1 /*******************************************************************************
2 
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46 #include <linux/sctp.h>
47 
48 #include "igbvf.h"
49 
50 #define DRV_VERSION "2.4.0-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54 		  "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56 		  "Copyright (c) 2009 - 2012 Intel Corporation.";
57 
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62 
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67 
68 static struct igbvf_info igbvf_vf_info = {
69 	.mac		= e1000_vfadapt,
70 	.flags		= 0,
71 	.pba		= 10,
72 	.init_ops	= e1000_init_function_pointers_vf,
73 };
74 
75 static struct igbvf_info igbvf_i350_vf_info = {
76 	.mac		= e1000_vfadapt_i350,
77 	.flags		= 0,
78 	.pba		= 10,
79 	.init_ops	= e1000_init_function_pointers_vf,
80 };
81 
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83 	[board_vf]	= &igbvf_vf_info,
84 	[board_i350_vf]	= &igbvf_i350_vf_info,
85 };
86 
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  * @rx_ring: address of receive ring structure
90  **/
91 static int igbvf_desc_unused(struct igbvf_ring *ring)
92 {
93 	if (ring->next_to_clean > ring->next_to_use)
94 		return ring->next_to_clean - ring->next_to_use - 1;
95 
96 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
97 }
98 
99 /**
100  * igbvf_receive_skb - helper function to handle Rx indications
101  * @adapter: board private structure
102  * @status: descriptor status field as written by hardware
103  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
104  * @skb: pointer to sk_buff to be indicated to stack
105  **/
106 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
107 			      struct net_device *netdev,
108 			      struct sk_buff *skb,
109 			      u32 status, u16 vlan)
110 {
111 	u16 vid;
112 
113 	if (status & E1000_RXD_STAT_VP) {
114 		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
115 		    (status & E1000_RXDEXT_STATERR_LB))
116 			vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
117 		else
118 			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
119 		if (test_bit(vid, adapter->active_vlans))
120 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
121 	}
122 
123 	napi_gro_receive(&adapter->rx_ring->napi, skb);
124 }
125 
126 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
127 					 u32 status_err, struct sk_buff *skb)
128 {
129 	skb_checksum_none_assert(skb);
130 
131 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
132 	if ((status_err & E1000_RXD_STAT_IXSM) ||
133 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
134 		return;
135 
136 	/* TCP/UDP checksum error bit is set */
137 	if (status_err &
138 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
139 		/* let the stack verify checksum errors */
140 		adapter->hw_csum_err++;
141 		return;
142 	}
143 
144 	/* It must be a TCP or UDP packet with a valid checksum */
145 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
146 		skb->ip_summed = CHECKSUM_UNNECESSARY;
147 
148 	adapter->hw_csum_good++;
149 }
150 
151 /**
152  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
153  * @rx_ring: address of ring structure to repopulate
154  * @cleaned_count: number of buffers to repopulate
155  **/
156 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
157 				   int cleaned_count)
158 {
159 	struct igbvf_adapter *adapter = rx_ring->adapter;
160 	struct net_device *netdev = adapter->netdev;
161 	struct pci_dev *pdev = adapter->pdev;
162 	union e1000_adv_rx_desc *rx_desc;
163 	struct igbvf_buffer *buffer_info;
164 	struct sk_buff *skb;
165 	unsigned int i;
166 	int bufsz;
167 
168 	i = rx_ring->next_to_use;
169 	buffer_info = &rx_ring->buffer_info[i];
170 
171 	if (adapter->rx_ps_hdr_size)
172 		bufsz = adapter->rx_ps_hdr_size;
173 	else
174 		bufsz = adapter->rx_buffer_len;
175 
176 	while (cleaned_count--) {
177 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
178 
179 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
180 			if (!buffer_info->page) {
181 				buffer_info->page = alloc_page(GFP_ATOMIC);
182 				if (!buffer_info->page) {
183 					adapter->alloc_rx_buff_failed++;
184 					goto no_buffers;
185 				}
186 				buffer_info->page_offset = 0;
187 			} else {
188 				buffer_info->page_offset ^= PAGE_SIZE / 2;
189 			}
190 			buffer_info->page_dma =
191 				dma_map_page(&pdev->dev, buffer_info->page,
192 					     buffer_info->page_offset,
193 					     PAGE_SIZE / 2,
194 					     DMA_FROM_DEVICE);
195 			if (dma_mapping_error(&pdev->dev,
196 					      buffer_info->page_dma)) {
197 				__free_page(buffer_info->page);
198 				buffer_info->page = NULL;
199 				dev_err(&pdev->dev, "RX DMA map failed\n");
200 				break;
201 			}
202 		}
203 
204 		if (!buffer_info->skb) {
205 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
206 			if (!skb) {
207 				adapter->alloc_rx_buff_failed++;
208 				goto no_buffers;
209 			}
210 
211 			buffer_info->skb = skb;
212 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
213 							  bufsz,
214 							  DMA_FROM_DEVICE);
215 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
216 				dev_kfree_skb(buffer_info->skb);
217 				buffer_info->skb = NULL;
218 				dev_err(&pdev->dev, "RX DMA map failed\n");
219 				goto no_buffers;
220 			}
221 		}
222 		/* Refresh the desc even if buffer_addrs didn't change because
223 		 * each write-back erases this info.
224 		 */
225 		if (adapter->rx_ps_hdr_size) {
226 			rx_desc->read.pkt_addr =
227 			     cpu_to_le64(buffer_info->page_dma);
228 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
229 		} else {
230 			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
231 			rx_desc->read.hdr_addr = 0;
232 		}
233 
234 		i++;
235 		if (i == rx_ring->count)
236 			i = 0;
237 		buffer_info = &rx_ring->buffer_info[i];
238 	}
239 
240 no_buffers:
241 	if (rx_ring->next_to_use != i) {
242 		rx_ring->next_to_use = i;
243 		if (i == 0)
244 			i = (rx_ring->count - 1);
245 		else
246 			i--;
247 
248 		/* Force memory writes to complete before letting h/w
249 		 * know there are new descriptors to fetch.  (Only
250 		 * applicable for weak-ordered memory model archs,
251 		 * such as IA-64).
252 		*/
253 		wmb();
254 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
255 	}
256 }
257 
258 /**
259  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
260  * @adapter: board private structure
261  *
262  * the return value indicates whether actual cleaning was done, there
263  * is no guarantee that everything was cleaned
264  **/
265 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
266 			       int *work_done, int work_to_do)
267 {
268 	struct igbvf_ring *rx_ring = adapter->rx_ring;
269 	struct net_device *netdev = adapter->netdev;
270 	struct pci_dev *pdev = adapter->pdev;
271 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
272 	struct igbvf_buffer *buffer_info, *next_buffer;
273 	struct sk_buff *skb;
274 	bool cleaned = false;
275 	int cleaned_count = 0;
276 	unsigned int total_bytes = 0, total_packets = 0;
277 	unsigned int i;
278 	u32 length, hlen, staterr;
279 
280 	i = rx_ring->next_to_clean;
281 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
282 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
283 
284 	while (staterr & E1000_RXD_STAT_DD) {
285 		if (*work_done >= work_to_do)
286 			break;
287 		(*work_done)++;
288 		rmb(); /* read descriptor and rx_buffer_info after status DD */
289 
290 		buffer_info = &rx_ring->buffer_info[i];
291 
292 		/* HW will not DMA in data larger than the given buffer, even
293 		 * if it parses the (NFS, of course) header to be larger.  In
294 		 * that case, it fills the header buffer and spills the rest
295 		 * into the page.
296 		 */
297 		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
298 		       & E1000_RXDADV_HDRBUFLEN_MASK) >>
299 		       E1000_RXDADV_HDRBUFLEN_SHIFT;
300 		if (hlen > adapter->rx_ps_hdr_size)
301 			hlen = adapter->rx_ps_hdr_size;
302 
303 		length = le16_to_cpu(rx_desc->wb.upper.length);
304 		cleaned = true;
305 		cleaned_count++;
306 
307 		skb = buffer_info->skb;
308 		prefetch(skb->data - NET_IP_ALIGN);
309 		buffer_info->skb = NULL;
310 		if (!adapter->rx_ps_hdr_size) {
311 			dma_unmap_single(&pdev->dev, buffer_info->dma,
312 					 adapter->rx_buffer_len,
313 					 DMA_FROM_DEVICE);
314 			buffer_info->dma = 0;
315 			skb_put(skb, length);
316 			goto send_up;
317 		}
318 
319 		if (!skb_shinfo(skb)->nr_frags) {
320 			dma_unmap_single(&pdev->dev, buffer_info->dma,
321 					 adapter->rx_ps_hdr_size,
322 					 DMA_FROM_DEVICE);
323 			buffer_info->dma = 0;
324 			skb_put(skb, hlen);
325 		}
326 
327 		if (length) {
328 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
329 				       PAGE_SIZE / 2,
330 				       DMA_FROM_DEVICE);
331 			buffer_info->page_dma = 0;
332 
333 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
334 					   buffer_info->page,
335 					   buffer_info->page_offset,
336 					   length);
337 
338 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
339 			    (page_count(buffer_info->page) != 1))
340 				buffer_info->page = NULL;
341 			else
342 				get_page(buffer_info->page);
343 
344 			skb->len += length;
345 			skb->data_len += length;
346 			skb->truesize += PAGE_SIZE / 2;
347 		}
348 send_up:
349 		i++;
350 		if (i == rx_ring->count)
351 			i = 0;
352 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
353 		prefetch(next_rxd);
354 		next_buffer = &rx_ring->buffer_info[i];
355 
356 		if (!(staterr & E1000_RXD_STAT_EOP)) {
357 			buffer_info->skb = next_buffer->skb;
358 			buffer_info->dma = next_buffer->dma;
359 			next_buffer->skb = skb;
360 			next_buffer->dma = 0;
361 			goto next_desc;
362 		}
363 
364 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
365 			dev_kfree_skb_irq(skb);
366 			goto next_desc;
367 		}
368 
369 		total_bytes += skb->len;
370 		total_packets++;
371 
372 		igbvf_rx_checksum_adv(adapter, staterr, skb);
373 
374 		skb->protocol = eth_type_trans(skb, netdev);
375 
376 		igbvf_receive_skb(adapter, netdev, skb, staterr,
377 				  rx_desc->wb.upper.vlan);
378 
379 next_desc:
380 		rx_desc->wb.upper.status_error = 0;
381 
382 		/* return some buffers to hardware, one at a time is too slow */
383 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
384 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
385 			cleaned_count = 0;
386 		}
387 
388 		/* use prefetched values */
389 		rx_desc = next_rxd;
390 		buffer_info = next_buffer;
391 
392 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
393 	}
394 
395 	rx_ring->next_to_clean = i;
396 	cleaned_count = igbvf_desc_unused(rx_ring);
397 
398 	if (cleaned_count)
399 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
400 
401 	adapter->total_rx_packets += total_packets;
402 	adapter->total_rx_bytes += total_bytes;
403 	netdev->stats.rx_bytes += total_bytes;
