1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/bitfield.h>
5 #include <linux/delay.h>
6 
7 #include "igc_hw.h"
8 
9 /**
10  * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
11  * @hw: pointer to the HW structure
12  *
13  * Acquire the necessary semaphores for exclusive access to the EEPROM.
14  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
15  * Return successful if access grant bit set, else clear the request for
16  * EEPROM access and return -IGC_ERR_NVM (-1).
17  */
18 static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
19 {
20 	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
21 }
22 
23 /**
24  * igc_release_nvm_i225 - Release exclusive access to EEPROM
25  * @hw: pointer to the HW structure
26  *
27  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
28  * then release the semaphores acquired.
29  */
30 static void igc_release_nvm_i225(struct igc_hw *hw)
31 {
32 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
33 }
34 
35 /**
36  * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
37  * @hw: pointer to the HW structure
38  *
39  * Acquire the HW semaphore to access the PHY or NVM
40  */
41 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
42 {
43 	s32 timeout = hw->nvm.word_size + 1;
44 	s32 i = 0;
45 	u32 swsm;
46 
47 	/* Get the SW semaphore */
48 	while (i < timeout) {
49 		swsm = rd32(IGC_SWSM);
50 		if (!(swsm & IGC_SWSM_SMBI))
51 			break;
52 
53 		usleep_range(500, 600);
54 		i++;
55 	}
56 
57 	if (i == timeout) {
58 		/* In rare circumstances, the SW semaphore may already be held
59 		 * unintentionally. Clear the semaphore once before giving up.
60 		 */
61 		if (hw->dev_spec._base.clear_semaphore_once) {
62 			hw->dev_spec._base.clear_semaphore_once = false;
63 			igc_put_hw_semaphore(hw);
64 			for (i = 0; i < timeout; i++) {
65 				swsm = rd32(IGC_SWSM);
66 				if (!(swsm & IGC_SWSM_SMBI))
67 					break;
68 
69 				usleep_range(500, 600);
70 			}
71 		}
72 
73 		/* If we do not have the semaphore here, we have to give up. */
74 		if (i == timeout) {
75 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
76 			return -IGC_ERR_NVM;
77 		}
78 	}
79 
80 	/* Get the FW semaphore. */
81 	for (i = 0; i < timeout; i++) {
82 		swsm = rd32(IGC_SWSM);
83 		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
84 
85 		/* Semaphore acquired if bit latched */
86 		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
87 			break;
88 
89 		usleep_range(500, 600);
90 	}
91 
92 	if (i == timeout) {
93 		/* Release semaphores */
94 		igc_put_hw_semaphore(hw);
95 		hw_dbg("Driver can't access the NVM\n");
96 		return -IGC_ERR_NVM;
97 	}
98 
99 	return 0;
100 }
101 
102 /**
103  * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
104  * @hw: pointer to the HW structure
105  * @mask: specifies which semaphore to acquire
106  *
107  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
108  * will also specify which port we're acquiring the lock for.
109  */
110 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
111 {
112 	s32 i = 0, timeout = 200;
113 	u32 fwmask = mask << 16;
114 	u32 swmask = mask;
115 	s32 ret_val = 0;
116 	u32 swfw_sync;
117 
118 	while (i < timeout) {
119 		if (igc_get_hw_semaphore_i225(hw)) {
120 			ret_val = -IGC_ERR_SWFW_SYNC;
121 			goto out;
122 		}
123 
124 		swfw_sync = rd32(IGC_SW_FW_SYNC);
125 		if (!(swfw_sync & (fwmask | swmask)))
126 			break;
127 
128 		/* Firmware currently using resource (fwmask) */
129 		igc_put_hw_semaphore(hw);
130 		mdelay(5);
131 		i++;
132 	}
133 
134 	if (i == timeout) {
135 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
136 		ret_val = -IGC_ERR_SWFW_SYNC;
137 		goto out;
138 	}
139 
140 	swfw_sync |= swmask;
141 	wr32(IGC_SW_FW_SYNC, swfw_sync);
142 
143 	igc_put_hw_semaphore(hw);
144 out:
145 	return ret_val;
146 }
147 
148 /**
149  * igc_release_swfw_sync_i225 - Release SW/FW semaphore
150  * @hw: pointer to the HW structure
151  * @mask: specifies which semaphore to acquire
152  *
153  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
154  * will also specify which port we're releasing the lock for.
