA is out of sync */
2439 		adapter->stats.doosync++;
2440 	}
2441 
2442 	if (icr & IGC_ICR_LSC) {
2443 		hw->mac.get_link_status = 1;
2444 		/* guard against interrupt when we're going down */
2445 		if (!test_bit(__IGC_DOWN, &adapter->state))
2446 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
2447 	}
2448 
2449 	wr32(IGC_EIMS, adapter->eims_other);
2450 
2451 	return IRQ_HANDLED;
2452 }
2453 
2454 /**
2455  * igc_write_ivar - configure ivar for given MSI-X vector
2456  * @hw: pointer to the HW structure
2457  * @msix_vector: vector number we are allocating to a given ring
2458  * @index: row index of IVAR register to write within IVAR table
2459  * @offset: column offset of in IVAR, should be multiple of 8
2460  *
2461  * The IVAR table consists of 2 columns,
2462  * each containing an cause allocation for an Rx and Tx ring, and a
2463  * variable number of rows depending on the number of queues supported.
2464  */
2465 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2466 			   int index, int offset)
2467 {
2468 	u32 ivar = array_rd32(IGC_IVAR0, index);
2469 
2470 	/* clear any bits that are currently set */
2471 	ivar &= ~((u32)0xFF << offset);
2472 
2473 	/* write vector and valid bit */
2474 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2475 
2476 	array_wr32(IGC_IVAR0, index, ivar);
2477 }
2478 
2479 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2480 {
2481 	struct igc_adapter *adapter = q_vector->adapter;
2482 	struct igc_hw *hw = &adapter->hw;
2483 	int rx_queue = IGC_N0_QUEUE;
2484 	int tx_queue = IGC_N0_QUEUE;
2485 
2486 	if (q_vector->rx.ring)
2487 		rx_queue = q_vector->rx.ring->reg_idx;
2488 	if (q_vector->tx.ring)
2489 		tx_queue = q_vector->tx.ring->reg_idx;
2490 
2491 	switch (hw->mac.type) {
2492 	case igc_i225:
2493 		if (rx_queue > IGC_N0_QUEUE)
2494 			igc_write_ivar(hw, msix_vector,
2495 				       rx_queue >> 1,
2496 				       (rx_queue & 0x1) << 4);
2497 		if (tx_queue > IGC_N0_QUEUE)
2498 			igc_write_ivar(hw, msix_vector,
2499 				       tx_queue >> 1,
2500 				       ((tx_queue & 0x1) << 4) + 8);
2501 		q_vector->eims_value = BIT(msix_vector);
2502 		break;
2503 	default:
2504 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2505 		break;
2506 	}
2507 
2508 	/* add q_vector eims value to global eims_enable_mask */
2509 	adapter->eims_enable_mask |= q_vector->eims_value;
2510 
2511 	/* configure q_vector to set itr on first interrupt */
2512 	q_vector->set_itr = 1;
2513 }
2514 
2515 /**
2516  * igc_configure_msix - Configure MSI-X hardware
2517  * @adapter: Pointer to adapter structure
2518  *
2519  * igc_configure_msix sets up the hardware to properly
2520  * generate MSI-X interrupts.
2521  */
2522 static void igc_configure_msix(struct igc_adapter *adapter)
2523 {
2524 	struct igc_hw *hw = &adapter->hw;
2525 	int i, vector = 0;
2526 	u32 tmp;
2527 
2528 	adapter->eims_enable_mask = 0;
2529 
2530 	/* set vector for other causes, i.e. link changes */
2531 	switch (hw->mac.type) {
2532 	case igc_i225:
2533 		/* Turn on MSI-X capability first, or our settings
2534 		 * won't stick.  And it will take days to debug.
2535 		 */
2536 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2537 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2538 		     IGC_GPIE_NSICR);
2539 
2540 		/* enable msix_other interrupt */
2541 		adapter->eims_other = BIT(vector);
2542 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2543 
2544 		wr32(IGC_IVAR_MISC, tmp);
2545 		break;
2546 	default:
2547 		/* do nothing, since nothing else supports MSI-X */
2548 		break;
2549 	} /* switch (hw->mac.type) */
2550 
2551 	adapter->eims_enable_mask |= adapter->eims_other;
2552 
2553 	for (i = 0; i < adapter->num_q_vectors; i++)
2554 		igc_assign_vector(adapter->q_vector[i], vector++);
2555 
2556 	wrfl();
2557 }
2558 
2559 static irqreturn_t igc_msix_ring(int irq, void *data)
2560 {
2561 	struct igc_q_vector *q_vector = data;
2562 
2563 	/* Write the ITR value calculated from the previous interrupt. */
2564 	igc_write_itr(q_vector);
2565 
2566 	napi_schedule(&q_vector->napi);
2567 
2568 	return IRQ_HANDLED;
2569 }
2570 
2571 /**
2572  * igc_request_msix - Initialize MSI-X interrupts
2573  * @adapter: Pointer to adapter structure
2574  *
2575  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
2576  * kernel.
2577  */
2578 static int igc_request_msix(struct igc_adapter *adapter)
2579 {
2580 	int i = 0, err = 0, vector = 0, free_vector = 0;
2581 	struct net_device *netdev = adapter->netdev;
2582 
2583 	err = request_irq(adapter->msix_entries[vector].vector,
2584 			  &igc_msix_other, 0, netdev->name, adapter);
2585 	if (err)
2586 		goto err_out;
2587 
2588 	for (i = 0; i < adapter->num_q_vectors; i++) {
2589 		struct igc_q_vector *q_vector = adapter->q_vector[i];
2590 
2591 		vector++;
2592 
2593 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
2594 
2595 		if (q_vector->rx.ring && q_vector->tx.ring)
2596 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
2597 				q_vector->rx.ring->queue_index);
2598 		else if (q_vector->tx.ring)
2599 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
2600 				q_vector->tx.ring->queue_index);
2601 		else if (q_vector->rx.ring)
2602 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
2603 				q_vector->rx.ring->queue_index);
2604 		else
2605 			sprintf(q_vector->name, "%s-unused", netdev->name);
2606 
2607 		err = request_irq(adapter->msix_entries[vector].vector,
2608 				  igc_msix_ring, 0, q_vector->name,
2609 				  q_vector);
2610 		if (err)
2611 			goto err_free;
2612 	}
2613 
2614 	igc_configure_msix(adapter);
2615 	return 0;
2616 
2617 err_free:
2618 	/* free already assigned IRQs */
2619 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
2620 
2621 	vector--;
2622 	for (i = 0; i < vector; i++) {
2623 		free_irq(adapter->msix_entries[free_vector++].vector,
2624 			 adapter->q_vector[i]);
2625 	}
2626 err_out:
2627 	return err;
2628 }
2629 
2630 /**
2631  * igc_reset_q_vector - Reset config for interrupt vector
2632  * @adapter: board private structure to initialize
2633  * @v_idx: Index of vector to be reset
2634  *
2635  * If NAPI is enabled it will delete any references to the
2636  * NAPI struct. This is preparation for igc_free_q_vector.
2637  */
2638 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2639 {
2640 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2641 
2642 	/* if we're coming from igc_set_interrupt_capability, the vectors are
2643 	 * not yet allocated
2644 	 */
2645 	if (!q_vector)
2646 		return;
2647 
2648 	if (q_vector->tx.ring)
2649 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2650 
2651 	if (q_vector->rx.ring)
2652 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2653 
2654 	netif_napi_del(&q_vector->napi);
2655 }
2656 
2657 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
2658 {
2659 	int v_idx = adapter->num_q_vectors;
2660 
2661 	if (adapter->msix_entries) {
2662 		pci_disable_msix(adapter->pdev);
2663 		kfree(adapter->msix_entries);
2664 		adapter->msix_entries = NULL;
2665 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
2666 		pci_disable_msi(adapter->pdev);
2667 	}
2668 
2669 	while (v_idx--)
2670 		igc_reset_q_vector(adapter, v_idx);
2671 }
2672 
2673 /**
2674  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
2675  * @adapter: Pointer to adapter structure
2676  *
2677  * This function resets the device so that it has 0 rx queues, tx queues, and
2678  * MSI-X interrupts allocated.
