1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Intel Corporation */ 3 4 #include <linux/bitfield.h> 5 #include <linux/delay.h> 6 7 #include "igc_hw.h" 8 9 /** 10 * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM 11 * @hw: pointer to the HW structure 12 * 13 * Acquire the necessary semaphores for exclusive access to the EEPROM. 14 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 15 * Return successful if access grant bit set, else clear the request for 16 * EEPROM access and return -IGC_ERR_NVM (-1). 17 */ 18 static s32 igc_acquire_nvm_i225(struct igc_hw *hw) 19 { 20 return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); 21 } 22 23 /** 24 * igc_release_nvm_i225 - Release exclusive access to EEPROM 25 * @hw: pointer to the HW structure 26 * 27 * Stop any current commands to the EEPROM and clear the EEPROM request bit, 28 * then release the semaphores acquired. 29 */ 30 static void igc_release_nvm_i225(struct igc_hw *hw) 31 { 32 igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); 33 } 34 35 /** 36 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore 37 * @hw: pointer to the HW structure 38 * 39 * Acquire the HW semaphore to access the PHY or NVM 40 */ 41 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw) 42 { 43 s32 timeout = hw->nvm.word_size + 1; 44 s32 i = 0; 45 u32 swsm; 46 47 /* Get the SW semaphore */ 48 while (i < timeout) { 49 swsm = rd32(IGC_SWSM); 50 if (!(swsm & IGC_SWSM_SMBI)) 51 break; 52 53 usleep_range(500, 600); 54 i++; 55 } 56 57 if (i == timeout) { 58 /* In rare circumstances, the SW semaphore may already be held 59 * unintentionally. Clear the semaphore once before giving up. 60 */ 61 if (hw->dev_spec._base.clear_semaphore_once) { 62 hw->dev_spec._base.clear_semaphore_once = false; 63 igc_put_hw_semaphore(hw); 64 for (i = 0; i < timeout; i++) { 65 swsm = rd32(IGC_SWSM); 66 if (!(swsm & IGC_SWSM_SMBI)) 67 break; 68 69 usleep_range(500, 600); 70 } 71 } 72 73 /* If we do not have the semaphore here, we have to give up. */ 74 if (i == timeout) { 75 hw_dbg("Driver can't access device - SMBI bit is set.\n"); 76 return -IGC_ERR_NVM; 77 } 78 } 79 80 /* Get the FW semaphore. */ 81 for (i = 0; i < timeout; i++) { 82 swsm = rd32(IGC_SWSM); 83 wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI); 84 85 /* Semaphore acquired if bit latched */ 86 if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI) 87 break; 88 89 usleep_range(500, 600); 90 } 91 92 if (i == timeout) { 93 /* Release semaphores */ 94 igc_put_hw_semaphore(hw); 95 hw_dbg("Driver can't access the NVM\n"); 96 return -IGC_ERR_NVM; 97 } 98 99 return 0; 100 } 101 102 /** 103 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore 104 * @hw: pointer to the HW structure 105 * @mask: specifies which semaphore to acquire 106 * 107 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask 108 * will also specify which port we're acquiring the lock for. 109 */ 110 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask) 111 { 112 s32 i = 0, timeout = 200; 113 u32 fwmask = mask << 16; 114 u32 swmask = mask; 115 s32 ret_val = 0; 116 u32 swfw_sync; 117 118 while (i < timeout) { 119 if (igc_get_hw_semaphore_i225(hw)) { 120 ret_val = -IGC_ERR_SWFW_SYNC; 121 goto out; 122 } 123 124 swfw_sync = rd32(IGC_SW_FW_SYNC); 125 if (!