1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/delay.h>
5 
6 #include "igc_hw.h"
7 
8 /**
9  * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
10  * @hw: pointer to the HW structure
11  *
12  * Acquire the necessary semaphores for exclusive access to the EEPROM.
13  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
14  * Return successful if access grant bit set, else clear the request for
15  * EEPROM access and return -IGC_ERR_NVM (-1).
16  */
17 static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
18 {
19 	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
20 }
21 
22 /**
23  * igc_release_nvm_i225 - Release exclusive access to EEPROM
24  * @hw: pointer to the HW structure
25  *
26  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
27  * then release the semaphores acquired.
28  */
29 static void igc_release_nvm_i225(struct igc_hw *hw)
30 {
31 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
32 }
33 
34 /**
35  * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
36  * @hw: pointer to the HW structure
37  *
38  * Acquire the HW semaphore to access the PHY or NVM
39  */
40 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
41 {
42 	s32 timeout = hw->nvm.word_size + 1;
43 	s32 i = 0;
44 	u32 swsm;
45 
46 	/* Get the SW semaphore */
47 	while (i < timeout) {
48 		swsm = rd32(IGC_SWSM);
49 		if (!(swsm & IGC_SWSM_SMBI))
50 			break;
51 
52 		usleep_range(500, 600);
53 		i++;
54 	}
55 
56 	if (i == timeout) {
57 		/* In rare circumstances, the SW semaphore may already be held
58 		 * unintentionally. Clear the semaphore once before giving up.
59 		 */
60 		if (hw->dev_spec._base.clear_semaphore_once) {
61 			hw->dev_spec._base.clear_semaphore_once = false;
62 			igc_put_hw_semaphore(hw);
63 			for (i = 0; i < timeout; i++) {
64 				swsm = rd32(IGC_SWSM);
65 				if (!(swsm & IGC_SWSM_SMBI))
66 					break;
67 
68 				usleep_range(500, 600);
69 			}
70 		}
71 
72 		/* If we do not have the semaphore here, we have to give up. */
73 		if (i == timeout) {
74 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
75 			return -IGC_ERR_NVM;
76 		}
77 	}
78 
79 	/* Get the FW semaphore. */
80 	for (i = 0; i < timeout; i++) {
81 		swsm = rd32(IGC_SWSM);
82 		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
83 
84 		/* Semaphore acquired if bit latched */
85 		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
86 			break;
87 
88 		usleep_range(500, 600);
89 	}
90 
91 	if (i == timeout) {
92 		/* Release semaphores */
93 		igc_put_hw_semaphore(hw);
94 		hw_dbg("Driver can't access the NVM\n");
95 		return -IGC_ERR_NVM;
96 	}
97 
98 	return 0;
99 }
100 
101 /**
102  * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103  * @hw: pointer to the HW structure
104  * @mask: specifies which semaphore to acquire
105  *
106  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
107  * will also specify which port we're acquiring the lock for.
108  */
109 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110 {
111 	s32 i = 0, timeout = 200;
112 	u32 fwmask = mask << 16;
113 	u32 swmask = mask;
114 	s32 ret_val = 0;
115 	u32 swfw_sync;
116 
117 	while (i < timeout) {
118 		if (igc_get_hw_semaphore_i225(hw)) {
119 			ret_val = -IGC_ERR_SWFW_SYNC;
120 			goto out;
121 		}
122 
123 		swfw_sync = rd32(IGC_SW_FW_SYNC);
124 		if (!(swfw_sync & (fwmask | swmask)))
125 			break;
126 
127 		/* Firmware currently using resource (fwmask) */
128 		igc_put_hw_semaphore(hw);
129 		mdelay(5);
130 		i++;
131 	}
132 
133 	if (i == timeout) {
134 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135 		ret_val = -IGC_ERR_SWFW_SYNC;
136 		goto out;
137 	}
138 
139 	swfw_sync |= swmask;
140 	wr32(IGC_SW_FW_SYNC, swfw_sync);
141 
142 	igc_put_hw_semaphore(hw);
143 out:
144 	return ret_val;
145 }
146 
147 /**
148  * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149  * @hw: pointer to the HW structure
150  * @mask: specifies which semaphore to acquire
151  *
152  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
153  * will also specify which port we're releasing the lock for.
154  */
155 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156 {
157 	u32 swfw_sync;
158 
159 	while (igc_get_hw_semaphore_i225(hw))
160 		; /* Empty */
161 
162 	swfw_sync = rd32(IGC_SW_FW_SYNC);
163 	swfw_sync &= ~mask;
164 	wr32(IGC_SW_FW_SYNC, swfw_sync);
165 
166 	igc_put_hw_semaphore(hw);
167 }
168 
169 /**
170  * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
171  * @hw: pointer to the HW structure
172  * @offset: offset of word in the Shadow Ram to read
173  * @words: number of words to read
174  * @data: word read from the Shadow Ram
175  *
176  * Reads a 16 bit word from the Shadow Ram using the EERD register.
