1 /*******************************************************************************
2 
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47 
48 #include "igbvf.h"
49 
50 #define DRV_VERSION "2.0.2-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54 		  "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56 		  "Copyright (c) 2009 - 2012 Intel Corporation.";
57 
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62 
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67 
68 static struct igbvf_info igbvf_vf_info = {
69 	.mac                    = e1000_vfadapt,
70 	.flags                  = 0,
71 	.pba                    = 10,
72 	.init_ops               = e1000_init_function_pointers_vf,
73 };
74 
75 static struct igbvf_info igbvf_i350_vf_info = {
76 	.mac			= e1000_vfadapt_i350,
77 	.flags			= 0,
78 	.pba			= 10,
79 	.init_ops		= e1000_init_function_pointers_vf,
80 };
81 
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83 	[board_vf]              = &igbvf_vf_info,
84 	[board_i350_vf]		= &igbvf_i350_vf_info,
85 };
86 
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92 	if (ring->next_to_clean > ring->next_to_use)
93 		return ring->next_to_clean - ring->next_to_use - 1;
94 
95 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97 
98 /**
99  * igbvf_receive_skb - helper function to handle Rx indications
100  * @adapter: board private structure
101  * @status: descriptor status field as written by hardware
102  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103  * @skb: pointer to sk_buff to be indicated to stack
104  **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106                               struct net_device *netdev,
107                               struct sk_buff *skb,
108                               u32 status, u16 vlan)
109 {
110 	u16 vid;
111 
112 	if (status & E1000_RXD_STAT_VP) {
113 		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114 		    (status & E1000_RXDEXT_STATERR_LB))
115 			vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116 		else
117 			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 		if (test_bit(vid, adapter->active_vlans))
119 			__vlan_hwaccel_put_tag(skb, vid);
120 	}
121 
122 	napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124 
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126                                          u32 status_err, struct sk_buff *skb)
127 {
128 	skb_checksum_none_assert(skb);
129 
130 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
131 	if ((status_err & E1000_RXD_STAT_IXSM) ||
132 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133 		return;
134 
135 	/* TCP/UDP checksum error bit is set */
136 	if (status_err &
137 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138 		/* let the stack verify checksum errors */
139 		adapter->hw_csum_err++;
140 		return;
141 	}
142 
143 	/* It must be a TCP or UDP packet with a valid checksum */
144 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145 		skb->ip_summed = CHECKSUM_UNNECESSARY;
146 
147 	adapter->hw_csum_good++;
148 }
149 
150 /**
151  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152  * @rx_ring: address of ring structure to repopulate
153  * @cleaned_count: number of buffers to repopulate
154  **/
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156                                    int cleaned_count)
157 {
158 	struct igbvf_adapter *adapter = rx_ring->adapter;
159 	struct net_device *netdev = adapter->netdev;
160 	struct pci_dev *pdev = adapter->pdev;
161 	union e1000_adv_rx_desc *rx_desc;
162 	struct igbvf_buffer *buffer_info;
163 	struct sk_buff *skb;
164 	unsigned int i;
165 	int bufsz;
166 
167 	i = rx_ring->next_to_use;
168 	buffer_info = &rx_ring->buffer_info[i];
169 
170 	if (adapter->rx_ps_hdr_size)
171 		bufsz = adapter->rx_ps_hdr_size;
172 	else
173 		bufsz = adapter->rx_buffer_len;
174 
175 	while (cleaned_count--) {
176 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177 
178 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179 			if (!buffer_info->page) {
180 				buffer_info->page = alloc_page(GFP_ATOMIC);
181 				if (!buffer_info->page) {
182 					adapter->alloc_rx_buff_failed++;
183 					goto no_buffers;
184 				}
185 				buffer_info->page_offset = 0;
186 			} else {
187 				buffer_info->page_offset ^= PAGE_SIZE / 2;
188 			}
189 			buffer_info->page_dma =
190 				dma_map_page(&pdev->dev, buffer_info->page,
191 				             buffer_info->page_offset,
192 				             PAGE_SIZE / 2,
193 					     DMA_FROM_DEVICE);
194 			if (dma_mapping_error(&pdev->dev,
195 					      buffer_info->page_dma)) {
196 				__free_page(buffer_info->page);
197 				buffer_info->page = NULL;
198 				dev_err(&pdev->dev, "RX DMA map failed\n");
199 				break;
200 			}
201 		}
202 
203 		if (!buffer_info->skb) {
204 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205 			if (!skb) {
206 				adapter->alloc_rx_buff_failed++;
207 				goto no_buffers;
208 			}
209 
210 			buffer_info->skb = skb;
211 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212 			                                  bufsz,
213 							  DMA_FROM_DEVICE);
214 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215 				dev_kfree_skb(buffer_info->skb);
216 				buffer_info->skb = NULL;
217 				dev_err(&pdev->dev, "RX DMA map failed\n");
218 				goto no_buffers;
219 			}
220 		}
221 		/* Refresh the desc even if buffer_addrs didn't change because
222 		 * each write-back erases this info. */
223 		if (adapter->rx_ps_hdr_size) {
224 			rx_desc->read.pkt_addr =
225 			     cpu_to_le64(buffer_info->page_dma);
226 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227 		} else {
228 			rx_desc->read.pkt_addr =
229 			     cpu_to_le64(buffer_info->dma);
230 			rx_desc->read.hdr_addr = 0;
231 		}
232 
233 		i++;
234 		if (i == rx_ring->count)
235 			i = 0;
236 		buffer_info = &rx_ring->buffer_info[i];
237 	}
238 
239 no_buffers:
240 	if (rx_ring->next_to_use != i) {
241 		rx_ring->next_to_use = i;
242 		if (i == 0)
243 			i = (rx_ring->count - 1);
244 		else
245 			i--;
246 
247 		/* Force memory writes to complete before letting h/w
248 		 * know there are new descriptors to fetch.  (Only
249 		 * applicable for weak-ordered memory model archs,
250 		 * such as IA-64). */
251 		wmb();
252 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
253 	}
254 }
255 
256 /**
257  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258  * @adapter: board private structure
259  *
260  * the return value indicates whether actual cleaning was done, there
261  * is no guarantee that everything was cleaned
262  **/
263 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264                                int *work_done, int work_to_do)
265 {
266 	struct igbvf_ring *rx_ring = adapter->rx_ring;
267 	struct net_device *netdev = adapter->netdev;
268 	struct pci_dev *pdev = adapter->pdev;
269 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
270 	struct igbvf_buffer *buffer_info, *next_buffer;
271 	struct sk_buff *skb;
272 	bool cleaned = false;
273 	int cleaned_count = 0;
274 	unsigned int total_bytes = 0, total_packets = 0;
275 	unsigned int i;
276 	u32 length, hlen, staterr;
277 
278 	i = rx_ring->next_to_clean;
279 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281 
282 	while (staterr & E1000_RXD_STAT_DD) {
283 		if (*work_done >= work_to_do)
284 			break;
285 		(*work_done)++;
286 		rmb(); /* read descriptor and rx_buffer_info after status DD */
287 
288 		buffer_info = &rx_ring->buffer_info[i];
289 
290 		/* HW will not DMA in data larger than the given buffer, even
291 		 * if it parses the (NFS, of course) header to be larger.  In
292 		 * that case, it fills the header buffer and spills the rest
293 		 * into the page.
294 		 */
295 		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296 		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297 		if (hlen > adapter->rx_ps_hdr_size)
298 			hlen = adapter->rx_ps_hdr_size;
299 
300 		length = le16_to_cpu(rx_desc->wb.upper.length);
301 		cleaned = true;
302 		cleaned_count++;
303 
304 		skb = buffer_info->skb;
305 		prefetch(skb->data - NET_IP_ALIGN);
306 		buffer_info->skb = NULL;
307 		if (!adapter->rx_ps_hdr_size) {
308 			dma_unmap_single(&pdev->dev, buffer_info->dma,
309 			                 adapter->rx_buffer_len,
310 					 DMA_FROM_DEVICE);
311 			buffer_info->dma = 0;
312 			skb_put(skb, length);
313 			goto send_up;
314 		}
315 
316 		if (!skb_shinfo(skb)->nr_frags) {
317 			dma_unmap_single(&pdev->dev, buffer_info->dma,
318 			                 adapter->rx_ps_hdr_size,
319 					 DMA_FROM_DEVICE);
320 			skb_put(skb, hlen);
321 		}
322 
323 		if (length) {
324 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
325 			               PAGE_SIZE / 2,
326 				       DMA_FROM_DEVICE);
327 			buffer_info->page_dma = 0;
328 
329 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
330 			                   buffer_info->page,
331 			                   buffer_info->page_offset,
332 			                   length);
333 
334 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335 			    (page_count(buffer_info->page) != 1))
336 				buffer_info->page = NULL;
337 			else
338 				get_page(buffer_info->page);
339 
340 			skb->len += length;
341 			skb->data_len += length;
342 			skb->truesize += PAGE_SIZE / 2;
343 		}
344 send_up:
345 		i++;
346 		if (i == rx_ring->count)
347 			i = 0;
348 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349 		prefetch(next_rxd);
350 		next_buffer = &rx_ring->buffer_info[i];
351 
352 		if (!(staterr & E1000_RXD_STAT_EOP)) {
353 			buffer_info->skb = next_buffer->skb;
354 			buffer_info->dma = next_buffer->dma;
355 			next_buffer->skb = skb;
356 			next_buffer->dma = 0;
357 			goto next_desc;
358 		}
359 
360 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361 			dev_kfree_skb_irq(skb);
362 			goto next_desc;
363 		}
364 
365 		total_bytes += skb->len;
366 		total_packets++;
367 
368 		igbvf_rx_checksum_adv(adapter, staterr, skb);
369 
370 		skb->protocol = eth_type_trans(skb, netdev);
371 
372 		igbvf_receive_skb(adapter, netdev, skb, staterr,
373 		                  rx_desc->wb.upper.vlan);
374 
375 next_desc:
376 		rx_desc->wb.upper.status_error = 0;
377 
378 		/* return some buffers to hardware, one at a time is too slow */
379 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381 			cleaned_count = 0;
382 		}
383 
384 		/* use prefetched values */
385 		rx_desc = next_rxd;
386 		buffer_info = next_buffer;
387 
388 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389 	}
390 
391 	rx_ring->next_to_clean = i;
392 	cleaned_count = igbvf_desc_unused(rx_ring);
