1 // SPDX-License-Identifier: GPL-2.0 2 /******************************************************************************* 3 4 Intel(R) 82576 Virtual Function Linux driver 5 Copyright(c) 2009 - 2012 Intel Corporation. 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, see <http://www.gnu.org/licenses/>. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/module.h> 31 #include <linux/types.h> 32 #include <linux/init.h> 33 #include <linux/pci.h> 34 #include <linux/vmalloc.h> 35 #include <linux/pagemap.h> 36 #include <linux/delay.h> 37 #include <linux/netdevice.h> 38 #include <linux/tcp.h> 39 #include <linux/ipv6.h> 40 #include <linux/slab.h> 41 #include <net/checksum.h> 42 #include <net/ip6_checksum.h> 43 #include <linux/mii.h> 44 #include <linux/ethtool.h> 45 #include <linux/if_vlan.h> 46 #include <linux/prefetch.h> 47 #include <linux/sctp.h> 48 49 #include "igbvf.h" 50 51 #define DRV_VERSION "2.4.0-k" 52 char igbvf_driver_name[] = "igbvf"; 53 const char igbvf_driver_version[] = DRV_VERSION; 54 static const char igbvf_driver_string[] = 55 "Intel(R) Gigabit Virtual Function Network Driver"; 56 static const char igbvf_copyright[] = 57 "Copyright (c) 2009 - 2012 Intel Corporation."; 58 59 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 60 static int debug = -1; 61 module_param(debug, int, 0); 62 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 63 64 static int igbvf_poll(struct napi_struct *napi, int budget); 65 static void igbvf_reset(struct igbvf_adapter *); 66 static void igbvf_set_interrupt_capability(struct igbvf_adapter *); 67 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); 68 69 static struct igbvf_info igbvf_vf_info = { 70 .mac = e1000_vfadapt, 71 .flags = 0, 72 .pba = 10, 73 .init_ops = e1000_init_function_pointers_vf, 74 }; 75 76 static struct igbvf_info igbvf_i350_vf_info = { 77 .mac = e1000_vfadapt_i350, 78 .flags = 0, 79 .pba = 10, 80 .init_ops = e1000_init_function_pointers_vf, 81 }; 82 83 static const struct igbvf_info *igbvf_info_tbl[] = { 84 [board_vf] = &igbvf_vf_info, 85 [board_i350_vf] = &igbvf_i350_vf_info, 86 }; 87 88 /** 89 * igbvf_desc_unused - calculate if we have unused descriptors 90 * @rx_ring: address of receive ring structure 91 **/ 92 static int igbvf_desc_unused(struct igbvf_ring *ring) 93 { 94 if (ring->next_to_clean > ring->next_to_use) 95 return ring->next_to_clean - ring->next_to_use - 1; 96 97 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 98 } 99 100 /** 101 * igbvf_receive_skb - helper function to handle Rx indications 102 * @adapter: board private structure 103 * @status: descriptor status field as written by hardware 104 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 105 * @skb: pointer to sk_buff to be indicated to stack 106 **/ 107 static void igbvf_receive_skb(struct igbvf_adapter *adapter, 108 struct net_device *netdev, 109 struct sk_buff *skb, 110 u32 status, u16 vlan) 111 { 112 u16 vid; 113 114 if (status & E1000_RXD_STAT_VP) { 115 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) && 116 (status & E1000_RXDEXT_STATERR_LB)) 117 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 118 else 119 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 120 if (test_bit(vid, adapter->active_vlans)) 121 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 122 } 123 124 napi_gro_receive(&adapter->rx_ring->napi, skb); 125 } 126 127 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, 128 u32 status_err, struct sk_buff *skb) 129 { 130 skb_checksum_none_assert(skb); 131 132 /* Ignore Checksum bit is set or checksum is disabled through ethtool */ 133 if ((status_err & E1000_RXD_STAT_IXSM) || 134 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED)) 135 return; 136 137 /* TCP/UDP checksum error bit is set */ 138 if (status_err & 139 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { 140 /* let the stack verify checksum errors */ 141 adapter->hw_csum_err++; 142 return; 143 } 144 145 /* It must be a TCP or UDP packet with a valid checksum */ 146 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) 147 skb->ip_summed = CHECKSUM_UNNECESSARY; 148 149 adapter->hw_csum_good++; 150 } 151 152 /** 153 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split 154 * @rx_ring: address of ring structure to repopulate 155 * @cleaned_count: number of buffers to repopulate 156 **/ 157 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, 158 int cleaned_count) 159 { 160 struct igbvf_adapter *adapter = rx_ring->adapter; 161 struct net_device *netdev = adapter->netdev; 162 struct pci_dev *pdev = adapter->pdev; 163 union e1000_adv_rx_desc *rx_desc; 164 struct igbvf_buffer *buffer_info; 165 struct sk_buff *skb; 166 unsigned int i; 167 int bufsz; 168 169 i = rx_ring->next_to_use; 170 buffer_info = &rx_ring->buffer_info[i]; 171 172 if (adapter->rx_ps_hdr_size) 173 bufsz = adapter->rx_ps_hdr_size; 174 else 175 bufsz = adapter->rx_buffer_len; 176 177 while (cleaned_count--) { 178 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 179 180 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { 181 if (!buffer_info->page) { 182 buffer_info->page = alloc_page(GFP_ATOMIC); 183 if (!buffer_info->page) { 184 adapter->alloc_rx_buff_failed++; 185 goto no_buffers; 186 } 187 buffer_info->page_offset = 0; 188 } else { 189 buffer_info->page_offset ^= PAGE_SIZE / 2; 190 } 191 buffer_info->page_dma = 192 dma_map_page(&pdev->dev, buffer_info->page, 193 buffer_info->page_offset, 194 PAGE_SIZE / 2, 195 DMA_FROM_DEVICE); 196 if (dma_mapping_error(&pdev->dev, 197 buffer_info->page_dma)) { 198 __free_page(buffer_info->page); 199 buffer_info->page = NULL; 200 dev_err(&pdev->dev, "RX DMA map failed\n"); 201 break; 202 } 203 } 204 205 if (!buffer_info->skb) { 206 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 207 if (!skb) { 208 adapter->alloc_rx_buff_failed++; 209 goto no_buffers; 210 } 211 212 buffer_info->skb = skb; 213 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 214 bufsz, 215 DMA_FROM_DEVICE); 216 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 217 dev_kfree_skb(buffer_info->skb); 218 buffer_info->skb = NULL; 219 dev_err(&pdev->dev, "RX DMA map failed\n"); 220 goto no_buffers; 221 } 222 } 223 /* Refresh the desc even if buffer_addrs didn't change because 224 * each write-back erases this info. 225 */ 226 if (adapter->rx_ps_hdr_size) { 227 rx_desc->read.pkt_addr = 228 cpu_to_le64(buffer_info->page_dma); 229 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); 230 } else { 231 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); 232 rx_desc->read.hdr_addr = 0; 233 } 234 235 i++; 236 if (i == rx_ring->count) 237 i = 0; 238 buffer_info = &rx_ring->buffer_info[i]; 239 } 240 241 no_buffers: 242 if (rx_ring->next_to_use != i) { 243 rx_ring->next_to_use = i; 244 if (i == 0) 245 i = (rx_ring->count - 1); 246 else 247 i--; 248 249 /* Force memory writes to complete before letting h/w 250 * know there are new descriptors to fetch. (Only 251 * applicable for weak-ordered memory model archs, 252 * such as IA-64). 253 */ 254 wmb(); 255 writel(i, adapter->hw.hw_addr + rx_ring->tail); 256 } 257 } 258 259 /** 260 * igbvf_clean_rx_irq - Send received data up the network stack; legacy 261 * @adapter: board private structure 262 * 263 * the return value indicates whether actual cleaning was done, there 264 * is no guarantee that everything was cleaned 265 **/ 266 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, 267 int *work_done, int work_to_do) 268 { 269 struct igbvf_ring *rx_ring = adapter->rx_ring; 270 struct net_device *netdev = adapter->netdev; 271 struct pci_dev *pdev = adapter->pdev; 272 union e1000_adv_rx_desc *rx_desc, *next_rxd; 273 struct igbvf_buffer *buffer_info, *next_buffer; 274 struct sk_buff *skb; 275 bool cleaned = false; 276 int cleaned_count = 0; 277 unsigned int total_bytes = 0, total_packets = 0; 278 unsigned int i; 279 u32 length, hlen, staterr; 280 281 i = rx_ring->next_to_clean; 282 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 283 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 284 285 while (staterr & E1000_RXD_STAT_DD) { 286 if (*work_done >= work_to_do) 287 break; 288 (*work_done)++; 289 rmb(); /* read descriptor and rx_buffer_info after status DD */ 290 291 buffer_info = &rx_ring->buffer_info[i]; 292 293 /* HW will not DMA in data larger than the given buffer, even 294 * if it parses the (NFS, of course) header to be larger. In 295 * that case, it fills the header buffer and spills the rest 296 * into the page. 297 */ 298 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) 299 & E1000_RXDADV_HDRBUFLEN_MASK) >> 300 E1000_RXDADV_HDRBUFLEN_SHIFT; 301 if (hlen > adapter->rx_ps_hdr_size) 302 hlen = adapter->rx_ps_hdr_size; 303 304 length = le16_to_cpu(rx_desc->wb.upper.length); 305 cleaned = true; 306 cleaned_count++; 307 308 skb = buffer_info->skb; 309 prefetch(skb->data - NET_IP_ALIGN); 310 buffer_info->skb = NULL; 311 if (!adapter->rx_ps_hdr_size) { 312 dma_unmap_single(&pdev->dev, buffer_info->dma, 313 adapter->rx_buffer_len, 314 DMA_FROM_DEVICE); 315 buffer_info->dma = 0; 316 skb_put(skb, length); 317 goto send_up; 318 } 319 320 if (!skb_shinfo(skb)->nr_frags) { 321 dma_unmap_single(&pdev->dev, buffer_info->dma, 322 adapter->rx_ps_hdr_size, 323 DMA_FROM_DEVICE); 324 buffer_info->dma = 0; 325 skb_put(skb, hlen); 326 } 327 328 if (length) { 329 dma_unmap_page(&pdev->dev, buffer_info->page_dma, 330 PAGE_SIZE / 2, 331 DMA_FROM_DEVICE); 332 buffer_info->page_dma = 0; 333 334 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 335 buffer_info->page, 336 buffer_info->page_offset, 337 length); 338 339 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || 340 (page_count(buffer_info->page) != 1)) 341 buffer_info->page = NULL; 342 else 343 get_page(buffer_info->page); 344 345 skb->len += length; 346 skb->data_len += length; 347 skb->truesize += PAGE_SIZE / 2; 348 } 349 send_up: 350 i++; 351 if (i == rx_ring->count) 352 i = 0; 353 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); 354 prefetch(next_rxd); 355 next_buffer = &rx_ring->buffer_info[i]; 356 357 if (!