155  */
156 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
157 {
158 	u32 swfw_sync;
159 
160 	/* Releasing the resource requires first getting the HW semaphore.
161 	 * If we fail to get the semaphore, there is nothing we can do,
162 	 * except log an error and quit. We are not allowed to hang here
163 	 * indefinitely, as it may cause denial of service or system crash.
164 	 */
165 	if (igc_get_hw_semaphore_i225(hw)) {
166 		hw_dbg("Failed to release SW_FW_SYNC.\n");
167 		return;
168 	}
169 
170 	swfw_sync = rd32(IGC_SW_FW_SYNC);
171 	swfw_sync &= ~mask;
172 	wr32(IGC_SW_FW_SYNC, swfw_sync);
173 
174 	igc_put_hw_semaphore(hw);
175 }
176 
177 /**
178  * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
179  * @hw: pointer to the HW structure
180  * @offset: offset of word in the Shadow Ram to read
181  * @words: number of words to read
182  * @data: word read from the Shadow Ram
183  *
184  * Reads a 16 bit word from the Shadow Ram using the EERD register.
185  * Uses necessary synchronization semaphores.
186  */
187 static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
188 				  u16 *data)
189 {
190 	s32 status = 0;
191 	u16 i, count;
192 
193 	/* We cannot hold synchronization semaphores for too long,
194 	 * because of forceful takeover procedure. However it is more efficient
195 	 * to read in bursts than synchronizing access for each word.
196 	 */
197 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
198 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
199 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
200 
201 		status = hw->nvm.ops.acquire(hw);
202 		if (status)
203 			break;
204 
205 		status = igc_read_nvm_eerd(hw, offset, count, data + i);
206 		hw->nvm.ops.release(hw);
207 		if (status)
208 			break;
209 	}
210 
211 	return status;
212 }
213 
214 /**
215  * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
216  * @hw: pointer to the HW structure
217  * @offset: offset within the Shadow Ram to be written to
218  * @words: number of words to write
219  * @data: 16 bit word(s) to be written to the Shadow Ram
220  *
221  * Writes data to Shadow Ram at offset using EEWR register.
222  *
223  * If igc_update_nvm_checksum is not called after this function , the
224  * Shadow Ram will most likely contain an invalid checksum.
225  */
226 static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
227 			      u16 *data)
228 {
229 	struct igc_nvm_info *nvm = &hw->nvm;
230 	s32 ret_val = -IGC_ERR_NVM;
231 	u32 attempts = 100000;
232 	u32 i, k, eewr = 0;
233 
234 	/* A check for invalid values:  offset too large, too many words,
235 	 * too many words for the offset, and not enough words.
236 	 */
237 	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
238 	    words == 0) {
239 		hw_dbg("nvm parameter(s) out of bounds\n");
240 		return ret_val;
241 	}
242 
243 	for (i = 0; i < words; i++) {
244 		ret_val = -IGC_ERR_NVM;
245 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
246 			(data[i] << IGC_NVM_RW_REG_DATA) |
247 			IGC_NVM_RW_REG_START;
248 
249 		wr32(IGC_SRWR, eewr);
250 
251 		for (k = 0; k < attempts; k++) {
252 			if (IGC_NVM_RW_REG_DONE &
253 			    rd32(IGC_SRWR)) {
254 				ret_val = 0;
255 				break;
256 			}
257 			udelay(5);
258 		}
259 
260 		if (ret_val) {
261 			hw_dbg("Shadow RAM write EEWR timed out\n");
262 			break;
263 		}
264 	}
265 
266 	return ret_val;
267 }
268 
269 /**
270  * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
271  * @hw: pointer to the HW structure
272  * @offset: offset within the Shadow RAM to be written to
273  * @words: number of words to write
274  * @data: 16 bit word(s) to be written to the Shadow RAM
275  *
276  * Writes data to Shadow RAM at offset using EEWR register.
