1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2009 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/module.h> 7 #include <linux/types.h> 8 #include <linux/init.h> 9 #include <linux/pci.h> 10 #include <linux/vmalloc.h> 11 #include <linux/pagemap.h> 12 #include <linux/delay.h> 13 #include <linux/netdevice.h> 14 #include <linux/tcp.h> 15 #include <linux/ipv6.h> 16 #include <linux/slab.h> 17 #include <net/checksum.h> 18 #include <net/ip6_checksum.h> 19 #include <linux/mii.h> 20 #include <linux/ethtool.h> 21 #include <linux/if_vlan.h> 22 #include <linux/prefetch.h> 23 #include <linux/sctp.h> 24 25 #include "igbvf.h" 26 27 #define DRV_VERSION "2.4.0-k" 28 char igbvf_driver_name[] = "igbvf"; 29 const char igbvf_driver_version[] = DRV_VERSION; 30 static const char igbvf_driver_string[] = 31 "Intel(R) Gigabit Virtual Function Network Driver"; 32 static const char igbvf_copyright[] = 33 "Copyright (c) 2009 - 2012 Intel Corporation."; 34 35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 36 static int debug = -1; 37 module_param(debug, int, 0); 38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 39 40 static int igbvf_poll(struct napi_struct *napi, int budget); 41 static void igbvf_reset(struct igbvf_adapter *); 42 static void igbvf_set_interrupt_capability(struct igbvf_adapter *); 43 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); 44 45 static struct igbvf_info igbvf_vf_info = { 46 .mac = e1000_vfadapt, 47 .flags = 0, 48 .pba = 10, 49 .init_ops = e1000_init_function_pointers_vf, 50 }; 51 52 static struct igbvf_info igbvf_i350_vf_info = { 53 .mac = e1000_vfadapt_i350, 54 .flags = 0, 55 .pba = 10, 56 .init_ops = e1000_init_function_pointers_vf, 57 }; 58 59 static const struct igbvf_info *igbvf_info_tbl[] = { 60 [board_vf] = &igbvf_vf_info, 61 [board_i350_vf] = &igbvf_i350_vf_info, 62 }; 63 64 /** 65 * igbvf_desc_unused - calculate if we have unused descriptors 66 * @rx_ring: address of receive ring structure 67 **/ 68 static int igbvf_desc_unused(struct igbvf_ring *ring) 69 { 70 if (ring->next_to_clean > ring->next_to_use) 71 return ring->next_to_clean - ring->next_to_use - 1; 72 73 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 74 } 75 76 /** 77 * igbvf_receive_skb - helper function to handle Rx indications 78 * @adapter: board private structure 79 * @status: descriptor status field as written by hardware 80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 81 * @skb: pointer to sk_buff to be indicated to stack 82 **/ 83 static void igbvf_receive_skb(struct igbvf_adapter *adapter, 84 struct net_device *netdev, 85 struct sk_buff *skb, 86 u32 status, u16 vlan) 87 { 88 u16 vid; 89 90 if (status & E1000_RXD_STAT_VP) { 91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) && 92 (status & E1000_RXDEXT_STATERR_LB)) 93 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 94 else 95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 96 if (test_bit(vid, adapter->active_vlans)) 97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 98 } 99 100 napi_gro_receive(&adapter->rx_ring->napi, skb); 101 } 102 103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, 104 u32 status_err, struct sk_buff *skb) 105 { 106 skb_checksum_none_assert(skb); 107 108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */ 109 if ((status_err & E1000_RXD_STAT_IXSM) || 110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED)) 111 return; 112 113 /* TCP/UDP checksum error bit is set */ 114 if (status_err & 115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { 116 /* let the stack verify checksum errors */ 117 adapter->hw_csum_err++; 118 return; 119 } 120 121 /* It must be a TCP or UDP packet with a valid checksum */ 122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) 123 skb->ip_summed = CHECKSUM_UNNECESSARY; 124 125 adapter->hw_csum_good++; 126 } 127 128 /** 129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split 130 * @rx_ring: address of ring structure to repopulate 131 * @cleaned_count: number of buffers to repopulate 132 **/ 133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, 134 int cleaned_count) 135 { 136 struct igbvf_adapter *adapter = rx_ring->adapter; 137 struct net_device *netdev = adapter->netdev; 138 struct pci_dev *pdev = adapter->pdev; 139 union e1000_adv_rx_desc *rx_desc; 140 struct igbvf_buffer *buffer_info; 141 struct sk_buff *skb; 142 unsigned int i; 143 int bufsz; 144 145 i = rx_ring->next_to_use; 146 buffer_info = &rx_ring->buffer_info[i]; 147 148 if (adapter->rx_ps_hdr_size) 149 bufsz = adapter->rx_ps_hdr_size; 150 else 151 bufsz = adapter->rx_buffer_len; 152 153 while (cleaned_count--) { 154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 155 156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { 157 if (!buffer_info->page) { 158 buffer_info->page = alloc_page(GFP_ATOMIC); 159 if (!buffer_info->page) { 160 adapter->alloc_rx_buff_failed++; 161 goto no_buffers; 162 } 163 buffer_info->page_offset = 0; 164 } else { 165 buffer_info->page_offset ^= PAGE_SIZE / 2; 166 } 167 buffer_info->page_dma = 168 dma_map_page(&pdev->dev, buffer_info->page, 169 buffer_info->page_offset, 170 PAGE_SIZE / 2, 171 DMA_FROM_DEVICE); 172 if (dma_mapping_error(&pdev->dev, 173 buffer_info->page_dma)) { 174 __free_page(buffer_info->page); 175 buffer_info->page = NULL; 176 dev_err(&pdev->dev, "RX DMA map failed\n"); 177 break; 178 } 179 } 180 181 if (!buffer_info->skb) { 182 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 183 if (!skb) { 184 adapter->alloc_rx_buff_failed++; 185 goto no_buffers; 186 } 187 188 buffer_info->skb = skb; 189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 190 bufsz, 191 DMA_FROM_DEVICE); 192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 193 dev_kfree_skb(buffer_info->skb); 194 buffer_info->skb = NULL; 195 dev_err(&pdev->dev, "RX DMA map failed\n"); 196 goto no_buffers; 197 } 198 } 199 /* Refresh the desc even if buffer_addrs didn't change because 200 * each write-back erases this info. 201 */ 202 if (adapter->rx_ps_hdr_size) { 203 rx_desc->read.pkt_addr = 204 cpu_to_le64(buffer_info->page_dma); 205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); 206 } else { 207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); 208 rx_desc->read.hdr_addr = 0; 209 } 210 211 i++; 212 if (i == rx_ring->count) 213 i = 0; 214 buffer_info = &rx_ring->buffer_info[i]; 215 } 216 217 no_buffers: 218 if (rx_ring->next_to_use != i) { 219 rx_ring->next_to_use = i; 220 if (i == 0) 221 i = (rx_ring->count - 1); 222 else 223 i--; 224 225 /* Force memory writes to complete before letting h/w 226 * know there are new descriptors to fetch. (Only 227 * applicable for weak-ordered memory model archs, 228 * such as IA-64). 229 */ 230 wmb(); 231 writel(i, adapter->hw.hw_addr + rx_ring->tail); 232 } 233 } 234 235 /** 236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy 237 * @adapter: board private structure 238 * 239 * the return value indicates whether actual cleaning was done, there 240 * is no guarantee that everything was cleaned 241 **/ 242 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, 243 int *work_done, int work_to_do) 244 { 245 struct igbvf_ring *rx_ring = adapter->rx_ring; 246 struct net_device *netdev = adapter->netdev; 247 struct pci_dev *pdev = adapter->pdev; 248 union e1000_adv_rx_desc *rx_desc, *next_rxd; 249 struct igbvf_buffer *buffer_info, *next_buffer; 250 struct sk_buff *skb; 251 bool cleaned = false; 252 int cleaned_count = 0; 253 unsigned int total_bytes = 0, total_packets = 0; 254 unsigned int i; 255 u32 length, hlen, staterr; 256 257 i = rx_ring->next_to_clean; 258 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 259 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 260 261 while (staterr & E1000_RXD_STAT_DD) { 262 if (*work_done >= work_to_do) 263 break; 264 (*work_done)++; 265 rmb(); /* read descriptor and rx_buffer_info after status DD */ 266 267 buffer_info = &rx_ring->buffer_info[i]; 268 269 /* HW will not DMA in data larger than the given buffer, even 270 * if it parses the (NFS, of course) header to be larger. In 271 * that case, it fills the header buffer and spills the rest 272 * into the page. 273 */ 274 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) 275 & E1000_RXDADV_HDRBUFLEN_MASK) >> 276 E1000_RXDADV_HDRBUFLEN_SHIFT; 277 if (hlen > adapter->rx_ps_hdr_size) 278 hlen = adapter->rx_ps_hdr_size; 279 280 length = le16_to_cpu(rx_desc->wb.upper.length); 281 cleaned = true; 282 cleaned_count++; 283 284 skb = buffer_info->skb; 285 prefetch(skb->data - NET_IP_ALIGN); 286 buffer_info->skb = NULL; 287 if (!adapter->rx_ps_hdr_size) { 288 dma_unmap_single(&pdev->dev, buffer_info->dma, 289 adapter->rx_buffer_len, 290 DMA_FROM_DEVICE); 291 buffer_info->dma = 0; 292 skb_put(skb, length); 293 goto send_up; 294 } 295 296 if (!skb_shinfo(skb)->nr_frags) { 297 dma_unmap_single(&pdev->dev, buffer_info->dma, 298 adapter->rx_ps_hdr_size, 299 DMA_FROM_DEVICE); 300 buffer_info->dma = 0; 301 skb_put(skb, hlen); 302 } 303 304 if (length) { 305 dma_unmap_page(&pdev->dev, buffer_info->page_dma, 306 PAGE_SIZE / 2, 307 DMA_FROM_DEVICE); 308 buffer_info->page_dma = 0; 309 310 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 311 buffer_info->page, 312 buffer_info->page_offset, 313 length); 314 315 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || 316 (page_count(buffer_info->page) != 1)) 317 buffer_info->page = NULL; 318 else 319 get_page(buffer_info->page); 320 321 skb->len += length; 322 skb->data_len += length; 323 skb->truesize += PAGE_SIZE / 2; 324 } 325 send_up: 326 i++; 327 if (i == rx_ring->count) 328 i = 0; 329 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); 330 prefetch(next_rxd); 331 next_buffer = &rx_ring->buffer_info[i]; 332 333 if (!