(staterr & E1000_RXD_STAT_EOP)) { 358 buffer_info->skb = next_buffer->skb; 359 buffer_info->dma = next_buffer->dma; 360 next_buffer->skb = skb; 361 next_buffer->dma = 0; 362 goto next_desc; 363 } 364 365 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 366 dev_kfree_skb_irq(skb); 367 goto next_desc; 368 } 369 370 total_bytes += skb->len; 371 total_packets++; 372 373 igbvf_rx_checksum_adv(adapter, staterr, skb); 374 375 skb->protocol = eth_type_trans(skb, netdev); 376 377 igbvf_receive_skb(adapter, netdev, skb, staterr, 378 rx_desc->wb.upper.vlan); 379 380 next_desc: 381 rx_desc->wb.upper.status_error = 0; 382 383 /* return some buffers to hardware, one at a time is too slow */ 384 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { 385 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 386 cleaned_count = 0; 387 } 388 389 /* use prefetched values */ 390 rx_desc = next_rxd; 391 buffer_info = next_buffer; 392 393 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 394 } 395 396 rx_ring->next_to_clean = i; 397 cleaned_count = igbvf_desc_unused(rx_ring); 398 399 if (cleaned_count) 400 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 401 402 adapter->total_rx_packets += total_packets; 403 adapter->total_rx_bytes += total_bytes; 404 netdev->stats.rx_bytes += total_bytes; 405 netdev->stats.rx_packets += total_packets; 406 return cleaned; 407 } 408 409 static void igbvf_put_txbuf(struct igbvf_adapter *adapter, 410 struct igbvf_buffer *buffer_info) 411 { 412 if (buffer_info->dma) { 413 if (buffer_info->mapped_as_page) 414 dma_unmap_page(&adapter->pdev->dev, 415 buffer_info->dma, 416 buffer_info->length, 417 DMA_TO_DEVICE); 418 else 419 dma_unmap_single(&adapter->pdev->dev, 420 buffer_info->dma, 421 buffer_info->length, 422 DMA_TO_DEVICE); 423 buffer_info->dma = 0; 424 } 425 if (buffer_info->skb) { 426 dev_kfree_skb_any(buffer_info->skb); 427 buffer_info->skb = NULL; 428 } 429 buffer_info->time_stamp = 0; 430 } 431 432 /** 433 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) 434 * @adapter: board private structure 435 * 436 * Return 0 on success, negative on failure 437 **/ 438 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, 439 struct igbvf_ring *tx_ring) 440 { 441 struct pci_dev *pdev = adapter->pdev; 442 int size; 443 444 size = sizeof(struct igbvf_buffer) * tx_ring->count; 445 tx_ring->buffer_info = vzalloc(size); 446 if (!tx_ring->buffer_info) 447 goto err; 448 449 /* round up to nearest 4K */ 450 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 451 tx_ring->size = ALIGN(tx_ring->size, 4096); 452 453 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 454 &tx_ring->dma, GFP_KERNEL); 455 if (!tx_ring->desc) 456 goto err; 457 458 tx_ring->adapter = adapter; 459 tx_ring->next_to_use = 0; 460 tx_ring->next_to_clean = 0; 461 462 return 0; 463 err: 464 vfree(tx_ring->buffer_info); 465 dev_err(&adapter->pdev->dev, 466 "Unable to allocate memory for the transmit descriptor ring\n"); 467 return -ENOMEM; 468 } 469 470 /** 471 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) 472 * @adapter: board private structure 473 * 474 * Returns 0 on success, negative on failure 475 **/ 476 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, 477 struct igbvf_ring *rx_ring) 478 { 479 struct pci_dev *pdev = adapter->pdev; 480 int size, desc_len; 481 482 size = sizeof(struct igbvf_buffer) * rx_ring->count; 483 rx_ring->buffer_info = vzalloc(size); 484 if (!rx_ring->buffer_info) 485 goto err; 486 487 desc_len = sizeof(union e1000_adv_rx_desc); 488 489 /* Round up to nearest 4K */ 490 rx_ring->size = rx_ring->count * desc_len; 491 rx_ring->size = ALIGN(rx_ring->size, 4096); 492 493 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 494 &rx_ring->dma, GFP_KERNEL); 495 if (!rx_ring->desc) 496 goto err; 497 498 rx_ring->next_to_clean = 0; 499 rx_ring->next_to_use = 0; 500 501 rx_ring->adapter = adapter; 502 503 return 0; 504 505 err: 506 vfree(rx_ring->buffer_info); 507 rx_ring->buffer_info = NULL; 508 dev_err(&adapter->pdev->dev, 509 "Unable to allocate memory for the receive descriptor ring\n"); 510 return -ENOMEM; 511 } 512 513 /** 514 * igbvf_clean_tx_ring - Free Tx Buffers 515 * @tx_ring: ring to be cleaned 516 **/ 517 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) 518 { 519 struct igbvf_adapter *adapter = tx_ring->adapter; 520 struct igbvf_buffer *buffer_info; 521 unsigned long size; 522 unsigned int i; 523 524 if (!tx_ring->buffer_info) 525 return; 526 527 /* Free all the Tx ring sk_buffs */ 528 for (i = 0; i < tx_ring->count; i++) { 529 buffer_info = &tx_ring->buffer_info[i]; 530 igbvf_put_txbuf(adapter, buffer_info); 531 } 532 533 size = sizeof(struct igbvf_buffer) * tx_ring->count; 534 memset(tx_ring->buffer_info, 0, size); 535 536 /* Zero out the descriptor ring */ 537 memset(tx_ring->desc, 0, tx_ring->size); 538 539 tx_ring->next_to_use = 0; 540 tx_ring->next_to_clean = 0; 541 542 writel(0, adapter->hw.hw_addr + tx_ring->head); 543 writel(0, adapter->hw.hw_addr + tx_ring->tail); 544 } 545 546 /** 547 * igbvf_free_tx_resources - Free Tx Resources per Queue 548 * @tx_ring: ring to free resources from 549 * 550 * Free all transmit software resources 551 **/ 552 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) 553 { 554 struct pci_dev *pdev = tx_ring->adapter->pdev; 555 556 igbvf_clean_tx_ring(tx_ring); 557 558 vfree(tx_ring->buffer_info); 559 tx_ring->buffer_info = NULL; 560 561 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 562 tx_ring->dma); 563 564 tx_ring->desc = NULL; 565 } 566 567 /** 568 * igbvf_clean_rx_ring - Free Rx Buffers per Queue 569 * @adapter: board private structure 570 **/ 571 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) 572 { 573 struct igbvf_adapter *adapter = rx_ring->adapter; 574 struct igbvf_buffer *buffer_info; 575 struct pci_dev *pdev = adapter->pdev; 576 unsigned long size; 577 unsigned int i; 578 579 if (!rx_ring->buffer_info) 580 return; 581 582 /* Free all the Rx ring sk_buffs */ 583 for (i = 0; i < rx_ring->count; i++) { 584 buffer_info = &rx_ring->buffer_info[i]; 585 if (buffer_info->dma) { 586 if (adapter->rx_ps_hdr_size) { 587 dma_unmap_single(&pdev->dev, buffer_info->dma, 588 adapter->rx_ps_hdr_size, 589 DMA_FROM_DEVICE); 590 } else { 591 dma_unmap_single(&pdev->dev, buffer_info->dma, 592 adapter->rx_buffer_len, 593 DMA_FROM_DEVICE); 594 } 595 buffer_info->dma = 0; 596 } 597 598 if (buffer_info->skb) { 599 dev_kfree_skb(buffer_info->skb); 600 buffer_info->skb = NULL; 601 } 602 603 if (buffer_info->page) { 604 if (buffer_info->page_dma) 605 dma_unmap_page(&pdev->dev, 606 buffer_info->page_dma, 607 PAGE_SIZE / 2, 608 DMA_FROM_DEVICE); 609 put_page(buffer_info->page); 610 buffer_info->page = NULL; 611 buffer_info->page_dma = 0; 612 buffer_info->page_offset = 0; 613 } 614 } 615 616 size = sizeof(struct igbvf_buffer) * rx_ring->count; 617 memset(rx_ring->buffer_info, 0, size); 618 619 /* Zero out the descriptor ring */ 620 memset(rx_ring->desc, 0, rx_ring->size); 621 622 rx_ring->next_to_clean = 0; 623 rx_ring->next_to_use = 0; 624 625 writel(0, adapter->hw.hw_addr + rx_ring->head); 626 writel(0, adapter->hw.hw_addr + rx_ring->tail); 627 } 628 629 /** 630 * igbvf_free_rx_resources - Free Rx Resources 631 * @rx_ring: ring to clean the resources from 632 * 633 * Free all receive software resources 634 **/ 635 636 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) 637 { 638 struct pci_dev *pdev = rx_ring->adapter->pdev; 639 640 igbvf_clean_rx_ring(rx_ring); 641 642 vfree(rx_ring->buffer_info); 643 rx_ring->buffer_info = NULL; 644 645 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 646 rx_ring->dma); 647 rx_ring->desc = NULL; 648 } 649 650 /** 651 * igbvf_update_itr - update the dynamic ITR value based on statistics 652 * @adapter: pointer to adapter 653 * @itr_setting: current adapter->itr 654 * @packets: the number of packets during this measurement interval 655 * @bytes: the number of bytes during this measurement interval 656 * 657 * Stores a new ITR value based on packets and byte counts during the last 658 * interrupt. The advantage of per interrupt computation is faster updates 659 * and more accurate ITR for the current traffic pattern. Constants in this 660 * function were computed based on theoretical maximum wire speed and thresholds 661 * were set based on testing data as well as attempting to minimize response 662 * time while increasing bulk throughput. 663 **/ 664 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter, 665 enum latency_range itr_setting, 666 int packets, int bytes) 667 { 668 enum latency_range retval = itr_setting; 669 670 if (packets == 0) 671 goto update_itr_done; 672 673 switch (itr_setting) { 674 case lowest_latency: 675 /* handle TSO and jumbo frames */ 676 if (bytes/packets > 8000) 677 retval = bulk_latency; 678 else if ((packets < 5) && (bytes > 512)) 679 retval = low_latency; 680 break; 681 case low_latency: /* 50 usec aka 20000 ints/s */ 682 if (bytes > 10000) { 683 /* this if handles the TSO accounting */ 684 if (bytes/packets > 8000) 685 retval = bulk_latency; 686 else if ((packets < 10) || ((bytes/packets) > 1200)) 687 retval = bulk_latency; 688 else if ((packets > 35)) 689 retval = lowest_latency; 690 } else if (bytes/packets > 2000) { 691 retval = bulk_latency; 692 } else if (packets <= 2 && bytes < 512) { 693 retval = lowest_latency; 694 } 695 break; 696 case bulk_latency: /* 250 usec aka 4000 ints/s */ 697 if (bytes > 25000) { 698 if (packets > 35) 699 retval = low_latency; 700 } else if (bytes < 6000) { 701 retval = low_latency; 702 } 703 break; 704 default: 705 break; 706 } 707 708 update_itr_done: 709 return retval; 710 } 711 712 static int igbvf_range_to_itr(enum latency_range current_range) 713 { 714 int new_itr; 715 716 switch (current_range) { 717 /* counts and packets in update_itr are dependent on these numbers */ 718 case lowest_latency: 719 new_itr = IGBVF_70K_ITR; 720 break; 721 case low_latency: 722 new_itr = IGBVF_20K_ITR; 723 break; 724 case bulk_latency: 725 new_itr = IGBVF_4K_ITR; 726 break; 727 default: 728 new_itr = IGBVF_START_ITR; 729 break; 730 } 731 return new_itr; 732 } 733 734 static void igbvf_set_itr(struct igbvf_adapter *adapter) 735 { 736 u32 new_itr; 737 738 adapter->tx_ring->itr_range = 739 igbvf_update_itr(adapter, 740 adapter->tx_ring->itr_val, 741 adapter->total_tx_packets, 742 adapter->total_tx_bytes); 743 744 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 745 if (adapter->requested_itr == 3 && 746 adapter->tx_ring->itr_range == lowest_latency) 747 adapter->tx_ring->itr_range = low_latency; 748 749 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range); 750 751 if (new_itr != adapter->tx_ring->itr_val) { 752 u32 current_itr = adapter->tx_ring->itr_val; 753 /* this attempts to bias the interrupt rate towards Bulk 754 * by adding intermediate steps when interrupt rate is 755 * increasing 756 */ 757 new_itr = new_itr > current_itr ? 758 min(current_itr + (new_itr >> 2), new_itr) : 759 new_itr; 760 adapter->tx_ring->itr_val = new_itr; 761 762 adapter->tx_ring->set_itr = 1; 763 } 764 765 adapter->rx_ring->itr_range = 766 igbvf_update_itr(adapter, adapter->rx_ring->itr_val, 767 adapter->total_rx_packets, 768 adapter->total_rx_bytes); 769 if (adapter->requested_itr == 3 && 770 adapter->rx_ring->itr_range == lowest_latency) 771 adapter->rx_ring->itr_range = low_latency; 772 773 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range); 774 775 if (new_itr != adapter->rx_ring->itr_val) { 776 u32 current_itr = adapter->rx_ring->itr_val; 777 778 new_itr = new_itr > current_itr ? 