(swfw_sync & (fwmask | swmask))) 126 break; 127 128 /* Firmware currently using resource (fwmask) */ 129 igc_put_hw_semaphore(hw); 130 mdelay(5); 131 i++; 132 } 133 134 if (i == timeout) { 135 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); 136 ret_val = -IGC_ERR_SWFW_SYNC; 137 goto out; 138 } 139 140 swfw_sync |= swmask; 141 wr32(IGC_SW_FW_SYNC, swfw_sync); 142 143 igc_put_hw_semaphore(hw); 144 out: 145 return ret_val; 146 } 147 148 /** 149 * igc_release_swfw_sync_i225 - Release SW/FW semaphore 150 * @hw: pointer to the HW structure 151 * @mask: specifies which semaphore to acquire 152 * 153 * Release the SW/FW semaphore used to access the PHY or NVM. The mask 154 * will also specify which port we're releasing the lock for. 155 */ 156 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask) 157 { 158 u32 swfw_sync; 159 160 /* Releasing the resource requires first getting the HW semaphore. 161 * If we fail to get the semaphore, there is nothing we can do, 162 * except log an error and quit. We are not allowed to hang here 163 * indefinitely, as it may cause denial of service or system crash. 164 */ 165 if (igc_get_hw_semaphore_i225(hw)) { 166 hw_dbg("Failed to release SW_FW_SYNC.\n"); 167 return; 168 } 169 170 swfw_sync = rd32(IGC_SW_FW_SYNC); 171 swfw_sync &= ~mask; 172 wr32(IGC_SW_FW_SYNC, swfw_sync); 173 174 igc_put_hw_semaphore(hw); 175 } 176 177 /** 178 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register 179 * @hw: pointer to the HW structure 180 * @offset: offset of word in the Shadow Ram to read 181 * @words: number of words to read 182 * @data: word read from the Shadow Ram 183 * 184 * Reads a 16 bit word from the Shadow Ram using the EERD register. 185 * Uses necessary synchronization semaphores. 186 */ 187 static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words, 188 u16 *data) 189 { 190 s32 status = 0; 191 u16 i, count; 192 193 /* We cannot hold synchronization semaphores for too long, 194 * because of forceful takeover procedure. However it is more efficient 195 * to read in bursts than synchronizing access for each word. 196 */ 197 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { 198 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? 199 IGC_EERD_EEWR_MAX_COUNT : (words - i); 200 201 status = hw->nvm.ops.acquire(hw); 202 if (status) 203 break; 204 205 status = igc_read_nvm_eerd(hw, offset, count, data + i); 206 hw->nvm.ops.release(hw); 207 if (status) 208 break; 209 } 210 211 return status; 212 } 213 214 /** 215 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR 216 * @hw: pointer to the HW structure 217 * @offset: offset within the Shadow Ram to be written to 218 * @words: number of words to write 219 * @data: 16 bit word(s) to be written to the Shadow Ram 220 * 221 * Writes data to Shadow Ram at offset using EEWR register. 222 * 223 * If igc_update_nvm_checksum is not called after this function , the 224 * Shadow Ram will most likely contain an invalid checksum. 225 */ 226 static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words, 227 u16 *data) 228 { 229 struct igc_nvm_info *nvm = &hw->nvm; 230 s32 ret_val = -IGC_ERR_NVM; 231 u32 attempts = 100000; 232 u32 i, k, eewr = 0; 233 234 /* A check for invalid values: offset too large, too many words, 235 * too many words for the offset, and not enough words. 236 */ 237 if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) || 238 words == 0) { 239 hw_dbg("nvm parameter(s) out of bounds\n"); 240 return ret_val; 241 } 242 243 for (i = 0; i < words; i++) { 244 ret_val = -IGC_ERR_NVM; 245 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) | 246 (data[i] << IGC_NVM_RW_REG_DATA) | 247 IGC_NVM_RW_REG_START; 248 249 wr32(IGC_SRWR, eewr); 250 251 for (k = 0; k < attempts; k++) { 252 if (IGC_NVM_RW_REG_DONE & 253 rd32(IGC_SRWR)) { 254 ret_val = 0; 255 break; 256 } 257 udelay(5); 258 } 259 260 if (ret_val) { 261 hw_dbg("Shadow RAM write EEWR timed out\n"); 262 break; 263 } 264 } 265 266 return ret_val; 267 } 268 269 /** 270 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR 271 * @hw: pointer to the HW structure 272 * @offset: offset within the Shadow RAM to be written to 273 * @words: number of words to write 274 * @data: 16 bit word(s) to be written to the Shadow RAM 275 * 276 * Writes data to Shadow RAM at offset using EEWR register. 