393 
394 	if (cleaned_count)
395 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396 
397 	adapter->total_rx_packets += total_packets;
398 	adapter->total_rx_bytes += total_bytes;
399 	adapter->net_stats.rx_bytes += total_bytes;
400 	adapter->net_stats.rx_packets += total_packets;
401 	return cleaned;
402 }
403 
404 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405                             struct igbvf_buffer *buffer_info)
406 {
407 	if (buffer_info->dma) {
408 		if (buffer_info->mapped_as_page)
409 			dma_unmap_page(&adapter->pdev->dev,
410 				       buffer_info->dma,
411 				       buffer_info->length,
412 				       DMA_TO_DEVICE);
413 		else
414 			dma_unmap_single(&adapter->pdev->dev,
415 					 buffer_info->dma,
416 					 buffer_info->length,
417 					 DMA_TO_DEVICE);
418 		buffer_info->dma = 0;
419 	}
420 	if (buffer_info->skb) {
421 		dev_kfree_skb_any(buffer_info->skb);
422 		buffer_info->skb = NULL;
423 	}
424 	buffer_info->time_stamp = 0;
425 }
426 
427 /**
428  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429  * @adapter: board private structure
430  *
431  * Return 0 on success, negative on failure
432  **/
433 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434                              struct igbvf_ring *tx_ring)
435 {
436 	struct pci_dev *pdev = adapter->pdev;
437 	int size;
438 
439 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
440 	tx_ring->buffer_info = vzalloc(size);
441 	if (!tx_ring->buffer_info)
442 		goto err;
443 
444 	/* round up to nearest 4K */
445 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446 	tx_ring->size = ALIGN(tx_ring->size, 4096);
447 
448 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449 					   &tx_ring->dma, GFP_KERNEL);
450 
451 	if (!tx_ring->desc)
452 		goto err;
453 
454 	tx_ring->adapter = adapter;
455 	tx_ring->next_to_use = 0;
456 	tx_ring->next_to_clean = 0;
457 
458 	return 0;
459 err:
460 	vfree(tx_ring->buffer_info);
461 	dev_err(&adapter->pdev->dev,
462 	        "Unable to allocate memory for the transmit descriptor ring\n");
463 	return -ENOMEM;
464 }
465 
466 /**
467  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
468  * @adapter: board private structure
469  *
470  * Returns 0 on success, negative on failure
471  **/
472 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
473 			     struct igbvf_ring *rx_ring)
474 {
475 	struct pci_dev *pdev = adapter->pdev;
476 	int size, desc_len;
477 
478 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
479 	rx_ring->buffer_info = vzalloc(size);
480 	if (!rx_ring->buffer_info)
481 		goto err;
482 
483 	desc_len = sizeof(union e1000_adv_rx_desc);
484 
485 	/* Round up to nearest 4K */
486 	rx_ring->size = rx_ring->count * desc_len;
487 	rx_ring->size = ALIGN(rx_ring->size, 4096);
488 
489 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
490 					   &rx_ring->dma, GFP_KERNEL);
491 
492 	if (!rx_ring->desc)
493 		goto err;
494 
495 	rx_ring->next_to_clean = 0;
496 	rx_ring->next_to_use = 0;
497 
498 	rx_ring->adapter = adapter;
499 
500 	return 0;
501 
502 err:
503 	vfree(rx_ring->buffer_info);
504 	rx_ring->buffer_info = NULL;
505 	dev_err(&adapter->pdev->dev,
506 	        "Unable to allocate memory for the receive descriptor ring\n");
507 	return -ENOMEM;
508 }
509 
510 /**
511  * igbvf_clean_tx_ring - Free Tx Buffers
512  * @tx_ring: ring to be cleaned
513  **/
514 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
515 {
516 	struct igbvf_adapter *adapter = tx_ring->adapter;
517 	struct igbvf_buffer *buffer_info;
518 	unsigned long size;
519 	unsigned int i;
520 
521 	if (!tx_ring->buffer_info)
522 		return;
523 
524 	/* Free all the Tx ring sk_buffs */
525 	for (i = 0; i < tx_ring->count; i++) {
526 		buffer_info = &tx_ring->buffer_info[i];
527 		igbvf_put_txbuf(adapter, buffer_info);
528 	}
529 
530 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
531 	memset(tx_ring->buffer_info, 0, size);
532 
533 	/* Zero out the descriptor ring */
534 	memset(tx_ring->desc, 0, tx_ring->size);
535 
536 	tx_ring->next_to_use = 0;
537 	tx_ring->next_to_clean = 0;
538 
539 	writel(0, adapter->hw.hw_addr + tx_ring->head);
540 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
541 }
542 
543 /**
544  * igbvf_free_tx_resources - Free Tx Resources per Queue
545  * @tx_ring: ring to free resources from
546  *
547  * Free all transmit software resources
548  **/
549 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
550 {
551 	struct pci_dev *pdev = tx_ring->adapter->pdev;
552 
553 	igbvf_clean_tx_ring(tx_ring);
554 
555 	vfree(tx_ring->buffer_info);
556 	tx_ring->buffer_info = NULL;
557 
558 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
559 			  tx_ring->dma);
560 
561 	tx_ring->desc = NULL;
562 }
563 
564 /**
565  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
566  * @adapter: board private structure
567  **/
568 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
569 {
570 	struct igbvf_adapter *adapter = rx_ring->adapter;
571 	struct igbvf_buffer *buffer_info;
572 	struct pci_dev *pdev = adapter->pdev;
573 	unsigned long size;
574 	unsigned int i;
575 
576 	if (!rx_ring->buffer_info)
577 		return;
578 
579 	/* Free all the Rx ring sk_buffs */
580 	for (i = 0; i < rx_ring->count; i++) {
581 		buffer_info = &rx_ring->buffer_info[i];
582 		if (buffer_info->dma) {
583 			if (adapter->rx_ps_hdr_size){
584 				dma_unmap_single(&pdev->dev, buffer_info->dma,
585 				                 adapter->rx_ps_hdr_size,
586 						 DMA_FROM_DEVICE);
587 			} else {
588 				dma_unmap_single(&pdev->dev, buffer_info->dma,
589 				                 adapter->rx_buffer_len,
590 						 DMA_FROM_DEVICE);
591 			}
592 			buffer_info->dma = 0;
593 		}
594 
595 		if (buffer_info->skb) {
596 			dev_kfree_skb(buffer_info->skb);
597 			buffer_info->skb = NULL;
598 		}
599 
600 		if (buffer_info->page) {
601 			if (buffer_info->page_dma)
602 				dma_unmap_page(&pdev->dev,
603 					       buffer_info->page_dma,
604 				               PAGE_SIZE / 2,
605 					       DMA_FROM_DEVICE);
606 			put_page(buffer_info->page);
607 			buffer_info->page = NULL;
608 			buffer_info->page_dma = 0;
609 			buffer_info->page_offset = 0;
610 		}
611 	}
612 
613 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
614 	memset(rx_ring->buffer_info, 0, size);
615 
616 	/* Zero out the descriptor ring */
617 	memset(rx_ring->desc, 0, rx_ring->size);
618 
619 	rx_ring->next_to_clean = 0;
620 	rx_ring->next_to_use = 0;
621 
622 	writel(0, adapter->hw.hw_addr + rx_ring->head);
623 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
624 }
625 
626 /**
627  * igbvf_free_rx_resources - Free Rx Resources
628  * @rx_ring: ring to clean the resources from
629  *
630  * Free all receive software resources
631  **/
632 
633 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
634 {
635 	struct pci_dev *pdev = rx_ring->adapter->pdev;
636 
637 	igbvf_clean_rx_ring(rx_ring);
638 
639 	vfree(rx_ring->buffer_info);
640 	rx_ring->buffer_info = NULL;
641 
642 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
643 	                  rx_ring->dma);
644 	rx_ring->desc = NULL;
645 }
646 
647 /**
648  * igbvf_update_itr - update the dynamic ITR value based on statistics
649  * @adapter: pointer to adapter
650  * @itr_setting: current adapter->itr
651  * @packets: the number of packets during this measurement interval
652  * @bytes: the number of bytes during this measurement interval
653  *
654  *      Stores a new ITR value based on packets and byte
655  *      counts during the last interrupt.  The advantage of per interrupt
656  *      computation is faster updates and more accurate ITR for the current
657  *      traffic pattern.  Constants in this function were computed
658  *      based on theoretical maximum wire speed and thresholds were set based
659  *      on testing data as well as attempting to minimize response time
660  *      while increasing bulk throughput.
661  **/
662 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
663 					   enum latency_range itr_setting,
664 					   int packets, int bytes)
665 {
666 	enum latency_range retval = itr_setting;
667 
668 	if (packets == 0)
669 		goto update_itr_done;
670 
671 	switch (itr_setting) {
672 	case lowest_latency:
673 		/* handle TSO and jumbo frames */
674 		if (bytes/packets > 8000)
675 			retval = bulk_latency;
676 		else if ((packets < 5) && (bytes > 512))
677 			retval = low_latency;
678 		break;
679 	case low_latency:  /* 50 usec aka 20000 ints/s */
680 		if (bytes > 10000) {
681 			/* this if handles the TSO accounting */
682 			if (bytes/packets > 8000)
683 				retval = bulk_latency;
684 			else if ((packets < 10) || ((bytes/packets) > 1200))
685 				retval = bulk_latency;
686 			else if ((packets > 35))
687 				retval = lowest_latency;
688 		} else if (bytes/packets > 2000) {
689 			retval = bulk_latency;
690 		} else if (packets <= 2 && bytes < 512) {
691 			retval = lowest_latency;
692 		}
693 		break;
694 	case bulk_latency: /* 250 usec aka 4000 ints/s */
695 		if (bytes > 25000) {
696 			if (packets > 35)
697 				retval = low_latency;
698 		} else if (bytes < 6000) {
699 			retval = low_latency;
700 		}
701 		break;
702 	default:
703 		break;
704 	}
705 
706 update_itr_done:
707 	return retval;
708 }
709 
710 static int igbvf_range_to_itr(enum latency_range current_range)
711 {
712 	int new_itr;
713 
714 	switch (current_range) {
715 	/* counts and packets in update_itr are dependent on these numbers */
716 	case lowest_latency:
717 		new_itr = IGBVF_70K_ITR;
718 		break;
719 	case low_latency:
720 		new_itr = IGBVF_20K_ITR;
721 		break;
722 	case bulk_latency:
723 		new_itr = IGBVF_4K_ITR;
724 		break;
725 	default:
726 		new_itr = IGBVF_START_ITR;
727 		break;
728 	}
729 	return new_itr;
730 }
731 
732 static void igbvf_set_itr(struct igbvf_adapter *adapter)
733 {
734 	u32 new_itr;
735 
736 	adapter->tx_ring->itr_range =
737 			igbvf_update_itr(adapter,
738 					 adapter->tx_ring->itr_val,
739 					 adapter->total_tx_packets,
740 					 adapter->total_tx_bytes);
741 
742 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
743 	if (adapter->requested_itr == 3 &&
744 	    adapter->tx_ring->itr_range == lowest_latency)
745 		adapter->tx_ring->itr_range = low_latency;
746 
747 	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
748 
749 
750 	if (new_itr != adapter->tx_ring->itr_val) {
751 		u32 current_itr = adapter->tx_ring->itr_val;
752 		/*
753 		 * this attempts to bias the interrupt rate towards Bulk
754 		 * by adding intermediate steps when interrupt rate is
755 		 * increasing
756 		 */
757 		new_itr = new_itr > current_itr ?