779 min(current_itr + (new_itr >> 2), new_itr) : 780 new_itr; 781 adapter->rx_ring->itr_val = new_itr; 782 783 adapter->rx_ring->set_itr = 1; 784 } 785 } 786 787 /** 788 * igbvf_clean_tx_irq - Reclaim resources after transmit completes 789 * @adapter: board private structure 790 * 791 * returns true if ring is completely cleaned 792 **/ 793 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) 794 { 795 struct igbvf_adapter *adapter = tx_ring->adapter; 796 struct net_device *netdev = adapter->netdev; 797 struct igbvf_buffer *buffer_info; 798 struct sk_buff *skb; 799 union e1000_adv_tx_desc *tx_desc, *eop_desc; 800 unsigned int total_bytes = 0, total_packets = 0; 801 unsigned int i, count = 0; 802 bool cleaned = false; 803 804 i = tx_ring->next_to_clean; 805 buffer_info = &tx_ring->buffer_info[i]; 806 eop_desc = buffer_info->next_to_watch; 807 808 do { 809 /* if next_to_watch is not set then there is no work pending */ 810 if (!eop_desc) 811 break; 812 813 /* prevent any other reads prior to eop_desc */ 814 smp_rmb(); 815 816 /* if DD is not set pending work has not been completed */ 817 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 818 break; 819 820 /* clear next_to_watch to prevent false hangs */ 821 buffer_info->next_to_watch = NULL; 822 823 for (cleaned = false; !cleaned; count++) { 824 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 825 cleaned = (tx_desc == eop_desc); 826 skb = buffer_info->skb; 827 828 if (skb) { 829 unsigned int segs, bytecount; 830 831 /* gso_segs is currently only valid for tcp */ 832 segs = skb_shinfo(skb)->gso_segs ?: 1; 833 /* multiply data chunks by size of headers */ 834 bytecount = ((segs - 1) * skb_headlen(skb)) + 835 skb->len; 836 total_packets += segs; 837 total_bytes += bytecount; 838 } 839 840 igbvf_put_txbuf(adapter, buffer_info); 841 tx_desc->wb.status = 0; 842 843 i++; 844 if (i == tx_ring->count) 845 i = 0; 846 847 buffer_info = &tx_ring->buffer_info[i]; 848 } 849 850 eop_desc = buffer_info->next_to_watch; 851 } while (count < tx_ring->count); 852 853 tx_ring->next_to_clean = i; 854 855 if (unlikely(count && netif_carrier_ok(netdev) && 856 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { 857 /* Make sure that anybody stopping the queue after this 858 * sees the new next_to_clean. 859 */ 860 smp_mb(); 861 if (netif_queue_stopped(netdev) && 862 !(test_bit(__IGBVF_DOWN, &adapter->state))) { 863 netif_wake_queue(netdev); 864 ++adapter->restart_queue; 865 } 866 } 867 868 netdev->stats.tx_bytes += total_bytes; 869 netdev->stats.tx_packets += total_packets; 870 return count < tx_ring->count; 871 } 872 873 static irqreturn_t igbvf_msix_other(int irq, void *data) 874 { 875 struct net_device *netdev = data; 876 struct igbvf_adapter *adapter = netdev_priv(netdev); 877 struct e1000_hw *hw = &adapter->hw; 878 879 adapter->int_counter1++; 880 881 hw->mac.get_link_status = 1; 882 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 883 mod_timer(&adapter->watchdog_timer, jiffies + 1); 884 885 ew32(EIMS, adapter->eims_other); 886 887 return IRQ_HANDLED; 888 } 889 890 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) 891 { 892 struct net_device *netdev = data; 893 struct igbvf_adapter *adapter = netdev_priv(netdev); 894 struct e1000_hw *hw = &adapter->hw; 895 struct igbvf_ring *tx_ring = adapter->tx_ring; 896 897 if (tx_ring->set_itr) { 898 writel(tx_ring->itr_val, 899 adapter->hw.hw_addr + tx_ring->itr_register); 900 adapter->tx_ring->set_itr = 0; 901 } 902 903 adapter->total_tx_bytes = 0; 904 adapter->total_tx_packets = 0; 905 906 /* auto mask will automatically re-enable the interrupt when we write 907 * EICS 908 */ 909 if (!igbvf_clean_tx_irq(tx_ring)) 910 /* Ring was not completely cleaned, so fire another interrupt */ 911 ew32(EICS, tx_ring->eims_value); 912 else 913 ew32(EIMS, tx_ring->eims_value); 914 915 return IRQ_HANDLED; 916 } 917 918 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) 919 { 920 struct net_device *netdev = data; 921 struct igbvf_adapter *adapter = netdev_priv(netdev); 922 923 adapter->int_counter0++; 924 925 /* Write the ITR value calculated at the end of the 926 * previous interrupt. 927 */ 928 if (adapter->rx_ring->set_itr) { 929 writel(adapter->rx_ring->itr_val, 930 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 931 adapter->rx_ring->set_itr = 0; 932 } 933 934 if (napi_schedule_prep(&adapter->rx_ring->napi)) { 935 adapter->total_rx_bytes = 0; 936 adapter->total_rx_packets = 0; 937 __napi_schedule(&adapter->rx_ring->napi); 938 } 939 940 return IRQ_HANDLED; 941 } 942 943 #define IGBVF_NO_QUEUE -1 944 945 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, 946 int tx_queue, int msix_vector) 947 { 948 struct e1000_hw *hw = &adapter->hw; 949 u32 ivar, index; 950 951 /* 82576 uses a table-based method for assigning vectors. 952 * Each queue has a single entry in the table to which we write 953 * a vector number along with a "valid" bit. Sadly, the layout 954 * of the table is somewhat counterintuitive. 955 */ 956 if (rx_queue > IGBVF_NO_QUEUE) { 957 index = (rx_queue >> 1); 958 ivar = array_er32(IVAR0, index); 959 if (rx_queue & 0x1) { 960 /* vector goes into third byte of register */ 961 ivar = ivar & 0xFF00FFFF; 962 ivar |= (msix_vector | E1000_IVAR_VALID) << 16; 963 } else { 964 /* vector goes into low byte of register */ 965 ivar = ivar & 0xFFFFFF00; 966 ivar |= msix_vector | E1000_IVAR_VALID; 967 } 968 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector); 969 array_ew32(IVAR0, index, ivar); 970 } 971 if (tx_queue > IGBVF_NO_QUEUE) { 972 index = (tx_queue >> 1); 973 ivar = array_er32(IVAR0, index); 974 if (tx_queue & 0x1) { 975 /* vector goes into high byte of register */ 976 ivar = ivar & 0x00FFFFFF; 977 ivar |= (msix_vector | E1000_IVAR_VALID) << 24; 978 } else { 979 /* vector goes into second byte of register */ 980 ivar = ivar & 0xFFFF00FF; 981 ivar |= (msix_vector | E1000_IVAR_VALID) << 8; 982 } 983 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector); 984 array_ew32(IVAR0, index, ivar); 985 } 986 } 987 988 /** 989 * igbvf_configure_msix - Configure MSI-X hardware 990 * @adapter: board private structure 991 * 992 * igbvf_configure_msix sets up the hardware to properly 993 * generate MSI-X interrupts. 994 **/ 995 static void igbvf_configure_msix(struct igbvf_adapter *adapter) 996 { 997 u32 tmp; 998 struct e1000_hw *hw = &adapter->hw; 999 struct igbvf_ring *tx_ring = adapter->tx_ring; 1000 struct igbvf_ring *rx_ring = adapter->rx_ring; 1001 int vector = 0; 1002 1003 adapter->eims_enable_mask = 0; 1004 1005 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); 1006 adapter->eims_enable_mask |= tx_ring->eims_value; 1007 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register); 1008 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); 1009 adapter->eims_enable_mask |= rx_ring->eims_value; 1010 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register); 1011 1012 /* set vector for other causes, i.e. link changes */ 1013 1014 tmp = (vector++ | E1000_IVAR_VALID); 1015 1016 ew32(IVAR_MISC, tmp); 1017 1018 adapter->eims_enable_mask = GENMASK(vector - 1, 0); 1019 adapter->eims_other = BIT(vector - 1); 1020 e1e_flush(); 1021 } 1022 1023 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) 1024 { 1025 if (adapter->msix_entries) { 1026 pci_disable_msix(adapter->pdev); 1027 kfree(adapter->msix_entries); 1028 adapter->msix_entries = NULL; 1029 } 1030 } 1031 1032 /** 1033 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported 1034 * @adapter: board private structure 1035 * 1036 * Attempt to configure interrupts using the best available 1037 * capabilities of the hardware and kernel. 1038 **/ 1039 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) 1040 { 1041 int err = -ENOMEM; 1042 int i; 1043 1044 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */ 1045 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), 1046 GFP_KERNEL); 1047 if (adapter->msix_entries) { 1048 for (i = 0; i < 3; i++) 1049 adapter->msix_entries[i].entry = i; 1050 1051 err = pci_enable_msix_range(adapter->pdev, 1052 adapter->msix_entries, 3, 3); 1053 } 1054 1055 if (err < 0) { 1056 /* MSI-X failed */ 1057 dev_err(&adapter->pdev->dev, 1058 "Failed to initialize MSI-X interrupts.\n"); 1059 igbvf_reset_interrupt_capability(adapter); 1060 } 1061 } 1062 1063 /** 1064 * igbvf_request_msix - Initialize MSI-X interrupts 1065 * @adapter: board private structure 1066 * 1067 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the 1068 * kernel. 1069 **/ 1070 static int igbvf_request_msix(struct igbvf_adapter *adapter) 1071 { 1072 struct net_device *netdev = adapter->netdev; 1073 int err = 0, vector = 0; 1074 1075 if (strlen(netdev->name) < (IFNAMSIZ - 5)) { 1076 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); 1077 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); 1078 } else { 1079 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1080 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1081 } 1082 1083 err = request_irq(adapter->msix_entries[vector].vector, 1084 igbvf_intr_msix_tx, 0, adapter->tx_ring->name, 1085 netdev); 1086 if (err) 1087 goto out; 1088 1089 adapter->tx_ring->itr_register = E1000_EITR(vector); 1090 adapter->tx_ring->itr_val = adapter->current_itr; 1091 vector++; 1092 1093 err = request_irq(adapter->msix_entries[vector].vector, 1094 igbvf_intr_msix_rx, 0, adapter->rx_ring->name, 1095 netdev); 1096 if (err) 1097 goto out; 1098 1099 adapter->rx_ring->itr_register = E1000_EITR(vector); 1100 adapter->rx_ring->itr_val = adapter->current_itr; 1101 vector++; 1102 1103 err = request_irq(adapter->msix_entries[vector].vector, 1104 igbvf_msix_other, 0, netdev->name, netdev); 1105 if (err) 1106 goto out; 1107 1108 igbvf_configure_msix(adapter); 1109 return 0; 1110 out: 1111 return err; 1112 } 1113 1114 /** 1115 * igbvf_alloc_queues - Allocate memory for all rings 1116 * @adapter: board private structure to initialize 1117 **/ 1118 static int igbvf_alloc_queues(struct igbvf_adapter *adapter) 1119 { 1120 struct net_device *netdev = adapter->netdev; 1121 1122 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1123 if (!adapter->tx_ring) 1124 return -ENOMEM; 1125 1126 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1127 if (!adapter->rx_ring) { 1128 kfree(adapter->tx_ring); 1129 return -ENOMEM; 1130 } 1131 1132 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64); 1133 1134 return 0; 1135 } 1136 1137 /** 1138 * igbvf_request_irq - initialize interrupts 1139 * @adapter: board private structure 1140 * 1141 * Attempts to configure interrupts using the best available 1142 * capabilities of the hardware and kernel. 