277  *
278  * If igc_update_nvm_checksum is not called after this function , the
279  * data will not be committed to FLASH and also Shadow RAM will most likely
280  * contain an invalid checksum.
281  *
282  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
283  * partially written.
284  */
285 static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
286 				   u16 *data)
287 {
288 	s32 status = 0;
289 	u16 i, count;
290 
291 	/* We cannot hold synchronization semaphores for too long,
292 	 * because of forceful takeover procedure. However it is more efficient
293 	 * to write in bursts than synchronizing access for each word.
294 	 */
295 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
296 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
297 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
298 
299 		status = hw->nvm.ops.acquire(hw);
300 		if (status)
301 			break;
302 
303 		status = igc_write_nvm_srwr(hw, offset, count, data + i);
304 		hw->nvm.ops.release(hw);
305 		if (status)
306 			break;
307 	}
308 
309 	return status;
310 }
311 
312 /**
313  * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
314  * @hw: pointer to the HW structure
315  *
316  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
317  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
318  */
319 static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
320 {
321 	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
322 			   u16 *data);
323 	s32 status = 0;
324 
325 	status = hw->nvm.ops.acquire(hw);
326 	if (status)
327 		goto out;
328 
329 	/* Replace the read function with semaphore grabbing with
330 	 * the one that skips this for a while.
331 	 * We have semaphore taken already here.
332 	 */
333 	read_op_ptr = hw->nvm.ops.read;
334 	hw->nvm.ops.read = igc_read_nvm_eerd;
335 
336 	status = igc_validate_nvm_checksum(hw);
337 
338 	/* Revert original read operation. */
339 	hw->nvm.ops.read = read_op_ptr;
340 
341 	hw->nvm.ops.release(hw);
342 
343 out:
344 	return status;
345 }
346 
347 /**
348  * igc_pool_flash_update_done_i225 - Pool FLUDONE status
349  * @hw: pointer to the HW structure
350  */
351 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
352 {
353 	s32 ret_val = -IGC_ERR_NVM;
354 	u32 i, reg;
355 
356 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
357 		reg = rd32(IGC_EECD);
358 		if (reg & IGC_EECD_FLUDONE_I225) {
359 			ret_val = 0;
360 			break;
361 		}
362 		udelay(5);
363 	}
364 
365 	return ret_val;
366 }
367 
368 /**
369  * igc_update_flash_i225 - Commit EEPROM to the flash
370  * @hw: pointer to the HW structure
371  */
372 static s32 igc_update_flash_i225(struct igc_hw *hw)
373 {
374 	s32 ret_val = 0;
375 	u32 flup;
376 
377 	ret_val = igc_pool_flash_update_done_i225(hw);
378 	if (ret_val == -IGC_ERR_NVM) {
379 		hw_dbg("Flash update time out\n");
380 		goto out;
381 	}
382 
383 	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
384 	wr32(IGC_EECD, flup);
385 
386 	ret_val = igc_pool_flash_update_done_i225(hw);
387 	if (ret_val)
388 		hw_dbg("Flash update time out\n");
389 	else
390 		hw_dbg("Flash update complete\n");
391 
392 out:
393 	return ret_val;
394 }
395 
396 /**
397  * igc_update_nvm_checksum_i225 - Update EEPROM checksum
398  * @hw: pointer to the HW structure
399  *
400  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
401  * up to the checksum.  Then calculates the EEPROM checksum and writes the
402  * value to the EEPROM. Next commit EEPROM data onto the Flash.