(staterr & E1000_RXD_STAT_EOP)) { 334 buffer_info->skb = next_buffer->skb; 335 buffer_info->dma = next_buffer->dma; 336 next_buffer->skb = skb; 337 next_buffer->dma = 0; 338 goto next_desc; 339 } 340 341 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 342 dev_kfree_skb_irq(skb); 343 goto next_desc; 344 } 345 346 total_bytes += skb->len; 347 total_packets++; 348 349 igbvf_rx_checksum_adv(adapter, staterr, skb); 350 351 skb->protocol = eth_type_trans(skb, netdev); 352 353 igbvf_receive_skb(adapter, netdev, skb, staterr, 354 rx_desc->wb.upper.vlan); 355 356 next_desc: 357 rx_desc->wb.upper.status_error = 0; 358 359 /* return some buffers to hardware, one at a time is too slow */ 360 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { 361 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 362 cleaned_count = 0; 363 } 364 365 /* use prefetched values */ 366 rx_desc = next_rxd; 367 buffer_info = next_buffer; 368 369 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 370 } 371 372 rx_ring->next_to_clean = i; 373 cleaned_count = igbvf_desc_unused(rx_ring); 374 375 if (cleaned_count) 376 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 377 378 adapter->total_rx_packets += total_packets; 379 adapter->total_rx_bytes += total_bytes; 380 netdev->stats.rx_bytes += total_bytes; 381 netdev->stats.rx_packets += total_packets; 382 return cleaned; 383 } 384 385 static void igbvf_put_txbuf(struct igbvf_adapter *adapter, 386 struct igbvf_buffer *buffer_info) 387 { 388 if (buffer_info->dma) { 389 if (buffer_info->mapped_as_page) 390 dma_unmap_page(&adapter->pdev->dev, 391 buffer_info->dma, 392 buffer_info->length, 393 DMA_TO_DEVICE); 394 else 395 dma_unmap_single(&adapter->pdev->dev, 396 buffer_info->dma, 397 buffer_info->length, 398 DMA_TO_DEVICE); 399 buffer_info->dma = 0; 400 } 401 if (buffer_info->skb) { 402 dev_kfree_skb_any(buffer_info->skb); 403 buffer_info->skb = NULL; 404 } 405 buffer_info->time_stamp = 0; 406 } 407 408 /** 409 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) 410 * @adapter: board private structure 411 * 412 * Return 0 on success, negative on failure 413 **/ 414 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, 415 struct igbvf_ring *tx_ring) 416 { 417 struct pci_dev *pdev = adapter->pdev; 418 int size; 419 420 size = sizeof(struct igbvf_buffer) * tx_ring->count; 421 tx_ring->buffer_info = vzalloc(size); 422 if (!tx_ring->buffer_info) 423 goto err; 424 425 /* round up to nearest 4K */ 426 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 427 tx_ring->size = ALIGN(tx_ring->size, 4096); 428 429 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 430 &tx_ring->dma, GFP_KERNEL); 431 if (!tx_ring->desc) 432 goto err; 433 434 tx_ring->adapter = adapter; 435 tx_ring->next_to_use = 0; 436 tx_ring->next_to_clean = 0; 437 438 return 0; 439 err: 440 vfree(tx_ring->buffer_info); 441 dev_err(&adapter->pdev->dev, 442 "Unable to allocate memory for the transmit descriptor ring\n"); 443 return -ENOMEM; 444 } 445 446 /** 447 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) 448 * @adapter: board private structure 449 * 450 * Returns 0 on success, negative on failure 451 **/ 452 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, 453 struct igbvf_ring *rx_ring) 454 { 455 struct pci_dev *pdev = adapter->pdev; 456 int size, desc_len; 457 458 size = sizeof(struct igbvf_buffer) * rx_ring->count; 459 rx_ring->buffer_info = vzalloc(size); 460 if (!rx_ring->buffer_info) 461 goto err; 462 463 desc_len = sizeof(union e1000_adv_rx_desc); 464 465 /* Round up to nearest 4K */ 466 rx_ring->size = rx_ring->count * desc_len; 467 rx_ring->size = ALIGN(rx_ring->size, 4096); 468 469 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 470 &rx_ring->dma, GFP_KERNEL); 471 if (!rx_ring->desc) 472 goto err; 473 474 rx_ring->next_to_clean = 0; 475 rx_ring->next_to_use = 0; 476 477 rx_ring->adapter = adapter; 478 479 return 0; 480 481 err: 482 vfree(rx_ring->buffer_info); 483 rx_ring->buffer_info = NULL; 484 dev_err(&adapter->pdev->dev, 485 "Unable to allocate memory for the receive descriptor ring\n"); 486 return -ENOMEM; 487 } 488 489 /** 490 * igbvf_clean_tx_ring - Free Tx Buffers 491 * @tx_ring: ring to be cleaned 492 **/ 493 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) 494 { 495 struct igbvf_adapter *adapter = tx_ring->adapter; 496 struct igbvf_buffer *buffer_info; 497 unsigned long size; 498 unsigned int i; 499 500 if (!tx_ring->buffer_info) 501 return; 502 503 /* Free all the Tx ring sk_buffs */ 504 for (i = 0; i < tx_ring->count; i++) { 505 buffer_info = &tx_ring->buffer_info[i]; 506 igbvf_put_txbuf(adapter, buffer_info); 507 } 508 509 size = sizeof(struct igbvf_buffer) * tx_ring->count; 510 memset(tx_ring->buffer_info, 0, size); 511 512 /* Zero out the descriptor ring */ 513 memset(tx_ring->desc, 0, tx_ring->size); 514 515 tx_ring->next_to_use = 0; 516 tx_ring->next_to_clean = 0; 517 518 writel(0, adapter->hw.hw_addr + tx_ring->head); 519 writel(0, adapter->hw.hw_addr + tx_ring->tail); 520 } 521 522 /** 523 * igbvf_free_tx_resources - Free Tx Resources per Queue 524 * @tx_ring: ring to free resources from 525 * 526 * Free all transmit software resources 527 **/ 528 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) 529 { 530 struct pci_dev *pdev = tx_ring->adapter->pdev; 531 532 igbvf_clean_tx_ring(tx_ring); 533 534 vfree(tx_ring->buffer_info); 535 tx_ring->buffer_info = NULL; 536 537 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 538 tx_ring->dma); 539 540 tx_ring->desc = NULL; 541 } 542 543 /** 544 * igbvf_clean_rx_ring - Free Rx Buffers per Queue 545 * @adapter: board private structure 546 **/ 547 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) 548 { 549 struct igbvf_adapter *adapter = rx_ring->adapter; 550 struct igbvf_buffer *buffer_info; 551 struct pci_dev *pdev = adapter->pdev; 552 unsigned long size; 553 unsigned int i; 554 555 if (!rx_ring->buffer_info) 556 return; 557 558 /* Free all the Rx ring sk_buffs */ 559 for (i = 0; i < rx_ring->count; i++) { 560 buffer_info = &rx_ring->buffer_info[i]; 561 if (buffer_info->dma) { 562 if (adapter->rx_ps_hdr_size) { 563 dma_unmap_single(&pdev->dev, buffer_info->dma, 564 adapter->rx_ps_hdr_size, 565 DMA_FROM_DEVICE); 566 } else { 567 dma_unmap_single(&pdev->dev, buffer_info->dma, 568 adapter->rx_buffer_len, 569 DMA_FROM_DEVICE); 570 } 571 buffer_info->dma = 0; 572 } 573 574 if (buffer_info->skb) { 575 dev_kfree_skb(buffer_info->skb); 576 buffer_info->skb = NULL; 577 } 578 579 if (buffer_info->page) { 580 if (buffer_info->page_dma) 581 dma_unmap_page(&pdev->dev, 582 buffer_info->page_dma, 583 PAGE_SIZE / 2, 584 DMA_FROM_DEVICE); 585 put_page(buffer_info->page); 586 buffer_info->page = NULL; 587 buffer_info->page_dma = 0; 588 buffer_info->page_offset = 0; 589 } 590 } 591 592 size = sizeof(struct igbvf_buffer) * rx_ring->count; 593 memset(rx_ring->buffer_info, 0, size); 594 595 /* Zero out the descriptor ring */ 596 memset(rx_ring->desc, 0, rx_ring->size); 597 598 rx_ring->next_to_clean = 0; 599 rx_ring->next_to_use = 0; 600 601 writel(0, adapter->hw.hw_addr + rx_ring->head); 602 writel(0, adapter->hw.hw_addr + rx_ring->tail); 603 } 604 605 /** 606 * igbvf_free_rx_resources - Free Rx Resources 607 * @rx_ring: ring to clean the resources from 608 * 609 * Free all receive software resources 610 **/ 611 612 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) 613 { 614 struct pci_dev *pdev = rx_ring->adapter->pdev; 615 616 igbvf_clean_rx_ring(rx_ring); 617 618 vfree(rx_ring->buffer_info); 619 rx_ring->buffer_info = NULL; 620 621 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 622 rx_ring->dma); 623 rx_ring->desc = NULL; 624 } 625 626 /** 627 * igbvf_update_itr - update the dynamic ITR value based on statistics 628 * @adapter: pointer to adapter 629 * @itr_setting: current adapter->itr 630 * @packets: the number of packets during this measurement interval 631 * @bytes: the number of bytes during this measurement interval 632 * 633 * Stores a new ITR value based on packets and byte counts during the last 634 * interrupt. The advantage of per interrupt computation is faster updates 635 * and more accurate ITR for the current traffic pattern. Constants in this 636 * function were computed based on theoretical maximum wire speed and thresholds 637 * were set based on testing data as well as attempting to minimize response 638 * time while increasing bulk throughput. 639 **/ 640 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter, 641 enum latency_range itr_setting, 642 int packets, int bytes) 643 { 644 enum latency_range retval = itr_setting; 645 646 if (packets == 0) 647 goto update_itr_done; 648 649 switch (itr_setting) { 650 case lowest_latency: 651 /* handle TSO and jumbo frames */ 652 if (bytes/packets > 8000) 653 retval = bulk_latency; 654 else if ((packets < 5) && (bytes > 512)) 655 retval = low_latency; 656 break; 657 case low_latency: /* 50 usec aka 20000 ints/s */ 658 if (bytes > 10000) { 659 /* this if handles the TSO accounting */ 660 if (bytes/packets > 8000) 661 retval = bulk_latency; 662 else if ((packets < 10) || ((bytes/packets) > 1200)) 663 retval = bulk_latency; 664 else if ((packets > 35)) 665 retval = lowest_latency; 666 } else if (bytes/packets > 2000) { 667 retval = bulk_latency; 668 } else if (packets <= 2 && bytes < 512) { 669 retval = lowest_latency; 670 } 671 break; 672 case bulk_latency: /* 250 usec aka 4000 ints/s */ 673 if (bytes > 25000) { 674 if (packets > 35) 675 retval = low_latency; 676 } else if (bytes < 6000) { 677 retval = low_latency; 678 } 679 break; 680 default: 681 break; 682 } 683 684 update_itr_done: 685 return retval; 686 } 687 688 static int igbvf_range_to_itr(enum latency_range current_range) 689 { 690 int new_itr; 691 692 switch (current_range) { 693 /* counts and packets in update_itr are dependent on these numbers */ 694 case lowest_latency: 695 new_itr = IGBVF_70K_ITR; 696 break; 697 case low_latency: 698 new_itr = IGBVF_20K_ITR; 699 break; 700 case bulk_latency: 701 new_itr = IGBVF_4K_ITR; 702 break; 703 default: 704 new_itr = IGBVF_START_ITR; 705 break; 706 } 707 return new_itr; 708 } 709 710 static void igbvf_set_itr(struct igbvf_adapter *adapter) 711 { 712 u32 new_itr; 713 714 adapter->tx_ring->itr_range = 715 igbvf_update_itr(adapter, 716 adapter->tx_ring->itr_val, 717 adapter->total_tx_packets, 718 adapter->total_tx_bytes); 719 720 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 721 if (adapter->requested_itr == 3 && 722 adapter->tx_ring->itr_range == lowest_latency) 723 adapter->tx_ring->itr_range = low_latency; 724 725 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range); 726 727 if (new_itr != adapter->tx_ring->itr_val) { 728 u32 current_itr = adapter->tx_ring->itr_val; 729 /* this attempts to bias the interrupt rate towards Bulk 730 * by adding intermediate steps when interrupt rate is 731 * increasing 732 */ 733 new_itr = new_itr > current_itr ? 734 min(current_itr + (new_itr >> 2), new_itr) : 735 new_itr; 736 adapter->tx_ring->itr_val = new_itr; 737 738 adapter->tx_ring->set_itr = 1; 739 } 740 741 adapter->rx_ring->itr_range = 742 igbvf_update_itr(adapter, adapter->rx_ring->itr_val, 743 adapter->total_rx_packets, 744 adapter->total_rx_bytes); 745 if (adapter->requested_itr == 3 && 746 adapter->rx_ring->itr_range == lowest_latency) 747 adapter->rx_ring->itr_range = low_latency; 748 749 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range); 750 751 if (new_itr != adapter->rx_ring->itr_val) { 752 u32 current_itr = adapter->rx_ring->itr_val; 753 754 new_itr = new_itr > current_itr ? 