2679  */
2680 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
2681 {
2682 	igc_free_q_vectors(adapter);
2683 	igc_reset_interrupt_capability(adapter);
2684 }
2685 
2686 /**
2687  * igc_free_q_vectors - Free memory allocated for interrupt vectors
2688  * @adapter: board private structure to initialize
2689  *
2690  * This function frees the memory allocated to the q_vectors.  In addition if
2691  * NAPI is enabled it will delete any references to the NAPI struct prior
2692  * to freeing the q_vector.
2693  */
2694 static void igc_free_q_vectors(struct igc_adapter *adapter)
2695 {
2696 	int v_idx = adapter->num_q_vectors;
2697 
2698 	adapter->num_tx_queues = 0;
2699 	adapter->num_rx_queues = 0;
2700 	adapter->num_q_vectors = 0;
2701 
2702 	while (v_idx--) {
2703 		igc_reset_q_vector(adapter, v_idx);
2704 		igc_free_q_vector(adapter, v_idx);
2705 	}
2706 }
2707 
2708 /**
2709  * igc_free_q_vector - Free memory allocated for specific interrupt vector
2710  * @adapter: board private structure to initialize
2711  * @v_idx: Index of vector to be freed
2712  *
2713  * This function frees the memory allocated to the q_vector.
2714  */
2715 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2716 {
2717 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2718 
2719 	adapter->q_vector[v_idx] = NULL;
2720 
2721 	/* igc_get_stats64() might access the rings on this vector,
2722 	 * we must wait a grace period before freeing it.
2723 	 */
2724 	if (q_vector)
2725 		kfree_rcu(q_vector, rcu);
2726 }
2727 
2728 /* Need to wait a few seconds after link up to get diagnostic information from
2729  * the phy
2730  */
2731 static void igc_update_phy_info(struct timer_list *t)
2732 {
2733 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
2734 
2735 	igc_get_phy_info(&adapter->hw);
2736 }
2737 
2738 /**
2739  * igc_has_link - check shared code for link and determine up/down
2740  * @adapter: pointer to driver private info
2741  */
2742 bool igc_has_link(struct igc_adapter *adapter)
2743 {
2744 	struct igc_hw *hw = &adapter->hw;
2745 	bool link_active = false;
2746 
2747 	/* get_link_status is set on LSC (link status) interrupt or
2748 	 * rx sequence error interrupt.  get_link_status will stay
2749 	 * false until the igc_check_for_link establishes link
2750 	 * for copper adapters ONLY
2751 	 */
2752 	switch (hw->phy.media_type) {
2753 	case igc_media_type_copper:
2754 		if (!hw->mac.get_link_status)
2755 			return true;
2756 		hw->mac.ops.check_for_link(hw);
2757 		link_active = !hw->mac.get_link_status;
2758 		break;
2759 	default:
2760 	case igc_media_type_unknown:
2761 		break;
2762 	}
2763 
2764 	if (hw->mac.type == igc_i225 &&
2765 	    hw->phy.id == I225_I_PHY_ID) {
2766 		if (!netif_carrier_ok(adapter->netdev)) {
2767 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2768 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
2769 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
2770 			adapter->link_check_timeout = jiffies;
2771 		}
2772 	}
2773 
2774 	return link_active;
2775 }
2776 
2777 /**
2778  * igc_watchdog - Timer Call-back
2779  * @data: pointer to adapter cast into an unsigned long
2780  */
2781 static void igc_watchdog(struct timer_list *t)
2782 {
2783 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
2784 	/* Do the rest outside of interrupt context */
2785 	schedule_work(&adapter->watchdog_task);
2786 }
2787 
2788 static void igc_watchdog_task(struct work_struct *work)
2789 {
2790 	struct igc_adapter *adapter = container_of(work,
2791 						   struct igc_adapter,
2792 						   watchdog_task);
2793 	struct net_device *netdev = adapter->netdev;
2794 	struct igc_hw *hw = &adapter->hw;
2795 	struct igc_phy_info *phy = &hw->phy;
2796 	u16 phy_data, retry_count = 20;
2797 	u32 connsw;
2798 	u32 link;
2799 	int i;
2800 
2801 	link = igc_has_link(adapter);
2802 
2803 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
2804 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
2805 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2806 		else
2807 			link = false;
2808 	}
2809 
2810 	/* Force link down if we have fiber to swap to */
2811 	if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2812 		if (hw->phy.media_type == igc_media_type_copper) {
2813 			connsw = rd32(IGC_CONNSW);
2814 			if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
2815 				link = 0;
2816 		}
2817 	}
2818 	if (link) {
2819 		if (!netif_carrier_ok(netdev)) {
2820 			u32 ctrl;
2821 
2822 			hw->mac.ops.get_speed_and_duplex(hw,
2823 							 &adapter->link_speed,
2824 							 &adapter->link_duplex);
2825 
2826 			ctrl = rd32(IGC_CTRL);
2827 			/* Link status message must follow this format */
2828 			netdev_info(netdev,
2829 				    "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
2830 				    netdev->name,
2831 				    adapter->link_speed,
2832 				    adapter->link_duplex == FULL_DUPLEX ?
2833 				    "Full" : "Half",
2834 				    (ctrl & IGC_CTRL_TFCE) &&
2835 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
2836 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
2837 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
2838 
2839 			/* check if SmartSpeed worked */
2840 			igc_check_downshift(hw);
2841 			if (phy->speed_downgraded)
2842 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
2843 
2844 			/* adjust timeout factor according to speed/duplex */
2845 			adapter->tx_timeout_factor = 1;
2846 			switch (adapter->link_speed) {
2847 			case SPEED_10:
2848 				adapter->tx_timeout_factor = 14;
2849 				break;
2850 			case SPEED_100:
2851 				/* maybe add some timeout factor ? */
2852 				break;
2853 			}
2854 
2855 			if (adapter->link_speed != SPEED_1000)
2856 				goto no_wait;
2857 
2858 			/* wait for Remote receiver status OK */
2859 retry_read_status:
2860 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
2861 					      &phy_data)) {
2862 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
2863 				    retry_count) {
2864 					msleep(100);
2865 					retry_count--;
2866 					goto retry_read_status;
2867 				} else if (!retry_count) {
2868 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
2869 				}
2870 			} else {
2871 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
2872 			}
2873 no_wait:
2874 			netif_carrier_on(netdev);
2875 
2876 			/* link state has changed, schedule phy info update */
2877 			if (!test_bit(__IGC_DOWN, &adapter->state))
2878 				mod_timer(&adapter->phy_info_timer,
2879 					  round_jiffies(jiffies + 2 * HZ));
2880 		}
2881 	} else {
2882 		if (netif_carrier_ok(netdev)) {
2883 			adapter->link_speed = 0;
2884 			adapter->link_duplex = 0;
2885 
2886 			/* Links status message must follow this format */
2887 			netdev_info(netdev, "igc: %s NIC Link is Down\n",
2888 				    netdev->name);
2889 			netif_carrier_off(netdev);
2890 
2891 			/* link state has changed, schedule phy info update */
2892 			if (!test_bit(__IGC_DOWN, &adapter->state))
2893 				mod_timer(&adapter->phy_info_timer,
2894 					  round_jiffies(jiffies + 2 * HZ));
2895 
2896 			/* link is down, time to check for alternate media */
2897 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2898 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
2899 					schedule_work(&adapter->reset_task);
2900 					/* return immediately */
2901 					return;
2902 				}
2903 			}
2904 
2905 		/* also check for alternate media here */
2906 		} else if (!netif_carrier_ok(netdev) &&
2907 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
2908 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
2909 				schedule_work(&adapter->reset_task);
2910 				/* return immediately */
2911 				return;
2912 			}
2913 		}
2914 	}
2915 
2916 	spin_lock(&adapter->stats64_lock);
2917 	igc_update_stats(adapter);
2918 	spin_unlock(&adapter->stats64_lock);
2919 
2920 	for (i = 0; i < adapter->num_tx_queues; i++) {
2921 		struct igc_ring *tx_ring = adapter->tx_ring[i];
2922 
2923 		if (!netif_carrier_ok(netdev)) {
2924 			/* We've lost link, so the controller stops DMA,
2925 			 * but we've got queued Tx work that's never going
2926 			 * to get done, so reset controller to flush Tx.
