1 // SPDX-License-Identifier: GPL-2.0 2 /******************************************************************************* 3 4 Intel(R) 82576 Virtual Function Linux driver 5 Copyright(c) 2009 - 2012 Intel Corporation. 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, see <http://www.gnu.org/licenses/>. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #include "vf.h" 29 30 static s32 e1000_check_for_link_vf(struct e1000_hw *hw); 31 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 32 u16 *duplex); 33 static s32 e1000_init_hw_vf(struct e1000_hw *hw); 34 static s32 e1000_reset_hw_vf(struct e1000_hw *hw); 35 36 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, 37 u32, u32, u32); 38 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); 39 static s32 e1000_read_mac_addr_vf(struct e1000_hw *); 40 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr); 41 static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool); 42 43 /** 44 * e1000_init_mac_params_vf - Inits MAC params 45 * @hw: pointer to the HW structure 46 **/ 47 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) 48 { 49 struct e1000_mac_info *mac = &hw->mac; 50 51 /* VF's have no MTA Registers - PF feature only */ 52 mac->mta_reg_count = 128; 53 /* VF's have no access to RAR entries */ 54 mac->rar_entry_count = 1; 55 56 /* Function pointers */ 57 /* reset */ 58 mac->ops.reset_hw = e1000_reset_hw_vf; 59 /* hw initialization */ 60 mac->ops.init_hw = e1000_init_hw_vf; 61 /* check for link */ 62 mac->ops.check_for_link = e1000_check_for_link_vf; 63 /* link info */ 64 mac->ops.get_link_up_info = e1000_get_link_up_info_vf; 65 /* multicast address update */ 66 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; 67 /* set mac address */ 68 mac->ops.rar_set = e1000_rar_set_vf; 69 /* read mac address */ 70 mac->ops.read_mac_addr = e1000_read_mac_addr_vf; 71 /* set mac filter */ 72 mac->ops.set_uc_addr = e1000_set_uc_addr_vf; 73 /* set vlan filter table array */ 74 mac->ops.set_vfta = e1000_set_vfta_vf; 75 76 return E1000_SUCCESS; 77 } 78 79 /** 80 * e1000_init_function_pointers_vf - Inits function pointers 81 * @hw: pointer to the HW structure 82 **/ 83 void e1000_init_function_pointers_vf(struct e1000_hw *hw) 84 { 85 hw->mac.ops.init_params = e1000_init_mac_params_vf; 86 hw->mbx.ops.init_params = e1000_init_mbx_params_vf; 87 } 88 89 /** 90 * e1000_get_link_up_info_vf - Gets link info. 91 * @hw: pointer to the HW structure 92 * @speed: pointer to 16 bit value to store link speed. 93 * @duplex: pointer to 16 bit value to store duplex. 94 * 95 * Since we cannot read the PHY and get accurate link info, we must rely upon 96 * the status register's data which is often stale and inaccurate. 97 **/ 98 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 99 u16 *duplex) 100 { 101 s32 status; 102 103 status = er32(STATUS); 104 if (status & E1000_STATUS_SPEED_1000) 105 *speed = SPEED_1000; 106 else if (status & E1000_STATUS_SPEED_100) 107 *speed = SPEED_100; 108 else 109 *speed = SPEED_10; 110 111 if (status & E1000_STATUS_FD) 112 *duplex = FULL_DUPLEX; 113 else 114 *duplex = HALF_DUPLEX; 115 116 return E1000_SUCCESS; 117 } 118 119 /** 120 * e1000_reset_hw_vf - Resets the HW 121 * @hw: pointer to the HW structure 122 * 123 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. 124 * This is all the reset we can perform on a VF. 125 **/ 126 static s32 e1000_reset_hw_vf(struct e1000_hw *hw) 127 { 128 struct e1000_mbx_info *mbx = &hw->mbx; 129 u32 timeout = E1000_VF_INIT_TIMEOUT; 130 u32 ret_val = -E1000_ERR_MAC_INIT; 131 u32 msgbuf[3]; 132 u8 *addr = (u8 *)(&msgbuf[1]); 133 u32 ctrl; 134 135 /* assert VF queue/interrupt reset */ 136 ctrl = er32(CTRL); 137 ew32(CTRL, ctrl | E1000_CTRL_RST); 138 139 /* we cannot initialize while the RSTI / RSTD bits are asserted */ 140 while (!mbx->ops.check_for_rst(hw) && timeout) { 141 timeout--; 142 udelay(5); 143 } 144 145 if (timeout) { 146 /* mailbox timeout can now become active */ 147 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; 148 149 /* notify PF of VF reset completion */ 150 msgbuf[0] = E1000_VF_RESET; 151 mbx->ops.write_posted(hw, msgbuf, 1); 152 153 mdelay(10); 154 155 /* set our "perm_addr" based on info provided by PF */ 156 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 157 if (!ret_val) { 158 if (msgbuf[0] == (E1000_VF_RESET | 159 E1000_VT_MSGTYPE_ACK)) 160 