755 min(current_itr + (new_itr >> 2), new_itr) : 756 new_itr; 757 adapter->rx_ring->itr_val = new_itr; 758 759 adapter->rx_ring->set_itr = 1; 760 } 761 } 762 763 /** 764 * igbvf_clean_tx_irq - Reclaim resources after transmit completes 765 * @adapter: board private structure 766 * 767 * returns true if ring is completely cleaned 768 **/ 769 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) 770 { 771 struct igbvf_adapter *adapter = tx_ring->adapter; 772 struct net_device *netdev = adapter->netdev; 773 struct igbvf_buffer *buffer_info; 774 struct sk_buff *skb; 775 union e1000_adv_tx_desc *tx_desc, *eop_desc; 776 unsigned int total_bytes = 0, total_packets = 0; 777 unsigned int i, count = 0; 778 bool cleaned = false; 779 780 i = tx_ring->next_to_clean; 781 buffer_info = &tx_ring->buffer_info[i]; 782 eop_desc = buffer_info->next_to_watch; 783 784 do { 785 /* if next_to_watch is not set then there is no work pending */ 786 if (!eop_desc) 787 break; 788 789 /* prevent any other reads prior to eop_desc */ 790 smp_rmb(); 791 792 /* if DD is not set pending work has not been completed */ 793 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 794 break; 795 796 /* clear next_to_watch to prevent false hangs */ 797 buffer_info->next_to_watch = NULL; 798 799 for (cleaned = false; !cleaned; count++) { 800 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 801 cleaned = (tx_desc == eop_desc); 802 skb = buffer_info->skb; 803 804 if (skb) { 805 unsigned int segs, bytecount; 806 807 /* gso_segs is currently only valid for tcp */ 808 segs = skb_shinfo(skb)->gso_segs ?: 1; 809 /* multiply data chunks by size of headers */ 810 bytecount = ((segs - 1) * skb_headlen(skb)) + 811 skb->len; 812 total_packets += segs; 813 total_bytes += bytecount; 814 } 815 816 igbvf_put_txbuf(adapter, buffer_info); 817 tx_desc->wb.status = 0; 818 819 i++; 820 if (i == tx_ring->count) 821 i = 0; 822 823 buffer_info = &tx_ring->buffer_info[i]; 824 } 825 826 eop_desc = buffer_info->next_to_watch; 827 } while (count < tx_ring->count); 828 829 tx_ring->next_to_clean = i; 830 831 if (unlikely(count && netif_carrier_ok(netdev) && 832 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { 833 /* Make sure that anybody stopping the queue after this 834 * sees the new next_to_clean. 835 */ 836 smp_mb(); 837 if (netif_queue_stopped(netdev) && 838 !(test_bit(__IGBVF_DOWN, &adapter->state))) { 839 netif_wake_queue(netdev); 840 ++adapter->restart_queue; 841 } 842 } 843 844 netdev->stats.tx_bytes += total_bytes; 845 netdev->stats.tx_packets += total_packets; 846 return count < tx_ring->count; 847 } 848 849 static irqreturn_t igbvf_msix_other(int irq, void *data) 850 { 851 struct net_device *netdev = data; 852 struct igbvf_adapter *adapter = netdev_priv(netdev); 853 struct e1000_hw *hw = &adapter->hw; 854 855 adapter->int_counter1++; 856 857 hw->mac.get_link_status = 1; 858 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 859 mod_timer(&adapter->watchdog_timer, jiffies + 1); 860 861 ew32(EIMS, adapter->eims_other); 862 863 return IRQ_HANDLED; 864 } 865 866 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) 867 { 868 struct net_device *netdev = data; 869 struct igbvf_adapter *adapter = netdev_priv(netdev); 870 struct e1000_hw *hw = &adapter->hw; 871 struct igbvf_ring *tx_ring = adapter->tx_ring; 872 873 if (tx_ring->set_itr) { 874 writel(tx_ring->itr_val, 875 adapter->hw.hw_addr + tx_ring->itr_register); 876 adapter->tx_ring->set_itr = 0; 877 } 878 879 adapter->total_tx_bytes = 0; 880 adapter->total_tx_packets = 0; 881 882 /* auto mask will automatically re-enable the interrupt when we write 883 * EICS 884 */ 885 if (!igbvf_clean_tx_irq(tx_ring)) 886 /* Ring was not completely cleaned, so fire another interrupt */ 887 ew32(EICS, tx_ring->eims_value); 888 else 889 ew32(EIMS, tx_ring->eims_value); 890 891 return IRQ_HANDLED; 892 } 893 894 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) 895 { 896 struct net_device *netdev = data; 897 struct igbvf_adapter *adapter = netdev_priv(netdev); 898 899 adapter->int_counter0++; 900 901 /* Write the ITR value calculated at the end of the 902 * previous interrupt. 903 */ 904 if (adapter->rx_ring->set_itr) { 905 writel(adapter->rx_ring->itr_val, 906 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 907 adapter->rx_ring->set_itr = 0; 908 } 909 910 if (napi_schedule_prep(&adapter->rx_ring->napi)) { 911 adapter->total_rx_bytes = 0; 912 adapter->total_rx_packets = 0; 913 __napi_schedule(&adapter->rx_ring->napi); 914 } 915 916 return IRQ_HANDLED; 917 } 918 919 #define IGBVF_NO_QUEUE -1 920 921 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, 922 int tx_queue, int msix_vector) 923 { 924 struct e1000_hw *hw = &adapter->hw; 925 u32 ivar, index; 926 927 /* 82576 uses a table-based method for assigning vectors. 928 * Each queue has a single entry in the table to which we write 929 * a vector number along with a "valid" bit. Sadly, the layout 930 * of the table is somewhat counterintuitive. 931 */ 932 if (rx_queue > IGBVF_NO_QUEUE) { 933 index = (rx_queue >> 1); 934 ivar = array_er32(IVAR0, index); 935 if (rx_queue & 0x1) { 936 /* vector goes into third byte of register */ 937 ivar = ivar & 0xFF00FFFF; 938 ivar |= (msix_vector | E1000_IVAR_VALID) << 16; 939 } else { 940 /* vector goes into low byte of register */ 941 ivar = ivar & 0xFFFFFF00; 942 ivar |= msix_vector | E1000_IVAR_VALID; 943 } 944 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector); 945 array_ew32(IVAR0, index, ivar); 946 } 947 if (tx_queue > IGBVF_NO_QUEUE) { 948 index = (tx_queue >> 1); 949 ivar = array_er32(IVAR0, index); 950 if (tx_queue & 0x1) { 951 /* vector goes into high byte of register */ 952 ivar = ivar & 0x00FFFFFF; 953 ivar |= (msix_vector | E1000_IVAR_VALID) << 24; 954 } else { 955 /* vector goes into second byte of register */ 956 ivar = ivar & 0xFFFF00FF; 957 ivar |= (msix_vector | E1000_IVAR_VALID) << 8; 958 } 959 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector); 960 array_ew32(IVAR0, index, ivar); 961 } 962 } 963 964 /** 965 * igbvf_configure_msix - Configure MSI-X hardware 966 * @adapter: board private structure 967 * 968 * igbvf_configure_msix sets up the hardware to properly 969 * generate MSI-X interrupts. 970 **/ 971 static void igbvf_configure_msix(struct igbvf_adapter *adapter) 972 { 973 u32 tmp; 974 struct e1000_hw *hw = &adapter->hw; 975 struct igbvf_ring *tx_ring = adapter->tx_ring; 976 struct igbvf_ring *rx_ring = adapter->rx_ring; 977 int vector = 0; 978 979 adapter->eims_enable_mask = 0; 980 981 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); 982 adapter->eims_enable_mask |= tx_ring->eims_value; 983 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register); 984 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); 985 adapter->eims_enable_mask |= rx_ring->eims_value; 986 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register); 987 988 /* set vector for other causes, i.e. link changes */ 989 990 tmp = (vector++ | E1000_IVAR_VALID); 991 992 ew32(IVAR_MISC, tmp); 993 994 adapter->eims_enable_mask = GENMASK(vector - 1, 0); 995 adapter->eims_other = BIT(vector - 1); 996 e1e_flush(); 997 } 998 999 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) 1000 { 1001 if (adapter->msix_entries) { 1002 pci_disable_msix(adapter->pdev); 1003 kfree(adapter->msix_entries); 1004 adapter->msix_entries = NULL; 1005 } 1006 } 1007 1008 /** 1009 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported 1010 * @adapter: board private structure 1011 * 1012 * Attempt to configure interrupts using the best available 1013 * capabilities of the hardware and kernel. 1014 **/ 1015 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) 1016 { 1017 int err = -ENOMEM; 1018 int i; 1019 1020 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */ 1021 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), 1022 GFP_KERNEL); 1023 if (adapter->msix_entries) { 1024 for (i = 0; i < 3; i++) 1025 adapter->msix_entries[i].entry = i; 1026 1027 err = pci_enable_msix_range(adapter->pdev, 1028 adapter->msix_entries, 3, 3); 1029 } 1030 1031 if (err < 0) { 1032 /* MSI-X failed */ 1033 dev_err(&adapter->pdev->dev, 1034 "Failed to initialize MSI-X interrupts.\n"); 1035 igbvf_reset_interrupt_capability(adapter); 1036 } 1037 } 1038 1039 /** 1040 * igbvf_request_msix - Initialize MSI-X interrupts 1041 * @adapter: board private structure 1042 * 1043 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the 1044 * kernel. 1045 **/ 1046 static int igbvf_request_msix(struct igbvf_adapter *adapter) 1047 { 1048 struct net_device *netdev = adapter->netdev; 1049 int err = 0, vector = 0; 1050 1051 if (strlen(netdev->name) < (IFNAMSIZ - 5)) { 1052 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); 1053 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); 1054 } else { 1055 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1056 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1057 } 1058 1059 err = request_irq(adapter->msix_entries[vector].vector, 1060 igbvf_intr_msix_tx, 0, adapter->tx_ring->name, 1061 netdev); 1062 if (err) 1063 goto out; 1064 1065 adapter->tx_ring->itr_register = E1000_EITR(vector); 1066 adapter->tx_ring->itr_val = adapter->current_itr; 1067 vector++; 1068 1069 err = request_irq(adapter->msix_entries[vector].vector, 1070 igbvf_intr_msix_rx, 0, adapter->rx_ring->name, 1071 netdev); 1072 if (err) 1073 goto out; 1074 1075 adapter->rx_ring->itr_register = E1000_EITR(vector); 1076 adapter->rx_ring->itr_val = adapter->current_itr; 1077 vector++; 1078 1079 err = request_irq(adapter->msix_entries[vector].vector, 1080 igbvf_msix_other, 0, netdev->name, netdev); 1081 if (err) 1082 goto out; 1083 1084 igbvf_configure_msix(adapter); 1085 return 0; 1086 out: 1087 return err; 1088 } 1089 1090 /** 1091 * igbvf_alloc_queues - Allocate memory for all rings 1092 * @adapter: board private structure to initialize 1093 **/ 1094 static int igbvf_alloc_queues(struct igbvf_adapter *adapter) 1095 { 1096 struct net_device *netdev = adapter->netdev; 1097 1098 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1099 if (!adapter->tx_ring) 1100 return -ENOMEM; 1101 1102 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1103 if (!adapter->rx_ring) { 1104 kfree(adapter->tx_ring); 1105 return -ENOMEM; 1106 } 1107 1108 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64); 1109 1110 return 0; 1111 } 1112 1113 /** 1114 * igbvf_request_irq - initialize interrupts 1115 * @adapter: board private structure 1116 * 1117 * Attempts to configure interrupts using the best available 1118 * capabilities of the hardware and kernel. 