758 			     min(current_itr + (new_itr >> 2), new_itr) :
759 			     new_itr;
760 		adapter->tx_ring->itr_val = new_itr;
761 
762 		adapter->tx_ring->set_itr = 1;
763 	}
764 
765 	adapter->rx_ring->itr_range =
766 			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
767 					 adapter->total_rx_packets,
768 					 adapter->total_rx_bytes);
769 	if (adapter->requested_itr == 3 &&
770 	    adapter->rx_ring->itr_range == lowest_latency)
771 		adapter->rx_ring->itr_range = low_latency;
772 
773 	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
774 
775 	if (new_itr != adapter->rx_ring->itr_val) {
776 		u32 current_itr = adapter->rx_ring->itr_val;
777 		new_itr = new_itr > current_itr ?
778 			     min(current_itr + (new_itr >> 2), new_itr) :
779 			     new_itr;
780 		adapter->rx_ring->itr_val = new_itr;
781 
782 		adapter->rx_ring->set_itr = 1;
783 	}
784 }
785 
786 /**
787  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788  * @adapter: board private structure
789  *
790  * returns true if ring is completely cleaned
791  **/
792 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
793 {
794 	struct igbvf_adapter *adapter = tx_ring->adapter;
795 	struct net_device *netdev = adapter->netdev;
796 	struct igbvf_buffer *buffer_info;
797 	struct sk_buff *skb;
798 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
799 	unsigned int total_bytes = 0, total_packets = 0;
800 	unsigned int i, eop, count = 0;
801 	bool cleaned = false;
802 
803 	i = tx_ring->next_to_clean;
804 	eop = tx_ring->buffer_info[i].next_to_watch;
805 	eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
806 
807 	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
808 	       (count < tx_ring->count)) {
809 		rmb();	/* read buffer_info after eop_desc status */
810 		for (cleaned = false; !cleaned; count++) {
811 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
812 			buffer_info = &tx_ring->buffer_info[i];
813 			cleaned = (i == eop);
814 			skb = buffer_info->skb;
815 
816 			if (skb) {
817 				unsigned int segs, bytecount;
818 
819 				/* gso_segs is currently only valid for tcp */
820 				segs = skb_shinfo(skb)->gso_segs ?: 1;
821 				/* multiply data chunks by size of headers */
822 				bytecount = ((segs - 1) * skb_headlen(skb)) +
823 				            skb->len;
824 				total_packets += segs;
825 				total_bytes += bytecount;
826 			}
827 
828 			igbvf_put_txbuf(adapter, buffer_info);
829 			tx_desc->wb.status = 0;
830 
831 			i++;
832 			if (i == tx_ring->count)
833 				i = 0;
834 		}
835 		eop = tx_ring->buffer_info[i].next_to_watch;
836 		eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
837 	}
838 
839 	tx_ring->next_to_clean = i;
840 
841 	if (unlikely(count &&
842 	             netif_carrier_ok(netdev) &&
843 	             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
844 		/* Make sure that anybody stopping the queue after this
845 		 * sees the new next_to_clean.
846 		 */
847 		smp_mb();
848 		if (netif_queue_stopped(netdev) &&
849 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
850 			netif_wake_queue(netdev);
851 			++adapter->restart_queue;
852 		}
853 	}
854 
855 	adapter->net_stats.tx_bytes += total_bytes;
856 	adapter->net_stats.tx_packets += total_packets;
857 	return count < tx_ring->count;
858 }
859 
860 static irqreturn_t igbvf_msix_other(int irq, void *data)
861 {
862 	struct net_device *netdev = data;
863 	struct igbvf_adapter *adapter = netdev_priv(netdev);
864 	struct e1000_hw *hw = &adapter->hw;
865 
866 	adapter->int_counter1++;
867 
868 	netif_carrier_off(netdev);
869 	hw->mac.get_link_status = 1;
870 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
871 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
872 
873 	ew32(EIMS, adapter->eims_other);
874 
875 	return IRQ_HANDLED;
876 }
877 
878 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
879 {
880 	struct net_device *netdev = data;
881 	struct igbvf_adapter *adapter = netdev_priv(netdev);
882 	struct e1000_hw *hw = &adapter->hw;
883 	struct igbvf_ring *tx_ring = adapter->tx_ring;
884 
885 	if (tx_ring->set_itr) {
886 		writel(tx_ring->itr_val,
887 		       adapter->hw.hw_addr + tx_ring->itr_register);
888 		adapter->tx_ring->set_itr = 0;
889 	}
890 
891 	adapter->total_tx_bytes = 0;
892 	adapter->total_tx_packets = 0;
893 
894 	/* auto mask will automatically reenable the interrupt when we write
895 	 * EICS */
896 	if (!igbvf_clean_tx_irq(tx_ring))
897 		/* Ring was not completely cleaned, so fire another interrupt */
898 		ew32(EICS, tx_ring->eims_value);
899 	else
900 		ew32(EIMS, tx_ring->eims_value);
901 
902 	return IRQ_HANDLED;
903 }
904 
905 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
906 {
907 	struct net_device *netdev = data;
908 	struct igbvf_adapter *adapter = netdev_priv(netdev);
909 
910 	adapter->int_counter0++;
911 
912 	/* Write the ITR value calculated at the end of the
913 	 * previous interrupt.
914 	 */
915 	if (adapter->rx_ring->set_itr) {
916 		writel(adapter->rx_ring->itr_val,
917 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
918 		adapter->rx_ring->set_itr = 0;
919 	}
920 
921 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
922 		adapter->total_rx_bytes = 0;
923 		adapter->total_rx_packets = 0;
924 		__napi_schedule(&adapter->rx_ring->napi);
925 	}
926 
927 	return IRQ_HANDLED;
928 }
929 
930 #define IGBVF_NO_QUEUE -1
931 
932 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
933                                 int tx_queue, int msix_vector)
934 {
935 	struct e1000_hw *hw = &adapter->hw;
936 	u32 ivar, index;
937 
938 	/* 82576 uses a table-based method for assigning vectors.
939 	   Each queue has a single entry in the table to which we write
940 	   a vector number along with a "valid" bit.  Sadly, the layout
941 	   of the table is somewhat counterintuitive. */
942 	if (rx_queue > IGBVF_NO_QUEUE) {
943 		index = (rx_queue >> 1);
944 		ivar = array_er32(IVAR0, index);
945 		if (rx_queue & 0x1) {
946 			/* vector goes into third byte of register */
947 			ivar = ivar & 0xFF00FFFF;
948 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
949 		} else {
950 			/* vector goes into low byte of register */
951 			ivar = ivar & 0xFFFFFF00;
952 			ivar |= msix_vector | E1000_IVAR_VALID;
953 		}
954 		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
955 		array_ew32(IVAR0, index, ivar);
956 	}
957 	if (tx_queue > IGBVF_NO_QUEUE) {
958 		index = (tx_queue >> 1);
959 		ivar = array_er32(IVAR0, index);
960 		if (tx_queue & 0x1) {
961 			/* vector goes into high byte of register */
962 			ivar = ivar & 0x00FFFFFF;
963 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
964 		} else {
965 			/* vector goes into second byte of register */
966 			ivar = ivar & 0xFFFF00FF;
967 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
968 		}
969 		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
970 		array_ew32(IVAR0, index, ivar);
971 	}
972 }
973 
974 /**
975  * igbvf_configure_msix - Configure MSI-X hardware
976  *
977  * igbvf_configure_msix sets up the hardware to properly
978  * generate MSI-X interrupts.
979  **/
980 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
981 {
982 	u32 tmp;
983 	struct e1000_hw *hw = &adapter->hw;
984 	struct igbvf_ring *tx_ring = adapter->tx_ring;
985 	struct igbvf_ring *rx_ring = adapter->rx_ring;
986 	int vector = 0;
987 
988 	adapter->eims_enable_mask = 0;
989 
990 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
991 	adapter->eims_enable_mask |= tx_ring->eims_value;
992 	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
993 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
994 	adapter->eims_enable_mask |= rx_ring->eims_value;
995 	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
996 
997 	/* set vector for other causes, i.e. link changes */
998 
999 	tmp = (vector++ | E1000_IVAR_VALID);
1000 
1001 	ew32(IVAR_MISC, tmp);
1002 
1003 	adapter->eims_enable_mask = (1 << (vector)) - 1;
1004 	adapter->eims_other = 1 << (vector - 1);
1005 	e1e_flush();
1006 }
1007 
1008 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1009 {
1010 	if (adapter->msix_entries) {
1011 		pci_disable_msix(adapter->pdev);
1012 		kfree(adapter->msix_entries);
1013 		adapter->msix_entries = NULL;
1014 	}
1015 }
1016 
1017 /**
1018  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1019  *
1020  * Attempt to configure interrupts using the best available
1021  * capabilities of the hardware and kernel.
1022  **/
1023 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1024 {
1025 	int err = -ENOMEM;
1026 	int i;
1027 
1028 	/* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1029 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1030 	                                GFP_KERNEL);
1031 	if (adapter->msix_entries) {
1032 		for (i = 0; i < 3; i++)
1033 			adapter->msix_entries[i].entry = i;
1034 
1035 		err = pci_enable_msix(adapter->pdev,
1036 		                      adapter->msix_entries, 3);
1037 	}
1038 
1039 	if (err) {
1040 		/* MSI-X failed */
1041 		dev_err(&adapter->pdev->dev,
1042 		        "Failed to initialize MSI-X interrupts.\n");
1043 		igbvf_reset_interrupt_capability(adapter);
1044 	}
1045 }
1046 
1047 /**
1048  * igbvf_request_msix - Initialize MSI-X interrupts
1049  *
1050  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1051  * kernel.
1052  **/
1053 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1054 {
1055 	struct net_device *netdev = adapter->netdev;
1056 	int err = 0, vector = 0;
1057 
1058 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1059 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1060 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1061 	} else {
1062 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1063 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1064 	}
1065 
1066 	err = request_irq(adapter->msix_entries[vector].vector,
1067 	                  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1068 	                  netdev);
1069 	if (err)
1070 		goto out;
1071 
1072 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1073 	adapter->tx_ring->itr_val = adapter->current_itr;
1074 	vector++;
1075 
1076 	err = request_irq(adapter->msix_entries[vector].vector,
1077 	                  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1078 	                  netdev);
1079 	if (err)
1080 		goto out;
1081 
1082 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1083 	adapter->rx_ring->itr_val = adapter->current_itr;
1084 	vector++;
1085 
1086 	err = request_irq(adapter->msix_entries[vector].vector,
1087 	                  igbvf_msix_other, 0, netdev->name, netdev);
1088 	if (err)
1089 		goto out;
1090 
1091 	igbvf_configure_msix(adapter);
1092 	return 0;
1093 out:
1094 	return err;
1095 }
1096 
1097 /**
1098  * igbvf_alloc_queues - Allocate memory for all rings
1099  * @adapter: board private structure to initialize
1100  **/
1101 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1102 {
1103 	struct net_device *netdev = adapter->netdev;
1104 
1105 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106 	if (!adapter->tx_ring)
1107 		return -ENOMEM;
1108 
1109 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1110 	if (!adapter->rx_ring) {
1111 		kfree(adapter->tx_ring);
1112 		return -ENOMEM;
1113 	}
1114 
1115 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  * igbvf_request_irq - initialize interrupts
1122  *
1123  * Attempts to configure interrupts using the best available
1124  * capabilities of the hardware and kernel.