1143 **/ 1144 static int igbvf_request_irq(struct igbvf_adapter *adapter) 1145 { 1146 int err = -1; 1147 1148 /* igbvf supports msi-x only */ 1149 if (adapter->msix_entries) 1150 err = igbvf_request_msix(adapter); 1151 1152 if (!err) 1153 return err; 1154 1155 dev_err(&adapter->pdev->dev, 1156 "Unable to allocate interrupt, Error: %d\n", err); 1157 1158 return err; 1159 } 1160 1161 static void igbvf_free_irq(struct igbvf_adapter *adapter) 1162 { 1163 struct net_device *netdev = adapter->netdev; 1164 int vector; 1165 1166 if (adapter->msix_entries) { 1167 for (vector = 0; vector < 3; vector++) 1168 free_irq(adapter->msix_entries[vector].vector, netdev); 1169 } 1170 } 1171 1172 /** 1173 * igbvf_irq_disable - Mask off interrupt generation on the NIC 1174 * @adapter: board private structure 1175 **/ 1176 static void igbvf_irq_disable(struct igbvf_adapter *adapter) 1177 { 1178 struct e1000_hw *hw = &adapter->hw; 1179 1180 ew32(EIMC, ~0); 1181 1182 if (adapter->msix_entries) 1183 ew32(EIAC, 0); 1184 } 1185 1186 /** 1187 * igbvf_irq_enable - Enable default interrupt generation settings 1188 * @adapter: board private structure 1189 **/ 1190 static void igbvf_irq_enable(struct igbvf_adapter *adapter) 1191 { 1192 struct e1000_hw *hw = &adapter->hw; 1193 1194 ew32(EIAC, adapter->eims_enable_mask); 1195 ew32(EIAM, adapter->eims_enable_mask); 1196 ew32(EIMS, adapter->eims_enable_mask); 1197 } 1198 1199 /** 1200 * igbvf_poll - NAPI Rx polling callback 1201 * @napi: struct associated with this polling callback 1202 * @budget: amount of packets driver is allowed to process this poll 1203 **/ 1204 static int igbvf_poll(struct napi_struct *napi, int budget) 1205 { 1206 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); 1207 struct igbvf_adapter *adapter = rx_ring->adapter; 1208 struct e1000_hw *hw = &adapter->hw; 1209 int work_done = 0; 1210 1211 igbvf_clean_rx_irq(adapter, &work_done, budget); 1212 1213 /* If not enough Rx work done, exit the polling mode */ 1214 if (work_done < budget) { 1215 napi_complete_done(napi, work_done); 1216 1217 if (adapter->requested_itr & 3) 1218 igbvf_set_itr(adapter); 1219 1220 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1221 ew32(EIMS, adapter->rx_ring->eims_value); 1222 } 1223 1224 return work_done; 1225 } 1226 1227 /** 1228 * igbvf_set_rlpml - set receive large packet maximum length 1229 * @adapter: board private structure 1230 * 1231 * Configure the maximum size of packets that will be received 1232 */ 1233 static void igbvf_set_rlpml(struct igbvf_adapter *adapter) 1234 { 1235 int max_frame_size; 1236 struct e1000_hw *hw = &adapter->hw; 1237 1238 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; 1239 1240 spin_lock_bh(&hw->mbx_lock); 1241 1242 e1000_rlpml_set_vf(hw, max_frame_size); 1243 1244 spin_unlock_bh(&hw->mbx_lock); 1245 } 1246 1247 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, 1248 __be16 proto, u16 vid) 1249 { 1250 struct igbvf_adapter *adapter = netdev_priv(netdev); 1251 struct e1000_hw *hw = &adapter->hw; 1252 1253 spin_lock_bh(&hw->mbx_lock); 1254 1255 if (hw->mac.ops.set_vfta(hw, vid, true)) { 1256 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid); 1257 spin_unlock_bh(&hw->mbx_lock); 1258 return -EINVAL; 1259 } 1260 1261 spin_unlock_bh(&hw->mbx_lock); 1262 1263 set_bit(vid, adapter->active_vlans); 1264 return 0; 1265 } 1266 1267 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, 1268 __be16 proto, u16 vid) 1269 { 1270 struct igbvf_adapter *adapter = netdev_priv(netdev); 1271 struct e1000_hw *hw = &adapter->hw; 1272 1273 spin_lock_bh(&hw->mbx_lock); 1274 1275 if (hw->mac.ops.set_vfta(hw, vid, false)) { 1276 dev_err(&adapter->pdev->dev, 1277 "Failed to remove vlan id %d\n", vid); 1278 spin_unlock_bh(&hw->mbx_lock); 1279 return -EINVAL; 1280 } 1281 1282 spin_unlock_bh(&hw->mbx_lock); 1283 1284 clear_bit(vid, adapter->active_vlans); 1285 return 0; 1286 } 1287 1288 static void igbvf_restore_vlan(struct igbvf_adapter *adapter) 1289 { 1290 u16 vid; 1291 1292 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1293 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 1294 } 1295 1296 /** 1297 * igbvf_configure_tx - Configure Transmit Unit after Reset 1298 * @adapter: board private structure 1299 * 1300 * Configure the Tx unit of the MAC after a reset. 1301 **/ 1302 static void igbvf_configure_tx(struct igbvf_adapter *adapter) 1303 { 1304 struct e1000_hw *hw = &adapter->hw; 1305 struct igbvf_ring *tx_ring = adapter->tx_ring; 1306 u64 tdba; 1307 u32 txdctl, dca_txctrl; 1308 1309 /* disable transmits */ 1310 txdctl = er32(TXDCTL(0)); 1311 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1312 e1e_flush(); 1313 msleep(10); 1314 1315 /* Setup the HW Tx Head and Tail descriptor pointers */ 1316 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); 1317 tdba = tx_ring->dma; 1318 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 1319 ew32(TDBAH(0), (tdba >> 32)); 1320 ew32(TDH(0), 0); 1321 ew32(TDT(0), 0); 1322 tx_ring->head = E1000_TDH(0); 1323 tx_ring->tail = E1000_TDT(0); 1324 1325 /* Turn off Relaxed Ordering on head write-backs. The writebacks 1326 * MUST be delivered in order or it will completely screw up 1327 * our bookkeeping. 1328 */ 1329 dca_txctrl = er32(DCA_TXCTRL(0)); 1330 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; 1331 ew32(DCA_TXCTRL(0), dca_txctrl); 1332 1333 /* enable transmits */ 1334 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 1335 ew32(TXDCTL(0), txdctl); 1336 1337 /* Setup Transmit Descriptor Settings for eop descriptor */ 1338 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; 1339 1340 /* enable Report Status bit */ 1341 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; 1342 } 1343 1344 /** 1345 * igbvf_setup_srrctl - configure the receive control registers 1346 * @adapter: Board private structure 1347 **/ 1348 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) 1349 { 1350 struct e1000_hw *hw = &adapter->hw; 1351 u32 srrctl = 0; 1352 1353 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | 1354 E1000_SRRCTL_BSIZEHDR_MASK | 1355 E1000_SRRCTL_BSIZEPKT_MASK); 1356 1357 /* Enable queue drop to avoid head of line blocking */ 1358 srrctl |= E1000_SRRCTL_DROP_EN; 1359 1360 /* Setup buffer sizes */ 1361 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> 1362 E1000_SRRCTL_BSIZEPKT_SHIFT; 1363 1364 if (adapter->rx_buffer_len < 2048) { 1365 adapter->rx_ps_hdr_size = 0; 1366 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 1367 } else { 1368 adapter->rx_ps_hdr_size = 128; 1369 srrctl |= adapter->rx_ps_hdr_size << 1370 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 1371 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; 1372 } 1373 1374 ew32(SRRCTL(0), srrctl); 1375 } 1376 1377 /** 1378 * igbvf_configure_rx - Configure Receive Unit after Reset 1379 * @adapter: board private structure 1380 * 1381 * Configure the Rx unit of the MAC after a reset. 1382 **/ 1383 static void igbvf_configure_rx(struct igbvf_adapter *adapter) 1384 { 1385 struct e1000_hw *hw = &adapter->hw; 1386 struct igbvf_ring *rx_ring = adapter->rx_ring; 1387 u64 rdba; 1388 u32 rxdctl; 1389 1390 /* disable receives */ 1391 rxdctl = er32(RXDCTL(0)); 1392 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1393 e1e_flush(); 1394 msleep(10); 1395 1396 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1397 * the Base and Length of the Rx Descriptor Ring 1398 */ 1399 rdba = rx_ring->dma; 1400 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 1401 ew32(RDBAH(0), (rdba >> 32)); 1402 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); 1403 rx_ring->head = E1000_RDH(0); 1404 rx_ring->tail = E1000_RDT(0); 1405 ew32(RDH(0), 0); 1406 ew32(RDT(0), 0); 1407 1408 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 1409 rxdctl &= 0xFFF00000; 1410 rxdctl |= IGBVF_RX_PTHRESH; 1411 rxdctl |= IGBVF_RX_HTHRESH << 8; 1412 rxdctl |= IGBVF_RX_WTHRESH << 16; 1413 1414 igbvf_set_rlpml(adapter); 1415 1416 /* enable receives */ 1417 ew32(RXDCTL(0), rxdctl); 1418 } 1419 1420 /** 1421 * igbvf_set_multi - Multicast and Promiscuous mode set 1422 * @netdev: network interface device structure 1423 * 1424 * The set_multi entry point is called whenever the multicast address 1425 * list or the network interface flags are updated. This routine is 1426 * responsible for configuring the hardware for proper multicast, 1427 * promiscuous mode, and all-multi behavior. 1428 **/ 1429 static void igbvf_set_multi(struct net_device *netdev) 1430 { 1431 struct igbvf_adapter *adapter = netdev_priv(netdev); 1432 struct e1000_hw *hw = &adapter->hw; 1433 struct netdev_hw_addr *ha; 1434 u8 *mta_list = NULL; 1435 int i; 1436 1437 if (!netdev_mc_empty(netdev)) { 1438 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN, 1439 GFP_ATOMIC); 1440 if (!mta_list) 1441 return; 1442 } 1443 1444 /* prepare a packed array of only addresses. */ 1445 i = 0; 1446 netdev_for_each_mc_addr(ha, netdev) 1447 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1448 1449 spin_lock_bh(&hw->mbx_lock); 1450 1451 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); 1452 1453 spin_unlock_bh(&hw->mbx_lock); 1454 kfree(mta_list); 1455 } 1456 1457 /** 1458 * igbvf_set_uni - Configure unicast MAC filters 1459 * @netdev: network interface device structure 1460 * 1461 * This routine is responsible for configuring the hardware for proper 1462 * unicast filters. 1463 **/ 1464 static int igbvf_set_uni(struct net_device *netdev) 1465 { 1466 struct igbvf_adapter *adapter = netdev_priv(netdev); 1467 struct e1000_hw *hw = &adapter->hw; 1468 1469 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) { 1470 pr_err("Too many unicast filters - No Space\n"); 1471 return -ENOSPC; 1472 } 1473 1474 spin_lock_bh(&hw->mbx_lock); 1475 1476 /* Clear all unicast MAC filters */ 1477 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL); 1478 1479 spin_unlock_bh(&hw->mbx_lock); 1480 1481 if (!netdev_uc_empty(netdev)) { 1482 struct netdev_hw_addr *ha; 1483 1484 /* Add MAC filters one by one */ 1485 netdev_for_each_uc_addr(ha, netdev) { 1486 spin_lock_bh(&hw->mbx_lock); 1487 1488 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD, 1489 ha->addr); 1490 1491 spin_unlock_bh(&hw->mbx_lock); 1492 udelay(200); 1493 } 1494 } 1495 1496 return 0; 1497 } 1498 1499 static void igbvf_set_rx_mode(struct net_device *netdev) 1500 { 1501 igbvf_set_multi(netdev); 1502 igbvf_set_uni(netdev); 1503 } 1504 1505 /** 1506 * igbvf_configure - configure the hardware for Rx and Tx 1507 * @adapter: private board structure 1508 **/ 1509 static void igbvf_configure(struct igbvf_adapter *adapter) 1510 { 1511 igbvf_set_rx_mode(adapter->netdev); 1512 1513 igbvf_restore_vlan(adapter); 1514 1515 igbvf_configure_tx(adapter); 1516 igbvf_setup_srrctl(adapter); 1517 igbvf_configure_rx(adapter); 1518 igbvf_alloc_rx_buffers(adapter->rx_ring, 1519 igbvf_desc_unused(adapter->rx_ring)); 1520 } 1521 1522 /* igbvf_reset - bring the hardware into a known good state 1523 * @adapter: private board structure 1524 * 1525 * This function boots the hardware and enables some settings that 1526 * require a configuration cycle of the hardware - those cannot be 1527 * set/changed during runtime. After reset the device needs to be 1528 * properly configured for Rx, Tx etc. 1529 */ 1530 static void igbvf_reset(struct igbvf_adapter *adapter) 1531 { 1532 struct e1000_mac_info *mac = &adapter->hw.mac; 1533 struct net_device *netdev = adapter->netdev; 1534 struct e1000_hw *hw = &adapter->hw; 1535 1536 spin_lock_bh(&hw->mbx_lock); 1537 1538 /* Allow time for pending master requests to run */ 1539 if (mac->ops.reset_hw(hw)) 1540 dev_err(&adapter->pdev->dev, "PF still resetting\n"); 1541 1542 mac->ops.init_hw(hw); 1543 1544 spin_unlock_bh(&hw->mbx_lock); 1545 1546 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 1547 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 1548 netdev->addr_len); 1549 memcpy(netdev->perm_addr, adapter->hw.mac.addr, 1550 netdev->addr_len); 1551 } 1552 1553 adapter->last_reset = jiffies; 1554 } 1555 1556 int igbvf_up(struct igbvf_adapter *adapter) 1557 { 1558 struct e1000_hw *hw = &adapter->hw; 1559 1560 /* hardware has been reset, we need to reload some things */ 1561 igbvf_configure(adapter); 1562 1563 clear_bit(__IGBVF_DOWN, &adapter->state); 1564 1565 napi_enable(&adapter->rx_ring->napi); 1566 if (adapter->msix_entries) 1567 igbvf_configure_msix(adapter); 1568 1569 /* Clear any pending interrupts. */ 1570 er32(EICR); 1571 igbvf_irq_enable(adapter); 1572 1573 /* start the watchdog */ 1574 hw->mac.get_link_status = 1; 1575 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1576 1577 return 0; 1578 } 1579 1580 void igbvf_down(struct igbvf_adapter *adapter) 1581 { 1582 struct net_device *netdev = adapter->netdev; 1583 struct e1000_hw *hw = &adapter->hw; 1584 u32 rxdctl, txdctl; 1585 1586 /* signal that we're down so the interrupt handler does not 1587 * reschedule our watchdog timer 1588 */ 1589 set_bit(__IGBVF_DOWN, &adapter->state); 1590 1591 /* disable receives in the hardware */ 1592 rxdctl = er32(RXDCTL(0)); 1593 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1594 1595 netif_carrier_off(netdev); 1596 netif_stop_queue(netdev); 1597 1598 /* disable transmits in the hardware */ 1599 txdctl = er32(TXDCTL(0)); 1600 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1601 1602 /* flush both disables and wait for them to finish */ 1603 e1e_flush(); 1604 msleep(10); 1605 1606 napi_disable(&adapter->rx_ring->napi); 1607 1608 igbvf_irq_disable(adapter); 1609 1610 del_timer_sync(&adapter->watchdog_timer); 1611 1612 /* record the stats before reset*/ 1613 igbvf_update_stats(adapter); 1614 1615 adapter->link_speed = 0; 1616 adapter->link_duplex = 0; 1617 1618 igbvf_reset(adapter); 1619 igbvf_clean_tx_ring(adapter->tx_ring); 1620 igbvf_clean_rx_ring(adapter->rx_ring); 1621 } 1622 1623 void igbvf_reinit_locked(struct igbvf_adapter *adapter) 1624 { 1625 might_sleep(); 1626 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 1627 usleep_range(1000, 2000); 1628 igbvf_down(adapter); 1629 igbvf_up(adapter); 1630 clear_bit(__IGBVF_RESETTING, &adapter->state); 1631 } 1632 1633 /** 1634 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) 1635 * @adapter: board private structure to initialize 1636 * 1637 * igbvf_sw_init initializes the Adapter private data structure. 1638 * Fields are initialized based on PCI device information and 1639 * OS network device settings (MTU size). 1640 **/ 1641 static int igbvf_sw_init(struct igbvf_adapter *adapter) 1642 { 1643 struct net_device *netdev = adapter->netdev; 1644 s32 rc; 1645 1646 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 1647 adapter->rx_ps_hdr_size = 0; 1648 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1649 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 1650 1651 adapter->tx_int_delay = 8; 1652 adapter->tx_abs_int_delay = 32; 1653 adapter->rx_int_delay = 0; 1654 adapter->rx_abs_int_delay = 8; 1655 adapter->requested_itr = 3; 1656 adapter->current_itr = IGBVF_START_ITR; 1657 1658 /* Set various function pointers */ 1659 adapter->ei->init_ops(&adapter->hw); 1660 1661 rc = adapter->hw.mac.ops.init_params(&adapter->hw); 1662 if (rc) 1663 return rc; 1664 1665 rc = adapter->hw.mbx.ops.init_params(&adapter->hw); 1666 if (rc) 1667 return rc; 1668 1669 igbvf_set_interrupt_capability(adapter); 1670 1671 if (igbvf_alloc_queues(adapter)) 1672 return -ENOMEM; 1673 1674 spin_lock_init(&adapter->tx_queue_lock); 1675 1676 /* Explicitly disable IRQ since the NIC can be in any state. */ 1677 igbvf_irq_disable(adapter); 1678 1679 spin_lock_init(&adapter->stats_lock); 1680 spin_lock_init(&adapter->hw.mbx_lock); 1681 1682 set_bit(__IGBVF_DOWN, &adapter->state); 1683 return 0; 1684 } 1685 1686 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) 1687 { 1688 struct e1000_hw *hw = &adapter->hw; 1689 1690 adapter->stats.last_gprc = er32(VFGPRC); 1691 adapter->stats.last_gorc = er32(VFGORC); 1692 adapter->stats.last_gptc = er32(VFGPTC); 1693 adapter->stats.last_gotc = er32(VFGOTC); 1694 adapter->stats.last_mprc = er32(VFMPRC); 1695 adapter->stats.last_gotlbc = er32(VFGOTLBC); 1696 adapter->stats.last_gptlbc = er32(VFGPTLBC); 1697 adapter->stats.last_gorlbc = er32(VFGORLBC); 1698 adapter->stats.last_gprlbc = er32(VFGPRLBC); 1699 1700 adapter->stats.base_gprc = er32(VFGPRC); 1701 adapter->stats.base_gorc = er32(VFGORC); 1702 adapter->stats.base_gptc = er32(VFGPTC); 1703 adapter->stats.base_gotc = er32(VFGOTC); 1704 adapter->stats.base_mprc = er32(VFMPRC); 1705 adapter->stats.base_gotlbc = er32(VFGOTLBC); 1706 adapter->stats.base_gptlbc = er32(VFGPTLBC); 1707 adapter->stats.base_gorlbc = er32(VFGORLBC); 1708 adapter->stats.base_gprlbc = er32(VFGPRLBC); 1709 } 1710 1711 /** 1712 * igbvf_open - Called when a network interface is made active 1713 * @netdev: network interface device structure 1714 * 1715 * Returns 0 on success, negative value on failure 1716 * 1717 * The open entry point is called when a network interface is made 1718 * active by the system (IFF_UP). At this point all resources needed 1719 * for transmit and receive operations are allocated, the interrupt 1720 * handler is registered with the OS, the watchdog timer is started, 1721 * and the stack is notified that the interface is ready. 1722 **/ 1723 static int igbvf_open(struct net_device *netdev) 1724 { 1725 struct igbvf_adapter *adapter = netdev_priv(netdev); 1726 struct e1000_hw *hw = &adapter->hw; 1727 int err; 1728 1729 /* disallow open during test */ 1730 if (test_bit(__IGBVF_TESTING, &adapter->state)) 1731 return -EBUSY; 1732 1733 /* allocate transmit descriptors */ 1734 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); 1735 if (err) 1736 goto err_setup_tx; 1737 1738 /* allocate receive descriptors */ 1739 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); 1740 if (err) 1741 goto err_setup_rx; 1742 1743 /* before we allocate an interrupt, we must be ready to handle it. 1744 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1745 * as soon as we call pci_request_irq, so we have to setup our 1746 * clean_rx handler before we do so. 1747 */ 1748 igbvf_configure(adapter); 1749 1750 err = igbvf_request_irq(adapter); 1751 if (err) 1752 goto err_req_irq; 1753 1754 /* From here on the code is the same as igbvf_up() */ 1755 clear_bit(__IGBVF_DOWN, &adapter->state); 1756 1757 napi_enable(&adapter->rx_ring->napi); 1758 1759 /* clear any pending interrupts */ 1760 er32(EICR); 1761 1762 igbvf_irq_enable(adapter); 1763 1764 /* start the watchdog */ 1765 hw->mac.get_link_status = 1; 1766 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1767 1768 return 0; 1769 1770 err_req_irq: 1771 igbvf_free_rx_resources(adapter->rx_ring); 1772 err_setup_rx: 1773 igbvf_free_tx_resources(adapter->tx_ring); 1774 err_setup_tx: 1775 igbvf_reset(adapter); 1776 1777 return err; 1778 } 1779 1780 /** 1781 * igbvf_close - Disables a network interface 1782 * @netdev: network interface device structure 1783 * 1784 * Returns 0, this is not allowed to fail 1785 * 1786 * The close entry point is called when an interface is de-activated 1787 * by the OS. The hardware is still under the drivers control, but 1788 * needs to be disabled. A global MAC reset is issued to stop the 1789 * hardware, and all transmit and receive resources are freed. 1790 **/ 1791 static int igbvf_close(struct net_device *netdev) 1792 { 1793 struct igbvf_adapter *adapter = netdev_priv(netdev); 1794 1795 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 1796 igbvf_down(adapter); 1797 1798 igbvf_free_irq(adapter); 1799 1800 igbvf_free_tx_resources(adapter->tx_ring); 1801 igbvf_free_rx_resources(adapter->rx_ring); 1802 1803 return 0; 1804 } 1805 1806 /** 1807 * igbvf_set_mac - Change the Ethernet Address of the NIC 1808 * @netdev: network interface device structure 1809 * @p: pointer to an address structure 1810 * 1811 * Returns 0 on success, negative on failure 1812 **/ 1813 static int igbvf_set_mac(struct net_device *netdev, void *p) 1814 { 1815 struct igbvf_adapter *adapter = netdev_priv(netdev); 1816 struct e1000_hw *hw = &adapter->hw; 1817 struct sockaddr *addr = p; 1818 1819 if (!is_valid_ether_addr(addr->sa_data)) 1820 return -EADDRNOTAVAIL; 1821 1822 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 1823 1824 spin_lock_bh(&hw->mbx_lock); 1825 1826 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 1827 1828 spin_unlock_bh(&hw->mbx_lock); 1829 1830 if (!ether_addr_equal(addr->sa_data, hw->mac.addr)) 1831 return -EADDRNOTAVAIL; 1832 1833 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1834 1835 return 0; 1836 } 1837 1838 #define UPDATE_VF_COUNTER(reg, name) \ 1839 { \ 1840 u32 current_counter = er32(reg); \ 1841 if (current_counter < adapter->stats.last_##name) \ 1842 adapter->stats.name += 0x100000000LL; \ 1843 adapter->stats.last_##name = current_counter; \ 1844 adapter->stats.name &= 0xFFFFFFFF00000000LL; \ 1845 adapter->stats.name |= current_counter; \ 1846 } 1847 1848 /** 1849 * igbvf_update_stats - Update the board statistics counters 1850 * @adapter: board private structure 1851 **/ 1852 void igbvf_update_stats(struct igbvf_adapter *adapter) 1853 { 1854 struct e1000_hw *hw = &adapter->hw; 1855 struct pci_dev *pdev = adapter->pdev; 1856 1857 /* Prevent stats update while adapter is being reset, link is down 1858 * or if the pci connection is down. 1859 */ 1860 if (adapter->link_speed == 0) 1861 return; 1862 1863 if (test_bit(__IGBVF_RESETTING, &adapter->state)) 1864 return; 1865 1866 if (pci_channel_offline(pdev)) 1867 return; 1868 1869 UPDATE_VF_COUNTER(VFGPRC, gprc); 1870 UPDATE_VF_COUNTER(VFGORC, gorc); 1871 UPDATE_VF_COUNTER(VFGPTC, gptc); 1872 UPDATE_VF_COUNTER(VFGOTC, gotc); 1873 UPDATE_VF_COUNTER(VFMPRC, mprc); 1874 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); 1875 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); 1876 UPDATE_VF_COUNTER(VFGORLBC, gorlbc); 1877 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); 1878 1879 /* Fill out the OS statistics structure */ 1880 adapter->netdev->stats.multicast = adapter->stats.mprc; 1881 } 1882 1883 static void igbvf_print_link_info(struct igbvf_adapter *adapter) 1884 { 1885 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n", 1886 adapter->link_speed, 1887 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half"); 1888 } 1889 1890 static bool igbvf_has_link(struct igbvf_adapter *adapter) 1891 { 1892 struct e1000_hw *hw = &adapter->hw; 1893 s32 ret_val = E1000_SUCCESS; 1894 bool link_active; 1895 1896 /* If interface is down, stay link down */ 1897 if (test_bit(__IGBVF_DOWN, &adapter->state)) 1898 return false; 1899 1900 spin_lock_bh(&hw->mbx_lock); 1901 1902 ret_val = hw->mac.ops.check_for_link(hw); 1903 1904 spin_unlock_bh(&hw->mbx_lock); 1905 1906 link_active = !hw->mac.get_link_status; 1907 1908 /* if check for link returns error we will need to reset */ 1909 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ))) 1910 schedule_work(&adapter->reset_task); 1911 1912 return link_active; 1913 } 1914 1915 /** 1916 * igbvf_watchdog - Timer Call-back 1917 * @data: pointer to adapter cast into an unsigned long 1918 **/ 1919 static void igbvf_watchdog(struct timer_list *t) 1920 { 1921 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer); 1922 1923 /* Do the rest outside of interrupt context */ 1924 schedule_work(&adapter->watchdog_task); 1925 } 1926 1927 static void igbvf_watchdog_task(struct work_struct *work) 1928 { 1929 struct igbvf_adapter *adapter = container_of(work, 1930 struct igbvf_adapter, 1931 watchdog_task); 1932 struct net_device *netdev = adapter->netdev; 1933 struct e1000_mac_info *mac = &adapter->hw.mac; 1934 struct igbvf_ring *tx_ring = adapter->tx_ring; 1935 struct e1000_hw *hw = &adapter->hw; 1936 u32 link; 1937 int tx_pending = 0; 1938 1939 link = igbvf_has_link(adapter); 1940 1941 if (link) { 1942 if (!netif_carrier_ok(netdev)) { 1943 mac->ops.get_link_up_info(&adapter->hw, 1944 &adapter->link_speed, 1945 &adapter->link_duplex); 1946 igbvf_print_link_info(adapter); 1947 1948 netif_carrier_on(netdev); 1949 netif_wake_queue(netdev); 1950 } 1951 } else { 1952 if (netif_carrier_ok(netdev)) { 1953 adapter->link_speed = 0; 1954 adapter->link_duplex = 0; 1955 dev_info(&adapter->pdev->dev, "Link is Down\n"); 1956 netif_carrier_off(netdev); 1957 netif_stop_queue(netdev); 1958 } 1959 } 1960 1961 if (netif_carrier_ok(netdev)) { 1962 igbvf_update_stats(adapter); 1963 } else { 1964 tx_pending = (igbvf_desc_unused(tx_ring) + 1 < 1965 tx_ring->count); 1966 if (tx_pending) { 1967 /* We've lost link, so the controller stops DMA, 1968 * but we've got queued Tx work that's never going 1969 * to get done, so reset controller to flush Tx. 1970 * (Do the reset outside of interrupt context). 