1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/delay.h>
5 
6 #include "igc_hw.h"
7 
8 /**
9  * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
10  * @hw: pointer to the HW structure
11  *
12  * Acquire the necessary semaphores for exclusive access to the EEPROM.
13  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
14  * Return successful if access grant bit set, else clear the request for
15  * EEPROM access and return -IGC_ERR_NVM (-1).
16  */
17 static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
18 {
19 	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
20 }
21 
22 /**
23  * igc_release_nvm_i225 - Release exclusive access to EEPROM
24  * @hw: pointer to the HW structure
25  *
26  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
27  * then release the semaphores acquired.
28  */
29 static void igc_release_nvm_i225(struct igc_hw *hw)
30 {
31 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
32 }
33 
34 /**
35  * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
36  * @hw: pointer to the HW structure
37  *
38  * Acquire the HW semaphore to access the PHY or NVM
39  */
40 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
41 {
42 	s32 timeout = hw->nvm.word_size + 1;
43 	s32 i = 0;
44 	u32 swsm;
45 
46 	/* Get the SW semaphore */
47 	while (i < timeout) {
48 		swsm = rd32(IGC_SWSM);
49 		if (!(swsm & IGC_SWSM_SMBI))
50 			break;
51 
52 		usleep_range(500, 600);
53 		i++;
54 	}
55 
56 	if (i == timeout) {
57 		/* In rare circumstances, the SW semaphore may already be held
58 		 * unintentionally. Clear the semaphore once before giving up.
59 		 */
60 		if (hw->dev_spec._base.clear_semaphore_once) {
61 			hw->dev_spec._base.clear_semaphore_once = false;
62 			igc_put_hw_semaphore(hw);
63 			for (i = 0; i < timeout; i++) {
64 				swsm = rd32(IGC_SWSM);
65 				if (!(swsm & IGC_SWSM_SMBI))
66 					break;
67 
68 				usleep_range(500, 600);
69 			}
70 		}
71 
72 		/* If we do not have the semaphore here, we have to give up. */
73 		if (i == timeout) {
74 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
75 			return -IGC_ERR_NVM;
76 		}
77 	}
78 
79 	/* Get the FW semaphore. */
80 	for (i = 0; i < timeout; i++) {
81 		swsm = rd32(IGC_SWSM);
82 		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
83 
84 		/* Semaphore acquired if bit latched */
85 		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
86 			break;
87 
88 		usleep_range(500, 600);
89 	}
90 
91 	if (i == timeout) {
92 		/* Release semaphores */
93 		igc_put_hw_semaphore(hw);
94 		hw_dbg("Driver can't access the NVM\n");
95 		return -IGC_ERR_NVM;
96 	}
97 
98 	return 0;
99 }
100 
101 /**
102  * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103  * @hw: pointer to the HW structure
104  * @mask: specifies which semaphore to acquire
105  *
106  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
107  * will also specify which port we're acquiring the lock for.
108  */
109 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110 {
111 	s32 i = 0, timeout = 200;
112 	u32 fwmask = mask << 16;
113 	u32 swmask = mask;
114 	s32 ret_val = 0;
115 	u32 swfw_sync;
116 
117 	while (i < timeout) {
118 		if (igc_get_hw_semaphore_i225(hw)) {
119 			ret_val = -IGC_ERR_SWFW_SYNC;
120 			goto out;
121 		}
122 
123 		swfw_sync = rd32(IGC_SW_FW_SYNC);
124 		if (!(swfw_sync & (fwmask | swmask)))
125 			break;
126 
127 		/* Firmware currently using resource (fwmask) */
128 		igc_put_hw_semaphore(hw);
129 		mdelay(5);
130 		i++;
131 	}
132 
133 	if (i == timeout) {
134 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135 		ret_val = -IGC_ERR_SWFW_SYNC;
136 		goto out;
137 	}
138 
139 	swfw_sync |= swmask;
140 	wr32(IGC_SW_FW_SYNC, swfw_sync);
141 
142 	igc_put_hw_semaphore(hw);
143 out:
144 	return ret_val;
145 }
146 
147 /**
148  * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149  * @hw: pointer to the HW structure
150  * @mask: specifies which semaphore to acquire
151  *
152  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
153  * will also specify which port we're releasing the lock for.
154  */
155 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156 {
157 	u32 swfw_sync;
158 
159 	/* Releasing the resource requires first getting the HW semaphore.
160 	 * If we fail to get the semaphore, there is nothing we can do,
161 	 * except log an error and quit. We are not allowed to hang here
162 	 * indefinitely, as it may cause denial of service or system crash.