1119 **/ 1120 static int igbvf_request_irq(struct igbvf_adapter *adapter) 1121 { 1122 int err = -1; 1123 1124 /* igbvf supports msi-x only */ 1125 if (adapter->msix_entries) 1126 err = igbvf_request_msix(adapter); 1127 1128 if (!err) 1129 return err; 1130 1131 dev_err(&adapter->pdev->dev, 1132 "Unable to allocate interrupt, Error: %d\n", err); 1133 1134 return err; 1135 } 1136 1137 static void igbvf_free_irq(struct igbvf_adapter *adapter) 1138 { 1139 struct net_device *netdev = adapter->netdev; 1140 int vector; 1141 1142 if (adapter->msix_entries) { 1143 for (vector = 0; vector < 3; vector++) 1144 free_irq(adapter->msix_entries[vector].vector, netdev); 1145 } 1146 } 1147 1148 /** 1149 * igbvf_irq_disable - Mask off interrupt generation on the NIC 1150 * @adapter: board private structure 1151 **/ 1152 static void igbvf_irq_disable(struct igbvf_adapter *adapter) 1153 { 1154 struct e1000_hw *hw = &adapter->hw; 1155 1156 ew32(EIMC, ~0); 1157 1158 if (adapter->msix_entries) 1159 ew32(EIAC, 0); 1160 } 1161 1162 /** 1163 * igbvf_irq_enable - Enable default interrupt generation settings 1164 * @adapter: board private structure 1165 **/ 1166 static void igbvf_irq_enable(struct igbvf_adapter *adapter) 1167 { 1168 struct e1000_hw *hw = &adapter->hw; 1169 1170 ew32(EIAC, adapter->eims_enable_mask); 1171 ew32(EIAM, adapter->eims_enable_mask); 1172 ew32(EIMS, adapter->eims_enable_mask); 1173 } 1174 1175 /** 1176 * igbvf_poll - NAPI Rx polling callback 1177 * @napi: struct associated with this polling callback 1178 * @budget: amount of packets driver is allowed to process this poll 1179 **/ 1180 static int igbvf_poll(struct napi_struct *napi, int budget) 1181 { 1182 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); 1183 struct igbvf_adapter *adapter = rx_ring->adapter; 1184 struct e1000_hw *hw = &adapter->hw; 1185 int work_done = 0; 1186 1187 igbvf_clean_rx_irq(adapter, &work_done, budget); 1188 1189 if (work_done == budget) 1190 return budget; 1191 1192 /* Exit the polling mode, but don't re-enable interrupts if stack might 1193 * poll us due to busy-polling 1194 */ 1195 if (likely(napi_complete_done(napi, work_done))) { 1196 if (adapter->requested_itr & 3) 1197 igbvf_set_itr(adapter); 1198 1199 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1200 ew32(EIMS, adapter->rx_ring->eims_value); 1201 } 1202 1203 return work_done; 1204 } 1205 1206 /** 1207 * igbvf_set_rlpml - set receive large packet maximum length 1208 * @adapter: board private structure 1209 * 1210 * Configure the maximum size of packets that will be received 1211 */ 1212 static void igbvf_set_rlpml(struct igbvf_adapter *adapter) 1213 { 1214 int max_frame_size; 1215 struct e1000_hw *hw = &adapter->hw; 1216 1217 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; 1218 1219 spin_lock_bh(&hw->mbx_lock); 1220 1221 e1000_rlpml_set_vf(hw, max_frame_size); 1222 1223 spin_unlock_bh(&hw->mbx_lock); 1224 } 1225 1226 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, 1227 __be16 proto, u16 vid) 1228 { 1229 struct igbvf_adapter *adapter = netdev_priv(netdev); 1230 struct e1000_hw *hw = &adapter->hw; 1231 1232 spin_lock_bh(&hw->mbx_lock); 1233 1234 if (hw->mac.ops.set_vfta(hw, vid, true)) { 1235 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid); 1236 spin_unlock_bh(&hw->mbx_lock); 1237 return -EINVAL; 1238 } 1239 1240 spin_unlock_bh(&hw->mbx_lock); 1241 1242 set_bit(vid, adapter->active_vlans); 1243 return 0; 1244 } 1245 1246 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, 1247 __be16 proto, u16 vid) 1248 { 1249 struct igbvf_adapter *adapter = netdev_priv(netdev); 1250 struct e1000_hw *hw = &adapter->hw; 1251 1252 spin_lock_bh(&hw->mbx_lock); 1253 1254 if (hw->mac.ops.set_vfta(hw, vid, false)) { 1255 dev_err(&adapter->pdev->dev, 1256 "Failed to remove vlan id %d\n", vid); 1257 spin_unlock_bh(&hw->mbx_lock); 1258 return -EINVAL; 1259 } 1260 1261 spin_unlock_bh(&hw->mbx_lock); 1262 1263 clear_bit(vid, adapter->active_vlans); 1264 return 0; 1265 } 1266 1267 static void igbvf_restore_vlan(struct igbvf_adapter *adapter) 1268 { 1269 u16 vid; 1270 1271 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1272 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 1273 } 1274 1275 /** 1276 * igbvf_configure_tx - Configure Transmit Unit after Reset 1277 * @adapter: board private structure 1278 * 1279 * Configure the Tx unit of the MAC after a reset. 1280 **/ 1281 static void igbvf_configure_tx(struct igbvf_adapter *adapter) 1282 { 1283 struct e1000_hw *hw = &adapter->hw; 1284 struct igbvf_ring *tx_ring = adapter->tx_ring; 1285 u64 tdba; 1286 u32 txdctl, dca_txctrl; 1287 1288 /* disable transmits */ 1289 txdctl = er32(TXDCTL(0)); 1290 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1291 e1e_flush(); 1292 msleep(10); 1293 1294 /* Setup the HW Tx Head and Tail descriptor pointers */ 1295 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); 1296 tdba = tx_ring->dma; 1297 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 1298 ew32(TDBAH(0), (tdba >> 32)); 1299 ew32(TDH(0), 0); 1300 ew32(TDT(0), 0); 1301 tx_ring->head = E1000_TDH(0); 1302 tx_ring->tail = E1000_TDT(0); 1303 1304 /* Turn off Relaxed Ordering on head write-backs. The writebacks 1305 * MUST be delivered in order or it will completely screw up 1306 * our bookkeeping. 1307 */ 1308 dca_txctrl = er32(DCA_TXCTRL(0)); 1309 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; 1310 ew32(DCA_TXCTRL(0), dca_txctrl); 1311 1312 /* enable transmits */ 1313 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 1314 ew32(TXDCTL(0), txdctl); 1315 1316 /* Setup Transmit Descriptor Settings for eop descriptor */ 1317 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; 1318 1319 /* enable Report Status bit */ 1320 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; 1321 } 1322 1323 /** 1324 * igbvf_setup_srrctl - configure the receive control registers 1325 * @adapter: Board private structure 1326 **/ 1327 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) 1328 { 1329 struct e1000_hw *hw = &adapter->hw; 1330 u32 srrctl = 0; 1331 1332 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | 1333 E1000_SRRCTL_BSIZEHDR_MASK | 1334 E1000_SRRCTL_BSIZEPKT_MASK); 1335 1336 /* Enable queue drop to avoid head of line blocking */ 1337 srrctl |= E1000_SRRCTL_DROP_EN; 1338 1339 /* Setup buffer sizes */ 1340 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> 1341 E1000_SRRCTL_BSIZEPKT_SHIFT; 1342 1343 if (adapter->rx_buffer_len < 2048) { 1344 adapter->rx_ps_hdr_size = 0; 1345 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 1346 } else { 1347 adapter->rx_ps_hdr_size = 128; 1348 srrctl |= adapter->rx_ps_hdr_size << 1349 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 1350 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; 1351 } 1352 1353 ew32(SRRCTL(0), srrctl); 1354 } 1355 1356 /** 1357 * igbvf_configure_rx - Configure Receive Unit after Reset 1358 * @adapter: board private structure 1359 * 1360 * Configure the Rx unit of the MAC after a reset. 1361 **/ 1362 static void igbvf_configure_rx(struct igbvf_adapter *adapter) 1363 { 1364 struct e1000_hw *hw = &adapter->hw; 1365 struct igbvf_ring *rx_ring = adapter->rx_ring; 1366 u64 rdba; 1367 u32 rxdctl; 1368 1369 /* disable receives */ 1370 rxdctl = er32(RXDCTL(0)); 1371 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1372 e1e_flush(); 1373 msleep(10); 1374 1375 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1376 * the Base and Length of the Rx Descriptor Ring 1377 */ 1378 rdba = rx_ring->dma; 1379 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 1380 ew32(RDBAH(0), (rdba >> 32)); 1381 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); 1382 rx_ring->head = E1000_RDH(0); 1383 rx_ring->tail = E1000_RDT(0); 1384 ew32(RDH(0), 0); 1385 ew32(RDT(0), 0); 1386 1387 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 1388 rxdctl &= 0xFFF00000; 1389 rxdctl |= IGBVF_RX_PTHRESH; 1390 rxdctl |= IGBVF_RX_HTHRESH << 8; 1391 rxdctl |= IGBVF_RX_WTHRESH << 16; 1392 1393 igbvf_set_rlpml(adapter); 1394 1395 /* enable receives */ 1396 ew32(RXDCTL(0), rxdctl); 1397 } 1398 1399 /** 1400 * igbvf_set_multi - Multicast and Promiscuous mode set 1401 * @netdev: network interface device structure 1402 * 1403 * The set_multi entry point is called whenever the multicast address 1404 * list or the network interface flags are updated. This routine is 1405 * responsible for configuring the hardware for proper multicast, 1406 * promiscuous mode, and all-multi behavior. 1407 **/ 1408 static void igbvf_set_multi(struct net_device *netdev) 1409 { 1410 struct igbvf_adapter *adapter = netdev_priv(netdev); 1411 struct e1000_hw *hw = &adapter->hw; 1412 struct netdev_hw_addr *ha; 1413 u8 *mta_list = NULL; 1414 int i; 1415 1416 if (!netdev_mc_empty(netdev)) { 1417 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN, 1418 GFP_ATOMIC); 1419 if (!mta_list) 1420 return; 1421 } 1422 1423 /* prepare a packed array of only addresses. */ 1424 i = 0; 1425 netdev_for_each_mc_addr(ha, netdev) 1426 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1427 1428 spin_lock_bh(&hw->mbx_lock); 1429 1430 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); 1431 1432 spin_unlock_bh(&hw->mbx_lock); 1433 kfree(mta_list); 1434 } 1435 1436 /** 1437 * igbvf_set_uni - Configure unicast MAC filters 1438 * @netdev: network interface device structure 1439 * 1440 * This routine is responsible for configuring the hardware for proper 1441 * unicast filters. 1442 **/ 1443 static int igbvf_set_uni(struct net_device *netdev) 1444 { 1445 struct igbvf_adapter *adapter = netdev_priv(netdev); 1446 struct e1000_hw *hw = &adapter->hw; 1447 1448 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) { 1449 pr_err("Too many unicast filters - No Space\n"); 1450 return -ENOSPC; 1451 } 1452 1453 spin_lock_bh(&hw->mbx_lock); 1454 1455 /* Clear all unicast MAC filters */ 1456 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL); 1457 1458 spin_unlock_bh(&hw->mbx_lock); 1459 1460 if (!netdev_uc_empty(netdev)) { 1461 struct netdev_hw_addr *ha; 1462 1463 /* Add MAC filters one by one */ 1464 netdev_for_each_uc_addr(ha, netdev) { 1465 spin_lock_bh(&hw->mbx_lock); 1466 1467 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD, 1468 ha->addr); 1469 1470 spin_unlock_bh(&hw->mbx_lock); 1471 udelay(200); 1472 } 1473 } 1474 1475 return 0; 1476 } 1477 1478 static void igbvf_set_rx_mode(struct net_device *netdev) 1479 { 1480 igbvf_set_multi(netdev); 1481 igbvf_set_uni(netdev); 1482 } 1483 1484 /** 1485 * igbvf_configure - configure the hardware for Rx and Tx 1486 * @adapter: private board structure 1487 **/ 1488 static void igbvf_configure(struct igbvf_adapter *adapter) 1489 { 1490 igbvf_set_rx_mode(adapter->netdev); 1491 1492 igbvf_restore_vlan(adapter); 1493 1494 igbvf_configure_tx(adapter); 1495 igbvf_setup_srrctl(adapter); 1496 igbvf_configure_rx(adapter); 1497 igbvf_alloc_rx_buffers(adapter->rx_ring, 1498 igbvf_desc_unused(adapter->rx_ring)); 1499 } 1500 1501 /* igbvf_reset - bring the hardware into a known good state 1502 * @adapter: private board structure 1503 * 1504 * This function boots the hardware and enables some settings that 1505 * require a configuration cycle of the hardware - those cannot be 1506 * set/changed during runtime. After reset the device needs to be 1507 * properly configured for Rx, Tx etc. 1508 */ 1509 static void igbvf_reset(struct igbvf_adapter *adapter) 1510 { 1511 struct e1000_mac_info *mac = &adapter->hw.mac; 1512 struct net_device *netdev = adapter->netdev; 1513 struct e1000_hw *hw = &adapter->hw; 1514 1515 spin_lock_bh(&hw->mbx_lock); 1516 1517 /* Allow time for pending master requests to run */ 1518 if (mac->ops.reset_hw(hw)) 1519 dev_err(&adapter->pdev->dev, "PF still resetting\n"); 1520 1521 mac->ops.init_hw(hw); 1522 1523 spin_unlock_bh(&hw->mbx_lock); 1524 1525 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 1526 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 1527 netdev->addr_len); 1528 memcpy(netdev->perm_addr, adapter->hw.mac.addr, 1529 netdev->addr_len); 1530 } 1531 1532 adapter->last_reset = jiffies; 1533 } 1534 1535 int igbvf_up(struct igbvf_adapter *adapter) 1536 { 1537 struct e1000_hw *hw = &adapter->hw; 1538 1539 /* hardware has been reset, we need to reload some things */ 1540 igbvf_configure(adapter); 1541 1542 