memcpy(hw->mac.perm_addr, addr, ETH_ALEN); 161 else 162 ret_val = -E1000_ERR_MAC_INIT; 163 } 164 } 165 166 return ret_val; 167 } 168 169 /** 170 * e1000_init_hw_vf - Inits the HW 171 * @hw: pointer to the HW structure 172 * 173 * Not much to do here except clear the PF Reset indication if there is one. 174 **/ 175 static s32 e1000_init_hw_vf(struct e1000_hw *hw) 176 { 177 /* attempt to set and restore our mac address */ 178 e1000_rar_set_vf(hw, hw->mac.addr, 0); 179 180 return E1000_SUCCESS; 181 } 182 183 /** 184 * e1000_hash_mc_addr_vf - Generate a multicast hash value 185 * @hw: pointer to the HW structure 186 * @mc_addr: pointer to a multicast address 187 * 188 * Generates a multicast address hash value which is used to determine 189 * the multicast filter table array address and new table value. See 190 * e1000_mta_set_generic() 191 **/ 192 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) 193 { 194 u32 hash_value, hash_mask; 195 u8 bit_shift = 0; 196 197 /* Register count multiplied by bits per register */ 198 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 199 200 /* The bit_shift is the number of left-shifts 201 * where 0xFF would still fall within the hash mask. 202 */ 203 while (hash_mask >> bit_shift != 0xFF) 204 bit_shift++; 205 206 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 207 (((u16)mc_addr[5]) << bit_shift))); 208 209 return hash_value; 210 } 211 212 /** 213 * e1000_update_mc_addr_list_vf - Update Multicast addresses 214 * @hw: pointer to the HW structure 215 * @mc_addr_list: array of multicast addresses to program 216 * @mc_addr_count: number of multicast addresses to program 217 * @rar_used_count: the first RAR register free to program 218 * @rar_count: total number of supported Receive Address Registers 219 * 220 * Updates the Receive Address Registers and Multicast Table Array. 221 * The caller must have a packed mc_addr_list of multicast addresses. 222 * The parameter rar_count will usually be hw->mac.rar_entry_count 223 * unless there are workarounds that change this. 224 **/ 225 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, 226 u8 *mc_addr_list, u32 mc_addr_count, 227 u32 rar_used_count, u32 rar_count) 228 { 229 struct e1000_mbx_info *mbx = &hw->mbx; 230 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 231 u16 *hash_list = (u16 *)&msgbuf[1]; 232 u32 hash_value; 233 u32 cnt, i; 234 s32 ret_val; 235 236 /* Each entry in the list uses 1 16 bit word. We have 30 237 * 16 bit words available in our HW msg buffer (minus 1 for the 238 * msg type). That's 30 hash values if we pack 'em right. If 239 * there are more than 30 MC addresses to add then punt the 240 * extras for now and then add code to handle more than 30 later. 241 * It would be unusual for a server to request that many multi-cast 242 * addresses except for in large enterprise network environments. 243 */ 244 245 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count; 246 msgbuf[0] = E1000_VF_SET_MULTICAST; 247 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT; 248 249 for (i = 0; i < cnt; i++) { 250 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); 251 hash_list[i] = hash_value & 0x0FFFF; 252 mc_addr_list += ETH_ALEN; 253 } 254 255 ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE); 256 if (!ret_val) 257 mbx->ops.read_posted(hw, msgbuf, 1); 258 } 259 260 /** 261 * e1000_set_vfta_vf - Set/Unset vlan filter table address 262 * @hw: pointer to the HW structure 263 * @vid: determines the vfta register and bit to set/unset 264 * @set: if true then set bit, else clear bit 265 **/ 266 static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set) 267 { 268 struct e1000_mbx_info *mbx = &hw->mbx; 269 u32 msgbuf[2]; 270 s32 err; 271 272 msgbuf[0] = E1000_VF_SET_VLAN; 273 msgbuf[1] = vid; 274 /* Setting the 8 bit field MSG INFO to true indicates "add" */ 275 if (set) 276 msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT); 277 278 mbx->ops.write_posted(hw, msgbuf, 2); 279 280 err = mbx->ops.read_posted(hw, msgbuf, 2); 281 282 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 283 284 /* if nacked the vlan was rejected */ 285 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))) 286 err = -E1000_ERR_MAC_INIT; 287 288 return err; 289 } 290 291 /** 292 * e1000_rlpml_set_vf - Set the maximum receive packet length 293 * @hw: pointer to the HW structure 294 * @max_size: value to assign to max