2927 			 * (Do the reset outside of interrupt context).
2928 			 */
2929 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
2930 				adapter->tx_timeout_count++;
2931 				schedule_work(&adapter->reset_task);
2932 				/* return immediately since reset is imminent */
2933 				return;
2934 			}
2935 		}
2936 
2937 		/* Force detection of hung controller every watchdog period */
2938 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2939 	}
2940 
2941 	/* Cause software interrupt to ensure Rx ring is cleaned */
2942 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
2943 		u32 eics = 0;
2944 
2945 		for (i = 0; i < adapter->num_q_vectors; i++)
2946 			eics |= adapter->q_vector[i]->eims_value;
2947 		wr32(IGC_EICS, eics);
2948 	} else {
2949 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
2950 	}
2951 
2952 	/* Reset the timer */
2953 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
2954 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
2955 			mod_timer(&adapter->watchdog_timer,
2956 				  round_jiffies(jiffies +  HZ));
2957 		else
2958 			mod_timer(&adapter->watchdog_timer,
2959 				  round_jiffies(jiffies + 2 * HZ));
2960 	}
2961 }
2962 
2963 /**
2964  * igc_update_ring_itr - update the dynamic ITR value based on packet size
2965  * @q_vector: pointer to q_vector
2966  *
2967  * Stores a new ITR value based on strictly on packet size.  This
2968  * algorithm is less sophisticated than that used in igc_update_itr,
2969  * due to the difficulty of synchronizing statistics across multiple
2970  * receive rings.  The divisors and thresholds used by this function
2971  * were determined based on theoretical maximum wire speed and testing
2972  * data, in order to minimize response time while increasing bulk
2973  * throughput.
2974  * NOTE: This function is called only when operating in a multiqueue
2975  * receive environment.
2976  */
2977 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
2978 {
2979 	struct igc_adapter *adapter = q_vector->adapter;
2980 	int new_val = q_vector->itr_val;
2981 	int avg_wire_size = 0;
2982 	unsigned int packets;
2983 
2984 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
2985 	 * ints/sec - ITR timer value of 120 ticks.
2986 	 */
2987 	switch (adapter->link_speed) {
2988 	case SPEED_10:
2989 	case SPEED_100:
2990 		new_val = IGC_4K_ITR;
2991 		goto set_itr_val;
2992 	default:
2993 		break;
2994 	}
2995 
2996 	packets = q_vector->rx.total_packets;
2997 	if (packets)
2998 		avg_wire_size = q_vector->rx.total_bytes / packets;
2999 
3000 	packets = q_vector->tx.total_packets;
3001 	if (packets)
3002 		avg_wire_size = max_t(u32, avg_wire_size,
3003 				      q_vector->tx.total_bytes / packets);
3004 
3005 	/* if avg_wire_size isn't set no work was done */
3006 	if (!avg_wire_size)
3007 		goto clear_counts;
3008 
3009 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3010 	avg_wire_size += 24;
3011 
3012 	/* Don't starve jumbo frames */
3013 	avg_wire_size = min(avg_wire_size, 3000);
3014 
3015 	/* Give a little boost to mid-size frames */
3016 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3017 		new_val = avg_wire_size / 3;
3018 	else
3019 		new_val = avg_wire_size / 2;
3020 
3021 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3022 	if (new_val < IGC_20K_ITR &&
3023 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3024 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3025 		new_val = IGC_20K_ITR;
3026 
3027 set_itr_val:
3028 	if (new_val != q_vector->itr_val) {
3029 		q_vector->itr_val = new_val;
3030 		q_vector->set_itr = 1;
3031 	}
3032 clear_counts:
3033 	q_vector->rx.total_bytes = 0;
3034 	q_vector->rx.total_packets = 0;
3035 	q_vector->tx.total_bytes = 0;
3036 	q_vector->tx.total_packets = 0;
3037 }
3038 
3039 /**
3040  * igc_update_itr - update the dynamic ITR value based on statistics
3041  * @q_vector: pointer to q_vector
3042  * @ring_container: ring info to update the itr for
3043  *
3044  * Stores a new ITR value based on packets and byte
3045  * counts during the last interrupt.  The advantage of per interrupt
3046  * computation is faster updates and more accurate ITR for the current
3047  * traffic pattern.  Constants in this function were computed
3048  * based on theoretical maximum wire speed and thresholds were set based
3049  * on testing data as well as attempting to minimize response time
3050  * while increasing bulk throughput.
3051  * NOTE: These calculations are only valid when operating in a single-
3052  * queue environment.
3053  */
3054 static void igc_update_itr(struct igc_q_vector *q_vector,
3055 			   struct igc_ring_container *ring_container)
3056 {
3057 	unsigned int packets = ring_container->total_packets;
3058 	unsigned int bytes = ring_container->total_bytes;
3059 	u8 itrval = ring_container->itr;
3060 
3061 	/* no packets, exit with status unchanged */
3062 	if (packets == 0)
3063 		return;
3064 
3065 	switch (itrval) {
3066 	case lowest_latency:
3067 		/* handle TSO and jumbo frames */
3068 		if (bytes / packets > 8000)
3069 			itrval = bulk_latency;
3070 		else if ((packets < 5) && (bytes > 512))
3071 			itrval = low_latency;
3072 		break;
3073 	case low_latency:  /* 50 usec aka 20000 ints/s */
3074 		if (bytes > 10000) {
3075 			/* this if handles the TSO accounting */
3076 			if (bytes / packets > 8000)
3077 				itrval = bulk_latency;
3078 			else if ((packets < 10) || ((bytes / packets) > 1200))
3079 				itrval = bulk_latency;
3080 			else if ((packets > 35))
3081 				itrval = lowest_latency;
3082 		} else if (bytes / packets > 2000) {
3083 			itrval = bulk_latency;
3084 		} else if (packets <= 2 && bytes < 512) {
3085 			itrval = lowest_latency;
3086 		}
3087 		break;
3088 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3089 		if (bytes > 25000) {
3090 			if (packets > 35)
3091 				itrval = low_latency;
3092 		} else if (bytes < 1500) {
3093 			itrval = low_latency;
3094 		}
3095 		break;
3096 	}
3097 
3098 	/* clear work counters since we have the values we need */
3099 	ring_container->total_bytes = 0;
3100 	ring_container->total_packets = 0;
3101 
3102 	/* write updated itr to ring container */
3103 	ring_container->itr = itrval;
3104 }
3105 
3106 /**
3107  * igc_intr_msi - Interrupt Handler
3108  * @irq: interrupt number
3109  * @data: pointer to a network interface device structure
3110  */
3111 static irqreturn_t igc_intr_msi(int irq, void *data)
3112 {
3113 	struct igc_adapter *adapter = data;
3114 	struct igc_q_vector *q_vector = adapter->q_vector[0];
3115 	struct igc_hw *hw = &adapter->hw;
3116 	/* read ICR disables interrupts using IAM */
3117 	u32 icr = rd32(IGC_ICR);
3118 
3119 	igc_write_itr(q_vector);
3120 
3121 	if (icr & IGC_ICR_DRSTA)
3122 		schedule_work(&adapter->reset_task);
3123 
3124 	if (icr & IGC_ICR_DOUTSYNC) {
3125 		/* HW is reporting DMA is out of sync */
3126 		adapter->stats.doosync++;
3127 	}
3128 
3129 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3130 		hw->mac.get_link_status = 1;
3131 		if (!test_bit(__IGC_DOWN, &adapter->state))
3132 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3133 	}
3134 
3135 	napi_schedule(&q_vector->napi);
3136 
3137 	return IRQ_HANDLED;
3138 }
3139 
3140 /**
3141  * igc_intr - Legacy Interrupt Handler
3142  * @irq: interrupt number
3143  * @data: pointer to a network interface device structure
3144  */
3145 static irqreturn_t igc_intr(int irq, void *data)
3146 {
3147 	struct igc_adapter *adapter = data;
3148 	struct igc_q_vector *q_vector = adapter->q_vector[0];
3149 	struct igc_hw *hw = &adapter->hw;
3150 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3151 	 * need for the IMC write
3152 	 */
3153 	u32 icr = rd32(IGC_ICR);
3154 
3155 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3156 	 * not set, then the adapter didn't send an interrupt