404 	netdev->stats.rx_packets += total_packets;
405 	return cleaned;
406 }
407 
408 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
409 			    struct igbvf_buffer *buffer_info)
410 {
411 	if (buffer_info->dma) {
412 		if (buffer_info->mapped_as_page)
413 			dma_unmap_page(&adapter->pdev->dev,
414 				       buffer_info->dma,
415 				       buffer_info->length,
416 				       DMA_TO_DEVICE);
417 		else
418 			dma_unmap_single(&adapter->pdev->dev,
419 					 buffer_info->dma,
420 					 buffer_info->length,
421 					 DMA_TO_DEVICE);
422 		buffer_info->dma = 0;
423 	}
424 	if (buffer_info->skb) {
425 		dev_kfree_skb_any(buffer_info->skb);
426 		buffer_info->skb = NULL;
427 	}
428 	buffer_info->time_stamp = 0;
429 }
430 
431 /**
432  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
433  * @adapter: board private structure
434  *
435  * Return 0 on success, negative on failure
436  **/
437 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
438 			     struct igbvf_ring *tx_ring)
439 {
440 	struct pci_dev *pdev = adapter->pdev;
441 	int size;
442 
443 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
444 	tx_ring->buffer_info = vzalloc(size);
445 	if (!tx_ring->buffer_info)
446 		goto err;
447 
448 	/* round up to nearest 4K */
449 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
450 	tx_ring->size = ALIGN(tx_ring->size, 4096);
451 
452 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
453 					   &tx_ring->dma, GFP_KERNEL);
454 	if (!tx_ring->desc)
455 		goto err;
456 
457 	tx_ring->adapter = adapter;
458 	tx_ring->next_to_use = 0;
459 	tx_ring->next_to_clean = 0;
460 
461 	return 0;
462 err:
463 	vfree(tx_ring->buffer_info);
464 	dev_err(&adapter->pdev->dev,
465 		"Unable to allocate memory for the transmit descriptor ring\n");
466 	return -ENOMEM;
467 }
468 
469 /**
470  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
471  * @adapter: board private structure
472  *
473  * Returns 0 on success, negative on failure
474  **/
475 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
476 			     struct igbvf_ring *rx_ring)
477 {
478 	struct pci_dev *pdev = adapter->pdev;
479 	int size, desc_len;
480 
481 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
482 	rx_ring->buffer_info = vzalloc(size);
483 	if (!rx_ring->buffer_info)
484 		goto err;
485 
486 	desc_len = sizeof(union e1000_adv_rx_desc);
487 
488 	/* Round up to nearest 4K */
489 	rx_ring->size = rx_ring->count * desc_len;
490 	rx_ring->size = ALIGN(rx_ring->size, 4096);
491 
492 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
493 					   &rx_ring->dma, GFP_KERNEL);
494 	if (!rx_ring->desc)
495 		goto err;
496 
497 	rx_ring->next_to_clean = 0;
498 	rx_ring->next_to_use = 0;
499 
500 	rx_ring->adapter = adapter;
501 
502 	return 0;
503 
504 err:
505 	vfree(rx_ring->buffer_info);
506 	rx_ring->buffer_info = NULL;
507 	dev_err(&adapter->pdev->dev,
508 		"Unable to allocate memory for the receive descriptor ring\n");
509 	return -ENOMEM;
510 }
511 
512 /**
513  * igbvf_clean_tx_ring - Free Tx Buffers
514  * @tx_ring: ring to be cleaned
515  **/
516 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
517 {
518 	struct igbvf_adapter *adapter = tx_ring->adapter;
519 	struct igbvf_buffer *buffer_info;
520 	unsigned long size;
521 	unsigned int i;
522 
523 	if (!tx_ring->buffer_info)
524 		return;
525 
526 	/* Free all the Tx ring sk_buffs */
527 	for (i = 0; i < tx_ring->count; i++) {
528 		buffer_info = &tx_ring->buffer_info[i];
529 		igbvf_put_txbuf(adapter, buffer_info);
530 	}
531 
532 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
533 	memset(tx_ring->buffer_info, 0, size);
534 
535 	/* Zero out the descriptor ring */
536 	memset(tx_ring->desc, 0, tx_ring->size);
537 
538 	tx_ring->next_to_use = 0;
539 	tx_ring->next_to_clean = 0;
540 
541 	writel(0, adapter->hw.hw_addr + tx_ring->head);
542 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
543 }
544 
545 /**
546  * igbvf_free_tx_resources - Free Tx Resources per Queue
547  * @tx_ring: ring to free resources from
548  *
549  * Free all transmit software resources
550  **/
551 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
552 {
553 	struct pci_dev *pdev = tx_ring->adapter->pdev;
554 
555 	igbvf_clean_tx_ring(tx_ring);
556 
557 	vfree(tx_ring->buffer_info);
558 	tx_ring->buffer_info = NULL;
559 
560 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
561 			  tx_ring->dma);
562 
563 	tx_ring->desc = NULL;
564 }
565 
566 /**
567  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
568  * @adapter: board private structure
569  **/
570 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
571 {
572 	struct igbvf_adapter *adapter = rx_ring->adapter;
573 	struct igbvf_buffer *buffer_info;
574 	struct pci_dev *pdev = adapter->pdev;
575 	unsigned long size;
576 	unsigned int i;
577 
578 	if (!rx_ring->buffer_info)
579 		return;
580 
581 	/* Free all the Rx ring sk_buffs */
582 	for (i = 0; i < rx_ring->count; i++) {
583 		buffer_info = &rx_ring->buffer_info[i];
584 		if (buffer_info->dma) {
585 			if (adapter->rx_ps_hdr_size) {
586 				dma_unmap_single(&pdev->dev, buffer_info->dma,
587 						 adapter->rx_ps_hdr_size,
588 						 DMA_FROM_DEVICE);
589 			} else {
590 				dma_unmap_single(&pdev->dev, buffer_info->dma,
591 						 adapter->rx_buffer_len,
592 						 DMA_FROM_DEVICE);
593 			}
594 			buffer_info->dma = 0;
595 		}
596 
597 		if (buffer_info->skb) {
598 			dev_kfree_skb(buffer_info->skb);
599 			buffer_info->skb = NULL;
600 		}
601 
602 		if (buffer_info->page) {
603 			if (buffer_info->page_dma)
604 				dma_unmap_page(&pdev->dev,
605 					       buffer_info->page_dma,
606 					       PAGE_SIZE / 2,
607 					       DMA_FROM_DEVICE);
608 			put_page(buffer_info->page);
609 			buffer_info->page = NULL;
610 			buffer_info->page_dma = 0;
611 			buffer_info->page_offset = 0;
612 		}
613 	}
614 
615 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
616 	memset(rx_ring->buffer_info, 0, size);
617 
618 	/* Zero out the descriptor ring */
619 	memset(rx_ring->desc, 0, rx_ring->size);
620 
621 	rx_ring->next_to_clean = 0;
622 	rx_ring->next_to_use = 0;
623 
624 	writel(0, adapter->hw.hw_addr + rx_ring->head);
625 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
626 }
627 
628 /**
629  * igbvf_free_rx_resources - Free Rx Resources
630  * @rx_ring: ring to clean the resources from
631  *
632  * Free all receive software resources
633  **/
634 
635 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
636 {
637 	struct pci_dev *pdev = rx_ring->adapter->pdev;
638 
639 	igbvf_clean_rx_ring(rx_ring);
640 
641 	vfree(rx_ring->buffer_info);
642 	rx_ring->buffer_info = NULL;
643 
644 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
645 			  rx_ring->dma);
646 	rx_ring->desc = NULL;
647 }
648 
649 /**
650  * igbvf_update_itr - update the dynamic ITR value based on statistics
651  * @adapter: pointer to adapter
652  * @itr_setting: current adapter->itr
653  * @packets: the number of packets during this measurement interval
654  * @bytes: the number of bytes during this measurement interval
655  *
656  * Stores a new ITR value based on packets and byte counts during the last
657  * interrupt.  The advantage of per interrupt computation is faster updates
658  * and more accurate ITR for the current traffic pattern.  Constants in this
659  * function were computed based on theoretical maximum wire speed and thresholds
660  * were set based on testing data as well as attempting to minimize response
661  * time while increasing bulk throughput.
662  **/
663 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
664 					   enum latency_range itr_setting,
665 					   int packets, int bytes)
666 {
667 	enum latency_range retval = itr_setting;
668 
669 	if (packets == 0)
670 		goto update_itr_done;
671 
672 	switch (itr_setting) {
673 	case lowest_latency:
674 		/* handle TSO and jumbo frames */
675 		if (bytes/packets > 8000)
676 			retval = bulk_latency;
677 		else if ((packets < 5) && (bytes > 512))
678 			retval = low_latency;
679 		break;
680 	case low_latency:  /* 50 usec aka 20000 ints/s */
681 		if (bytes > 10000) {
682 			/* this if handles the TSO accounting */
683 			if (bytes/packets > 8000)
684 				retval = bulk_latency;
685 			else if ((packets < 10) || ((bytes/packets) > 1200))
686 				retval = bulk_latency;
687 			else if ((packets > 35))
688 				retval = lowest_latency;
689 		} else if (bytes/packets > 2000) {
690 			retval = bulk_latency;
691 		} else if (packets <= 2 && bytes < 512) {
692 			retval = lowest_latency;
693 		}
694 		break;
695 	case bulk_latency: /* 250 usec aka 4000 ints/s */
696 		if (bytes > 25000) {
697 			if (packets > 35)
698 				retval = low_latency;
699 		} else if (bytes < 6000) {
700 			retval = low_latency;
701 		}
702 		break;
703 	default:
704 		break;
705 	}
706 
707 update_itr_done:
708 	return retval;
709 }
710 
711 static int igbvf_range_to_itr(enum latency_range current_range)
712 {
713 	int new_itr;
714 
715 	switch (current_range) {
716 	/* counts and packets in update_itr are dependent on these numbers */
717 	case lowest_latency:
718 		new_itr = IGBVF_70K_ITR;
719 		break;
720 	case low_latency:
721 		new_itr = IGBVF_20K_ITR;
722 		break;
723 	case bulk_latency:
724 		new_itr = IGBVF_4K_ITR;
725 		break;
726 	default:
727 		new_itr = IGBVF_START_ITR;
728 		break;
729 	}
730 	return new_itr;
731 }
732 
733 static void igbvf_set_itr(struct igbvf_adapter *adapter)
734 {
735 	u32 new_itr;
736 
737 	adapter->tx_ring->itr_range =
738 			igbvf_update_itr(adapter,
739 					 adapter->tx_ring->itr_val,
740 					 adapter->total_tx_packets,
741 					 adapter->total_tx_bytes);
742 
743 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
744 	if (adapter->requested_itr == 3 &&
745 	    adapter->tx_ring->itr_range == lowest_latency)
746 		adapter->tx_ring->itr_range = low_latency;
747 
748 	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
749 
750 	if (new_itr != adapter->tx_ring->itr_val) {
751 		u32 current_itr = adapter->tx_ring->itr_val;
752 		/* this attempts to bias the interrupt rate towards Bulk
753 		 * by adding intermediate steps when interrupt rate is
754 		 * increasing
755 		 */
756 		new_itr = new_itr > current_itr ?
757 			  min(current_itr + (new_itr >> 2), new_itr) :
758 			  new_itr;
759 		adapter->tx_ring->itr_val = new_itr;
760 
761 		adapter->tx_ring->set_itr = 1;
762 	}
763 
764 	adapter->rx_ring->itr_range =
765 			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
766 					 adapter->total_rx_packets,
767 					 adapter->total_rx_bytes);
768 	if (adapter->requested_itr == 3 &&
769 	    adapter->rx_ring->itr_range == lowest_latency)
770 		adapter->rx_ring->itr_range = low_latency;
771 
772 	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
773 
774 	if (new_itr != adapter->rx_ring->itr_val) {
775 		u32 current_itr = adapter->rx_ring->itr_val;
776 
777 		new_itr = new_itr > current_itr ?
