xref: /openbmc/linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 
14 #include <net/ipv6.h>
15 
16 #include "igc.h"
17 #include "igc_hw.h"
18 #include "igc_tsn.h"
19 
20 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
21 
22 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
23 
24 static int debug = -1;
25 
26 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
27 MODULE_DESCRIPTION(DRV_SUMMARY);
28 MODULE_LICENSE("GPL v2");
29 module_param(debug, int, 0);
30 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
31 
32 char igc_driver_name[] = "igc";
33 static const char igc_driver_string[] = DRV_SUMMARY;
34 static const char igc_copyright[] =
35 	"Copyright(c) 2018 Intel Corporation.";
36 
37 static const struct igc_info *igc_info_tbl[] = {
38 	[board_base] = &igc_base_info,
39 };
40 
41 static const struct pci_device_id igc_pci_tbl[] = {
42 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
48 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
51 	/* required last entry */
52 	{0, }
53 };
54 
55 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
56 
57 enum latency_range {
58 	lowest_latency = 0,
59 	low_latency = 1,
60 	bulk_latency = 2,
61 	latency_invalid = 255
62 };
63 
64 void igc_reset(struct igc_adapter *adapter)
65 {
66 	struct net_device *dev = adapter->netdev;
67 	struct igc_hw *hw = &adapter->hw;
68 	struct igc_fc_info *fc = &hw->fc;
69 	u32 pba, hwm;
70 
71 	/* Repartition PBA for greater than 9k MTU if required */
72 	pba = IGC_PBA_34K;
73 
74 	/* flow control settings
75 	 * The high water mark must be low enough to fit one full frame
76 	 * after transmitting the pause frame.  As such we must have enough
77 	 * space to allow for us to complete our current transmit and then
78 	 * receive the frame that is in progress from the link partner.
79 	 * Set it to:
80 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
81 	 */
82 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
83 
84 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
85 	fc->low_water = fc->high_water - 16;
86 	fc->pause_time = 0xFFFF;
87 	fc->send_xon = 1;
88 	fc->current_mode = fc->requested_mode;
89 
90 	hw->mac.ops.reset_hw(hw);
91 
92 	if (hw->mac.ops.init_hw(hw))
93 		netdev_err(dev, "Error on hardware initialization\n");
94 
95 	/* Re-establish EEE setting */
96 	igc_set_eee_i225(hw, true, true, true);
97 
98 	if (!netif_running(adapter->netdev))
99 		igc_power_down_phy_copper_base(&adapter->hw);
100 
101 	/* Re-enable PTP, where applicable. */
102 	igc_ptp_reset(adapter);
103 
104 	/* Re-enable TSN offloading, where applicable. */
105 	igc_tsn_offload_apply(adapter);
106 
107 	igc_get_phy_info(hw);
108 }
109 
110 /**
111  * igc_power_up_link - Power up the phy link
112  * @adapter: address of board private structure
113  */
114 static void igc_power_up_link(struct igc_adapter *adapter)
115 {
116 	igc_reset_phy(&adapter->hw);
117 
118 	igc_power_up_phy_copper(&adapter->hw);
119 
120 	igc_setup_link(&adapter->hw);
121 }
122 
123 /**
124  * igc_release_hw_control - release control of the h/w to f/w
125  * @adapter: address of board private structure
126  *
127  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
128  * For ASF and Pass Through versions of f/w this means that the
129  * driver is no longer loaded.
130  */
131 static void igc_release_hw_control(struct igc_adapter *adapter)
132 {
133 	struct igc_hw *hw = &adapter->hw;
134 	u32 ctrl_ext;
135 
136 	/* Let firmware take over control of h/w */
137 	ctrl_ext = rd32(IGC_CTRL_EXT);
138 	wr32(IGC_CTRL_EXT,
139 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
140 }
141 
142 /**
143  * igc_get_hw_control - get control of the h/w from f/w
144  * @adapter: address of board private structure
145  *
146  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
147  * For ASF and Pass Through versions of f/w this means that
148  * the driver is loaded.
149  */
150 static void igc_get_hw_control(struct igc_adapter *adapter)
151 {
152 	struct igc_hw *hw = &adapter->hw;
153 	u32 ctrl_ext;
154 
155 	/* Let firmware know the driver has taken over */
156 	ctrl_ext = rd32(IGC_CTRL_EXT);
157 	wr32(IGC_CTRL_EXT,
158 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
159 }
160 
161 /**
162  * igc_clean_tx_ring - Free Tx Buffers
163  * @tx_ring: ring to be cleaned
164  */
165 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
166 {
167 	u16 i = tx_ring->next_to_clean;
168 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
169 
170 	while (i != tx_ring->next_to_use) {
171 		union igc_adv_tx_desc *eop_desc, *tx_desc;
172 
173 		/* Free all the Tx ring sk_buffs */
174 		dev_kfree_skb_any(tx_buffer->skb);
175 
176 		/* unmap skb header data */
177 		dma_unmap_single(tx_ring->dev,
178 				 dma_unmap_addr(tx_buffer, dma),
179 				 dma_unmap_len(tx_buffer, len),
180 				 DMA_TO_DEVICE);
181 
182 		/* check for eop_desc to determine the end of the packet */
183 		eop_desc = tx_buffer->next_to_watch;
184 		tx_desc = IGC_TX_DESC(tx_ring, i);
185 
186 		/* unmap remaining buffers */
187 		while (tx_desc != eop_desc) {
188 			tx_buffer++;
189 			tx_desc++;
190 			i++;
191 			if (unlikely(i == tx_ring->count)) {
192 				i = 0;
193 				tx_buffer = tx_ring->tx_buffer_info;
194 				tx_desc = IGC_TX_DESC(tx_ring, 0);
195 			}
196 
197 			/* unmap any remaining paged data */
198 			if (dma_unmap_len(tx_buffer, len))
199 				dma_unmap_page(tx_ring->dev,
200 					       dma_unmap_addr(tx_buffer, dma),
201 					       dma_unmap_len(tx_buffer, len),
202 					       DMA_TO_DEVICE);
203 		}
204 
205 		/* move us one more past the eop_desc for start of next pkt */
206 		tx_buffer++;
207 		i++;
208 		if (unlikely(i == tx_ring->count)) {
209 			i = 0;
210 			tx_buffer = tx_ring->tx_buffer_info;
211 		}
212 	}
213 
214 	/* reset BQL for queue */
215 	netdev_tx_reset_queue(txring_txq(tx_ring));
216 
217 	/* reset next_to_use and next_to_clean */
218 	tx_ring->next_to_use = 0;
219 	tx_ring->next_to_clean = 0;
220 }
221 
222 /**
223  * igc_free_tx_resources - Free Tx Resources per Queue
224  * @tx_ring: Tx descriptor ring for a specific queue
225  *
226  * Free all transmit software resources
227  */
228 void igc_free_tx_resources(struct igc_ring *tx_ring)
229 {
230 	igc_clean_tx_ring(tx_ring);
231 
232 	vfree(tx_ring->tx_buffer_info);
233 	tx_ring->tx_buffer_info = NULL;
234 
235 	/* if not set, then don't free */
236 	if (!tx_ring->desc)
237 		return;
238 
239 	dma_free_coherent(tx_ring->dev, tx_ring->size,
240 			  tx_ring->desc, tx_ring->dma);
241 
242 	tx_ring->desc = NULL;
243 }
244 
245 /**
246  * igc_free_all_tx_resources - Free Tx Resources for All Queues
247  * @adapter: board private structure
248  *
249  * Free all transmit software resources
250  */
251 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
252 {
253 	int i;
254 
255 	for (i = 0; i < adapter->num_tx_queues; i++)
256 		igc_free_tx_resources(adapter->tx_ring[i]);
257 }
258 
259 /**
260  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
261  * @adapter: board private structure
262  */
263 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
264 {
265 	int i;
266 
267 	for (i = 0; i < adapter->num_tx_queues; i++)
268 		if (adapter->tx_ring[i])
269 			igc_clean_tx_ring(adapter->tx_ring[i]);
270 }
271 
272 /**
273  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
274  * @tx_ring: tx descriptor ring (for a specific queue) to setup
275  *
276  * Return 0 on success, negative on failure
277  */
278 int igc_setup_tx_resources(struct igc_ring *tx_ring)
279 {
280 	struct net_device *ndev = tx_ring->netdev;
281 	struct device *dev = tx_ring->dev;
282 	int size = 0;
283 
284 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
285 	tx_ring->tx_buffer_info = vzalloc(size);
286 	if (!tx_ring->tx_buffer_info)
287 		goto err;
288 
289 	/* round up to nearest 4K */
290 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
291 	tx_ring->size = ALIGN(tx_ring->size, 4096);
292 
293 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
294 					   &tx_ring->dma, GFP_KERNEL);
295 
296 	if (!tx_ring->desc)
297 		goto err;
298 
299 	tx_ring->next_to_use = 0;
300 	tx_ring->next_to_clean = 0;
301 
302 	return 0;
303 
304 err:
305 	vfree(tx_ring->tx_buffer_info);
306 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
307 	return -ENOMEM;
308 }
309 
310 /**
311  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
312  * @adapter: board private structure
313  *
314  * Return 0 on success, negative on failure
315  */
316 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
317 {
318 	struct net_device *dev = adapter->netdev;
319 	int i, err = 0;
320 
321 	for (i = 0; i < adapter->num_tx_queues; i++) {
322 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
323 		if (err) {
324 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
325 			for (i--; i >= 0; i--)
326 				igc_free_tx_resources(adapter->tx_ring[i]);
327 			break;
328 		}
329 	}
330 
331 	return err;
332 }
333 
334 /**
335  * igc_clean_rx_ring - Free Rx Buffers per Queue
336  * @rx_ring: ring to free buffers from
337  */
338 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
339 {
340 	u16 i = rx_ring->next_to_clean;
341 
342 	dev_kfree_skb(rx_ring->skb);
343 	rx_ring->skb = NULL;
344 
345 	/* Free all the Rx ring sk_buffs */
346 	while (i != rx_ring->next_to_alloc) {
347 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
348 
349 		/* Invalidate cache lines that may have been written to by
350 		 * device so that we avoid corrupting memory.
351 		 */
352 		dma_sync_single_range_for_cpu(rx_ring->dev,
353 					      buffer_info->dma,
354 					      buffer_info->page_offset,
355 					      igc_rx_bufsz(rx_ring),
356 					      DMA_FROM_DEVICE);
357 
358 		/* free resources associated with mapping */
359 		dma_unmap_page_attrs(rx_ring->dev,
360 				     buffer_info->dma,
361 				     igc_rx_pg_size(rx_ring),
362 				     DMA_FROM_DEVICE,
363 				     IGC_RX_DMA_ATTR);
364 		__page_frag_cache_drain(buffer_info->page,
365 					buffer_info->pagecnt_bias);
366 
367 		i++;
368 		if (i == rx_ring->count)
369 			i = 0;
370 	}
371 
372 	rx_ring->next_to_alloc = 0;
373 	rx_ring->next_to_clean = 0;
374 	rx_ring->next_to_use = 0;
375 }
376 
377 /**
378  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
379  * @adapter: board private structure
380  */
381 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
382 {
383 	int i;
384 
385 	for (i = 0; i < adapter->num_rx_queues; i++)
386 		if (adapter->rx_ring[i])
387 			igc_clean_rx_ring(adapter->rx_ring[i]);
388 }
389 
390 /**
391  * igc_free_rx_resources - Free Rx Resources
392  * @rx_ring: ring to clean the resources from
393  *
394  * Free all receive software resources
395  */
396 void igc_free_rx_resources(struct igc_ring *rx_ring)
397 {
398 	igc_clean_rx_ring(rx_ring);
399 
400 	vfree(rx_ring->rx_buffer_info);
401 	rx_ring->rx_buffer_info = NULL;
402 
403 	/* if not set, then don't free */
404 	if (!rx_ring->desc)
405 		return;
406 
407 	dma_free_coherent(rx_ring->dev, rx_ring->size,
408 			  rx_ring->desc, rx_ring->dma);
409 
410 	rx_ring->desc = NULL;
411 }
412 
413 /**
414  * igc_free_all_rx_resources - Free Rx Resources for All Queues
415  * @adapter: board private structure
416  *
417  * Free all receive software resources
418  */
419 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
420 {
421 	int i;
422 
423 	for (i = 0; i < adapter->num_rx_queues; i++)
424 		igc_free_rx_resources(adapter->rx_ring[i]);
425 }
426 
427 /**
428  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
429  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
430  *
431  * Returns 0 on success, negative on failure
432  */
433 int igc_setup_rx_resources(struct igc_ring *rx_ring)
434 {
435 	struct net_device *ndev = rx_ring->netdev;
436 	struct device *dev = rx_ring->dev;
437 	int size, desc_len;
438 
439 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
440 	rx_ring->rx_buffer_info = vzalloc(size);
441 	if (!rx_ring->rx_buffer_info)
442 		goto err;
443 
444 	desc_len = sizeof(union igc_adv_rx_desc);
445 
446 	/* Round up to nearest 4K */
447 	rx_ring->size = rx_ring->count * desc_len;
448 	rx_ring->size = ALIGN(rx_ring->size, 4096);
449 
450 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
451 					   &rx_ring->dma, GFP_KERNEL);
452 
453 	if (!rx_ring->desc)
454 		goto err;
455 
456 	rx_ring->next_to_alloc = 0;
457 	rx_ring->next_to_clean = 0;
458 	rx_ring->next_to_use = 0;
459 
460 	return 0;
461 
462 err:
463 	vfree(rx_ring->rx_buffer_info);
464 	rx_ring->rx_buffer_info = NULL;
465 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
466 	return -ENOMEM;
467 }
468 
469 /**
470  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
471  *                                (Descriptors) for all queues
472  * @adapter: board private structure
473  *
474  * Return 0 on success, negative on failure
475  */
476 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
477 {
478 	struct net_device *dev = adapter->netdev;
479 	int i, err = 0;
480 
481 	for (i = 0; i < adapter->num_rx_queues; i++) {
482 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
483 		if (err) {
484 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
485 			for (i--; i >= 0; i--)
486 				igc_free_rx_resources(adapter->rx_ring[i]);
487 			break;
488 		}
489 	}
490 
491 	return err;
492 }
493 
494 /**
495  * igc_configure_rx_ring - Configure a receive ring after Reset
496  * @adapter: board private structure
497  * @ring: receive ring to be configured
498  *
499  * Configure the Rx unit of the MAC after a reset.
500  */
501 static void igc_configure_rx_ring(struct igc_adapter *adapter,
502 				  struct igc_ring *ring)
503 {
504 	struct igc_hw *hw = &adapter->hw;
505 	union igc_adv_rx_desc *rx_desc;
506 	int reg_idx = ring->reg_idx;
507 	u32 srrctl = 0, rxdctl = 0;
508 	u64 rdba = ring->dma;
509 
510 	/* disable the queue */
511 	wr32(IGC_RXDCTL(reg_idx), 0);
512 
513 	/* Set DMA base address registers */
514 	wr32(IGC_RDBAL(reg_idx),
515 	     rdba & 0x00000000ffffffffULL);
516 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
517 	wr32(IGC_RDLEN(reg_idx),
518 	     ring->count * sizeof(union igc_adv_rx_desc));
519 
520 	/* initialize head and tail */
521 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
522 	wr32(IGC_RDH(reg_idx), 0);
523 	writel(0, ring->tail);
524 
525 	/* reset next-to- use/clean to place SW in sync with hardware */
526 	ring->next_to_clean = 0;
527 	ring->next_to_use = 0;
528 
529 	/* set descriptor configuration */
530 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
531 	if (ring_uses_large_buffer(ring))
532 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
533 	else
534 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
535 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
536 
537 	wr32(IGC_SRRCTL(reg_idx), srrctl);
538 
539 	rxdctl |= IGC_RX_PTHRESH;
540 	rxdctl |= IGC_RX_HTHRESH << 8;
541 	rxdctl |= IGC_RX_WTHRESH << 16;
542 
543 	/* initialize rx_buffer_info */
544 	memset(ring->rx_buffer_info, 0,
545 	       sizeof(struct igc_rx_buffer) * ring->count);
546 
547 	/* initialize Rx descriptor 0 */
548 	rx_desc = IGC_RX_DESC(ring, 0);
549 	rx_desc->wb.upper.length = 0;
550 
551 	/* enable receive descriptor fetching */
552 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
553 
554 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
555 }
556 
557 /**
558  * igc_configure_rx - Configure receive Unit after Reset
559  * @adapter: board private structure
560  *
561  * Configure the Rx unit of the MAC after a reset.
562  */
563 static void igc_configure_rx(struct igc_adapter *adapter)
564 {
565 	int i;
566 
567 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
568 	 * the Base and Length of the Rx Descriptor Ring
569 	 */
570 	for (i = 0; i < adapter->num_rx_queues; i++)
571 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
572 }
573 
574 /**
575  * igc_configure_tx_ring - Configure transmit ring after Reset
576  * @adapter: board private structure
577  * @ring: tx ring to configure
578  *
579  * Configure a transmit ring after a reset.
580  */
581 static void igc_configure_tx_ring(struct igc_adapter *adapter,
582 				  struct igc_ring *ring)
583 {
584 	struct igc_hw *hw = &adapter->hw;
585 	int reg_idx = ring->reg_idx;
586 	u64 tdba = ring->dma;
587 	u32 txdctl = 0;
588 
589 	/* disable the queue */
590 	wr32(IGC_TXDCTL(reg_idx), 0);
591 	wrfl();
592 	mdelay(10);
593 
594 	wr32(IGC_TDLEN(reg_idx),
595 	     ring->count * sizeof(union igc_adv_tx_desc));
596 	wr32(IGC_TDBAL(reg_idx),
597 	     tdba & 0x00000000ffffffffULL);
598 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
599 
600 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
601 	wr32(IGC_TDH(reg_idx), 0);
602 	writel(0, ring->tail);
603 
604 	txdctl |= IGC_TX_PTHRESH;
605 	txdctl |= IGC_TX_HTHRESH << 8;
606 	txdctl |= IGC_TX_WTHRESH << 16;
607 
608 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
609 	wr32(IGC_TXDCTL(reg_idx), txdctl);
610 }
611 
612 /**
613  * igc_configure_tx - Configure transmit Unit after Reset
614  * @adapter: board private structure
615  *
616  * Configure the Tx unit of the MAC after a reset.
617  */
618 static void igc_configure_tx(struct igc_adapter *adapter)
619 {
620 	int i;
621 
622 	for (i = 0; i < adapter->num_tx_queues; i++)
623 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
624 }
625 
626 /**
627  * igc_setup_mrqc - configure the multiple receive queue control registers
628  * @adapter: Board private structure
629  */
630 static void igc_setup_mrqc(struct igc_adapter *adapter)
631 {
632 	struct igc_hw *hw = &adapter->hw;
633 	u32 j, num_rx_queues;
634 	u32 mrqc, rxcsum;
635 	u32 rss_key[10];
636 
637 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
638 	for (j = 0; j < 10; j++)
639 		wr32(IGC_RSSRK(j), rss_key[j]);
640 
641 	num_rx_queues = adapter->rss_queues;
642 
643 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
644 		for (j = 0; j < IGC_RETA_SIZE; j++)
645 			adapter->rss_indir_tbl[j] =
646 			(j * num_rx_queues) / IGC_RETA_SIZE;
647 		adapter->rss_indir_tbl_init = num_rx_queues;
648 	}
649 	igc_write_rss_indir_tbl(adapter);
650 
651 	/* Disable raw packet checksumming so that RSS hash is placed in
652 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
653 	 * offloads as they are enabled by default
654 	 */
655 	rxcsum = rd32(IGC_RXCSUM);
656 	rxcsum |= IGC_RXCSUM_PCSD;
657 
658 	/* Enable Receive Checksum Offload for SCTP */
659 	rxcsum |= IGC_RXCSUM_CRCOFL;
660 
661 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
662 	wr32(IGC_RXCSUM, rxcsum);
663 
664 	/* Generate RSS hash based on packet types, TCP/UDP
665 	 * port numbers and/or IPv4/v6 src and dst addresses
666 	 */
667 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
668 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
669 	       IGC_MRQC_RSS_FIELD_IPV6 |
670 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
671 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
672 
673 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
674 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
675 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
676 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
677 
678 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
679 
680 	wr32(IGC_MRQC, mrqc);
681 }
682 
683 /**
684  * igc_setup_rctl - configure the receive control registers
685  * @adapter: Board private structure
686  */
687 static void igc_setup_rctl(struct igc_adapter *adapter)
688 {
689 	struct igc_hw *hw = &adapter->hw;
690 	u32 rctl;
691 
692 	rctl = rd32(IGC_RCTL);
693 
694 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
695 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
696 
697 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
698 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
699 
700 	/* enable stripping of CRC. Newer features require
701 	 * that the HW strips the CRC.
702 	 */
703 	rctl |= IGC_RCTL_SECRC;
704 
705 	/* disable store bad packets and clear size bits. */
706 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
707 
708 	/* enable LPE to allow for reception of jumbo frames */
709 	rctl |= IGC_RCTL_LPE;
710 
711 	/* disable queue 0 to prevent tail write w/o re-config */
712 	wr32(IGC_RXDCTL(0), 0);
713 
714 	/* This is useful for sniffing bad packets. */
715 	if (adapter->netdev->features & NETIF_F_RXALL) {
716 		/* UPE and MPE will be handled by normal PROMISC logic
717 		 * in set_rx_mode
718 		 */
719 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
720 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
721 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
722 
723 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
724 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
725 	}
726 
727 	wr32(IGC_RCTL, rctl);
728 }
729 
730 /**
731  * igc_setup_tctl - configure the transmit control registers
732  * @adapter: Board private structure
733  */
734 static void igc_setup_tctl(struct igc_adapter *adapter)
735 {
736 	struct igc_hw *hw = &adapter->hw;
737 	u32 tctl;
738 
739 	/* disable queue 0 which icould be enabled by default */
740 	wr32(IGC_TXDCTL(0), 0);
741 
742 	/* Program the Transmit Control Register */
743 	tctl = rd32(IGC_TCTL);
744 	tctl &= ~IGC_TCTL_CT;
745 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
746 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
747 
748 	/* Enable transmits */
749 	tctl |= IGC_TCTL_EN;
750 
751 	wr32(IGC_TCTL, tctl);
752 }
753 
754 /**
755  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
756  * @adapter: Pointer to adapter where the filter should be set
757  * @index: Filter index
758  * @type: MAC address filter type (source or destination)
759  * @addr: MAC address
760  * @queue: If non-negative, queue assignment feature is enabled and frames
761  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
762  *         assignment is disabled.