163 	 */
164 	if (igc_get_hw_semaphore_i225(hw)) {
165 		hw_dbg("Failed to release SW_FW_SYNC.\n");
166 		return;
167 	}
168 
169 	swfw_sync = rd32(IGC_SW_FW_SYNC);
170 	swfw_sync &= ~mask;
171 	wr32(IGC_SW_FW_SYNC, swfw_sync);
172 
173 	igc_put_hw_semaphore(hw);
174 }
175 
176 /**
177  * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
178  * @hw: pointer to the HW structure
179  * @offset: offset of word in the Shadow Ram to read
180  * @words: number of words to read
181  * @data: word read from the Shadow Ram
182  *
183  * Reads a 16 bit word from the Shadow Ram using the EERD register.
184  * Uses necessary synchronization semaphores.
185  */
186 static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
187 				  u16 *data)
188 {
189 	s32 status = 0;
190 	u16 i, count;
191 
192 	/* We cannot hold synchronization semaphores for too long,
193 	 * because of forceful takeover procedure. However it is more efficient
194 	 * to read in bursts than synchronizing access for each word.
195 	 */
196 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
197 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
198 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
199 
200 		status = hw->nvm.ops.acquire(hw);
201 		if (status)
202 			break;
203 
204 		status = igc_read_nvm_eerd(hw, offset, count, data + i);
205 		hw->nvm.ops.release(hw);
206 		if (status)
207 			break;
208 	}
209 
210 	return status;
211 }
212 
213 /**
214  * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
215  * @hw: pointer to the HW structure
216  * @offset: offset within the Shadow Ram to be written to
217  * @words: number of words to write
218  * @data: 16 bit word(s) to be written to the Shadow Ram
219  *
220  * Writes data to Shadow Ram at offset using EEWR register.
221  *
222  * If igc_update_nvm_checksum is not called after this function , the
223  * Shadow Ram will most likely contain an invalid checksum.
224  */
225 static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
226 			      u16 *data)
227 {
228 	struct igc_nvm_info *nvm = &hw->nvm;
229 	s32 ret_val = -IGC_ERR_NVM;
230 	u32 attempts = 100000;
231 	u32 i, k, eewr = 0;
232 
233 	/* A check for invalid values:  offset too large, too many words,
234 	 * too many words for the offset, and not enough words.
235 	 */
236 	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
237 	    words == 0) {
238 		hw_dbg("nvm parameter(s) out of bounds\n");
239 		return ret_val;
240 	}
241 
242 	for (i = 0; i < words; i++) {
243 		ret_val = -IGC_ERR_NVM;
244 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
245 			(data[i] << IGC_NVM_RW_REG_DATA) |
246 			IGC_NVM_RW_REG_START;
247 
248 		wr32(IGC_SRWR, eewr);
249 
250 		for (k = 0; k < attempts; k++) {
251 			if (IGC_NVM_RW_REG_DONE &
252 			    rd32(IGC_SRWR)) {
253 				ret_val = 0;
254 				break;
255 			}
256 			udelay(5);
257 		}
258 
259 		if (ret_val) {
260 			hw_dbg("Shadow RAM write EEWR timed out\n");
261 			break;
262 		}
263 	}
264 
265 	return ret_val;
266 }
267 
268 /**
269  * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
270  * @hw: pointer to the HW structure
271  * @offset: offset within the Shadow RAM to be written to
272  * @words: number of words to write
273  * @data: 16 bit word(s) to be written to the Shadow RAM
274  *
275  * Writes data to Shadow RAM at offset using EEWR register.
276  *
277  * If igc_update_nvm_checksum is not called after this function , the
278  * data will not be committed to FLASH and also Shadow RAM will most likely
279  * contain an invalid checksum.
280  *
281  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
282  * partially written.
283  */
284 static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
285 				   u16 *data)
286 {
287 	s32 status = 0;
288 	u16 i, count;
289 
290 	/* We cannot hold synchronization semaphores for too long,
291 	 * because of forceful takeover procedure. However it is more efficient
292 	 * to write in bursts than synchronizing access for each word.
293 	 */
294 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
295 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
296 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
297 
298 		status = hw->nvm.ops.acquire(hw);
299 		if (status)
300 			break;
301 
302 		status = igc_write_nvm_srwr(hw, offset, count, data + i);
303 		hw->nvm.ops.release(hw);
304 		if (status)
305 			break;
306 	}
307 
308 	return status;
309 }
310 
311 /**
312  * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
313  * @hw: pointer to the HW structure
314  *
315  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
316  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
317  */
318 static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
319 {
320 	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
321 			   u16 *data);
322 	s32 status = 0;
323 
324 	status = hw->nvm.ops.acquire(hw);
325 	if (status)
326 		goto out;
327 
328 	/* Replace the read function with semaphore grabbing with
329 	 * the one that skips this for a while.
330 	 * We have semaphore taken already here.