778 			  min(current_itr + (new_itr >> 2), new_itr) :
779 			  new_itr;
780 		adapter->rx_ring->itr_val = new_itr;
781 
782 		adapter->rx_ring->set_itr = 1;
783 	}
784 }
785 
786 /**
787  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788  * @adapter: board private structure
789  *
790  * returns true if ring is completely cleaned
791  **/
792 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
793 {
794 	struct igbvf_adapter *adapter = tx_ring->adapter;
795 	struct net_device *netdev = adapter->netdev;
796 	struct igbvf_buffer *buffer_info;
797 	struct sk_buff *skb;
798 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
799 	unsigned int total_bytes = 0, total_packets = 0;
800 	unsigned int i, count = 0;
801 	bool cleaned = false;
802 
803 	i = tx_ring->next_to_clean;
804 	buffer_info = &tx_ring->buffer_info[i];
805 	eop_desc = buffer_info->next_to_watch;
806 
807 	do {
808 		/* if next_to_watch is not set then there is no work pending */
809 		if (!eop_desc)
810 			break;
811 
812 		/* prevent any other reads prior to eop_desc */
813 		smp_rmb();
814 
815 		/* if DD is not set pending work has not been completed */
816 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
817 			break;
818 
819 		/* clear next_to_watch to prevent false hangs */
820 		buffer_info->next_to_watch = NULL;
821 
822 		for (cleaned = false; !cleaned; count++) {
823 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
824 			cleaned = (tx_desc == eop_desc);
825 			skb = buffer_info->skb;
826 
827 			if (skb) {
828 				unsigned int segs, bytecount;
829 
830 				/* gso_segs is currently only valid for tcp */
831 				segs = skb_shinfo(skb)->gso_segs ?: 1;
832 				/* multiply data chunks by size of headers */
833 				bytecount = ((segs - 1) * skb_headlen(skb)) +
834 					    skb->len;
835 				total_packets += segs;
836 				total_bytes += bytecount;
837 			}
838 
839 			igbvf_put_txbuf(adapter, buffer_info);
840 			tx_desc->wb.status = 0;
841 
842 			i++;
843 			if (i == tx_ring->count)
844 				i = 0;
845 
846 			buffer_info = &tx_ring->buffer_info[i];
847 		}
848 
849 		eop_desc = buffer_info->next_to_watch;
850 	} while (count < tx_ring->count);
851 
852 	tx_ring->next_to_clean = i;
853 
854 	if (unlikely(count && netif_carrier_ok(netdev) &&
855 	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
856 		/* Make sure that anybody stopping the queue after this
857 		 * sees the new next_to_clean.
858 		 */
859 		smp_mb();
860 		if (netif_queue_stopped(netdev) &&
861 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
862 			netif_wake_queue(netdev);
863 			++adapter->restart_queue;
864 		}
865 	}
866 
867 	netdev->stats.tx_bytes += total_bytes;
868 	netdev->stats.tx_packets += total_packets;
869 	return count < tx_ring->count;
870 }
871 
872 static irqreturn_t igbvf_msix_other(int irq, void *data)
873 {
874 	struct net_device *netdev = data;
875 	struct igbvf_adapter *adapter = netdev_priv(netdev);
876 	struct e1000_hw *hw = &adapter->hw;
877 
878 	adapter->int_counter1++;
879 
880 	hw->mac.get_link_status = 1;
881 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
882 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
883 
884 	ew32(EIMS, adapter->eims_other);
885 
886 	return IRQ_HANDLED;
887 }
888 
889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890 {
891 	struct net_device *netdev = data;
892 	struct igbvf_adapter *adapter = netdev_priv(netdev);
893 	struct e1000_hw *hw = &adapter->hw;
894 	struct igbvf_ring *tx_ring = adapter->tx_ring;
895 
896 	if (tx_ring->set_itr) {
897 		writel(tx_ring->itr_val,
898 		       adapter->hw.hw_addr + tx_ring->itr_register);
899 		adapter->tx_ring->set_itr = 0;
900 	}
901 
902 	adapter->total_tx_bytes = 0;
903 	adapter->total_tx_packets = 0;
904 
905 	/* auto mask will automatically re-enable the interrupt when we write
906 	 * EICS
907 	 */
908 	if (!igbvf_clean_tx_irq(tx_ring))
909 		/* Ring was not completely cleaned, so fire another interrupt */
910 		ew32(EICS, tx_ring->eims_value);
911 	else
912 		ew32(EIMS, tx_ring->eims_value);
913 
914 	return IRQ_HANDLED;
915 }
916 
917 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
918 {
919 	struct net_device *netdev = data;
920 	struct igbvf_adapter *adapter = netdev_priv(netdev);
921 
922 	adapter->int_counter0++;
923 
924 	/* Write the ITR value calculated at the end of the
925 	 * previous interrupt.
926 	 */
927 	if (adapter->rx_ring->set_itr) {
928 		writel(adapter->rx_ring->itr_val,
929 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
930 		adapter->rx_ring->set_itr = 0;
931 	}
932 
933 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
934 		adapter->total_rx_bytes = 0;
935 		adapter->total_rx_packets = 0;
936 		__napi_schedule(&adapter->rx_ring->napi);
937 	}
938 
939 	return IRQ_HANDLED;
940 }
941 
942 #define IGBVF_NO_QUEUE -1
943 
944 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
945 				int tx_queue, int msix_vector)
946 {
947 	struct e1000_hw *hw = &adapter->hw;
948 	u32 ivar, index;
949 
950 	/* 82576 uses a table-based method for assigning vectors.
951 	 * Each queue has a single entry in the table to which we write
952 	 * a vector number along with a "valid" bit.  Sadly, the layout
953 	 * of the table is somewhat counterintuitive.
954 	 */
955 	if (rx_queue > IGBVF_NO_QUEUE) {
956 		index = (rx_queue >> 1);
957 		ivar = array_er32(IVAR0, index);
958 		if (rx_queue & 0x1) {
959 			/* vector goes into third byte of register */
960 			ivar = ivar & 0xFF00FFFF;
961 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
962 		} else {
963 			/* vector goes into low byte of register */
964 			ivar = ivar & 0xFFFFFF00;
965 			ivar |= msix_vector | E1000_IVAR_VALID;
966 		}
967 		adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
968 		array_ew32(IVAR0, index, ivar);
969 	}
970 	if (tx_queue > IGBVF_NO_QUEUE) {
971 		index = (tx_queue >> 1);
972 		ivar = array_er32(IVAR0, index);
973 		if (tx_queue & 0x1) {
974 			/* vector goes into high byte of register */
975 			ivar = ivar & 0x00FFFFFF;
976 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
977 		} else {
978 			/* vector goes into second byte of register */
979 			ivar = ivar & 0xFFFF00FF;
980 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
981 		}
982 		adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
983 		array_ew32(IVAR0, index, ivar);
984 	}
985 }
986 
987 /**
988  * igbvf_configure_msix - Configure MSI-X hardware
989  * @adapter: board private structure
990  *
991  * igbvf_configure_msix sets up the hardware to properly
992  * generate MSI-X interrupts.
993  **/
994 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
995 {
996 	u32 tmp;
997 	struct e1000_hw *hw = &adapter->hw;
998 	struct igbvf_ring *tx_ring = adapter->tx_ring;
999 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1000 	int vector = 0;
1001 
1002 	adapter->eims_enable_mask = 0;
1003 
1004 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005 	adapter->eims_enable_mask |= tx_ring->eims_value;
1006 	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008 	adapter->eims_enable_mask |= rx_ring->eims_value;
1009 	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1010 
1011 	/* set vector for other causes, i.e. link changes */
1012 
1013 	tmp = (vector++ | E1000_IVAR_VALID);
1014 
1015 	ew32(IVAR_MISC, tmp);
1016 
1017 	adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1018 	adapter->eims_other = BIT(vector - 1);
1019 	e1e_flush();
1020 }
1021 
1022 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1023 {
1024 	if (adapter->msix_entries) {
1025 		pci_disable_msix(adapter->pdev);
1026 		kfree(adapter->msix_entries);
1027 		adapter->msix_entries = NULL;
1028 	}
1029 }
1030 
1031 /**
1032  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033  * @adapter: board private structure
1034  *
1035  * Attempt to configure interrupts using the best available
1036  * capabilities of the hardware and kernel.
1037  **/
1038 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1039 {
1040 	int err = -ENOMEM;
1041 	int i;
1042 
1043 	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045 					GFP_KERNEL);
1046 	if (adapter->msix_entries) {
1047 		for (i = 0; i < 3; i++)
1048 			adapter->msix_entries[i].entry = i;
1049 
1050 		err = pci_enable_msix_range(adapter->pdev,
1051 					    adapter->msix_entries, 3, 3);
1052 	}
1053 
1054 	if (err < 0) {
1055 		/* MSI-X failed */
1056 		dev_err(&adapter->pdev->dev,
1057 			"Failed to initialize MSI-X interrupts.\n");
1058 		igbvf_reset_interrupt_capability(adapter);
1059 	}
1060 }
1061 
1062 /**
1063  * igbvf_request_msix - Initialize MSI-X interrupts
1064  * @adapter: board private structure
1065  *
1066  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067  * kernel.
1068  **/
1069 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070 {
1071 	struct net_device *netdev = adapter->netdev;
1072 	int err = 0, vector = 0;
1073 
1074 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077 	} else {
1078 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080 	}
1081 
1082 	err = request_irq(adapter->msix_entries[vector].vector,
1083 			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084 			  netdev);
1085 	if (err)
1086 		goto out;
1087 
1088 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1089 	adapter->tx_ring->itr_val = adapter->current_itr;
1090 	vector++;
1091 
1092 	err = request_irq(adapter->msix_entries[vector].vector,
1093 			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094 			  netdev);
1095 	if (err)
1096 		goto out;
1097 
1098 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1099 	adapter->rx_ring->itr_val = adapter->current_itr;
1100 	vector++;
1101 
1102 	err = request_irq(adapter->msix_entries[vector].vector,
1103 			  igbvf_msix_other, 0, netdev->name, netdev);
1104 	if (err)
1105 		goto out;
1106 
1107 	igbvf_configure_msix(adapter);
1108 	return 0;
1109 out:
1110 	return err;
1111 }
1112 
1113 /**
1114  * igbvf_alloc_queues - Allocate memory for all rings
1115  * @adapter: board private structure to initialize
1116  **/
1117 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1118 {
1119 	struct net_device *netdev = adapter->netdev;
1120 
1121 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122 	if (!adapter->tx_ring)
1123 		return -ENOMEM;
1124 
1125 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126 	if (!adapter->rx_ring) {
1127 		kfree(adapter->tx_ring);
1128 		return -ENOMEM;
1129 	}
1130 
1131 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1132 
1133 	return 0;
1134 }
1135 
1136 /**
1137  * igbvf_request_irq - initialize interrupts
1138  * @adapter: board private structure
1139  *
1140  * Attempts to configure interrupts using the best available
1141  * capabilities of the hardware and kernel.