763  */
764 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
765 				  enum igc_mac_filter_type type,
766 				  const u8 *addr, int queue)
767 {
768 	struct net_device *dev = adapter->netdev;
769 	struct igc_hw *hw = &adapter->hw;
770 	u32 ral, rah;
771 
772 	if (WARN_ON(index >= hw->mac.rar_entry_count))
773 		return;
774 
775 	ral = le32_to_cpup((__le32 *)(addr));
776 	rah = le16_to_cpup((__le16 *)(addr + 4));
777 
778 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
779 		rah &= ~IGC_RAH_ASEL_MASK;
780 		rah |= IGC_RAH_ASEL_SRC_ADDR;
781 	}
782 
783 	if (queue >= 0) {
784 		rah &= ~IGC_RAH_QSEL_MASK;
785 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
786 		rah |= IGC_RAH_QSEL_ENABLE;
787 	}
788 
789 	rah |= IGC_RAH_AV;
790 
791 	wr32(IGC_RAL(index), ral);
792 	wr32(IGC_RAH(index), rah);
793 
794 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
795 }
796 
797 /**
798  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
799  * @adapter: Pointer to adapter where the filter should be cleared
800  * @index: Filter index
801  */
802 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
803 {
804 	struct net_device *dev = adapter->netdev;
805 	struct igc_hw *hw = &adapter->hw;
806 
807 	if (WARN_ON(index >= hw->mac.rar_entry_count))
808 		return;
809 
810 	wr32(IGC_RAL(index), 0);
811 	wr32(IGC_RAH(index), 0);
812 
813 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
814 }
815 
816 /* Set default MAC address for the PF in the first RAR entry */
817 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
818 {
819 	struct net_device *dev = adapter->netdev;
820 	u8 *addr = adapter->hw.mac.addr;
821 
822 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
823 
824 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
825 }
826 
827 /**
828  * igc_set_mac - Change the Ethernet Address of the NIC
829  * @netdev: network interface device structure
830  * @p: pointer to an address structure
831  *
832  * Returns 0 on success, negative on failure
833  */
834 static int igc_set_mac(struct net_device *netdev, void *p)
835 {
836 	struct igc_adapter *adapter = netdev_priv(netdev);
837 	struct igc_hw *hw = &adapter->hw;
838 	struct sockaddr *addr = p;
839 
840 	if (!is_valid_ether_addr(addr->sa_data))
841 		return -EADDRNOTAVAIL;
842 
843 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
844 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
845 
846 	/* set the correct pool for the new PF MAC address in entry 0 */
847 	igc_set_default_mac_filter(adapter);
848 
849 	return 0;
850 }
851 
852 /**
853  *  igc_write_mc_addr_list - write multicast addresses to MTA
854  *  @netdev: network interface device structure
855  *
856  *  Writes multicast address list to the MTA hash table.
857  *  Returns: -ENOMEM on failure
858  *           0 on no addresses written
859  *           X on writing X addresses to MTA
860  **/
861 static int igc_write_mc_addr_list(struct net_device *netdev)
862 {
863 	struct igc_adapter *adapter = netdev_priv(netdev);
864 	struct igc_hw *hw = &adapter->hw;
865 	struct netdev_hw_addr *ha;
866 	u8  *mta_list;
867 	int i;
868 
869 	if (netdev_mc_empty(netdev)) {
870 		/* nothing to program, so clear mc list */
871 		igc_update_mc_addr_list(hw, NULL, 0);
872 		return 0;
873 	}
874 
875 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
876 	if (!mta_list)
877 		return -ENOMEM;
878 
879 	/* The shared function expects a packed array of only addresses. */
880 	i = 0;
881 	netdev_for_each_mc_addr(ha, netdev)
882 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
883 
884 	igc_update_mc_addr_list(hw, mta_list, i);
885 	kfree(mta_list);
886 
887 	return netdev_mc_count(netdev);
888 }
889 
890 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
891 {
892 	ktime_t cycle_time = adapter->cycle_time;
893 	ktime_t base_time = adapter->base_time;
894 	u32 launchtime;
895 
896 	/* FIXME: when using ETF together with taprio, we may have a
897 	 * case where 'delta' is larger than the cycle_time, this may
898 	 * cause problems if we don't read the current value of
899 	 * IGC_BASET, as the value writen into the launchtime
900 	 * descriptor field may be misinterpreted.
901 	 */
902 	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
903 
904 	return cpu_to_le32(launchtime);
905 }
906 
907 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
908 			    struct igc_tx_buffer *first,
909 			    u32 vlan_macip_lens, u32 type_tucmd,
910 			    u32 mss_l4len_idx)
911 {
912 	struct igc_adv_tx_context_desc *context_desc;
913 	u16 i = tx_ring->next_to_use;
914 
915 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
916 
917 	i++;
918 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
919 
920 	/* set bits to identify this as an advanced context descriptor */
921 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
922 
923 	/* For i225, context index must be unique per ring. */
924 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
925 		mss_l4len_idx |= tx_ring->reg_idx << 4;
926 
927 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
928 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
929 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
930 
931 	/* We assume there is always a valid Tx time available. Invalid times
932 	 * should have been handled by the upper layers.
933 	 */
934 	if (tx_ring->launchtime_enable) {
935 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
936 		ktime_t txtime = first->skb->tstamp;
937 
938 		first->skb->tstamp = ktime_set(0, 0);
939 		context_desc->launch_time = igc_tx_launchtime(adapter,
940 							      txtime);
941 	} else {
942 		context_desc->launch_time = 0;
943 	}
944 }
945 
946 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
947 {
948 	unsigned int offset = 0;
949 
950 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
951 
952 	return offset == skb_checksum_start_offset(skb);
953 }
954 
955 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
956 {
957 	struct sk_buff *skb = first->skb;
958 	u32 vlan_macip_lens = 0;
959 	u32 type_tucmd = 0;
960 
961 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
962 csum_failed:
963 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
964 		    !tx_ring->launchtime_enable)
965 			return;
966 		goto no_csum;
967 	}
968 
969 	switch (skb->csum_offset) {
970 	case offsetof(struct tcphdr, check):
971 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
972 		fallthrough;
973 	case offsetof(struct udphdr, check):
974 		break;
975 	case offsetof(struct sctphdr, checksum):
976 		/* validate that this is actually an SCTP request */
977 		if ((first->protocol == htons(ETH_P_IP) &&
978 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
979 		    (first->protocol == htons(ETH_P_IPV6) &&
980 		     igc_ipv6_csum_is_sctp(skb))) {
981 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
982 			break;
983 		}
984 		fallthrough;
985 	default:
986 		skb_checksum_help(skb);
987 		goto csum_failed;
988 	}
989 
990 	/* update TX checksum flag */
991 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
992 	vlan_macip_lens = skb_checksum_start_offset(skb) -
993 			  skb_network_offset(skb);
994 no_csum:
995 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
996 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
997 
998 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
999 }
1000 
1001 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1002 {
1003 	struct net_device *netdev = tx_ring->netdev;
1004 
1005 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1006 
1007 	/* memory barriier comment */
1008 	smp_mb();
1009 
1010 	/* We need to check again in a case another CPU has just
1011 	 * made room available.
1012 	 */
1013 	if (igc_desc_unused(tx_ring) < size)
1014 		return -EBUSY;
1015 
1016 	/* A reprieve! */
1017 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1018 
1019 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1020 	tx_ring->tx_stats.restart_queue2++;
1021 	u64_stats_update_end(&tx_ring->tx_syncp2);
1022 
1023 	return 0;
1024 }
1025 
1026 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1027 {
1028 	if (igc_desc_unused(tx_ring) >= size)
1029 		return 0;
1030 	return __igc_maybe_stop_tx(tx_ring, size);
1031 }
1032 
1033 #define IGC_SET_FLAG(_input, _flag, _result) \
1034 	(((_flag) <= (_result)) ?				\
1035 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1036 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1037 
1038 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1039 {
1040 	/* set type for advanced descriptor with frame checksum insertion */
1041 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1042 		       IGC_ADVTXD_DCMD_DEXT |
1043 		       IGC_ADVTXD_DCMD_IFCS;
1044 
1045 	/* set segmentation bits for TSO */
1046 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1047 				 (IGC_ADVTXD_DCMD_TSE));
1048 
1049 	/* set timestamp bit if present */
1050 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1051 				 (IGC_ADVTXD_MAC_TSTAMP));
1052 
1053 	return cmd_type;
1054 }
1055 
1056 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1057 				 union igc_adv_tx_desc *tx_desc,
1058 				 u32 tx_flags, unsigned int paylen)
1059 {
1060 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1061 
1062 	/* insert L4 checksum */
1063 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1064 			  ((IGC_TXD_POPTS_TXSM << 8) /
1065 			  IGC_TX_FLAGS_CSUM);
1066 
1067 	/* insert IPv4 checksum */
1068 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1069 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1070 			  IGC_TX_FLAGS_IPV4);
1071 
1072 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1073 }
1074 
1075 static int igc_tx_map(struct igc_ring *tx_ring,
1076 		      struct igc_tx_buffer *first,
1077 		      const u8 hdr_len)
1078 {
1079 	struct sk_buff *skb = first->skb;
1080 	struct igc_tx_buffer *tx_buffer;
1081 	union igc_adv_tx_desc *tx_desc;
1082 	u32 tx_flags = first->tx_flags;
1083 	skb_frag_t *frag;
1084 	u16 i = tx_ring->next_to_use;
1085 	unsigned int data_len, size;
1086 	dma_addr_t dma;
1087 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1088 
1089 	tx_desc = IGC_TX_DESC(tx_ring, i);
1090 
1091 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1092 
1093 	size = skb_headlen(skb);
1094 	data_len = skb->data_len;
1095 
1096 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1097 
1098 	tx_buffer = first;
1099 
1100 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1101 		if (dma_mapping_error(tx_ring->dev, dma))
1102 			goto dma_error;
1103 
1104 		/* record length, and DMA address */
1105 		dma_unmap_len_set(tx_buffer, len, size);
1106 		dma_unmap_addr_set(tx_buffer, dma, dma);
1107 
1108 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1109 
1110 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1111 			tx_desc->read.cmd_type_len =
1112 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1113 
1114 			i++;
1115 			tx_desc++;
1116 			if (i == tx_ring->count) {
1117 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1118 				i = 0;
1119 			}
1120 			tx_desc->read.olinfo_status = 0;
1121 
1122 			dma += IGC_MAX_DATA_PER_TXD;
1123 			size -= IGC_MAX_DATA_PER_TXD;
1124 
1125 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1126 		}
1127 
1128 		if (likely(!data_len))
1129 			break;
1130 
1131 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1132 
1133 		i++;
1134 		tx_desc++;
1135 		if (i == tx_ring->count) {
1136 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1137 			i = 0;
1138 		}
1139 		tx_desc->read.olinfo_status = 0;
1140 
1141 		size = skb_frag_size(frag);
1142 		data_len -= size;
1143 
1144 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1145 				       size, DMA_TO_DEVICE);
1146 
1147 		tx_buffer = &tx_ring->tx_buffer_info[i];
1148 	}
1149 
1150 	/* write last descriptor with RS and EOP bits */
1151 	cmd_type |= size | IGC_TXD_DCMD;
1152 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1153 
1154 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1155 
1156 	/* set the timestamp */
1157 	first->time_stamp = jiffies;
1158 
1159 	skb_tx_timestamp(skb);
1160 
1161 	/* Force memory writes to complete before letting h/w know there
1162 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1163 	 * memory model archs, such as IA-64).
1164 	 *
1165 	 * We also need this memory barrier to make certain all of the
1166 	 * status bits have been updated before next_to_watch is written.
1167 	 */
1168 	wmb();
1169 
1170 	/* set next_to_watch value indicating a packet is present */
1171 	first->next_to_watch = tx_desc;
1172 
1173 	i++;
1174 	if (i == tx_ring->count)
1175 		i = 0;
1176 
1177 	tx_ring->next_to_use = i;
1178 
1179 	/* Make sure there is space in the ring for the next send. */
1180 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1181 
1182 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1183 		writel(i, tx_ring->tail);
1184 	}
1185 
1186 	return 0;
1187 dma_error:
1188 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1189 	tx_buffer = &tx_ring->tx_buffer_info[i];
1190 
1191 	/* clear dma mappings for failed tx_buffer_info map */
1192 	while (tx_buffer != first) {
1193 		if (dma_unmap_len(tx_buffer, len))
1194 			dma_unmap_page(tx_ring->dev,
1195 				       dma_unmap_addr(tx_buffer, dma),
1196 				       dma_unmap_len(tx_buffer, len),
1197 				       DMA_TO_DEVICE);
1198 		dma_unmap_len_set(tx_buffer, len, 0);
1199 
1200 		if (i-- == 0)
1201 			i += tx_ring->count;
1202 		tx_buffer = &tx_ring->tx_buffer_info[i];
1203 	}
1204 
1205 	if (dma_unmap_len(tx_buffer, len))
1206 		dma_unmap_single(tx_ring->dev,
1207 				 dma_unmap_addr(tx_buffer, dma),
1208 				 dma_unmap_len(tx_buffer, len),
1209 				 DMA_TO_DEVICE);
1210 	dma_unmap_len_set(tx_buffer, len, 0);
1211 
1212 	dev_kfree_skb_any(tx_buffer->skb);
1213 	tx_buffer->skb = NULL;
1214 
1215 	tx_ring->next_to_use = i;
1216 
1217 	return -1;
1218 }
1219 
1220 static int igc_tso(struct igc_ring *tx_ring,
1221 		   struct igc_tx_buffer *first,
1222 		   u8 *hdr_len)
1223 {
1224 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1225 	struct sk_buff *skb = first->skb;
1226 	union {
1227 		struct iphdr *v4;
1228 		struct ipv6hdr *v6;
1229 		unsigned char *hdr;
1230 	} ip;
1231 	union {
1232 		struct tcphdr *tcp;
1233 		struct udphdr *udp;
1234 		unsigned char *hdr;
1235 	} l4;
1236 	u32 paylen, l4_offset;
1237 	int err;
1238 
1239 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1240 		return 0;
1241 
1242 	if (!skb_is_gso(skb))
1243 		return 0;
1244 
1245 	err = skb_cow_head(skb, 0);
1246 	if (err < 0)
1247 		return err;
1248 
1249 	ip.hdr = skb_network_header(skb);
1250 	l4.hdr = skb_checksum_start(skb);
1251 
1252 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1253 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1254 
1255 	/* initialize outer IP header fields */
1256 	if (ip.v4->version == 4) {
1257 		unsigned char *csum_start = skb_checksum_start(skb);
1258 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1259 
1260 		/* IP header will have to cancel out any data that
1261 		 * is not a part of the outer IP header
1262 		 */
1263 		ip.v4->check = csum_fold(csum_partial(trans_start,
1264 						      csum_start - trans_start,
1265 						      0));
1266 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1267 
1268 		ip.v4->tot_len = 0;
1269 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1270 				   IGC_TX_FLAGS_CSUM |
1271 				   IGC_TX_FLAGS_IPV4;
1272 	} else {
1273 		ip.v6->payload_len = 0;
1274 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1275 				   IGC_TX_FLAGS_CSUM;
1276 	}
1277 
1278 	/* determine offset of inner transport header */
1279 	l4_offset = l4.hdr - skb->data;
1280 
1281 	/* remove payload length from inner checksum */
1282 	paylen = skb->len - l4_offset;
1283 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1284 		/* compute length of segmentation header */
1285 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1286 		csum_replace_by_diff(&l4.tcp->check,
1287 				     (__force __wsum)htonl(paylen));
1288 	} else {
1289 		/* compute length of segmentation header */
1290 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1291 		csum_replace_by_diff(&l4.udp->check,
1292 				     (__force __wsum)htonl(paylen));
1293 	}
1294 
1295 	/* update gso size and bytecount with header size */
1296 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1297 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1298 
1299 	/* MSS L4LEN IDX */
1300 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1301 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1302 
1303 	/* VLAN MACLEN IPLEN */
1304 	vlan_macip_lens = l4.hdr - ip.hdr;
1305 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1306 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1307 
1308 	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1309 			type_tucmd, mss_l4len_idx);
1310 
1311 	return 1;
1312 }
1313 
1314 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1315 				       struct igc_ring *tx_ring)
1316 {
1317 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1318 	__be16 protocol = vlan_get_protocol(skb);
1319 	struct igc_tx_buffer *first;
1320 	u32 tx_flags = 0;
1321 	unsigned short f;
1322 	u8 hdr_len = 0;
1323 	int tso = 0;
1324 
1325 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1326 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1327 	 *	+ 2 desc gap to keep tail from touching head,
1328 	 *	+ 1 desc for context descriptor,
1329 	 * otherwise try next time
1330 	 */
1331 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1332 		count += TXD_USE_COUNT(skb_frag_size(
1333 						&skb_shinfo(skb)->frags[f]));
1334 
1335 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1336 		/* this is a hard error */
1337 		return NETDEV_TX_BUSY;
1338 	}
1339 
1340 	/* record the location of the first descriptor for this packet */
1341 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1342 	first->skb = skb;
1343 	first->bytecount = skb->len;
1344 	first->gso_segs = 1;
1345 
1346 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1347 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1348 
1349 		/* FIXME: add support for retrieving timestamps from
1350 		 * the other timer registers before skipping the
1351 		 * timestamping request.
1352 		 */
1353 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1354 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1355 					   &adapter->state)) {
1356 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1357 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1358 
1359 			adapter->ptp_tx_skb = skb_get(skb);
1360 			adapter->ptp_tx_start = jiffies;
1361 		} else {
1362 			adapter->tx_hwtstamp_skipped++;
1363 		}
1364 	}
1365 
1366 	/* record initial flags and protocol */
1367 	first->tx_flags = tx_flags;
1368 	first->protocol = protocol;
1369 
1370 	tso = igc_tso(tx_ring, first, &hdr_len);
1371 	if (tso < 0)
1372 		goto out_drop;
1373 	else if (!tso)
1374 		igc_tx_csum(tx_ring, first);
1375 
1376 	igc_tx_map(tx_ring, first, hdr_len);
1377 
1378 	return NETDEV_TX_OK;
1379 
1380 out_drop:
1381 	dev_kfree_skb_any(first->skb);
1382 	first->skb = NULL;
1383 
1384 	return NETDEV_TX_OK;
1385 }
1386 
1387 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1388 						    struct sk_buff *skb)
1389 {
1390 	unsigned int r_idx = skb->queue_mapping;
1391 
1392 	if (r_idx >= adapter->num_tx_queues)
1393 		r_idx = r_idx % adapter->num_tx_queues;
1394 
1395 	return adapter->tx_ring[r_idx];
1396 }
1397 
1398 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1399 				  struct net_device *netdev)
1400 {
1401 	struct igc_adapter *adapter = netdev_priv(netdev);
1402 
1403 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1404 	 * in order to meet this minimum size requirement.
1405 	 */
1406 	if (skb->len < 17) {
1407 		if (skb_padto(skb, 17))
1408 			return NETDEV_TX_OK;
1409 		skb->len = 17;
1410 	}
1411 
1412 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1413 }
1414 
1415 static void igc_rx_checksum(struct igc_ring *ring,
1416 			    union igc_adv_rx_desc *rx_desc,
1417 			    struct sk_buff *skb)
1418 {
1419 	skb_checksum_none_assert(skb);
1420 
1421 	/* Ignore Checksum bit is set */
1422 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1423 		return;
1424 
1425 	/* Rx checksum disabled via ethtool */
1426 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1427 		return;
1428 
1429 	/* TCP/UDP checksum error bit is set */
1430 	if (igc_test_staterr(rx_desc,
1431 			     IGC_RXDEXT_STATERR_TCPE |
1432 			     IGC_RXDEXT_STATERR_IPE)) {
1433 		/* work around errata with sctp packets where the TCPE aka
1434 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1435 		 * packets (aka let the stack check the crc32c)
1436 		 */
1437 		if (!(skb->len == 60 &&
1438 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1439 			u64_stats_update_begin(&ring->rx_syncp);
1440 			ring->rx_stats.csum_err++;
1441 			u64_stats_update_end(&ring->rx_syncp);
1442 		}
1443 		/* let the stack verify checksum errors */
1444 		return;
1445 	}
1446 	/* It must be a TCP or UDP packet with a valid checksum */
1447 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1448 				      IGC_RXD_STAT_UDPCS))
1449 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1450 
1451 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1452 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1453 }
1454 
1455 static inline void igc_rx_hash(struct igc_ring *ring,
1456 			       union igc_adv_rx_desc *rx_desc,
1457 			       struct sk_buff *skb)
1458 {
1459 	if (ring->netdev->features & NETIF_F_RXHASH)
1460 		skb_set_hash(skb,
1461 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1462 			     PKT_HASH_TYPE_L3);
1463 }
1464 
1465 /**
1466  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1467  * @rx_ring: rx descriptor ring packet is being transacted on
1468  * @rx_desc: pointer to the EOP Rx descriptor
1469  * @skb: pointer to current skb being populated
1470  *
1471  * This function checks the ring, descriptor, and packet information in order
1472  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1473  * skb.