331 	 */
332 	read_op_ptr = hw->nvm.ops.read;
333 	hw->nvm.ops.read = igc_read_nvm_eerd;
334 
335 	status = igc_validate_nvm_checksum(hw);
336 
337 	/* Revert original read operation. */
338 	hw->nvm.ops.read = read_op_ptr;
339 
340 	hw->nvm.ops.release(hw);
341 
342 out:
343 	return status;
344 }
345 
346 /**
347  * igc_pool_flash_update_done_i225 - Pool FLUDONE status
348  * @hw: pointer to the HW structure
349  */
350 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
351 {
352 	s32 ret_val = -IGC_ERR_NVM;
353 	u32 i, reg;
354 
355 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
356 		reg = rd32(IGC_EECD);
357 		if (reg & IGC_EECD_FLUDONE_I225) {
358 			ret_val = 0;
359 			break;
360 		}
361 		udelay(5);
362 	}
363 
364 	return ret_val;
365 }
366 
367 /**
368  * igc_update_flash_i225 - Commit EEPROM to the flash
369  * @hw: pointer to the HW structure
370  */
371 static s32 igc_update_flash_i225(struct igc_hw *hw)
372 {
373 	s32 ret_val = 0;
374 	u32 flup;
375 
376 	ret_val = igc_pool_flash_update_done_i225(hw);
377 	if (ret_val == -IGC_ERR_NVM) {
378 		hw_dbg("Flash update time out\n");
379 		goto out;
380 	}
381 
382 	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
383 	wr32(IGC_EECD, flup);
384 
385 	ret_val = igc_pool_flash_update_done_i225(hw);
386 	if (ret_val)
387 		hw_dbg("Flash update time out\n");
388 	else
389 		hw_dbg("Flash update complete\n");
390 
391 out:
392 	return ret_val;
393 }
394 
395 /**
396  * igc_update_nvm_checksum_i225 - Update EEPROM checksum
397  * @hw: pointer to the HW structure
398  *
399  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
400  * up to the checksum.  Then calculates the EEPROM checksum and writes the
401  * value to the EEPROM. Next commit EEPROM data onto the Flash.
402  */
403 static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
404 {
405 	u16 checksum = 0;
406 	s32 ret_val = 0;
407 	u16 i, nvm_data;
408 
409 	/* Read the first word from the EEPROM. If this times out or fails, do
410 	 * not continue or we could be in for a very long wait while every
411 	 * EEPROM read fails
412 	 */
413 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
414 	if (ret_val) {
415 		hw_dbg("EEPROM read failed\n");
416 		goto out;
417 	}
418 
419 	ret_val = hw->nvm.ops.acquire(hw);
420 	if (ret_val)
421 		goto out;
422 
423 	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
424 	 * because we do not want to take the synchronization
425 	 * semaphores twice here.
426 	 */
427 
428 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
429 		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
430 		if (ret_val) {
431 			hw->nvm.ops.release(hw);
432 			hw_dbg("NVM Read Error while updating checksum.\n");
433 			goto out;
434 		}
435 		checksum += nvm_data;
436 	}
437 	checksum = (u16)NVM_SUM - checksum;
438 	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
439 				     &checksum);
440 	if (ret_val) {
441 		hw->nvm.ops.release(hw);
442 		hw_dbg("NVM Write Error while updating checksum.\n");
443 		goto out;
444 	}
445 
446 	hw->nvm.ops.release(hw);
447 
448 	ret_val = igc_update_flash_i225(hw);
449 
450 out:
451 	return ret_val;
452 }
453 
454 /**
455  * igc_get_flash_presence_i225 - Check if flash device is detected
456  * @hw: pointer to the HW structure
457  */
458 bool igc_get_flash_presence_i225(struct igc_hw *hw)
459 {
460 	bool ret_val = false;
461 	u32 eec = 0;
462 
463 	eec = rd32(IGC_EECD);
464 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
465 		ret_val = true;
466 
467 	return ret_val;
468 }
469 
470 /**
471  * igc_init_nvm_params_i225 - Init NVM func ptrs.
472  * @hw: pointer to the HW structure
473  */
474 s32 igc_init_nvm_params_i225(struct igc_hw *hw)
475 {
476 	struct igc_nvm_info *nvm = &hw->nvm;
477 
478 	nvm->ops.acquire = igc_acquire_nvm_i225;
479 	nvm->ops.release = igc_release_nvm_i225;
480 
481 	/* NVM Function Pointers */
482 	if (igc_get_flash_presence_i225(hw)) {
483 		nvm->ops.read = igc_read_nvm_srrd_i225;
484 		nvm->ops.write = igc_write_nvm_srwr_i225;
485 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
486 		nvm->ops.update = igc_update_nvm_checksum_i225;
487 	} else {
488 		nvm->ops.read = igc_read_nvm_eerd;
489 		nvm->ops.write = NULL;
490 		nvm->ops.validate = NULL;
491 		nvm->ops.update = NULL;
492 	}
493 	return 0;
494 }
495 
496 /**
497  *  igc_set_eee_i225 - Enable/disable EEE support
498  *  @hw: pointer to the HW structure
499  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
500  *  @adv1G: boolean flag enabling 1G EEE advertisement
501  *  @adv100M: boolean flag enabling 100M EEE advertisement
502  *
503  *  Enable/disable EEE based on setting in dev_spec structure.