1142  **/
1143 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1144 {
1145 	int err = -1;
1146 
1147 	/* igbvf supports msi-x only */
1148 	if (adapter->msix_entries)
1149 		err = igbvf_request_msix(adapter);
1150 
1151 	if (!err)
1152 		return err;
1153 
1154 	dev_err(&adapter->pdev->dev,
1155 		"Unable to allocate interrupt, Error: %d\n", err);
1156 
1157 	return err;
1158 }
1159 
1160 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1161 {
1162 	struct net_device *netdev = adapter->netdev;
1163 	int vector;
1164 
1165 	if (adapter->msix_entries) {
1166 		for (vector = 0; vector < 3; vector++)
1167 			free_irq(adapter->msix_entries[vector].vector, netdev);
1168 	}
1169 }
1170 
1171 /**
1172  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173  * @adapter: board private structure
1174  **/
1175 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1176 {
1177 	struct e1000_hw *hw = &adapter->hw;
1178 
1179 	ew32(EIMC, ~0);
1180 
1181 	if (adapter->msix_entries)
1182 		ew32(EIAC, 0);
1183 }
1184 
1185 /**
1186  * igbvf_irq_enable - Enable default interrupt generation settings
1187  * @adapter: board private structure
1188  **/
1189 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1190 {
1191 	struct e1000_hw *hw = &adapter->hw;
1192 
1193 	ew32(EIAC, adapter->eims_enable_mask);
1194 	ew32(EIAM, adapter->eims_enable_mask);
1195 	ew32(EIMS, adapter->eims_enable_mask);
1196 }
1197 
1198 /**
1199  * igbvf_poll - NAPI Rx polling callback
1200  * @napi: struct associated with this polling callback
1201  * @budget: amount of packets driver is allowed to process this poll
1202  **/
1203 static int igbvf_poll(struct napi_struct *napi, int budget)
1204 {
1205 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206 	struct igbvf_adapter *adapter = rx_ring->adapter;
1207 	struct e1000_hw *hw = &adapter->hw;
1208 	int work_done = 0;
1209 
1210 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1211 
1212 	/* If not enough Rx work done, exit the polling mode */
1213 	if (work_done < budget) {
1214 		napi_complete_done(napi, work_done);
1215 
1216 		if (adapter->requested_itr & 3)
1217 			igbvf_set_itr(adapter);
1218 
1219 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220 			ew32(EIMS, adapter->rx_ring->eims_value);
1221 	}
1222 
1223 	return work_done;
1224 }
1225 
1226 /**
1227  * igbvf_set_rlpml - set receive large packet maximum length
1228  * @adapter: board private structure
1229  *
1230  * Configure the maximum size of packets that will be received
1231  */
1232 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1233 {
1234 	int max_frame_size;
1235 	struct e1000_hw *hw = &adapter->hw;
1236 
1237 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1238 
1239 	spin_lock_bh(&hw->mbx_lock);
1240 
1241 	e1000_rlpml_set_vf(hw, max_frame_size);
1242 
1243 	spin_unlock_bh(&hw->mbx_lock);
1244 }
1245 
1246 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1247 				 __be16 proto, u16 vid)
1248 {
1249 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1250 	struct e1000_hw *hw = &adapter->hw;
1251 
1252 	spin_lock_bh(&hw->mbx_lock);
1253 
1254 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1255 		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1256 		spin_unlock_bh(&hw->mbx_lock);
1257 		return -EINVAL;
1258 	}
1259 
1260 	spin_unlock_bh(&hw->mbx_lock);
1261 
1262 	set_bit(vid, adapter->active_vlans);
1263 	return 0;
1264 }
1265 
1266 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1267 				  __be16 proto, u16 vid)
1268 {
1269 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1270 	struct e1000_hw *hw = &adapter->hw;
1271 
1272 	spin_lock_bh(&hw->mbx_lock);
1273 
1274 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1275 		dev_err(&adapter->pdev->dev,
1276 			"Failed to remove vlan id %d\n", vid);
1277 		spin_unlock_bh(&hw->mbx_lock);
1278 		return -EINVAL;
1279 	}
1280 
1281 	spin_unlock_bh(&hw->mbx_lock);
1282 
1283 	clear_bit(vid, adapter->active_vlans);
1284 	return 0;
1285 }
1286 
1287 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1288 {
1289 	u16 vid;
1290 
1291 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1292 		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1293 }
1294 
1295 /**
1296  * igbvf_configure_tx - Configure Transmit Unit after Reset
1297  * @adapter: board private structure
1298  *
1299  * Configure the Tx unit of the MAC after a reset.
1300  **/
1301 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1302 {
1303 	struct e1000_hw *hw = &adapter->hw;
1304 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1305 	u64 tdba;
1306 	u32 txdctl, dca_txctrl;
1307 
1308 	/* disable transmits */
1309 	txdctl = er32(TXDCTL(0));
1310 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1311 	e1e_flush();
1312 	msleep(10);
1313 
1314 	/* Setup the HW Tx Head and Tail descriptor pointers */
1315 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1316 	tdba = tx_ring->dma;
1317 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1318 	ew32(TDBAH(0), (tdba >> 32));
1319 	ew32(TDH(0), 0);
1320 	ew32(TDT(0), 0);
1321 	tx_ring->head = E1000_TDH(0);
1322 	tx_ring->tail = E1000_TDT(0);
1323 
1324 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1325 	 * MUST be delivered in order or it will completely screw up
1326 	 * our bookkeeping.
1327 	 */
1328 	dca_txctrl = er32(DCA_TXCTRL(0));
1329 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1330 	ew32(DCA_TXCTRL(0), dca_txctrl);
1331 
1332 	/* enable transmits */
1333 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1334 	ew32(TXDCTL(0), txdctl);
1335 
1336 	/* Setup Transmit Descriptor Settings for eop descriptor */
1337 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1338 
1339 	/* enable Report Status bit */
1340 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1341 }
1342 
1343 /**
1344  * igbvf_setup_srrctl - configure the receive control registers
1345  * @adapter: Board private structure
1346  **/
1347 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1348 {
1349 	struct e1000_hw *hw = &adapter->hw;
1350 	u32 srrctl = 0;
1351 
1352 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1353 		    E1000_SRRCTL_BSIZEHDR_MASK |
1354 		    E1000_SRRCTL_BSIZEPKT_MASK);
1355 
1356 	/* Enable queue drop to avoid head of line blocking */
1357 	srrctl |= E1000_SRRCTL_DROP_EN;
1358 
1359 	/* Setup buffer sizes */
1360 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1361 		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1362 
1363 	if (adapter->rx_buffer_len < 2048) {
1364 		adapter->rx_ps_hdr_size = 0;
1365 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1366 	} else {
1367 		adapter->rx_ps_hdr_size = 128;
1368 		srrctl |= adapter->rx_ps_hdr_size <<
1369 			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1370 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1371 	}
1372 
1373 	ew32(SRRCTL(0), srrctl);
1374 }
1375 
1376 /**
1377  * igbvf_configure_rx - Configure Receive Unit after Reset
1378  * @adapter: board private structure
1379  *
1380  * Configure the Rx unit of the MAC after a reset.
1381  **/
1382 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1383 {
1384 	struct e1000_hw *hw = &adapter->hw;
1385 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1386 	u64 rdba;
1387 	u32 rxdctl;
1388 
1389 	/* disable receives */
1390 	rxdctl = er32(RXDCTL(0));
1391 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1392 	e1e_flush();
1393 	msleep(10);
1394 
1395 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1396 	 * the Base and Length of the Rx Descriptor Ring
1397 	 */
1398 	rdba = rx_ring->dma;
1399 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1400 	ew32(RDBAH(0), (rdba >> 32));
1401 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1402 	rx_ring->head = E1000_RDH(0);
1403 	rx_ring->tail = E1000_RDT(0);
1404 	ew32(RDH(0), 0);
1405 	ew32(RDT(0), 0);
1406 
1407 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1408 	rxdctl &= 0xFFF00000;
1409 	rxdctl |= IGBVF_RX_PTHRESH;
1410 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1411 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1412 
1413 	igbvf_set_rlpml(adapter);
1414 
1415 	/* enable receives */
1416 	ew32(RXDCTL(0), rxdctl);
1417 }
1418 
1419 /**
1420  * igbvf_set_multi - Multicast and Promiscuous mode set
1421  * @netdev: network interface device structure
1422  *
1423  * The set_multi entry point is called whenever the multicast address
1424  * list or the network interface flags are updated.  This routine is
1425  * responsible for configuring the hardware for proper multicast,
1426  * promiscuous mode, and all-multi behavior.
1427  **/
1428 static void igbvf_set_multi(struct net_device *netdev)
1429 {
1430 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1431 	struct e1000_hw *hw = &adapter->hw;
1432 	struct netdev_hw_addr *ha;
1433 	u8  *mta_list = NULL;
1434 	int i;
1435 
1436 	if (!netdev_mc_empty(netdev)) {
1437 		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1438 					 GFP_ATOMIC);
1439 		if (!mta_list)
1440 			return;
1441 	}
1442 
1443 	/* prepare a packed array of only addresses. */
1444 	i = 0;
1445 	netdev_for_each_mc_addr(ha, netdev)
1446 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1447 
1448 	spin_lock_bh(&hw->mbx_lock);
1449 
1450 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1451 
1452 	spin_unlock_bh(&hw->mbx_lock);
1453 	kfree(mta_list);
1454 }
1455 
1456 /**
1457  * igbvf_set_uni - Configure unicast MAC filters
1458  * @netdev: network interface device structure
1459  *
1460  * This routine is responsible for configuring the hardware for proper
1461  * unicast filters.
1462  **/
1463 static int igbvf_set_uni(struct net_device *netdev)
1464 {
1465 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1466 	struct e1000_hw *hw = &adapter->hw;
1467 
1468 	if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1469 		pr_err("Too many unicast filters - No Space\n");
1470 		return -ENOSPC;
1471 	}
1472 
1473 	spin_lock_bh(&hw->mbx_lock);
1474 
1475 	/* Clear all unicast MAC filters */
1476 	hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1477 
1478 	spin_unlock_bh(&hw->mbx_lock);
1479 
1480 	if (!netdev_uc_empty(netdev)) {
1481 		struct netdev_hw_addr *ha;
1482 
1483 		/* Add MAC filters one by one */
1484 		netdev_for_each_uc_addr(ha, netdev) {
1485 			spin_lock_bh(&hw->mbx_lock);
1486 
1487 			hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1488 						ha->addr);
1489 
1490 			spin_unlock_bh(&hw->mbx_lock);
1491 			udelay(200);
1492 		}
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 static void igbvf_set_rx_mode(struct net_device *netdev)
1499 {
1500 	igbvf_set_multi(netdev);
1501 	igbvf_set_uni(netdev);
1502 }
1503 
1504 /**
1505  * igbvf_configure - configure the hardware for Rx and Tx
1506  * @adapter: private board structure
1507  **/
1508 static void igbvf_configure(struct igbvf_adapter *adapter)
1509 {
1510 	igbvf_set_rx_mode(adapter->netdev);
1511 
1512 	igbvf_restore_vlan(adapter);
1513 
1514 	igbvf_configure_tx(adapter);
1515 	igbvf_setup_srrctl(adapter);
1516 	igbvf_configure_rx(adapter);
1517 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1518 			       igbvf_desc_unused(adapter->rx_ring));
1519 }
1520 
1521 /* igbvf_reset - bring the hardware into a known good state
1522  * @adapter: private board structure
1523  *
1524  * This function boots the hardware and enables some settings that
1525  * require a configuration cycle of the hardware - those cannot be
1526  * set/changed during runtime. After reset the device needs to be
1527  * properly configured for Rx, Tx etc.