277 * 278 * If igc_update_nvm_checksum is not called after this function , the 279 * data will not be committed to FLASH and also Shadow RAM will most likely 280 * contain an invalid checksum. 281 * 282 * If error code is returned, data and Shadow RAM may be inconsistent - buffer 283 * partially written. 284 */ 285 static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words, 286 u16 *data) 287 { 288 s32 status = 0; 289 u16 i, count; 290 291 /* We cannot hold synchronization semaphores for too long, 292 * because of forceful takeover procedure. However it is more efficient 293 * to write in bursts than synchronizing access for each word. 294 */ 295 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { 296 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? 297 IGC_EERD_EEWR_MAX_COUNT : (words - i); 298 299 status = hw->nvm.ops.acquire(hw); 300 if (status) 301 break; 302 303 status = igc_write_nvm_srwr(hw, offset, count, data + i); 304 hw->nvm.ops.release(hw); 305 if (status) 306 break; 307 } 308 309 return status; 310 } 311 312 /** 313 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum 314 * @hw: pointer to the HW structure 315 * 316 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 317 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 318 */ 319 static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw) 320 { 321 s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count, 322 u16 *data); 323 s32 status = 0; 324 325 status = hw->nvm.ops.acquire(hw); 326 if (status) 327 goto out; 328 329 /* Replace the read function with semaphore grabbing with 330 * the one that skips this for a while. 331 * We have semaphore taken already here. 332 */ 333 read_op_ptr = hw->nvm.ops.read; 334 hw->nvm.ops.read = igc_read_nvm_eerd; 335 336 status = igc_validate_nvm_checksum(hw); 337 338 /* Revert original read operation. */ 339 hw->nvm.ops.read = read_op_ptr; 340 341 hw->nvm.ops.release(hw); 342 343 out: 344 return status; 345 } 346 347 /** 348 * igc_pool_flash_update_done_i225 - Pool FLUDONE status 349 * @hw: pointer to the HW structure 350 */ 351 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw) 352 { 353 s32 ret_val = -IGC_ERR_NVM; 354 u32 i, reg; 355 356 for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) { 357 reg = rd32(IGC_EECD); 358 if (reg & IGC_EECD_FLUDONE_I225) { 359 ret_val = 0; 360 break; 361 } 362 udelay(5); 363 } 364 365 return ret_val; 366 } 367 368 /** 369 * igc_update_flash_i225 - Commit EEPROM to the flash 370 * @hw: pointer to the HW structure 371 */ 372 static s32 igc_update_flash_i225(struct igc_hw *hw) 373 { 374 s32 ret_val = 0; 375 u32 flup; 376 377 ret_val = igc_pool_flash_update_done_i225(hw); 378 if (ret_val == -IGC_ERR_NVM) { 379 hw_dbg("Flash update time out\n"); 380 goto out; 381 } 382 383 flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225; 384 wr32(IGC_EECD, flup); 385 386 ret_val = igc_pool_flash_update_done_i225(hw); 387 if (ret_val) 388 hw_dbg("Flash update time out\n"); 389 else 390 hw_dbg("Flash update complete\n"); 391 392 out: 393 return ret_val; 394 } 395 396 /** 397 * igc_update_nvm_checksum_i225 - Update EEPROM checksum 398 * @hw: pointer to the HW structure 399 * 400 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 401 * up to the checksum. Then calculates the EEPROM checksum and writes the 402 * value to the EEPROM. Next commit EEPROM data onto the Flash. 