clear_bit(__IGBVF_DOWN, &adapter->state); 1543 1544 napi_enable(&adapter->rx_ring->napi); 1545 if (adapter->msix_entries) 1546 igbvf_configure_msix(adapter); 1547 1548 /* Clear any pending interrupts. */ 1549 er32(EICR); 1550 igbvf_irq_enable(adapter); 1551 1552 /* start the watchdog */ 1553 hw->mac.get_link_status = 1; 1554 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1555 1556 return 0; 1557 } 1558 1559 void igbvf_down(struct igbvf_adapter *adapter) 1560 { 1561 struct net_device *netdev = adapter->netdev; 1562 struct e1000_hw *hw = &adapter->hw; 1563 u32 rxdctl, txdctl; 1564 1565 /* signal that we're down so the interrupt handler does not 1566 * reschedule our watchdog timer 1567 */ 1568 set_bit(__IGBVF_DOWN, &adapter->state); 1569 1570 /* disable receives in the hardware */ 1571 rxdctl = er32(RXDCTL(0)); 1572 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1573 1574 netif_carrier_off(netdev); 1575 netif_stop_queue(netdev); 1576 1577 /* disable transmits in the hardware */ 1578 txdctl = er32(TXDCTL(0)); 1579 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1580 1581 /* flush both disables and wait for them to finish */ 1582 e1e_flush(); 1583 msleep(10); 1584 1585 napi_disable(&adapter->rx_ring->napi); 1586 1587 igbvf_irq_disable(adapter); 1588 1589 del_timer_sync(&adapter->watchdog_timer); 1590 1591 /* record the stats before reset*/ 1592 igbvf_update_stats(adapter); 1593 1594 adapter->link_speed = 0; 1595 adapter->link_duplex = 0; 1596 1597 igbvf_reset(adapter); 1598 igbvf_clean_tx_ring(adapter->tx_ring); 1599 igbvf_clean_rx_ring(adapter->rx_ring); 1600 } 1601 1602 void igbvf_reinit_locked(struct igbvf_adapter *adapter) 1603 { 1604 might_sleep(); 1605 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 1606 usleep_range(1000, 2000); 1607 igbvf_down(adapter); 1608 igbvf_up(adapter); 1609 clear_bit(__IGBVF_RESETTING, &adapter->state); 1610 } 1611 1612 /** 1613 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) 1614 * @adapter: board private structure to initialize 1615 * 1616 * igbvf_sw_init initializes the Adapter private data structure. 1617 * Fields are initialized based on PCI device information and 1618 * OS network device settings (MTU size). 1619 **/ 1620 static int igbvf_sw_init(struct igbvf_adapter *adapter) 1621 { 1622 struct net_device *netdev = adapter->netdev; 1623 s32 rc; 1624 1625 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 1626 adapter->rx_ps_hdr_size = 0; 1627 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1628 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 1629 1630 adapter->tx_int_delay = 8; 1631 adapter->tx_abs_int_delay = 32; 1632 adapter->rx_int_delay = 0; 1633 adapter->rx_abs_int_delay = 8; 1634 adapter->requested_itr = 3; 1635 adapter->current_itr = IGBVF_START_ITR; 1636 1637 /* Set various function pointers */ 1638 adapter->ei->init_ops(&adapter->hw); 1639 1640 rc = adapter->hw.mac.ops.init_params(&adapter->hw); 1641 if (rc) 1642 return rc; 1643 1644 rc = adapter->hw.mbx.ops.init_params(&adapter->hw); 1645 if (rc) 1646 return rc; 1647 1648 igbvf_set_interrupt_capability(adapter); 1649 1650 if (igbvf_alloc_queues(adapter)) 1651 return -ENOMEM; 1652 1653 spin_lock_init(&adapter->tx_queue_lock); 1654 1655 /* Explicitly disable IRQ since the NIC can be in any state. */ 1656 igbvf_irq_disable(adapter); 1657 1658 spin_lock_init(&adapter->stats_lock); 1659 spin_lock_init(&adapter->hw.mbx_lock); 1660 1661 set_bit(__IGBVF_DOWN, &adapter->state); 1662 return 0; 1663 } 1664 1665 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) 1666 { 1667 struct e1000_hw *hw = &adapter->hw; 1668 1669 adapter->stats.last_gprc = er32(VFGPRC); 1670 adapter->stats.last_gorc = er32(VFGORC); 1671 adapter->stats.last_gptc = er32(VFGPTC); 1672 adapter->stats.last_gotc = er32(VFGOTC); 1673 adapter->stats.last_mprc = er32(VFMPRC); 1674 adapter->stats.last_gotlbc = er32(VFGOTLBC); 1675 adapter->stats.last_gptlbc = er32(VFGPTLBC); 1676 adapter->stats.last_gorlbc = er32(VFGORLBC); 1677 adapter->stats.last_gprlbc = er32(VFGPRLBC); 1678 1679 adapter->stats.base_gprc = er32(VFGPRC); 1680 adapter->stats.base_gorc = er32(VFGORC); 1681 adapter->stats.base_gptc = er32(VFGPTC); 1682 adapter->stats.base_gotc = er32(VFGOTC); 1683 adapter->stats.base_mprc = er32(VFMPRC); 1684 adapter->stats.base_gotlbc = er32(VFGOTLBC); 1685 adapter->stats.base_gptlbc = er32(VFGPTLBC); 1686 adapter->stats.base_gorlbc = er32(VFGORLBC); 1687 adapter->stats.base_gprlbc = er32(VFGPRLBC); 1688 } 1689 1690 /** 1691 * igbvf_open - Called when a network interface is made active 1692 * @netdev: network interface device structure 1693 * 1694 * Returns 0 on success, negative value on failure 1695 * 1696 * The open entry point is called when a network interface is made 1697 * active by the system (IFF_UP). At this point all resources needed 1698 * for transmit and receive operations are allocated, the interrupt 1699 * handler is registered with the OS, the watchdog timer is started, 1700 * and the stack is notified that the interface is ready. 1701 **/ 1702 static int igbvf_open(struct net_device *netdev) 1703 { 1704 struct igbvf_adapter *adapter = netdev_priv(netdev); 1705 struct e1000_hw *hw = &adapter->hw; 1706 int err; 1707 1708 /* disallow open during test */ 1709 if (test_bit(__IGBVF_TESTING, &adapter->state)) 1710 return -EBUSY; 1711 1712 /* allocate transmit descriptors */ 1713 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); 1714 if (err) 1715 goto err_setup_tx; 1716 1717 /* allocate receive descriptors */ 1718 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); 1719 if (err) 1720 goto err_setup_rx; 1721 1722 /* before we allocate an interrupt, we must be ready to handle it. 1723 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1724 * as soon as we call pci_request_irq, so we have to setup our 1725 * clean_rx handler before we do so. 1726 */ 1727 igbvf_configure(adapter); 1728 1729 err = igbvf_request_irq(adapter); 1730 if (err) 1731 goto err_req_irq; 1732 1733 /* From here on the code is the same as igbvf_up() */ 1734 clear_bit(__IGBVF_DOWN, &adapter->state); 1735 1736 napi_enable(&adapter->rx_ring->napi); 1737 1738 /* clear any pending interrupts */ 1739 er32(EICR); 1740 1741 igbvf_irq_enable(adapter); 1742 1743 /* start the watchdog */ 1744 hw->mac.get_link_status = 1; 1745 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1746 1747 return 0; 1748 1749 err_req_irq: 1750 igbvf_free_rx_resources(adapter->rx_ring); 1751 err_setup_rx: 1752 igbvf_free_tx_resources(adapter->tx_ring); 1753 err_setup_tx: 1754 igbvf_reset(adapter); 1755 1756 return err; 1757 } 1758 1759 /** 1760 * igbvf_close - Disables a network interface 1761 * @netdev: network interface device structure 1762 * 1763 * Returns 0, this is not allowed to fail 1764 * 1765 * The close entry point is called when an interface is de-activated 1766 * by the OS. The hardware is still under the drivers control, but 1767 * needs to be disabled. A global MAC reset is issued to stop the 1768 * hardware, and all transmit and receive resources are freed. 1769 **/ 1770 static int igbvf_close(struct net_device *netdev) 1771 { 1772 struct igbvf_adapter *adapter = netdev_priv(netdev); 1773 1774 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 1775 igbvf_down(adapter); 1776 1777 igbvf_free_irq(adapter); 1778 1779 igbvf_free_tx_resources(adapter->tx_ring); 1780 igbvf_free_rx_resources(adapter->rx_ring); 1781 1782 return 0; 1783 } 1784 1785 /** 1786 * igbvf_set_mac - Change the Ethernet Address of the NIC 1787 * @netdev: network interface device structure 1788 * @p: pointer to an address structure 1789 * 1790 * Returns 0 on success, negative on failure 1791 **/ 1792 static int igbvf_set_mac(struct net_device *netdev, void *p) 1793 { 1794 struct igbvf_adapter *adapter = netdev_priv(netdev); 1795 struct e1000_hw *hw = &adapter->hw; 1796 struct sockaddr *addr = p; 1797 1798 if (!is_valid_ether_addr(addr->sa_data)) 1799 return -EADDRNOTAVAIL; 1800 1801 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 1802 1803 spin_lock_bh(&hw->mbx_lock); 1804 1805 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 1806 1807 spin_unlock_bh(&hw->mbx_lock); 1808 1809 if (!ether_addr_equal(addr->sa_data, hw->mac.addr)) 1810 return -EADDRNOTAVAIL; 1811 1812 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1813 1814 return 0; 1815 } 1816 1817 #define UPDATE_VF_COUNTER(reg, name) \ 1818 { \ 1819 u32 current_counter = er32(reg); \ 1820 if (current_counter < adapter->stats.last_##name) \ 1821 adapter->stats.name += 0x100000000LL; \ 1822 adapter->stats.last_##name = current_counter; \ 1823 adapter->stats.name &= 0xFFFFFFFF00000000LL; \ 1824 adapter->stats.name |= current_counter; \ 1825 } 1826 1827 /** 1828 * igbvf_update_stats - Update the board statistics counters 1829 * @adapter: board private structure 1830 **/ 1831 void igbvf_update_stats(struct igbvf_adapter *adapter) 1832 { 1833 struct e1000_hw *hw = &adapter->hw; 1834 struct pci_dev *pdev = adapter->pdev; 1835 1836 /* Prevent stats update while adapter is being reset, link is down 1837 * or if the pci connection is down. 1838 */ 1839 if (adapter->link_speed == 0) 1840 return; 1841 1842 if (test_bit(__IGBVF_RESETTING, &adapter->state)) 1843 return; 1844 1845 if (pci_channel_offline(pdev)) 1846 return; 1847 1848 UPDATE_VF_COUNTER(VFGPRC, gprc); 1849 UPDATE_VF_COUNTER(VFGORC, gorc); 1850 UPDATE_VF_COUNTER(VFGPTC, gptc); 1851 UPDATE_VF_COUNTER(VFGOTC, gotc); 1852 UPDATE_VF_COUNTER(VFMPRC, mprc); 1853 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); 1854 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); 1855 UPDATE_VF_COUNTER(VFGORLBC, gorlbc); 1856 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); 1857 1858 /* Fill out the OS statistics structure */ 1859 adapter->netdev->stats.multicast = adapter->stats.mprc; 1860 } 1861 1862 static void igbvf_print_link_info(struct igbvf_adapter *adapter) 1863 { 1864 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n", 1865 adapter->link_speed, 1866 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half"); 1867 } 1868 1869 static bool igbvf_has_link(struct igbvf_adapter *adapter) 1870 { 1871 struct e1000_hw *hw = &adapter->hw; 1872 s32 ret_val = E1000_SUCCESS; 1873 bool link_active; 1874 1875 /* If interface is down, stay link down */ 1876 if (test_bit(__IGBVF_DOWN, &adapter->state)) 1877 return false; 1878 1879 spin_lock_bh(&hw->mbx_lock); 1880 1881 ret_val = hw->mac.ops.check_for_link(hw); 1882 1883 spin_unlock_bh(&hw->mbx_lock); 1884 1885 link_active = !hw->mac.get_link_status; 1886 1887 /* if check for link returns error we will need to reset */ 1888 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ))) 1889 schedule_work(&adapter->reset_task); 1890 1891 return link_active; 1892 } 1893 1894 /** 1895 * igbvf_watchdog - Timer Call-back 1896 * @data: pointer to adapter cast into an unsigned long 1897 **/ 1898 static void igbvf_watchdog(struct timer_list *t) 1899 { 1900 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer); 1901 1902 /* Do the rest outside of interrupt context */ 1903 schedule_work(&adapter->watchdog_task); 1904 } 1905 1906 static void igbvf_watchdog_task(struct work_struct *work) 1907 { 1908 struct igbvf_adapter *adapter = container_of(work, 1909 struct igbvf_adapter, 1910 watchdog_task); 1911 struct net_device *netdev = adapter->netdev; 1912 struct e1000_mac_info *mac = &adapter->hw.mac; 1913 struct igbvf_ring *tx_ring = adapter->tx_ring; 1914 struct e1000_hw *hw = &adapter->hw; 1915 u32 link; 1916 int tx_pending = 0; 1917 1918 link = igbvf_has_link(adapter); 1919 1920 if (link) { 1921 if (!netif_carrier_ok(netdev)) { 1922 mac->ops.get_link_up_info(&adapter->hw, 1923 &adapter->link_speed, 1924 &adapter->link_duplex); 1925 igbvf_print_link_info(adapter); 1926 1927 netif_carrier_on(netdev); 1928 netif_wake_queue(netdev); 1929 } 1930 } else { 1931 if (netif_carrier_ok(netdev)) { 1932 adapter->link_speed = 0; 1933 adapter->link_duplex = 0; 1934 dev_info(&adapter->pdev->dev, "Link is Down\n"); 1935 netif_carrier_off(netdev); 1936 netif_stop_queue(netdev); 1937 } 1938 } 1939 1940 if (netif_carrier_ok(netdev)) { 1941 igbvf_update_stats(adapter); 1942 } else { 1943 tx_pending = (igbvf_desc_unused(tx_ring) + 1 < 1944 tx_ring->count); 1945 if (tx_pending) { 1946 /* We've lost link, so the controller stops DMA, 1947 * but we've got queued Tx work that's never going 1948 * to get done, so reset controller to flush Tx. 1949 * (Do the reset outside of interrupt context). 