1528  */
1529 static void igbvf_reset(struct igbvf_adapter *adapter)
1530 {
1531 	struct e1000_mac_info *mac = &adapter->hw.mac;
1532 	struct net_device *netdev = adapter->netdev;
1533 	struct e1000_hw *hw = &adapter->hw;
1534 
1535 	spin_lock_bh(&hw->mbx_lock);
1536 
1537 	/* Allow time for pending master requests to run */
1538 	if (mac->ops.reset_hw(hw))
1539 		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1540 
1541 	mac->ops.init_hw(hw);
1542 
1543 	spin_unlock_bh(&hw->mbx_lock);
1544 
1545 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1546 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1547 		       netdev->addr_len);
1548 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1549 		       netdev->addr_len);
1550 	}
1551 
1552 	adapter->last_reset = jiffies;
1553 }
1554 
1555 int igbvf_up(struct igbvf_adapter *adapter)
1556 {
1557 	struct e1000_hw *hw = &adapter->hw;
1558 
1559 	/* hardware has been reset, we need to reload some things */
1560 	igbvf_configure(adapter);
1561 
1562 	clear_bit(__IGBVF_DOWN, &adapter->state);
1563 
1564 	napi_enable(&adapter->rx_ring->napi);
1565 	if (adapter->msix_entries)
1566 		igbvf_configure_msix(adapter);
1567 
1568 	/* Clear any pending interrupts. */
1569 	er32(EICR);
1570 	igbvf_irq_enable(adapter);
1571 
1572 	/* start the watchdog */
1573 	hw->mac.get_link_status = 1;
1574 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1575 
1576 	return 0;
1577 }
1578 
1579 void igbvf_down(struct igbvf_adapter *adapter)
1580 {
1581 	struct net_device *netdev = adapter->netdev;
1582 	struct e1000_hw *hw = &adapter->hw;
1583 	u32 rxdctl, txdctl;
1584 
1585 	/* signal that we're down so the interrupt handler does not
1586 	 * reschedule our watchdog timer
1587 	 */
1588 	set_bit(__IGBVF_DOWN, &adapter->state);
1589 
1590 	/* disable receives in the hardware */
1591 	rxdctl = er32(RXDCTL(0));
1592 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1593 
1594 	netif_carrier_off(netdev);
1595 	netif_stop_queue(netdev);
1596 
1597 	/* disable transmits in the hardware */
1598 	txdctl = er32(TXDCTL(0));
1599 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1600 
1601 	/* flush both disables and wait for them to finish */
1602 	e1e_flush();
1603 	msleep(10);
1604 
1605 	napi_disable(&adapter->rx_ring->napi);
1606 
1607 	igbvf_irq_disable(adapter);
1608 
1609 	del_timer_sync(&adapter->watchdog_timer);
1610 
1611 	/* record the stats before reset*/
1612 	igbvf_update_stats(adapter);
1613 
1614 	adapter->link_speed = 0;
1615 	adapter->link_duplex = 0;
1616 
1617 	igbvf_reset(adapter);
1618 	igbvf_clean_tx_ring(adapter->tx_ring);
1619 	igbvf_clean_rx_ring(adapter->rx_ring);
1620 }
1621 
1622 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1623 {
1624 	might_sleep();
1625 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1626 		usleep_range(1000, 2000);
1627 	igbvf_down(adapter);
1628 	igbvf_up(adapter);
1629 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1630 }
1631 
1632 /**
1633  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1634  * @adapter: board private structure to initialize
1635  *
1636  * igbvf_sw_init initializes the Adapter private data structure.
1637  * Fields are initialized based on PCI device information and
1638  * OS network device settings (MTU size).
1639  **/
1640 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1641 {
1642 	struct net_device *netdev = adapter->netdev;
1643 	s32 rc;
1644 
1645 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1646 	adapter->rx_ps_hdr_size = 0;
1647 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1648 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1649 
1650 	adapter->tx_int_delay = 8;
1651 	adapter->tx_abs_int_delay = 32;
1652 	adapter->rx_int_delay = 0;
1653 	adapter->rx_abs_int_delay = 8;
1654 	adapter->requested_itr = 3;
1655 	adapter->current_itr = IGBVF_START_ITR;
1656 
1657 	/* Set various function pointers */
1658 	adapter->ei->init_ops(&adapter->hw);
1659 
1660 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1661 	if (rc)
1662 		return rc;
1663 
1664 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1665 	if (rc)
1666 		return rc;
1667 
1668 	igbvf_set_interrupt_capability(adapter);
1669 
1670 	if (igbvf_alloc_queues(adapter))
1671 		return -ENOMEM;
1672 
1673 	spin_lock_init(&adapter->tx_queue_lock);
1674 
1675 	/* Explicitly disable IRQ since the NIC can be in any state. */
1676 	igbvf_irq_disable(adapter);
1677 
1678 	spin_lock_init(&adapter->stats_lock);
1679 	spin_lock_init(&adapter->hw.mbx_lock);
1680 
1681 	set_bit(__IGBVF_DOWN, &adapter->state);
1682 	return 0;
1683 }
1684 
1685 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1686 {
1687 	struct e1000_hw *hw = &adapter->hw;
1688 
1689 	adapter->stats.last_gprc = er32(VFGPRC);
1690 	adapter->stats.last_gorc = er32(VFGORC);
1691 	adapter->stats.last_gptc = er32(VFGPTC);
1692 	adapter->stats.last_gotc = er32(VFGOTC);
1693 	adapter->stats.last_mprc = er32(VFMPRC);
1694 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1695 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1696 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1697 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1698 
1699 	adapter->stats.base_gprc = er32(VFGPRC);
1700 	adapter->stats.base_gorc = er32(VFGORC);
1701 	adapter->stats.base_gptc = er32(VFGPTC);
1702 	adapter->stats.base_gotc = er32(VFGOTC);
1703 	adapter->stats.base_mprc = er32(VFMPRC);
1704 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1705 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1706 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1707 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1708 }
1709 
1710 /**
1711  * igbvf_open - Called when a network interface is made active
1712  * @netdev: network interface device structure
1713  *
1714  * Returns 0 on success, negative value on failure
1715  *
1716  * The open entry point is called when a network interface is made
1717  * active by the system (IFF_UP).  At this point all resources needed
1718  * for transmit and receive operations are allocated, the interrupt
1719  * handler is registered with the OS, the watchdog timer is started,
1720  * and the stack is notified that the interface is ready.
1721  **/
1722 static int igbvf_open(struct net_device *netdev)
1723 {
1724 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1725 	struct e1000_hw *hw = &adapter->hw;
1726 	int err;
1727 
1728 	/* disallow open during test */
1729 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1730 		return -EBUSY;
1731 
1732 	/* allocate transmit descriptors */
1733 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1734 	if (err)
1735 		goto err_setup_tx;
1736 
1737 	/* allocate receive descriptors */
1738 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1739 	if (err)
1740 		goto err_setup_rx;
1741 
1742 	/* before we allocate an interrupt, we must be ready to handle it.
1743 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1744 	 * as soon as we call pci_request_irq, so we have to setup our
1745 	 * clean_rx handler before we do so.
1746 	 */
1747 	igbvf_configure(adapter);
1748 
1749 	err = igbvf_request_irq(adapter);
1750 	if (err)
1751 		goto err_req_irq;
1752 
1753 	/* From here on the code is the same as igbvf_up() */
1754 	clear_bit(__IGBVF_DOWN, &adapter->state);
1755 
1756 	napi_enable(&adapter->rx_ring->napi);
1757 
1758 	/* clear any pending interrupts */
1759 	er32(EICR);
1760 
1761 	igbvf_irq_enable(adapter);
1762 
1763 	/* start the watchdog */
1764 	hw->mac.get_link_status = 1;
1765 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1766 
1767 	return 0;
1768 
1769 err_req_irq:
1770 	igbvf_free_rx_resources(adapter->rx_ring);
1771 err_setup_rx:
1772 	igbvf_free_tx_resources(adapter->tx_ring);
1773 err_setup_tx:
1774 	igbvf_reset(adapter);
1775 
1776 	return err;
1777 }
1778 
1779 /**
1780  * igbvf_close - Disables a network interface
1781  * @netdev: network interface device structure
1782  *
1783  * Returns 0, this is not allowed to fail
1784  *
1785  * The close entry point is called when an interface is de-activated
1786  * by the OS.  The hardware is still under the drivers control, but
1787  * needs to be disabled.  A global MAC reset is issued to stop the
1788  * hardware, and all transmit and receive resources are freed.
1789  **/
1790 static int igbvf_close(struct net_device *netdev)
1791 {
1792 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1793 
1794 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1795 	igbvf_down(adapter);
1796 
1797 	igbvf_free_irq(adapter);
1798 
1799 	igbvf_free_tx_resources(adapter->tx_ring);
1800 	igbvf_free_rx_resources(adapter->rx_ring);
1801 
1802 	return 0;
1803 }
1804 
1805 /**
1806  * igbvf_set_mac - Change the Ethernet Address of the NIC
1807  * @netdev: network interface device structure
1808  * @p: pointer to an address structure
1809  *
1810  * Returns 0 on success, negative on failure
1811  **/
1812 static int igbvf_set_mac(struct net_device *netdev, void *p)
1813 {
1814 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1815 	struct e1000_hw *hw = &adapter->hw;
1816 	struct sockaddr *addr = p;
1817 
1818 	if (!is_valid_ether_addr(addr->sa_data))
1819 		return -EADDRNOTAVAIL;
1820 
1821 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1822 
1823 	spin_lock_bh(&hw->mbx_lock);
1824 
1825 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1826 
1827 	spin_unlock_bh(&hw->mbx_lock);
1828 
1829 	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1830 		return -EADDRNOTAVAIL;
1831 
1832 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1833 
1834 	return 0;
1835 }
1836 
1837 #define UPDATE_VF_COUNTER(reg, name) \
1838 { \
1839 	u32 current_counter = er32(reg); \
1840 	if (current_counter < adapter->stats.last_##name) \
1841 		adapter->stats.name += 0x100000000LL; \
1842 	adapter->stats.last_##name = current_counter; \
1843 	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1844 	adapter->stats.name |= current_counter; \
1845 }
1846 
1847 /**
1848  * igbvf_update_stats - Update the board statistics counters
1849  * @adapter: board private structure
1850 **/
1851 void igbvf_update_stats(struct igbvf_adapter *adapter)
1852 {
1853 	struct e1000_hw *hw = &adapter->hw;
1854 	struct pci_dev *pdev = adapter->pdev;
1855 
1856 	/* Prevent stats update while adapter is being reset, link is down
1857 	 * or if the pci connection is down.