177  * Uses necessary synchronization semaphores.
178  */
179 static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
180 				  u16 *data)
181 {
182 	s32 status = 0;
183 	u16 i, count;
184 
185 	/* We cannot hold synchronization semaphores for too long,
186 	 * because of forceful takeover procedure. However it is more efficient
187 	 * to read in bursts than synchronizing access for each word.
188 	 */
189 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
190 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
191 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
192 
193 		status = hw->nvm.ops.acquire(hw);
194 		if (status)
195 			break;
196 
197 		status = igc_read_nvm_eerd(hw, offset, count, data + i);
198 		hw->nvm.ops.release(hw);
199 		if (status)
200 			break;
201 	}
202 
203 	return status;
204 }
205 
206 /**
207  * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
208  * @hw: pointer to the HW structure
209  * @offset: offset within the Shadow Ram to be written to
210  * @words: number of words to write
211  * @data: 16 bit word(s) to be written to the Shadow Ram
212  *
213  * Writes data to Shadow Ram at offset using EEWR register.
214  *
215  * If igc_update_nvm_checksum is not called after this function , the
216  * Shadow Ram will most likely contain an invalid checksum.
217  */
218 static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
219 			      u16 *data)
220 {
221 	struct igc_nvm_info *nvm = &hw->nvm;
222 	s32 ret_val = -IGC_ERR_NVM;
223 	u32 attempts = 100000;
224 	u32 i, k, eewr = 0;
225 
226 	/* A check for invalid values:  offset too large, too many words,
227 	 * too many words for the offset, and not enough words.
228 	 */
229 	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
230 	    words == 0) {
231 		hw_dbg("nvm parameter(s) out of bounds\n");
232 		goto out;
233 	}
234 
235 	for (i = 0; i < words; i++) {
236 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
237 			(data[i] << IGC_NVM_RW_REG_DATA) |
238 			IGC_NVM_RW_REG_START;
239 
240 		wr32(IGC_SRWR, eewr);
241 
242 		for (k = 0; k < attempts; k++) {
243 			if (IGC_NVM_RW_REG_DONE &
244 			    rd32(IGC_SRWR)) {
245 				ret_val = 0;
246 				break;
247 			}
248 			udelay(5);
249 		}
250 
251 		if (ret_val) {
252 			hw_dbg("Shadow RAM write EEWR timed out\n");
253 			break;
254 		}
255 	}
256 
257 out:
258 	return ret_val;
259 }
260 
261 /**
262  * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
263  * @hw: pointer to the HW structure
264  * @offset: offset within the Shadow RAM to be written to
265  * @words: number of words to write
266  * @data: 16 bit word(s) to be written to the Shadow RAM
267  *
268  * Writes data to Shadow RAM at offset using EEWR register.
269  *
270  * If igc_update_nvm_checksum is not called after this function , the
271  * data will not be committed to FLASH and also Shadow RAM will most likely
272  * contain an invalid checksum.
273  *
274  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
275  * partially written.
276  */
277 static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
278 				   u16 *data)
279 {
280 	s32 status = 0;
281 	u16 i, count;
282 
283 	/* We cannot hold synchronization semaphores for too long,
284 	 * because of forceful takeover procedure. However it is more efficient
285 	 * to write in bursts than synchronizing access for each word.
286 	 */
287 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
288 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
289 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
290 
291 		status = hw->nvm.ops.acquire(hw);
292 		if (status)
293 			break;
294 
295 		status = igc_write_nvm_srwr(hw, offset, count, data + i);
296 		hw->nvm.ops.release(hw);
297 		if (status)
298 			break;
299 	}
300 
301 	return status;
302 }
303 
304 /**
305  * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
306  * @hw: pointer to the HW structure
307  *
308  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
309  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
310  */
311 static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
312 {
313 	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
314 			   u16 *data);
315 	s32 status = 0;
316 
317 	status = hw->nvm.ops.acquire(hw);
318 	if (status)
319 		goto out;
320 
321 	/* Replace the read function with semaphore grabbing with
322 	 * the one that skips this for a while.
323 	 * We have semaphore taken already here.