3157 	 */
3158 	if (!(icr & IGC_ICR_INT_ASSERTED))
3159 		return IRQ_NONE;
3160 
3161 	igc_write_itr(q_vector);
3162 
3163 	if (icr & IGC_ICR_DRSTA)
3164 		schedule_work(&adapter->reset_task);
3165 
3166 	if (icr & IGC_ICR_DOUTSYNC) {
3167 		/* HW is reporting DMA is out of sync */
3168 		adapter->stats.doosync++;
3169 	}
3170 
3171 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3172 		hw->mac.get_link_status = 1;
3173 		/* guard against interrupt when we're going down */
3174 		if (!test_bit(__IGC_DOWN, &adapter->state))
3175 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3176 	}
3177 
3178 	napi_schedule(&q_vector->napi);
3179 
3180 	return IRQ_HANDLED;
3181 }
3182 
3183 static void igc_set_itr(struct igc_q_vector *q_vector)
3184 {
3185 	struct igc_adapter *adapter = q_vector->adapter;
3186 	u32 new_itr = q_vector->itr_val;
3187 	u8 current_itr = 0;
3188 
3189 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3190 	switch (adapter->link_speed) {
3191 	case SPEED_10:
3192 	case SPEED_100:
3193 		current_itr = 0;
3194 		new_itr = IGC_4K_ITR;
3195 		goto set_itr_now;
3196 	default:
3197 		break;
3198 	}
3199 
3200 	igc_update_itr(q_vector, &q_vector->tx);
3201 	igc_update_itr(q_vector, &q_vector->rx);
3202 
3203 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3204 
3205 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3206 	if (current_itr == lowest_latency &&
3207 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3208 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3209 		current_itr = low_latency;
3210 
3211 	switch (current_itr) {
3212 	/* counts and packets in update_itr are dependent on these numbers */
3213 	case lowest_latency:
3214 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3215 		break;
3216 	case low_latency:
3217 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3218 		break;
3219 	case bulk_latency:
3220 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3221 		break;
3222 	default:
3223 		break;
3224 	}
3225 
3226 set_itr_now:
3227 	if (new_itr != q_vector->itr_val) {
3228 		/* this attempts to bias the interrupt rate towards Bulk
3229 		 * by adding intermediate steps when interrupt rate is
3230 		 * increasing
3231 		 */
3232 		new_itr = new_itr > q_vector->itr_val ?
3233 			  max((new_itr * q_vector->itr_val) /
3234 			  (new_itr + (q_vector->itr_val >> 2)),
3235 			  new_itr) : new_itr;
3236 		/* Don't write the value here; it resets the adapter's
3237 		 * internal timer, and causes us to delay far longer than
3238 		 * we should between interrupts.  Instead, we write the ITR
3239 		 * value at the beginning of the next interrupt so the timing
3240 		 * ends up being correct.
3241 		 */
3242 		q_vector->itr_val = new_itr;
3243 		q_vector->set_itr = 1;
3244 	}
3245 }
3246 
3247 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3248 {
3249 	struct igc_adapter *adapter = q_vector->adapter;
3250 	struct igc_hw *hw = &adapter->hw;
3251 
3252 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3253 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3254 		if (adapter->num_q_vectors == 1)
3255 			igc_set_itr(q_vector);
3256 		else
3257 			igc_update_ring_itr(q_vector);
3258 	}
3259 
3260 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3261 		if (adapter->msix_entries)
3262 			wr32(IGC_EIMS, q_vector->eims_value);
3263 		else
3264 			igc_irq_enable(adapter);
3265 	}
3266 }
3267 
3268 /**
3269  * igc_poll - NAPI Rx polling callback
3270  * @napi: napi polling structure
3271  * @budget: count of how many packets we should handle
3272  */
3273 static int igc_poll(struct napi_struct *napi, int budget)
3274 {
3275 	struct igc_q_vector *q_vector = container_of(napi,
3276 						     struct igc_q_vector,
3277 						     napi);
3278 	bool clean_complete = true;
3279 	int work_done = 0;
3280 
3281 	if (q_vector->tx.ring)
3282 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3283 
3284 	if (q_vector->rx.ring) {
3285 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3286 
3287 		work_done += cleaned;
3288 		if (cleaned >= budget)
3289 			clean_complete = false;
3290 	}
3291 
3292 	/* If all work not completed, return budget and keep polling */
3293 	if (!clean_complete)
3294 		return budget;
3295 
3296 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3297 	 * poll us due to busy-polling
3298 	 */
3299 	if (likely(napi_complete_done(napi, work_done)))
3300 		igc_ring_irq_enable(q_vector);
3301 
3302 	return min(work_done, budget - 1);
3303 }
3304 
3305 /**
3306  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3307  * @adapter: Pointer to adapter structure
3308  *
3309  * Attempt to configure interrupts using the best available
3310  * capabilities of the hardware and kernel.
3311  */
3312 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3313 					 bool msix)
3314 {
3315 	int numvecs, i;
3316 	int err;
3317 
3318 	if (!msix)
3319 		goto msi_only;
3320 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3321 
3322 	/* Number of supported queues. */
3323 	adapter->num_rx_queues = adapter->rss_queues;
3324 
3325 	adapter->num_tx_queues = adapter->rss_queues;
3326 
3327 	/* start with one vector for every Rx queue */
3328 	numvecs = adapter->num_rx_queues;
3329 
3330 	/* if Tx handler is separate add 1 for every Tx queue */
3331 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3332 		numvecs += adapter->num_tx_queues;
3333 
3334 	/* store the number of vectors reserved for queues */
3335 	adapter->num_q_vectors = numvecs;
3336 
3337 	/* add 1 vector for link status interrupts */
3338 	numvecs++;
3339 
3340 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3341 					GFP_KERNEL);
3342 
3343 	if (!adapter->msix_entries)
3344 		return;
3345 
3346 	/* populate entry values */
3347 	for (i = 0; i < numvecs; i++)
3348 		adapter->msix_entries[i].entry = i;
3349 
3350 	err = pci_enable_msix_range(adapter->pdev,
3351 				    adapter->msix_entries,
3352 				    numvecs,
3353 				    numvecs);
3354 	if (err > 0)
3355 		return;
3356 
3357 	kfree(adapter->msix_entries);
3358 	adapter->msix_entries = NULL;
3359 
3360 	igc_reset_interrupt_capability(adapter);
3361 
3362 msi_only:
3363 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3364 
3365 	adapter->rss_queues = 1;
3366 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3367 	adapter->num_rx_queues = 1;
3368 	adapter->num_tx_queues = 1;
3369 	adapter->num_q_vectors = 1;
3370 	if (!pci_enable_msi(adapter->pdev))
3371 		adapter->flags |= IGC_FLAG_HAS_MSI;
3372 }
3373 
3374 static void igc_add_ring(struct igc_ring *ring,
3375 			 struct igc_ring_container *head)
3376 {
3377 	head->ring = ring;
3378 	head->count++;
3379 }
3380 
3381 /**
3382  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3383  * @adapter: board private structure to initialize
3384  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3385  * @v_idx: index of vector in adapter struct
3386  * @txr_count: total number of Tx rings to allocate
3387  * @txr_idx: index of first Tx ring to allocate
3388  * @rxr_count: total number of Rx rings to allocate
3389  * @rxr_idx: index of first Rx ring to allocate
3390  *
3391  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3392  */
3393 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3394 			      unsigned int v_count, unsigned int v_idx,
3395 			      unsigned int txr_count, unsigned int txr_idx,
3396 			      unsigned int rxr_count, unsigned int rxr_idx)
3397 {
3398 	struct igc_q_vector *q_vector;
3399 	struct igc_ring *ring;
3400 	int ring_count;
3401 
3402 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3403 	if (txr_count > 1 || rxr_count > 1)
3404 		return -ENOMEM;
3405 
3406 	ring_count = txr_count + rxr_count;
3407 
3408 	/* allocate q_vector and rings */