1971 */ 1972 adapter->tx_timeout_count++; 1973 schedule_work(&adapter->reset_task); 1974 } 1975 } 1976 1977 /* Cause software interrupt to ensure Rx ring is cleaned */ 1978 ew32(EICS, adapter->rx_ring->eims_value); 1979 1980 /* Reset the timer */ 1981 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1982 mod_timer(&adapter->watchdog_timer, 1983 round_jiffies(jiffies + (2 * HZ))); 1984 } 1985 1986 #define IGBVF_TX_FLAGS_CSUM 0x00000001 1987 #define IGBVF_TX_FLAGS_VLAN 0x00000002 1988 #define IGBVF_TX_FLAGS_TSO 0x00000004 1989 #define IGBVF_TX_FLAGS_IPV4 0x00000008 1990 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 1991 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16 1992 1993 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens, 1994 u32 type_tucmd, u32 mss_l4len_idx) 1995 { 1996 struct e1000_adv_tx_context_desc *context_desc; 1997 struct igbvf_buffer *buffer_info; 1998 u16 i = tx_ring->next_to_use; 1999 2000 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 2001 buffer_info = &tx_ring->buffer_info[i]; 2002 2003 i++; 2004 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2005 2006 /* set bits to identify this as an advanced context descriptor */ 2007 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 2008 2009 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 2010 context_desc->seqnum_seed = 0; 2011 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 2012 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 2013 2014 buffer_info->time_stamp = jiffies; 2015 buffer_info->dma = 0; 2016 } 2017 2018 static int igbvf_tso(struct igbvf_ring *tx_ring, 2019 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) 2020 { 2021 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 2022 union { 2023 struct iphdr *v4; 2024 struct ipv6hdr *v6; 2025 unsigned char *hdr; 2026 } ip; 2027 union { 2028 struct tcphdr *tcp; 2029 unsigned char *hdr; 2030 } l4; 2031 u32 paylen, l4_offset; 2032 int err; 2033 2034 if (skb->ip_summed != CHECKSUM_PARTIAL) 2035 return 0; 2036 2037 if (!skb_is_gso(skb)) 2038 return 0; 2039 2040 err = skb_cow_head(skb, 0); 2041 if (err < 0) 2042 return err; 2043 2044 ip.hdr = skb_network_header(skb); 2045 l4.hdr = skb_checksum_start(skb); 2046 2047 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 2048 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 2049 2050 /* initialize outer IP header fields */ 2051 if (ip.v4->version == 4) { 2052 unsigned char *csum_start = skb_checksum_start(skb); 2053 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 2054 2055 /* IP header will have to cancel out any data that 2056 * is not a part of the outer IP header 2057 */ 2058 ip.v4->check = csum_fold(csum_partial(trans_start, 2059 csum_start - trans_start, 2060 0)); 2061 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 2062 2063 ip.v4->tot_len = 0; 2064 } else { 2065 ip.v6->payload_len = 0; 2066 } 2067 2068 /* determine offset of inner transport header */ 2069 l4_offset = l4.hdr - skb->data; 2070 2071 /* compute length of segmentation header */ 2072 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2073 2074 /* remove payload length from inner checksum */ 2075 paylen = skb->len - l4_offset; 2076 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 2077 2078 /* MSS L4LEN IDX */ 2079 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 2080 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 2081 2082 /* VLAN MACLEN IPLEN */ 2083 vlan_macip_lens = l4.hdr - ip.hdr; 2084 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 2085 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK; 2086 2087 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 2088 2089 return 1; 2090 } 2091 2092 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb) 2093 { 2094 unsigned int offset = 0; 2095 2096 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 2097 2098 return offset == skb_checksum_start_offset(skb); 2099 } 2100 2101 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb, 2102 u32 tx_flags, __be16 protocol) 2103 { 2104 u32 vlan_macip_lens = 0; 2105 u32 type_tucmd = 0; 2106 2107 if (skb->ip_summed != CHECKSUM_PARTIAL) { 2108 csum_failed: 2109 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN)) 2110 return false; 2111 goto no_csum; 2112 } 2113 2114 switch (skb->csum_offset) { 2115 case offsetof(struct tcphdr, check): 2116 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 2117 /* fall through */ 2118 case offsetof(struct udphdr, check): 2119 break; 2120 case offsetof(struct sctphdr, checksum): 2121 /* validate that this is actually an SCTP request */ 2122 if (((protocol == htons(ETH_P_IP)) && 2123 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 2124 ((protocol == htons(ETH_P_IPV6)) && 2125 igbvf_ipv6_csum_is_sctp(skb))) { 2126 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 2127 break; 2128 } 2129 default: 2130 skb_checksum_help(skb); 2131 goto csum_failed; 2132 } 2133 2134 vlan_macip_lens = skb_checksum_start_offset(skb) - 2135 skb_network_offset(skb); 2136 no_csum: 2137 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 2138 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK; 2139 2140 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 2141 return true; 2142 } 2143 2144 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) 2145 { 2146 struct igbvf_adapter *adapter = netdev_priv(netdev); 2147 2148 /* there is enough descriptors then we don't need to worry */ 2149 if (igbvf_desc_unused(adapter->tx_ring) >= size) 2150 return 0; 2151 2152 netif_stop_queue(netdev); 2153 2154 /* Herbert's original patch had: 2155 * smp_mb__after_netif_stop_queue(); 2156 * but since that doesn't exist yet, just open code it. 2157 */ 2158 smp_mb(); 2159 2160 /* We need to check again just in case room has been made available */ 2161 if (igbvf_desc_unused(adapter->tx_ring) < size) 2162 return -EBUSY; 2163 2164 netif_wake_queue(netdev); 2165 2166 ++adapter->restart_queue; 2167 return 0; 2168 } 2169 2170 #define IGBVF_MAX_TXD_PWR 16 2171 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR) 2172 2173 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, 2174 struct igbvf_ring *tx_ring, 2175 struct sk_buff *skb) 2176 { 2177 struct igbvf_buffer *buffer_info; 2178 struct pci_dev *pdev = adapter->pdev; 2179 unsigned int len = skb_headlen(skb); 2180 unsigned int count = 0, i; 2181 unsigned int f; 2182 2183 i = tx_ring->next_to_use; 2184 2185 buffer_info = &tx_ring->buffer_info[i]; 2186 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2187 buffer_info->length = len; 2188 /* set time_stamp *before* dma to help avoid a possible race */ 2189 buffer_info->time_stamp = jiffies; 2190 buffer_info->mapped_as_page = false; 2191 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len, 2192 DMA_TO_DEVICE); 2193 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2194 goto dma_error; 2195 2196 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 2197 const struct skb_frag_struct *frag; 2198 2199 count++; 2200 i++; 2201 if (i == tx_ring->count) 2202 i = 0; 2203 2204 frag = &skb_shinfo(skb)->frags[f]; 2205 len = skb_frag_size(frag); 2206 2207 buffer_info = &tx_ring->buffer_info[i]; 2208 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2209 buffer_info->length = len; 2210 buffer_info->time_stamp = jiffies; 2211 buffer_info->mapped_as_page = true; 2212 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len, 2213 DMA_TO_DEVICE); 2214 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2215 goto dma_error; 2216 } 2217 2218 tx_ring->buffer_info[i].skb = skb; 2219 2220 return ++count; 2221 2222 dma_error: 2223 dev_err(&pdev->dev, "TX DMA map failed\n"); 2224 2225 /* clear timestamp and dma mappings for failed buffer_info mapping */ 2226 buffer_info->dma = 0; 2227 buffer_info->time_stamp = 0; 2228 buffer_info->length = 0; 2229 buffer_info->mapped_as_page = false; 2230 if (count) 2231 count--; 2232 2233 /* clear timestamp and dma mappings for remaining portion of packet */ 2234 while (count--) { 2235 if (i == 0) 2236 i += tx_ring->count; 2237 i--; 2238 buffer_info = &tx_ring->buffer_info[i]; 2239 igbvf_put_txbuf(adapter, buffer_info); 2240 } 2241 2242 return 0; 2243 } 2244 2245 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, 2246 struct igbvf_ring *tx_ring, 2247 int tx_flags, int count, 2248 unsigned int first, u32 paylen, 2249 u8 hdr_len) 2250 { 2251 union e1000_adv_tx_desc *tx_desc = NULL; 2252 struct igbvf_buffer *buffer_info; 2253 u32 olinfo_status = 0, cmd_type_len; 2254 unsigned int i; 2255 2256 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | 2257 E1000_ADVTXD_DCMD_DEXT); 2258 2259 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 2260 cmd_type_len |= E1000_ADVTXD_DCMD_VLE; 2261 2262 if (tx_flags & IGBVF_TX_FLAGS_TSO) { 2263 cmd_type_len |= E1000_ADVTXD_DCMD_TSE; 2264 2265 /* insert tcp checksum */ 2266 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2267 2268 /* insert ip checksum */ 2269 if (tx_flags & IGBVF_TX_FLAGS_IPV4) 2270 olinfo_status |= E1000_TXD_POPTS_IXSM << 8; 2271 2272 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { 2273 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2274 } 2275 2276 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); 2277 2278 i = tx_ring->next_to_use; 2279 while (count--) { 2280 buffer_info = &tx_ring->buffer_info[i]; 2281 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 2282 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 2283 tx_desc->read.cmd_type_len = 2284 cpu_to_le32(cmd_type_len | buffer_info->length); 2285 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2286 i++; 2287 if (i == tx_ring->count) 2288 i = 0; 2289 } 2290 2291 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); 2292 /* Force memory writes to complete before letting h/w 2293 * know there are new descriptors to fetch. (Only 2294 * applicable for weak-ordered memory model archs, 2295 * such as IA-64). 