1125  **/
1126 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1127 {
1128 	int err = -1;
1129 
1130 	/* igbvf supports msi-x only */
1131 	if (adapter->msix_entries)
1132 		err = igbvf_request_msix(adapter);
1133 
1134 	if (!err)
1135 		return err;
1136 
1137 	dev_err(&adapter->pdev->dev,
1138 	        "Unable to allocate interrupt, Error: %d\n", err);
1139 
1140 	return err;
1141 }
1142 
1143 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1144 {
1145 	struct net_device *netdev = adapter->netdev;
1146 	int vector;
1147 
1148 	if (adapter->msix_entries) {
1149 		for (vector = 0; vector < 3; vector++)
1150 			free_irq(adapter->msix_entries[vector].vector, netdev);
1151 	}
1152 }
1153 
1154 /**
1155  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1156  **/
1157 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1158 {
1159 	struct e1000_hw *hw = &adapter->hw;
1160 
1161 	ew32(EIMC, ~0);
1162 
1163 	if (adapter->msix_entries)
1164 		ew32(EIAC, 0);
1165 }
1166 
1167 /**
1168  * igbvf_irq_enable - Enable default interrupt generation settings
1169  **/
1170 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171 {
1172 	struct e1000_hw *hw = &adapter->hw;
1173 
1174 	ew32(EIAC, adapter->eims_enable_mask);
1175 	ew32(EIAM, adapter->eims_enable_mask);
1176 	ew32(EIMS, adapter->eims_enable_mask);
1177 }
1178 
1179 /**
1180  * igbvf_poll - NAPI Rx polling callback
1181  * @napi: struct associated with this polling callback
1182  * @budget: amount of packets driver is allowed to process this poll
1183  **/
1184 static int igbvf_poll(struct napi_struct *napi, int budget)
1185 {
1186 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187 	struct igbvf_adapter *adapter = rx_ring->adapter;
1188 	struct e1000_hw *hw = &adapter->hw;
1189 	int work_done = 0;
1190 
1191 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1192 
1193 	/* If not enough Rx work done, exit the polling mode */
1194 	if (work_done < budget) {
1195 		napi_complete(napi);
1196 
1197 		if (adapter->requested_itr & 3)
1198 			igbvf_set_itr(adapter);
1199 
1200 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1201 			ew32(EIMS, adapter->rx_ring->eims_value);
1202 	}
1203 
1204 	return work_done;
1205 }
1206 
1207 /**
1208  * igbvf_set_rlpml - set receive large packet maximum length
1209  * @adapter: board private structure
1210  *
1211  * Configure the maximum size of packets that will be received
1212  */
1213 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1214 {
1215 	int max_frame_size;
1216 	struct e1000_hw *hw = &adapter->hw;
1217 
1218 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1219 	e1000_rlpml_set_vf(hw, max_frame_size);
1220 }
1221 
1222 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1223 {
1224 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1225 	struct e1000_hw *hw = &adapter->hw;
1226 
1227 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1228 		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1229 		return -EINVAL;
1230 	}
1231 	set_bit(vid, adapter->active_vlans);
1232 	return 0;
1233 }
1234 
1235 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1236 {
1237 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1238 	struct e1000_hw *hw = &adapter->hw;
1239 
1240 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1241 		dev_err(&adapter->pdev->dev,
1242 		        "Failed to remove vlan id %d\n", vid);
1243 		return -EINVAL;
1244 	}
1245 	clear_bit(vid, adapter->active_vlans);
1246 	return 0;
1247 }
1248 
1249 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1250 {
1251 	u16 vid;
1252 
1253 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1254 		igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1255 }
1256 
1257 /**
1258  * igbvf_configure_tx - Configure Transmit Unit after Reset
1259  * @adapter: board private structure
1260  *
1261  * Configure the Tx unit of the MAC after a reset.
1262  **/
1263 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1264 {
1265 	struct e1000_hw *hw = &adapter->hw;
1266 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1267 	u64 tdba;
1268 	u32 txdctl, dca_txctrl;
1269 
1270 	/* disable transmits */
1271 	txdctl = er32(TXDCTL(0));
1272 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1273 	e1e_flush();
1274 	msleep(10);
1275 
1276 	/* Setup the HW Tx Head and Tail descriptor pointers */
1277 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1278 	tdba = tx_ring->dma;
1279 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1280 	ew32(TDBAH(0), (tdba >> 32));
1281 	ew32(TDH(0), 0);
1282 	ew32(TDT(0), 0);
1283 	tx_ring->head = E1000_TDH(0);
1284 	tx_ring->tail = E1000_TDT(0);
1285 
1286 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1287 	 * MUST be delivered in order or it will completely screw up
1288 	 * our bookeeping.
1289 	 */
1290 	dca_txctrl = er32(DCA_TXCTRL(0));
1291 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1292 	ew32(DCA_TXCTRL(0), dca_txctrl);
1293 
1294 	/* enable transmits */
1295 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1296 	ew32(TXDCTL(0), txdctl);
1297 
1298 	/* Setup Transmit Descriptor Settings for eop descriptor */
1299 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1300 
1301 	/* enable Report Status bit */
1302 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1303 }
1304 
1305 /**
1306  * igbvf_setup_srrctl - configure the receive control registers
1307  * @adapter: Board private structure
1308  **/
1309 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1310 {
1311 	struct e1000_hw *hw = &adapter->hw;
1312 	u32 srrctl = 0;
1313 
1314 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1315 	            E1000_SRRCTL_BSIZEHDR_MASK |
1316 	            E1000_SRRCTL_BSIZEPKT_MASK);
1317 
1318 	/* Enable queue drop to avoid head of line blocking */
1319 	srrctl |= E1000_SRRCTL_DROP_EN;
1320 
1321 	/* Setup buffer sizes */
1322 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1323 	          E1000_SRRCTL_BSIZEPKT_SHIFT;
1324 
1325 	if (adapter->rx_buffer_len < 2048) {
1326 		adapter->rx_ps_hdr_size = 0;
1327 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1328 	} else {
1329 		adapter->rx_ps_hdr_size = 128;
1330 		srrctl |= adapter->rx_ps_hdr_size <<
1331 		          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1332 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1333 	}
1334 
1335 	ew32(SRRCTL(0), srrctl);
1336 }
1337 
1338 /**
1339  * igbvf_configure_rx - Configure Receive Unit after Reset
1340  * @adapter: board private structure
1341  *
1342  * Configure the Rx unit of the MAC after a reset.
1343  **/
1344 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1345 {
1346 	struct e1000_hw *hw = &adapter->hw;
1347 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1348 	u64 rdba;
1349 	u32 rdlen, rxdctl;
1350 
1351 	/* disable receives */
1352 	rxdctl = er32(RXDCTL(0));
1353 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1354 	e1e_flush();
1355 	msleep(10);
1356 
1357 	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1358 
1359 	/*
1360 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
1361 	 * the Base and Length of the Rx Descriptor Ring
1362 	 */
1363 	rdba = rx_ring->dma;
1364 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1365 	ew32(RDBAH(0), (rdba >> 32));
1366 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1367 	rx_ring->head = E1000_RDH(0);
1368 	rx_ring->tail = E1000_RDT(0);
1369 	ew32(RDH(0), 0);
1370 	ew32(RDT(0), 0);
1371 
1372 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1373 	rxdctl &= 0xFFF00000;
1374 	rxdctl |= IGBVF_RX_PTHRESH;
1375 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1376 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1377 
1378 	igbvf_set_rlpml(adapter);
1379 
1380 	/* enable receives */
1381 	ew32(RXDCTL(0), rxdctl);
1382 }
1383 
1384 /**
1385  * igbvf_set_multi - Multicast and Promiscuous mode set
1386  * @netdev: network interface device structure
1387  *
1388  * The set_multi entry point is called whenever the multicast address
1389  * list or the network interface flags are updated.  This routine is
1390  * responsible for configuring the hardware for proper multicast,
1391  * promiscuous mode, and all-multi behavior.
1392  **/
1393 static void igbvf_set_multi(struct net_device *netdev)
1394 {
1395 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1396 	struct e1000_hw *hw = &adapter->hw;
1397 	struct netdev_hw_addr *ha;
1398 	u8  *mta_list = NULL;
1399 	int i;
1400 
1401 	if (!netdev_mc_empty(netdev)) {
1402 		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1403 		if (!mta_list) {
1404 			dev_err(&adapter->pdev->dev,
1405 			        "failed to allocate multicast filter list\n");
1406 			return;
1407 		}
1408 	}
1409 
1410 	/* prepare a packed array of only addresses. */
1411 	i = 0;
1412 	netdev_for_each_mc_addr(ha, netdev)
1413 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1414 
1415 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1416 	kfree(mta_list);
1417 }
1418 
1419 /**
1420  * igbvf_configure - configure the hardware for Rx and Tx
1421  * @adapter: private board structure
1422  **/
1423 static void igbvf_configure(struct igbvf_adapter *adapter)
1424 {
1425 	igbvf_set_multi(adapter->netdev);
1426 
1427 	igbvf_restore_vlan(adapter);
1428 
1429 	igbvf_configure_tx(adapter);
1430 	igbvf_setup_srrctl(adapter);
1431 	igbvf_configure_rx(adapter);
1432 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1433 	                       igbvf_desc_unused(adapter->rx_ring));
1434 }
1435 
1436 /* igbvf_reset - bring the hardware into a known good state
1437  *
1438  * This function boots the hardware and enables some settings that
1439  * require a configuration cycle of the hardware - those cannot be
1440  * set/changed during runtime. After reset the device needs to be
1441  * properly configured for Rx, Tx etc.