3409 	q_vector = adapter->q_vector[v_idx];
3410 	if (!q_vector)
3411 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3412 				   GFP_KERNEL);
3413 	else
3414 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3415 	if (!q_vector)
3416 		return -ENOMEM;
3417 
3418 	/* initialize NAPI */
3419 	netif_napi_add(adapter->netdev, &q_vector->napi,
3420 		       igc_poll, 64);
3421 
3422 	/* tie q_vector and adapter together */
3423 	adapter->q_vector[v_idx] = q_vector;
3424 	q_vector->adapter = adapter;
3425 
3426 	/* initialize work limits */
3427 	q_vector->tx.work_limit = adapter->tx_work_limit;
3428 
3429 	/* initialize ITR configuration */
3430 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3431 	q_vector->itr_val = IGC_START_ITR;
3432 
3433 	/* initialize pointer to rings */
3434 	ring = q_vector->ring;
3435 
3436 	/* initialize ITR */
3437 	if (rxr_count) {
3438 		/* rx or rx/tx vector */
3439 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3440 			q_vector->itr_val = adapter->rx_itr_setting;
3441 	} else {
3442 		/* tx only vector */
3443 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3444 			q_vector->itr_val = adapter->tx_itr_setting;
3445 	}
3446 
3447 	if (txr_count) {
3448 		/* assign generic ring traits */
3449 		ring->dev = &adapter->pdev->dev;
3450 		ring->netdev = adapter->netdev;
3451 
3452 		/* configure backlink on ring */
3453 		ring->q_vector = q_vector;
3454 
3455 		/* update q_vector Tx values */
3456 		igc_add_ring(ring, &q_vector->tx);
3457 
3458 		/* apply Tx specific ring traits */
3459 		ring->count = adapter->tx_ring_count;
3460 		ring->queue_index = txr_idx;
3461 
3462 		/* assign ring to adapter */
3463 		adapter->tx_ring[txr_idx] = ring;
3464 
3465 		/* push pointer to next ring */
3466 		ring++;
3467 	}
3468 
3469 	if (rxr_count) {
3470 		/* assign generic ring traits */
3471 		ring->dev = &adapter->pdev->dev;
3472 		ring->netdev = adapter->netdev;
3473 
3474 		/* configure backlink on ring */
3475 		ring->q_vector = q_vector;
3476 
3477 		/* update q_vector Rx values */
3478 		igc_add_ring(ring, &q_vector->rx);
3479 
3480 		/* apply Rx specific ring traits */
3481 		ring->count = adapter->rx_ring_count;
3482 		ring->queue_index = rxr_idx;
3483 
3484 		/* assign ring to adapter */
3485 		adapter->rx_ring[rxr_idx] = ring;
3486 	}
3487 
3488 	return 0;
3489 }
3490 
3491 /**
3492  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3493  * @adapter: board private structure to initialize
3494  *
3495  * We allocate one q_vector per queue interrupt.  If allocation fails we
3496  * return -ENOMEM.
3497  */
3498 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3499 {
3500 	int rxr_remaining = adapter->num_rx_queues;
3501 	int txr_remaining = adapter->num_tx_queues;
3502 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3503 	int q_vectors = adapter->num_q_vectors;
3504 	int err;
3505 
3506 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3507 		for (; rxr_remaining; v_idx++) {
3508 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3509 						 0, 0, 1, rxr_idx);
3510 
3511 			if (err)
3512 				goto err_out;
3513 
3514 			/* update counts and index */
3515 			rxr_remaining--;
3516 			rxr_idx++;
3517 		}
3518 	}
3519 
3520 	for (; v_idx < q_vectors; v_idx++) {
3521 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3522 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3523 
3524 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3525 					 tqpv, txr_idx, rqpv, rxr_idx);
3526 
3527 		if (err)
3528 			goto err_out;
3529 
3530 		/* update counts and index */
3531 		rxr_remaining -= rqpv;
3532 		txr_remaining -= tqpv;
3533 		rxr_idx++;
3534 		txr_idx++;
3535 	}
3536 
3537 	return 0;
3538 
3539 err_out:
3540 	adapter->num_tx_queues = 0;
3541 	adapter->num_rx_queues = 0;
3542 	adapter->num_q_vectors = 0;
3543 
3544 	while (v_idx--)
3545 		igc_free_q_vector(adapter, v_idx);
3546 
3547 	return -ENOMEM;
3548 }
3549 
3550 /**
3551  * igc_cache_ring_register - Descriptor ring to register mapping
3552  * @adapter: board private structure to initialize
3553  *
3554  * Once we know the feature-set enabled for the device, we'll cache
3555  * the register offset the descriptor ring is assigned to.
3556  */
3557 static void igc_cache_ring_register(struct igc_adapter *adapter)
3558 {
3559 	int i = 0, j = 0;
3560 
3561 	switch (adapter->hw.mac.type) {
3562 	case igc_i225:
3563 	/* Fall through */
3564 	default:
3565 		for (; i < adapter->num_rx_queues; i++)
3566 			adapter->rx_ring[i]->reg_idx = i;
3567 		for (; j < adapter->num_tx_queues; j++)
3568 			adapter->tx_ring[j]->reg_idx = j;
3569 		break;
3570 	}
3571 }
3572 
3573 /**
3574  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3575  * @adapter: Pointer to adapter structure
3576  *
3577  * This function initializes the interrupts and allocates all of the queues.
3578  */
3579 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3580 {
3581 	struct pci_dev *pdev = adapter->pdev;
3582 	int err = 0;
3583 
3584 	igc_set_interrupt_capability(adapter, msix);
3585 
3586 	err = igc_alloc_q_vectors(adapter);
3587 	if (err) {
3588 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
3589 		goto err_alloc_q_vectors;
3590 	}
3591 
3592 	igc_cache_ring_register(adapter);
3593 
3594 	return 0;
3595 
3596 err_alloc_q_vectors:
3597 	igc_reset_interrupt_capability(adapter);
3598 	return err;
3599 }
3600 
3601 static void igc_free_irq(struct igc_adapter *adapter)
3602 {
3603 	if (adapter->msix_entries) {
3604 		int vector = 0, i;
3605 
3606 		free_irq(adapter->msix_entries[vector++].vector, adapter);
3607 
3608 		for (i = 0; i < adapter->num_q_vectors; i++)
3609 			free_irq(adapter->msix_entries[vector++].vector,
3610 				 adapter->q_vector[i]);
3611 	} else {
3612 		free_irq(adapter->pdev->irq, adapter);
3613 	}
3614 }
3615 
3616 /**
3617  * igc_irq_disable - Mask off interrupt generation on the NIC
3618  * @adapter: board private structure
3619  */
3620 static void igc_irq_disable(struct igc_adapter *adapter)
3621 {
3622 	struct igc_hw *hw = &adapter->hw;
3623 
3624 	if (adapter->msix_entries) {
3625 		u32 regval = rd32(IGC_EIAM);
3626 
3627 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3628 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3629 		regval = rd32(IGC_EIAC);
3630 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3631 	}
3632 
3633 	wr32(IGC_IAM, 0);
3634 	wr32(IGC_IMC, ~0);
3635 	wrfl();
3636 
3637 	if (adapter->msix_entries) {
3638 		int vector = 0, i;
3639 
3640 		synchronize_irq(adapter->msix_entries[vector++].vector);
3641 
3642 		for (i = 0; i < adapter->num_q_vectors; i++)
3643 			synchronize_irq(adapter->msix_entries[vector++].vector);
3644 	} else {
3645 		synchronize_irq(adapter->pdev->irq);
3646 	}
3647 }
3648 
3649 /**
3650  * igc_irq_enable - Enable default interrupt generation settings
3651  * @adapter: board private structure
3652  */
3653 static void igc_irq_enable(struct igc_adapter *adapter)
3654 {
3655 	struct igc_hw *hw = &adapter->hw;
3656 
3657 	if (adapter->msix_entries) {
3658 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3659 		u32 regval = rd32(IGC_EIAC);
3660 
3661 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3662 		regval = rd32(IGC_EIAM);
3663 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3664 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3665 		wr32(IGC_IMS, ims);
3666 	} else {
3667 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3668 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3669 	}
3670 }
3671 
3672 /**
3673  * igc_request_irq - initialize interrupts
3674  * @adapter: Pointer to adapter structure
3675  *
3676  * Attempts to configure interrupts using the best available
3677  * capabilities of the hardware and kernel.