2296 */ 2297 wmb(); 2298 2299 tx_ring->buffer_info[first].next_to_watch = tx_desc; 2300 tx_ring->next_to_use = i; 2301 writel(i, adapter->hw.hw_addr + tx_ring->tail); 2302 /* we need this if more than one processor can write to our tail 2303 * at a time, it synchronizes IO on IA64/Altix systems 2304 */ 2305 mmiowb(); 2306 } 2307 2308 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb, 2309 struct net_device *netdev, 2310 struct igbvf_ring *tx_ring) 2311 { 2312 struct igbvf_adapter *adapter = netdev_priv(netdev); 2313 unsigned int first, tx_flags = 0; 2314 u8 hdr_len = 0; 2315 int count = 0; 2316 int tso = 0; 2317 __be16 protocol = vlan_get_protocol(skb); 2318 2319 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2320 dev_kfree_skb_any(skb); 2321 return NETDEV_TX_OK; 2322 } 2323 2324 if (skb->len <= 0) { 2325 dev_kfree_skb_any(skb); 2326 return NETDEV_TX_OK; 2327 } 2328 2329 /* need: count + 4 desc gap to keep tail from touching 2330 * + 2 desc gap to keep tail from touching head, 2331 * + 1 desc for skb->data, 2332 * + 1 desc for context descriptor, 2333 * head, otherwise try next time 2334 */ 2335 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { 2336 /* this is a hard error */ 2337 return NETDEV_TX_BUSY; 2338 } 2339 2340 if (skb_vlan_tag_present(skb)) { 2341 tx_flags |= IGBVF_TX_FLAGS_VLAN; 2342 tx_flags |= (skb_vlan_tag_get(skb) << 2343 IGBVF_TX_FLAGS_VLAN_SHIFT); 2344 } 2345 2346 if (protocol == htons(ETH_P_IP)) 2347 tx_flags |= IGBVF_TX_FLAGS_IPV4; 2348 2349 first = tx_ring->next_to_use; 2350 2351 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len); 2352 if (unlikely(tso < 0)) { 2353 dev_kfree_skb_any(skb); 2354 return NETDEV_TX_OK; 2355 } 2356 2357 if (tso) 2358 tx_flags |= IGBVF_TX_FLAGS_TSO; 2359 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) && 2360 (skb->ip_summed == CHECKSUM_PARTIAL)) 2361 tx_flags |= IGBVF_TX_FLAGS_CSUM; 2362 2363 /* count reflects descriptors mapped, if 0 then mapping error 2364 * has occurred and we need to rewind the descriptor queue 2365 */ 2366 count = igbvf_tx_map_adv(adapter, tx_ring, skb); 2367 2368 if (count) { 2369 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, 2370 first, skb->len, hdr_len); 2371 /* Make sure there is space in the ring for the next send. */ 2372 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); 2373 } else { 2374 dev_kfree_skb_any(skb); 2375 tx_ring->buffer_info[first].time_stamp = 0; 2376 tx_ring->next_to_use = first; 2377 } 2378 2379 return NETDEV_TX_OK; 2380 } 2381 2382 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb, 2383 struct net_device *netdev) 2384 { 2385 struct igbvf_adapter *adapter = netdev_priv(netdev); 2386 struct igbvf_ring *tx_ring; 2387 2388 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2389 dev_kfree_skb_any(skb); 2390 return NETDEV_TX_OK; 2391 } 2392 2393 tx_ring = &adapter->tx_ring[0]; 2394 2395 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); 2396 } 2397 2398 /** 2399 * igbvf_tx_timeout - Respond to a Tx Hang 2400 * @netdev: network interface device structure 2401 **/ 2402 static void igbvf_tx_timeout(struct net_device *netdev) 2403 { 2404 struct igbvf_adapter *adapter = netdev_priv(netdev); 2405 2406 /* Do the reset outside of interrupt context */ 2407 adapter->tx_timeout_count++; 2408 schedule_work(&adapter->reset_task); 2409 } 2410 2411 static void igbvf_reset_task(struct work_struct *work) 2412 { 2413 struct igbvf_adapter *adapter; 2414 2415 adapter = container_of(work, struct igbvf_adapter, reset_task); 2416 2417 igbvf_reinit_locked(adapter); 2418 } 2419 2420 /** 2421 * igbvf_change_mtu - Change the Maximum Transfer Unit 2422 * @netdev: network interface device structure 2423 * @new_mtu: new value for maximum frame size 2424 * 2425 * Returns 0 on success, negative on failure 2426 **/ 2427 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) 2428 { 2429 struct igbvf_adapter *adapter = netdev_priv(netdev); 2430 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 2431 2432 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2433 usleep_range(1000, 2000); 2434 /* igbvf_down has a dependency on max_frame_size */ 2435 adapter->max_frame_size = max_frame; 2436 if (netif_running(netdev)) 2437 igbvf_down(adapter); 2438 2439 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 2440 * means we reserve 2 more, this pushes us to allocate from the next 2441 * larger slab size. 2442 * i.e. RXBUFFER_2048 --> size-4096 slab 2443 * However with the new *_jumbo_rx* routines, jumbo receives will use 2444 * fragmented skbs 2445 */ 2446 2447 if (max_frame <= 1024) 2448 adapter->rx_buffer_len = 1024; 2449 else if (max_frame <= 2048) 2450 adapter->rx_buffer_len = 2048; 2451 else 2452 #if (PAGE_SIZE / 2) > 16384 2453 adapter->rx_buffer_len = 16384; 2454 #else 2455 adapter->rx_buffer_len = PAGE_SIZE / 2; 2456 #endif 2457 2458 /* adjust allocation if LPE protects us, and we aren't using SBP */ 2459 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 2460 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 2461 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + 2462 ETH_FCS_LEN; 2463 2464 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", 2465 netdev->mtu, new_mtu); 2466 netdev->mtu = new_mtu; 2467 2468 if (netif_running(netdev)) 2469 igbvf_up(adapter); 2470 else 2471 igbvf_reset(adapter); 2472 2473 clear_bit(__IGBVF_RESETTING, &adapter->state); 2474 2475 return 0; 2476 } 2477 2478 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2479 { 2480 switch (cmd) { 2481 default: 2482 return -EOPNOTSUPP; 2483 } 2484 } 2485 2486 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state) 2487 { 2488 struct net_device *netdev = pci_get_drvdata(pdev); 2489 struct igbvf_adapter *adapter = netdev_priv(netdev); 2490 #ifdef CONFIG_PM 2491 int retval = 0; 2492 #endif 2493 2494 netif_device_detach(netdev); 2495 2496 if (netif_running(netdev)) { 2497 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 2498 igbvf_down(adapter); 2499 igbvf_free_irq(adapter); 2500 } 2501 2502 #ifdef CONFIG_PM 2503 retval = pci_save_state(pdev); 2504 if (retval) 2505 return retval; 2506 #endif 2507 2508 pci_disable_device(pdev); 2509 2510 return 0; 2511 } 2512 2513 #ifdef CONFIG_PM 2514 static int igbvf_resume(struct pci_dev *pdev) 2515 { 2516 struct net_device *netdev = pci_get_drvdata(pdev); 2517 struct igbvf_adapter *adapter = netdev_priv(netdev); 2518 u32 err; 2519 2520 pci_restore_state(pdev); 2521 err = pci_enable_device_mem(pdev); 2522 if (err) { 2523 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 2524 return err; 2525 } 2526 2527 pci_set_master(pdev); 2528 2529 if (netif_running(netdev)) { 2530 err = igbvf_request_irq(adapter); 2531 if (err) 2532 return err; 2533 } 2534 2535 igbvf_reset(adapter); 2536 2537 if (netif_running(netdev)) 2538 igbvf_up(adapter); 2539 2540 netif_device_attach(netdev); 2541 2542 return 0; 2543 } 2544 #endif 2545 2546 static void igbvf_shutdown(struct pci_dev *pdev) 2547 { 2548 igbvf_suspend(pdev, PMSG_SUSPEND); 2549 } 2550 2551 #ifdef CONFIG_NET_POLL_CONTROLLER 2552 /* Polling 'interrupt' - used by things like netconsole to send skbs 2553 * without having to re-enable interrupts. It's not called while 2554 * the interrupt routine is executing. 2555 */ 2556 static void igbvf_netpoll(struct net_device *netdev) 2557 { 2558 struct igbvf_adapter *adapter = netdev_priv(netdev); 2559 2560 disable_irq(adapter->pdev->irq); 2561 2562 igbvf_clean_tx_irq(adapter->tx_ring); 2563 2564 enable_irq(adapter->pdev->irq); 2565 } 2566 #endif 2567 2568 /** 2569 * igbvf_io_error_detected - called when PCI error is detected 2570 * @pdev: Pointer to PCI device 2571 * @state: The current pci connection state 2572 * 2573 * This function is called after a PCI bus error affecting 2574 * this device has been detected. 2575 */ 2576 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, 2577 pci_channel_state_t state) 2578 { 2579 struct net_device *netdev = pci_get_drvdata(pdev); 2580 struct igbvf_adapter *adapter = netdev_priv(netdev); 2581 2582 netif_device_detach(netdev); 2583 2584 if (state == pci_channel_io_perm_failure) 2585 return PCI_ERS_RESULT_DISCONNECT; 2586 2587 if (netif_running(netdev)) 2588 igbvf_down(adapter); 2589 pci_disable_device(pdev); 2590 2591 /* Request a slot slot reset. */ 2592 return PCI_ERS_RESULT_NEED_RESET; 2593 } 2594 2595 /** 2596 * igbvf_io_slot_reset - called after the pci bus has been reset. 2597 * @pdev: Pointer to PCI device 2598 * 2599 * Restart the card from scratch, as if from a cold-boot. Implementation 2600 * resembles the first-half of the igbvf_resume routine. 2601 */ 2602 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) 2603 { 2604 struct net_device *netdev = pci_get_drvdata(pdev); 2605 struct igbvf_adapter *adapter = netdev_priv(netdev); 2606 2607 if (pci_enable_device_mem(pdev)) { 2608 dev_err(&pdev->dev, 2609 "Cannot re-enable PCI device after reset.\n"); 2610 return PCI_ERS_RESULT_DISCONNECT; 2611 } 2612 pci_set_master(pdev); 2613 2614 igbvf_reset(adapter); 2615 2616 return PCI_ERS_RESULT_RECOVERED; 2617 } 2618 2619 /** 2620 * igbvf_io_resume - called when traffic can start flowing again. 2621 * @pdev: Pointer to PCI device 2622 * 2623 * This callback is called when the error recovery driver tells us that 2624 * its OK to resume normal operation. Implementation resembles the 2625 * second-half of the igbvf_resume routine. 