1474  */
1475 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1476 				   union igc_adv_rx_desc *rx_desc,
1477 				   struct sk_buff *skb)
1478 {
1479 	igc_rx_hash(rx_ring, rx_desc, skb);
1480 
1481 	igc_rx_checksum(rx_ring, rx_desc, skb);
1482 
1483 	skb_record_rx_queue(skb, rx_ring->queue_index);
1484 
1485 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1486 }
1487 
1488 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1489 					       const unsigned int size)
1490 {
1491 	struct igc_rx_buffer *rx_buffer;
1492 
1493 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1494 	prefetchw(rx_buffer->page);
1495 
1496 	/* we are reusing so sync this buffer for CPU use */
1497 	dma_sync_single_range_for_cpu(rx_ring->dev,
1498 				      rx_buffer->dma,
1499 				      rx_buffer->page_offset,
1500 				      size,
1501 				      DMA_FROM_DEVICE);
1502 
1503 	rx_buffer->pagecnt_bias--;
1504 
1505 	return rx_buffer;
1506 }
1507 
1508 /**
1509  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1510  * @rx_ring: rx descriptor ring to transact packets on
1511  * @rx_buffer: buffer containing page to add
1512  * @skb: sk_buff to place the data into
1513  * @size: size of buffer to be added
1514  *
1515  * This function will add the data contained in rx_buffer->page to the skb.
1516  */
1517 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1518 			    struct igc_rx_buffer *rx_buffer,
1519 			    struct sk_buff *skb,
1520 			    unsigned int size)
1521 {
1522 #if (PAGE_SIZE < 8192)
1523 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1524 
1525 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1526 			rx_buffer->page_offset, size, truesize);
1527 	rx_buffer->page_offset ^= truesize;
1528 #else
1529 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1530 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1531 				SKB_DATA_ALIGN(size);
1532 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1533 			rx_buffer->page_offset, size, truesize);
1534 	rx_buffer->page_offset += truesize;
1535 #endif
1536 }
1537 
1538 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1539 				     struct igc_rx_buffer *rx_buffer,
1540 				     union igc_adv_rx_desc *rx_desc,
1541 				     unsigned int size)
1542 {
1543 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1544 #if (PAGE_SIZE < 8192)
1545 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1546 #else
1547 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1548 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1549 #endif
1550 	struct sk_buff *skb;
1551 
1552 	/* prefetch first cache line of first page */
1553 	net_prefetch(va);
1554 
1555 	/* build an skb around the page buffer */
1556 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1557 	if (unlikely(!skb))
1558 		return NULL;
1559 
1560 	/* update pointers within the skb to store the data */
1561 	skb_reserve(skb, IGC_SKB_PAD);
1562 	__skb_put(skb, size);
1563 
1564 	/* update buffer offset */
1565 #if (PAGE_SIZE < 8192)
1566 	rx_buffer->page_offset ^= truesize;
1567 #else
1568 	rx_buffer->page_offset += truesize;
1569 #endif
1570 
1571 	return skb;
1572 }
1573 
1574 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1575 					 struct igc_rx_buffer *rx_buffer,
1576 					 union igc_adv_rx_desc *rx_desc,
1577 					 unsigned int size)
1578 {
1579 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1580 #if (PAGE_SIZE < 8192)
1581 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1582 #else
1583 	unsigned int truesize = SKB_DATA_ALIGN(size);
1584 #endif
1585 	unsigned int headlen;
1586 	struct sk_buff *skb;
1587 
1588 	/* prefetch first cache line of first page */
1589 	net_prefetch(va);
1590 
1591 	/* allocate a skb to store the frags */
1592 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1593 	if (unlikely(!skb))
1594 		return NULL;
1595 
1596 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1597 		igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1598 		va += IGC_TS_HDR_LEN;
1599 		size -= IGC_TS_HDR_LEN;
1600 	}
1601 
1602 	/* Determine available headroom for copy */
1603 	headlen = size;
1604 	if (headlen > IGC_RX_HDR_LEN)
1605 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1606 
1607 	/* align pull length to size of long to optimize memcpy performance */
1608 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1609 
1610 	/* update all of the pointers */
1611 	size -= headlen;
1612 	if (size) {
1613 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1614 				(va + headlen) - page_address(rx_buffer->page),
1615 				size, truesize);
1616 #if (PAGE_SIZE < 8192)
1617 		rx_buffer->page_offset ^= truesize;
1618 #else
1619 		rx_buffer->page_offset += truesize;
1620 #endif
1621 	} else {
1622 		rx_buffer->pagecnt_bias++;
1623 	}
1624 
1625 	return skb;
1626 }
1627 
1628 /**
1629  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1630  * @rx_ring: rx descriptor ring to store buffers on
1631  * @old_buff: donor buffer to have page reused
1632  *
1633  * Synchronizes page for reuse by the adapter
1634  */
1635 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1636 			      struct igc_rx_buffer *old_buff)
1637 {
1638 	u16 nta = rx_ring->next_to_alloc;
1639 	struct igc_rx_buffer *new_buff;
1640 
1641 	new_buff = &rx_ring->rx_buffer_info[nta];
1642 
1643 	/* update, and store next to alloc */
1644 	nta++;
1645 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1646 
1647 	/* Transfer page from old buffer to new buffer.
1648 	 * Move each member individually to avoid possible store
1649 	 * forwarding stalls.
1650 	 */
1651 	new_buff->dma		= old_buff->dma;
1652 	new_buff->page		= old_buff->page;
1653 	new_buff->page_offset	= old_buff->page_offset;
1654 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1655 }
1656 
1657 static inline bool igc_page_is_reserved(struct page *page)
1658 {
1659 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1660 }
1661 
1662 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1663 {
1664 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1665 	struct page *page = rx_buffer->page;
1666 
1667 	/* avoid re-using remote pages */
1668 	if (unlikely(igc_page_is_reserved(page)))
1669 		return false;
1670 
1671 #if (PAGE_SIZE < 8192)
1672 	/* if we are only owner of page we can reuse it */
1673 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1674 		return false;
1675 #else
1676 #define IGC_LAST_OFFSET \
1677 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1678 
1679 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1680 		return false;
1681 #endif
1682 
1683 	/* If we have drained the page fragment pool we need to update
1684 	 * the pagecnt_bias and page count so that we fully restock the
1685 	 * number of references the driver holds.
1686 	 */
1687 	if (unlikely(!pagecnt_bias)) {
1688 		page_ref_add(page, USHRT_MAX);
1689 		rx_buffer->pagecnt_bias = USHRT_MAX;
1690 	}
1691 
1692 	return true;
1693 }
1694 
1695 /**
1696  * igc_is_non_eop - process handling of non-EOP buffers
1697  * @rx_ring: Rx ring being processed
1698  * @rx_desc: Rx descriptor for current buffer
1699  *
1700  * This function updates next to clean.  If the buffer is an EOP buffer
1701  * this function exits returning false, otherwise it will place the
1702  * sk_buff in the next buffer to be chained and return true indicating
1703  * that this is in fact a non-EOP buffer.
1704  */
1705 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1706 			   union igc_adv_rx_desc *rx_desc)
1707 {
1708 	u32 ntc = rx_ring->next_to_clean + 1;
1709 
1710 	/* fetch, update, and store next to clean */
1711 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1712 	rx_ring->next_to_clean = ntc;
1713 
1714 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1715 
1716 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1717 		return false;
1718 
1719 	return true;
1720 }
1721 
1722 /**
1723  * igc_cleanup_headers - Correct corrupted or empty headers
1724  * @rx_ring: rx descriptor ring packet is being transacted on
1725  * @rx_desc: pointer to the EOP Rx descriptor
1726  * @skb: pointer to current skb being fixed
1727  *
1728  * Address the case where we are pulling data in on pages only
1729  * and as such no data is present in the skb header.
1730  *
1731  * In addition if skb is not at least 60 bytes we need to pad it so that
1732  * it is large enough to qualify as a valid Ethernet frame.
1733  *
1734  * Returns true if an error was encountered and skb was freed.
1735  */
1736 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1737 				union igc_adv_rx_desc *rx_desc,
1738 				struct sk_buff *skb)
1739 {
1740 	if (unlikely((igc_test_staterr(rx_desc,
1741 				       IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1742 		struct net_device *netdev = rx_ring->netdev;
1743 
1744 		if (!(netdev->features & NETIF_F_RXALL)) {
1745 			dev_kfree_skb_any(skb);
1746 			return true;
1747 		}
1748 	}
1749 
1750 	/* if eth_skb_pad returns an error the skb was freed */
1751 	if (eth_skb_pad(skb))
1752 		return true;
1753 
1754 	return false;
1755 }
1756 
1757 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1758 			      struct igc_rx_buffer *rx_buffer)
1759 {
1760 	if (igc_can_reuse_rx_page(rx_buffer)) {
1761 		/* hand second half of page back to the ring */
1762 		igc_reuse_rx_page(rx_ring, rx_buffer);
1763 	} else {
1764 		/* We are not reusing the buffer so unmap it and free
1765 		 * any references we are holding to it
1766 		 */
1767 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1768 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1769 				     IGC_RX_DMA_ATTR);
1770 		__page_frag_cache_drain(rx_buffer->page,
1771 					rx_buffer->pagecnt_bias);
1772 	}
1773 
1774 	/* clear contents of rx_buffer */
1775 	rx_buffer->page = NULL;
1776 }
1777 
1778 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1779 {
1780 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1781 }
1782 
1783 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1784 				  struct igc_rx_buffer *bi)
1785 {
1786 	struct page *page = bi->page;
1787 	dma_addr_t dma;
1788 
1789 	/* since we are recycling buffers we should seldom need to alloc */
1790 	if (likely(page))
1791 		return true;
1792 
1793 	/* alloc new page for storage */
1794 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1795 	if (unlikely(!page)) {
1796 		rx_ring->rx_stats.alloc_failed++;
1797 		return false;
1798 	}
1799 
1800 	/* map page for use */
1801 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1802 				 igc_rx_pg_size(rx_ring),
1803 				 DMA_FROM_DEVICE,
1804 				 IGC_RX_DMA_ATTR);
1805 
1806 	/* if mapping failed free memory back to system since
1807 	 * there isn't much point in holding memory we can't use
1808 	 */
1809 	if (dma_mapping_error(rx_ring->dev, dma)) {
1810 		__free_page(page);
1811 
1812 		rx_ring->rx_stats.alloc_failed++;
1813 		return false;
1814 	}
1815 
1816 	bi->dma = dma;
1817 	bi->page = page;
1818 	bi->page_offset = igc_rx_offset(rx_ring);
1819 	bi->pagecnt_bias = 1;
1820 
1821 	return true;
1822 }
1823 
1824 /**
1825  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1826  * @rx_ring: rx descriptor ring
1827  * @cleaned_count: number of buffers to clean
1828  */
1829 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1830 {
1831 	union igc_adv_rx_desc *rx_desc;
1832 	u16 i = rx_ring->next_to_use;
1833 	struct igc_rx_buffer *bi;
1834 	u16 bufsz;
1835 
1836 	/* nothing to do */
1837 	if (!cleaned_count)
1838 		return;
1839 
1840 	rx_desc = IGC_RX_DESC(rx_ring, i);
1841 	bi = &rx_ring->rx_buffer_info[i];
1842 	i -= rx_ring->count;
1843 
1844 	bufsz = igc_rx_bufsz(rx_ring);
1845 
1846 	do {
1847 		if (!igc_alloc_mapped_page(rx_ring, bi))
1848 			break;
1849 
1850 		/* sync the buffer for use by the device */
1851 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1852 						 bi->page_offset, bufsz,
1853 						 DMA_FROM_DEVICE);
1854 
1855 		/* Refresh the desc even if buffer_addrs didn't change
1856 		 * because each write-back erases this info.
1857 		 */
1858 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1859 
1860 		rx_desc++;
1861 		bi++;
1862 		i++;
1863 		if (unlikely(!i)) {
1864 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1865 			bi = rx_ring->rx_buffer_info;
1866 			i -= rx_ring->count;
1867 		}
1868 
1869 		/* clear the length for the next_to_use descriptor */
1870 		rx_desc->wb.upper.length = 0;
1871 
1872 		cleaned_count--;
1873 	} while (cleaned_count);
1874 
1875 	i += rx_ring->count;
1876 
1877 	if (rx_ring->next_to_use != i) {
1878 		/* record the next descriptor to use */
1879 		rx_ring->next_to_use = i;
1880 
1881 		/* update next to alloc since we have filled the ring */
1882 		rx_ring->next_to_alloc = i;
1883 
1884 		/* Force memory writes to complete before letting h/w
1885 		 * know there are new descriptors to fetch.  (Only
1886 		 * applicable for weak-ordered memory model archs,
1887 		 * such as IA-64).
1888 		 */
1889 		wmb();
1890 		writel(i, rx_ring->tail);
1891 	}
1892 }
1893 
1894 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1895 {
1896 	unsigned int total_bytes = 0, total_packets = 0;
1897 	struct igc_ring *rx_ring = q_vector->rx.ring;
1898 	struct sk_buff *skb = rx_ring->skb;
1899 	u16 cleaned_count = igc_desc_unused(rx_ring);
1900 
1901 	while (likely(total_packets < budget)) {
1902 		union igc_adv_rx_desc *rx_desc;
1903 		struct igc_rx_buffer *rx_buffer;
1904 		unsigned int size;
1905 
1906 		/* return some buffers to hardware, one at a time is too slow */
1907 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1908 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
1909 			cleaned_count = 0;
1910 		}
1911 
1912 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1913 		size = le16_to_cpu(rx_desc->wb.upper.length);
1914 		if (!size)
1915 			break;
1916 
1917 		/* This memory barrier is needed to keep us from reading
1918 		 * any other fields out of the rx_desc until we know the
1919 		 * descriptor has been written back
1920 		 */
1921 		dma_rmb();
1922 
1923 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
1924 
1925 		/* retrieve a buffer from the ring */
1926 		if (skb)
1927 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1928 		else if (ring_uses_build_skb(rx_ring))
1929 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1930 		else
1931 			skb = igc_construct_skb(rx_ring, rx_buffer,
1932 						rx_desc, size);
1933 
1934 		/* exit if we failed to retrieve a buffer */
1935 		if (!skb) {
1936 			rx_ring->rx_stats.alloc_failed++;
1937 			rx_buffer->pagecnt_bias++;
1938 			break;
1939 		}
1940 
1941 		igc_put_rx_buffer(rx_ring, rx_buffer);
1942 		cleaned_count++;
1943 
1944 		/* fetch next buffer in frame if non-eop */
1945 		if (igc_is_non_eop(rx_ring, rx_desc))
1946 			continue;
1947 
1948 		/* verify the packet layout is correct */
1949 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1950 			skb = NULL;
1951 			continue;
1952 		}
1953 
1954 		/* probably a little skewed due to removing CRC */
1955 		total_bytes += skb->len;
1956 
1957 		/* populate checksum, VLAN, and protocol */
1958 		igc_process_skb_fields(rx_ring, rx_desc, skb);
1959 
1960 		napi_gro_receive(&q_vector->napi, skb);
1961 
1962 		/* reset skb pointer */
1963 		skb = NULL;
1964 
1965 		/* update budget accounting */
1966 		total_packets++;
1967 	}
1968 
1969 	/* place incomplete frames back on ring for completion */
1970 	rx_ring->skb = skb;
1971 
1972 	u64_stats_update_begin(&rx_ring->rx_syncp);
1973 	rx_ring->rx_stats.packets += total_packets;
1974 	rx_ring->rx_stats.bytes += total_bytes;
1975 	u64_stats_update_end(&rx_ring->rx_syncp);
1976 	q_vector->rx.total_packets += total_packets;
1977 	q_vector->rx.total_bytes += total_bytes;
1978 
1979 	if (cleaned_count)
1980 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
1981 
1982 	return total_packets;
1983 }
1984 
1985 /**
1986  * igc_clean_tx_irq - Reclaim resources after transmit completes
1987  * @q_vector: pointer to q_vector containing needed info
1988  * @napi_budget: Used to determine if we are in netpoll
1989  *
1990  * returns true if ring is completely cleaned
1991  */
1992 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1993 {
1994 	struct igc_adapter *adapter = q_vector->adapter;
1995 	unsigned int total_bytes = 0, total_packets = 0;
1996 	unsigned int budget = q_vector->tx.work_limit;
1997 	struct igc_ring *tx_ring = q_vector->tx.ring;
1998 	unsigned int i = tx_ring->next_to_clean;
1999 	struct igc_tx_buffer *tx_buffer;
2000 	union igc_adv_tx_desc *tx_desc;
2001 
2002 	if (test_bit(__IGC_DOWN, &adapter->state))
2003 		return true;
2004 
2005 	tx_buffer = &tx_ring->tx_buffer_info[i];
2006 	tx_desc = IGC_TX_DESC(tx_ring, i);
2007 	i -= tx_ring->count;
2008 
2009 	do {
2010 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2011 
2012 		/* if next_to_watch is not set then there is no work pending */
2013 		if (!eop_desc)
2014 			break;
2015 
2016 		/* prevent any other reads prior to eop_desc */
2017 		smp_rmb();
2018 
2019 		/* if DD is not set pending work has not been completed */
2020 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2021 			break;
2022 
2023 		/* clear next_to_watch to prevent false hangs */
2024 		tx_buffer->next_to_watch = NULL;
2025 
2026 		/* update the statistics for this packet */
2027 		total_bytes += tx_buffer->bytecount;
2028 		total_packets += tx_buffer->gso_segs;
2029 
2030 		/* free the skb */
2031 		napi_consume_skb(tx_buffer->skb, napi_budget);
2032 
2033 		/* unmap skb header data */
2034 		dma_unmap_single(tx_ring->dev,
2035 				 dma_unmap_addr(tx_buffer, dma),
2036 				 dma_unmap_len(tx_buffer, len),
2037 				 DMA_TO_DEVICE);
2038 
2039 		/* clear tx_buffer data */
2040 		dma_unmap_len_set(tx_buffer, len, 0);
2041 
2042 		/* clear last DMA location and unmap remaining buffers */
2043 		while (tx_desc != eop_desc) {
2044 			tx_buffer++;
2045 			tx_desc++;
2046 			i++;
2047 			if (unlikely(!i)) {
2048 				i -= tx_ring->count;
2049 				tx_buffer = tx_ring->tx_buffer_info;
2050 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2051 			}
2052 
2053 			/* unmap any remaining paged data */
2054 			if (dma_unmap_len(tx_buffer, len)) {
2055 				dma_unmap_page(tx_ring->dev,
2056 					       dma_unmap_addr(tx_buffer, dma),
2057 					       dma_unmap_len(tx_buffer, len),
2058 					       DMA_TO_DEVICE);
2059 				dma_unmap_len_set(tx_buffer, len, 0);
2060 			}
2061 		}
2062 
2063 		/* move us one more past the eop_desc for start of next pkt */
2064 		tx_buffer++;
2065 		tx_desc++;
2066 		i++;
2067 		if (unlikely(!i)) {
2068 			i -= tx_ring->count;
2069 			tx_buffer = tx_ring->tx_buffer_info;
2070 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2071 		}
2072 
2073 		/* issue prefetch for next Tx descriptor */
2074 		prefetch(tx_desc);
2075 
2076 		/* update budget accounting */
2077 		budget--;
2078 	} while (likely(budget));
2079 
2080 	netdev_tx_completed_queue(txring_txq(tx_ring),
2081 				  total_packets, total_bytes);
2082 
2083 	i += tx_ring->count;
2084 	tx_ring->next_to_clean = i;
2085 	u64_stats_update_begin(&tx_ring->tx_syncp);
2086 	tx_ring->tx_stats.bytes += total_bytes;
2087 	tx_ring->tx_stats.packets += total_packets;
2088 	u64_stats_update_end(&tx_ring->tx_syncp);
2089 	q_vector->tx.total_bytes += total_bytes;
2090 	q_vector->tx.total_packets += total_packets;
2091 
2092 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2093 		struct igc_hw *hw = &adapter->hw;
2094 
2095 		/* Detect a transmit hang in hardware, this serializes the
2096 		 * check with the clearing of time_stamp and movement of i
2097 		 */
2098 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2099 		if (tx_buffer->next_to_watch &&
2100 		    time_after(jiffies, tx_buffer->time_stamp +
2101 		    (adapter->tx_timeout_factor * HZ)) &&
2102 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2103 			/* detected Tx unit hang */
2104 			netdev_err(tx_ring->netdev,
2105 				   "Detected Tx Unit Hang\n"
2106 				   "  Tx Queue             <%d>\n"
2107 				   "  TDH                  <%x>\n"
2108 				   "  TDT                  <%x>\n"
2109 				   "  next_to_use          <%x>\n"
2110 				   "  next_to_clean        <%x>\n"
2111 				   "buffer_info[next_to_clean]\n"
2112 				   "  time_stamp           <%lx>\n"
2113 				   "  next_to_watch        <%p>\n"
2114 				   "  jiffies              <%lx>\n"
2115 				   "  desc.status          <%x>\n",
2116 				   tx_ring->queue_index,
2117 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2118 				   readl(tx_ring->tail),
2119 				   tx_ring->next_to_use,
2120 				   tx_ring->next_to_clean,
2121 				   tx_buffer->time_stamp,
2122 				   tx_buffer->next_to_watch,
2123 				   jiffies,
2124 				   tx_buffer->next_to_watch->wb.status);
2125 			netif_stop_subqueue(tx_ring->netdev,
2126 					    tx_ring->queue_index);
2127 
2128 			/* we are about to reset, no point in enabling stuff */
2129 			return true;
2130 		}
2131 	}
2132 
2133 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2134 	if (unlikely(total_packets &&
2135 		     netif_carrier_ok(tx_ring->netdev) &&
2136 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2137 		/* Make sure that anybody stopping the queue after this
2138 		 * sees the new next_to_clean.