324 	 */
325 	read_op_ptr = hw->nvm.ops.read;
326 	hw->nvm.ops.read = igc_read_nvm_eerd;
327 
328 	status = igc_validate_nvm_checksum(hw);
329 
330 	/* Revert original read operation. */
331 	hw->nvm.ops.read = read_op_ptr;
332 
333 	hw->nvm.ops.release(hw);
334 
335 out:
336 	return status;
337 }
338 
339 /**
340  * igc_pool_flash_update_done_i225 - Pool FLUDONE status
341  * @hw: pointer to the HW structure
342  */
343 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
344 {
345 	s32 ret_val = -IGC_ERR_NVM;
346 	u32 i, reg;
347 
348 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
349 		reg = rd32(IGC_EECD);
350 		if (reg & IGC_EECD_FLUDONE_I225) {
351 			ret_val = 0;
352 			break;
353 		}
354 		udelay(5);
355 	}
356 
357 	return ret_val;
358 }
359 
360 /**
361  * igc_update_flash_i225 - Commit EEPROM to the flash
362  * @hw: pointer to the HW structure
363  */
364 static s32 igc_update_flash_i225(struct igc_hw *hw)
365 {
366 	s32 ret_val = 0;
367 	u32 flup;
368 
369 	ret_val = igc_pool_flash_update_done_i225(hw);
370 	if (ret_val == -IGC_ERR_NVM) {
371 		hw_dbg("Flash update time out\n");
372 		goto out;
373 	}
374 
375 	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
376 	wr32(IGC_EECD, flup);
377 
378 	ret_val = igc_pool_flash_update_done_i225(hw);
379 	if (ret_val)
380 		hw_dbg("Flash update time out\n");
381 	else
382 		hw_dbg("Flash update complete\n");
383 
384 out:
385 	return ret_val;
386 }
387 
388 /**
389  * igc_update_nvm_checksum_i225 - Update EEPROM checksum
390  * @hw: pointer to the HW structure
391  *
392  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
393  * up to the checksum.  Then calculates the EEPROM checksum and writes the
394  * value to the EEPROM. Next commit EEPROM data onto the Flash.
395  */
396 static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
397 {
398 	u16 checksum = 0;
399 	s32 ret_val = 0;
400 	u16 i, nvm_data;
401 
402 	/* Read the first word from the EEPROM. If this times out or fails, do
403 	 * not continue or we could be in for a very long wait while every
404 	 * EEPROM read fails
405 	 */
406 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
407 	if (ret_val) {
408 		hw_dbg("EEPROM read failed\n");
409 		goto out;
410 	}
411 
412 	ret_val = hw->nvm.ops.acquire(hw);
413 	if (ret_val)
414 		goto out;
415 
416 	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
417 	 * because we do not want to take the synchronization
418 	 * semaphores twice here.
419 	 */
420 
421 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
422 		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
423 		if (ret_val) {
424 			hw->nvm.ops.release(hw);
425 			hw_dbg("NVM Read Error while updating checksum.\n");
426 			goto out;
427 		}
428 		checksum += nvm_data;
429 	}
430 	checksum = (u16)NVM_SUM - checksum;
431 	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
432 				     &checksum);
433 	if (ret_val) {
434 		hw->nvm.ops.release(hw);
435 		hw_dbg("NVM Write Error while updating checksum.\n");
436 		goto out;
437 	}
438 
439 	hw->nvm.ops.release(hw);
440 
441 	ret_val = igc_update_flash_i225(hw);
442 
443 out:
444 	return ret_val;
445 }
446 
447 /**
448  * igc_get_flash_presence_i225 - Check if flash device is detected
449  * @hw: pointer to the HW structure
450  */
451 bool igc_get_flash_presence_i225(struct igc_hw *hw)
452 {
453 	bool ret_val = false;
454 	u32 eec = 0;
455 
456 	eec = rd32(IGC_EECD);
457 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
458 		ret_val = true;
459 
460 	return ret_val;
461 }
462 
463 /**
464  * igc_init_nvm_params_i225 - Init NVM func ptrs.
465  * @hw: pointer to the HW structure
466  */
467 s32 igc_init_nvm_params_i225(struct igc_hw *hw)
468 {
469 	struct igc_nvm_info *nvm = &hw->nvm;
470 
471 	nvm->ops.acquire = igc_acquire_nvm_i225;
472 	nvm->ops.release = igc_release_nvm_i225;
473 
474 	/* NVM Function Pointers */
475 	if (igc_get_flash_presence_i225(hw)) {
476 		hw->nvm.type = igc_nvm_flash_hw;
477 		nvm->ops.read = igc_read_nvm_srrd_i225;
478 		nvm->ops.write = igc_write_nvm_srwr_i225;
479 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
480 		nvm->ops.update = igc_update_nvm_checksum_i225;
481 	} else {
482 		hw->nvm.type = igc_nvm_invm;
483 		nvm->ops.read = igc_read_nvm_eerd;
484 		nvm->ops.write = NULL;
485 		nvm->ops.validate = NULL;
486 		nvm->ops.update = NULL;
487 	}
488 	return 0;
489 }
490 
491 /**
492  *  igc_set_eee_i225 - Enable/disable EEE support
493  *  @hw: pointer to the HW structure
494  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
495  *  @adv1G: boolean flag enabling 1G EEE advertisement
496  *  @adv100M: boolean flag enabling 100M EEE advertisement
497  *
498  *  Enable/disable EEE based on setting in dev_spec structure.