1442  */
1443 static void igbvf_reset(struct igbvf_adapter *adapter)
1444 {
1445 	struct e1000_mac_info *mac = &adapter->hw.mac;
1446 	struct net_device *netdev = adapter->netdev;
1447 	struct e1000_hw *hw = &adapter->hw;
1448 
1449 	/* Allow time for pending master requests to run */
1450 	if (mac->ops.reset_hw(hw))
1451 		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1452 
1453 	mac->ops.init_hw(hw);
1454 
1455 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1456 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1457 		       netdev->addr_len);
1458 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1459 		       netdev->addr_len);
1460 	}
1461 
1462 	adapter->last_reset = jiffies;
1463 }
1464 
1465 int igbvf_up(struct igbvf_adapter *adapter)
1466 {
1467 	struct e1000_hw *hw = &adapter->hw;
1468 
1469 	/* hardware has been reset, we need to reload some things */
1470 	igbvf_configure(adapter);
1471 
1472 	clear_bit(__IGBVF_DOWN, &adapter->state);
1473 
1474 	napi_enable(&adapter->rx_ring->napi);
1475 	if (adapter->msix_entries)
1476 		igbvf_configure_msix(adapter);
1477 
1478 	/* Clear any pending interrupts. */
1479 	er32(EICR);
1480 	igbvf_irq_enable(adapter);
1481 
1482 	/* start the watchdog */
1483 	hw->mac.get_link_status = 1;
1484 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1485 
1486 
1487 	return 0;
1488 }
1489 
1490 void igbvf_down(struct igbvf_adapter *adapter)
1491 {
1492 	struct net_device *netdev = adapter->netdev;
1493 	struct e1000_hw *hw = &adapter->hw;
1494 	u32 rxdctl, txdctl;
1495 
1496 	/*
1497 	 * signal that we're down so the interrupt handler does not
1498 	 * reschedule our watchdog timer
1499 	 */
1500 	set_bit(__IGBVF_DOWN, &adapter->state);
1501 
1502 	/* disable receives in the hardware */
1503 	rxdctl = er32(RXDCTL(0));
1504 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1505 
1506 	netif_stop_queue(netdev);
1507 
1508 	/* disable transmits in the hardware */
1509 	txdctl = er32(TXDCTL(0));
1510 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1511 
1512 	/* flush both disables and wait for them to finish */
1513 	e1e_flush();
1514 	msleep(10);
1515 
1516 	napi_disable(&adapter->rx_ring->napi);
1517 
1518 	igbvf_irq_disable(adapter);
1519 
1520 	del_timer_sync(&adapter->watchdog_timer);
1521 
1522 	netif_carrier_off(netdev);
1523 
1524 	/* record the stats before reset*/
1525 	igbvf_update_stats(adapter);
1526 
1527 	adapter->link_speed = 0;
1528 	adapter->link_duplex = 0;
1529 
1530 	igbvf_reset(adapter);
1531 	igbvf_clean_tx_ring(adapter->tx_ring);
1532 	igbvf_clean_rx_ring(adapter->rx_ring);
1533 }
1534 
1535 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1536 {
1537 	might_sleep();
1538 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1539 		msleep(1);
1540 	igbvf_down(adapter);
1541 	igbvf_up(adapter);
1542 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1543 }
1544 
1545 /**
1546  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1547  * @adapter: board private structure to initialize
1548  *
1549  * igbvf_sw_init initializes the Adapter private data structure.
1550  * Fields are initialized based on PCI device information and
1551  * OS network device settings (MTU size).
1552  **/
1553 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1554 {
1555 	struct net_device *netdev = adapter->netdev;
1556 	s32 rc;
1557 
1558 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1559 	adapter->rx_ps_hdr_size = 0;
1560 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1561 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1562 
1563 	adapter->tx_int_delay = 8;
1564 	adapter->tx_abs_int_delay = 32;
1565 	adapter->rx_int_delay = 0;
1566 	adapter->rx_abs_int_delay = 8;
1567 	adapter->requested_itr = 3;
1568 	adapter->current_itr = IGBVF_START_ITR;
1569 
1570 	/* Set various function pointers */
1571 	adapter->ei->init_ops(&adapter->hw);
1572 
1573 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1574 	if (rc)
1575 		return rc;
1576 
1577 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1578 	if (rc)
1579 		return rc;
1580 
1581 	igbvf_set_interrupt_capability(adapter);
1582 
1583 	if (igbvf_alloc_queues(adapter))
1584 		return -ENOMEM;
1585 
1586 	spin_lock_init(&adapter->tx_queue_lock);
1587 
1588 	/* Explicitly disable IRQ since the NIC can be in any state. */
1589 	igbvf_irq_disable(adapter);
1590 
1591 	spin_lock_init(&adapter->stats_lock);
1592 
1593 	set_bit(__IGBVF_DOWN, &adapter->state);
1594 	return 0;
1595 }
1596 
1597 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1598 {
1599 	struct e1000_hw *hw = &adapter->hw;
1600 
1601 	adapter->stats.last_gprc = er32(VFGPRC);
1602 	adapter->stats.last_gorc = er32(VFGORC);
1603 	adapter->stats.last_gptc = er32(VFGPTC);
1604 	adapter->stats.last_gotc = er32(VFGOTC);
1605 	adapter->stats.last_mprc = er32(VFMPRC);
1606 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1607 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1608 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1609 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1610 
1611 	adapter->stats.base_gprc = er32(VFGPRC);
1612 	adapter->stats.base_gorc = er32(VFGORC);
1613 	adapter->stats.base_gptc = er32(VFGPTC);
1614 	adapter->stats.base_gotc = er32(VFGOTC);
1615 	adapter->stats.base_mprc = er32(VFMPRC);
1616 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1617 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1618 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1619 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1620 }
1621 
1622 /**
1623  * igbvf_open - Called when a network interface is made active
1624  * @netdev: network interface device structure
1625  *
1626  * Returns 0 on success, negative value on failure
1627  *
1628  * The open entry point is called when a network interface is made
1629  * active by the system (IFF_UP).  At this point all resources needed
1630  * for transmit and receive operations are allocated, the interrupt
1631  * handler is registered with the OS, the watchdog timer is started,
1632  * and the stack is notified that the interface is ready.
1633  **/
1634 static int igbvf_open(struct net_device *netdev)
1635 {
1636 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1637 	struct e1000_hw *hw = &adapter->hw;
1638 	int err;
1639 
1640 	/* disallow open during test */
1641 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1642 		return -EBUSY;
1643 
1644 	/* allocate transmit descriptors */
1645 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1646 	if (err)
1647 		goto err_setup_tx;
1648 
1649 	/* allocate receive descriptors */
1650 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1651 	if (err)
1652 		goto err_setup_rx;
1653 
1654 	/*
1655 	 * before we allocate an interrupt, we must be ready to handle it.
1656 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1657 	 * as soon as we call pci_request_irq, so we have to setup our
1658 	 * clean_rx handler before we do so.
1659 	 */
1660 	igbvf_configure(adapter);
1661 
1662 	err = igbvf_request_irq(adapter);
1663 	if (err)
1664 		goto err_req_irq;
1665 
1666 	/* From here on the code is the same as igbvf_up() */
1667 	clear_bit(__IGBVF_DOWN, &adapter->state);
1668 
1669 	napi_enable(&adapter->rx_ring->napi);
1670 
1671 	/* clear any pending interrupts */
1672 	er32(EICR);
1673 
1674 	igbvf_irq_enable(adapter);
1675 
1676 	/* start the watchdog */
1677 	hw->mac.get_link_status = 1;
1678 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1679 
1680 	return 0;
1681 
1682 err_req_irq:
1683 	igbvf_free_rx_resources(adapter->rx_ring);
1684 err_setup_rx:
1685 	igbvf_free_tx_resources(adapter->tx_ring);
1686 err_setup_tx:
1687 	igbvf_reset(adapter);
1688 
1689 	return err;
1690 }
1691 
1692 /**
1693  * igbvf_close - Disables a network interface
1694  * @netdev: network interface device structure
1695  *
1696  * Returns 0, this is not allowed to fail
1697  *
1698  * The close entry point is called when an interface is de-activated
1699  * by the OS.  The hardware is still under the drivers control, but
1700  * needs to be disabled.  A global MAC reset is issued to stop the
1701  * hardware, and all transmit and receive resources are freed.
1702  **/
1703 static int igbvf_close(struct net_device *netdev)
1704 {
1705 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1706 
1707 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1708 	igbvf_down(adapter);
1709 
1710 	igbvf_free_irq(adapter);
1711 
1712 	igbvf_free_tx_resources(adapter->tx_ring);
1713 	igbvf_free_rx_resources(adapter->rx_ring);
1714 
1715 	return 0;
1716 }
1717 /**
1718  * igbvf_set_mac - Change the Ethernet Address of the NIC
1719  * @netdev: network interface device structure
1720  * @p: pointer to an address structure
1721  *
1722  * Returns 0 on success, negative on failure
1723  **/
1724 static int igbvf_set_mac(struct net_device *netdev, void *p)
1725 {
1726 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1727 	struct e1000_hw *hw = &adapter->hw;
1728 	struct sockaddr *addr = p;
1729 
1730 	if (!is_valid_ether_addr(addr->sa_data))
1731 		return -EADDRNOTAVAIL;
1732 
1733 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1734 
1735 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1736 
1737 	if (memcmp(addr->sa_data, hw->mac.addr, 6))
1738 		return -EADDRNOTAVAIL;
1739 
1740 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1741 	netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
1742 
1743 	return 0;
1744 }
1745 
1746 #define UPDATE_VF_COUNTER(reg, name)                                    \
1747 	{                                                               \
1748 		u32 current_counter = er32(reg);                        \
1749 		if (current_counter < adapter->stats.last_##name)       \
1750 			adapter->stats.name += 0x100000000LL;           \
1751 		adapter->stats.last_##name = current_counter;           \
1752 		adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1753 		adapter->stats.name |= current_counter;                 \
1754 	}
1755 
1756 /**
1757  * igbvf_update_stats - Update the board statistics counters
1758  * @adapter: board private structure
1759 **/
1760 void igbvf_update_stats(struct igbvf_adapter *adapter)
1761 {
1762 	struct e1000_hw *hw = &adapter->hw;
1763 	struct pci_dev *pdev = adapter->pdev;
1764 
1765 	/*
1766 	 * Prevent stats update while adapter is being reset, link is down
1767 	 * or if the pci connection is down.
1768 	 */
1769 	if (adapter->link_speed == 0)
1770 		return;
1771 
1772 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1773 		return;
1774 
1775 	if (pci_channel_offline(pdev))
1776 		return;
1777 
1778 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1779 	UPDATE_VF_COUNTER(VFGORC, gorc);
1780 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1781 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1782 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1783 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1784 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1785 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1786 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1787 
1788 	/* Fill out the OS statistics structure */
1789 	adapter->net_stats.multicast = adapter->stats.mprc;
1790 }
1791 
1792 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1793 {
1794 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1795 		 adapter->link_speed,
1796 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1797 }
1798 
1799 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1800 {
1801 	struct e1000_hw *hw = &adapter->hw;
1802 	s32 ret_val = E1000_SUCCESS;
1803 	bool link_active;
1804 
1805 	/* If interface is down, stay link down */
1806 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1807 		return false;
1808 
1809 	ret_val = hw->mac.ops.check_for_link(hw);
1810 	link_active = !hw->mac.get_link_status;
1811 
1812 	/* if check for link returns error we will need to reset */
1813 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1814 		schedule_work(&adapter->reset_task);
1815 
1816 	return link_active;
1817 }
1818 
1819 /**
1820  * igbvf_watchdog - Timer Call-back
1821  * @data: pointer to adapter cast into an unsigned long
1822  **/
1823 static void igbvf_watchdog(unsigned long data)
1824 {
1825 	struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1826 
1827 	/* Do the rest outside of interrupt context */
1828 	schedule_work(&adapter->watchdog_task);
1829 }
1830 
1831 static void igbvf_watchdog_task(struct work_struct *work)
1832 {
1833 	struct igbvf_adapter *adapter = container_of(work,
1834 	                                             struct igbvf_adapter,
1835 	                                             watchdog_task);
1836 	struct net_device *netdev = adapter->netdev;
1837 	struct e1000_mac_info *mac = &adapter->hw.mac;
1838 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1839 	struct e1000_hw *hw = &adapter->hw;
1840 	u32 link;
1841 	int tx_pending = 0;
1842 
1843 	link = igbvf_has_link(adapter);
1844 
1845 	if (link) {
1846 		if (!netif_carrier_ok(netdev)) {
1847 			mac->ops.get_link_up_info(&adapter->hw,
1848 			                          &adapter->link_speed,
1849 			                          &adapter->link_duplex);
1850 			igbvf_print_link_info(adapter);
1851 
1852 			netif_carrier_on(netdev);
1853 			netif_wake_queue(netdev);
1854 		}
1855 	} else {
1856 		if (netif_carrier_ok(netdev)) {
1857 			adapter->link_speed = 0;
1858 			adapter->link_duplex = 0;
1859 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1860 			netif_carrier_off(netdev);
1861 			netif_stop_queue(netdev);
1862 		}
1863 	}
1864 
1865 	if (netif_carrier_ok(netdev)) {
1866 		igbvf_update_stats(adapter);
1867 	} else {
1868 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1869 		              tx_ring->count);
1870 		if (tx_pending) {
1871 			/*
1872 			 * We've lost link, so the controller stops DMA,
1873 			 * but we've got queued Tx work that's never going
1874 			 * to get done, so reset controller to flush Tx.