3678  */
3679 static int igc_request_irq(struct igc_adapter *adapter)
3680 {
3681 	struct net_device *netdev = adapter->netdev;
3682 	struct pci_dev *pdev = adapter->pdev;
3683 	int err = 0;
3684 
3685 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3686 		err = igc_request_msix(adapter);
3687 		if (!err)
3688 			goto request_done;
3689 		/* fall back to MSI */
3690 		igc_free_all_tx_resources(adapter);
3691 		igc_free_all_rx_resources(adapter);
3692 
3693 		igc_clear_interrupt_scheme(adapter);
3694 		err = igc_init_interrupt_scheme(adapter, false);
3695 		if (err)
3696 			goto request_done;
3697 		igc_setup_all_tx_resources(adapter);
3698 		igc_setup_all_rx_resources(adapter);
3699 		igc_configure(adapter);
3700 	}
3701 
3702 	igc_assign_vector(adapter->q_vector[0], 0);
3703 
3704 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
3705 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
3706 				  netdev->name, adapter);
3707 		if (!err)
3708 			goto request_done;
3709 
3710 		/* fall back to legacy interrupts */
3711 		igc_reset_interrupt_capability(adapter);
3712 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
3713 	}
3714 
3715 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
3716 			  netdev->name, adapter);
3717 
3718 	if (err)
3719 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
3720 			err);
3721 
3722 request_done:
3723 	return err;
3724 }
3725 
3726 static void igc_write_itr(struct igc_q_vector *q_vector)
3727 {
3728 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
3729 
3730 	if (!q_vector->set_itr)
3731 		return;
3732 
3733 	if (!itr_val)
3734 		itr_val = IGC_ITR_VAL_MASK;
3735 
3736 	itr_val |= IGC_EITR_CNT_IGNR;
3737 
3738 	writel(itr_val, q_vector->itr_register);
3739 	q_vector->set_itr = 0;
3740 }
3741 
3742 /**
3743  * igc_open - Called when a network interface is made active
3744  * @netdev: network interface device structure
3745  *
3746  * Returns 0 on success, negative value on failure
3747  *
3748  * The open entry point is called when a network interface is made
3749  * active by the system (IFF_UP).  At this point all resources needed
3750  * for transmit and receive operations are allocated, the interrupt
3751  * handler is registered with the OS, the watchdog timer is started,
3752  * and the stack is notified that the interface is ready.
3753  */
3754 static int __igc_open(struct net_device *netdev, bool resuming)
3755 {
3756 	struct igc_adapter *adapter = netdev_priv(netdev);
3757 	struct igc_hw *hw = &adapter->hw;
3758 	int err = 0;
3759 	int i = 0;
3760 
3761 	/* disallow open during test */
3762 
3763 	if (test_bit(__IGC_TESTING, &adapter->state)) {
3764 		WARN_ON(resuming);
3765 		return -EBUSY;
3766 	}
3767 
3768 	netif_carrier_off(netdev);
3769 
3770 	/* allocate transmit descriptors */
3771 	err = igc_setup_all_tx_resources(adapter);
3772 	if (err)
3773 		goto err_setup_tx;
3774 
3775 	/* allocate receive descriptors */
3776 	err = igc_setup_all_rx_resources(adapter);
3777 	if (err)
3778 		goto err_setup_rx;
3779 
3780 	igc_power_up_link(adapter);
3781 
3782 	igc_configure(adapter);
3783 
3784 	err = igc_request_irq(adapter);
3785 	if (err)
3786 		goto err_req_irq;
3787 
3788 	/* Notify the stack of the actual queue counts. */
3789 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3790 	if (err)
3791 		goto err_set_queues;
3792 
3793 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3794 	if (err)
3795 		goto err_set_queues;
3796 
3797 	clear_bit(__IGC_DOWN, &adapter->state);
3798 
3799 	for (i = 0; i < adapter->num_q_vectors; i++)
3800 		napi_enable(&adapter->q_vector[i]->napi);
3801 
3802 	/* Clear any pending interrupts. */
3803 	rd32(IGC_ICR);
3804 	igc_irq_enable(adapter);
3805 
3806 	netif_tx_start_all_queues(netdev);
3807 
3808 	/* start the watchdog. */
3809 	hw->mac.get_link_status = 1;
3810 	schedule_work(&adapter->watchdog_task);
3811 
3812 	return IGC_SUCCESS;
3813 
3814 err_set_queues:
3815 	igc_free_irq(adapter);
3816 err_req_irq:
3817 	igc_release_hw_control(adapter);
3818 	igc_power_down_link(adapter);
3819 	igc_free_all_rx_resources(adapter);
3820 err_setup_rx:
3821 	igc_free_all_tx_resources(adapter);
3822 err_setup_tx:
3823 	igc_reset(adapter);
3824 
3825 	return err;
3826 }
3827 
3828 static int igc_open(struct net_device *netdev)
3829 {
3830 	return __igc_open(netdev, false);
3831 }
3832 
3833 /**
3834  * igc_close - Disables a network interface
3835  * @netdev: network interface device structure
3836  *
3837  * Returns 0, this is not allowed to fail
3838  *
3839  * The close entry point is called when an interface is de-activated
3840  * by the OS.  The hardware is still under the driver's control, but
3841  * needs to be disabled.  A global MAC reset is issued to stop the
3842  * hardware, and all transmit and receive resources are freed.