2139 		 */
2140 		smp_mb();
2141 		if (__netif_subqueue_stopped(tx_ring->netdev,
2142 					     tx_ring->queue_index) &&
2143 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2144 			netif_wake_subqueue(tx_ring->netdev,
2145 					    tx_ring->queue_index);
2146 
2147 			u64_stats_update_begin(&tx_ring->tx_syncp);
2148 			tx_ring->tx_stats.restart_queue++;
2149 			u64_stats_update_end(&tx_ring->tx_syncp);
2150 		}
2151 	}
2152 
2153 	return !!budget;
2154 }
2155 
2156 static int igc_find_mac_filter(struct igc_adapter *adapter,
2157 			       enum igc_mac_filter_type type, const u8 *addr)
2158 {
2159 	struct igc_hw *hw = &adapter->hw;
2160 	int max_entries = hw->mac.rar_entry_count;
2161 	u32 ral, rah;
2162 	int i;
2163 
2164 	for (i = 0; i < max_entries; i++) {
2165 		ral = rd32(IGC_RAL(i));
2166 		rah = rd32(IGC_RAH(i));
2167 
2168 		if (!(rah & IGC_RAH_AV))
2169 			continue;
2170 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2171 			continue;
2172 		if ((rah & IGC_RAH_RAH_MASK) !=
2173 		    le16_to_cpup((__le16 *)(addr + 4)))
2174 			continue;
2175 		if (ral != le32_to_cpup((__le32 *)(addr)))
2176 			continue;
2177 
2178 		return i;
2179 	}
2180 
2181 	return -1;
2182 }
2183 
2184 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2185 {
2186 	struct igc_hw *hw = &adapter->hw;
2187 	int max_entries = hw->mac.rar_entry_count;
2188 	u32 rah;
2189 	int i;
2190 
2191 	for (i = 0; i < max_entries; i++) {
2192 		rah = rd32(IGC_RAH(i));
2193 
2194 		if (!(rah & IGC_RAH_AV))
2195 			return i;
2196 	}
2197 
2198 	return -1;
2199 }
2200 
2201 /**
2202  * igc_add_mac_filter() - Add MAC address filter
2203  * @adapter: Pointer to adapter where the filter should be added
2204  * @type: MAC address filter type (source or destination)
2205  * @addr: MAC address
2206  * @queue: If non-negative, queue assignment feature is enabled and frames
2207  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2208  *         assignment is disabled.
2209  *
2210  * Return: 0 in case of success, negative errno code otherwise.
2211  */
2212 static int igc_add_mac_filter(struct igc_adapter *adapter,
2213 			      enum igc_mac_filter_type type, const u8 *addr,
2214 			      int queue)
2215 {
2216 	struct net_device *dev = adapter->netdev;
2217 	int index;
2218 
2219 	index = igc_find_mac_filter(adapter, type, addr);
2220 	if (index >= 0)
2221 		goto update_filter;
2222 
2223 	index = igc_get_avail_mac_filter_slot(adapter);
2224 	if (index < 0)
2225 		return -ENOSPC;
2226 
2227 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2228 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2229 		   addr, queue);
2230 
2231 update_filter:
2232 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2233 	return 0;
2234 }
2235 
2236 /**
2237  * igc_del_mac_filter() - Delete MAC address filter
2238  * @adapter: Pointer to adapter where the filter should be deleted from
2239  * @type: MAC address filter type (source or destination)
2240  * @addr: MAC address
2241  */
2242 static void igc_del_mac_filter(struct igc_adapter *adapter,
2243 			       enum igc_mac_filter_type type, const u8 *addr)
2244 {
2245 	struct net_device *dev = adapter->netdev;
2246 	int index;
2247 
2248 	index = igc_find_mac_filter(adapter, type, addr);
2249 	if (index < 0)
2250 		return;
2251 
2252 	if (index == 0) {
2253 		/* If this is the default filter, we don't actually delete it.
2254 		 * We just reset to its default value i.e. disable queue
2255 		 * assignment.
2256 		 */
2257 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2258 
2259 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2260 	} else {
2261 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2262 			   index,
2263 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2264 			   addr);
2265 
2266 		igc_clear_mac_filter_hw(adapter, index);
2267 	}
2268 }
2269 
2270 /**
2271  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2272  * @adapter: Pointer to adapter where the filter should be added
2273  * @prio: VLAN priority value
2274  * @queue: Queue number which matching frames are assigned to
2275  *
2276  * Return: 0 in case of success, negative errno code otherwise.
2277  */
2278 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2279 				    int queue)
2280 {
2281 	struct net_device *dev = adapter->netdev;
2282 	struct igc_hw *hw = &adapter->hw;
2283 	u32 vlanpqf;
2284 
2285 	vlanpqf = rd32(IGC_VLANPQF);
2286 
2287 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2288 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2289 		return -EEXIST;
2290 	}
2291 
2292 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2293 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2294 
2295 	wr32(IGC_VLANPQF, vlanpqf);
2296 
2297 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2298 		   prio, queue);
2299 	return 0;
2300 }
2301 
2302 /**
2303  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2304  * @adapter: Pointer to adapter where the filter should be deleted from
2305  * @prio: VLAN priority value
2306  */
2307 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2308 {
2309 	struct igc_hw *hw = &adapter->hw;
2310 	u32 vlanpqf;
2311 
2312 	vlanpqf = rd32(IGC_VLANPQF);
2313 
2314 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2315 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2316 
2317 	wr32(IGC_VLANPQF, vlanpqf);
2318 
2319 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2320 		   prio);
2321 }
2322 
2323 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2324 {
2325 	struct igc_hw *hw = &adapter->hw;
2326 	int i;
2327 
2328 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2329 		u32 etqf = rd32(IGC_ETQF(i));
2330 
2331 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2332 			return i;
2333 	}
2334 
2335 	return -1;
2336 }
2337 
2338 /**
2339  * igc_add_etype_filter() - Add ethertype filter
2340  * @adapter: Pointer to adapter where the filter should be added
2341  * @etype: Ethertype value
2342  * @queue: If non-negative, queue assignment feature is enabled and frames
2343  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2344  *         assignment is disabled.
2345  *
2346  * Return: 0 in case of success, negative errno code otherwise.
2347  */
2348 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2349 				int queue)
2350 {
2351 	struct igc_hw *hw = &adapter->hw;
2352 	int index;
2353 	u32 etqf;
2354 
2355 	index = igc_get_avail_etype_filter_slot(adapter);
2356 	if (index < 0)
2357 		return -ENOSPC;
2358 
2359 	etqf = rd32(IGC_ETQF(index));
2360 
2361 	etqf &= ~IGC_ETQF_ETYPE_MASK;
2362 	etqf |= etype;
2363 
2364 	if (queue >= 0) {
2365 		etqf &= ~IGC_ETQF_QUEUE_MASK;
2366 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2367 		etqf |= IGC_ETQF_QUEUE_ENABLE;
2368 	}
2369 
2370 	etqf |= IGC_ETQF_FILTER_ENABLE;
2371 
2372 	wr32(IGC_ETQF(index), etqf);
2373 
2374 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2375 		   etype, queue);
2376 	return 0;
2377 }
2378 
2379 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2380 {
2381 	struct igc_hw *hw = &adapter->hw;
2382 	int i;
2383 
2384 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2385 		u32 etqf = rd32(IGC_ETQF(i));
2386 
2387 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2388 			return i;
2389 	}
2390 
2391 	return -1;
2392 }
2393 
2394 /**
2395  * igc_del_etype_filter() - Delete ethertype filter
2396  * @adapter: Pointer to adapter where the filter should be deleted from
2397  * @etype: Ethertype value
2398  */
2399 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2400 {
2401 	struct igc_hw *hw = &adapter->hw;
2402 	int index;
2403 
2404 	index = igc_find_etype_filter(adapter, etype);
2405 	if (index < 0)
2406 		return;
2407 
2408 	wr32(IGC_ETQF(index), 0);
2409 
2410 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2411 		   etype);
2412 }
2413 
2414 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2415 			       const struct igc_nfc_rule *rule)
2416 {
2417 	int err;
2418 
2419 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2420 		err = igc_add_etype_filter(adapter, rule->filter.etype,
2421 					   rule->action);
2422 		if (err)
2423 			return err;
2424 	}
2425 
2426 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2427 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2428 					 rule->filter.src_addr, rule->action);
2429 		if (err)
2430 			return err;
2431 	}
2432 
2433 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2434 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2435 					 rule->filter.dst_addr, rule->action);
2436 		if (err)
2437 			return err;
2438 	}
2439 
2440 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2441 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2442 			   VLAN_PRIO_SHIFT;
2443 
2444 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2445 		if (err)
2446 			return err;
2447 	}
2448 
2449 	return 0;
2450 }
2451 
2452 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2453 				 const struct igc_nfc_rule *rule)
2454 {
2455 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2456 		igc_del_etype_filter(adapter, rule->filter.etype);
2457 
2458 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2459 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2460 			   VLAN_PRIO_SHIFT;
2461 
2462 		igc_del_vlan_prio_filter(adapter, prio);
2463 	}
2464 
2465 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2466 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2467 				   rule->filter.src_addr);
2468 
2469 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2470 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2471 				   rule->filter.dst_addr);
2472 }
2473 
2474 /**
2475  * igc_get_nfc_rule() - Get NFC rule
2476  * @adapter: Pointer to adapter
2477  * @location: Rule location
2478  *
2479  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2480  *
2481  * Return: Pointer to NFC rule at @location. If not found, NULL.
2482  */
2483 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2484 				      u32 location)
2485 {
2486 	struct igc_nfc_rule *rule;
2487 
2488 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2489 		if (rule->location == location)
2490 			return rule;
2491 		if (rule->location > location)
2492 			break;
2493 	}
2494 
2495 	return NULL;
2496 }
2497 
2498 /**
2499  * igc_del_nfc_rule() - Delete NFC rule
2500  * @adapter: Pointer to adapter
2501  * @rule: Pointer to rule to be deleted
2502  *
2503  * Disable NFC rule in hardware and delete it from adapter.
2504  *
2505  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2506  */
2507 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2508 {
2509 	igc_disable_nfc_rule(adapter, rule);
2510 
2511 	list_del(&rule->list);
2512 	adapter->nfc_rule_count--;
2513 
2514 	kfree(rule);
2515 }
2516 
2517 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2518 {
2519 	struct igc_nfc_rule *rule, *tmp;
2520 
2521 	mutex_lock(&adapter->nfc_rule_lock);
2522 
2523 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2524 		igc_del_nfc_rule(adapter, rule);
2525 
2526 	mutex_unlock(&adapter->nfc_rule_lock);
2527 }
2528 
2529 /**
2530  * igc_add_nfc_rule() - Add NFC rule
2531  * @adapter: Pointer to adapter
2532  * @rule: Pointer to rule to be added
2533  *
2534  * Enable NFC rule in hardware and add it to adapter.
2535  *
2536  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2537  *
2538  * Return: 0 on success, negative errno on failure.
2539  */
2540 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2541 {
2542 	struct igc_nfc_rule *pred, *cur;
2543 	int err;
2544 
2545 	err = igc_enable_nfc_rule(adapter, rule);
2546 	if (err)
2547 		return err;
2548 
2549 	pred = NULL;
2550 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2551 		if (cur->location >= rule->location)
2552 			break;
2553 		pred = cur;
2554 	}
2555 
2556 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2557 	adapter->nfc_rule_count++;
2558 	return 0;
2559 }
2560 
2561 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2562 {
2563 	struct igc_nfc_rule *rule;
2564 
2565 	mutex_lock(&adapter->nfc_rule_lock);
2566 
2567 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2568 		igc_enable_nfc_rule(adapter, rule);
2569 
2570 	mutex_unlock(&adapter->nfc_rule_lock);
2571 }
2572 
2573 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2574 {
2575 	struct igc_adapter *adapter = netdev_priv(netdev);
2576 
2577 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2578 }
2579 
2580 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2581 {
2582 	struct igc_adapter *adapter = netdev_priv(netdev);
2583 
2584 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2585 	return 0;
2586 }
2587 
2588 /**
2589  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2590  * @netdev: network interface device structure
2591  *
2592  * The set_rx_mode entry point is called whenever the unicast or multicast
2593  * address lists or the network interface flags are updated.  This routine is
2594  * responsible for configuring the hardware for proper unicast, multicast,
2595  * promiscuous mode, and all-multi behavior.
2596  */
2597 static void igc_set_rx_mode(struct net_device *netdev)
2598 {
2599 	struct igc_adapter *adapter = netdev_priv(netdev);
2600 	struct igc_hw *hw = &adapter->hw;
2601 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2602 	int count;
2603 
2604 	/* Check for Promiscuous and All Multicast modes */
2605 	if (netdev->flags & IFF_PROMISC) {
2606 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2607 	} else {
2608 		if (netdev->flags & IFF_ALLMULTI) {
2609 			rctl |= IGC_RCTL_MPE;
2610 		} else {
2611 			/* Write addresses to the MTA, if the attempt fails
2612 			 * then we should just turn on promiscuous mode so
2613 			 * that we can at least receive multicast traffic
2614 			 */
2615 			count = igc_write_mc_addr_list(netdev);
2616 			if (count < 0)
2617 				rctl |= IGC_RCTL_MPE;
2618 		}
2619 	}
2620 
2621 	/* Write addresses to available RAR registers, if there is not
2622 	 * sufficient space to store all the addresses then enable
2623 	 * unicast promiscuous mode
2624 	 */
2625 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2626 		rctl |= IGC_RCTL_UPE;
2627 
2628 	/* update state of unicast and multicast */
2629 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2630 	wr32(IGC_RCTL, rctl);
2631 
2632 #if (PAGE_SIZE < 8192)
2633 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2634 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
2635 #endif
2636 	wr32(IGC_RLPML, rlpml);
2637 }
2638 
2639 /**
2640  * igc_configure - configure the hardware for RX and TX
2641  * @adapter: private board structure
2642  */
2643 static void igc_configure(struct igc_adapter *adapter)
2644 {
2645 	struct net_device *netdev = adapter->netdev;
2646 	int i = 0;
2647 
2648 	igc_get_hw_control(adapter);
2649 	igc_set_rx_mode(netdev);
2650 
2651 	igc_setup_tctl(adapter);
2652 	igc_setup_mrqc(adapter);
2653 	igc_setup_rctl(adapter);
2654 
2655 	igc_set_default_mac_filter(adapter);
2656 	igc_restore_nfc_rules(adapter);
2657 
2658 	igc_configure_tx(adapter);
2659 	igc_configure_rx(adapter);
2660 
2661 	igc_rx_fifo_flush_base(&adapter->hw);
2662 
2663 	/* call igc_desc_unused which always leaves
2664 	 * at least 1 descriptor unused to make sure
2665 	 * next_to_use != next_to_clean
2666 	 */
2667 	for (i = 0; i < adapter->num_rx_queues; i++) {
2668 		struct igc_ring *ring = adapter->rx_ring[i];
2669 
2670 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2671 	}
2672 }
2673 
2674 /**
2675  * igc_write_ivar - configure ivar for given MSI-X vector
2676  * @hw: pointer to the HW structure
2677  * @msix_vector: vector number we are allocating to a given ring
2678  * @index: row index of IVAR register to write within IVAR table
2679  * @offset: column offset of in IVAR, should be multiple of 8
2680  *
2681  * The IVAR table consists of 2 columns,
2682  * each containing an cause allocation for an Rx and Tx ring, and a
2683  * variable number of rows depending on the number of queues supported.
2684  */
2685 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2686 			   int index, int offset)
2687 {
2688 	u32 ivar = array_rd32(IGC_IVAR0, index);
2689 
2690 	/* clear any bits that are currently set */
2691 	ivar &= ~((u32)0xFF << offset);
2692 
2693 	/* write vector and valid bit */
2694 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2695 
2696 	array_wr32(IGC_IVAR0, index, ivar);
2697 }
2698 
2699 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2700 {
2701 	struct igc_adapter *adapter = q_vector->adapter;
2702 	struct igc_hw *hw = &adapter->hw;
2703 	int rx_queue = IGC_N0_QUEUE;
2704 	int tx_queue = IGC_N0_QUEUE;
2705 
2706 	if (q_vector->rx.ring)
2707 		rx_queue = q_vector->rx.ring->reg_idx;
2708 	if (q_vector->tx.ring)
2709 		tx_queue = q_vector->tx.ring->reg_idx;
2710 
2711 	switch (hw->mac.type) {
2712 	case igc_i225:
2713 		if (rx_queue > IGC_N0_QUEUE)
2714 			igc_write_ivar(hw, msix_vector,
2715 				       rx_queue >> 1,
2716 				       (rx_queue & 0x1) << 4);
2717 		if (tx_queue > IGC_N0_QUEUE)
2718 			igc_write_ivar(hw, msix_vector,
2719 				       tx_queue >> 1,
2720 				       ((tx_queue & 0x1) << 4) + 8);
2721 		q_vector->eims_value = BIT(msix_vector);
2722 		break;
2723 	default:
2724 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2725 		break;
2726 	}
2727 
2728 	/* add q_vector eims value to global eims_enable_mask */
2729 	adapter->eims_enable_mask |= q_vector->eims_value;
2730 
2731 	/* configure q_vector to set itr on first interrupt */
2732 	q_vector->set_itr = 1;
2733 }
2734 
2735 /**
2736  * igc_configure_msix - Configure MSI-X hardware
2737  * @adapter: Pointer to adapter structure
2738  *
2739  * igc_configure_msix sets up the hardware to properly
2740  * generate MSI-X interrupts.
2741  */
2742 static void igc_configure_msix(struct igc_adapter *adapter)
2743 {
2744 	struct igc_hw *hw = &adapter->hw;
2745 	int i, vector = 0;
2746 	u32 tmp;
2747 
2748 	adapter->eims_enable_mask = 0;
2749 
2750 	/* set vector for other causes, i.e. link changes */
2751 	switch (hw->mac.type) {
2752 	case igc_i225:
2753 		/* Turn on MSI-X capability first, or our settings
2754 		 * won't stick.  And it will take days to debug.
2755 		 */
2756 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2757 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2758 		     IGC_GPIE_NSICR);
2759 
2760 		/* enable msix_other interrupt */
2761 		adapter->eims_other = BIT(vector);
2762 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2763 
2764 		wr32(IGC_IVAR_MISC, tmp);
2765 		break;
2766 	default:
2767 		/* do nothing, since nothing else supports MSI-X */
2768 		break;
2769 	} /* switch (hw->mac.type) */
2770 
2771 	adapter->eims_enable_mask |= adapter->eims_other;
2772 
2773 	for (i = 0; i < adapter->num_q_vectors; i++)
2774 		igc_assign_vector(adapter->q_vector[i], vector++);
2775 
2776 	wrfl();
2777 }
2778 
2779 /**
2780  * igc_irq_enable - Enable default interrupt generation settings
2781  * @adapter: board private structure
2782  */
2783 static void igc_irq_enable(struct igc_adapter *adapter)
2784 {
2785 	struct igc_hw *hw = &adapter->hw;
2786 
2787 	if (adapter->msix_entries) {
2788 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2789 		u32 regval = rd32(IGC_EIAC);
2790 
2791 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2792 		regval = rd32(IGC_EIAM);
2793 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2794 		wr32(IGC_EIMS, adapter->eims_enable_mask);
2795 		wr32(IGC_IMS, ims);
2796 	} else {
2797 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2798 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2799 	}
2800 }
2801 
2802 /**
2803  * igc_irq_disable - Mask off interrupt generation on the NIC
2804  * @adapter: board private structure
2805  */
2806 static void igc_irq_disable(struct igc_adapter *adapter)
2807 {
2808 	struct igc_hw *hw = &adapter->hw;
2809 
2810 	if (adapter->msix_entries) {
2811 		u32 regval = rd32(IGC_EIAM);
2812 
2813 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2814 		wr32(IGC_EIMC, adapter->eims_enable_mask);
2815 		regval = rd32(IGC_EIAC);
2816 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2817 	}
2818 
2819 	wr32(IGC_IAM, 0);
2820 	wr32(IGC_IMC, ~0);
2821 	wrfl();
2822 
2823 	if (adapter->msix_entries) {
2824 		int vector = 0, i;
2825 
2826 		synchronize_irq(adapter->msix_entries[vector++].vector);
2827 
2828 		for (i = 0; i < adapter->num_q_vectors; i++)
2829 			synchronize_irq(adapter->msix_entries[vector++].vector);
2830 	} else {
2831 		synchronize_irq(adapter->pdev->irq);
2832 	}
2833 }
2834 
2835 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2836 			      const u32 max_rss_queues)
2837 {
2838 	/* Determine if we need to pair queues. */
2839 	/* If rss_queues > half of max_rss_queues, pair the queues in
2840 	 * order to conserve interrupts due to limited supply.
2841 	 */
2842 	if (adapter->rss_queues > (max_rss_queues / 2))
2843 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2844 	else
2845 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2846 }
2847 
2848 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2849 {
2850 	return IGC_MAX_RX_QUEUES;
2851 }
2852 
2853 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2854 {
2855 	u32 max_rss_queues;
2856 
2857 	max_rss_queues = igc_get_max_rss_queues(adapter);
2858 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2859 
2860 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
2861 }
2862 
2863 /**
2864  * igc_reset_q_vector - Reset config for interrupt vector
2865  * @adapter: board private structure to initialize
2866  * @v_idx: Index of vector to be reset
2867  *
2868  * If NAPI is enabled it will delete any references to the
2869  * NAPI struct. This is preparation for igc_free_q_vector.
2870  */
2871 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2872 {
2873 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2874 
2875 	/* if we're coming from igc_set_interrupt_capability, the vectors are
2876 	 * not yet allocated
2877 	 */
2878 	if (!q_vector)
2879 		return;
2880 
2881 	if (q_vector->tx.ring)
2882 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2883 
2884 	if (q_vector->rx.ring)
2885 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2886 
2887 	netif_napi_del(&q_vector->napi);
2888 }
2889 
2890 /**
2891  * igc_free_q_vector - Free memory allocated for specific interrupt vector
2892  * @adapter: board private structure to initialize
2893  * @v_idx: Index of vector to be freed
2894  *
2895  * This function frees the memory allocated to the q_vector.
2896  */
2897 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2898 {
2899 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2900 
2901 	adapter->q_vector[v_idx] = NULL;
2902 
2903 	/* igc_get_stats64() might access the rings on this vector,
2904 	 * we must wait a grace period before freeing it.
2905 	 */
2906 	if (q_vector)
2907 		kfree_rcu(q_vector, rcu);
2908 }
2909 
2910 /**
2911  * igc_free_q_vectors - Free memory allocated for interrupt vectors
2912  * @adapter: board private structure to initialize
2913  *
2914  * This function frees the memory allocated to the q_vectors.  In addition if
2915  * NAPI is enabled it will delete any references to the NAPI struct prior
2916  * to freeing the q_vector.