1858 	 */
1859 	if (adapter->link_speed == 0)
1860 		return;
1861 
1862 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1863 		return;
1864 
1865 	if (pci_channel_offline(pdev))
1866 		return;
1867 
1868 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1869 	UPDATE_VF_COUNTER(VFGORC, gorc);
1870 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1871 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1872 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1873 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1874 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1875 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1876 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1877 
1878 	/* Fill out the OS statistics structure */
1879 	adapter->netdev->stats.multicast = adapter->stats.mprc;
1880 }
1881 
1882 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1883 {
1884 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1885 		 adapter->link_speed,
1886 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1887 }
1888 
1889 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1890 {
1891 	struct e1000_hw *hw = &adapter->hw;
1892 	s32 ret_val = E1000_SUCCESS;
1893 	bool link_active;
1894 
1895 	/* If interface is down, stay link down */
1896 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1897 		return false;
1898 
1899 	spin_lock_bh(&hw->mbx_lock);
1900 
1901 	ret_val = hw->mac.ops.check_for_link(hw);
1902 
1903 	spin_unlock_bh(&hw->mbx_lock);
1904 
1905 	link_active = !hw->mac.get_link_status;
1906 
1907 	/* if check for link returns error we will need to reset */
1908 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1909 		schedule_work(&adapter->reset_task);
1910 
1911 	return link_active;
1912 }
1913 
1914 /**
1915  * igbvf_watchdog - Timer Call-back
1916  * @data: pointer to adapter cast into an unsigned long
1917  **/
1918 static void igbvf_watchdog(struct timer_list *t)
1919 {
1920 	struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1921 
1922 	/* Do the rest outside of interrupt context */
1923 	schedule_work(&adapter->watchdog_task);
1924 }
1925 
1926 static void igbvf_watchdog_task(struct work_struct *work)
1927 {
1928 	struct igbvf_adapter *adapter = container_of(work,
1929 						     struct igbvf_adapter,
1930 						     watchdog_task);
1931 	struct net_device *netdev = adapter->netdev;
1932 	struct e1000_mac_info *mac = &adapter->hw.mac;
1933 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1934 	struct e1000_hw *hw = &adapter->hw;
1935 	u32 link;
1936 	int tx_pending = 0;
1937 
1938 	link = igbvf_has_link(adapter);
1939 
1940 	if (link) {
1941 		if (!netif_carrier_ok(netdev)) {
1942 			mac->ops.get_link_up_info(&adapter->hw,
1943 						  &adapter->link_speed,
1944 						  &adapter->link_duplex);
1945 			igbvf_print_link_info(adapter);
1946 
1947 			netif_carrier_on(netdev);
1948 			netif_wake_queue(netdev);
1949 		}
1950 	} else {
1951 		if (netif_carrier_ok(netdev)) {
1952 			adapter->link_speed = 0;
1953 			adapter->link_duplex = 0;
1954 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1955 			netif_carrier_off(netdev);
1956 			netif_stop_queue(netdev);
1957 		}
1958 	}
1959 
1960 	if (netif_carrier_ok(netdev)) {
1961 		igbvf_update_stats(adapter);
1962 	} else {
1963 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1964 			      tx_ring->count);
1965 		if (tx_pending) {
1966 			/* We've lost link, so the controller stops DMA,
1967 			 * but we've got queued Tx work that's never going
1968 			 * to get done, so reset controller to flush Tx.
1969 			 * (Do the reset outside of interrupt context).
1970 			 */
1971 			adapter->tx_timeout_count++;
1972 			schedule_work(&adapter->reset_task);
1973 		}
1974 	}
1975 
1976 	/* Cause software interrupt to ensure Rx ring is cleaned */
1977 	ew32(EICS, adapter->rx_ring->eims_value);
1978 
1979 	/* Reset the timer */
1980 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1981 		mod_timer(&adapter->watchdog_timer,
1982 			  round_jiffies(jiffies + (2 * HZ)));
1983 }
1984 
1985 #define IGBVF_TX_FLAGS_CSUM		0x00000001
1986 #define IGBVF_TX_FLAGS_VLAN		0x00000002
1987 #define IGBVF_TX_FLAGS_TSO		0x00000004
1988 #define IGBVF_TX_FLAGS_IPV4		0x00000008
1989 #define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1990 #define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1991 
1992 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1993 			      u32 type_tucmd, u32 mss_l4len_idx)
1994 {
1995 	struct e1000_adv_tx_context_desc *context_desc;
1996 	struct igbvf_buffer *buffer_info;
1997 	u16 i = tx_ring->next_to_use;
1998 
1999 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2000 	buffer_info = &tx_ring->buffer_info[i];
2001 
2002 	i++;
2003 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2004 
2005 	/* set bits to identify this as an advanced context descriptor */
2006 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2007 
2008 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
2009 	context_desc->seqnum_seed	= 0;
2010 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
2011 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
2012 
2013 	buffer_info->time_stamp = jiffies;
2014 	buffer_info->dma = 0;
2015 }
2016 
2017 static int igbvf_tso(struct igbvf_ring *tx_ring,
2018 		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2019 {
2020 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2021 	union {
2022 		struct iphdr *v4;
2023 		struct ipv6hdr *v6;
2024 		unsigned char *hdr;
2025 	} ip;
2026 	union {
2027 		struct tcphdr *tcp;
2028 		unsigned char *hdr;
2029 	} l4;
2030 	u32 paylen, l4_offset;
2031 	int err;
2032 
2033 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2034 		return 0;
2035 
2036 	if (!skb_is_gso(skb))
2037 		return 0;
2038 
2039 	err = skb_cow_head(skb, 0);
2040 	if (err < 0)
2041 		return err;
2042 
2043 	ip.hdr = skb_network_header(skb);
2044 	l4.hdr = skb_checksum_start(skb);
2045 
2046 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2047 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2048 
2049 	/* initialize outer IP header fields */
2050 	if (ip.v4->version == 4) {
2051 		unsigned char *csum_start = skb_checksum_start(skb);
2052 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2053 
2054 		/* IP header will have to cancel out any data that
2055 		 * is not a part of the outer IP header
2056 		 */
2057 		ip.v4->check = csum_fold(csum_partial(trans_start,
2058 						      csum_start - trans_start,
2059 						      0));
2060 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2061 
2062 		ip.v4->tot_len = 0;
2063 	} else {
2064 		ip.v6->payload_len = 0;
2065 	}
2066 
2067 	/* determine offset of inner transport header */
2068 	l4_offset = l4.hdr - skb->data;
2069 
2070 	/* compute length of segmentation header */
2071 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2072 
2073 	/* remove payload length from inner checksum */
2074 	paylen = skb->len - l4_offset;
2075 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2076 
2077 	/* MSS L4LEN IDX */
2078 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2079 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2080 
2081 	/* VLAN MACLEN IPLEN */
2082 	vlan_macip_lens = l4.hdr - ip.hdr;
2083 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2084 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2085 
2086 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2087 
2088 	return 1;
2089 }
2090 
2091 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2092 {
2093 	unsigned int offset = 0;
2094 
2095 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2096 
2097 	return offset == skb_checksum_start_offset(skb);
2098 }
2099 
2100 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2101 			  u32 tx_flags, __be16 protocol)
2102 {
2103 	u32 vlan_macip_lens = 0;
2104 	u32 type_tucmd = 0;
2105 
2106 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
2107 csum_failed:
2108 		if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2109 			return false;
2110 		goto no_csum;
2111 	}
2112 
2113 	switch (skb->csum_offset) {
2114 	case offsetof(struct tcphdr, check):
2115 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2116 		/* fall through */
2117 	case offsetof(struct udphdr, check):
2118 		break;
2119 	case offsetof(struct sctphdr, checksum):
2120 		/* validate that this is actually an SCTP request */
2121 		if (((protocol == htons(ETH_P_IP)) &&
2122 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2123 		    ((protocol == htons(ETH_P_IPV6)) &&
2124 		     igbvf_ipv6_csum_is_sctp(skb))) {
2125 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2126 			break;
2127 		}
2128 	default:
2129 		skb_checksum_help(skb);
2130 		goto csum_failed;
2131 	}
2132 
2133 	vlan_macip_lens = skb_checksum_start_offset(skb) -
2134 			  skb_network_offset(skb);
2135 no_csum:
2136 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2137 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2138 
2139 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2140 	return true;
2141 }
2142 
2143 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2144 {
2145 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2146 
2147 	/* there is enough descriptors then we don't need to worry  */
2148 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2149 		return 0;
2150 
2151 	netif_stop_queue(netdev);
2152 
2153 	/* Herbert's original patch had:
2154 	 *  smp_mb__after_netif_stop_queue();
2155 	 * but since that doesn't exist yet, just open code it.
2156 	 */
2157 	smp_mb();
2158 
2159 	/* We need to check again just in case room has been made available */
2160 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2161 		return -EBUSY;
2162 
2163 	netif_wake_queue(netdev);
2164 
2165 	++adapter->restart_queue;
2166 	return 0;
2167 }
2168 
2169 #define IGBVF_MAX_TXD_PWR	16
2170 #define IGBVF_MAX_DATA_PER_TXD	(1u << IGBVF_MAX_TXD_PWR)
2171 
2172 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2173 				   struct igbvf_ring *tx_ring,
2174 				   struct sk_buff *skb)
2175 {
2176 	struct igbvf_buffer *buffer_info;
2177 	struct pci_dev *pdev = adapter->pdev;
2178 	unsigned int len = skb_headlen(skb);
2179 	unsigned int count = 0, i;
2180 	unsigned int f;
2181 
2182 	i = tx_ring->next_to_use;
2183 
2184 	buffer_info = &tx_ring->buffer_info[i];
2185 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2186 	buffer_info->length = len;
2187 	/* set time_stamp *before* dma to help avoid a possible race */
2188 	buffer_info->time_stamp = jiffies;
2189 	buffer_info->mapped_as_page = false;
2190 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2191 					  DMA_TO_DEVICE);
2192 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2193 		goto dma_error;
2194 
2195 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2196 		const struct skb_frag_struct *frag;
2197 
2198 		count++;
2199 		i++;
2200 		if (i == tx_ring->count)
2201 			i = 0;
2202 
2203 		frag = &skb_shinfo(skb)->frags[f];
2204 		len = skb_frag_size(frag);
2205 
2206 		buffer_info = &tx_ring->buffer_info[i];
2207 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2208 		buffer_info->length = len;
2209 		buffer_info->time_stamp = jiffies;
2210 		buffer_info->mapped_as_page = true;
2211 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2212 						    DMA_TO_DEVICE);
2213 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2214 			goto dma_error;
2215 	}
2216 
2217 	tx_ring->buffer_info[i].skb = skb;
2218 
2219 	return ++count;
2220 
2221 dma_error:
2222 	dev_err(&pdev->dev, "TX DMA map failed\n");
2223 
2224 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2225 	buffer_info->dma = 0;
2226 	buffer_info->time_stamp = 0;
2227 	buffer_info->length = 0;
2228 	buffer_info->mapped_as_page = false;
2229 	if (count)
2230 		count--;
2231 
2232 	/* clear timestamp and dma mappings for remaining portion of packet */
2233 	while (count--) {
2234 		if (i == 0)
2235 			i += tx_ring->count;
2236 		i--;
2237 		buffer_info = &tx_ring->buffer_info[i];
2238 		igbvf_put_txbuf(adapter, buffer_info);
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2245 				      struct igbvf_ring *tx_ring,
2246 				      int tx_flags, int count,
2247 				      unsigned int first, u32 paylen,
2248 				      u8 hdr_len)
2249 {
2250 	union e1000_adv_tx_desc *tx_desc = NULL;
2251 	struct igbvf_buffer *buffer_info;
2252 	u32 olinfo_status = 0, cmd_type_len;
2253 	unsigned int i;
2254 
2255 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2256 			E1000_ADVTXD_DCMD_DEXT);
2257 
2258 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2259 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2260 
2261 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2262 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2263 
2264 		/* insert tcp checksum */
2265 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2266 
2267 		/* insert ip checksum */
2268 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2269 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2270 
2271 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2272 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2273 	}
2274 
2275 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2276 
2277 	i = tx_ring->next_to_use;
2278 	while (count--) {
2279 		buffer_info = &tx_ring->buffer_info[i];
2280 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2281 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2282 		tx_desc->read.cmd_type_len =
2283 			 cpu_to_le32(cmd_type_len | buffer_info->length);
2284 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2285 		i++;
2286 		if (i == tx_ring->count)
2287 			i = 0;
2288 	}
2289 
2290 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2291 	/* Force memory writes to complete before letting h/w
2292 	 * know there are new descriptors to fetch.  (Only
2293 	 * applicable for weak-ordered memory model archs,
2294 	 * such as IA-64).