403 */ 404 static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw) 405 { 406 u16 checksum = 0; 407 s32 ret_val = 0; 408 u16 i, nvm_data; 409 410 /* Read the first word from the EEPROM. If this times out or fails, do 411 * not continue or we could be in for a very long wait while every 412 * EEPROM read fails 413 */ 414 ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data); 415 if (ret_val) { 416 hw_dbg("EEPROM read failed\n"); 417 goto out; 418 } 419 420 ret_val = hw->nvm.ops.acquire(hw); 421 if (ret_val) 422 goto out; 423 424 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read 425 * because we do not want to take the synchronization 426 * semaphores twice here. 427 */ 428 429 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 430 ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data); 431 if (ret_val) { 432 hw->nvm.ops.release(hw); 433 hw_dbg("NVM Read Error while updating checksum.\n"); 434 goto out; 435 } 436 checksum += nvm_data; 437 } 438 checksum = (u16)NVM_SUM - checksum; 439 ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, 440 &checksum); 441 if (ret_val) { 442 hw->nvm.ops.release(hw); 443 hw_dbg("NVM Write Error while updating checksum.\n"); 444 goto out; 445 } 446 447 hw->nvm.ops.release(hw); 448 449 ret_val = igc_update_flash_i225(hw); 450 451 out: 452 return ret_val; 453 } 454 455 /** 456 * igc_get_flash_presence_i225 - Check if flash device is detected 457 * @hw: pointer to the HW structure 458 */ 459 bool igc_get_flash_presence_i225(struct igc_hw *hw) 460 { 461 bool ret_val = false; 462 u32 eec = 0; 463 464 eec = rd32(IGC_EECD); 465 if (eec & IGC_EECD_FLASH_DETECTED_I225) 466 ret_val = true; 467 468 return ret_val; 469 } 470 471 /** 472 * igc_init_nvm_params_i225 - Init NVM func ptrs. 473 * @hw: pointer to the HW structure 474 */ 475 s32 igc_init_nvm_params_i225(struct igc_hw *hw) 476 { 477 struct igc_nvm_info *nvm = &hw->nvm; 478 479 nvm->ops.acquire = igc_acquire_nvm_i225; 480 nvm->ops.release = igc_release_nvm_i225; 481 482 /* NVM Function Pointers */ 483 if (igc_get_flash_presence_i225(hw)) { 484 nvm->ops.read = igc_read_nvm_srrd_i225; 485 nvm->ops.write = igc_write_nvm_srwr_i225; 486 nvm->ops.validate = igc_validate_nvm_checksum_i225; 487 nvm->ops.update = igc_update_nvm_checksum_i225; 488 } else { 489 nvm->ops.read = igc_read_nvm_eerd; 490 nvm->ops.write = NULL; 491 nvm->ops.validate = NULL; 492 nvm->ops.update = NULL; 493 } 494 return 0; 495 } 496 497 /** 498 * igc_set_eee_i225 - Enable/disable EEE support 499 * @hw: pointer to the HW structure 500 * @adv2p5G: boolean flag enabling 2.5G EEE advertisement 501 * @adv1G: boolean flag enabling 1G EEE advertisement 502 * @adv100M: boolean flag enabling 100M EEE advertisement 503 * 504 * Enable/disable EEE based on setting in dev_spec structure. 505 **/ 506 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G, 507 bool adv100M) 508 { 509 u32 ipcnfg, eeer; 510 511 ipcnfg = rd32(IGC_IPCNFG); 512 eeer = rd32(IGC_EEER); 513 514 /* enable or disable per user setting */ 515 if (hw->dev_spec._base.eee_enable) { 516 u32 eee_su = rd32(IGC_EEE_SU); 517 518 if (adv100M) 519 ipcnfg |= IGC_IPCNFG_EEE_100M_AN; 520 else 521 ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN; 522 523 if (adv1G) 524 ipcnfg |= IGC_IPCNFG_EEE_1G_AN; 525 else 526 ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN; 527 528 if (adv2p5G) 529 ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN; 530 else 531 ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN; 532 533 eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | 534 IGC_EEER_LPI_FC); 535 536 /* This bit should not be set in normal operation. */ 537 if (eee_su & IGC_EEE_SU_LPI_CLK_STP) 538 hw_dbg("LPI Clock Stop Bit should not be set!