2917  */
2918 static void igc_free_q_vectors(struct igc_adapter *adapter)
2919 {
2920 	int v_idx = adapter->num_q_vectors;
2921 
2922 	adapter->num_tx_queues = 0;
2923 	adapter->num_rx_queues = 0;
2924 	adapter->num_q_vectors = 0;
2925 
2926 	while (v_idx--) {
2927 		igc_reset_q_vector(adapter, v_idx);
2928 		igc_free_q_vector(adapter, v_idx);
2929 	}
2930 }
2931 
2932 /**
2933  * igc_update_itr - update the dynamic ITR value based on statistics
2934  * @q_vector: pointer to q_vector
2935  * @ring_container: ring info to update the itr for
2936  *
2937  * Stores a new ITR value based on packets and byte
2938  * counts during the last interrupt.  The advantage of per interrupt
2939  * computation is faster updates and more accurate ITR for the current
2940  * traffic pattern.  Constants in this function were computed
2941  * based on theoretical maximum wire speed and thresholds were set based
2942  * on testing data as well as attempting to minimize response time
2943  * while increasing bulk throughput.
2944  * NOTE: These calculations are only valid when operating in a single-
2945  * queue environment.
2946  */
2947 static void igc_update_itr(struct igc_q_vector *q_vector,
2948 			   struct igc_ring_container *ring_container)
2949 {
2950 	unsigned int packets = ring_container->total_packets;
2951 	unsigned int bytes = ring_container->total_bytes;
2952 	u8 itrval = ring_container->itr;
2953 
2954 	/* no packets, exit with status unchanged */
2955 	if (packets == 0)
2956 		return;
2957 
2958 	switch (itrval) {
2959 	case lowest_latency:
2960 		/* handle TSO and jumbo frames */
2961 		if (bytes / packets > 8000)
2962 			itrval = bulk_latency;
2963 		else if ((packets < 5) && (bytes > 512))
2964 			itrval = low_latency;
2965 		break;
2966 	case low_latency:  /* 50 usec aka 20000 ints/s */
2967 		if (bytes > 10000) {
2968 			/* this if handles the TSO accounting */
2969 			if (bytes / packets > 8000)
2970 				itrval = bulk_latency;
2971 			else if ((packets < 10) || ((bytes / packets) > 1200))
2972 				itrval = bulk_latency;
2973 			else if ((packets > 35))
2974 				itrval = lowest_latency;
2975 		} else if (bytes / packets > 2000) {
2976 			itrval = bulk_latency;
2977 		} else if (packets <= 2 && bytes < 512) {
2978 			itrval = lowest_latency;
2979 		}
2980 		break;
2981 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2982 		if (bytes > 25000) {
2983 			if (packets > 35)
2984 				itrval = low_latency;
2985 		} else if (bytes < 1500) {
2986 			itrval = low_latency;
2987 		}
2988 		break;
2989 	}
2990 
2991 	/* clear work counters since we have the values we need */
2992 	ring_container->total_bytes = 0;
2993 	ring_container->total_packets = 0;
2994 
2995 	/* write updated itr to ring container */
2996 	ring_container->itr = itrval;
2997 }
2998 
2999 static void igc_set_itr(struct igc_q_vector *q_vector)
3000 {
3001 	struct igc_adapter *adapter = q_vector->adapter;
3002 	u32 new_itr = q_vector->itr_val;
3003 	u8 current_itr = 0;
3004 
3005 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3006 	switch (adapter->link_speed) {
3007 	case SPEED_10:
3008 	case SPEED_100:
3009 		current_itr = 0;
3010 		new_itr = IGC_4K_ITR;
3011 		goto set_itr_now;
3012 	default:
3013 		break;
3014 	}
3015 
3016 	igc_update_itr(q_vector, &q_vector->tx);
3017 	igc_update_itr(q_vector, &q_vector->rx);
3018 
3019 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3020 
3021 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3022 	if (current_itr == lowest_latency &&
3023 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3024 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3025 		current_itr = low_latency;
3026 
3027 	switch (current_itr) {
3028 	/* counts and packets in update_itr are dependent on these numbers */
3029 	case lowest_latency:
3030 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3031 		break;
3032 	case low_latency:
3033 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3034 		break;
3035 	case bulk_latency:
3036 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3037 		break;
3038 	default:
3039 		break;
3040 	}
3041 
3042 set_itr_now:
3043 	if (new_itr != q_vector->itr_val) {
3044 		/* this attempts to bias the interrupt rate towards Bulk
3045 		 * by adding intermediate steps when interrupt rate is
3046 		 * increasing
3047 		 */
3048 		new_itr = new_itr > q_vector->itr_val ?
3049 			  max((new_itr * q_vector->itr_val) /
3050 			  (new_itr + (q_vector->itr_val >> 2)),
3051 			  new_itr) : new_itr;
3052 		/* Don't write the value here; it resets the adapter's
3053 		 * internal timer, and causes us to delay far longer than
3054 		 * we should between interrupts.  Instead, we write the ITR
3055 		 * value at the beginning of the next interrupt so the timing
3056 		 * ends up being correct.
3057 		 */
3058 		q_vector->itr_val = new_itr;
3059 		q_vector->set_itr = 1;
3060 	}
3061 }
3062 
3063 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3064 {
3065 	int v_idx = adapter->num_q_vectors;
3066 
3067 	if (adapter->msix_entries) {
3068 		pci_disable_msix(adapter->pdev);
3069 		kfree(adapter->msix_entries);
3070 		adapter->msix_entries = NULL;
3071 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3072 		pci_disable_msi(adapter->pdev);
3073 	}
3074 
3075 	while (v_idx--)
3076 		igc_reset_q_vector(adapter, v_idx);
3077 }
3078 
3079 /**
3080  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3081  * @adapter: Pointer to adapter structure
3082  * @msix: boolean value for MSI-X capability
3083  *
3084  * Attempt to configure interrupts using the best available
3085  * capabilities of the hardware and kernel.
3086  */
3087 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3088 					 bool msix)
3089 {
3090 	int numvecs, i;
3091 	int err;
3092 
3093 	if (!msix)
3094 		goto msi_only;
3095 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3096 
3097 	/* Number of supported queues. */
3098 	adapter->num_rx_queues = adapter->rss_queues;
3099 
3100 	adapter->num_tx_queues = adapter->rss_queues;
3101 
3102 	/* start with one vector for every Rx queue */
3103 	numvecs = adapter->num_rx_queues;
3104 
3105 	/* if Tx handler is separate add 1 for every Tx queue */
3106 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3107 		numvecs += adapter->num_tx_queues;
3108 
3109 	/* store the number of vectors reserved for queues */
3110 	adapter->num_q_vectors = numvecs;
3111 
3112 	/* add 1 vector for link status interrupts */
3113 	numvecs++;
3114 
3115 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3116 					GFP_KERNEL);
3117 
3118 	if (!adapter->msix_entries)
3119 		return;
3120 
3121 	/* populate entry values */
3122 	for (i = 0; i < numvecs; i++)
3123 		adapter->msix_entries[i].entry = i;
3124 
3125 	err = pci_enable_msix_range(adapter->pdev,
3126 				    adapter->msix_entries,
3127 				    numvecs,
3128 				    numvecs);
3129 	if (err > 0)
3130 		return;
3131 
3132 	kfree(adapter->msix_entries);
3133 	adapter->msix_entries = NULL;
3134 
3135 	igc_reset_interrupt_capability(adapter);
3136 
3137 msi_only:
3138 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3139 
3140 	adapter->rss_queues = 1;
3141 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3142 	adapter->num_rx_queues = 1;
3143 	adapter->num_tx_queues = 1;
3144 	adapter->num_q_vectors = 1;
3145 	if (!pci_enable_msi(adapter->pdev))
3146 		adapter->flags |= IGC_FLAG_HAS_MSI;
3147 }
3148 
3149 /**
3150  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3151  * @q_vector: pointer to q_vector
3152  *
3153  * Stores a new ITR value based on strictly on packet size.  This
3154  * algorithm is less sophisticated than that used in igc_update_itr,
3155  * due to the difficulty of synchronizing statistics across multiple
3156  * receive rings.  The divisors and thresholds used by this function
3157  * were determined based on theoretical maximum wire speed and testing
3158  * data, in order to minimize response time while increasing bulk
3159  * throughput.
3160  * NOTE: This function is called only when operating in a multiqueue
3161  * receive environment.
3162  */
3163 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3164 {
3165 	struct igc_adapter *adapter = q_vector->adapter;
3166 	int new_val = q_vector->itr_val;
3167 	int avg_wire_size = 0;
3168 	unsigned int packets;
3169 
3170 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3171 	 * ints/sec - ITR timer value of 120 ticks.
3172 	 */
3173 	switch (adapter->link_speed) {
3174 	case SPEED_10:
3175 	case SPEED_100:
3176 		new_val = IGC_4K_ITR;
3177 		goto set_itr_val;
3178 	default:
3179 		break;
3180 	}
3181 
3182 	packets = q_vector->rx.total_packets;
3183 	if (packets)
3184 		avg_wire_size = q_vector->rx.total_bytes / packets;
3185 
3186 	packets = q_vector->tx.total_packets;
3187 	if (packets)
3188 		avg_wire_size = max_t(u32, avg_wire_size,
3189 				      q_vector->tx.total_bytes / packets);
3190 
3191 	/* if avg_wire_size isn't set no work was done */
3192 	if (!avg_wire_size)
3193 		goto clear_counts;
3194 
3195 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3196 	avg_wire_size += 24;
3197 
3198 	/* Don't starve jumbo frames */
3199 	avg_wire_size = min(avg_wire_size, 3000);
3200 
3201 	/* Give a little boost to mid-size frames */
3202 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3203 		new_val = avg_wire_size / 3;
3204 	else
3205 		new_val = avg_wire_size / 2;
3206 
3207 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3208 	if (new_val < IGC_20K_ITR &&
3209 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3210 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3211 		new_val = IGC_20K_ITR;
3212 
3213 set_itr_val:
3214 	if (new_val != q_vector->itr_val) {
3215 		q_vector->itr_val = new_val;
3216 		q_vector->set_itr = 1;
3217 	}
3218 clear_counts:
3219 	q_vector->rx.total_bytes = 0;
3220 	q_vector->rx.total_packets = 0;
3221 	q_vector->tx.total_bytes = 0;
3222 	q_vector->tx.total_packets = 0;
3223 }
3224 
3225 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3226 {
3227 	struct igc_adapter *adapter = q_vector->adapter;
3228 	struct igc_hw *hw = &adapter->hw;
3229 
3230 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3231 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3232 		if (adapter->num_q_vectors == 1)
3233 			igc_set_itr(q_vector);
3234 		else
3235 			igc_update_ring_itr(q_vector);
3236 	}
3237 
3238 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3239 		if (adapter->msix_entries)
3240 			wr32(IGC_EIMS, q_vector->eims_value);
3241 		else
3242 			igc_irq_enable(adapter);
3243 	}
3244 }
3245 
3246 static void igc_add_ring(struct igc_ring *ring,
3247 			 struct igc_ring_container *head)
3248 {
3249 	head->ring = ring;
3250 	head->count++;
3251 }
3252 
3253 /**
3254  * igc_cache_ring_register - Descriptor ring to register mapping
3255  * @adapter: board private structure to initialize
3256  *
3257  * Once we know the feature-set enabled for the device, we'll cache
3258  * the register offset the descriptor ring is assigned to.
3259  */
3260 static void igc_cache_ring_register(struct igc_adapter *adapter)
3261 {
3262 	int i = 0, j = 0;
3263 
3264 	switch (adapter->hw.mac.type) {
3265 	case igc_i225:
3266 	default:
3267 		for (; i < adapter->num_rx_queues; i++)
3268 			adapter->rx_ring[i]->reg_idx = i;
3269 		for (; j < adapter->num_tx_queues; j++)
3270 			adapter->tx_ring[j]->reg_idx = j;
3271 		break;
3272 	}
3273 }
3274 
3275 /**
3276  * igc_poll - NAPI Rx polling callback
3277  * @napi: napi polling structure
3278  * @budget: count of how many packets we should handle
3279  */
3280 static int igc_poll(struct napi_struct *napi, int budget)
3281 {
3282 	struct igc_q_vector *q_vector = container_of(napi,
3283 						     struct igc_q_vector,
3284 						     napi);
3285 	bool clean_complete = true;
3286 	int work_done = 0;
3287 
3288 	if (q_vector->tx.ring)
3289 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3290 
3291 	if (q_vector->rx.ring) {
3292 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3293 
3294 		work_done += cleaned;
3295 		if (cleaned >= budget)
3296 			clean_complete = false;
3297 	}
3298 
3299 	/* If all work not completed, return budget and keep polling */
3300 	if (!clean_complete)
3301 		return budget;
3302 
3303 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3304 	 * poll us due to busy-polling
3305 	 */
3306 	if (likely(napi_complete_done(napi, work_done)))
3307 		igc_ring_irq_enable(q_vector);
3308 
3309 	return min(work_done, budget - 1);
3310 }
3311 
3312 /**
3313  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3314  * @adapter: board private structure to initialize
3315  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3316  * @v_idx: index of vector in adapter struct
3317  * @txr_count: total number of Tx rings to allocate
3318  * @txr_idx: index of first Tx ring to allocate
3319  * @rxr_count: total number of Rx rings to allocate
3320  * @rxr_idx: index of first Rx ring to allocate
3321  *
3322  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3323  */
3324 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3325 			      unsigned int v_count, unsigned int v_idx,
3326 			      unsigned int txr_count, unsigned int txr_idx,
3327 			      unsigned int rxr_count, unsigned int rxr_idx)
3328 {
3329 	struct igc_q_vector *q_vector;
3330 	struct igc_ring *ring;
3331 	int ring_count;
3332 
3333 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3334 	if (txr_count > 1 || rxr_count > 1)
3335 		return -ENOMEM;
3336 
3337 	ring_count = txr_count + rxr_count;
3338 
3339 	/* allocate q_vector and rings */
3340 	q_vector = adapter->q_vector[v_idx];
3341 	if (!q_vector)
3342 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3343 				   GFP_KERNEL);
3344 	else
3345 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3346 	if (!q_vector)
3347 		return -ENOMEM;
3348 
3349 	/* initialize NAPI */
3350 	netif_napi_add(adapter->netdev, &q_vector->napi,
3351 		       igc_poll, 64);
3352 
3353 	/* tie q_vector and adapter together */
3354 	adapter->q_vector[v_idx] = q_vector;
3355 	q_vector->adapter = adapter;
3356 
3357 	/* initialize work limits */
3358 	q_vector->tx.work_limit = adapter->tx_work_limit;
3359 
3360 	/* initialize ITR configuration */
3361 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3362 	q_vector->itr_val = IGC_START_ITR;
3363 
3364 	/* initialize pointer to rings */
3365 	ring = q_vector->ring;
3366 
3367 	/* initialize ITR */
3368 	if (rxr_count) {
3369 		/* rx or rx/tx vector */
3370 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3371 			q_vector->itr_val = adapter->rx_itr_setting;
3372 	} else {
3373 		/* tx only vector */
3374 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3375 			q_vector->itr_val = adapter->tx_itr_setting;
3376 	}
3377 
3378 	if (txr_count) {
3379 		/* assign generic ring traits */
3380 		ring->dev = &adapter->pdev->dev;
3381 		ring->netdev = adapter->netdev;
3382 
3383 		/* configure backlink on ring */
3384 		ring->q_vector = q_vector;
3385 
3386 		/* update q_vector Tx values */
3387 		igc_add_ring(ring, &q_vector->tx);
3388 
3389 		/* apply Tx specific ring traits */
3390 		ring->count = adapter->tx_ring_count;
3391 		ring->queue_index = txr_idx;
3392 
3393 		/* assign ring to adapter */
3394 		adapter->tx_ring[txr_idx] = ring;
3395 
3396 		/* push pointer to next ring */
3397 		ring++;
3398 	}
3399 
3400 	if (rxr_count) {
3401 		/* assign generic ring traits */
3402 		ring->dev = &adapter->pdev->dev;
3403 		ring->netdev = adapter->netdev;
3404 
3405 		/* configure backlink on ring */
3406 		ring->q_vector = q_vector;
3407 
3408 		/* update q_vector Rx values */
3409 		igc_add_ring(ring, &q_vector->rx);
3410 
3411 		/* apply Rx specific ring traits */
3412 		ring->count = adapter->rx_ring_count;
3413 		ring->queue_index = rxr_idx;
3414 
3415 		/* assign ring to adapter */
3416 		adapter->rx_ring[rxr_idx] = ring;
3417 	}
3418 
3419 	return 0;
3420 }
3421 
3422 /**
3423  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3424  * @adapter: board private structure to initialize
3425  *
3426  * We allocate one q_vector per queue interrupt.  If allocation fails we
3427  * return -ENOMEM.
3428  */
3429 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3430 {
3431 	int rxr_remaining = adapter->num_rx_queues;
3432 	int txr_remaining = adapter->num_tx_queues;
3433 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3434 	int q_vectors = adapter->num_q_vectors;
3435 	int err;
3436 
3437 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3438 		for (; rxr_remaining; v_idx++) {
3439 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3440 						 0, 0, 1, rxr_idx);
3441 
3442 			if (err)
3443 				goto err_out;
3444 
3445 			/* update counts and index */
3446 			rxr_remaining--;
3447 			rxr_idx++;
3448 		}
3449 	}
3450 
3451 	for (; v_idx < q_vectors; v_idx++) {
3452 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3453 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3454 
3455 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3456 					 tqpv, txr_idx, rqpv, rxr_idx);
3457 
3458 		if (err)
3459 			goto err_out;
3460 
3461 		/* update counts and index */
3462 		rxr_remaining -= rqpv;
3463 		txr_remaining -= tqpv;
3464 		rxr_idx++;
3465 		txr_idx++;
3466 	}
3467 
3468 	return 0;
3469 
3470 err_out:
3471 	adapter->num_tx_queues = 0;
3472 	adapter->num_rx_queues = 0;
3473 	adapter->num_q_vectors = 0;
3474 
3475 	while (v_idx--)
3476 		igc_free_q_vector(adapter, v_idx);
3477 
3478 	return -ENOMEM;
3479 }
3480 
3481 /**
3482  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3483  * @adapter: Pointer to adapter structure
3484  * @msix: boolean for MSI-X capability
3485  *
3486  * This function initializes the interrupts and allocates all of the queues.
3487  */
3488 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3489 {
3490 	struct net_device *dev = adapter->netdev;
3491 	int err = 0;
3492 
3493 	igc_set_interrupt_capability(adapter, msix);
3494 
3495 	err = igc_alloc_q_vectors(adapter);
3496 	if (err) {
3497 		netdev_err(dev, "Unable to allocate memory for vectors\n");
3498 		goto err_alloc_q_vectors;
3499 	}
3500 
3501 	igc_cache_ring_register(adapter);
3502 
3503 	return 0;
3504 
3505 err_alloc_q_vectors:
3506 	igc_reset_interrupt_capability(adapter);
3507 	return err;
3508 }
3509 
3510 /**
3511  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3512  * @adapter: board private structure to initialize
3513  *
3514  * igc_sw_init initializes the Adapter private data structure.
3515  * Fields are initialized based on PCI device information and
3516  * OS network device settings (MTU size).
3517  */
3518 static int igc_sw_init(struct igc_adapter *adapter)
3519 {
3520 	struct net_device *netdev = adapter->netdev;
3521 	struct pci_dev *pdev = adapter->pdev;
3522 	struct igc_hw *hw = &adapter->hw;
3523 
3524 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3525 
3526 	/* set default ring sizes */
3527 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
3528 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
3529 
3530 	/* set default ITR values */
3531 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3532 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3533 
3534 	/* set default work limits */
3535 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3536 
3537 	/* adjust max frame to be at least the size of a standard frame */
3538 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3539 				VLAN_HLEN;
3540 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3541 
3542 	mutex_init(&adapter->nfc_rule_lock);
3543 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
3544 	adapter->nfc_rule_count = 0;
3545 
3546 	spin_lock_init(&adapter->stats64_lock);
3547 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3548 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3549 
3550 	igc_init_queue_configuration(adapter);
3551 
3552 	/* This call may decrease the number of queues */
3553 	if (igc_init_interrupt_scheme(adapter, true)) {
3554 		netdev_err(netdev, "Unable to allocate memory for queues\n");
3555 		return -ENOMEM;
3556 	}
3557 
3558 	/* Explicitly disable IRQ since the NIC can be in any state. */
3559 	igc_irq_disable(adapter);
3560 
3561 	set_bit(__IGC_DOWN, &adapter->state);
3562 
3563 	return 0;
3564 }
3565 
3566 /**
3567  * igc_up - Open the interface and prepare it to handle traffic
3568  * @adapter: board private structure
3569  */
3570 void igc_up(struct igc_adapter *adapter)
3571 {
3572 	struct igc_hw *hw = &adapter->hw;
3573 	int i = 0;
3574 
3575 	/* hardware has been reset, we need to reload some things */
3576 	igc_configure(adapter);
3577 
3578 	clear_bit(__IGC_DOWN, &adapter->state);
3579 
3580 	for (i = 0; i < adapter->num_q_vectors; i++)
3581 		napi_enable(&adapter->q_vector[i]->napi);
3582 
3583 	if (adapter->msix_entries)
3584 		igc_configure_msix(adapter);
3585 	else
3586 		igc_assign_vector(adapter->q_vector[0], 0);
3587 
3588 	/* Clear any pending interrupts. */
3589 	rd32(IGC_ICR);
3590 	igc_irq_enable(adapter);
3591 
3592 	netif_tx_start_all_queues(adapter->netdev);
3593 
3594 	/* start the watchdog. */
3595 	hw->mac.get_link_status = 1;
3596 	schedule_work(&adapter->watchdog_task);
3597 }
3598 
3599 /**
3600  * igc_update_stats - Update the board statistics counters
3601  * @adapter: board private structure
3602  */
3603 void igc_update_stats(struct igc_adapter *adapter)
3604 {
3605 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3606 	struct pci_dev *pdev = adapter->pdev;
3607 	struct igc_hw *hw = &adapter->hw;
3608 	u64 _bytes, _packets;
3609 	u64 bytes, packets;
3610 	unsigned int start;
3611 	u32 mpc;
3612 	int i;
3613 
3614 	/* Prevent stats update while adapter is being reset, or if the pci
3615 	 * connection is down.