2295 	 */
2296 	wmb();
2297 
2298 	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2299 	tx_ring->next_to_use = i;
2300 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2301 	/* we need this if more than one processor can write to our tail
2302 	 * at a time, it synchronizes IO on IA64/Altix systems
2303 	 */
2304 	mmiowb();
2305 }
2306 
2307 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2308 					     struct net_device *netdev,
2309 					     struct igbvf_ring *tx_ring)
2310 {
2311 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2312 	unsigned int first, tx_flags = 0;
2313 	u8 hdr_len = 0;
2314 	int count = 0;
2315 	int tso = 0;
2316 	__be16 protocol = vlan_get_protocol(skb);
2317 
2318 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2319 		dev_kfree_skb_any(skb);
2320 		return NETDEV_TX_OK;
2321 	}
2322 
2323 	if (skb->len <= 0) {
2324 		dev_kfree_skb_any(skb);
2325 		return NETDEV_TX_OK;
2326 	}
2327 
2328 	/* need: count + 4 desc gap to keep tail from touching
2329 	 *       + 2 desc gap to keep tail from touching head,
2330 	 *       + 1 desc for skb->data,
2331 	 *       + 1 desc for context descriptor,
2332 	 * head, otherwise try next time
2333 	 */
2334 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2335 		/* this is a hard error */
2336 		return NETDEV_TX_BUSY;
2337 	}
2338 
2339 	if (skb_vlan_tag_present(skb)) {
2340 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2341 		tx_flags |= (skb_vlan_tag_get(skb) <<
2342 			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2343 	}
2344 
2345 	if (protocol == htons(ETH_P_IP))
2346 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2347 
2348 	first = tx_ring->next_to_use;
2349 
2350 	tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2351 	if (unlikely(tso < 0)) {
2352 		dev_kfree_skb_any(skb);
2353 		return NETDEV_TX_OK;
2354 	}
2355 
2356 	if (tso)
2357 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2358 	else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2359 		 (skb->ip_summed == CHECKSUM_PARTIAL))
2360 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2361 
2362 	/* count reflects descriptors mapped, if 0 then mapping error
2363 	 * has occurred and we need to rewind the descriptor queue
2364 	 */
2365 	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2366 
2367 	if (count) {
2368 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2369 				   first, skb->len, hdr_len);
2370 		/* Make sure there is space in the ring for the next send. */
2371 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2372 	} else {
2373 		dev_kfree_skb_any(skb);
2374 		tx_ring->buffer_info[first].time_stamp = 0;
2375 		tx_ring->next_to_use = first;
2376 	}
2377 
2378 	return NETDEV_TX_OK;
2379 }
2380 
2381 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2382 				    struct net_device *netdev)
2383 {
2384 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2385 	struct igbvf_ring *tx_ring;
2386 
2387 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2388 		dev_kfree_skb_any(skb);
2389 		return NETDEV_TX_OK;
2390 	}
2391 
2392 	tx_ring = &adapter->tx_ring[0];
2393 
2394 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2395 }
2396 
2397 /**
2398  * igbvf_tx_timeout - Respond to a Tx Hang
2399  * @netdev: network interface device structure
2400  **/
2401 static void igbvf_tx_timeout(struct net_device *netdev)
2402 {
2403 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2404 
2405 	/* Do the reset outside of interrupt context */
2406 	adapter->tx_timeout_count++;
2407 	schedule_work(&adapter->reset_task);
2408 }
2409 
2410 static void igbvf_reset_task(struct work_struct *work)
2411 {
2412 	struct igbvf_adapter *adapter;
2413 
2414 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2415 
2416 	igbvf_reinit_locked(adapter);
2417 }
2418 
2419 /**
2420  * igbvf_change_mtu - Change the Maximum Transfer Unit
2421  * @netdev: network interface device structure
2422  * @new_mtu: new value for maximum frame size
2423  *
2424  * Returns 0 on success, negative on failure
2425  **/
2426 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2427 {
2428 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2429 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2430 
2431 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2432 		usleep_range(1000, 2000);
2433 	/* igbvf_down has a dependency on max_frame_size */
2434 	adapter->max_frame_size = max_frame;
2435 	if (netif_running(netdev))
2436 		igbvf_down(adapter);
2437 
2438 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2439 	 * means we reserve 2 more, this pushes us to allocate from the next
2440 	 * larger slab size.
2441 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2442 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2443 	 * fragmented skbs
2444 	 */
2445 
2446 	if (max_frame <= 1024)
2447 		adapter->rx_buffer_len = 1024;
2448 	else if (max_frame <= 2048)
2449 		adapter->rx_buffer_len = 2048;
2450 	else
2451 #if (PAGE_SIZE / 2) > 16384
2452 		adapter->rx_buffer_len = 16384;
2453 #else
2454 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2455 #endif
2456 
2457 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2458 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2459 	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2460 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2461 					 ETH_FCS_LEN;
2462 
2463 	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2464 		 netdev->mtu, new_mtu);
2465 	netdev->mtu = new_mtu;
2466 
2467 	if (netif_running(netdev))
2468 		igbvf_up(adapter);
2469 	else
2470 		igbvf_reset(adapter);
2471 
2472 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2473 
2474 	return 0;
2475 }
2476 
2477 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2478 {
2479 	switch (cmd) {
2480 	default:
2481 		return -EOPNOTSUPP;
2482 	}
2483 }
2484 
2485 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2486 {
2487 	struct net_device *netdev = pci_get_drvdata(pdev);
2488 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2489 #ifdef CONFIG_PM
2490 	int retval = 0;
2491 #endif
2492 
2493 	netif_device_detach(netdev);
2494 
2495 	if (netif_running(netdev)) {
2496 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2497 		igbvf_down(adapter);
2498 		igbvf_free_irq(adapter);
2499 	}
2500 
2501 #ifdef CONFIG_PM
2502 	retval = pci_save_state(pdev);
2503 	if (retval)
2504 		return retval;
2505 #endif
2506 
2507 	pci_disable_device(pdev);
2508 
2509 	return 0;
2510 }
2511 
2512 #ifdef CONFIG_PM
2513 static int igbvf_resume(struct pci_dev *pdev)
2514 {
2515 	struct net_device *netdev = pci_get_drvdata(pdev);
2516 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2517 	u32 err;
2518 
2519 	pci_restore_state(pdev);
2520 	err = pci_enable_device_mem(pdev);
2521 	if (err) {
2522 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2523 		return err;
2524 	}
2525 
2526 	pci_set_master(pdev);
2527 
2528 	if (netif_running(netdev)) {
2529 		err = igbvf_request_irq(adapter);
2530 		if (err)
2531 			return err;
2532 	}
2533 
2534 	igbvf_reset(adapter);
2535 
2536 	if (netif_running(netdev))
2537 		igbvf_up(adapter);
2538 
2539 	netif_device_attach(netdev);
2540 
2541 	return 0;
2542 }
2543 #endif
2544 
2545 static void igbvf_shutdown(struct pci_dev *pdev)
2546 {
2547 	igbvf_suspend(pdev, PMSG_SUSPEND);
2548 }
2549 
2550 #ifdef CONFIG_NET_POLL_CONTROLLER
2551 /* Polling 'interrupt' - used by things like netconsole to send skbs
2552  * without having to re-enable interrupts. It's not called while
2553  * the interrupt routine is executing.
2554  */
2555 static void igbvf_netpoll(struct net_device *netdev)
2556 {
2557 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2558 
2559 	disable_irq(adapter->pdev->irq);
2560 
2561 	igbvf_clean_tx_irq(adapter->tx_ring);
2562 
2563 	enable_irq(adapter->pdev->irq);
2564 }
2565 #endif
2566 
2567 /**
2568  * igbvf_io_error_detected - called when PCI error is detected
2569  * @pdev: Pointer to PCI device
2570  * @state: The current pci connection state
2571  *
2572  * This function is called after a PCI bus error affecting
2573  * this device has been detected.
2574  */
2575 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2576 						pci_channel_state_t state)
2577 {
2578 	struct net_device *netdev = pci_get_drvdata(pdev);
2579 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2580 
2581 	netif_device_detach(netdev);
2582 
2583 	if (state == pci_channel_io_perm_failure)
2584 		return PCI_ERS_RESULT_DISCONNECT;
2585 
2586 	if (netif_running(netdev))
2587 		igbvf_down(adapter);
2588 	pci_disable_device(pdev);
2589 
2590 	/* Request a slot slot reset. */
2591 	return PCI_ERS_RESULT_NEED_RESET;
2592 }
2593 
2594 /**
2595  * igbvf_io_slot_reset - called after the pci bus has been reset.
2596  * @pdev: Pointer to PCI device
2597  *
2598  * Restart the card from scratch, as if from a cold-boot. Implementation
2599  * resembles the first-half of the igbvf_resume routine.
2600  */
2601 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2602 {
2603 	struct net_device *netdev = pci_get_drvdata(pdev);
2604 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2605 
2606 	if (pci_enable_device_mem(pdev)) {
2607 		dev_err(&pdev->dev,
2608 			"Cannot re-enable PCI device after reset.\n");
2609 		return PCI_ERS_RESULT_DISCONNECT;
2610 	}
2611 	pci_set_master(pdev);
2612 
2613 	igbvf_reset(adapter);
2614 
2615 	return PCI_ERS_RESULT_RECOVERED;
2616 }
2617 
2618 /**
2619  * igbvf_io_resume - called when traffic can start flowing again.
2620  * @pdev: Pointer to PCI device
2621  *
2622  * This callback is called when the error recovery driver tells us that
2623  * its OK to resume normal operation. Implementation resembles the
2624  * second-half of the igbvf_resume routine.
2625  */
2626 static void igbvf_io_resume(struct pci_dev *pdev)
2627 {
2628 	struct net_device *netdev = pci_get_drvdata(pdev);
2629 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2630 
2631 	if (netif_running(netdev)) {
2632 		if (igbvf_up(adapter)) {
2633 			dev_err(&pdev->dev,
2634 				"can't bring device back up after reset\n");
2635 			return;
2636 		}
2637 	}
2638 
2639 	netif_device_attach(netdev);
2640 }
2641 
2642 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2643 {
2644 	struct e1000_hw *hw = &adapter->hw;
2645 	struct net_device *netdev = adapter->netdev;
2646 	struct pci_dev *pdev = adapter->pdev;
2647 
2648 	if (hw->mac.type == e1000_vfadapt_i350)
2649 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2650 	else
2651 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2652 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2653 }
2654 
2655 static int igbvf_set_features(struct net_device *netdev,
2656 			      netdev_features_t features)
2657 {
2658 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2659 
2660 	if (features & NETIF_F_RXCSUM)
2661 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2662 	else
2663 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2664 
2665 	return 0;
2666 }
2667 
2668 #define IGBVF_MAX_MAC_HDR_LEN		127
2669 #define IGBVF_MAX_NETWORK_HDR_LEN	511
2670 
2671 static netdev_features_t
2672 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2673 		     netdev_features_t features)
2674 {
2675 	unsigned int network_hdr_len, mac_hdr_len;
2676 
2677 	/* Make certain the headers can be described by a context descriptor */
2678 	mac_hdr_len = skb_network_header(skb) - skb->data;
2679 	if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2680 		return features & ~(NETIF_F_HW_CSUM |
2681 				    NETIF_F_SCTP_CRC |
2682 				    NETIF_F_HW_VLAN_CTAG_TX |
2683 				    NETIF_F_TSO |
2684 				    NETIF_F_TSO6);
2685 
2686 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2687 	if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2688 		return features & ~(NETIF_F_HW_CSUM |
2689 				    NETIF_F_SCTP_CRC |
2690 				    NETIF_F_TSO |
2691 				    NETIF_F_TSO6);
2692 
2693 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2694 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2695 	 */
2696 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2697 		features &= ~NETIF_F_TSO;
2698 
2699 	return features;
2700 }
2701 
2702 static const struct net_device_ops igbvf_netdev_ops = {
2703 	.ndo_open		= igbvf_open,
2704 	.ndo_stop		= igbvf_close,
2705 	.ndo_start_xmit		= igbvf_xmit_frame,
2706 	.ndo_set_rx_mode	= igbvf_set_rx_mode,
2707 	.ndo_set_mac_address	= igbvf_set_mac,
2708 	.ndo_change_mtu		= igbvf_change_mtu,
2709 	.ndo_do_ioctl		= igbvf_ioctl,
2710 	.ndo_tx_timeout		= igbvf_tx_timeout,
2711 	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2712 	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
2713 #ifdef CONFIG_NET_POLL_CONTROLLER
2714 	.ndo_poll_controller	= igbvf_netpoll,
2715 #endif
2716 	.ndo_set_features	= igbvf_set_features,
2717 	.ndo_features_check	= igbvf_features_check,
2718 };
2719 
2720 /**
2721  * igbvf_probe - Device Initialization Routine
2722  * @pdev: PCI device information struct
2723  * @ent: entry in igbvf_pci_tbl
2724  *
2725  * Returns 0 on success, negative on failure
2726  *
2727  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2728  * The OS initialization, configuring of the adapter private structure,
2729  * and a hardware reset occur.