1950 */ 1951 adapter->tx_timeout_count++; 1952 schedule_work(&adapter->reset_task); 1953 } 1954 } 1955 1956 /* Cause software interrupt to ensure Rx ring is cleaned */ 1957 ew32(EICS, adapter->rx_ring->eims_value); 1958 1959 /* Reset the timer */ 1960 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1961 mod_timer(&adapter->watchdog_timer, 1962 round_jiffies(jiffies + (2 * HZ))); 1963 } 1964 1965 #define IGBVF_TX_FLAGS_CSUM 0x00000001 1966 #define IGBVF_TX_FLAGS_VLAN 0x00000002 1967 #define IGBVF_TX_FLAGS_TSO 0x00000004 1968 #define IGBVF_TX_FLAGS_IPV4 0x00000008 1969 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 1970 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16 1971 1972 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens, 1973 u32 type_tucmd, u32 mss_l4len_idx) 1974 { 1975 struct e1000_adv_tx_context_desc *context_desc; 1976 struct igbvf_buffer *buffer_info; 1977 u16 i = tx_ring->next_to_use; 1978 1979 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1980 buffer_info = &tx_ring->buffer_info[i]; 1981 1982 i++; 1983 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1984 1985 /* set bits to identify this as an advanced context descriptor */ 1986 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 1987 1988 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1989 context_desc->seqnum_seed = 0; 1990 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1991 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1992 1993 buffer_info->time_stamp = jiffies; 1994 buffer_info->dma = 0; 1995 } 1996 1997 static int igbvf_tso(struct igbvf_ring *tx_ring, 1998 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) 1999 { 2000 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 2001 union { 2002 struct iphdr *v4; 2003 struct ipv6hdr *v6; 2004 unsigned char *hdr; 2005 } ip; 2006 union { 2007 struct tcphdr *tcp; 2008 unsigned char *hdr; 2009 } l4; 2010 u32 paylen, l4_offset; 2011 int err; 2012 2013 if (skb->ip_summed != CHECKSUM_PARTIAL) 2014 return 0; 2015 2016 if (!skb_is_gso(skb)) 2017 return 0; 2018 2019 err = skb_cow_head(skb, 0); 2020 if (err < 0) 2021 return err; 2022 2023 ip.hdr = skb_network_header(skb); 2024 l4.hdr = skb_checksum_start(skb); 2025 2026 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 2027 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 2028 2029 /* initialize outer IP header fields */ 2030 if (ip.v4->version == 4) { 2031 unsigned char *csum_start = skb_checksum_start(skb); 2032 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 2033 2034 /* IP header will have to cancel out any data that 2035 * is not a part of the outer IP header 2036 */ 2037 ip.v4->check = csum_fold(csum_partial(trans_start, 2038 csum_start - trans_start, 2039 0)); 2040 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 2041 2042 ip.v4->tot_len = 0; 2043 } else { 2044 ip.v6->payload_len = 0; 2045 } 2046 2047 /* determine offset of inner transport header */ 2048 l4_offset = l4.hdr - skb->data; 2049 2050 /* compute length of segmentation header */ 2051 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2052 2053 /* remove payload length from inner checksum */ 2054 paylen = skb->len - l4_offset; 2055 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 2056 2057 /* MSS L4LEN IDX */ 2058 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 2059 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 2060 2061 /* VLAN MACLEN IPLEN */ 2062 vlan_macip_lens = l4.hdr - ip.hdr; 2063 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 2064 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK; 2065 2066 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 2067 2068 return 1; 2069 } 2070 2071 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb) 2072 { 2073 unsigned int offset = 0; 2074 2075 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 2076 2077 return offset == skb_checksum_start_offset(skb); 2078 } 2079 2080 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb, 2081 u32 tx_flags, __be16 protocol) 2082 { 2083 u32 vlan_macip_lens = 0; 2084 u32 type_tucmd = 0; 2085 2086 if (skb->ip_summed != CHECKSUM_PARTIAL) { 2087 csum_failed: 2088 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN)) 2089 return false; 2090 goto no_csum; 2091 } 2092 2093 switch (skb->csum_offset) { 2094 case offsetof(struct tcphdr, check): 2095 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 2096 /* fall through */ 2097 case offsetof(struct udphdr, check): 2098 break; 2099 case offsetof(struct sctphdr, checksum): 2100 /* validate that this is actually an SCTP request */ 2101 if (((protocol == htons(ETH_P_IP)) && 2102 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 2103 ((protocol == htons(ETH_P_IPV6)) && 2104 igbvf_ipv6_csum_is_sctp(skb))) { 2105 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 2106 break; 2107 } 2108 /* fall through */ 2109 default: 2110 skb_checksum_help(skb); 2111 goto csum_failed; 2112 } 2113 2114 vlan_macip_lens = skb_checksum_start_offset(skb) - 2115 skb_network_offset(skb); 2116 no_csum: 2117 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 2118 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK; 2119 2120 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 2121 return true; 2122 } 2123 2124 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) 2125 { 2126 struct igbvf_adapter *adapter = netdev_priv(netdev); 2127 2128 /* there is enough descriptors then we don't need to worry */ 2129 if (igbvf_desc_unused(adapter->tx_ring) >= size) 2130 return 0; 2131 2132 netif_stop_queue(netdev); 2133 2134 /* Herbert's original patch had: 2135 * smp_mb__after_netif_stop_queue(); 2136 * but since that doesn't exist yet, just open code it. 2137 */ 2138 smp_mb(); 2139 2140 /* We need to check again just in case room has been made available */ 2141 if (igbvf_desc_unused(adapter->tx_ring) < size) 2142 return -EBUSY; 2143 2144 netif_wake_queue(netdev); 2145 2146 ++adapter->restart_queue; 2147 return 0; 2148 } 2149 2150 #define IGBVF_MAX_TXD_PWR 16 2151 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR) 2152 2153 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, 2154 struct igbvf_ring *tx_ring, 2155 struct sk_buff *skb) 2156 { 2157 struct igbvf_buffer *buffer_info; 2158 struct pci_dev *pdev = adapter->pdev; 2159 unsigned int len = skb_headlen(skb); 2160 unsigned int count = 0, i; 2161 unsigned int f; 2162 2163 i = tx_ring->next_to_use; 2164 2165 buffer_info = &tx_ring->buffer_info[i]; 2166 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2167 buffer_info->length = len; 2168 /* set time_stamp *before* dma to help avoid a possible race */ 2169 buffer_info->time_stamp = jiffies; 2170 buffer_info->mapped_as_page = false; 2171 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len, 2172 DMA_TO_DEVICE); 2173 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2174 goto dma_error; 2175 2176 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 2177 const struct skb_frag_struct *frag; 2178 2179 count++; 2180 i++; 2181 if (i == tx_ring->count) 2182 i = 0; 2183 2184 frag = &skb_shinfo(skb)->frags[f]; 2185 len = skb_frag_size(frag); 2186 2187 buffer_info = &tx_ring->buffer_info[i]; 2188 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2189 buffer_info->length = len; 2190 buffer_info->time_stamp = jiffies; 2191 buffer_info->mapped_as_page = true; 2192 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len, 2193 DMA_TO_DEVICE); 2194 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2195 goto dma_error; 2196 } 2197 2198 tx_ring->buffer_info[i].skb = skb; 2199 2200 return ++count; 2201 2202 dma_error: 2203 dev_err(&pdev->dev, "TX DMA map failed\n"); 2204 2205 /* clear timestamp and dma mappings for failed buffer_info mapping */ 2206 buffer_info->dma = 0; 2207 buffer_info->time_stamp = 0; 2208 buffer_info->length = 0; 2209 buffer_info->mapped_as_page = false; 2210 if (count) 2211 count--; 2212 2213 /* clear timestamp and dma mappings for remaining portion of packet */ 2214 while (count--) { 2215 if (i == 0) 2216 i += tx_ring->count; 2217 i--; 2218 buffer_info = &tx_ring->buffer_info[i]; 2219 igbvf_put_txbuf(adapter, buffer_info); 2220 } 2221 2222 return 0; 2223 } 2224 2225 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, 2226 struct igbvf_ring *tx_ring, 2227 int tx_flags, int count, 2228 unsigned int first, u32 paylen, 2229 u8 hdr_len) 2230 { 2231 union e1000_adv_tx_desc *tx_desc = NULL; 2232 struct igbvf_buffer *buffer_info; 2233 u32 olinfo_status = 0, cmd_type_len; 2234 unsigned int i; 2235 2236 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | 2237 E1000_ADVTXD_DCMD_DEXT); 2238 2239 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 2240 cmd_type_len |= E1000_ADVTXD_DCMD_VLE; 2241 2242 if (tx_flags & IGBVF_TX_FLAGS_TSO) { 2243 cmd_type_len |= E1000_ADVTXD_DCMD_TSE; 2244 2245 /* insert tcp checksum */ 2246 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2247 2248 /* insert ip checksum */ 2249 if (tx_flags & IGBVF_TX_FLAGS_IPV4) 2250 olinfo_status |= E1000_TXD_POPTS_IXSM << 8; 2251 2252 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { 2253 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2254 } 2255 2256 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); 2257 2258 i = tx_ring->next_to_use; 2259 while (count--) { 2260 buffer_info = &tx_ring->buffer_info[i]; 2261 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 2262 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 2263 tx_desc->read.cmd_type_len = 2264 cpu_to_le32(cmd_type_len | buffer_info->length); 2265 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2266 i++; 2267 if (i == tx_ring->count) 2268 i = 0; 2269 } 2270 2271 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); 2272 /* Force memory writes to complete before letting h/w 2273 * know there are new descriptors to fetch. (Only 2274 * applicable for weak-ordered memory model archs, 2275 * such as IA-64). 