2626 */ 2627 static void igbvf_io_resume(struct pci_dev *pdev) 2628 { 2629 struct net_device *netdev = pci_get_drvdata(pdev); 2630 struct igbvf_adapter *adapter = netdev_priv(netdev); 2631 2632 if (netif_running(netdev)) { 2633 if (igbvf_up(adapter)) { 2634 dev_err(&pdev->dev, 2635 "can't bring device back up after reset\n"); 2636 return; 2637 } 2638 } 2639 2640 netif_device_attach(netdev); 2641 } 2642 2643 static void igbvf_print_device_info(struct igbvf_adapter *adapter) 2644 { 2645 struct e1000_hw *hw = &adapter->hw; 2646 struct net_device *netdev = adapter->netdev; 2647 struct pci_dev *pdev = adapter->pdev; 2648 2649 if (hw->mac.type == e1000_vfadapt_i350) 2650 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n"); 2651 else 2652 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); 2653 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr); 2654 } 2655 2656 static int igbvf_set_features(struct net_device *netdev, 2657 netdev_features_t features) 2658 { 2659 struct igbvf_adapter *adapter = netdev_priv(netdev); 2660 2661 if (features & NETIF_F_RXCSUM) 2662 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED; 2663 else 2664 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED; 2665 2666 return 0; 2667 } 2668 2669 #define IGBVF_MAX_MAC_HDR_LEN 127 2670 #define IGBVF_MAX_NETWORK_HDR_LEN 511 2671 2672 static netdev_features_t 2673 igbvf_features_check(struct sk_buff *skb, struct net_device *dev, 2674 netdev_features_t features) 2675 { 2676 unsigned int network_hdr_len, mac_hdr_len; 2677 2678 /* Make certain the headers can be described by a context descriptor */ 2679 mac_hdr_len = skb_network_header(skb) - skb->data; 2680 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN)) 2681 return features & ~(NETIF_F_HW_CSUM | 2682 NETIF_F_SCTP_CRC | 2683 NETIF_F_HW_VLAN_CTAG_TX | 2684 NETIF_F_TSO | 2685 NETIF_F_TSO6); 2686 2687 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2688 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN)) 2689 return features & ~(NETIF_F_HW_CSUM | 2690 NETIF_F_SCTP_CRC | 2691 NETIF_F_TSO | 2692 NETIF_F_TSO6); 2693 2694 /* We can only support IPV4 TSO in tunnels if we can mangle the 2695 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2696 */ 2697 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2698 features &= ~NETIF_F_TSO; 2699 2700 return features; 2701 } 2702 2703 static const struct net_device_ops igbvf_netdev_ops = { 2704 .ndo_open = igbvf_open, 2705 .ndo_stop = igbvf_close, 2706 .ndo_start_xmit = igbvf_xmit_frame, 2707 .ndo_set_rx_mode = igbvf_set_rx_mode, 2708 .ndo_set_mac_address = igbvf_set_mac, 2709 .ndo_change_mtu = igbvf_change_mtu, 2710 .ndo_do_ioctl = igbvf_ioctl, 2711 .ndo_tx_timeout = igbvf_tx_timeout, 2712 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, 2713 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, 2714 #ifdef CONFIG_NET_POLL_CONTROLLER 2715 .ndo_poll_controller = igbvf_netpoll, 2716 #endif 2717 .ndo_set_features = igbvf_set_features, 2718 .ndo_features_check = igbvf_features_check, 2719 }; 2720 2721 /** 2722 * igbvf_probe - Device Initialization Routine 2723 * @pdev: PCI device information struct 2724 * @ent: entry in igbvf_pci_tbl 2725 * 2726 * Returns 0 on success, negative on failure 2727 * 2728 * igbvf_probe initializes an adapter identified by a pci_dev structure. 2729 * The OS initialization, configuring of the adapter private structure, 2730 * and a hardware reset occur. 2731 **/ 2732 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2733 { 2734 struct net_device *netdev; 2735 struct igbvf_adapter *adapter; 2736 struct e1000_hw *hw; 2737 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; 2738 2739 static int cards_found; 2740 int err, pci_using_dac; 2741 2742 err = pci_enable_device_mem(pdev); 2743 if (err) 2744 return err; 2745 2746 pci_using_dac = 0; 2747 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2748 if (!err) { 2749 pci_using_dac = 1; 2750 } else { 2751 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2752 if (err) { 2753 dev_err(&pdev->dev, 2754 "No usable DMA configuration, aborting\n"); 2755 goto err_dma; 2756 } 2757 } 2758 2759 err = pci_request_regions(pdev, igbvf_driver_name); 2760 if (err) 2761 goto err_pci_reg; 2762 2763 pci_set_master(pdev); 2764 2765 err = -ENOMEM; 2766 netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); 2767 if (!netdev) 2768 goto err_alloc_etherdev; 2769 2770 SET_NETDEV_DEV(netdev, &pdev->dev); 2771 2772 pci_set_drvdata(pdev, netdev); 2773 adapter = netdev_priv(netdev); 2774 hw = &adapter->hw; 2775 adapter->netdev = netdev; 2776 adapter->pdev = pdev; 2777 adapter->ei = ei; 2778 adapter->pba = ei->pba; 2779 adapter->flags = ei->flags; 2780 adapter->hw.back = adapter; 2781 adapter->hw.mac.type = ei->mac; 2782 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2783 2784 /* PCI config space info */ 2785 2786 hw->vendor_id = pdev->vendor; 2787 hw->device_id = pdev->device; 2788 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2789 hw->subsystem_device_id = pdev->subsystem_device; 2790 hw->revision_id = pdev->revision; 2791 2792 err = -EIO; 2793 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), 2794 pci_resource_len(pdev, 0)); 2795 2796 if (!adapter->hw.hw_addr) 2797 goto err_ioremap; 2798 2799 if (ei->get_variants) { 2800 err = ei->get_variants(adapter); 2801 if (err) 2802 goto err_get_variants; 2803 } 2804 2805 /* setup adapter struct */ 2806 err = igbvf_sw_init(adapter); 2807 if (err) 2808 goto err_sw_init; 2809 2810 /* construct the net_device struct */ 2811 netdev->netdev_ops = &igbvf_netdev_ops; 2812 2813 igbvf_set_ethtool_ops(netdev); 2814 netdev->watchdog_timeo = 5 * HZ; 2815 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2816 2817 adapter->bd_number = cards_found++; 2818 2819 netdev->hw_features = NETIF_F_SG | 2820 NETIF_F_TSO | 2821 NETIF_F_TSO6 | 2822 NETIF_F_RXCSUM | 2823 NETIF_F_HW_CSUM | 2824 NETIF_F_SCTP_CRC; 2825 2826 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 2827 NETIF_F_GSO_GRE_CSUM | \ 2828 NETIF_F_GSO_IPXIP4 | \ 2829 NETIF_F_GSO_IPXIP6 | \ 2830 NETIF_F_GSO_UDP_TUNNEL | \ 2831 NETIF_F_GSO_UDP_TUNNEL_CSUM) 2832 2833 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES; 2834 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 2835 IGBVF_GSO_PARTIAL_FEATURES; 2836 2837 netdev->features = netdev->hw_features; 2838 2839 if (pci_using_dac) 2840 netdev->features |= NETIF_F_HIGHDMA; 2841 2842 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 2843 netdev->mpls_features |= NETIF_F_HW_CSUM; 2844 netdev->hw_enc_features |= netdev->vlan_features; 2845 2846 /* set this bit last since it cannot be part of vlan_features */ 2847 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 2848 NETIF_F_HW_VLAN_CTAG_RX | 2849 NETIF_F_HW_VLAN_CTAG_TX; 2850 2851 /* MTU range: 68 - 9216 */ 2852 netdev->min_mtu = ETH_MIN_MTU; 2853 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 2854 2855 spin_lock_bh(&hw->mbx_lock); 2856 2857 /*reset the controller to put the device in a known good state */ 2858 err = hw->mac.ops.reset_hw(hw); 2859 if (err) { 2860 dev_info(&pdev->dev, 2861 "PF still in reset state. Is the PF interface up?\n"); 2862 } else { 2863 err = hw->mac.ops.read_mac_addr(hw); 2864 if (err) 2865 dev_info(&pdev->dev, "Error reading MAC address.\n"); 2866 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2867 dev_info(&pdev->dev, 2868 "MAC address not assigned by administrator.\n"); 2869 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 2870 netdev->addr_len); 2871 } 2872 2873 spin_unlock_bh(&hw->mbx_lock); 2874 2875 if (!is_valid_ether_addr(netdev->dev_addr)) { 2876 dev_info(&pdev->dev, "Assigning random MAC address.\n"); 2877 eth_hw_addr_random(netdev); 2878 memcpy(adapter->hw.mac.addr, netdev->dev_addr, 2879 netdev->addr_len); 2880 } 2881 2882 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0); 2883 2884 INIT_WORK(&adapter->reset_task, igbvf_reset_task); 2885 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); 2886 2887 /* ring size defaults */ 2888 adapter->rx_ring->count = 1024; 2889 adapter->tx_ring->count = 1024; 2890 2891 /* reset the hardware with the new settings */ 2892 igbvf_reset(adapter); 2893 2894 /* set hardware-specific flags */ 2895 if (adapter->hw.mac.type == e1000_vfadapt_i350) 2896 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP; 2897 2898 strcpy(netdev->name, "eth%d"); 2899 err = register_netdev(netdev); 2900 if (err) 2901 goto err_hw_init; 2902 2903 /* tell the stack to leave us alone until igbvf_open() is called */ 2904 netif_carrier_off(netdev); 2905 netif_stop_queue(netdev); 2906 2907 igbvf_print_device_info(adapter); 2908 2909 igbvf_initialize_last_counter_stats(adapter); 2910 2911 return 0; 2912 2913 err_hw_init: 2914 kfree(adapter->tx_ring); 2915 kfree(adapter->rx_ring); 2916 err_sw_init: 2917 igbvf_reset_interrupt_capability(adapter); 2918 err_get_variants: 2919 iounmap(adapter->hw.hw_addr); 2920 err_ioremap: 2921 free_netdev(netdev); 2922 err_alloc_etherdev: 2923 pci_release_regions(pdev); 2924 err_pci_reg: 2925 err_dma: 2926 pci_disable_device(pdev); 2927 return err; 2928 } 2929 2930 /** 2931 * igbvf_remove - Device Removal Routine 2932 * @pdev: PCI device information struct 2933 * 2934 * igbvf_remove is called by the PCI subsystem to alert the driver 2935 * that it should release a PCI device. The could be caused by a 2936 * Hot-Plug event, or because the driver is going to be removed from 2937 * memory. 2938 **/ 2939 static void igbvf_remove(struct pci_dev *pdev) 2940 { 2941 struct net_device *netdev = pci_get_drvdata(pdev); 2942 struct igbvf_adapter *adapter = netdev_priv(netdev); 2943 struct e1000_hw *hw = &adapter->hw; 2944 2945 /* The watchdog timer may be rescheduled, so explicitly 2946 * disable it from being rescheduled. 2947 */ 2948 set_bit(__IGBVF_DOWN, &adapter->state); 2949 del_timer_sync(&adapter->watchdog_timer); 2950 2951 cancel_work_sync(&adapter->reset_task); 2952 cancel_work_sync(&adapter->watchdog_task); 2953 2954 unregister_netdev(netdev); 2955 2956 igbvf_reset_interrupt_capability(adapter); 2957 2958 /* it is important to delete the NAPI struct prior to freeing the 2959 * Rx ring so that you do not end up with null pointer refs 2960 */ 2961 netif_napi_del(&adapter->rx_ring->napi); 2962 kfree(adapter->tx_ring); 2963 kfree(adapter->rx_ring); 2964 2965 iounmap(hw->hw_addr); 2966 if (hw->flash_address) 2967 iounmap(hw->flash_address); 2968 pci_release_regions(pdev); 2969 2970 free_netdev(netdev); 2971 2972 pci_disable_device(pdev); 2973 } 2974 2975 /* PCI Error Recovery (ERS) */ 2976 static const struct pci_error_handlers igbvf_err_handler = { 2977 .error_detected = igbvf_io_error_detected, 2978 .slot_reset = igbvf_io_slot_reset, 2979 .resume = igbvf_io_resume, 2980 }; 2981 2982 static const struct pci_device_id igbvf_pci_tbl[] = { 2983 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, 2984 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf }, 2985 { } /* terminate list */ 2986 }; 2987 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); 2988 2989 /* PCI Device API Driver */ 2990 static struct pci_driver igbvf_driver = { 2991 .name = igbvf_driver_name, 2992 .id_table = igbvf_pci_tbl, 2993 .probe = igbvf_probe, 2994 .remove = igbvf_remove, 2995 #ifdef CONFIG_PM 2996 /* Power Management Hooks */ 2997 .suspend = igbvf_suspend, 2998 .resume = igbvf_resume, 2999 #endif 3000 .shutdown = igbvf_shutdown, 3001 .err_handler = &igbvf_err_handler 3002 }; 3003 3004 /** 3005 * igbvf_init_module - Driver Registration Routine 3006 * 3007 * igbvf_init_module is the first routine called when the driver is 3008 * loaded. All it does is register with the PCI subsystem. 3009 **/ 3010 static int __init igbvf_init_module(void) 3011 { 3012 int ret; 3013 3014 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version); 3015 pr_info("%s\n", igbvf_copyright); 3016 3017 ret = pci_register_driver(&igbvf_driver); 3018 3019 return ret; 3020 } 3021 module_init(igbvf_init_module); 3022 3023 /** 3024 * igbvf_exit_module - Driver Exit Cleanup Routine 3025 * 3026 * igbvf_exit_module is called just before the driver is removed 3027 * from memory. 3028 **/ 3029 static void __exit igbvf_exit_module(void) 3030 { 3031 pci_unregister_driver(&igbvf_driver); 3032 } 3033 module_exit(igbvf_exit_module); 3034 3035 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 3036 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver"); 3037 MODULE_LICENSE("GPL"); 3038 MODULE_VERSION(DRV_VERSION); 3039 3040 /* netdev.c */ 3041