3843  */
3844 static int __igc_close(struct net_device *netdev, bool suspending)
3845 {
3846 	struct igc_adapter *adapter = netdev_priv(netdev);
3847 
3848 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
3849 
3850 	igc_down(adapter);
3851 
3852 	igc_release_hw_control(adapter);
3853 
3854 	igc_free_irq(adapter);
3855 
3856 	igc_free_all_tx_resources(adapter);
3857 	igc_free_all_rx_resources(adapter);
3858 
3859 	return 0;
3860 }
3861 
3862 static int igc_close(struct net_device *netdev)
3863 {
3864 	if (netif_device_present(netdev) || netdev->dismantle)
3865 		return __igc_close(netdev, false);
3866 	return 0;
3867 }
3868 
3869 static const struct net_device_ops igc_netdev_ops = {
3870 	.ndo_open		= igc_open,
3871 	.ndo_stop		= igc_close,
3872 	.ndo_start_xmit		= igc_xmit_frame,
3873 	.ndo_set_mac_address	= igc_set_mac,
3874 	.ndo_change_mtu		= igc_change_mtu,
3875 	.ndo_get_stats		= igc_get_stats,
3876 	.ndo_fix_features	= igc_fix_features,
3877 	.ndo_set_features	= igc_set_features,
3878 	.ndo_features_check	= igc_features_check,
3879 };
3880 
3881 /* PCIe configuration access */
3882 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3883 {
3884 	struct igc_adapter *adapter = hw->back;
3885 
3886 	pci_read_config_word(adapter->pdev, reg, value);
3887 }
3888 
3889 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3890 {
3891 	struct igc_adapter *adapter = hw->back;
3892 
3893 	pci_write_config_word(adapter->pdev, reg, *value);
3894 }
3895 
3896 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
3897 {
3898 	struct igc_adapter *adapter = hw->back;
3899 	u16 cap_offset;
3900 
3901 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3902 	if (!cap_offset)
3903 		return -IGC_ERR_CONFIG;
3904 
3905 	pci_read_config_word(adapter->pdev, cap_offset + reg, value);
3906 
3907 	return IGC_SUCCESS;
3908 }
3909 
3910 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
3911 {
3912 	struct igc_adapter *adapter = hw->back;
3913 	u16 cap_offset;
3914 
3915 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3916 	if (!cap_offset)
3917 		return -IGC_ERR_CONFIG;
3918 
3919 	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
3920 
3921 	return IGC_SUCCESS;
3922 }
3923 
3924 u32 igc_rd32(struct igc_hw *hw, u32 reg)
3925 {
3926 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
3927 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
3928 	u32 value = 0;
3929 
3930 	if (IGC_REMOVED(hw_addr))
3931 		return ~value;
3932 
3933 	value = readl(&hw_addr[reg]);
3934 
3935 	/* reads should not return all F's */
3936 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
3937 		struct net_device *netdev = igc->netdev;
3938 
3939 		hw->hw_addr = NULL;
3940 		netif_device_detach(netdev);
3941 		netdev_err(netdev, "PCIe link lost, device now detached\n");
3942 	}
3943 
3944 	return value;
3945 }
3946 
3947 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
3948 {
3949 	struct pci_dev *pdev = adapter->pdev;
3950 	struct igc_mac_info *mac = &adapter->hw.mac;
3951 
3952 	mac->autoneg = 0;
3953 
3954 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
3955 	 * for the switch() below to work
3956 	 */
3957 	if ((spd & 1) || (dplx & ~1))
3958 		goto err_inval;
3959 
3960 	switch (spd + dplx) {
3961 	case SPEED_10 + DUPLEX_HALF:
3962 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3963 		break;
3964 	case SPEED_10 + DUPLEX_FULL:
3965 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3966 		break;
3967 	case SPEED_100 + DUPLEX_HALF:
3968 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3969 		break;
3970 	case SPEED_100 + DUPLEX_FULL:
3971 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3972 		break;
3973 	case SPEED_1000 + DUPLEX_FULL:
3974 		mac->autoneg = 1;
3975 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3976 		break;
3977 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
3978 		goto err_inval;
3979 	case SPEED_2500 + DUPLEX_FULL:
3980 		mac->autoneg = 1;
3981 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
3982 		break;
3983 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
3984 	default:
3985 		goto err_inval;
3986 	}
3987 
3988 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
3989 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
3990 
3991 	return 0;
3992 
3993 err_inval:
3994 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
3995 	return -EINVAL;
3996 }
3997 
3998 /**
3999  * igc_probe - Device Initialization Routine
4000  * @pdev: PCI device information struct
4001  * @ent: entry in igc_pci_tbl
4002  *
4003  * Returns 0 on success, negative on failure
4004  *
4005  * igc_probe initializes an adapter identified by a pci_dev structure.
4006  * The OS initialization, configuring the adapter private structure,
4007  * and a hardware reset occur.
4008  */
4009 static int igc_probe(struct pci_dev *pdev,
4010 		     const struct pci_device_id *ent)
4011 {
4012 	struct igc_adapter *adapter;
4013 	struct net_device *netdev;
4014 	struct igc_hw *hw;
4015 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4016 	int err;
4017 
4018 	err = pci_enable_device_mem(pdev);
4019 	if (err)
4020 		return err;
4021 
4022 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
4023 	if (!err) {
4024 		err = dma_set_coherent_mask(&pdev->dev,
4025 					    DMA_BIT_MASK(64));
4026 	} else {
4027 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4028 		if (err) {
4029 			err = dma_set_coherent_mask(&pdev->dev,
4030 						    DMA_BIT_MASK(32));
4031 			if (err) {
4032 				dev_err(&pdev->dev, "igc: Wrong DMA config\n");
4033 				goto err_dma;
4034 			}
4035 		}
4036 	}
4037 
4038 	err = pci_request_selected_regions(pdev,
4039 					   pci_select_bars(pdev,
4040 							   IORESOURCE_MEM),
4041 					   igc_driver_name);
4042 	if (err)
4043 		goto err_pci_reg;
4044 
4045 	pci_enable_pcie_error_reporting(pdev);
4046 
4047 	pci_set_master(pdev);
4048 
4049 	err = -ENOMEM;
4050 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
4051 				   IGC_MAX_TX_QUEUES);
4052 
4053 	if (!netdev)
4054 		goto err_alloc_etherdev;
4055 
4056 	SET_NETDEV_DEV(netdev, &pdev->dev);
4057 
4058 	pci_set_drvdata(pdev, netdev);
4059 	adapter = netdev_priv(netdev);
4060 	adapter->netdev = netdev;
4061 	adapter->pdev = pdev;
4062 	hw = &adapter->hw;
4063 	hw->back = adapter;
4064 	adapter->port_num = hw->bus.func;
4065 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4066 
4067 	err = pci_save_state(pdev);
4068 	if (err)
4069 		goto err_ioremap;
4070 
4071 	err = -EIO;
4072 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
4073 				   pci_resource_len(pdev, 0));
4074 	if (!adapter->io_addr)
4075 		goto err_ioremap;
4076 
4077 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
4078 	hw->hw_addr = adapter->io_addr;
4079 
4080 	netdev->netdev_ops = &igc_netdev_ops;
4081 	igc_set_ethtool_ops(netdev);
4082 	netdev->watchdog_timeo = 5 * HZ;
4083 
4084 	netdev->mem_start = pci_resource_start(pdev, 0);
4085 	netdev->mem_end = pci_resource_end(pdev, 0);
4086 
4087 	/* PCI config space info */
4088 	hw->vendor_id = pdev->vendor;
4089 	hw->device_id = pdev->device;
4090 	hw->revision_id = pdev->revision;
4091 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4092 	hw->subsystem_device_id = pdev->subsystem_device;
4093 
4094 	/* Copy the default MAC and PHY function pointers */
4095 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4096 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4097 
4098 	/* Initialize skew-specific constants */
4099 	err = ei->get_invariants(hw);
4100 	if (err)
4101 		goto err_sw_init;
4102 
4103 	/* setup the private structure */
4104 	err = igc_sw_init(adapter);
4105 	if (err)
4106 		goto err_sw_init;
4107 
4108 	/* copy netdev features into list of user selectable features */
4109 	netdev->hw_features |= NETIF_F_NTUPLE;
4110 
4111 	/* MTU range: 68 - 9216 */
4112 	netdev->min_mtu = ETH_MIN_MTU;
4113 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
4114 
4115 	/* before reading the NVM, reset the controller to put the device in a
4116 	 * known good starting state
4117 	 */
4118 	hw->mac.ops.reset_hw(hw);
4119 
4120 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
4121 		/* copy the MAC address out of the NVM */
4122 		if (hw->mac.ops.read_mac_addr(hw))
4123 			dev_err(&pdev->dev, "NVM Read Error\n");
4124 	}
4125 
4126 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
4127 
4128 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4129 		dev_err(&pdev->dev, "Invalid MAC Address\n");
4130 		err = -EIO;
4131 		goto err_eeprom;
4132 	}
4133 
4134 	/* configure RXPBSIZE and TXPBSIZE */
4135 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
4136 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
4137 
4138 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
4139 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
4140 
4141 	INIT_WORK(&adapter->reset_task, igc_reset_task);
4142 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
4143 
4144 	/* Initialize link properties that are user-changeable */
4145 	adapter->fc_autoneg = true;
4146 	hw->mac.autoneg = true;
4147 	hw->phy.autoneg_advertised = 0xaf;
4148 
4149 	hw->fc.requested_mode = igc_fc_default;
4150 	hw->fc.current_mode = igc_fc_default;
4151 
4152 	/* reset the hardware with the new settings */
4153 	igc_reset(adapter);
4154 
4155 	/* let the f/w know that the h/w is now under the control of the
4156 	 * driver.