2276 */ 2277 wmb(); 2278 2279 tx_ring->buffer_info[first].next_to_watch = tx_desc; 2280 tx_ring->next_to_use = i; 2281 writel(i, adapter->hw.hw_addr + tx_ring->tail); 2282 /* we need this if more than one processor can write to our tail 2283 * at a time, it synchronizes IO on IA64/Altix systems 2284 */ 2285 mmiowb(); 2286 } 2287 2288 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb, 2289 struct net_device *netdev, 2290 struct igbvf_ring *tx_ring) 2291 { 2292 struct igbvf_adapter *adapter = netdev_priv(netdev); 2293 unsigned int first, tx_flags = 0; 2294 u8 hdr_len = 0; 2295 int count = 0; 2296 int tso = 0; 2297 __be16 protocol = vlan_get_protocol(skb); 2298 2299 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2300 dev_kfree_skb_any(skb); 2301 return NETDEV_TX_OK; 2302 } 2303 2304 if (skb->len <= 0) { 2305 dev_kfree_skb_any(skb); 2306 return NETDEV_TX_OK; 2307 } 2308 2309 /* need: count + 4 desc gap to keep tail from touching 2310 * + 2 desc gap to keep tail from touching head, 2311 * + 1 desc for skb->data, 2312 * + 1 desc for context descriptor, 2313 * head, otherwise try next time 2314 */ 2315 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { 2316 /* this is a hard error */ 2317 return NETDEV_TX_BUSY; 2318 } 2319 2320 if (skb_vlan_tag_present(skb)) { 2321 tx_flags |= IGBVF_TX_FLAGS_VLAN; 2322 tx_flags |= (skb_vlan_tag_get(skb) << 2323 IGBVF_TX_FLAGS_VLAN_SHIFT); 2324 } 2325 2326 if (protocol == htons(ETH_P_IP)) 2327 tx_flags |= IGBVF_TX_FLAGS_IPV4; 2328 2329 first = tx_ring->next_to_use; 2330 2331 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len); 2332 if (unlikely(tso < 0)) { 2333 dev_kfree_skb_any(skb); 2334 return NETDEV_TX_OK; 2335 } 2336 2337 if (tso) 2338 tx_flags |= IGBVF_TX_FLAGS_TSO; 2339 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) && 2340 (skb->ip_summed == CHECKSUM_PARTIAL)) 2341 tx_flags |= IGBVF_TX_FLAGS_CSUM; 2342 2343 /* count reflects descriptors mapped, if 0 then mapping error 2344 * has occurred and we need to rewind the descriptor queue 2345 */ 2346 count = igbvf_tx_map_adv(adapter, tx_ring, skb); 2347 2348 if (count) { 2349 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, 2350 first, skb->len, hdr_len); 2351 /* Make sure there is space in the ring for the next send. */ 2352 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); 2353 } else { 2354 dev_kfree_skb_any(skb); 2355 tx_ring->buffer_info[first].time_stamp = 0; 2356 tx_ring->next_to_use = first; 2357 } 2358 2359 return NETDEV_TX_OK; 2360 } 2361 2362 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb, 2363 struct net_device *netdev) 2364 { 2365 struct igbvf_adapter *adapter = netdev_priv(netdev); 2366 struct igbvf_ring *tx_ring; 2367 2368 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2369 dev_kfree_skb_any(skb); 2370 return NETDEV_TX_OK; 2371 } 2372 2373 tx_ring = &adapter->tx_ring[0]; 2374 2375 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); 2376 } 2377 2378 /** 2379 * igbvf_tx_timeout - Respond to a Tx Hang 2380 * @netdev: network interface device structure 2381 **/ 2382 static void igbvf_tx_timeout(struct net_device *netdev) 2383 { 2384 struct igbvf_adapter *adapter = netdev_priv(netdev); 2385 2386 /* Do the reset outside of interrupt context */ 2387 adapter->tx_timeout_count++; 2388 schedule_work(&adapter->reset_task); 2389 } 2390 2391 static void igbvf_reset_task(struct work_struct *work) 2392 { 2393 struct igbvf_adapter *adapter; 2394 2395 adapter = container_of(work, struct igbvf_adapter, reset_task); 2396 2397 igbvf_reinit_locked(adapter); 2398 } 2399 2400 /** 2401 * igbvf_change_mtu - Change the Maximum Transfer Unit 2402 * @netdev: network interface device structure 2403 * @new_mtu: new value for maximum frame size 2404 * 2405 * Returns 0 on success, negative on failure 2406 **/ 2407 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) 2408 { 2409 struct igbvf_adapter *adapter = netdev_priv(netdev); 2410 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 2411 2412 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2413 usleep_range(1000, 2000); 2414 /* igbvf_down has a dependency on max_frame_size */ 2415 adapter->max_frame_size = max_frame; 2416 if (netif_running(netdev)) 2417 igbvf_down(adapter); 2418 2419 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 2420 * means we reserve 2 more, this pushes us to allocate from the next 2421 * larger slab size. 2422 * i.e. RXBUFFER_2048 --> size-4096 slab 2423 * However with the new *_jumbo_rx* routines, jumbo receives will use 2424 * fragmented skbs 2425 */ 2426 2427 if (max_frame <= 1024) 2428 adapter->rx_buffer_len = 1024; 2429 else if (max_frame <= 2048) 2430 adapter->rx_buffer_len = 2048; 2431 else 2432 #if (PAGE_SIZE / 2) > 16384 2433 adapter->rx_buffer_len = 16384; 2434 #else 2435 adapter->rx_buffer_len = PAGE_SIZE / 2; 2436 #endif 2437 2438 /* adjust allocation if LPE protects us, and we aren't using SBP */ 2439 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 2440 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 2441 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + 2442 ETH_FCS_LEN; 2443 2444 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", 2445 netdev->mtu, new_mtu); 2446 netdev->mtu = new_mtu; 2447 2448 if (netif_running(netdev)) 2449 igbvf_up(adapter); 2450 else 2451 igbvf_reset(adapter); 2452 2453 clear_bit(__IGBVF_RESETTING, &adapter->state); 2454 2455 return 0; 2456 } 2457 2458 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2459 { 2460 switch (cmd) { 2461 default: 2462 return -EOPNOTSUPP; 2463 } 2464 } 2465 2466 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state) 2467 { 2468 struct net_device *netdev = pci_get_drvdata(pdev); 2469 struct igbvf_adapter *adapter = netdev_priv(netdev); 2470 #ifdef CONFIG_PM 2471 int retval = 0; 2472 #endif 2473 2474 netif_device_detach(netdev); 2475 2476 if (netif_running(netdev)) { 2477 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 2478 igbvf_down(adapter); 2479 igbvf_free_irq(adapter); 2480 } 2481 2482 #ifdef CONFIG_PM 2483 retval = pci_save_state(pdev); 2484 if (retval) 2485 return retval; 2486 #endif 2487 2488 pci_disable_device(pdev); 2489 2490 return 0; 2491 } 2492 2493 #ifdef CONFIG_PM 2494 static int igbvf_resume(struct pci_dev *pdev) 2495 { 2496 struct net_device *netdev = pci_get_drvdata(pdev); 2497 struct igbvf_adapter *adapter = netdev_priv(netdev); 2498 u32 err; 2499 2500 pci_restore_state(pdev); 2501 err = pci_enable_device_mem(pdev); 2502 if (err) { 2503 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 2504 return err; 2505 } 2506 2507 pci_set_master(pdev); 2508 2509 if (netif_running(netdev)) { 2510 err = igbvf_request_irq(adapter); 2511 if (err) 2512 return err; 2513 } 2514 2515 igbvf_reset(adapter); 2516 2517 if (netif_running(netdev)) 2518 igbvf_up(adapter); 2519 2520 netif_device_attach(netdev); 2521 2522 return 0; 2523 } 2524 #endif 2525 2526 static void igbvf_shutdown(struct pci_dev *pdev) 2527 { 2528 igbvf_suspend(pdev, PMSG_SUSPEND); 2529 } 2530 2531 #ifdef CONFIG_NET_POLL_CONTROLLER 2532 /* Polling 'interrupt' - used by things like netconsole to send skbs 2533 * without having to re-enable interrupts. It's not called while 2534 * the interrupt routine is executing. 2535 */ 2536 static void igbvf_netpoll(struct net_device *netdev) 2537 { 2538 struct igbvf_adapter *adapter = netdev_priv(netdev); 2539 2540 disable_irq(adapter->pdev->irq); 2541 2542 igbvf_clean_tx_irq(adapter->tx_ring); 2543 2544 enable_irq(adapter->pdev->irq); 2545 } 2546 #endif 2547 2548 /** 2549 * igbvf_io_error_detected - called when PCI error is detected 2550 * @pdev: Pointer to PCI device 2551 * @state: The current pci connection state 2552 * 2553 * This function is called after a PCI bus error affecting 2554 * this device has been detected. 2555 */ 2556 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, 2557 pci_channel_state_t state) 2558 { 2559 struct net_device *netdev = pci_get_drvdata(pdev); 2560 struct igbvf_adapter *adapter = netdev_priv(netdev); 2561 2562 netif_device_detach(netdev); 2563 2564 if (state == pci_channel_io_perm_failure) 2565 return PCI_ERS_RESULT_DISCONNECT; 2566 2567 if (netif_running(netdev)) 2568 igbvf_down(adapter); 2569 pci_disable_device(pdev); 2570 2571 /* Request a slot slot reset. */ 2572 return PCI_ERS_RESULT_NEED_RESET; 2573 } 2574 2575 /** 2576 * igbvf_io_slot_reset - called after the pci bus has been reset. 2577 * @pdev: Pointer to PCI device 2578 * 2579 * Restart the card from scratch, as if from a cold-boot. Implementation 2580 * resembles the first-half of the igbvf_resume routine. 2581 */ 2582 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) 2583 { 2584 struct net_device *netdev = pci_get_drvdata(pdev); 2585 struct igbvf_adapter *adapter = netdev_priv(netdev); 2586 2587 if (pci_enable_device_mem(pdev)) { 2588 dev_err(&pdev->dev, 2589 "Cannot re-enable PCI device after reset.\n"); 2590 return PCI_ERS_RESULT_DISCONNECT; 2591 } 2592 pci_set_master(pdev); 2593 2594 igbvf_reset(adapter); 2595 2596 return PCI_ERS_RESULT_RECOVERED; 2597 } 2598 2599 /** 2600 * igbvf_io_resume - called when traffic can start flowing again. 2601 * @pdev: Pointer to PCI device 2602 * 2603 * This callback is called when the error recovery driver tells us that 2604 * its OK to resume normal operation. Implementation resembles the 2605 * second-half of the igbvf_resume routine. 