1875 			 * (Do the reset outside of interrupt context).
1876 			 */
1877 			adapter->tx_timeout_count++;
1878 			schedule_work(&adapter->reset_task);
1879 		}
1880 	}
1881 
1882 	/* Cause software interrupt to ensure Rx ring is cleaned */
1883 	ew32(EICS, adapter->rx_ring->eims_value);
1884 
1885 	/* Reset the timer */
1886 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1887 		mod_timer(&adapter->watchdog_timer,
1888 			  round_jiffies(jiffies + (2 * HZ)));
1889 }
1890 
1891 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1892 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1893 #define IGBVF_TX_FLAGS_TSO              0x00000004
1894 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1895 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1896 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1897 
1898 static int igbvf_tso(struct igbvf_adapter *adapter,
1899                      struct igbvf_ring *tx_ring,
1900                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1901 {
1902 	struct e1000_adv_tx_context_desc *context_desc;
1903 	unsigned int i;
1904 	int err;
1905 	struct igbvf_buffer *buffer_info;
1906 	u32 info = 0, tu_cmd = 0;
1907 	u32 mss_l4len_idx, l4len;
1908 	*hdr_len = 0;
1909 
1910 	if (skb_header_cloned(skb)) {
1911 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1912 		if (err) {
1913 			dev_err(&adapter->pdev->dev,
1914 			        "igbvf_tso returning an error\n");
1915 			return err;
1916 		}
1917 	}
1918 
1919 	l4len = tcp_hdrlen(skb);
1920 	*hdr_len += l4len;
1921 
1922 	if (skb->protocol == htons(ETH_P_IP)) {
1923 		struct iphdr *iph = ip_hdr(skb);
1924 		iph->tot_len = 0;
1925 		iph->check = 0;
1926 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1927 		                                         iph->daddr, 0,
1928 		                                         IPPROTO_TCP,
1929 		                                         0);
1930 	} else if (skb_is_gso_v6(skb)) {
1931 		ipv6_hdr(skb)->payload_len = 0;
1932 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1933 		                                       &ipv6_hdr(skb)->daddr,
1934 		                                       0, IPPROTO_TCP, 0);
1935 	}
1936 
1937 	i = tx_ring->next_to_use;
1938 
1939 	buffer_info = &tx_ring->buffer_info[i];
1940 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1941 	/* VLAN MACLEN IPLEN */
1942 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1943 		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1944 	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1945 	*hdr_len += skb_network_offset(skb);
1946 	info |= (skb_transport_header(skb) - skb_network_header(skb));
1947 	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1948 	context_desc->vlan_macip_lens = cpu_to_le32(info);
1949 
1950 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1951 	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1952 
1953 	if (skb->protocol == htons(ETH_P_IP))
1954 		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1955 	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1956 
1957 	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1958 
1959 	/* MSS L4LEN IDX */
1960 	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1961 	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1962 
1963 	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1964 	context_desc->seqnum_seed = 0;
1965 
1966 	buffer_info->time_stamp = jiffies;
1967 	buffer_info->next_to_watch = i;
1968 	buffer_info->dma = 0;
1969 	i++;
1970 	if (i == tx_ring->count)
1971 		i = 0;
1972 
1973 	tx_ring->next_to_use = i;
1974 
1975 	return true;
1976 }
1977 
1978 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1979                                  struct igbvf_ring *tx_ring,
1980                                  struct sk_buff *skb, u32 tx_flags)
1981 {
1982 	struct e1000_adv_tx_context_desc *context_desc;
1983 	unsigned int i;
1984 	struct igbvf_buffer *buffer_info;
1985 	u32 info = 0, tu_cmd = 0;
1986 
1987 	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1988 	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1989 		i = tx_ring->next_to_use;
1990 		buffer_info = &tx_ring->buffer_info[i];
1991 		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1992 
1993 		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1994 			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1995 
1996 		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1997 		if (skb->ip_summed == CHECKSUM_PARTIAL)
1998 			info |= (skb_transport_header(skb) -
1999 			         skb_network_header(skb));
2000 
2001 
2002 		context_desc->vlan_macip_lens = cpu_to_le32(info);
2003 
2004 		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2005 
2006 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2007 			switch (skb->protocol) {
2008 			case __constant_htons(ETH_P_IP):
2009 				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2010 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2011 					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2012 				break;
2013 			case __constant_htons(ETH_P_IPV6):
2014 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2015 					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2016 				break;
2017 			default:
2018 				break;
2019 			}
2020 		}
2021 
2022 		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2023 		context_desc->seqnum_seed = 0;
2024 		context_desc->mss_l4len_idx = 0;
2025 
2026 		buffer_info->time_stamp = jiffies;
2027 		buffer_info->next_to_watch = i;
2028 		buffer_info->dma = 0;
2029 		i++;
2030 		if (i == tx_ring->count)
2031 			i = 0;
2032 		tx_ring->next_to_use = i;
2033 
2034 		return true;
2035 	}
2036 
2037 	return false;
2038 }
2039 
2040 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2041 {
2042 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2043 
2044 	/* there is enough descriptors then we don't need to worry  */
2045 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2046 		return 0;
2047 
2048 	netif_stop_queue(netdev);
2049 
2050 	smp_mb();
2051 
2052 	/* We need to check again just in case room has been made available */
2053 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2054 		return -EBUSY;
2055 
2056 	netif_wake_queue(netdev);
2057 
2058 	++adapter->restart_queue;
2059 	return 0;
2060 }
2061 
2062 #define IGBVF_MAX_TXD_PWR       16
2063 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2064 
2065 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2066                                    struct igbvf_ring *tx_ring,
2067                                    struct sk_buff *skb,
2068                                    unsigned int first)
2069 {
2070 	struct igbvf_buffer *buffer_info;
2071 	struct pci_dev *pdev = adapter->pdev;
2072 	unsigned int len = skb_headlen(skb);
2073 	unsigned int count = 0, i;
2074 	unsigned int f;
2075 
2076 	i = tx_ring->next_to_use;
2077 
2078 	buffer_info = &tx_ring->buffer_info[i];
2079 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2080 	buffer_info->length = len;
2081 	/* set time_stamp *before* dma to help avoid a possible race */
2082 	buffer_info->time_stamp = jiffies;
2083 	buffer_info->next_to_watch = i;
2084 	buffer_info->mapped_as_page = false;
2085 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2086 					  DMA_TO_DEVICE);
2087 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2088 		goto dma_error;
2089 
2090 
2091 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2092 		const struct skb_frag_struct *frag;
2093 
2094 		count++;
2095 		i++;
2096 		if (i == tx_ring->count)
2097 			i = 0;
2098 
2099 		frag = &skb_shinfo(skb)->frags[f];
2100 		len = skb_frag_size(frag);
2101 
2102 		buffer_info = &tx_ring->buffer_info[i];
2103 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2104 		buffer_info->length = len;
2105 		buffer_info->time_stamp = jiffies;
2106 		buffer_info->next_to_watch = i;
2107 		buffer_info->mapped_as_page = true;
2108 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2109 						DMA_TO_DEVICE);
2110 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2111 			goto dma_error;
2112 	}
2113 
2114 	tx_ring->buffer_info[i].skb = skb;
2115 	tx_ring->buffer_info[first].next_to_watch = i;
2116 
2117 	return ++count;
2118 
2119 dma_error:
2120 	dev_err(&pdev->dev, "TX DMA map failed\n");
2121 
2122 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2123 	buffer_info->dma = 0;
2124 	buffer_info->time_stamp = 0;
2125 	buffer_info->length = 0;
2126 	buffer_info->next_to_watch = 0;
2127 	buffer_info->mapped_as_page = false;
2128 	if (count)
2129 		count--;
2130 
2131 	/* clear timestamp and dma mappings for remaining portion of packet */
2132 	while (count--) {
2133 		if (i==0)
2134 			i += tx_ring->count;
2135 		i--;
2136 		buffer_info = &tx_ring->buffer_info[i];
2137 		igbvf_put_txbuf(adapter, buffer_info);
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2144                                       struct igbvf_ring *tx_ring,
2145                                       int tx_flags, int count, u32 paylen,
2146                                       u8 hdr_len)
2147 {
2148 	union e1000_adv_tx_desc *tx_desc = NULL;
2149 	struct igbvf_buffer *buffer_info;
2150 	u32 olinfo_status = 0, cmd_type_len;
2151 	unsigned int i;
2152 
2153 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2154 	                E1000_ADVTXD_DCMD_DEXT);
2155 
2156 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2157 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2158 
2159 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2160 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2161 
2162 		/* insert tcp checksum */
2163 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2164 
2165 		/* insert ip checksum */
2166 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2167 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2168 
2169 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2170 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2171 	}
2172 
2173 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2174 
2175 	i = tx_ring->next_to_use;
2176 	while (count--) {
2177 		buffer_info = &tx_ring->buffer_info[i];
2178 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2179 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2180 		tx_desc->read.cmd_type_len =
2181 		         cpu_to_le32(cmd_type_len | buffer_info->length);
2182 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2183 		i++;
2184 		if (i == tx_ring->count)
2185 			i = 0;
2186 	}
2187 
2188 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2189 	/* Force memory writes to complete before letting h/w
2190 	 * know there are new descriptors to fetch.  (Only
2191 	 * applicable for weak-ordered memory model archs,
2192 	 * such as IA-64). */
2193 	wmb();
2194 
2195 	tx_ring->next_to_use = i;
2196 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2197 	/* we need this if more than one processor can write to our tail
2198 	 * at a time, it syncronizes IO on IA64/Altix systems */
2199 	mmiowb();
2200 }
2201 
2202 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2203 					     struct net_device *netdev,
2204 					     struct igbvf_ring *tx_ring)
2205 {
2206 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2207 	unsigned int first, tx_flags = 0;
2208 	u8 hdr_len = 0;
2209 	int count = 0;
2210 	int tso = 0;
2211 
2212 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2213 		dev_kfree_skb_any(skb);
2214 		return NETDEV_TX_OK;
2215 	}
2216 
2217 	if (skb->len <= 0) {
2218 		dev_kfree_skb_any(skb);
2219 		return NETDEV_TX_OK;
2220 	}
2221 
2222 	/*
2223 	 * need: count + 4 desc gap to keep tail from touching
2224          *       + 2 desc gap to keep tail from touching head,
2225          *       + 1 desc for skb->data,
2226          *       + 1 desc for context descriptor,
2227 	 * head, otherwise try next time
2228 	 */
2229 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2230 		/* this is a hard error */
2231 		return NETDEV_TX_BUSY;
2232 	}
2233 
2234 	if (vlan_tx_tag_present(skb)) {
2235 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2236 		tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2237 	}
2238 
2239 	if (skb->protocol == htons(ETH_P_IP))
2240 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2241 
2242 	first = tx_ring->next_to_use;
2243 
2244 	tso = skb_is_gso(skb) ?