499  **/
500 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
501 		     bool adv100M)
502 {
503 	u32 ipcnfg, eeer;
504 
505 	ipcnfg = rd32(IGC_IPCNFG);
506 	eeer = rd32(IGC_EEER);
507 
508 	/* enable or disable per user setting */
509 	if (hw->dev_spec._base.eee_enable) {
510 		u32 eee_su = rd32(IGC_EEE_SU);
511 
512 		if (adv100M)
513 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
514 		else
515 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
516 
517 		if (adv1G)
518 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
519 		else
520 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
521 
522 		if (adv2p5G)
523 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
524 		else
525 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
526 
527 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
528 			 IGC_EEER_LPI_FC);
529 
530 		/* This bit should not be set in normal operation. */
531 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
532 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
533 	} else {
534 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
535 			    IGC_IPCNFG_EEE_100M_AN);
536 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
537 			  IGC_EEER_LPI_FC);
538 	}
539 	wr32(IGC_IPCNFG, ipcnfg);
540 	wr32(IGC_EEER, eeer);
541 	rd32(IGC_IPCNFG);
542 	rd32(IGC_EEER);
543 
544 	return IGC_SUCCESS;
545 }
546 
547 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
548  * @hw: pointer to the HW structure
549  * @link: bool indicating link status
550  *
551  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
552  * settings, otherwise specify that there is no LTR requirement.
553  */
554 s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
555 {
556 	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
557 	u16 speed, duplex;
558 	s32 size;
559 
560 	/* If we do not have link, LTR thresholds are zero. */
561 	if (link) {
562 		hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
563 
564 		/* Check if using copper interface with EEE enabled or if the
565 		 * link speed is 10 Mbps.
566 		 */
567 		if (hw->dev_spec._base.eee_enable &&
568 		    speed != SPEED_10) {
569 			/* EEE enabled, so send LTRMAX threshold. */
570 			ltrc = rd32(IGC_LTRC) |
571 			       IGC_LTRC_EEEMS_EN;
572 			wr32(IGC_LTRC, ltrc);
573 
574 			/* Calculate tw_system (nsec). */
575 			if (speed == SPEED_100) {
576 				tw_system = ((rd32(IGC_EEE_SU) &
577 					     IGC_TW_SYSTEM_100_MASK) >>
578 					     IGC_TW_SYSTEM_100_SHIFT) * 500;
579 			} else {
580 				tw_system = (rd32(IGC_EEE_SU) &
581 					     IGC_TW_SYSTEM_1000_MASK) * 500;
582 			}
583 		} else {
584 			tw_system = 0;
585 		}
586 
587 		/* Get the Rx packet buffer size. */
588 		size = rd32(IGC_RXPBS) &
589 		       IGC_RXPBS_SIZE_I225_MASK;
590 
591 		/* Calculations vary based on DMAC settings. */
592 		if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
593 			size -= (rd32(IGC_DMACR) &
594 				 IGC_DMACR_DMACTHR_MASK) >>
595 				 IGC_DMACR_DMACTHR_SHIFT;
596 			/* Convert size to bits. */
597 			size *= 1024 * 8;
598 		} else {
599 			/* Convert size to bytes, subtract the MTU, and then
600 			 * convert the size to bits.
601 			 */
602 			size *= 1024;
603 			size *= 8;
604 		}
605 
606 		if (size < 0) {
607 			hw_dbg("Invalid effective Rx buffer size %d\n",
608 			       size);
609 			return -IGC_ERR_CONFIG;
610 		}
611 
612 		/* Calculate the thresholds. Since speed is in Mbps, simplify
613 		 * the calculation by multiplying size/speed by 1000 for result
614 		 * to be in nsec before dividing by the scale in nsec. Set the
615 		 * scale such that the LTR threshold fits in the register.
616 		 */
617 		ltr_min = (1000 * size) / speed;
618 		ltr_max = ltr_min + tw_system;
619 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
620 			    IGC_LTRMINV_SCALE_32768;
621 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
622 			    IGC_LTRMAXV_SCALE_32768;
623 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
624 		ltr_min -= 1;
625 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
626 		ltr_max -= 1;
627 
628 		/* Only write the LTR thresholds if they differ from before. */
629 		ltrv = rd32(IGC_LTRMINV);
630 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
631 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
632 			       (scale_min << IGC_LTRMINV_SCALE_SHIFT);
633 			wr32(IGC_LTRMINV, ltrv);
634 		}
635 
636 		ltrv = rd32(IGC_LTRMAXV);
637 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
638 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
639 			       (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
640 			wr32(IGC_LTRMAXV, ltrv);
641 		}
642 	}
643 
644 	return IGC_SUCCESS;
645 }
646