1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2009 - 2018 Intel Corporation. */ 3 4 #include "vf.h" 5 6 static s32 e1000_check_for_link_vf(struct e1000_hw *hw); 7 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 8 u16 *duplex); 9 static s32 e1000_init_hw_vf(struct e1000_hw *hw); 10 static s32 e1000_reset_hw_vf(struct e1000_hw *hw); 11 12 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, 13 u32, u32, u32); 14 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); 15 static s32 e1000_read_mac_addr_vf(struct e1000_hw *); 16 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr); 17 static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool); 18 19 /** 20 * e1000_init_mac_params_vf - Inits MAC params 21 * @hw: pointer to the HW structure 22 **/ 23 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) 24 { 25 struct e1000_mac_info *mac = &hw->mac; 26 27 /* VF's have no MTA Registers - PF feature only */ 28 mac->mta_reg_count = 128; 29 /* VF's have no access to RAR entries */ 30 mac->rar_entry_count = 1; 31 32 /* Function pointers */ 33 /* reset */ 34 mac->ops.reset_hw = e1000_reset_hw_vf; 35 /* hw initialization */ 36 mac->ops.init_hw = e1000_init_hw_vf; 37 /* check for link */ 38 mac->ops.check_for_link = e1000_check_for_link_vf; 39 /* link info */ 40 mac->ops.get_link_up_info = e1000_get_link_up_info_vf; 41 /* multicast address update */ 42 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; 43 /* set mac address */ 44 mac->ops.rar_set = e1000_rar_set_vf; 45 /* read mac address */ 46 mac->ops.read_mac_addr = e1000_read_mac_addr_vf; 47 /* set mac filter */ 48 mac->ops.set_uc_addr = e1000_set_uc_addr_vf; 49 /* set vlan filter table array */ 50 mac->ops.set_vfta = e1000_set_vfta_vf; 51 52 return E1000_SUCCESS; 53 } 54 55 /** 56 * e1000_init_function_pointers_vf - Inits function pointers 57 * @hw: pointer to the HW structure 58 **/ 59 void e1000_init_function_pointers_vf(struct e1000_hw *hw) 60 { 61 hw->mac.ops.init_params = e1000_init_mac_params_vf; 62 hw->mbx.ops.init_params = e1000_init_mbx_params_vf; 63 } 64 65 /** 66 * e1000_get_link_up_info_vf - Gets link info. 67 * @hw: pointer to the HW structure 68 * @speed: pointer to 16 bit value to store link speed. 69 * @duplex: pointer to 16 bit value to store duplex. 70 * 71 * Since we cannot read the PHY and get accurate link info, we must rely upon 72 * the status register's data which is often stale and inaccurate. 73 **/ 74 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 75 u16 *duplex) 76 { 77 s32 status; 78 79 status = er32(STATUS); 80 if (status & E1000_STATUS_SPEED_1000) 81 *speed = SPEED_1000; 82 else if (status & E1000_STATUS_SPEED_100) 83 *speed = SPEED_100; 84 else 85 *speed = SPEED_10; 86 87 if (status & E1000_STATUS_FD) 88 *duplex = FULL_DUPLEX; 89 else 90 *duplex = HALF_DUPLEX; 91 92 return E1000_SUCCESS; 93 } 94 95 /** 96 * e1000_reset_hw_vf - Resets the HW 97 * @hw: pointer to the HW structure 98 * 99 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. 100 * This is all the reset we can perform on a VF. 101 **/ 102 static s32 e1000_reset_hw_vf(struct e1000_hw *hw) 103 { 104 struct e1000_mbx_info *mbx = &hw->mbx; 105 u32 timeout = E1000_VF_INIT_TIMEOUT; 106 u32 ret_val = -E1000_ERR_MAC_INIT; 107 u32 msgbuf[3]; 108 u8 *addr = (u8 *)(&msgbuf[1]); 109 u32 ctrl; 110 111 /* assert VF queue/interrupt reset */ 112 ctrl = er32(CTRL); 113 ew32(CTRL, ctrl | E1000_CTRL_RST); 114 115 /* we cannot initialize while the RSTI / RSTD bits are asserted */ 116 while (!mbx->ops.check_for_rst(hw) && timeout) { 117 timeout--; 118 udelay(5); 119 } 120 121 if (timeout) { 122 /* mailbox timeout can now become active */ 123 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; 124 125 /* notify PF of VF reset completion */ 126 msgbuf[0] = E1000_VF_RESET; 127 mbx->ops.write_posted(hw, msgbuf, 1); 128 129 mdelay(10); 130 131 /* set our "perm_addr" based on info provided by PF */ 132 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 133 if (!ret_val) { 134 if (msgbuf[0] == (E1000_VF_RESET | 135 E1000_VT_MSGTYPE_ACK)) 136 memcpy(hw->mac.perm_addr, addr, ETH_ALEN); 137 else 138 ret_val = -E1000_ERR_MAC_INIT; 139 } 140 } 141 142 return ret_val; 143 } 144 145 /** 146 * e1000_init_hw_vf - Inits the HW 147 * @hw: pointer to the HW structure 