3616 	 */
3617 	if (adapter->link_speed == 0)
3618 		return;
3619 	if (pci_channel_offline(pdev))
3620 		return;
3621 
3622 	packets = 0;
3623 	bytes = 0;
3624 
3625 	rcu_read_lock();
3626 	for (i = 0; i < adapter->num_rx_queues; i++) {
3627 		struct igc_ring *ring = adapter->rx_ring[i];
3628 		u32 rqdpc = rd32(IGC_RQDPC(i));
3629 
3630 		if (hw->mac.type >= igc_i225)
3631 			wr32(IGC_RQDPC(i), 0);
3632 
3633 		if (rqdpc) {
3634 			ring->rx_stats.drops += rqdpc;
3635 			net_stats->rx_fifo_errors += rqdpc;
3636 		}
3637 
3638 		do {
3639 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3640 			_bytes = ring->rx_stats.bytes;
3641 			_packets = ring->rx_stats.packets;
3642 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3643 		bytes += _bytes;
3644 		packets += _packets;
3645 	}
3646 
3647 	net_stats->rx_bytes = bytes;
3648 	net_stats->rx_packets = packets;
3649 
3650 	packets = 0;
3651 	bytes = 0;
3652 	for (i = 0; i < adapter->num_tx_queues; i++) {
3653 		struct igc_ring *ring = adapter->tx_ring[i];
3654 
3655 		do {
3656 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3657 			_bytes = ring->tx_stats.bytes;
3658 			_packets = ring->tx_stats.packets;
3659 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3660 		bytes += _bytes;
3661 		packets += _packets;
3662 	}
3663 	net_stats->tx_bytes = bytes;
3664 	net_stats->tx_packets = packets;
3665 	rcu_read_unlock();
3666 
3667 	/* read stats registers */
3668 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3669 	adapter->stats.gprc += rd32(IGC_GPRC);
3670 	adapter->stats.gorc += rd32(IGC_GORCL);
3671 	rd32(IGC_GORCH); /* clear GORCL */
3672 	adapter->stats.bprc += rd32(IGC_BPRC);
3673 	adapter->stats.mprc += rd32(IGC_MPRC);
3674 	adapter->stats.roc += rd32(IGC_ROC);
3675 
3676 	adapter->stats.prc64 += rd32(IGC_PRC64);
3677 	adapter->stats.prc127 += rd32(IGC_PRC127);
3678 	adapter->stats.prc255 += rd32(IGC_PRC255);
3679 	adapter->stats.prc511 += rd32(IGC_PRC511);
3680 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
3681 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
3682 
3683 	mpc = rd32(IGC_MPC);
3684 	adapter->stats.mpc += mpc;
3685 	net_stats->rx_fifo_errors += mpc;
3686 	adapter->stats.scc += rd32(IGC_SCC);
3687 	adapter->stats.ecol += rd32(IGC_ECOL);
3688 	adapter->stats.mcc += rd32(IGC_MCC);
3689 	adapter->stats.latecol += rd32(IGC_LATECOL);
3690 	adapter->stats.dc += rd32(IGC_DC);
3691 	adapter->stats.rlec += rd32(IGC_RLEC);
3692 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
3693 	adapter->stats.xontxc += rd32(IGC_XONTXC);
3694 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3695 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3696 	adapter->stats.fcruc += rd32(IGC_FCRUC);
3697 	adapter->stats.gptc += rd32(IGC_GPTC);
3698 	adapter->stats.gotc += rd32(IGC_GOTCL);
3699 	rd32(IGC_GOTCH); /* clear GOTCL */
3700 	adapter->stats.rnbc += rd32(IGC_RNBC);
3701 	adapter->stats.ruc += rd32(IGC_RUC);
3702 	adapter->stats.rfc += rd32(IGC_RFC);
3703 	adapter->stats.rjc += rd32(IGC_RJC);
3704 	adapter->stats.tor += rd32(IGC_TORH);
3705 	adapter->stats.tot += rd32(IGC_TOTH);
3706 	adapter->stats.tpr += rd32(IGC_TPR);
3707 
3708 	adapter->stats.ptc64 += rd32(IGC_PTC64);
3709 	adapter->stats.ptc127 += rd32(IGC_PTC127);
3710 	adapter->stats.ptc255 += rd32(IGC_PTC255);
3711 	adapter->stats.ptc511 += rd32(IGC_PTC511);
3712 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3713 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3714 
3715 	adapter->stats.mptc += rd32(IGC_MPTC);
3716 	adapter->stats.bptc += rd32(IGC_BPTC);
3717 
3718 	adapter->stats.tpt += rd32(IGC_TPT);
3719 	adapter->stats.colc += rd32(IGC_COLC);
3720 	adapter->stats.colc += rd32(IGC_RERC);
3721 
3722 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3723 
3724 	adapter->stats.tsctc += rd32(IGC_TSCTC);
3725 
3726 	adapter->stats.iac += rd32(IGC_IAC);
3727 
3728 	/* Fill out the OS statistics structure */
3729 	net_stats->multicast = adapter->stats.mprc;
3730 	net_stats->collisions = adapter->stats.colc;
3731 
3732 	/* Rx Errors */
3733 
3734 	/* RLEC on some newer hardware can be incorrect so build
3735 	 * our own version based on RUC and ROC
3736 	 */
3737 	net_stats->rx_errors = adapter->stats.rxerrc +
3738 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3739 		adapter->stats.ruc + adapter->stats.roc +
3740 		adapter->stats.cexterr;
3741 	net_stats->rx_length_errors = adapter->stats.ruc +
3742 				      adapter->stats.roc;
3743 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
3744 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
3745 	net_stats->rx_missed_errors = adapter->stats.mpc;
3746 
3747 	/* Tx Errors */
3748 	net_stats->tx_errors = adapter->stats.ecol +
3749 			       adapter->stats.latecol;
3750 	net_stats->tx_aborted_errors = adapter->stats.ecol;
3751 	net_stats->tx_window_errors = adapter->stats.latecol;
3752 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
3753 
3754 	/* Tx Dropped needs to be maintained elsewhere */
3755 
3756 	/* Management Stats */
3757 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
3758 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
3759 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3760 }
3761 
3762 /**
3763  * igc_down - Close the interface
3764  * @adapter: board private structure
3765  */
3766 void igc_down(struct igc_adapter *adapter)
3767 {
3768 	struct net_device *netdev = adapter->netdev;
3769 	struct igc_hw *hw = &adapter->hw;
3770 	u32 tctl, rctl;
3771 	int i = 0;
3772 
3773 	set_bit(__IGC_DOWN, &adapter->state);
3774 
3775 	/* disable receives in the hardware */
3776 	rctl = rd32(IGC_RCTL);
3777 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3778 	/* flush and sleep below */
3779 
3780 	/* set trans_start so we don't get spurious watchdogs during reset */
3781 	netif_trans_update(netdev);
3782 
3783 	netif_carrier_off(netdev);
3784 	netif_tx_stop_all_queues(netdev);
3785 
3786 	/* disable transmits in the hardware */
3787 	tctl = rd32(IGC_TCTL);
3788 	tctl &= ~IGC_TCTL_EN;
3789 	wr32(IGC_TCTL, tctl);
3790 	/* flush both disables and wait for them to finish */
3791 	wrfl();
3792 	usleep_range(10000, 20000);
3793 
3794 	igc_irq_disable(adapter);
3795 
3796 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3797 
3798 	for (i = 0; i < adapter->num_q_vectors; i++) {
3799 		if (adapter->q_vector[i]) {
3800 			napi_synchronize(&adapter->q_vector[i]->napi);
3801 			napi_disable(&adapter->q_vector[i]->napi);
3802 		}
3803 	}
3804 
3805 	del_timer_sync(&adapter->watchdog_timer);
3806 	del_timer_sync(&adapter->phy_info_timer);
3807 
3808 	/* record the stats before reset*/
3809 	spin_lock(&adapter->stats64_lock);
3810 	igc_update_stats(adapter);
3811 	spin_unlock(&adapter->stats64_lock);
3812 
3813 	adapter->link_speed = 0;
3814 	adapter->link_duplex = 0;
3815 
3816 	if (!pci_channel_offline(adapter->pdev))
3817 		igc_reset(adapter);
3818 
3819 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
3820 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3821 
3822 	igc_clean_all_tx_rings(adapter);
3823 	igc_clean_all_rx_rings(adapter);
3824 }
3825 
3826 void igc_reinit_locked(struct igc_adapter *adapter)
3827 {
3828 	WARN_ON(in_interrupt());
3829 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3830 		usleep_range(1000, 2000);
3831 	igc_down(adapter);
3832 	igc_up(adapter);
3833 	clear_bit(__IGC_RESETTING, &adapter->state);
3834 }
3835 
3836 static void igc_reset_task(struct work_struct *work)
3837 {
3838 	struct igc_adapter *adapter;
3839 
3840 	adapter = container_of(work, struct igc_adapter, reset_task);
3841 
3842 	igc_rings_dump(adapter);
3843 	igc_regs_dump(adapter);
3844 	netdev_err(adapter->netdev, "Reset adapter\n");
3845 	igc_reinit_locked(adapter);
3846 }
3847 
3848 /**
3849  * igc_change_mtu - Change the Maximum Transfer Unit
3850  * @netdev: network interface device structure
3851  * @new_mtu: new value for maximum frame size
3852  *
3853  * Returns 0 on success, negative on failure
3854  */
3855 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3856 {
3857 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3858 	struct igc_adapter *adapter = netdev_priv(netdev);
3859 
3860 	/* adjust max frame to be at least the size of a standard frame */
3861 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3862 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3863 
3864 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3865 		usleep_range(1000, 2000);
3866 
3867 	/* igc_down has a dependency on max_frame_size */
3868 	adapter->max_frame_size = max_frame;
3869 
3870 	if (netif_running(netdev))
3871 		igc_down(adapter);
3872 
3873 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3874 	netdev->mtu = new_mtu;
3875 
3876 	if (netif_running(netdev))
3877 		igc_up(adapter);
3878 	else
3879 		igc_reset(adapter);
3880 
3881 	clear_bit(__IGC_RESETTING, &adapter->state);
3882 
3883 	return 0;
3884 }
3885 
3886 /**
3887  * igc_get_stats - Get System Network Statistics
3888  * @netdev: network interface device structure
3889  *
3890  * Returns the address of the device statistics structure.
3891  * The statistics are updated here and also from the timer callback.
3892  */
3893 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
3894 {
3895 	struct igc_adapter *adapter = netdev_priv(netdev);
3896 
3897 	if (!test_bit(__IGC_RESETTING, &adapter->state))
3898 		igc_update_stats(adapter);
3899 
3900 	/* only return the current stats */
3901 	return &netdev->stats;
3902 }
3903 
3904 static netdev_features_t igc_fix_features(struct net_device *netdev,
3905 					  netdev_features_t features)
3906 {
3907 	/* Since there is no support for separate Rx/Tx vlan accel
3908 	 * enable/disable make sure Tx flag is always in same state as Rx.
3909 	 */
3910 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
3911 		features |= NETIF_F_HW_VLAN_CTAG_TX;
3912 	else
3913 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3914 
3915 	return features;
3916 }
3917 
3918 static int igc_set_features(struct net_device *netdev,
3919 			    netdev_features_t features)
3920 {
3921 	netdev_features_t changed = netdev->features ^ features;
3922 	struct igc_adapter *adapter = netdev_priv(netdev);
3923 
3924 	/* Add VLAN support */
3925 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3926 		return 0;
3927 
3928 	if (!(features & NETIF_F_NTUPLE))
3929 		igc_flush_nfc_rules(adapter);
3930 
3931 	netdev->features = features;
3932 
3933 	if (netif_running(netdev))
3934 		igc_reinit_locked(adapter);
3935 	else
3936 		igc_reset(adapter);
3937 
3938 	return 1;
3939 }
3940 
3941 static netdev_features_t
3942 igc_features_check(struct sk_buff *skb, struct net_device *dev,
3943 		   netdev_features_t features)
3944 {
3945 	unsigned int network_hdr_len, mac_hdr_len;
3946 
3947 	/* Make certain the headers can be described by a context descriptor */
3948 	mac_hdr_len = skb_network_header(skb) - skb->data;
3949 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3950 		return features & ~(NETIF_F_HW_CSUM |
3951 				    NETIF_F_SCTP_CRC |
3952 				    NETIF_F_HW_VLAN_CTAG_TX |
3953 				    NETIF_F_TSO |
3954 				    NETIF_F_TSO6);
3955 
3956 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3957 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
3958 		return features & ~(NETIF_F_HW_CSUM |
3959 				    NETIF_F_SCTP_CRC |
3960 				    NETIF_F_TSO |
3961 				    NETIF_F_TSO6);
3962 
3963 	/* We can only support IPv4 TSO in tunnels if we can mangle the
3964 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3965 	 */
3966 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3967 		features &= ~NETIF_F_TSO;
3968 
3969 	return features;
3970 }
3971 
3972 static void igc_tsync_interrupt(struct igc_adapter *adapter)
3973 {
3974 	struct igc_hw *hw = &adapter->hw;
3975 	u32 tsicr = rd32(IGC_TSICR);
3976 	u32 ack = 0;
3977 
3978 	if (tsicr & IGC_TSICR_TXTS) {
3979 		/* retrieve hardware timestamp */
3980 		schedule_work(&adapter->ptp_tx_work);
3981 		ack |= IGC_TSICR_TXTS;
3982 	}
3983 
3984 	/* acknowledge the interrupts */
3985 	wr32(IGC_TSICR, ack);
3986 }
3987 
3988 /**
3989  * igc_msix_other - msix other interrupt handler
3990  * @irq: interrupt number
3991  * @data: pointer to a q_vector
3992  */
3993 static irqreturn_t igc_msix_other(int irq, void *data)
3994 {
3995 	struct igc_adapter *adapter = data;
3996 	struct igc_hw *hw = &adapter->hw;
3997 	u32 icr = rd32(IGC_ICR);
3998 
3999 	/* reading ICR causes bit 31 of EICR to be cleared */
4000 	if (icr & IGC_ICR_DRSTA)
4001 		schedule_work(&adapter->reset_task);
4002 
4003 	if (icr & IGC_ICR_DOUTSYNC) {
4004 		/* HW is reporting DMA is out of sync */
4005 		adapter->stats.doosync++;
4006 	}
4007 
4008 	if (icr & IGC_ICR_LSC) {
4009 		hw->mac.get_link_status = 1;
4010 		/* guard against interrupt when we're going down */
4011 		if (!test_bit(__IGC_DOWN, &adapter->state))
4012 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4013 	}
4014 
4015 	if (icr & IGC_ICR_TS)
4016 		igc_tsync_interrupt(adapter);
4017 
4018 	wr32(IGC_EIMS, adapter->eims_other);
4019 
4020 	return IRQ_HANDLED;
4021 }
4022 
4023 static void igc_write_itr(struct igc_q_vector *q_vector)
4024 {
4025 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4026 
4027 	if (!q_vector->set_itr)
4028 		return;
4029 
4030 	if (!itr_val)
4031 		itr_val = IGC_ITR_VAL_MASK;
4032 
4033 	itr_val |= IGC_EITR_CNT_IGNR;
4034 
4035 	writel(itr_val, q_vector->itr_register);
4036 	q_vector->set_itr = 0;
4037 }
4038 
4039 static irqreturn_t igc_msix_ring(int irq, void *data)
4040 {
4041 	struct igc_q_vector *q_vector = data;
4042 
4043 	/* Write the ITR value calculated from the previous interrupt. */
4044 	igc_write_itr(q_vector);
4045 
4046 	napi_schedule(&q_vector->napi);
4047 
4048 	return IRQ_HANDLED;
4049 }
4050 
4051 /**
4052  * igc_request_msix - Initialize MSI-X interrupts
4053  * @adapter: Pointer to adapter structure
4054  *
4055  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4056  * kernel.
4057  */
4058 static int igc_request_msix(struct igc_adapter *adapter)
4059 {
4060 	int i = 0, err = 0, vector = 0, free_vector = 0;
4061 	struct net_device *netdev = adapter->netdev;
4062 
4063 	err = request_irq(adapter->msix_entries[vector].vector,
4064 			  &igc_msix_other, 0, netdev->name, adapter);
4065 	if (err)
4066 		goto err_out;
4067 
4068 	for (i = 0; i < adapter->num_q_vectors; i++) {
4069 		struct igc_q_vector *q_vector = adapter->q_vector[i];
4070 
4071 		vector++;
4072 
4073 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4074 
4075 		if (q_vector->rx.ring && q_vector->tx.ring)
4076 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4077 				q_vector->rx.ring->queue_index);
4078 		else if (q_vector->tx.ring)
4079 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4080 				q_vector->tx.ring->queue_index);
4081 		else if (q_vector->rx.ring)
4082 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4083 				q_vector->rx.ring->queue_index);
4084 		else
4085 			sprintf(q_vector->name, "%s-unused", netdev->name);
4086 
4087 		err = request_irq(adapter->msix_entries[vector].vector,
4088 				  igc_msix_ring, 0, q_vector->name,
4089 				  q_vector);
4090 		if (err)
4091 			goto err_free;
4092 	}
4093 
4094 	igc_configure_msix(adapter);
4095 	return 0;
4096 
4097 err_free:
4098 	/* free already assigned IRQs */
4099 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4100 
4101 	vector--;
4102 	for (i = 0; i < vector; i++) {
4103 		free_irq(adapter->msix_entries[free_vector++].vector,
4104 			 adapter->q_vector[i]);
4105 	}
4106 err_out:
4107 	return err;
4108 }
4109 
4110 /**
4111  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4112  * @adapter: Pointer to adapter structure
4113  *
4114  * This function resets the device so that it has 0 rx queues, tx queues, and
4115  * MSI-X interrupts allocated.
4116  */
4117 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4118 {
4119 	igc_free_q_vectors(adapter);
4120 	igc_reset_interrupt_capability(adapter);
4121 }
4122 
4123 /* Need to wait a few seconds after link up to get diagnostic information from
4124  * the phy
4125  */
4126 static void igc_update_phy_info(struct timer_list *t)
4127 {
4128 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4129 
4130 	igc_get_phy_info(&adapter->hw);
4131 }
4132 
4133 /**
4134  * igc_has_link - check shared code for link and determine up/down
4135  * @adapter: pointer to driver private info
4136  */
4137 bool igc_has_link(struct igc_adapter *adapter)
4138 {
4139 	struct igc_hw *hw = &adapter->hw;
4140 	bool link_active = false;
4141 
4142 	/* get_link_status is set on LSC (link status) interrupt or
4143 	 * rx sequence error interrupt.  get_link_status will stay
4144 	 * false until the igc_check_for_link establishes link
4145 	 * for copper adapters ONLY
4146 	 */
4147 	switch (hw->phy.media_type) {
4148 	case igc_media_type_copper:
4149 		if (!hw->mac.get_link_status)
4150 			return true;
4151 		hw->mac.ops.check_for_link(hw);
4152 		link_active = !hw->mac.get_link_status;
4153 		break;
4154 	default:
4155 	case igc_media_type_unknown:
4156 		break;
4157 	}
4158 
4159 	if (hw->mac.type == igc_i225 &&
4160 	    hw->phy.id == I225_I_PHY_ID) {
4161 		if (!netif_carrier_ok(adapter->netdev)) {
4162 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4163 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4164 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4165 			adapter->link_check_timeout = jiffies;
4166 		}
4167 	}
4168 
4169 	return link_active;
4170 }
4171 
4172 /**
4173  * igc_watchdog - Timer Call-back
4174  * @t: timer for the watchdog
4175  */
4176 static void igc_watchdog(struct timer_list *t)
4177 {
4178 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4179 	/* Do the rest outside of interrupt context */
4180 	schedule_work(&adapter->watchdog_task);
4181 }
4182 
4183 static void igc_watchdog_task(struct work_struct *work)
4184 {
4185 	struct igc_adapter *adapter = container_of(work,
4186 						   struct igc_adapter,
4187 						   watchdog_task);
4188 	struct net_device *netdev = adapter->netdev;
4189 	struct igc_hw *hw = &adapter->hw;
4190 	struct igc_phy_info *phy = &hw->phy;
4191 	u16 phy_data, retry_count = 20;
4192 	u32 link;
4193 	int i;
4194 
4195 	link = igc_has_link(adapter);
4196 
4197 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4198 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4199 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4200 		else
4201 			link = false;
4202 	}
4203 
4204 	if (link) {
4205 		/* Cancel scheduled suspend requests. */
4206 		pm_runtime_resume(netdev->dev.parent);
4207 
4208 		if (!netif_carrier_ok(netdev)) {
4209 			u32 ctrl;
4210 
4211 			hw->mac.ops.get_speed_and_duplex(hw,
4212 							 &adapter->link_speed,
4213 							 &adapter->link_duplex);
4214 
4215 			ctrl = rd32(IGC_CTRL);
4216 			/* Link status message must follow this format */
4217 			netdev_info(netdev,
4218 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4219 				    adapter->link_speed,
4220 				    adapter->link_duplex == FULL_DUPLEX ?