2606 */ 2607 static void igbvf_io_resume(struct pci_dev *pdev) 2608 { 2609 struct net_device *netdev = pci_get_drvdata(pdev); 2610 struct igbvf_adapter *adapter = netdev_priv(netdev); 2611 2612 if (netif_running(netdev)) { 2613 if (igbvf_up(adapter)) { 2614 dev_err(&pdev->dev, 2615 "can't bring device back up after reset\n"); 2616 return; 2617 } 2618 } 2619 2620 netif_device_attach(netdev); 2621 } 2622 2623 static void igbvf_print_device_info(struct igbvf_adapter *adapter) 2624 { 2625 struct e1000_hw *hw = &adapter->hw; 2626 struct net_device *netdev = adapter->netdev; 2627 struct pci_dev *pdev = adapter->pdev; 2628 2629 if (hw->mac.type == e1000_vfadapt_i350) 2630 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n"); 2631 else 2632 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); 2633 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr); 2634 } 2635 2636 static int igbvf_set_features(struct net_device *netdev, 2637 netdev_features_t features) 2638 { 2639 struct igbvf_adapter *adapter = netdev_priv(netdev); 2640 2641 if (features & NETIF_F_RXCSUM) 2642 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED; 2643 else 2644 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED; 2645 2646 return 0; 2647 } 2648 2649 #define IGBVF_MAX_MAC_HDR_LEN 127 2650 #define IGBVF_MAX_NETWORK_HDR_LEN 511 2651 2652 static netdev_features_t 2653 igbvf_features_check(struct sk_buff *skb, struct net_device *dev, 2654 netdev_features_t features) 2655 { 2656 unsigned int network_hdr_len, mac_hdr_len; 2657 2658 /* Make certain the headers can be described by a context descriptor */ 2659 mac_hdr_len = skb_network_header(skb) - skb->data; 2660 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN)) 2661 return features & ~(NETIF_F_HW_CSUM | 2662 NETIF_F_SCTP_CRC | 2663 NETIF_F_HW_VLAN_CTAG_TX | 2664 NETIF_F_TSO | 2665 NETIF_F_TSO6); 2666 2667 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2668 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN)) 2669 return features & ~(NETIF_F_HW_CSUM | 2670 NETIF_F_SCTP_CRC | 2671 NETIF_F_TSO | 2672 NETIF_F_TSO6); 2673 2674 /* We can only support IPV4 TSO in tunnels if we can mangle the 2675 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2676 */ 2677 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2678 features &= ~NETIF_F_TSO; 2679 2680 return features; 2681 } 2682 2683 static const struct net_device_ops igbvf_netdev_ops = { 2684 .ndo_open = igbvf_open, 2685 .ndo_stop = igbvf_close, 2686 .ndo_start_xmit = igbvf_xmit_frame, 2687 .ndo_set_rx_mode = igbvf_set_rx_mode, 2688 .ndo_set_mac_address = igbvf_set_mac, 2689 .ndo_change_mtu = igbvf_change_mtu, 2690 .ndo_do_ioctl = igbvf_ioctl, 2691 .ndo_tx_timeout = igbvf_tx_timeout, 2692 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, 2693 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, 2694 #ifdef CONFIG_NET_POLL_CONTROLLER 2695 .ndo_poll_controller = igbvf_netpoll, 2696 #endif 2697 .ndo_set_features = igbvf_set_features, 2698 .ndo_features_check = igbvf_features_check, 2699 }; 2700 2701 /** 2702 * igbvf_probe - Device Initialization Routine 2703 * @pdev: PCI device information struct 2704 * @ent: entry in igbvf_pci_tbl 2705 * 2706 * Returns 0 on success, negative on failure 2707 * 2708 * igbvf_probe initializes an adapter identified by a pci_dev structure. 2709 * The OS initialization, configuring of the adapter private structure, 2710 * and a hardware reset occur. 2711 **/ 2712 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2713 { 2714 struct net_device *netdev; 2715 struct igbvf_adapter *adapter; 2716 struct e1000_hw *hw; 2717 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; 2718 2719 static int cards_found; 2720 int err, pci_using_dac; 2721 2722 err = pci_enable_device_mem(pdev); 2723 if (err) 2724 return err; 2725 2726 pci_using_dac = 0; 2727 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2728 if (!err) { 2729 pci_using_dac = 1; 2730 } else { 2731 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2732 if (err) { 2733 dev_err(&pdev->dev, 2734 "No usable DMA configuration, aborting\n"); 2735 goto err_dma; 2736 } 2737 } 2738 2739 err = pci_request_regions(pdev, igbvf_driver_name); 2740 if (err) 2741 goto err_pci_reg; 2742 2743 pci_set_master(pdev); 2744 2745 err = -ENOMEM; 2746 netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); 2747 if (!netdev) 2748 goto err_alloc_etherdev; 2749 2750 SET_NETDEV_DEV(netdev, &pdev->dev); 2751 2752 pci_set_drvdata(pdev, netdev); 2753 adapter = netdev_priv(netdev); 2754 hw = &adapter->hw; 2755 adapter->netdev = netdev; 2756 adapter->pdev = pdev; 2757 adapter->ei = ei; 2758 adapter->pba = ei->pba; 2759 adapter->flags = ei->flags; 2760 adapter->hw.back = adapter; 2761 adapter->hw.mac.type = ei->mac; 2762 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2763 2764 /* PCI config space info */ 2765 2766 hw->vendor_id = pdev->vendor; 2767 hw->device_id = pdev->device; 2768 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2769 hw->subsystem_device_id = pdev->subsystem_device; 2770 hw->revision_id = pdev->revision; 2771 2772 err = -EIO; 2773 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), 2774 pci_resource_len(pdev, 0)); 2775 2776 if (!adapter->hw.hw_addr) 2777 goto err_ioremap; 2778 2779 if (ei->get_variants) { 2780 err = ei->get_variants(adapter); 2781 if (err) 2782 goto err_get_variants; 2783 } 2784 2785 /* setup adapter struct */ 2786 err = igbvf_sw_init(adapter); 2787 if (err) 2788 goto err_sw_init; 2789 2790 /* construct the net_device struct */ 2791 netdev->netdev_ops = &igbvf_netdev_ops; 2792 2793 igbvf_set_ethtool_ops(netdev); 2794 netdev->watchdog_timeo = 5 * HZ; 2795 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2796 2797 adapter->bd_number = cards_found++; 2798 2799 netdev->hw_features = NETIF_F_SG | 2800 NETIF_F_TSO | 2801 NETIF_F_TSO6 | 2802 NETIF_F_RXCSUM | 2803 NETIF_F_HW_CSUM | 2804 NETIF_F_SCTP_CRC; 2805 2806 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 2807 NETIF_F_GSO_GRE_CSUM | \ 2808 NETIF_F_GSO_IPXIP4 | \ 2809 NETIF_F_GSO_IPXIP6 | \ 2810 NETIF_F_GSO_UDP_TUNNEL | \ 2811 NETIF_F_GSO_UDP_TUNNEL_CSUM) 2812 2813 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES; 2814 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 2815 IGBVF_GSO_PARTIAL_FEATURES; 2816 2817 netdev->features = netdev->hw_features; 2818 2819 if (pci_using_dac) 2820 netdev->features |= NETIF_F_HIGHDMA; 2821 2822 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 2823 netdev->mpls_features |= NETIF_F_HW_CSUM; 2824 netdev->hw_enc_features |= netdev->vlan_features; 2825 2826 /* set this bit last since it cannot be part of vlan_features */ 2827 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 2828 NETIF_F_HW_VLAN_CTAG_RX | 2829 NETIF_F_HW_VLAN_CTAG_TX; 2830 2831 /* MTU range: 68 - 9216 */ 2832 netdev->min_mtu = ETH_MIN_MTU; 2833 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 2834 2835 spin_lock_bh(&hw->mbx_lock); 2836 2837 /*reset the controller to put the device in a known good state */ 2838 err = hw->mac.ops.reset_hw(hw); 2839 if (err) { 2840 dev_info(&pdev->dev, 2841 "PF still in reset state. Is the PF interface up?\n"); 2842 } else { 2843 err = hw->mac.ops.read_mac_addr(hw); 2844 if (err) 2845 dev_info(&pdev->dev, "Error reading MAC address.\n"); 2846 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2847 dev_info(&pdev->dev, 2848 "MAC address not assigned by administrator.\n"); 2849 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 2850 netdev->addr_len); 2851 } 2852 2853 spin_unlock_bh(&hw->mbx_lock); 2854 2855 if (!is_valid_ether_addr(netdev->dev_addr)) { 2856 dev_info(&pdev->dev, "Assigning random MAC address.\n"); 2857 eth_hw_addr_random(netdev); 2858 memcpy(adapter->hw.mac.addr, netdev->dev_addr, 2859 netdev->addr_len); 2860 } 2861 2862 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0); 2863 2864 INIT_WORK(&adapter->reset_task, igbvf_reset_task); 2865 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); 2866 2867 /* ring size defaults */ 2868 adapter->rx_ring->count = 1024; 2869 adapter->tx_ring->count = 1024; 2870 2871 /* reset the hardware with the new settings */ 2872 igbvf_reset(adapter); 2873 2874 /* set hardware-specific flags */ 2875 if (adapter->hw.mac.type == e1000_vfadapt_i350) 2876 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP; 2877 2878 strcpy(netdev->name, "eth%d"); 2879 err = register_netdev(netdev); 2880 if (err) 2881 goto err_hw_init; 2882 2883 /* tell the stack to leave us alone until igbvf_open() is called */ 2884 netif_carrier_off(netdev); 2885 netif_stop_queue(netdev); 2886 2887 igbvf_print_device_info(adapter); 2888 2889 igbvf_initialize_last_counter_stats(adapter); 2890 2891 return 0; 2892 2893 err_hw_init: 2894 kfree(adapter->tx_ring); 2895 kfree(adapter->rx_ring); 2896 err_sw_init: 2897 igbvf_reset_interrupt_capability(adapter); 2898 err_get_variants: 2899 iounmap(adapter->hw.hw_addr); 2900 err_ioremap: 2901 free_netdev(netdev); 2902 err_alloc_etherdev: 2903 pci_release_regions(pdev); 2904 err_pci_reg: 2905 err_dma: 2906 pci_disable_device(pdev); 2907 return err; 2908 } 2909 2910 /** 2911 * igbvf_remove - Device Removal Routine 2912 * @pdev: PCI device information struct 2913 * 2914 * igbvf_remove is called by the PCI subsystem to alert the driver 2915 * that it should release a PCI device. The could be caused by a 2916 * Hot-Plug event, or because the driver is going to be removed from 2917 * memory. 2918 **/ 2919 static void igbvf_remove(struct pci_dev *pdev) 2920 { 2921 struct net_device *netdev = pci_get_drvdata(pdev); 2922 struct igbvf_adapter *adapter = netdev_priv(netdev); 2923 struct e1000_hw *hw = &adapter->hw; 2924 2925 /* The watchdog timer may be rescheduled, so explicitly 2926 * disable it from being rescheduled. 2927 */ 2928 set_bit(__IGBVF_DOWN, &adapter->state); 2929 del_timer_sync(&adapter->watchdog_timer); 2930 2931 cancel_work_sync(&adapter->reset_task); 2932 cancel_work_sync(&adapter->watchdog_task); 2933 2934 unregister_netdev(netdev); 2935 2936 igbvf_reset_interrupt_capability(adapter); 2937 2938 /* it is important to delete the NAPI struct prior to freeing the 2939 * Rx ring so that you do not end up with null pointer refs 2940 */ 2941 netif_napi_del(&adapter->rx_ring->napi); 2942 kfree(adapter->tx_ring); 2943 kfree(adapter->rx_ring); 2944 2945 iounmap(hw->hw_addr); 2946 if (hw->flash_address) 2947 iounmap(hw->flash_address); 2948 pci_release_regions(pdev); 2949 2950 free_netdev(netdev); 2951 2952 pci_disable_device(pdev); 2953 } 2954 2955 /* PCI Error Recovery (ERS) */ 2956 static const struct pci_error_handlers igbvf_err_handler = { 2957 .error_detected = igbvf_io_error_detected, 2958 .slot_reset = igbvf_io_slot_reset, 2959 .resume = igbvf_io_resume, 2960 }; 2961 2962 static const struct pci_device_id igbvf_pci_tbl[] = { 2963 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, 2964 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf }, 2965 { } /* terminate list */ 2966 }; 2967 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); 2968 2969 /* PCI Device API Driver */ 2970 static struct pci_driver igbvf_driver = { 2971 .name = igbvf_driver_name, 2972 .id_table = igbvf_pci_tbl, 2973 .probe = igbvf_probe, 2974 .remove = igbvf_remove, 2975 #ifdef CONFIG_PM 2976 /* Power Management Hooks */ 2977 .suspend = igbvf_suspend, 2978 .resume = igbvf_resume, 2979 #endif 2980 .shutdown = igbvf_shutdown, 2981 .err_handler = &igbvf_err_handler 2982 }; 2983 2984 /** 2985 * igbvf_init_module - Driver Registration Routine 2986 * 2987 * igbvf_init_module is the first routine called when the driver is 2988 * loaded. All it does is register with the PCI subsystem. 2989 **/ 2990 static int __init igbvf_init_module(void) 2991 { 2992 int ret; 2993 2994 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version); 2995 pr_info("%s\n", igbvf_copyright); 2996 2997 ret = pci_register_driver(&igbvf_driver); 2998 2999 return ret; 3000 } 3001 module_init(igbvf_init_module); 3002 3003 /** 3004 * igbvf_exit_module - Driver Exit Cleanup Routine 3005 * 3006 * igbvf_exit_module is called just before the driver is removed 3007 * from memory. 3008 **/ 3009 static void __exit igbvf_exit_module(void) 3010 { 3011 pci_unregister_driver(&igbvf_driver); 3012 } 3013 module_exit(igbvf_exit_module); 3014 3015 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 3016 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver"); 3017 MODULE_LICENSE("GPL v2"); 3018 MODULE_VERSION(DRV_VERSION); 3019 3020 /* netdev.c */ 3021