2730  **/
2731 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2732 {
2733 	struct net_device *netdev;
2734 	struct igbvf_adapter *adapter;
2735 	struct e1000_hw *hw;
2736 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2737 
2738 	static int cards_found;
2739 	int err, pci_using_dac;
2740 
2741 	err = pci_enable_device_mem(pdev);
2742 	if (err)
2743 		return err;
2744 
2745 	pci_using_dac = 0;
2746 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2747 	if (!err) {
2748 		pci_using_dac = 1;
2749 	} else {
2750 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2751 		if (err) {
2752 			dev_err(&pdev->dev,
2753 				"No usable DMA configuration, aborting\n");
2754 			goto err_dma;
2755 		}
2756 	}
2757 
2758 	err = pci_request_regions(pdev, igbvf_driver_name);
2759 	if (err)
2760 		goto err_pci_reg;
2761 
2762 	pci_set_master(pdev);
2763 
2764 	err = -ENOMEM;
2765 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2766 	if (!netdev)
2767 		goto err_alloc_etherdev;
2768 
2769 	SET_NETDEV_DEV(netdev, &pdev->dev);
2770 
2771 	pci_set_drvdata(pdev, netdev);
2772 	adapter = netdev_priv(netdev);
2773 	hw = &adapter->hw;
2774 	adapter->netdev = netdev;
2775 	adapter->pdev = pdev;
2776 	adapter->ei = ei;
2777 	adapter->pba = ei->pba;
2778 	adapter->flags = ei->flags;
2779 	adapter->hw.back = adapter;
2780 	adapter->hw.mac.type = ei->mac;
2781 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2782 
2783 	/* PCI config space info */
2784 
2785 	hw->vendor_id = pdev->vendor;
2786 	hw->device_id = pdev->device;
2787 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2788 	hw->subsystem_device_id = pdev->subsystem_device;
2789 	hw->revision_id = pdev->revision;
2790 
2791 	err = -EIO;
2792 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2793 				      pci_resource_len(pdev, 0));
2794 
2795 	if (!adapter->hw.hw_addr)
2796 		goto err_ioremap;
2797 
2798 	if (ei->get_variants) {
2799 		err = ei->get_variants(adapter);
2800 		if (err)
2801 			goto err_get_variants;
2802 	}
2803 
2804 	/* setup adapter struct */
2805 	err = igbvf_sw_init(adapter);
2806 	if (err)
2807 		goto err_sw_init;
2808 
2809 	/* construct the net_device struct */
2810 	netdev->netdev_ops = &igbvf_netdev_ops;
2811 
2812 	igbvf_set_ethtool_ops(netdev);
2813 	netdev->watchdog_timeo = 5 * HZ;
2814 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2815 
2816 	adapter->bd_number = cards_found++;
2817 
2818 	netdev->hw_features = NETIF_F_SG |
2819 			      NETIF_F_TSO |
2820 			      NETIF_F_TSO6 |
2821 			      NETIF_F_RXCSUM |
2822 			      NETIF_F_HW_CSUM |
2823 			      NETIF_F_SCTP_CRC;
2824 
2825 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2826 				    NETIF_F_GSO_GRE_CSUM | \
2827 				    NETIF_F_GSO_IPXIP4 | \
2828 				    NETIF_F_GSO_IPXIP6 | \
2829 				    NETIF_F_GSO_UDP_TUNNEL | \
2830 				    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2831 
2832 	netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2833 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2834 			       IGBVF_GSO_PARTIAL_FEATURES;
2835 
2836 	netdev->features = netdev->hw_features;
2837 
2838 	if (pci_using_dac)
2839 		netdev->features |= NETIF_F_HIGHDMA;
2840 
2841 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2842 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2843 	netdev->hw_enc_features |= netdev->vlan_features;
2844 
2845 	/* set this bit last since it cannot be part of vlan_features */
2846 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2847 			    NETIF_F_HW_VLAN_CTAG_RX |
2848 			    NETIF_F_HW_VLAN_CTAG_TX;
2849 
2850 	/* MTU range: 68 - 9216 */
2851 	netdev->min_mtu = ETH_MIN_MTU;
2852 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2853 
2854 	spin_lock_bh(&hw->mbx_lock);
2855 
2856 	/*reset the controller to put the device in a known good state */
2857 	err = hw->mac.ops.reset_hw(hw);
2858 	if (err) {
2859 		dev_info(&pdev->dev,
2860 			 "PF still in reset state. Is the PF interface up?\n");
2861 	} else {
2862 		err = hw->mac.ops.read_mac_addr(hw);
2863 		if (err)
2864 			dev_info(&pdev->dev, "Error reading MAC address.\n");
2865 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2866 			dev_info(&pdev->dev,
2867 				 "MAC address not assigned by administrator.\n");
2868 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2869 		       netdev->addr_len);
2870 	}
2871 
2872 	spin_unlock_bh(&hw->mbx_lock);
2873 
2874 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2875 		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2876 		eth_hw_addr_random(netdev);
2877 		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2878 		       netdev->addr_len);
2879 	}
2880 
2881 	timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2882 
2883 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2884 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2885 
2886 	/* ring size defaults */
2887 	adapter->rx_ring->count = 1024;
2888 	adapter->tx_ring->count = 1024;
2889 
2890 	/* reset the hardware with the new settings */
2891 	igbvf_reset(adapter);
2892 
2893 	/* set hardware-specific flags */
2894 	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2895 		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2896 
2897 	strcpy(netdev->name, "eth%d");
2898 	err = register_netdev(netdev);
2899 	if (err)
2900 		goto err_hw_init;
2901 
2902 	/* tell the stack to leave us alone until igbvf_open() is called */
2903 	netif_carrier_off(netdev);
2904 	netif_stop_queue(netdev);
2905 
2906 	igbvf_print_device_info(adapter);
2907 
2908 	igbvf_initialize_last_counter_stats(adapter);
2909 
2910 	return 0;
2911 
2912 err_hw_init:
2913 	kfree(adapter->tx_ring);
2914 	kfree(adapter->rx_ring);
2915 err_sw_init:
2916 	igbvf_reset_interrupt_capability(adapter);
2917 err_get_variants:
2918 	iounmap(adapter->hw.hw_addr);
2919 err_ioremap:
2920 	free_netdev(netdev);
2921 err_alloc_etherdev:
2922 	pci_release_regions(pdev);
2923 err_pci_reg:
2924 err_dma:
2925 	pci_disable_device(pdev);
2926 	return err;
2927 }
2928 
2929 /**
2930  * igbvf_remove - Device Removal Routine
2931  * @pdev: PCI device information struct
2932  *
2933  * igbvf_remove is called by the PCI subsystem to alert the driver
2934  * that it should release a PCI device.  The could be caused by a
2935  * Hot-Plug event, or because the driver is going to be removed from
2936  * memory.
2937  **/
2938 static void igbvf_remove(struct pci_dev *pdev)
2939 {
2940 	struct net_device *netdev = pci_get_drvdata(pdev);
2941 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2942 	struct e1000_hw *hw = &adapter->hw;
2943 
2944 	/* The watchdog timer may be rescheduled, so explicitly
2945 	 * disable it from being rescheduled.
2946 	 */
2947 	set_bit(__IGBVF_DOWN, &adapter->state);
2948 	del_timer_sync(&adapter->watchdog_timer);
2949 
2950 	cancel_work_sync(&adapter->reset_task);
2951 	cancel_work_sync(&adapter->watchdog_task);
2952 
2953 	unregister_netdev(netdev);
2954 
2955 	igbvf_reset_interrupt_capability(adapter);
2956 
2957 	/* it is important to delete the NAPI struct prior to freeing the
2958 	 * Rx ring so that you do not end up with null pointer refs
2959 	 */
2960 	netif_napi_del(&adapter->rx_ring->napi);
2961 	kfree(adapter->tx_ring);
2962 	kfree(adapter->rx_ring);
2963 
2964 	iounmap(hw->hw_addr);
2965 	if (hw->flash_address)
2966 		iounmap(hw->flash_address);
2967 	pci_release_regions(pdev);
2968 
2969 	free_netdev(netdev);
2970 
2971 	pci_disable_device(pdev);
2972 }
2973 
2974 /* PCI Error Recovery (ERS) */
2975 static const struct pci_error_handlers igbvf_err_handler = {
2976 	.error_detected = igbvf_io_error_detected,
2977 	.slot_reset = igbvf_io_slot_reset,
2978 	.resume = igbvf_io_resume,
2979 };
2980 
2981 static const struct pci_device_id igbvf_pci_tbl[] = {
2982 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2983 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2984 	{ } /* terminate list */
2985 };
2986 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2987 
2988 /* PCI Device API Driver */
2989 static struct pci_driver igbvf_driver = {
2990 	.name		= igbvf_driver_name,
2991 	.id_table	= igbvf_pci_tbl,
2992 	.probe		= igbvf_probe,
2993 	.remove		= igbvf_remove,
2994 #ifdef CONFIG_PM
2995 	/* Power Management Hooks */
2996 	.suspend	= igbvf_suspend,
2997 	.resume		= igbvf_resume,
2998 #endif
2999 	.shutdown	= igbvf_shutdown,
3000 	.err_handler	= &igbvf_err_handler
3001 };
3002 
3003 /**
3004  * igbvf_init_module - Driver Registration Routine
3005  *
3006  * igbvf_init_module is the first routine called when the driver is
3007  * loaded. All it does is register with the PCI subsystem.
3008  **/
3009 static int __init igbvf_init_module(void)
3010 {
3011 	int ret;
3012 
3013 	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
3014 	pr_info("%s\n", igbvf_copyright);
3015 
3016 	ret = pci_register_driver(&igbvf_driver);
3017 
3018 	return ret;
3019 }
3020 module_init(igbvf_init_module);
3021 
3022 /**
3023  * igbvf_exit_module - Driver Exit Cleanup Routine
3024  *
3025  * igbvf_exit_module is called just before the driver is removed
3026  * from memory.
3027  **/
3028 static void __exit igbvf_exit_module(void)
3029 {
3030 	pci_unregister_driver(&igbvf_driver);
3031 }
3032 module_exit(igbvf_exit_module);
3033 
3034 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3035 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3036 MODULE_LICENSE("GPL");
3037 MODULE_VERSION(DRV_VERSION);
3038 
3039 /* netdev.c */
3040