403  */
404 static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
405 {
406 	u16 checksum = 0;
407 	s32 ret_val = 0;
408 	u16 i, nvm_data;
409 
410 	/* Read the first word from the EEPROM. If this times out or fails, do
411 	 * not continue or we could be in for a very long wait while every
412 	 * EEPROM read fails
413 	 */
414 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
415 	if (ret_val) {
416 		hw_dbg("EEPROM read failed\n");
417 		goto out;
418 	}
419 
420 	ret_val = hw->nvm.ops.acquire(hw);
421 	if (ret_val)
422 		goto out;
423 
424 	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
425 	 * because we do not want to take the synchronization
426 	 * semaphores twice here.
427 	 */
428 
429 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
430 		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
431 		if (ret_val) {
432 			hw->nvm.ops.release(hw);
433 			hw_dbg("NVM Read Error while updating checksum.\n");
434 			goto out;
435 		}
436 		checksum += nvm_data;
437 	}
438 	checksum = (u16)NVM_SUM - checksum;
439 	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
440 				     &checksum);
441 	if (ret_val) {
442 		hw->nvm.ops.release(hw);
443 		hw_dbg("NVM Write Error while updating checksum.\n");
444 		goto out;
445 	}
446 
447 	hw->nvm.ops.release(hw);
448 
449 	ret_val = igc_update_flash_i225(hw);
450 
451 out:
452 	return ret_val;
453 }
454 
455 /**
456  * igc_get_flash_presence_i225 - Check if flash device is detected
457  * @hw: pointer to the HW structure
458  */
459 bool igc_get_flash_presence_i225(struct igc_hw *hw)
460 {
461 	bool ret_val = false;
462 	u32 eec = 0;
463 
464 	eec = rd32(IGC_EECD);
465 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
466 		ret_val = true;
467 
468 	return ret_val;
469 }
470 
471 /**
472  * igc_init_nvm_params_i225 - Init NVM func ptrs.
473  * @hw: pointer to the HW structure
474  */
475 s32 igc_init_nvm_params_i225(struct igc_hw *hw)
476 {
477 	struct igc_nvm_info *nvm = &hw->nvm;
478 
479 	nvm->ops.acquire = igc_acquire_nvm_i225;
480 	nvm->ops.release = igc_release_nvm_i225;
481 
482 	/* NVM Function Pointers */
483 	if (igc_get_flash_presence_i225(hw)) {
484 		nvm->ops.read = igc_read_nvm_srrd_i225;
485 		nvm->ops.write = igc_write_nvm_srwr_i225;
486 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
487 		nvm->ops.update = igc_update_nvm_checksum_i225;
488 	} else {
489 		nvm->ops.read = igc_read_nvm_eerd;
490 		nvm->ops.write = NULL;
491 		nvm->ops.validate = NULL;
492 		nvm->ops.update = NULL;
493 	}
494 	return 0;
495 }
496 
497 /**
498  *  igc_set_eee_i225 - Enable/disable EEE support
499  *  @hw: pointer to the HW structure
500  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
501  *  @adv1G: boolean flag enabling 1G EEE advertisement
502  *  @adv100M: boolean flag enabling 100M EEE advertisement
503  *
504  *  Enable/disable EEE based on setting in dev_spec structure.