504  **/
505 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
506 		     bool adv100M)
507 {
508 	u32 ipcnfg, eeer;
509 
510 	ipcnfg = rd32(IGC_IPCNFG);
511 	eeer = rd32(IGC_EEER);
512 
513 	/* enable or disable per user setting */
514 	if (hw->dev_spec._base.eee_enable) {
515 		u32 eee_su = rd32(IGC_EEE_SU);
516 
517 		if (adv100M)
518 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
519 		else
520 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
521 
522 		if (adv1G)
523 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
524 		else
525 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
526 
527 		if (adv2p5G)
528 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
529 		else
530 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
531 
532 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
533 			 IGC_EEER_LPI_FC);
534 
535 		/* This bit should not be set in normal operation. */
536 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
537 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
538 	} else {
539 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
540 			    IGC_IPCNFG_EEE_100M_AN);
541 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
542 			  IGC_EEER_LPI_FC);
543 	}
544 	wr32(IGC_IPCNFG, ipcnfg);
545 	wr32(IGC_EEER, eeer);
546 	rd32(IGC_IPCNFG);
547 	rd32(IGC_EEER);
548 
549 	return IGC_SUCCESS;
550 }
551 
552 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
553  * @hw: pointer to the HW structure
554  * @link: bool indicating link status
555  *
556  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
557  * settings, otherwise specify that there is no LTR requirement.
558  */
559 s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
560 {
561 	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
562 	u16 speed, duplex;
563 	s32 size;
564 
565 	/* If we do not have link, LTR thresholds are zero. */
566 	if (link) {
567 		hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
568 
569 		/* Check if using copper interface with EEE enabled or if the
570 		 * link speed is 10 Mbps.
571 		 */
572 		if (hw->dev_spec._base.eee_enable &&
573 		    speed != SPEED_10) {
574 			/* EEE enabled, so send LTRMAX threshold. */
575 			ltrc = rd32(IGC_LTRC) |
576 			       IGC_LTRC_EEEMS_EN;
577 			wr32(IGC_LTRC, ltrc);
578 
579 			/* Calculate tw_system (nsec). */
580 			if (speed == SPEED_100) {
581 				tw_system = ((rd32(IGC_EEE_SU) &
582 					     IGC_TW_SYSTEM_100_MASK) >>
583 					     IGC_TW_SYSTEM_100_SHIFT) * 500;
584 			} else {
585 				tw_system = (rd32(IGC_EEE_SU) &
586 					     IGC_TW_SYSTEM_1000_MASK) * 500;
587 			}
588 		} else {
589 			tw_system = 0;
590 		}
591 
592 		/* Get the Rx packet buffer size. */
593 		size = rd32(IGC_RXPBS) &
594 		       IGC_RXPBS_SIZE_I225_MASK;
595 
596 		/* Convert size to bytes, subtract the MTU, and then
597 		 * convert the size to bits.
598 		 */
599 		size *= 1024;
600 		size *= 8;
601 
602 		if (size < 0) {
603 			hw_dbg("Invalid effective Rx buffer size %d\n",
604 			       size);
605 			return -IGC_ERR_CONFIG;
606 		}
607 
608 		/* Calculate the thresholds. Since speed is in Mbps, simplify
609 		 * the calculation by multiplying size/speed by 1000 for result
610 		 * to be in nsec before dividing by the scale in nsec. Set the
611 		 * scale such that the LTR threshold fits in the register.
612 		 */
613 		ltr_min = (1000 * size) / speed;
614 		ltr_max = ltr_min + tw_system;
615 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
616 			    IGC_LTRMINV_SCALE_32768;
617 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
618 			    IGC_LTRMAXV_SCALE_32768;
619 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
620 		ltr_min -= 1;
621 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
622 		ltr_max -= 1;
623 
624 		/* Only write the LTR thresholds if they differ from before. */
625 		ltrv = rd32(IGC_LTRMINV);
626 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
627 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
628 			       (scale_min << IGC_LTRMINV_SCALE_SHIFT);
629 			wr32(IGC_LTRMINV, ltrv);
630 		}
631 
632 		ltrv = rd32(IGC_LTRMAXV);
633 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
634 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
635 			       (scale_max << IGC_LTRMAXV_SCALE_SHIFT);
636 			wr32(IGC_LTRMAXV, ltrv);
637 		}
638 	}
639 
640 	return IGC_SUCCESS;
641 }
642