2245 		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2246 	if (unlikely(tso < 0)) {
2247 		dev_kfree_skb_any(skb);
2248 		return NETDEV_TX_OK;
2249 	}
2250 
2251 	if (tso)
2252 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2253 	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2254 	         (skb->ip_summed == CHECKSUM_PARTIAL))
2255 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2256 
2257 	/*
2258 	 * count reflects descriptors mapped, if 0 then mapping error
2259 	 * has occurred and we need to rewind the descriptor queue
2260 	 */
2261 	count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2262 
2263 	if (count) {
2264 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2265 		                   skb->len, hdr_len);
2266 		/* Make sure there is space in the ring for the next send. */
2267 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2268 	} else {
2269 		dev_kfree_skb_any(skb);
2270 		tx_ring->buffer_info[first].time_stamp = 0;
2271 		tx_ring->next_to_use = first;
2272 	}
2273 
2274 	return NETDEV_TX_OK;
2275 }
2276 
2277 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2278 				    struct net_device *netdev)
2279 {
2280 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2281 	struct igbvf_ring *tx_ring;
2282 
2283 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2284 		dev_kfree_skb_any(skb);
2285 		return NETDEV_TX_OK;
2286 	}
2287 
2288 	tx_ring = &adapter->tx_ring[0];
2289 
2290 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2291 }
2292 
2293 /**
2294  * igbvf_tx_timeout - Respond to a Tx Hang
2295  * @netdev: network interface device structure
2296  **/
2297 static void igbvf_tx_timeout(struct net_device *netdev)
2298 {
2299 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2300 
2301 	/* Do the reset outside of interrupt context */
2302 	adapter->tx_timeout_count++;
2303 	schedule_work(&adapter->reset_task);
2304 }
2305 
2306 static void igbvf_reset_task(struct work_struct *work)
2307 {
2308 	struct igbvf_adapter *adapter;
2309 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2310 
2311 	igbvf_reinit_locked(adapter);
2312 }
2313 
2314 /**
2315  * igbvf_get_stats - Get System Network Statistics
2316  * @netdev: network interface device structure
2317  *
2318  * Returns the address of the device statistics structure.
2319  * The statistics are actually updated from the timer callback.
2320  **/
2321 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2322 {
2323 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2324 
2325 	/* only return the current stats */
2326 	return &adapter->net_stats;
2327 }
2328 
2329 /**
2330  * igbvf_change_mtu - Change the Maximum Transfer Unit
2331  * @netdev: network interface device structure
2332  * @new_mtu: new value for maximum frame size
2333  *
2334  * Returns 0 on success, negative on failure
2335  **/
2336 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2337 {
2338 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2339 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2340 
2341 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2342 		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2343 		return -EINVAL;
2344 	}
2345 
2346 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2347 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2348 		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2349 		return -EINVAL;
2350 	}
2351 
2352 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2353 		msleep(1);
2354 	/* igbvf_down has a dependency on max_frame_size */
2355 	adapter->max_frame_size = max_frame;
2356 	if (netif_running(netdev))
2357 		igbvf_down(adapter);
2358 
2359 	/*
2360 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2361 	 * means we reserve 2 more, this pushes us to allocate from the next
2362 	 * larger slab size.
2363 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2364 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2365 	 * fragmented skbs
2366 	 */
2367 
2368 	if (max_frame <= 1024)
2369 		adapter->rx_buffer_len = 1024;
2370 	else if (max_frame <= 2048)
2371 		adapter->rx_buffer_len = 2048;
2372 	else
2373 #if (PAGE_SIZE / 2) > 16384
2374 		adapter->rx_buffer_len = 16384;
2375 #else
2376 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2377 #endif
2378 
2379 
2380 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2381 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2382 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2383 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2384 		                         ETH_FCS_LEN;
2385 
2386 	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2387 	         netdev->mtu, new_mtu);
2388 	netdev->mtu = new_mtu;
2389 
2390 	if (netif_running(netdev))
2391 		igbvf_up(adapter);
2392 	else
2393 		igbvf_reset(adapter);
2394 
2395 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2396 
2397 	return 0;
2398 }
2399 
2400 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2401 {
2402 	switch (cmd) {
2403 	default:
2404 		return -EOPNOTSUPP;
2405 	}
2406 }
2407 
2408 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2409 {
2410 	struct net_device *netdev = pci_get_drvdata(pdev);
2411 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2412 #ifdef CONFIG_PM
2413 	int retval = 0;
2414 #endif
2415 
2416 	netif_device_detach(netdev);
2417 
2418 	if (netif_running(netdev)) {
2419 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2420 		igbvf_down(adapter);
2421 		igbvf_free_irq(adapter);
2422 	}
2423 
2424 #ifdef CONFIG_PM
2425 	retval = pci_save_state(pdev);
2426 	if (retval)
2427 		return retval;
2428 #endif
2429 
2430 	pci_disable_device(pdev);
2431 
2432 	return 0;
2433 }
2434 
2435 #ifdef CONFIG_PM
2436 static int igbvf_resume(struct pci_dev *pdev)
2437 {
2438 	struct net_device *netdev = pci_get_drvdata(pdev);
2439 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2440 	u32 err;
2441 
2442 	pci_restore_state(pdev);
2443 	err = pci_enable_device_mem(pdev);
2444 	if (err) {
2445 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2446 		return err;
2447 	}
2448 
2449 	pci_set_master(pdev);
2450 
2451 	if (netif_running(netdev)) {
2452 		err = igbvf_request_irq(adapter);
2453 		if (err)
2454 			return err;
2455 	}
2456 
2457 	igbvf_reset(adapter);
2458 
2459 	if (netif_running(netdev))
2460 		igbvf_up(adapter);
2461 
2462 	netif_device_attach(netdev);
2463 
2464 	return 0;
2465 }
2466 #endif
2467 
2468 static void igbvf_shutdown(struct pci_dev *pdev)
2469 {
2470 	igbvf_suspend(pdev, PMSG_SUSPEND);
2471 }
2472 
2473 #ifdef CONFIG_NET_POLL_CONTROLLER
2474 /*
2475  * Polling 'interrupt' - used by things like netconsole to send skbs
2476  * without having to re-enable interrupts. It's not called while
2477  * the interrupt routine is executing.
2478  */
2479 static void igbvf_netpoll(struct net_device *netdev)
2480 {
2481 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2482 
2483 	disable_irq(adapter->pdev->irq);
2484 
2485 	igbvf_clean_tx_irq(adapter->tx_ring);
2486 
2487 	enable_irq(adapter->pdev->irq);
2488 }
2489 #endif
2490 
2491 /**
2492  * igbvf_io_error_detected - called when PCI error is detected
2493  * @pdev: Pointer to PCI device
2494  * @state: The current pci connection state
2495  *
2496  * This function is called after a PCI bus error affecting
2497  * this device has been detected.
2498  */
2499 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2500                                                 pci_channel_state_t state)
2501 {
2502 	struct net_device *netdev = pci_get_drvdata(pdev);
2503 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2504 
2505 	netif_device_detach(netdev);
2506 
2507 	if (state == pci_channel_io_perm_failure)
2508 		return PCI_ERS_RESULT_DISCONNECT;
2509 
2510 	if (netif_running(netdev))
2511 		igbvf_down(adapter);
2512 	pci_disable_device(pdev);
2513 
2514 	/* Request a slot slot reset. */
2515 	return PCI_ERS_RESULT_NEED_RESET;
2516 }
2517 
2518 /**
2519  * igbvf_io_slot_reset - called after the pci bus has been reset.
2520  * @pdev: Pointer to PCI device
2521  *
2522  * Restart the card from scratch, as if from a cold-boot. Implementation
2523  * resembles the first-half of the igbvf_resume routine.
2524  */
2525 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2526 {
2527 	struct net_device *netdev = pci_get_drvdata(pdev);
2528 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2529 
2530 	if (pci_enable_device_mem(pdev)) {
2531 		dev_err(&pdev->dev,
2532 			"Cannot re-enable PCI device after reset.\n");
2533 		return PCI_ERS_RESULT_DISCONNECT;
2534 	}
2535 	pci_set_master(pdev);
2536 
2537 	igbvf_reset(adapter);
2538 
2539 	return PCI_ERS_RESULT_RECOVERED;
2540 }
2541 
2542 /**
2543  * igbvf_io_resume - called when traffic can start flowing again.
2544  * @pdev: Pointer to PCI device
2545  *
2546  * This callback is called when the error recovery driver tells us that
2547  * its OK to resume normal operation. Implementation resembles the
2548  * second-half of the igbvf_resume routine.
2549  */
2550 static void igbvf_io_resume(struct pci_dev *pdev)
2551 {
2552 	struct net_device *netdev = pci_get_drvdata(pdev);
2553 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2554 
2555 	if (netif_running(netdev)) {
2556 		if (igbvf_up(adapter)) {
2557 			dev_err(&pdev->dev,
2558 				"can't bring device back up after reset\n");
2559 			return;
2560 		}
2561 	}
2562 
2563 	netif_device_attach(netdev);
2564 }
2565 
2566 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2567 {
2568 	struct e1000_hw *hw = &adapter->hw;
2569 	struct net_device *netdev = adapter->netdev;
2570 	struct pci_dev *pdev = adapter->pdev;
2571 
2572 	if (hw->mac.type == e1000_vfadapt_i350)
2573 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2574 	else
2575 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2576 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2577 }
2578 
2579 static int igbvf_set_features(struct net_device *netdev,
2580 	netdev_features_t features)
2581 {
2582 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2583 
2584 	if (features & NETIF_F_RXCSUM)
2585 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2586 	else
2587 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2588 
2589 	return 0;
2590 }
2591 
2592 static const struct net_device_ops igbvf_netdev_ops = {
2593 	.ndo_open                       = igbvf_open,
2594 	.ndo_stop                       = igbvf_close,
2595 	.ndo_start_xmit                 = igbvf_xmit_frame,
2596 	.ndo_get_stats                  = igbvf_get_stats,
2597 	.ndo_set_rx_mode		= igbvf_set_multi,
2598 	.ndo_set_mac_address            = igbvf_set_mac,
2599 	.ndo_change_mtu                 = igbvf_change_mtu,
2600 	.ndo_do_ioctl                   = igbvf_ioctl,
2601 	.ndo_tx_timeout                 = igbvf_tx_timeout,
2602 	.ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2603 	.ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2604 #ifdef CONFIG_NET_POLL_CONTROLLER
2605 	.ndo_poll_controller            = igbvf_netpoll,
2606 #endif
2607 	.ndo_set_features               = igbvf_set_features,
2608 };
2609 
2610 /**
2611  * igbvf_probe - Device Initialization Routine
2612  * @pdev: PCI device information struct
2613  * @ent: entry in igbvf_pci_tbl
2614  *
2615  * Returns 0 on success, negative on failure
2616  *
2617  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2618  * The OS initialization, configuring of the adapter private structure,
2619  * and a hardware reset occur.