505  **/
506 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
507 		     bool adv100M)
508 {
509 	u32 ipcnfg, eeer;
510 
511 	ipcnfg = rd32(IGC_IPCNFG);
512 	eeer = rd32(IGC_EEER);
513 
514 	/* enable or disable per user setting */
515 	if (hw->dev_spec._base.eee_enable) {
516 		u32 eee_su = rd32(IGC_EEE_SU);
517 
518 		if (adv100M)
519 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
520 		else
521 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
522 
523 		if (adv1G)
524 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
525 		else
526 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
527 
528 		if (adv2p5G)
529 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
530 		else
531 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
532 
533 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
534 			 IGC_EEER_LPI_FC);
535 
536 		/* This bit should not be set in normal operation. */
537 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
538 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
539 	} else {
540 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
541 			    IGC_IPCNFG_EEE_100M_AN);
542 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
543 			  IGC_EEER_LPI_FC);
544 	}
545 	wr32(IGC_IPCNFG, ipcnfg);
546 	wr32(IGC_EEER, eeer);
547 	rd32(IGC_IPCNFG);
548 	rd32(IGC_EEER);
549 
550 	return IGC_SUCCESS;
551 }
552 
553 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
554  * @hw: pointer to the HW structure
555  * @link: bool indicating link status
556  *
557  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
558  * settings, otherwise specify that there is no LTR requirement.
559  */
560 s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
561 {
562 	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
563 	u16 speed, duplex;
564 	s32 size;
565 
566 	/* If we do not have link, LTR thresholds are zero. */
567 	if (link) {
568 		hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
569 
570 		/* Check if using copper interface with EEE enabled or if the
571 		 * link speed is 10 Mbps.
572 		 */
573 		if (hw->dev_spec._base.eee_enable &&
574 		    speed != SPEED_10) {
575 			/* EEE enabled, so send LTRMAX threshold. */
576 			ltrc = rd32(IGC_LTRC) |
577 			       IGC_LTRC_EEEMS_EN;
578 			wr32(IGC_LTRC, ltrc);
579 
580 			/* Calculate tw_system (nsec). */
581 			if (speed == SPEED_100) {
582 				tw_system = ((rd32(IGC_EEE_SU) &
583 					     IGC_TW_SYSTEM_100_MASK) >>
584 					     IGC_TW_SYSTEM_100_SHIFT) * 500;
585 			} else {
586 				tw_system = (rd32(IGC_EEE_SU) &
587 					     IGC_TW_SYSTEM_1000_MASK) * 500;
588 			}
589 		} else {
590 			tw_system = 0;
591 		}
592 
593 		/* Get the Rx packet buffer size. */
594 		size = rd32(IGC_RXPBS) &
595 		       IGC_RXPBS_SIZE_I225_MASK;
596 
597 		/* Convert size to bytes, subtract the MTU, and then
598 		 * convert the size to bits.
599 		 */
600 		size *= 1024;
601 		size *= 8;
602 
603 		if (size < 0) {
604 			hw_dbg("Invalid effective Rx buffer size %d\n",
605 			       size);
606 			return -IGC_ERR_CONFIG;
607 		}
608 
609 		/* Calculate the thresholds. Since speed is in Mbps, simplify
610 		 * the calculation by multiplying size/speed by 1000 for result
611 		 * to be in nsec before dividing by the scale in nsec. Set the
612 		 * scale such that the LTR threshold fits in the register.
613 		 */
614 		ltr_min = (1000 * size) / speed;
615 		ltr_max = ltr_min + tw_system;
616 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
617 			    IGC_LTRMINV_SCALE_32768;
618 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
619 			    IGC_LTRMAXV_SCALE_32768;
620 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
621 		ltr_min -= 1;
622 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
623 		ltr_max -= 1;
624 
625 		/* Only write the LTR thresholds if they differ from before. */
626 		ltrv = rd32(IGC_LTRMINV);
627 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
628 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
629 			       (scale_min << IGC_LTRMINV_SCALE_SHIFT);
630 			wr32(IGC_LTRMINV, ltrv);
631 		}
632 
633 		ltrv = rd32(IGC_LTRMAXV);
634 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
635 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
636 			       (scale_max << IGC_LTRMAXV_SCALE_SHIFT);
637 			wr32(IGC_LTRMAXV, ltrv);
638 		}
639 	}
640 
641 	return IGC_SUCCESS;
642 }
643