4221 				    "Full" : "Half",
4222 				    (ctrl & IGC_CTRL_TFCE) &&
4223 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4224 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4225 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4226 
4227 			/* disable EEE if enabled */
4228 			if ((adapter->flags & IGC_FLAG_EEE) &&
4229 			    adapter->link_duplex == HALF_DUPLEX) {
4230 				netdev_info(netdev,
4231 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4232 				adapter->hw.dev_spec._base.eee_enable = false;
4233 				adapter->flags &= ~IGC_FLAG_EEE;
4234 			}
4235 
4236 			/* check if SmartSpeed worked */
4237 			igc_check_downshift(hw);
4238 			if (phy->speed_downgraded)
4239 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4240 
4241 			/* adjust timeout factor according to speed/duplex */
4242 			adapter->tx_timeout_factor = 1;
4243 			switch (adapter->link_speed) {
4244 			case SPEED_10:
4245 				adapter->tx_timeout_factor = 14;
4246 				break;
4247 			case SPEED_100:
4248 				/* maybe add some timeout factor ? */
4249 				break;
4250 			}
4251 
4252 			if (adapter->link_speed != SPEED_1000)
4253 				goto no_wait;
4254 
4255 			/* wait for Remote receiver status OK */
4256 retry_read_status:
4257 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4258 					      &phy_data)) {
4259 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4260 				    retry_count) {
4261 					msleep(100);
4262 					retry_count--;
4263 					goto retry_read_status;
4264 				} else if (!retry_count) {
4265 					netdev_err(netdev, "exceed max 2 second\n");
4266 				}
4267 			} else {
4268 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
4269 			}
4270 no_wait:
4271 			netif_carrier_on(netdev);
4272 
4273 			/* link state has changed, schedule phy info update */
4274 			if (!test_bit(__IGC_DOWN, &adapter->state))
4275 				mod_timer(&adapter->phy_info_timer,
4276 					  round_jiffies(jiffies + 2 * HZ));
4277 		}
4278 	} else {
4279 		if (netif_carrier_ok(netdev)) {
4280 			adapter->link_speed = 0;
4281 			adapter->link_duplex = 0;
4282 
4283 			/* Links status message must follow this format */
4284 			netdev_info(netdev, "NIC Link is Down\n");
4285 			netif_carrier_off(netdev);
4286 
4287 			/* link state has changed, schedule phy info update */
4288 			if (!test_bit(__IGC_DOWN, &adapter->state))
4289 				mod_timer(&adapter->phy_info_timer,
4290 					  round_jiffies(jiffies + 2 * HZ));
4291 
4292 			/* link is down, time to check for alternate media */
4293 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4294 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4295 					schedule_work(&adapter->reset_task);
4296 					/* return immediately */
4297 					return;
4298 				}
4299 			}
4300 			pm_schedule_suspend(netdev->dev.parent,
4301 					    MSEC_PER_SEC * 5);
4302 
4303 		/* also check for alternate media here */
4304 		} else if (!netif_carrier_ok(netdev) &&
4305 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4306 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4307 				schedule_work(&adapter->reset_task);
4308 				/* return immediately */
4309 				return;
4310 			}
4311 		}
4312 	}
4313 
4314 	spin_lock(&adapter->stats64_lock);
4315 	igc_update_stats(adapter);
4316 	spin_unlock(&adapter->stats64_lock);
4317 
4318 	for (i = 0; i < adapter->num_tx_queues; i++) {
4319 		struct igc_ring *tx_ring = adapter->tx_ring[i];
4320 
4321 		if (!netif_carrier_ok(netdev)) {
4322 			/* We've lost link, so the controller stops DMA,
4323 			 * but we've got queued Tx work that's never going
4324 			 * to get done, so reset controller to flush Tx.
4325 			 * (Do the reset outside of interrupt context).
4326 			 */
4327 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4328 				adapter->tx_timeout_count++;
4329 				schedule_work(&adapter->reset_task);
4330 				/* return immediately since reset is imminent */
4331 				return;
4332 			}
4333 		}
4334 
4335 		/* Force detection of hung controller every watchdog period */
4336 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4337 	}
4338 
4339 	/* Cause software interrupt to ensure Rx ring is cleaned */
4340 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4341 		u32 eics = 0;
4342 
4343 		for (i = 0; i < adapter->num_q_vectors; i++)
4344 			eics |= adapter->q_vector[i]->eims_value;
4345 		wr32(IGC_EICS, eics);
4346 	} else {
4347 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
4348 	}
4349 
4350 	igc_ptp_tx_hang(adapter);
4351 
4352 	/* Reset the timer */
4353 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4354 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4355 			mod_timer(&adapter->watchdog_timer,
4356 				  round_jiffies(jiffies +  HZ));
4357 		else
4358 			mod_timer(&adapter->watchdog_timer,
4359 				  round_jiffies(jiffies + 2 * HZ));
4360 	}
4361 }
4362 
4363 /**
4364  * igc_intr_msi - Interrupt Handler
4365  * @irq: interrupt number
4366  * @data: pointer to a network interface device structure
4367  */
4368 static irqreturn_t igc_intr_msi(int irq, void *data)
4369 {
4370 	struct igc_adapter *adapter = data;
4371 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4372 	struct igc_hw *hw = &adapter->hw;
4373 	/* read ICR disables interrupts using IAM */
4374 	u32 icr = rd32(IGC_ICR);
4375 
4376 	igc_write_itr(q_vector);
4377 
4378 	if (icr & IGC_ICR_DRSTA)
4379 		schedule_work(&adapter->reset_task);
4380 
4381 	if (icr & IGC_ICR_DOUTSYNC) {
4382 		/* HW is reporting DMA is out of sync */
4383 		adapter->stats.doosync++;
4384 	}
4385 
4386 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4387 		hw->mac.get_link_status = 1;
4388 		if (!test_bit(__IGC_DOWN, &adapter->state))
4389 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4390 	}
4391 
4392 	napi_schedule(&q_vector->napi);
4393 
4394 	return IRQ_HANDLED;
4395 }
4396 
4397 /**
4398  * igc_intr - Legacy Interrupt Handler
4399  * @irq: interrupt number
4400  * @data: pointer to a network interface device structure
4401  */
4402 static irqreturn_t igc_intr(int irq, void *data)
4403 {
4404 	struct igc_adapter *adapter = data;
4405 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4406 	struct igc_hw *hw = &adapter->hw;
4407 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4408 	 * need for the IMC write
4409 	 */
4410 	u32 icr = rd32(IGC_ICR);
4411 
4412 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4413 	 * not set, then the adapter didn't send an interrupt
4414 	 */
4415 	if (!(icr & IGC_ICR_INT_ASSERTED))
4416 		return IRQ_NONE;
4417 
4418 	igc_write_itr(q_vector);
4419 
4420 	if (icr & IGC_ICR_DRSTA)
4421 		schedule_work(&adapter->reset_task);
4422 
4423 	if (icr & IGC_ICR_DOUTSYNC) {
4424 		/* HW is reporting DMA is out of sync */
4425 		adapter->stats.doosync++;
4426 	}
4427 
4428 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4429 		hw->mac.get_link_status = 1;
4430 		/* guard against interrupt when we're going down */
4431 		if (!test_bit(__IGC_DOWN, &adapter->state))
4432 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4433 	}
4434 
4435 	napi_schedule(&q_vector->napi);
4436 
4437 	return IRQ_HANDLED;
4438 }
4439 
4440 static void igc_free_irq(struct igc_adapter *adapter)
4441 {
4442 	if (adapter->msix_entries) {
4443 		int vector = 0, i;
4444 
4445 		free_irq(adapter->msix_entries[vector++].vector, adapter);
4446 
4447 		for (i = 0; i < adapter->num_q_vectors; i++)
4448 			free_irq(adapter->msix_entries[vector++].vector,
4449 				 adapter->q_vector[i]);
4450 	} else {
4451 		free_irq(adapter->pdev->irq, adapter);
4452 	}
4453 }
4454 
4455 /**
4456  * igc_request_irq - initialize interrupts
4457  * @adapter: Pointer to adapter structure
4458  *
4459  * Attempts to configure interrupts using the best available
4460  * capabilities of the hardware and kernel.
4461  */
4462 static int igc_request_irq(struct igc_adapter *adapter)
4463 {
4464 	struct net_device *netdev = adapter->netdev;
4465 	struct pci_dev *pdev = adapter->pdev;
4466 	int err = 0;
4467 
4468 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4469 		err = igc_request_msix(adapter);
4470 		if (!err)
4471 			goto request_done;
4472 		/* fall back to MSI */
4473 		igc_free_all_tx_resources(adapter);
4474 		igc_free_all_rx_resources(adapter);
4475 
4476 		igc_clear_interrupt_scheme(adapter);
4477 		err = igc_init_interrupt_scheme(adapter, false);
4478 		if (err)
4479 			goto request_done;
4480 		igc_setup_all_tx_resources(adapter);
4481 		igc_setup_all_rx_resources(adapter);
4482 		igc_configure(adapter);
4483 	}
4484 
4485 	igc_assign_vector(adapter->q_vector[0], 0);
4486 
4487 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
4488 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
4489 				  netdev->name, adapter);
4490 		if (!err)
4491 			goto request_done;
4492 
4493 		/* fall back to legacy interrupts */
4494 		igc_reset_interrupt_capability(adapter);
4495 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
4496 	}
4497 
4498 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4499 			  netdev->name, adapter);
4500 
4501 	if (err)
4502 		netdev_err(netdev, "Error %d getting interrupt\n", err);
4503 
4504 request_done:
4505 	return err;
4506 }
4507 
4508 /**
4509  * __igc_open - Called when a network interface is made active
4510  * @netdev: network interface device structure
4511  * @resuming: boolean indicating if the device is resuming
4512  *
4513  * Returns 0 on success, negative value on failure
4514  *
4515  * The open entry point is called when a network interface is made
4516  * active by the system (IFF_UP).  At this point all resources needed
4517  * for transmit and receive operations are allocated, the interrupt
4518  * handler is registered with the OS, the watchdog timer is started,
4519  * and the stack is notified that the interface is ready.
4520  */
4521 static int __igc_open(struct net_device *netdev, bool resuming)
4522 {
4523 	struct igc_adapter *adapter = netdev_priv(netdev);
4524 	struct pci_dev *pdev = adapter->pdev;
4525 	struct igc_hw *hw = &adapter->hw;
4526 	int err = 0;
4527 	int i = 0;
4528 
4529 	/* disallow open during test */
4530 
4531 	if (test_bit(__IGC_TESTING, &adapter->state)) {
4532 		WARN_ON(resuming);
4533 		return -EBUSY;
4534 	}
4535 
4536 	if (!resuming)
4537 		pm_runtime_get_sync(&pdev->dev);
4538 
4539 	netif_carrier_off(netdev);
4540 
4541 	/* allocate transmit descriptors */
4542 	err = igc_setup_all_tx_resources(adapter);
4543 	if (err)
4544 		goto err_setup_tx;
4545 
4546 	/* allocate receive descriptors */
4547 	err = igc_setup_all_rx_resources(adapter);
4548 	if (err)
4549 		goto err_setup_rx;
4550 
4551 	igc_power_up_link(adapter);
4552 
4553 	igc_configure(adapter);
4554 
4555 	err = igc_request_irq(adapter);
4556 	if (err)
4557 		goto err_req_irq;
4558 
4559 	/* Notify the stack of the actual queue counts. */
4560 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4561 	if (err)
4562 		goto err_set_queues;
4563 
4564 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4565 	if (err)
4566 		goto err_set_queues;
4567 
4568 	clear_bit(__IGC_DOWN, &adapter->state);
4569 
4570 	for (i = 0; i < adapter->num_q_vectors; i++)
4571 		napi_enable(&adapter->q_vector[i]->napi);
4572 
4573 	/* Clear any pending interrupts. */
4574 	rd32(IGC_ICR);
4575 	igc_irq_enable(adapter);
4576 
4577 	if (!resuming)
4578 		pm_runtime_put(&pdev->dev);
4579 
4580 	netif_tx_start_all_queues(netdev);
4581 
4582 	/* start the watchdog. */
4583 	hw->mac.get_link_status = 1;
4584 	schedule_work(&adapter->watchdog_task);
4585 
4586 	return IGC_SUCCESS;
4587 
4588 err_set_queues:
4589 	igc_free_irq(adapter);
4590 err_req_irq:
4591 	igc_release_hw_control(adapter);
4592 	igc_power_down_phy_copper_base(&adapter->hw);
4593 	igc_free_all_rx_resources(adapter);
4594 err_setup_rx:
4595 	igc_free_all_tx_resources(adapter);
4596 err_setup_tx:
4597 	igc_reset(adapter);
4598 	if (!resuming)
4599 		pm_runtime_put(&pdev->dev);
4600 
4601 	return err;
4602 }
4603 
4604 int igc_open(struct net_device *netdev)
4605 {
4606 	return __igc_open(netdev, false);
4607 }
4608 
4609 /**
4610  * __igc_close - Disables a network interface
4611  * @netdev: network interface device structure
4612  * @suspending: boolean indicating the device is suspending
4613  *
4614  * Returns 0, this is not allowed to fail
4615  *
4616  * The close entry point is called when an interface is de-activated
4617  * by the OS.  The hardware is still under the driver's control, but
4618  * needs to be disabled.  A global MAC reset is issued to stop the
4619  * hardware, and all transmit and receive resources are freed.
4620  */
4621 static int __igc_close(struct net_device *netdev, bool suspending)
4622 {
4623 	struct igc_adapter *adapter = netdev_priv(netdev);
4624 	struct pci_dev *pdev = adapter->pdev;
4625 
4626 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4627 
4628 	if (!suspending)
4629 		pm_runtime_get_sync(&pdev->dev);
4630 
4631 	igc_down(adapter);
4632 
4633 	igc_release_hw_control(adapter);
4634 
4635 	igc_free_irq(adapter);
4636 
4637 	igc_free_all_tx_resources(adapter);
4638 	igc_free_all_rx_resources(adapter);
4639 
4640 	if (!suspending)
4641 		pm_runtime_put_sync(&pdev->dev);
4642 
4643 	return 0;
4644 }
4645 
4646 int igc_close(struct net_device *netdev)
4647 {
4648 	if (netif_device_present(netdev) || netdev->dismantle)
4649 		return __igc_close(netdev, false);
4650 	return 0;
4651 }
4652 
4653 /**
4654  * igc_ioctl - Access the hwtstamp interface
4655  * @netdev: network interface device structure
4656  * @ifreq: interface request data
4657  * @cmd: ioctl command
4658  **/
4659 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4660 {
4661 	switch (cmd) {
4662 	case SIOCGHWTSTAMP:
4663 		return igc_ptp_get_ts_config(netdev, ifr);
4664 	case SIOCSHWTSTAMP:
4665 		return igc_ptp_set_ts_config(netdev, ifr);
4666 	default:
4667 		return -EOPNOTSUPP;
4668 	}
4669 }
4670 
4671 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4672 				      bool enable)
4673 {
4674 	struct igc_ring *ring;
4675 	int i;
4676 
4677 	if (queue < 0 || queue >= adapter->num_tx_queues)
4678 		return -EINVAL;
4679 
4680 	ring = adapter->tx_ring[queue];
4681 	ring->launchtime_enable = enable;
4682 
4683 	if (adapter->base_time)
4684 		return 0;
4685 
4686 	adapter->cycle_time = NSEC_PER_SEC;
4687 
4688 	for (i = 0; i < adapter->num_tx_queues; i++) {
4689 		ring = adapter->tx_ring[i];
4690 		ring->start_time = 0;
4691 		ring->end_time = NSEC_PER_SEC;
4692 	}
4693 
4694 	return 0;
4695 }
4696 
4697 static bool validate_schedule(const struct tc_taprio_qopt_offload *qopt)
4698 {
4699 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
4700 	size_t n;
4701 
4702 	if (qopt->cycle_time_extension)
4703 		return false;
4704 
4705 	for (n = 0; n < qopt->num_entries; n++) {
4706 		const struct tc_taprio_sched_entry *e;
4707 		int i;
4708 
4709 		e = &qopt->entries[n];
4710 
4711 		/* i225 only supports "global" frame preemption
4712 		 * settings.
4713 		 */
4714 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
4715 			return false;
4716 
4717 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4718 			if (e->gate_mask & BIT(i))
4719 				queue_uses[i]++;
4720 
4721 			if (queue_uses[i] > 1)
4722 				return false;
4723 		}
4724 	}
4725 
4726 	return true;
4727 }
4728 
4729 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4730 				     struct tc_etf_qopt_offload *qopt)
4731 {
4732 	struct igc_hw *hw = &adapter->hw;
4733 	int err;
4734 
4735 	if (hw->mac.type != igc_i225)
4736 		return -EOPNOTSUPP;
4737 
4738 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4739 	if (err)
4740 		return err;
4741 
4742 	return igc_tsn_offload_apply(adapter);
4743 }
4744 
4745 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4746 				 struct tc_taprio_qopt_offload *qopt)
4747 {
4748 	u32 start_time = 0, end_time = 0;
4749 	size_t n;
4750 
4751 	if (!qopt->enable) {
4752 		adapter->base_time = 0;
4753 		return 0;
4754 	}
4755 
4756 	if (adapter->base_time)
4757 		return -EALREADY;
4758 
4759 	if (!validate_schedule(qopt))
4760 		return -EINVAL;
4761 
4762 	adapter->cycle_time = qopt->cycle_time;
4763 	adapter->base_time = qopt->base_time;
4764 
4765 	/* FIXME: be a little smarter about cases when the gate for a
4766 	 * queue stays open for more than one entry.
4767 	 */
4768 	for (n = 0; n < qopt->num_entries; n++) {
4769 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
4770 		int i;
4771 
4772 		end_time += e->interval;
4773 
4774 		for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4775 			struct igc_ring *ring = adapter->tx_ring[i];
4776 
4777 			if (!(e->gate_mask & BIT(i)))
4778 				continue;
4779 
4780 			ring->start_time = start_time;
4781 			ring->end_time = end_time;
4782 		}
4783 
4784 		start_time += e->interval;
4785 	}
4786 
4787 	return 0;
4788 }
4789 
4790 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4791 					 struct tc_taprio_qopt_offload *qopt)
4792 {
4793 	struct igc_hw *hw = &adapter->hw;
4794 	int err;
4795 
4796 	if (hw->mac.type != igc_i225)
4797 		return -EOPNOTSUPP;
4798 
4799 	err = igc_save_qbv_schedule(adapter, qopt);
4800 	if (err)
4801 		return err;
4802 
4803 	return igc_tsn_offload_apply(adapter);
4804 }
4805 
4806 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4807 			void *type_data)
4808 {
4809 	struct igc_adapter *adapter = netdev_priv(dev);
4810 
4811 	switch (type) {
4812 	case TC_SETUP_QDISC_TAPRIO:
4813 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4814 
4815 	case TC_SETUP_QDISC_ETF:
4816 		return igc_tsn_enable_launchtime(adapter, type_data);
4817 
4818 	default:
4819 		return -EOPNOTSUPP;
4820 	}
4821 }
4822 
4823 static const struct net_device_ops igc_netdev_ops = {
4824 	.ndo_open		= igc_open,
4825 	.ndo_stop		= igc_close,
4826 	.ndo_start_xmit		= igc_xmit_frame,
4827 	.ndo_set_rx_mode	= igc_set_rx_mode,
4828 	.ndo_set_mac_address	= igc_set_mac,
4829 	.ndo_change_mtu		= igc_change_mtu,
4830 	.ndo_get_stats		= igc_get_stats,
4831 	.ndo_fix_features	= igc_fix_features,
4832 	.ndo_set_features	= igc_set_features,
4833 	.ndo_features_check	= igc_features_check,
4834 	.ndo_do_ioctl		= igc_ioctl,
4835 	.ndo_setup_tc		= igc_setup_tc,
4836 };
4837 
4838 /* PCIe configuration access */
4839 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4840 {
4841 	struct igc_adapter *adapter = hw->back;
4842 
4843 	pci_read_config_word(adapter->pdev, reg, value);
4844 }
4845 
4846 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4847 {
4848 	struct igc_adapter *adapter = hw->back;
4849 
4850 	pci_write_config_word(adapter->pdev, reg, *value);
4851 }
4852 
4853 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4854 {
4855 	struct igc_adapter *adapter = hw->back;
4856 
4857 	if (!pci_is_pcie(adapter->pdev))
4858 		return -IGC_ERR_CONFIG;
4859 
4860 	pcie_capability_read_word(adapter->pdev, reg, value);
4861 
4862 	return IGC_SUCCESS;
4863 }
4864 
4865 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4866 {
4867 	struct igc_adapter *adapter = hw->back;
4868 
4869 	if (!pci_is_pcie(adapter->pdev))
4870 		return -IGC_ERR_CONFIG;
4871 
4872 	pcie_capability_write_word(adapter->pdev, reg, *value);
4873 
4874 	return IGC_SUCCESS;
4875 }
4876 
4877 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4878 {
4879 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4880 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4881 	u32 value = 0;
4882 
4883 	value = readl(&hw_addr[reg]);
4884 
4885 	/* reads should not return all F's */
4886 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4887 		struct net_device *netdev = igc->netdev;
4888 
4889 		hw->hw_addr = NULL;
4890 		netif_device_detach(netdev);
4891 		netdev_err(netdev, "PCIe link lost, device now detached\n");
4892 		WARN(pci_device_is_present(igc->pdev),
4893 		     "igc: Failed to read reg 0x%x!\n", reg);
4894 	}
4895 
4896 	return value;
4897 }
4898 
4899 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4900 {
4901 	struct igc_mac_info *mac = &adapter->hw.mac;
4902 
4903 	mac->autoneg = 0;
4904 
4905 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4906 	 * for the switch() below to work
4907 	 */
4908 	if ((spd & 1) || (dplx & ~1))
4909 		goto err_inval;
4910 
4911 	switch (spd + dplx) {
4912 	case SPEED_10 + DUPLEX_HALF:
4913 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4914 		break;
4915 	case SPEED_10 + DUPLEX_FULL:
4916 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4917 		break;
4918 	case SPEED_100 + DUPLEX_HALF:
4919 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4920 		break;
4921 	case SPEED_100 + DUPLEX_FULL:
4922 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4923 		break;
4924 	case SPEED_1000 + DUPLEX_FULL:
4925 		mac->autoneg = 1;
4926 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4927 		break;
4928 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4929 		goto err_inval;
4930 	case SPEED_2500 + DUPLEX_FULL:
4931 		mac->autoneg = 1;
4932 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4933 		break;
4934 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
4935 	default:
4936 		goto err_inval;
4937 	}
4938 
4939 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4940 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
4941 
4942 	return 0;
4943 
4944 err_inval:
4945 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
4946 	return -EINVAL;
4947 }
4948 
4949 /**
4950  * igc_probe - Device Initialization Routine
4951  * @pdev: PCI device information struct
4952  * @ent: entry in igc_pci_tbl
4953  *
4954  * Returns 0 on success, negative on failure
4955  *
4956  * igc_probe initializes an adapter identified by a pci_dev structure.