4157 	 */
4158 	igc_get_hw_control(adapter);
4159 
4160 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
4161 	err = register_netdev(netdev);
4162 	if (err)
4163 		goto err_register;
4164 
4165 	 /* carrier off reporting is important to ethtool even BEFORE open */
4166 	netif_carrier_off(netdev);
4167 
4168 	/* Check if Media Autosense is enabled */
4169 	adapter->ei = *ei;
4170 
4171 	/* print pcie link status and MAC address */
4172 	pcie_print_link_status(pdev);
4173 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
4174 
4175 	return 0;
4176 
4177 err_register:
4178 	igc_release_hw_control(adapter);
4179 err_eeprom:
4180 	if (!igc_check_reset_block(hw))
4181 		igc_reset_phy(hw);
4182 err_sw_init:
4183 	igc_clear_interrupt_scheme(adapter);
4184 	iounmap(adapter->io_addr);
4185 err_ioremap:
4186 	free_netdev(netdev);
4187 err_alloc_etherdev:
4188 	pci_release_selected_regions(pdev,
4189 				     pci_select_bars(pdev, IORESOURCE_MEM));
4190 err_pci_reg:
4191 err_dma:
4192 	pci_disable_device(pdev);
4193 	return err;
4194 }
4195 
4196 /**
4197  * igc_remove - Device Removal Routine
4198  * @pdev: PCI device information struct
4199  *
4200  * igc_remove is called by the PCI subsystem to alert the driver
4201  * that it should release a PCI device.  This could be caused by a
4202  * Hot-Plug event, or because the driver is going to be removed from
4203  * memory.
4204  */
4205 static void igc_remove(struct pci_dev *pdev)
4206 {
4207 	struct net_device *netdev = pci_get_drvdata(pdev);
4208 	struct igc_adapter *adapter = netdev_priv(netdev);
4209 
4210 	set_bit(__IGC_DOWN, &adapter->state);
4211 
4212 	del_timer_sync(&adapter->watchdog_timer);
4213 	del_timer_sync(&adapter->phy_info_timer);
4214 
4215 	cancel_work_sync(&adapter->reset_task);
4216 	cancel_work_sync(&adapter->watchdog_task);
4217 
4218 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
4219 	 * would have already happened in close and is redundant.
4220 	 */
4221 	igc_release_hw_control(adapter);
4222 	unregister_netdev(netdev);
4223 
4224 	igc_clear_interrupt_scheme(adapter);
4225 	pci_iounmap(pdev, adapter->io_addr);
4226 	pci_release_mem_regions(pdev);
4227 
4228 	kfree(adapter->mac_table);
4229 	kfree(adapter->shadow_vfta);
4230 	free_netdev(netdev);
4231 
4232 	pci_disable_pcie_error_reporting(pdev);
4233 
4234 	pci_disable_device(pdev);
4235 }
4236 
4237 static struct pci_driver igc_driver = {
4238 	.name     = igc_driver_name,
4239 	.id_table = igc_pci_tbl,
4240 	.probe    = igc_probe,
4241 	.remove   = igc_remove,
4242 };
4243 
4244 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4245 			      const u32 max_rss_queues)
4246 {
4247 	/* Determine if we need to pair queues. */
4248 	/* If rss_queues > half of max_rss_queues, pair the queues in
4249 	 * order to conserve interrupts due to limited supply.
4250 	 */
4251 	if (adapter->rss_queues > (max_rss_queues / 2))
4252 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4253 	else
4254 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4255 }
4256 
4257 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4258 {
4259 	unsigned int max_rss_queues;
4260 
4261 	/* Determine the maximum number of RSS queues supported. */
4262 	max_rss_queues = IGC_MAX_RX_QUEUES;
4263 
4264 	return max_rss_queues;
4265 }
4266 
4267 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4268 {
4269 	u32 max_rss_queues;
4270 
4271 	max_rss_queues = igc_get_max_rss_queues(adapter);
4272 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4273 
4274 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4275 }
4276 
4277 /**
4278  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4279  * @adapter: board private structure to initialize
4280  *
4281  * igc_sw_init initializes the Adapter private data structure.
4282  * Fields are initialized based on PCI device information and
4283  * OS network device settings (MTU size).
4284  */
4285 static int igc_sw_init(struct igc_adapter *adapter)
4286 {
4287 	struct net_device *netdev = adapter->netdev;
4288 	struct pci_dev *pdev = adapter->pdev;
4289 	struct igc_hw *hw = &adapter->hw;
4290 
4291 	int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
4292 
4293 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4294 
4295 	/* set default ring sizes */
4296 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4297 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4298 
4299 	/* set default ITR values */
4300 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4301 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4302 
4303 	/* set default work limits */
4304 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4305 
4306 	/* adjust max frame to be at least the size of a standard frame */
4307 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4308 				VLAN_HLEN;
4309 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4310 
4311 	spin_lock_init(&adapter->nfc_lock);
4312 	spin_lock_init(&adapter->stats64_lock);
4313 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4314 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4315 
4316 	adapter->mac_table = kzalloc(size, GFP_ATOMIC);
4317 	if (!adapter->mac_table)
4318 		return -ENOMEM;
4319 
4320 	igc_init_queue_configuration(adapter);
4321 
4322 	/* This call may decrease the number of queues */
4323 	if (igc_init_interrupt_scheme(adapter, true)) {
4324 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4325 		return -ENOMEM;
4326 	}
4327 
4328 	/* Explicitly disable IRQ since the NIC can be in any state. */
4329 	igc_irq_disable(adapter);
4330 
4331 	set_bit(__IGC_DOWN, &adapter->state);
4332 
4333 	return 0;
4334 }
4335 
4336 /**
4337  * igc_reinit_queues - return error
4338  * @adapter: pointer to adapter structure
4339  */
4340 int igc_reinit_queues(struct igc_adapter *adapter)
4341 {
4342 	struct net_device *netdev = adapter->netdev;
4343 	struct pci_dev *pdev = adapter->pdev;
4344 	int err = 0;
4345 
4346 	if (netif_running(netdev))
4347 		igc_close(netdev);
4348 
4349 	igc_reset_interrupt_capability(adapter);
4350 
4351 	if (igc_init_interrupt_scheme(adapter, true)) {
4352 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4353 		return -ENOMEM;
4354 	}
4355 
4356 	if (netif_running(netdev))
4357 		err = igc_open(netdev);
4358 
4359 	return err;
4360 }
4361 
4362 /**
4363  * igc_get_hw_dev - return device
4364  * @hw: pointer to hardware structure
4365  *
4366  * used by hardware layer to print debugging information
4367  */
4368 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
4369 {
4370 	struct igc_adapter *adapter = hw->back;
4371 
4372 	return adapter->netdev;
4373 }
4374 
4375 /**
4376  * igc_init_module - Driver Registration Routine
4377  *
4378  * igc_init_module is the first routine called when the driver is
4379  * loaded. All it does is register with the PCI subsystem.
4380  */
4381 static int __init igc_init_module(void)
4382 {
4383 	int ret;
4384 
4385 	pr_info("%s - version %s\n",
4386 		igc_driver_string, igc_driver_version);
4387 
4388 	pr_info("%s\n", igc_copyright);
4389 
4390 	ret = pci_register_driver(&igc_driver);
4391 	return ret;
4392 }
4393 
4394 module_init(igc_init_module);
4395 
4396 /**
4397  * igc_exit_module - Driver Exit Cleanup Routine
4398  *
4399  * igc_exit_module is called just before the driver is removed
4400  * from memory.
4401  */
4402 static void __exit igc_exit_module(void)
4403 {
4404 	pci_unregister_driver(&igc_driver);
4405 }
4406 
4407 module_exit(igc_exit_module);
4408 /* igc_main.c */
4409