frame size 295 **/ 296 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) 297 { 298 struct e1000_mbx_info *mbx = &hw->mbx; 299 u32 msgbuf[2]; 300 s32 ret_val; 301 302 msgbuf[0] = E1000_VF_SET_LPE; 303 msgbuf[1] = max_size; 304 305 ret_val = mbx->ops.write_posted(hw, msgbuf, 2); 306 if (!ret_val) 307 mbx->ops.read_posted(hw, msgbuf, 1); 308 } 309 310 /** 311 * e1000_rar_set_vf - set device MAC address 312 * @hw: pointer to the HW structure 313 * @addr: pointer to the receive address 314 * @index: receive address array register 315 **/ 316 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index) 317 { 318 struct e1000_mbx_info *mbx = &hw->mbx; 319 u32 msgbuf[3]; 320 u8 *msg_addr = (u8 *)(&msgbuf[1]); 321 s32 ret_val; 322 323 memset(msgbuf, 0, 12); 324 msgbuf[0] = E1000_VF_SET_MAC_ADDR; 325 memcpy(msg_addr, addr, ETH_ALEN); 326 ret_val = mbx->ops.write_posted(hw, msgbuf, 3); 327 328 if (!ret_val) 329 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 330 331 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 332 333 /* if nacked the address was rejected, use "perm_addr" */ 334 if (!ret_val && 335 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) 336 e1000_read_mac_addr_vf(hw); 337 } 338 339 /** 340 * e1000_read_mac_addr_vf - Read device MAC address 341 * @hw: pointer to the HW structure 342 **/ 343 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) 344 { 345 memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN); 346 347 return E1000_SUCCESS; 348 } 349 350 /** 351 * e1000_set_uc_addr_vf - Set or clear unicast filters 352 * @hw: pointer to the HW structure 353 * @sub_cmd: add or clear filters 354 * @addr: pointer to the filter MAC address 355 **/ 356 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr) 357 { 358 struct e1000_mbx_info *mbx = &hw->mbx; 359 u32 msgbuf[3], msgbuf_chk; 360 u8 *msg_addr = (u8 *)(&msgbuf[1]); 361 s32 ret_val; 362 363 memset(msgbuf, 0, sizeof(msgbuf)); 364 msgbuf[0] |= sub_cmd; 365 msgbuf[0] |= E1000_VF_SET_MAC_ADDR; 366 msgbuf_chk = msgbuf[0]; 367 368 if (addr) 369 memcpy(msg_addr, addr, ETH_ALEN); 370 371 ret_val = mbx->ops.write_posted(hw, msgbuf, 3); 372 373 if (!ret_val) 374 ret_val = mbx->ops.read_posted(hw, msgbuf, 3); 375 376 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 377 378 if (!ret_val) { 379 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 380 381 if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK)) 382 return -ENOSPC; 383 } 384 385 return ret_val; 386 } 387 388 /** 389 * e1000_check_for_link_vf - Check for link for a virtual interface 390 * @hw: pointer to the HW structure 391 * 392 * Checks to see if the underlying PF is still talking to the VF and 393 * if it is then it reports the link state to the hardware, otherwise 394 * it reports link down and returns an error. 395 **/ 396 static s32 e1000_check_for_link_vf(struct e1000_hw *hw) 397 { 398 struct e1000_mbx_info *mbx = &hw->mbx; 399 struct e1000_mac_info *mac = &hw->mac; 400 s32 ret_val = E1000_SUCCESS; 401 u32 in_msg = 0; 402 403 /* We only want to run this if there has been a rst asserted. 404 * in this case that could mean a link change, device reset, 405 * or a virtual function reset 406 */ 407 408 /* If we were hit with a reset or timeout drop the link */ 409 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout) 410 mac->get_link_status = true; 411 412 if (!mac->get_link_status) 413 goto out; 414 415 /* if link status is down no point in checking to see if PF is up */ 416 if (!(er32(STATUS) & E1000_STATUS_LU)) 417 goto out; 418 419 /* if the read failed it could just be a mailbox collision, best wait 420 * until we are called again and don't report an error 421 */ 422 if (mbx->ops.read(hw, &in_msg, 1)) 423 goto out; 424 425 /* if incoming message isn't clear to send we are waiting on response */ 426 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { 427 /* msg is not CTS and is NACK we must have lost CTS status */ 428 if (in_msg & E1000_VT_MSGTYPE_NACK) 429 ret_val = -E1000_ERR_MAC_INIT; 430 goto out; 431 } 432 433 /* the PF is talking, if we timed out in the past we reinit */ 434 if (!mbx->timeout) { 435 ret_val = -E1000_ERR_MAC_INIT; 436 goto out; 437 } 438 439 /* if we passed all the tests above then the link is up and we no 440 * longer need to check for link 441 */ 442 mac->get_link_status = false; 443 444 out: 445 return ret_val; 446 } 447 448