4957  * The OS initialization, configuring the adapter private structure,
4958  * and a hardware reset occur.
4959  */
4960 static int igc_probe(struct pci_dev *pdev,
4961 		     const struct pci_device_id *ent)
4962 {
4963 	struct igc_adapter *adapter;
4964 	struct net_device *netdev;
4965 	struct igc_hw *hw;
4966 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4967 	int err, pci_using_dac;
4968 
4969 	err = pci_enable_device_mem(pdev);
4970 	if (err)
4971 		return err;
4972 
4973 	pci_using_dac = 0;
4974 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4975 	if (!err) {
4976 		pci_using_dac = 1;
4977 	} else {
4978 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4979 		if (err) {
4980 			dev_err(&pdev->dev,
4981 				"No usable DMA configuration, aborting\n");
4982 			goto err_dma;
4983 		}
4984 	}
4985 
4986 	err = pci_request_mem_regions(pdev, igc_driver_name);
4987 	if (err)
4988 		goto err_pci_reg;
4989 
4990 	pci_enable_pcie_error_reporting(pdev);
4991 
4992 	pci_set_master(pdev);
4993 
4994 	err = -ENOMEM;
4995 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
4996 				   IGC_MAX_TX_QUEUES);
4997 
4998 	if (!netdev)
4999 		goto err_alloc_etherdev;
5000 
5001 	SET_NETDEV_DEV(netdev, &pdev->dev);
5002 
5003 	pci_set_drvdata(pdev, netdev);
5004 	adapter = netdev_priv(netdev);
5005 	adapter->netdev = netdev;
5006 	adapter->pdev = pdev;
5007 	hw = &adapter->hw;
5008 	hw->back = adapter;
5009 	adapter->port_num = hw->bus.func;
5010 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5011 
5012 	err = pci_save_state(pdev);
5013 	if (err)
5014 		goto err_ioremap;
5015 
5016 	err = -EIO;
5017 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5018 				   pci_resource_len(pdev, 0));
5019 	if (!adapter->io_addr)
5020 		goto err_ioremap;
5021 
5022 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5023 	hw->hw_addr = adapter->io_addr;
5024 
5025 	netdev->netdev_ops = &igc_netdev_ops;
5026 	igc_ethtool_set_ops(netdev);
5027 	netdev->watchdog_timeo = 5 * HZ;
5028 
5029 	netdev->mem_start = pci_resource_start(pdev, 0);
5030 	netdev->mem_end = pci_resource_end(pdev, 0);
5031 
5032 	/* PCI config space info */
5033 	hw->vendor_id = pdev->vendor;
5034 	hw->device_id = pdev->device;
5035 	hw->revision_id = pdev->revision;
5036 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5037 	hw->subsystem_device_id = pdev->subsystem_device;
5038 
5039 	/* Copy the default MAC and PHY function pointers */
5040 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5041 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5042 
5043 	/* Initialize skew-specific constants */
5044 	err = ei->get_invariants(hw);
5045 	if (err)
5046 		goto err_sw_init;
5047 
5048 	/* Add supported features to the features list*/
5049 	netdev->features |= NETIF_F_SG;
5050 	netdev->features |= NETIF_F_TSO;
5051 	netdev->features |= NETIF_F_TSO6;
5052 	netdev->features |= NETIF_F_TSO_ECN;
5053 	netdev->features |= NETIF_F_RXCSUM;
5054 	netdev->features |= NETIF_F_HW_CSUM;
5055 	netdev->features |= NETIF_F_SCTP_CRC;
5056 	netdev->features |= NETIF_F_HW_TC;
5057 
5058 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5059 				  NETIF_F_GSO_GRE_CSUM | \
5060 				  NETIF_F_GSO_IPXIP4 | \
5061 				  NETIF_F_GSO_IPXIP6 | \
5062 				  NETIF_F_GSO_UDP_TUNNEL | \
5063 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5064 
5065 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5066 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5067 
5068 	/* setup the private structure */
5069 	err = igc_sw_init(adapter);
5070 	if (err)
5071 		goto err_sw_init;
5072 
5073 	/* copy netdev features into list of user selectable features */
5074 	netdev->hw_features |= NETIF_F_NTUPLE;
5075 	netdev->hw_features |= netdev->features;
5076 
5077 	if (pci_using_dac)
5078 		netdev->features |= NETIF_F_HIGHDMA;
5079 
5080 	/* MTU range: 68 - 9216 */
5081 	netdev->min_mtu = ETH_MIN_MTU;
5082 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5083 
5084 	/* before reading the NVM, reset the controller to put the device in a
5085 	 * known good starting state
5086 	 */
5087 	hw->mac.ops.reset_hw(hw);
5088 
5089 	if (igc_get_flash_presence_i225(hw)) {
5090 		if (hw->nvm.ops.validate(hw) < 0) {
5091 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5092 			err = -EIO;
5093 			goto err_eeprom;
5094 		}
5095 	}
5096 
5097 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5098 		/* copy the MAC address out of the NVM */
5099 		if (hw->mac.ops.read_mac_addr(hw))
5100 			dev_err(&pdev->dev, "NVM Read Error\n");
5101 	}
5102 
5103 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5104 
5105 	if (!is_valid_ether_addr(netdev->dev_addr)) {
5106 		dev_err(&pdev->dev, "Invalid MAC Address\n");
5107 		err = -EIO;
5108 		goto err_eeprom;
5109 	}
5110 
5111 	/* configure RXPBSIZE and TXPBSIZE */
5112 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5113 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5114 
5115 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5116 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5117 
5118 	INIT_WORK(&adapter->reset_task, igc_reset_task);
5119 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5120 
5121 	/* Initialize link properties that are user-changeable */
5122 	adapter->fc_autoneg = true;
5123 	hw->mac.autoneg = true;
5124 	hw->phy.autoneg_advertised = 0xaf;
5125 
5126 	hw->fc.requested_mode = igc_fc_default;
5127 	hw->fc.current_mode = igc_fc_default;
5128 
5129 	/* By default, support wake on port A */
5130 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5131 
5132 	/* initialize the wol settings based on the eeprom settings */
5133 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5134 		adapter->wol |= IGC_WUFC_MAG;
5135 
5136 	device_set_wakeup_enable(&adapter->pdev->dev,
5137 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5138 
5139 	igc_ptp_init(adapter);
5140 
5141 	/* reset the hardware with the new settings */
5142 	igc_reset(adapter);
5143 
5144 	/* let the f/w know that the h/w is now under the control of the
5145 	 * driver.
5146 	 */
5147 	igc_get_hw_control(adapter);
5148 
5149 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
5150 	err = register_netdev(netdev);
5151 	if (err)
5152 		goto err_register;
5153 
5154 	 /* carrier off reporting is important to ethtool even BEFORE open */
5155 	netif_carrier_off(netdev);
5156 
5157 	/* Check if Media Autosense is enabled */
5158 	adapter->ei = *ei;
5159 
5160 	/* print pcie link status and MAC address */
5161 	pcie_print_link_status(pdev);
5162 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5163 
5164 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5165 	/* Disable EEE for internal PHY devices */
5166 	hw->dev_spec._base.eee_enable = false;
5167 	adapter->flags &= ~IGC_FLAG_EEE;
5168 	igc_set_eee_i225(hw, false, false, false);
5169 
5170 	pm_runtime_put_noidle(&pdev->dev);
5171 
5172 	return 0;
5173 
5174 err_register:
5175 	igc_release_hw_control(adapter);
5176 err_eeprom:
5177 	if (!igc_check_reset_block(hw))
5178 		igc_reset_phy(hw);
5179 err_sw_init:
5180 	igc_clear_interrupt_scheme(adapter);
5181 	iounmap(adapter->io_addr);
5182 err_ioremap:
5183 	free_netdev(netdev);
5184 err_alloc_etherdev:
5185 	pci_release_mem_regions(pdev);
5186 err_pci_reg:
5187 err_dma:
5188 	pci_disable_device(pdev);
5189 	return err;
5190 }
5191 
5192 /**
5193  * igc_remove - Device Removal Routine
5194  * @pdev: PCI device information struct
5195  *
5196  * igc_remove is called by the PCI subsystem to alert the driver
5197  * that it should release a PCI device.  This could be caused by a
5198  * Hot-Plug event, or because the driver is going to be removed from
5199  * memory.
5200  */
5201 static void igc_remove(struct pci_dev *pdev)
5202 {
5203 	struct net_device *netdev = pci_get_drvdata(pdev);
5204 	struct igc_adapter *adapter = netdev_priv(netdev);
5205 
5206 	pm_runtime_get_noresume(&pdev->dev);
5207 
5208 	igc_flush_nfc_rules(adapter);
5209 
5210 	igc_ptp_stop(adapter);
5211 
5212 	set_bit(__IGC_DOWN, &adapter->state);
5213 
5214 	del_timer_sync(&adapter->watchdog_timer);
5215 	del_timer_sync(&adapter->phy_info_timer);
5216 
5217 	cancel_work_sync(&adapter->reset_task);
5218 	cancel_work_sync(&adapter->watchdog_task);
5219 
5220 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5221 	 * would have already happened in close and is redundant.
5222 	 */
5223 	igc_release_hw_control(adapter);
5224 	unregister_netdev(netdev);
5225 
5226 	igc_clear_interrupt_scheme(adapter);
5227 	pci_iounmap(pdev, adapter->io_addr);
5228 	pci_release_mem_regions(pdev);
5229 
5230 	free_netdev(netdev);
5231 
5232 	pci_disable_pcie_error_reporting(pdev);
5233 
5234 	pci_disable_device(pdev);
5235 }
5236 
5237 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5238 			  bool runtime)
5239 {
5240 	struct net_device *netdev = pci_get_drvdata(pdev);
5241 	struct igc_adapter *adapter = netdev_priv(netdev);
5242 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5243 	struct igc_hw *hw = &adapter->hw;
5244 	u32 ctrl, rctl, status;
5245 	bool wake;
5246 
5247 	rtnl_lock();
5248 	netif_device_detach(netdev);
5249 
5250 	if (netif_running(netdev))
5251 		__igc_close(netdev, true);
5252 
5253 	igc_ptp_suspend(adapter);
5254 
5255 	igc_clear_interrupt_scheme(adapter);
5256 	rtnl_unlock();
5257 
5258 	status = rd32(IGC_STATUS);
5259 	if (status & IGC_STATUS_LU)
5260 		wufc &= ~IGC_WUFC_LNKC;
5261 
5262 	if (wufc) {
5263 		igc_setup_rctl(adapter);
5264 		igc_set_rx_mode(netdev);
5265 
5266 		/* turn on all-multi mode if wake on multicast is enabled */
5267 		if (wufc & IGC_WUFC_MC) {
5268 			rctl = rd32(IGC_RCTL);
5269 			rctl |= IGC_RCTL_MPE;
5270 			wr32(IGC_RCTL, rctl);
5271 		}
5272 
5273 		ctrl = rd32(IGC_CTRL);
5274 		ctrl |= IGC_CTRL_ADVD3WUC;
5275 		wr32(IGC_CTRL, ctrl);
5276 
5277 		/* Allow time for pending master requests to run */
5278 		igc_disable_pcie_master(hw);
5279 
5280 		wr32(IGC_WUC, IGC_WUC_PME_EN);
5281 		wr32(IGC_WUFC, wufc);
5282 	} else {
5283 		wr32(IGC_WUC, 0);
5284 		wr32(IGC_WUFC, 0);
5285 	}
5286 
5287 	wake = wufc || adapter->en_mng_pt;
5288 	if (!wake)
5289 		igc_power_down_phy_copper_base(&adapter->hw);
5290 	else
5291 		igc_power_up_link(adapter);
5292 
5293 	if (enable_wake)
5294 		*enable_wake = wake;
5295 
5296 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5297 	 * would have already happened in close and is redundant.
5298 	 */
5299 	igc_release_hw_control(adapter);
5300 
5301 	pci_disable_device(pdev);
5302 
5303 	return 0;
5304 }
5305 
5306 #ifdef CONFIG_PM
5307 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5308 {
5309 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5310 }
5311 
5312 static void igc_deliver_wake_packet(struct net_device *netdev)
5313 {
5314 	struct igc_adapter *adapter = netdev_priv(netdev);
5315 	struct igc_hw *hw = &adapter->hw;
5316 	struct sk_buff *skb;
5317 	u32 wupl;
5318 
5319 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5320 
5321 	/* WUPM stores only the first 128 bytes of the wake packet.
5322 	 * Read the packet only if we have the whole thing.
5323 	 */
5324 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5325 		return;
5326 
5327 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5328 	if (!skb)
5329 		return;
5330 
5331 	skb_put(skb, wupl);
5332 
5333 	/* Ensure reads are 32-bit aligned */
5334 	wupl = roundup(wupl, 4);
5335 
5336 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5337 
5338 	skb->protocol = eth_type_trans(skb, netdev);
5339 	netif_rx(skb);
5340 }
5341 
5342 static int __maybe_unused igc_resume(struct device *dev)
5343 {
5344 	struct pci_dev *pdev = to_pci_dev(dev);
5345 	struct net_device *netdev = pci_get_drvdata(pdev);
5346 	struct igc_adapter *adapter = netdev_priv(netdev);
5347 	struct igc_hw *hw = &adapter->hw;
5348 	u32 err, val;
5349 
5350 	pci_set_power_state(pdev, PCI_D0);
5351 	pci_restore_state(pdev);
5352 	pci_save_state(pdev);
5353 
5354 	if (!pci_device_is_present(pdev))
5355 		return -ENODEV;
5356 	err = pci_enable_device_mem(pdev);
5357 	if (err) {
5358 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5359 		return err;
5360 	}
5361 	pci_set_master(pdev);
5362 
5363 	pci_enable_wake(pdev, PCI_D3hot, 0);
5364 	pci_enable_wake(pdev, PCI_D3cold, 0);
5365 
5366 	if (igc_init_interrupt_scheme(adapter, true)) {
5367 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5368 		return -ENOMEM;
5369 	}
5370 
5371 	igc_reset(adapter);
5372 
5373 	/* let the f/w know that the h/w is now under the control of the
5374 	 * driver.
5375 	 */
5376 	igc_get_hw_control(adapter);
5377 
5378 	val = rd32(IGC_WUS);
5379 	if (val & WAKE_PKT_WUS)
5380 		igc_deliver_wake_packet(netdev);
5381 
5382 	wr32(IGC_WUS, ~0);
5383 
5384 	rtnl_lock();
5385 	if (!err && netif_running(netdev))
5386 		err = __igc_open(netdev, true);
5387 
5388 	if (!err)
5389 		netif_device_attach(netdev);
5390 	rtnl_unlock();
5391 
5392 	return err;
5393 }
5394 
5395 static int __maybe_unused igc_runtime_resume(struct device *dev)
5396 {
5397 	return igc_resume(dev);
5398 }
5399 
5400 static int __maybe_unused igc_suspend(struct device *dev)
5401 {
5402 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5403 }
5404 
5405 static int __maybe_unused igc_runtime_idle(struct device *dev)
5406 {
5407 	struct net_device *netdev = dev_get_drvdata(dev);
5408 	struct igc_adapter *adapter = netdev_priv(netdev);
5409 
5410 	if (!igc_has_link(adapter))
5411 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5412 
5413 	return -EBUSY;
5414 }
5415 #endif /* CONFIG_PM */
5416 
5417 static void igc_shutdown(struct pci_dev *pdev)
5418 {
5419 	bool wake;
5420 
5421 	__igc_shutdown(pdev, &wake, 0);
5422 
5423 	if (system_state == SYSTEM_POWER_OFF) {
5424 		pci_wake_from_d3(pdev, wake);
5425 		pci_set_power_state(pdev, PCI_D3hot);
5426 	}
5427 }
5428 
5429 /**
5430  *  igc_io_error_detected - called when PCI error is detected
5431  *  @pdev: Pointer to PCI device
5432  *  @state: The current PCI connection state
5433  *
5434  *  This function is called after a PCI bus error affecting
5435  *  this device has been detected.
5436  **/
5437 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5438 					      pci_channel_state_t state)
5439 {
5440 	struct net_device *netdev = pci_get_drvdata(pdev);
5441 	struct igc_adapter *adapter = netdev_priv(netdev);
5442 
5443 	netif_device_detach(netdev);
5444 
5445 	if (state == pci_channel_io_perm_failure)
5446 		return PCI_ERS_RESULT_DISCONNECT;
5447 
5448 	if (netif_running(netdev))
5449 		igc_down(adapter);
5450 	pci_disable_device(pdev);
5451 
5452 	/* Request a slot reset. */
5453 	return PCI_ERS_RESULT_NEED_RESET;
5454 }
5455 
5456 /**
5457  *  igc_io_slot_reset - called after the PCI bus has been reset.
5458  *  @pdev: Pointer to PCI device
5459  *
5460  *  Restart the card from scratch, as if from a cold-boot. Implementation
5461  *  resembles the first-half of the igc_resume routine.
5462  **/
5463 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5464 {
5465 	struct net_device *netdev = pci_get_drvdata(pdev);
5466 	struct igc_adapter *adapter = netdev_priv(netdev);
5467 	struct igc_hw *hw = &adapter->hw;
5468 	pci_ers_result_t result;
5469 
5470 	if (pci_enable_device_mem(pdev)) {
5471 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5472 		result = PCI_ERS_RESULT_DISCONNECT;
5473 	} else {
5474 		pci_set_master(pdev);
5475 		pci_restore_state(pdev);
5476 		pci_save_state(pdev);
5477 
5478 		pci_enable_wake(pdev, PCI_D3hot, 0);
5479 		pci_enable_wake(pdev, PCI_D3cold, 0);
5480 
5481 		/* In case of PCI error, adapter loses its HW address
5482 		 * so we should re-assign it here.
5483 		 */
5484 		hw->hw_addr = adapter->io_addr;
5485 
5486 		igc_reset(adapter);
5487 		wr32(IGC_WUS, ~0);
5488 		result = PCI_ERS_RESULT_RECOVERED;
5489 	}
5490 
5491 	return result;
5492 }
5493 
5494 /**
5495  *  igc_io_resume - called when traffic can start to flow again.
5496  *  @pdev: Pointer to PCI device
5497  *
5498  *  This callback is called when the error recovery driver tells us that
5499  *  its OK to resume normal operation. Implementation resembles the
5500  *  second-half of the igc_resume routine.
5501  */
5502 static void igc_io_resume(struct pci_dev *pdev)
5503 {
5504 	struct net_device *netdev = pci_get_drvdata(pdev);
5505 	struct igc_adapter *adapter = netdev_priv(netdev);
5506 
5507 	rtnl_lock();
5508 	if (netif_running(netdev)) {
5509 		if (igc_open(netdev)) {
5510 			netdev_err(netdev, "igc_open failed after reset\n");
5511 			return;
5512 		}
5513 	}
5514 
5515 	netif_device_attach(netdev);
5516 
5517 	/* let the f/w know that the h/w is now under the control of the
5518 	 * driver.
5519 	 */
5520 	igc_get_hw_control(adapter);
5521 	rtnl_unlock();
5522 }
5523 
5524 static const struct pci_error_handlers igc_err_handler = {
5525 	.error_detected = igc_io_error_detected,
5526 	.slot_reset = igc_io_slot_reset,
5527 	.resume = igc_io_resume,
5528 };
5529 
5530 #ifdef CONFIG_PM
5531 static const struct dev_pm_ops igc_pm_ops = {
5532 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5533 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5534 			   igc_runtime_idle)
5535 };
5536 #endif
5537 
5538 static struct pci_driver igc_driver = {
5539 	.name     = igc_driver_name,
5540 	.id_table = igc_pci_tbl,
5541 	.probe    = igc_probe,
5542 	.remove   = igc_remove,
5543 #ifdef CONFIG_PM
5544 	.driver.pm = &igc_pm_ops,
5545 #endif
5546 	.shutdown = igc_shutdown,
5547 	.err_handler = &igc_err_handler,
5548 };
5549 
5550 /**
5551  * igc_reinit_queues - return error
5552  * @adapter: pointer to adapter structure
5553  */
5554 int igc_reinit_queues(struct igc_adapter *adapter)
5555 {
5556 	struct net_device *netdev = adapter->netdev;
5557 	int err = 0;
5558 
5559 	if (netif_running(netdev))
5560 		igc_close(netdev);
5561 
5562 	igc_reset_interrupt_capability(adapter);
5563 
5564 	if (igc_init_interrupt_scheme(adapter, true)) {
5565 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5566 		return -ENOMEM;
5567 	}
5568 
5569 	if (netif_running(netdev))
5570 		err = igc_open(netdev);
5571 
5572 	return err;
5573 }
5574 
5575 /**
5576  * igc_get_hw_dev - return device
5577  * @hw: pointer to hardware structure
5578  *
5579  * used by hardware layer to print debugging information
5580  */
5581 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5582 {
5583 	struct igc_adapter *adapter = hw->back;
5584 
5585 	return adapter->netdev;
5586 }
5587 
5588 /**
5589  * igc_init_module - Driver Registration Routine
5590  *
5591  * igc_init_module is the first routine called when the driver is
5592  * loaded. All it does is register with the PCI subsystem.
5593  */
5594 static int __init igc_init_module(void)
5595 {
5596 	int ret;
5597 
5598 	pr_info("%s\n", igc_driver_string);
5599 	pr_info("%s\n", igc_copyright);
5600 
5601 	ret = pci_register_driver(&igc_driver);
5602 	return ret;
5603 }
5604 
5605 module_init(igc_init_module);
5606 
5607 /**
5608  * igc_exit_module - Driver Exit Cleanup Routine
5609  *
5610  * igc_exit_module is called just before the driver is removed
5611  * from memory.
5612  */
5613 static void __exit igc_exit_module(void)
5614 {
5615 	pci_unregister_driver(&igc_driver);
5616 }
5617 
5618 module_exit(igc_exit_module);
5619 /* igc_main.c */
5620