\n"); 539 } else { 540 ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN | 541 IGC_IPCNFG_EEE_100M_AN); 542 eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | 543 IGC_EEER_LPI_FC); 544 } 545 wr32(IGC_IPCNFG, ipcnfg); 546 wr32(IGC_EEER, eeer); 547 rd32(IGC_IPCNFG); 548 rd32(IGC_EEER); 549 550 return IGC_SUCCESS; 551 } 552 553 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds 554 * @hw: pointer to the HW structure 555 * @link: bool indicating link status 556 * 557 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC 558 * settings, otherwise specify that there is no LTR requirement. 559 */ 560 s32 igc_set_ltr_i225(struct igc_hw *hw, bool link) 561 { 562 u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max; 563 u16 speed, duplex; 564 s32 size; 565 566 /* If we do not have link, LTR thresholds are zero. */ 567 if (link) { 568 hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); 569 570 /* Check if using copper interface with EEE enabled or if the 571 * link speed is 10 Mbps. 572 */ 573 if (hw->dev_spec._base.eee_enable && 574 speed != SPEED_10) { 575 /* EEE enabled, so send LTRMAX threshold. */ 576 ltrc = rd32(IGC_LTRC) | 577 IGC_LTRC_EEEMS_EN; 578 wr32(IGC_LTRC, ltrc); 579 580 /* Calculate tw_system (nsec). */ 581 if (speed == SPEED_100) { 582 tw_system = ((rd32(IGC_EEE_SU) & 583 IGC_TW_SYSTEM_100_MASK) >> 584 IGC_TW_SYSTEM_100_SHIFT) * 500; 585 } else { 586 tw_system = (rd32(IGC_EEE_SU) & 587 IGC_TW_SYSTEM_1000_MASK) * 500; 588 } 589 } else { 590 tw_system = 0; 591 } 592 593 /* Get the Rx packet buffer size. */ 594 size = rd32(IGC_RXPBS) & 595 IGC_RXPBS_SIZE_I225_MASK; 596 597 /* Convert size to bytes, subtract the MTU, and then 598 * convert the size to bits. 599 */ 600 size *= 1024; 601 size *= 8; 602 603 if (size < 0) { 604 hw_dbg("Invalid effective Rx buffer size %d\n", 605 size); 606 return -IGC_ERR_CONFIG; 607 } 608 609 /* Calculate the thresholds. Since speed is in Mbps, simplify 610 * the calculation by multiplying size/speed by 1000 for result 611 * to be in nsec before dividing by the scale in nsec. Set the 612 * scale such that the LTR threshold fits in the register. 613 */ 614 ltr_min = (1000 * size) / speed; 615 ltr_max = ltr_min + tw_system; 616 scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 : 617 IGC_LTRMINV_SCALE_32768; 618 scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 : 619 IGC_LTRMAXV_SCALE_32768; 620 ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768; 621 ltr_min -= 1; 622 ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768; 623 ltr_max -= 1; 624 625 /* Only write the LTR thresholds if they differ from before. */ 626 ltrv = rd32(IGC_LTRMINV); 627 if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) { 628 ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min | 629 (scale_min << IGC_LTRMINV_SCALE_SHIFT); 630 wr32(IGC_LTRMINV, ltrv); 631 } 632 633 ltrv = rd32(IGC_LTRMAXV); 634 if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) { 635 ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max | 636 (scale_max << IGC_LTRMAXV_SCALE_SHIFT); 637 wr32(IGC_LTRMAXV, ltrv); 638 } 639 } 640 641 return IGC_SUCCESS; 642 } 643