2620  **/
2621 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2622 {
2623 	struct net_device *netdev;
2624 	struct igbvf_adapter *adapter;
2625 	struct e1000_hw *hw;
2626 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2627 
2628 	static int cards_found;
2629 	int err, pci_using_dac;
2630 
2631 	err = pci_enable_device_mem(pdev);
2632 	if (err)
2633 		return err;
2634 
2635 	pci_using_dac = 0;
2636 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2637 	if (!err) {
2638 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2639 		if (!err)
2640 			pci_using_dac = 1;
2641 	} else {
2642 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2643 		if (err) {
2644 			err = dma_set_coherent_mask(&pdev->dev,
2645 						    DMA_BIT_MASK(32));
2646 			if (err) {
2647 				dev_err(&pdev->dev, "No usable DMA "
2648 				        "configuration, aborting\n");
2649 				goto err_dma;
2650 			}
2651 		}
2652 	}
2653 
2654 	err = pci_request_regions(pdev, igbvf_driver_name);
2655 	if (err)
2656 		goto err_pci_reg;
2657 
2658 	pci_set_master(pdev);
2659 
2660 	err = -ENOMEM;
2661 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2662 	if (!netdev)
2663 		goto err_alloc_etherdev;
2664 
2665 	SET_NETDEV_DEV(netdev, &pdev->dev);
2666 
2667 	pci_set_drvdata(pdev, netdev);
2668 	adapter = netdev_priv(netdev);
2669 	hw = &adapter->hw;
2670 	adapter->netdev = netdev;
2671 	adapter->pdev = pdev;
2672 	adapter->ei = ei;
2673 	adapter->pba = ei->pba;
2674 	adapter->flags = ei->flags;
2675 	adapter->hw.back = adapter;
2676 	adapter->hw.mac.type = ei->mac;
2677 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2678 
2679 	/* PCI config space info */
2680 
2681 	hw->vendor_id = pdev->vendor;
2682 	hw->device_id = pdev->device;
2683 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2684 	hw->subsystem_device_id = pdev->subsystem_device;
2685 	hw->revision_id = pdev->revision;
2686 
2687 	err = -EIO;
2688 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2689 	                              pci_resource_len(pdev, 0));
2690 
2691 	if (!adapter->hw.hw_addr)
2692 		goto err_ioremap;
2693 
2694 	if (ei->get_variants) {
2695 		err = ei->get_variants(adapter);
2696 		if (err)
2697 			goto err_ioremap;
2698 	}
2699 
2700 	/* setup adapter struct */
2701 	err = igbvf_sw_init(adapter);
2702 	if (err)
2703 		goto err_sw_init;
2704 
2705 	/* construct the net_device struct */
2706 	netdev->netdev_ops = &igbvf_netdev_ops;
2707 
2708 	igbvf_set_ethtool_ops(netdev);
2709 	netdev->watchdog_timeo = 5 * HZ;
2710 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2711 
2712 	adapter->bd_number = cards_found++;
2713 
2714 	netdev->hw_features = NETIF_F_SG |
2715 	                   NETIF_F_IP_CSUM |
2716 			   NETIF_F_IPV6_CSUM |
2717 			   NETIF_F_TSO |
2718 			   NETIF_F_TSO6 |
2719 			   NETIF_F_RXCSUM;
2720 
2721 	netdev->features = netdev->hw_features |
2722 	                   NETIF_F_HW_VLAN_TX |
2723 	                   NETIF_F_HW_VLAN_RX |
2724 	                   NETIF_F_HW_VLAN_FILTER;
2725 
2726 	if (pci_using_dac)
2727 		netdev->features |= NETIF_F_HIGHDMA;
2728 
2729 	netdev->vlan_features |= NETIF_F_TSO;
2730 	netdev->vlan_features |= NETIF_F_TSO6;
2731 	netdev->vlan_features |= NETIF_F_IP_CSUM;
2732 	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2733 	netdev->vlan_features |= NETIF_F_SG;
2734 
2735 	/*reset the controller to put the device in a known good state */
2736 	err = hw->mac.ops.reset_hw(hw);
2737 	if (err) {
2738 		dev_info(&pdev->dev,
2739 			 "PF still in reset state, assigning new address."
2740 			 " Is the PF interface up?\n");
2741 		eth_hw_addr_random(netdev);
2742 		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2743 			netdev->addr_len);
2744 	} else {
2745 		err = hw->mac.ops.read_mac_addr(hw);
2746 		if (err) {
2747 			dev_err(&pdev->dev, "Error reading MAC address\n");
2748 			goto err_hw_init;
2749 		}
2750 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2751 			netdev->addr_len);
2752 	}
2753 
2754 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2755 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2756 		        netdev->dev_addr);
2757 		err = -EIO;
2758 		goto err_hw_init;
2759 	}
2760 
2761 	memcpy(netdev->perm_addr, netdev->dev_addr, netdev->addr_len);
2762 
2763 	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2764 	            (unsigned long) adapter);
2765 
2766 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2767 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2768 
2769 	/* ring size defaults */
2770 	adapter->rx_ring->count = 1024;
2771 	adapter->tx_ring->count = 1024;
2772 
2773 	/* reset the hardware with the new settings */
2774 	igbvf_reset(adapter);
2775 
2776 	/* set hardware-specific flags */
2777 	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2778 		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2779 
2780 	strcpy(netdev->name, "eth%d");
2781 	err = register_netdev(netdev);
2782 	if (err)
2783 		goto err_hw_init;
2784 
2785 	/* tell the stack to leave us alone until igbvf_open() is called */
2786 	netif_carrier_off(netdev);
2787 	netif_stop_queue(netdev);
2788 
2789 	igbvf_print_device_info(adapter);
2790 
2791 	igbvf_initialize_last_counter_stats(adapter);
2792 
2793 	return 0;
2794 
2795 err_hw_init:
2796 	kfree(adapter->tx_ring);
2797 	kfree(adapter->rx_ring);
2798 err_sw_init:
2799 	igbvf_reset_interrupt_capability(adapter);
2800 	iounmap(adapter->hw.hw_addr);
2801 err_ioremap:
2802 	free_netdev(netdev);
2803 err_alloc_etherdev:
2804 	pci_release_regions(pdev);
2805 err_pci_reg:
2806 err_dma:
2807 	pci_disable_device(pdev);
2808 	return err;
2809 }
2810 
2811 /**
2812  * igbvf_remove - Device Removal Routine
2813  * @pdev: PCI device information struct
2814  *
2815  * igbvf_remove is called by the PCI subsystem to alert the driver
2816  * that it should release a PCI device.  The could be caused by a
2817  * Hot-Plug event, or because the driver is going to be removed from
2818  * memory.
2819  **/
2820 static void igbvf_remove(struct pci_dev *pdev)
2821 {
2822 	struct net_device *netdev = pci_get_drvdata(pdev);
2823 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2824 	struct e1000_hw *hw = &adapter->hw;
2825 
2826 	/*
2827 	 * The watchdog timer may be rescheduled, so explicitly
2828 	 * disable it from being rescheduled.
2829 	 */
2830 	set_bit(__IGBVF_DOWN, &adapter->state);
2831 	del_timer_sync(&adapter->watchdog_timer);
2832 
2833 	cancel_work_sync(&adapter->reset_task);
2834 	cancel_work_sync(&adapter->watchdog_task);
2835 
2836 	unregister_netdev(netdev);
2837 
2838 	igbvf_reset_interrupt_capability(adapter);
2839 
2840 	/*
2841 	 * it is important to delete the napi struct prior to freeing the
2842 	 * rx ring so that you do not end up with null pointer refs
2843 	 */
2844 	netif_napi_del(&adapter->rx_ring->napi);
2845 	kfree(adapter->tx_ring);
2846 	kfree(adapter->rx_ring);
2847 
2848 	iounmap(hw->hw_addr);
2849 	if (hw->flash_address)
2850 		iounmap(hw->flash_address);
2851 	pci_release_regions(pdev);
2852 
2853 	free_netdev(netdev);
2854 
2855 	pci_disable_device(pdev);
2856 }
2857 
2858 /* PCI Error Recovery (ERS) */
2859 static const struct pci_error_handlers igbvf_err_handler = {
2860 	.error_detected = igbvf_io_error_detected,
2861 	.slot_reset = igbvf_io_slot_reset,
2862 	.resume = igbvf_io_resume,
2863 };
2864 
2865 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2866 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2867 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2868 	{ } /* terminate list */
2869 };
2870 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2871 
2872 /* PCI Device API Driver */
2873 static struct pci_driver igbvf_driver = {
2874 	.name     = igbvf_driver_name,
2875 	.id_table = igbvf_pci_tbl,
2876 	.probe    = igbvf_probe,
2877 	.remove   = igbvf_remove,
2878 #ifdef CONFIG_PM
2879 	/* Power Management Hooks */
2880 	.suspend  = igbvf_suspend,
2881 	.resume   = igbvf_resume,
2882 #endif
2883 	.shutdown = igbvf_shutdown,
2884 	.err_handler = &igbvf_err_handler
2885 };
2886 
2887 /**
2888  * igbvf_init_module - Driver Registration Routine
2889  *
2890  * igbvf_init_module is the first routine called when the driver is
2891  * loaded. All it does is register with the PCI subsystem.
2892  **/
2893 static int __init igbvf_init_module(void)
2894 {
2895 	int ret;
2896 	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2897 	pr_info("%s\n", igbvf_copyright);
2898 
2899 	ret = pci_register_driver(&igbvf_driver);
2900 
2901 	return ret;
2902 }
2903 module_init(igbvf_init_module);
2904 
2905 /**
2906  * igbvf_exit_module - Driver Exit Cleanup Routine
2907  *
2908  * igbvf_exit_module is called just before the driver is removed
2909  * from memory.
2910  **/
2911 static void __exit igbvf_exit_module(void)
2912 {
2913 	pci_unregister_driver(&igbvf_driver);
2914 }
2915 module_exit(igbvf_exit_module);
2916 
2917 
2918 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2919 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2920 MODULE_LICENSE("GPL");
2921 MODULE_VERSION(DRV_VERSION);
2922 
2923 /* netdev.c */
2924