148 * 149 * Not much to do here except clear the PF Reset indication if there is one. 150 **/ 151 static s32 e1000_init_hw_vf(struct e1000_hw *hw) 152 { 153 /* attempt to set and restore our mac address */ 154 e1000_rar_set_vf(hw, hw->mac.addr, 0); 155 156 return E1000_SUCCESS; 157 } 158 159 /** 160 * e1000_hash_mc_addr_vf - Generate a multicast hash value 161 * @hw: pointer to the HW structure 162 * @mc_addr: pointer to a multicast address 163 * 164 * Generates a multicast address hash value which is used to determine 165 * the multicast filter table array address and new table value. See 166 * e1000_mta_set_generic() 167 **/ 168 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) 169 { 170 u32 hash_value, hash_mask; 171 u8 bit_shift = 0; 172 173 /* Register count multiplied by bits per register */ 174 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 175 176 /* The bit_shift is the number of left-shifts 177 * where 0xFF would still fall within the hash mask. 178 */ 179 while (hash_mask >> bit_shift != 0xFF) 180 bit_shift++; 181 182 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 183 (((u16)mc_addr[5]) << bit_shift))); 184 185 return hash_value; 186 } 187 188 /** 189 * e1000_update_mc_addr_list_vf - Update Multicast addresses 190 * @hw: pointer to the HW structure 191 * @mc_addr_list: array of multicast addresses to program 192 * @mc_addr_count: number of multicast addresses to program 193 * @rar_used_count: the first RAR register free to program 194 * @rar_count: total number of supported Receive Address Registers 195 * 196 * Updates the Receive Address Registers and Multicast Table Array. 197 * The caller must have a packed mc_addr_list of multicast addresses. 198 * The parameter rar_count will usually be hw->mac.rar_entry_count 199 * unless there are workarounds that change this. 200 **/ 201 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, 202 u8 *mc_addr_list, u32 mc_addr_count, 203 u32 rar_used_count, u32 rar_count) 204 { 205 struct e1000_mbx_info *mbx = &hw->mbx; 206 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 207 u16 *hash_list = (u16 *)&msgbuf[1]; 208 u32 hash_value; 209 u32 cnt, i; 210 s32 ret_val; 211 212 /* Each entry in the list uses 1 16 bit word. We have 30 213 * 16 bit words available in our HW msg buffer (minus 1 for the 214 * msg type). That's 30 hash values if we pack 'em right. If 215 * there are more than 30 MC addresses to add then punt the 216 * extras for now and then add code to handle more than 30 later. 217 * It would be unusual for a server to request that many multi-cast 218 * addresses except for in large enterprise network environments. 219 */ 220 221 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count; 222 msgbuf[0] = E1000_VF_SET_MULTICAST; 223 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT; 224 225 for (i = 0; i < cnt; i++) { 226 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); 227 hash_list[i] = hash_value & 0x0FFFF; 228 mc_addr_list += ETH_ALEN; 229 } 230 231 ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE); 232 if (!ret_val) 233 mbx->ops.read_posted(hw, msgbuf, 1); 234 } 235 236 /** 237 * e1000_set_vfta_vf - Set/Unset vlan filter table address 238 * @hw: pointer to the HW structure 239 * @vid: determines the vfta register and bit to set/unset 240 * @set: if true then set bit, else clear bit 241 **/ 242 static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set) 243 { 244 struct e1000_mbx_info *mbx = &hw->mbx; 245 u32 msgbuf[2]; 246 s32 err; 247 248 msgbuf[0] = E1000_VF_SET_VLAN; 249 msgbuf[1] = vid; 250 /* Setting the 8 bit field MSG INFO to true indicates "add" */ 251 if (set) 252 msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT); 253 254 mbx->ops.write_posted(hw, msgbuf, 2); 255 256 err = mbx->ops.read_posted(hw, msgbuf, 2); 257 258 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 259 260 /* if nacked the vlan was rejected */ 261 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))) 262 err = -E1000_ERR_MAC_INIT; 263 264 return err; 265 } 266 267 /** 268 * e1000_rlpml_set_vf - Set the maximum receive packet length 269 * @hw: pointer to the HW structure 270 * @max_size: value to assign to max frame size 271 **/ 272 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) 273 { 274 struct e1000_mbx_info *mbx = &hw->mbx; 275 u32 msgbuf[2]; 276 s32 ret_val; 277 278 msgbuf[0] = E1000_VF_SET_LPE; 279 msgbuf[1] = max_size; 280 281 ret_val = mbx->ops.write_posted(hw, msgbuf, 2); 282 if (!ret_val) 283 mbx->ops.read_posted(hw, msgbuf, 1); 284 } 285 286 /** 287 * e1000_rar_set_vf - set device MAC address 288 * @hw: pointer to the HW structure 289 * @addr: pointer to the receive address 290 * @index: receive address array register 291 **/ 292 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index) 293 { 294 struct e1000_mbx_info *mbx = &hw->mbx; 295 u32 msgbuf[3]; 296 u8 *msg_addr = (u8 *)(&msgbuf[1]); 297 s32 ret_val; 298 299 memset(msgbuf, 0, 12); 300 msgbuf[0] = E1000_VF_SET_MAC_ADDR; 301 memcpy(msg_addr, addr, ETH_ALEN); 302 ret_val = mbx->ops.write_posted(hw, msgbuf, 3); 303 304 if (!ret_val) 305 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 306 307 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 308 309 /* if nacked the address was rejected, use "perm_addr" */ 310 if (!ret_val && 311 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) 312 e1000_read_mac_addr_vf(hw); 313 } 314 315 /** 316 * e1000_read_mac_addr_vf - Read device MAC address 317 * @hw: pointer to the HW structure 318 **/ 319 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) 320 { 321 memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN); 322 323 return E1000_SUCCESS; 324 } 325 326 /** 327 * e1000_set_uc_addr_vf - Set or clear unicast filters 328 * @hw: pointer to the HW structure 329 * @sub_cmd: add or clear filters 330 * @addr: pointer to the filter MAC address 331 **/ 332 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr) 333 { 334 struct e1000_mbx_info *mbx = &hw->mbx; 335 u32 msgbuf[3], msgbuf_chk; 336 u8 *msg_addr = (u8 *)(&msgbuf[1]); 337 s32 ret_val; 338 339 memset(msgbuf, 0, sizeof(msgbuf)); 340 msgbuf[0] |= sub_cmd; 341 msgbuf[0] |= E1000_VF_SET_MAC_ADDR; 342 msgbuf_chk = msgbuf[0]; 343 344 if (addr) 345 memcpy(msg_addr, addr, ETH_ALEN); 346 347 ret_val = mbx->ops.write_posted(hw, msgbuf, 3); 348 349 if (!ret_val) 350 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 351 352 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 353 354 if (!ret_val) { 355 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 356 357 if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK)) 358 return -ENOSPC; 359 } 360 361 return ret_val; 362 } 363 364 /** 365 * e1000_check_for_link_vf - Check for link for a virtual interface 366 * @hw: pointer to the HW structure 367 * 368 * Checks to see if the underlying PF is still talking to the VF and 369 * if it is then it reports the link state to the hardware, otherwise 370 * it reports link down and returns an error. 371 **/ 372 static s32 e1000_check_for_link_vf(struct e1000_hw *hw) 373 { 374 struct e1000_mbx_info *mbx = &hw->mbx; 375 struct e1000_mac_info *mac = &hw->mac; 376 s32 ret_val = E1000_SUCCESS; 377 u32 in_msg = 0; 378 379 /* We only want to run this if there has been a rst asserted. 380 * in this case that could mean a link change, device reset, 381 * or a virtual function reset 382 */ 383 384 /* If we were hit with a reset or timeout drop the link */ 385 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout) 386 mac->get_link_status = true; 387 388 if (!mac->get_link_status) 389 goto out; 390 391 /* if link status is down no point in checking to see if PF is up */ 392 if (!(er32(STATUS) & E1000_STATUS_LU)) 393 goto out; 394 395 /* if the read failed it could just be a mailbox collision, best wait 396 * until we are called again and don't report an error 397 */ 398 if (mbx->ops.read(hw, &in_msg, 1)) 399 goto out; 400 401 /* if incoming message isn't clear to send we are waiting on response */ 402 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { 403 /* msg is not CTS and is NACK we must have lost CTS status */ 404 if (in_msg & E1000_VT_MSGTYPE_NACK) 405 ret_val = -E1000_ERR_MAC_INIT; 406 goto out; 407 } 408 409 /* the PF is talking, if we timed out in the past we reinit */ 410 if (!mbx->timeout) { 411 ret_val = -E1000_ERR_MAC_INIT; 412 goto out; 413 } 414 415 /* if we passed all the tests above then the link is up and we no 416 * longer need to check for link 417 */ 418 mac->get_link_status = false; 419 420 out: 421 return ret_val; 422 } 423 424